
International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 239

Secrecy Stabilizing for Cloud Storage With Assessing Of
Third Party

K Venkata Ramana#1, Murram Sree Harsha#2
#1 Department Of CSE,GOKULA KRISHNA COLLEGE OF ENGINEERING & TECHNOLOGY,SULLURPET.

#2Student Of M.Tech(C.S) And Department Of CSE,GOKULA KRISHNA COLLEGE OF ENGINEERING &
TECHNOLOGY,SULLURPET

Abstract

Using Cloud Storage, users can remotely store their data
and enjoy the on-demand high quality applications and
services from a shared pool of configurable computing
resources, without the burden of local data storage and
maintenance. However, the fact that users no longer have
physical possession of the outsourced data makes the data
integrity protection in Cloud Computing a formidable task,
especially for users with constrained computing resources.
Moreover, users should be able to just use the cloud
storage as if it is local, without worrying about the need to
verify its integrity. Thus, enabling public auditability for
cloud storage is of critical importance so that users can
resort to a third party auditor (TPA) to check the integrity
of outsourced data and be worry-free. To securely
introduce an effective TPA, the auditing process should
bring in no new vulnerabilities towards user data privacy,
and introduce no additional online burden to user. In this
paper, we propose a secure cloud storage system
supporting privacy-preserving public auditing. We further
extend our result to enable the TPA to perform audits for
multiple users simultaneously and efficiently. Extensive
security and performance analysis show the proposed
schemes are provably secure and highly efficient.

Index Terms—Data storage, privacy-preserving, public
auditability, cryptographic protocols, cloud computing.

1 INTRODUCTION

CLOUD Computing has been envisioned as the next-
generation information technology (IT) architecture for
enterprises, due to its long list of unprecedented
advantages in the IT history: on-demand self-service,
ubiquitous network access, location independent
resource pooling, rapid resource elasticity, usage-based
pricing and transference of risk [1]. As a disruptive
technology with profound implications, Cloud
Computing is transforming the very nature of how

businesses use information technology. One
fundamental aspect of this paradigm shifting is that data
is being centralized or outsourced to the Cloud. From
users’ perspective, including both individuals and IT
enterprises, storing data remotely to the cloud in a
flexible on-demand manner brings appealing benefits:
relief of the burden for storage management, universal
data access with independent geographical locations,
and avoidance of capital expenditure on hardware,
software, and personnel maintenances, etc [2].

While Cloud Computing makes these advantages
more appealing than ever, it also brings new and
challenging security threats towards users’ outsourced
data. Since cloud service providers (CSP) are
separateadministrative entities, data outsourcing is
actually relinquishing user’s ultimate control over the
fate of their data. As a result, the correctness of the data
in the cloud is being put at risk due to the following
reasons. First of all, although the infrastructures under
the cloud are much more powerful and reliable than
personal computing devices, they are still facing the
broad

range of both internal and external threats for data
integrity. Examples of outages and security breaches of
noteworthy cloud services appear from time to time
[3]–[7]. Secondly, there do exist various motivations
for CSP to behave unfaithfully towards the cloud users
regarding the status of their outsourced data. For
examples, CSP might reclaim storage for monetary
reasons by discarding data that has not been or is rarely
accessed, or even hide data loss incidents so as to
maintain a reputation [8]–[10]. In short, although
outsourcing data to the cloud is economically attractive
for long-term large-scale data storage, it does not
immediately offer any guarantee on data integrity and
availability. This problem, if not properly addressed,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Science Engineering and Advance Technology (IJSEAT)

https://core.ac.uk/display/235196263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 240

may impede the successful deployment of the cloud
architecture.

To fully ensure the data integrity and save the cloud
users’ computation resources as well as online burden,
it is of critical importance to enable public auditing
service for cloud data storage, so that users may resort
to an independent third party auditor (TPA) to audit the
outsourced data when needed. The TPA, who has
expertise and capabilities that users do not, can
periodically check the integrity of all the data stored in
the cloud on behalf of the users, which provides a much
more easier and affordable way for the users to ensure
their storage correctness in the cloud. Moreover, in
addition to help users to evaluate the risk of their
subscribed cloud data services, the audit result from
TPA would also be beneficial for the cloud service
providers to improve their cloud based service platform,
and even serve for independent arbitration purposes [9].
In a word, enabling public auditing services will play an
important role for this nascent cloud economy to
become fully established, where users will need ways to
assess risk and gain trust in the cloud.

Specifically, our contribution can be summarized as
the following three aspects:

1) We motivate the public auditing system of data
storage security in Cloud Computing and provide
a privacy-preserving auditing protocol, i.e., our
scheme enables an external auditor to audit user’s
outsourced data in the cloud without learning the
data content.

2) To the best of our knowledge, our scheme is the
first to support scalable and efficient public
auditing in the Cloud Computing. Specifically,
our scheme achieves batch auditing where
multiple delegated auditing tasks from different
users can be performed simultaneously by the
TPA.

3) We prove the security and justify the performance
of our proposed schemes through concrete
experiments and comparisons with the state-of-
the-art.

The rest of the paper is organized as follows. Section
II introduces the system and threat model, and our
design goals. Then we provide the detailed description
of our scheme in Section III. Section IV gives the
security analysis and performance evaluation, followed
by Section V which overviews the related work.

Finally, Section VI gives the concluding remark of the
whole paper.

2 PROBLEM STATEMENT

2.1 The System and Threat Model

We consider a cloud data storage service involving
three different entities, as illustrated in Fig. 1: the cloud
user (U), who has large amount of data files to be
stored in the cloud; the cloud server (CS), which is
managed by the cloud service provider (CSP) to
provide data storage service and has significant storage
space and computation resources (we will not
differentiate CS and CSP hereafter); the third party
auditor (TPA), who has expertise and capabilities that
cloud users do not have and is trusted to assess the
cloud storage service reliability on behalf of the user
upon request. Users rely on the CS for cloud data
storage and maintenance. They may also dynamically
interact with the CS to access and update their stored
data for various application purposes. To save the
computation resource as well as the online burden,
cloud users may resort to TPA for ensuring the storage
integrity of their outsourced data, while hoping to keep
their data private from TPA.

We consider the existence of a semi-trusted CS as
[16] does. Namely, in most of time it behaves properly
and does not deviate from the prescribed protocol
execution. However, for their own benefits the CS
might neglect to keep or deliberately delete rarely
accessed data files which belong to ordinary cloud
users. Moreover, the CS may decide to hide the data
corruptions caused by server hacks or Byzantine
failures to maintain reputation. We assume the TPA,
who is in the business of auditing, is reliable and
independent, and thus has no incentive to collude with
either the CS or the users during the auditing process.
However, it harms the user if the TPA could learn the
outsourced data after the audit.

To authorize the CS to respond to the audit delegated
to TPA’s, the user can sign a certificate granting audit
rights to the TPA’s public key, and all audits from the
TPA are authenticated against such a certificate. These
authentication handshakes are omitted in the following
presentation.

2.2 Design Goals

To enable privacy-preserving public auditing for cloud
data storage under the aforementioned model, our

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 241

protocol design should achieve the following security
and performance guarantees.
1) Public auditability: to allow TPA to verify the

correctness of the cloud data on demand without

Fig. 1: The architecture of cloud data storage service

retrieving a copy of the whole data or introducing
additional online burden to the cloud users.

2) Storage correctness: to ensure that there exists no
cheating cloud server that can pass the TPA’s
audit without indeed storing users’ data intact.

3) Privacy-preserving: to ensure that the TPA cannot
derive users’ data content from the information
collected during the auditing process.

4) Batch auditing: to enable TPA with secure and
efficient auditing capability to cope with multiple
auditing delegations from possibly large number
of different users simultaneously.

5) Lightweight: to allow TPA to perform auditing
with minimum communication and computation
overhead.

3 T HE PROPOSED SCHEMES

This section presents our public auditing scheme which
provides a complete outsourcing solution of data – not
only the data itself, but also its integrity checking. We
start from an overview of our public auditing system
and discuss two straightforward schemes and their
demerits. Then we present our main scheme and show
how to extent our main scheme to support batch
auditing for the TPA upon delegations from multiple
users. Finally, we discuss how to generalize our
privacy-preserving public auditing scheme and its
support of data dynamics.

3.1 Definitions and Framework

We follow a similar definition of previously proposed
schemes in the context of remote data integrity

checking [8], [11], [13] and adapt the framework for
our privacy-preserving public auditing system.

A public auditing scheme consists of four algorithms
(KeyGen, SigGen, GenProof, VerifyProof). KeyGen is
a key generation algorithm that is run by the user to
setup the scheme. SigGen is used by the user to
generate verification metadata, which may consist of
MAC, signatures, or other related information that will
be used for auditing. GenProof is run by the cloud
server to generate a proof of data storage correctness,
while VerifyProof is run by the TPA to audit the proof
from the cloud server.

Running a public auditing system consists of two
phases, Setup and Audit:• Setup: The user initializes the public and secret

parameters of the system by executing KeyGen,
and pre-processes the data file F by using SigGen
to generate the verification metadata. The user
then stores the data file F and the verification
metadata at the cloud server, and deletes its local
copy.
As part of pre-processing, the user may alter the
data file F by expanding it or including additional
metadata to be stored at server.• Audit: The TPA issues an audit message or
challenge to the cloud server to make sure that the
cloud server has retained the data file F properly at
the time of the audit. The cloud server will derive
a response message from a function of the stored
data file F and its verification metadata by
executing GenProof. The TPA then verifies the
response via VerifyProof.

Our framework assumes the TPA is stateless, which
is a desirable property achieved by our proposed
solution. It is easy to extend the framework above to
capture a stateful auditing system, essentially by
spliting the verification metadata into two parts which
are stored by the TPA and the cloud server respectively.

Our design does not assume any additional property
on the data file. If the user wants to have more error-
resiliency, he/she can always first redundantly encodes
the data file and then uses our system with the data file
that has error-correcting codes integrated.

3.2 Support for Data Dynamics

In Cloud Computing, outsourced data might not only be
accessed but also updated frequently by users for
various application purposes [10], [19] – [21]. Hence,
supporting data dynamics for privacypreserving public
auditing is also of paramount importance. Now we

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 241

protocol design should achieve the following security
and performance guarantees.
1) Public auditability: to allow TPA to verify the

correctness of the cloud data on demand without

Fig. 1: The architecture of cloud data storage service

retrieving a copy of the whole data or introducing
additional online burden to the cloud users.

2) Storage correctness: to ensure that there exists no
cheating cloud server that can pass the TPA’s
audit without indeed storing users’ data intact.

3) Privacy-preserving: to ensure that the TPA cannot
derive users’ data content from the information
collected during the auditing process.

4) Batch auditing: to enable TPA with secure and
efficient auditing capability to cope with multiple
auditing delegations from possibly large number
of different users simultaneously.

5) Lightweight: to allow TPA to perform auditing
with minimum communication and computation
overhead.

3 T HE PROPOSED SCHEMES

This section presents our public auditing scheme which
provides a complete outsourcing solution of data – not
only the data itself, but also its integrity checking. We
start from an overview of our public auditing system
and discuss two straightforward schemes and their
demerits. Then we present our main scheme and show
how to extent our main scheme to support batch
auditing for the TPA upon delegations from multiple
users. Finally, we discuss how to generalize our
privacy-preserving public auditing scheme and its
support of data dynamics.

3.1 Definitions and Framework

We follow a similar definition of previously proposed
schemes in the context of remote data integrity

checking [8], [11], [13] and adapt the framework for
our privacy-preserving public auditing system.

A public auditing scheme consists of four algorithms
(KeyGen, SigGen, GenProof, VerifyProof). KeyGen is
a key generation algorithm that is run by the user to
setup the scheme. SigGen is used by the user to
generate verification metadata, which may consist of
MAC, signatures, or other related information that will
be used for auditing. GenProof is run by the cloud
server to generate a proof of data storage correctness,
while VerifyProof is run by the TPA to audit the proof
from the cloud server.

Running a public auditing system consists of two
phases, Setup and Audit:• Setup: The user initializes the public and secret

parameters of the system by executing KeyGen,
and pre-processes the data file F by using SigGen
to generate the verification metadata. The user
then stores the data file F and the verification
metadata at the cloud server, and deletes its local
copy.
As part of pre-processing, the user may alter the
data file F by expanding it or including additional
metadata to be stored at server.• Audit: The TPA issues an audit message or
challenge to the cloud server to make sure that the
cloud server has retained the data file F properly at
the time of the audit. The cloud server will derive
a response message from a function of the stored
data file F and its verification metadata by
executing GenProof. The TPA then verifies the
response via VerifyProof.

Our framework assumes the TPA is stateless, which
is a desirable property achieved by our proposed
solution. It is easy to extend the framework above to
capture a stateful auditing system, essentially by
spliting the verification metadata into two parts which
are stored by the TPA and the cloud server respectively.

Our design does not assume any additional property
on the data file. If the user wants to have more error-
resiliency, he/she can always first redundantly encodes
the data file and then uses our system with the data file
that has error-correcting codes integrated.

3.2 Support for Data Dynamics

In Cloud Computing, outsourced data might not only be
accessed but also updated frequently by users for
various application purposes [10], [19] – [21]. Hence,
supporting data dynamics for privacypreserving public
auditing is also of paramount importance. Now we

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 241

protocol design should achieve the following security
and performance guarantees.
1) Public auditability: to allow TPA to verify the

correctness of the cloud data on demand without

Fig. 1: The architecture of cloud data storage service

retrieving a copy of the whole data or introducing
additional online burden to the cloud users.

2) Storage correctness: to ensure that there exists no
cheating cloud server that can pass the TPA’s
audit without indeed storing users’ data intact.

3) Privacy-preserving: to ensure that the TPA cannot
derive users’ data content from the information
collected during the auditing process.

4) Batch auditing: to enable TPA with secure and
efficient auditing capability to cope with multiple
auditing delegations from possibly large number
of different users simultaneously.

5) Lightweight: to allow TPA to perform auditing
with minimum communication and computation
overhead.

3 T HE PROPOSED SCHEMES

This section presents our public auditing scheme which
provides a complete outsourcing solution of data – not
only the data itself, but also its integrity checking. We
start from an overview of our public auditing system
and discuss two straightforward schemes and their
demerits. Then we present our main scheme and show
how to extent our main scheme to support batch
auditing for the TPA upon delegations from multiple
users. Finally, we discuss how to generalize our
privacy-preserving public auditing scheme and its
support of data dynamics.

3.1 Definitions and Framework

We follow a similar definition of previously proposed
schemes in the context of remote data integrity

checking [8], [11], [13] and adapt the framework for
our privacy-preserving public auditing system.

A public auditing scheme consists of four algorithms
(KeyGen, SigGen, GenProof, VerifyProof). KeyGen is
a key generation algorithm that is run by the user to
setup the scheme. SigGen is used by the user to
generate verification metadata, which may consist of
MAC, signatures, or other related information that will
be used for auditing. GenProof is run by the cloud
server to generate a proof of data storage correctness,
while VerifyProof is run by the TPA to audit the proof
from the cloud server.

Running a public auditing system consists of two
phases, Setup and Audit:• Setup: The user initializes the public and secret

parameters of the system by executing KeyGen,
and pre-processes the data file F by using SigGen
to generate the verification metadata. The user
then stores the data file F and the verification
metadata at the cloud server, and deletes its local
copy.
As part of pre-processing, the user may alter the
data file F by expanding it or including additional
metadata to be stored at server.• Audit: The TPA issues an audit message or
challenge to the cloud server to make sure that the
cloud server has retained the data file F properly at
the time of the audit. The cloud server will derive
a response message from a function of the stored
data file F and its verification metadata by
executing GenProof. The TPA then verifies the
response via VerifyProof.

Our framework assumes the TPA is stateless, which
is a desirable property achieved by our proposed
solution. It is easy to extend the framework above to
capture a stateful auditing system, essentially by
spliting the verification metadata into two parts which
are stored by the TPA and the cloud server respectively.

Our design does not assume any additional property
on the data file. If the user wants to have more error-
resiliency, he/she can always first redundantly encodes
the data file and then uses our system with the data file
that has error-correcting codes integrated.

3.2 Support for Data Dynamics

In Cloud Computing, outsourced data might not only be
accessed but also updated frequently by users for
various application purposes [10], [19] – [21]. Hence,
supporting data dynamics for privacypreserving public
auditing is also of paramount importance. Now we

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 242

show how to build upon the existing work [10] and
adapt our main scheme to support data dynamics,
including block level operations of modification,
deletion and insertion.
3.3 Generalization

As mentioned before, our protocol is based on the HLA
in [13]. Recently, it has been shown in [23] that HLA
can be constructed by homomorphic identification
protocols. One may apply the random masking
technique we used to construct the corresponding zero
knowledge proof for different homomorphic
identification protocols. Therefore, it follows that our
privacy-preserving public auditing system for secure
cloud storage can be generalized based on other
complexity assumptions, such as factoring [23].

4 EVALUATION

4.1 Security Analysis

We evaluate the security of the proposed scheme by
analyzing its fulfillment of the security guarantee
described in Section 2.2, namely, the storage
correctness and privacy-preserving property. We start
from the single user case, where our main result is
originated. Then we show the security guarantee of
batch auditing for the TPA in multi-user setting.

4.2 Performance Analysis

We now assess the performance of the proposed
privacy-preserving public auditing schemes to show
that they are indeed lightweight. We will focus on the
cost of the efficiency of the privacy-preserving protocol
and our proposed batch auditing technique. The
experiment is conducted using C on a Linux system
with an Intel Core 2 processor running at 1.86 GHz,
2048 MB of RAM, and a 7200 RPM Western Digital
250 GB Serial ATA drive with an 8 MB buffer. Our
code uses the Pairing-Based Cryptography (PBC)
library version 0.4.18. The elliptic curve utilized in the
experiment is a MNT curve, with base field size of 159
bits and the embedding degree 6. The security level is
chosen to be 80 bit, which means |νi| = 80 and |p| = 160.
All experimental results represent the mean of
20 trials.

4.2.1 Cost of Privacy-Preserving Protocol

We begin by estimating the cost in terms of basic
cryptographic operations, as notated in Table 1.
Suppose there are c random blocks specified in the
challenge

Fig. 2: Comparison on auditing time between batch and
individual auditing. Per task auditing time denotes the
total auditing time divided by the number of tasks. For
clarity reasons, we omit the straight curve for
individual auditing when c=300.

message chal during the Audit phase. Under this
setting, we quantify the cost introduced of the
privacypreserving auditing in terms of server
computation, auditor computation as well as
communication overhead.

On the server side, the generated response includes
an aggregated authenticator ,

a random factor R = e(u,v) ∈GT, and a blinded linear
combination of sampled blocks µ = γ Pi∈I νimi +r ∈Zp,
where γ = h(R) ∈Zp. The corresponding computation
cost is c-MultExp1

G1(|νi|), Exp1
GT (|p|), and

, respectively. Compared
to the existing HLA-based solution for ensuring remote
data integrity [13]1, the extra cost for protecting the
user privacy, resulted from the random mask R, is only
a constant:

Add1
Zp, which has nothing to do with the number of

sampled blocks c. When c is set to be 300 to 460 for
high assurance of auditing, as discussed in Section 3.4,
the extra cost for privacy-preserving guarantee on the
server side would be negligible against the total server
computation for response generation.

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 242

show how to build upon the existing work [10] and
adapt our main scheme to support data dynamics,
including block level operations of modification,
deletion and insertion.
3.3 Generalization

As mentioned before, our protocol is based on the HLA
in [13]. Recently, it has been shown in [23] that HLA
can be constructed by homomorphic identification
protocols. One may apply the random masking
technique we used to construct the corresponding zero
knowledge proof for different homomorphic
identification protocols. Therefore, it follows that our
privacy-preserving public auditing system for secure
cloud storage can be generalized based on other
complexity assumptions, such as factoring [23].

4 EVALUATION

4.1 Security Analysis

We evaluate the security of the proposed scheme by
analyzing its fulfillment of the security guarantee
described in Section 2.2, namely, the storage
correctness and privacy-preserving property. We start
from the single user case, where our main result is
originated. Then we show the security guarantee of
batch auditing for the TPA in multi-user setting.

4.2 Performance Analysis

We now assess the performance of the proposed
privacy-preserving public auditing schemes to show
that they are indeed lightweight. We will focus on the
cost of the efficiency of the privacy-preserving protocol
and our proposed batch auditing technique. The
experiment is conducted using C on a Linux system
with an Intel Core 2 processor running at 1.86 GHz,
2048 MB of RAM, and a 7200 RPM Western Digital
250 GB Serial ATA drive with an 8 MB buffer. Our
code uses the Pairing-Based Cryptography (PBC)
library version 0.4.18. The elliptic curve utilized in the
experiment is a MNT curve, with base field size of 159
bits and the embedding degree 6. The security level is
chosen to be 80 bit, which means |νi| = 80 and |p| = 160.
All experimental results represent the mean of
20 trials.

4.2.1 Cost of Privacy-Preserving Protocol

We begin by estimating the cost in terms of basic
cryptographic operations, as notated in Table 1.
Suppose there are c random blocks specified in the
challenge

Fig. 2: Comparison on auditing time between batch and
individual auditing. Per task auditing time denotes the
total auditing time divided by the number of tasks. For
clarity reasons, we omit the straight curve for
individual auditing when c=300.

message chal during the Audit phase. Under this
setting, we quantify the cost introduced of the
privacypreserving auditing in terms of server
computation, auditor computation as well as
communication overhead.

On the server side, the generated response includes
an aggregated authenticator ,

a random factor R = e(u,v) ∈GT, and a blinded linear
combination of sampled blocks µ = γ Pi∈I νimi +r ∈Zp,
where γ = h(R) ∈Zp. The corresponding computation
cost is c-MultExp1

G1(|νi|), Exp1
GT (|p|), and

, respectively. Compared
to the existing HLA-based solution for ensuring remote
data integrity [13]1, the extra cost for protecting the
user privacy, resulted from the random mask R, is only
a constant:

Add1
Zp, which has nothing to do with the number of

sampled blocks c. When c is set to be 300 to 460 for
high assurance of auditing, as discussed in Section 3.4,
the extra cost for privacy-preserving guarantee on the
server side would be negligible against the total server
computation for response generation.

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 242

show how to build upon the existing work [10] and
adapt our main scheme to support data dynamics,
including block level operations of modification,
deletion and insertion.
3.3 Generalization

As mentioned before, our protocol is based on the HLA
in [13]. Recently, it has been shown in [23] that HLA
can be constructed by homomorphic identification
protocols. One may apply the random masking
technique we used to construct the corresponding zero
knowledge proof for different homomorphic
identification protocols. Therefore, it follows that our
privacy-preserving public auditing system for secure
cloud storage can be generalized based on other
complexity assumptions, such as factoring [23].

4 EVALUATION

4.1 Security Analysis

We evaluate the security of the proposed scheme by
analyzing its fulfillment of the security guarantee
described in Section 2.2, namely, the storage
correctness and privacy-preserving property. We start
from the single user case, where our main result is
originated. Then we show the security guarantee of
batch auditing for the TPA in multi-user setting.

4.2 Performance Analysis

We now assess the performance of the proposed
privacy-preserving public auditing schemes to show
that they are indeed lightweight. We will focus on the
cost of the efficiency of the privacy-preserving protocol
and our proposed batch auditing technique. The
experiment is conducted using C on a Linux system
with an Intel Core 2 processor running at 1.86 GHz,
2048 MB of RAM, and a 7200 RPM Western Digital
250 GB Serial ATA drive with an 8 MB buffer. Our
code uses the Pairing-Based Cryptography (PBC)
library version 0.4.18. The elliptic curve utilized in the
experiment is a MNT curve, with base field size of 159
bits and the embedding degree 6. The security level is
chosen to be 80 bit, which means |νi| = 80 and |p| = 160.
All experimental results represent the mean of
20 trials.

4.2.1 Cost of Privacy-Preserving Protocol

We begin by estimating the cost in terms of basic
cryptographic operations, as notated in Table 1.
Suppose there are c random blocks specified in the
challenge

Fig. 2: Comparison on auditing time between batch and
individual auditing. Per task auditing time denotes the
total auditing time divided by the number of tasks. For
clarity reasons, we omit the straight curve for
individual auditing when c=300.

message chal during the Audit phase. Under this
setting, we quantify the cost introduced of the
privacypreserving auditing in terms of server
computation, auditor computation as well as
communication overhead.

On the server side, the generated response includes
an aggregated authenticator ,

a random factor R = e(u,v) ∈GT, and a blinded linear
combination of sampled blocks µ = γ Pi∈I νimi +r ∈Zp,
where γ = h(R) ∈Zp. The corresponding computation
cost is c-MultExp1

G1(|νi|), Exp1
GT (|p|), and

, respectively. Compared
to the existing HLA-based solution for ensuring remote
data integrity [13]1, the extra cost for protecting the
user privacy, resulted from the random mask R, is only
a constant:

Add1
Zp, which has nothing to do with the number of

sampled blocks c. When c is set to be 300 to 460 for
high assurance of auditing, as discussed in Section 3.4,
the extra cost for privacy-preserving guarantee on the
server side would be negligible against the total server
computation for response generation.

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 243

Similarly, on the auditor side, upon receiving the
response {σ,R,µ}, the corresponding computation cost
for response validation is Hash1

Zp + c-
MultExp1

G1(|νi|) + Hashc
G1 + Mult1

G1 + Mult1
GT +

Exp3
G1(|p|) + PairG

2
1,G2, among which only Hash1

Zp +
Exp2

G1(|p|) + Mult1
GT account for the additional constant

computation cost. For c = 460 or 300, and considering
the relatively expensive pairing operations, this extra
cost imposes little overhead on the overall cost of
response validation, and thus can be ignored. For the
sake of completeness, Table 2 gives the experiment
result on performance comparison between our scheme
and the state-of-the-art [13]. It can be

1. We refer readers to [13] for a detailed description of their
HLAbased solution.

Fig. 3: Comparison on auditing time between batch and
individual auditing, when α-fraction of 256 responses
are invalid. Per task auditing time denotes the total
auditing time divided by the number of tasks.

shown that the performance of our scheme is almost the
same as that of [13], even if our scheme supports
privacy-preserving guarantee while [13] does not. For
the extra communication cost of our scheme opposing
to [13], the server’s response {σ,R,µ} contains an
additional random element R, which is a group element
of GT and has the size close to 960 bits.

4.2.2 Batch Auditing Efficiency

Discussion in Section 3.5 gives an asymptotic
efficiency analysis on the batch auditing, by
considering only the total number of pairing operations.
However, on the practical side, there are additional less
expensive operations required for batching, such as
modular exponentiations and multiplications.
Meanwhile, the different sampling strategies, i.e.,

different number of sampled blocks c, is also a variable
factor that affects the batching efficiency. Thus,
whether the benefits of removing pairings significantly
outweighs these additional operations is remained to be
verified. To get a complete view of batching efficiency,
we conduct a timed batch auditing test, where the
number of auditing tasks is increased from 1 to
approximately 200 with intervals of 8. The performance
of the corresponding non-batched (individual) auditing
is provided as a baseline for the measurement.
Following the same experimental settings c = 300 and c
= 460, the average per task auditing time, which is
computed by dividing total auditing time by the number
of tasks, is given in Fig. 4 for both batch and individual
auditing. It can be shown that compared to individual
auditing, batch auditing indeed helps reducing the
TPA’s computation cost, as more than 11% and 14 %
of per-task auditing time is saved, when c is set to be
460 and 300, respectively.

4.2.3 Sorting out Invalid Responses

To evaluate the feasibility of the recursive approach,
we first generate a collection of 256 valid responses,
which implies the TPA may concurrently handle 256
different auditing delegations. We then conduct the
tests repeatedly while randomly corrupting an αfraction,
ranging from 0 to 18%, by replacing them with random
values. The average auditing time per task against the
individual auditing approach is presented in Fig. 5. The
result shows that even the number of invalid responses
exceeds 15% of the total batch size, the performance of
batch auditing can still be safely concluded as more
preferable than the straightforward individual auditing.
Note that the random distribution of invalid responses
within the collection is nearly the worst-case for batch
auditing. If invalid responses are grouped together, it is
possible to achieve even better results.

5 RELATED WORK

Ateniese et al. [8] are the first to consider public
auditability in their defined “provable data possession”
(PDP) model for ensuring possession of data files on
untrusted storages. Their scheme utilizes the RSAbased
homomorphic linear authenticators for auditing
outsourced data and suggests randomly sampling a few

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 243

Similarly, on the auditor side, upon receiving the
response {σ,R,µ}, the corresponding computation cost
for response validation is Hash1

Zp + c-
MultExp1

G1(|νi|) + Hashc
G1 + Mult1

G1 + Mult1
GT +

Exp3
G1(|p|) + PairG

2
1,G2, among which only Hash1

Zp +
Exp2

G1(|p|) + Mult1
GT account for the additional constant

computation cost. For c = 460 or 300, and considering
the relatively expensive pairing operations, this extra
cost imposes little overhead on the overall cost of
response validation, and thus can be ignored. For the
sake of completeness, Table 2 gives the experiment
result on performance comparison between our scheme
and the state-of-the-art [13]. It can be

1. We refer readers to [13] for a detailed description of their
HLAbased solution.

Fig. 3: Comparison on auditing time between batch and
individual auditing, when α-fraction of 256 responses
are invalid. Per task auditing time denotes the total
auditing time divided by the number of tasks.

shown that the performance of our scheme is almost the
same as that of [13], even if our scheme supports
privacy-preserving guarantee while [13] does not. For
the extra communication cost of our scheme opposing
to [13], the server’s response {σ,R,µ} contains an
additional random element R, which is a group element
of GT and has the size close to 960 bits.

4.2.2 Batch Auditing Efficiency

Discussion in Section 3.5 gives an asymptotic
efficiency analysis on the batch auditing, by
considering only the total number of pairing operations.
However, on the practical side, there are additional less
expensive operations required for batching, such as
modular exponentiations and multiplications.
Meanwhile, the different sampling strategies, i.e.,

different number of sampled blocks c, is also a variable
factor that affects the batching efficiency. Thus,
whether the benefits of removing pairings significantly
outweighs these additional operations is remained to be
verified. To get a complete view of batching efficiency,
we conduct a timed batch auditing test, where the
number of auditing tasks is increased from 1 to
approximately 200 with intervals of 8. The performance
of the corresponding non-batched (individual) auditing
is provided as a baseline for the measurement.
Following the same experimental settings c = 300 and c
= 460, the average per task auditing time, which is
computed by dividing total auditing time by the number
of tasks, is given in Fig. 4 for both batch and individual
auditing. It can be shown that compared to individual
auditing, batch auditing indeed helps reducing the
TPA’s computation cost, as more than 11% and 14 %
of per-task auditing time is saved, when c is set to be
460 and 300, respectively.

4.2.3 Sorting out Invalid Responses

To evaluate the feasibility of the recursive approach,
we first generate a collection of 256 valid responses,
which implies the TPA may concurrently handle 256
different auditing delegations. We then conduct the
tests repeatedly while randomly corrupting an αfraction,
ranging from 0 to 18%, by replacing them with random
values. The average auditing time per task against the
individual auditing approach is presented in Fig. 5. The
result shows that even the number of invalid responses
exceeds 15% of the total batch size, the performance of
batch auditing can still be safely concluded as more
preferable than the straightforward individual auditing.
Note that the random distribution of invalid responses
within the collection is nearly the worst-case for batch
auditing. If invalid responses are grouped together, it is
possible to achieve even better results.

5 RELATED WORK

Ateniese et al. [8] are the first to consider public
auditability in their defined “provable data possession”
(PDP) model for ensuring possession of data files on
untrusted storages. Their scheme utilizes the RSAbased
homomorphic linear authenticators for auditing
outsourced data and suggests randomly sampling a few

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 243

Similarly, on the auditor side, upon receiving the
response {σ,R,µ}, the corresponding computation cost
for response validation is Hash1

Zp + c-
MultExp1

G1(|νi|) + Hashc
G1 + Mult1

G1 + Mult1
GT +

Exp3
G1(|p|) + PairG

2
1,G2, among which only Hash1

Zp +
Exp2

G1(|p|) + Mult1
GT account for the additional constant

computation cost. For c = 460 or 300, and considering
the relatively expensive pairing operations, this extra
cost imposes little overhead on the overall cost of
response validation, and thus can be ignored. For the
sake of completeness, Table 2 gives the experiment
result on performance comparison between our scheme
and the state-of-the-art [13]. It can be

1. We refer readers to [13] for a detailed description of their
HLAbased solution.

Fig. 3: Comparison on auditing time between batch and
individual auditing, when α-fraction of 256 responses
are invalid. Per task auditing time denotes the total
auditing time divided by the number of tasks.

shown that the performance of our scheme is almost the
same as that of [13], even if our scheme supports
privacy-preserving guarantee while [13] does not. For
the extra communication cost of our scheme opposing
to [13], the server’s response {σ,R,µ} contains an
additional random element R, which is a group element
of GT and has the size close to 960 bits.

4.2.2 Batch Auditing Efficiency

Discussion in Section 3.5 gives an asymptotic
efficiency analysis on the batch auditing, by
considering only the total number of pairing operations.
However, on the practical side, there are additional less
expensive operations required for batching, such as
modular exponentiations and multiplications.
Meanwhile, the different sampling strategies, i.e.,

different number of sampled blocks c, is also a variable
factor that affects the batching efficiency. Thus,
whether the benefits of removing pairings significantly
outweighs these additional operations is remained to be
verified. To get a complete view of batching efficiency,
we conduct a timed batch auditing test, where the
number of auditing tasks is increased from 1 to
approximately 200 with intervals of 8. The performance
of the corresponding non-batched (individual) auditing
is provided as a baseline for the measurement.
Following the same experimental settings c = 300 and c
= 460, the average per task auditing time, which is
computed by dividing total auditing time by the number
of tasks, is given in Fig. 4 for both batch and individual
auditing. It can be shown that compared to individual
auditing, batch auditing indeed helps reducing the
TPA’s computation cost, as more than 11% and 14 %
of per-task auditing time is saved, when c is set to be
460 and 300, respectively.

4.2.3 Sorting out Invalid Responses

To evaluate the feasibility of the recursive approach,
we first generate a collection of 256 valid responses,
which implies the TPA may concurrently handle 256
different auditing delegations. We then conduct the
tests repeatedly while randomly corrupting an αfraction,
ranging from 0 to 18%, by replacing them with random
values. The average auditing time per task against the
individual auditing approach is presented in Fig. 5. The
result shows that even the number of invalid responses
exceeds 15% of the total batch size, the performance of
batch auditing can still be safely concluded as more
preferable than the straightforward individual auditing.
Note that the random distribution of invalid responses
within the collection is nearly the worst-case for batch
auditing. If invalid responses are grouped together, it is
possible to achieve even better results.

5 RELATED WORK

Ateniese et al. [8] are the first to consider public
auditability in their defined “provable data possession”
(PDP) model for ensuring possession of data files on
untrusted storages. Their scheme utilizes the RSAbased
homomorphic linear authenticators for auditing
outsourced data and suggests randomly sampling a few

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 244

blocks of the file. However, the public auditability in
their scheme demands the linear combination of
sampled blocks exposed to external auditor. When used
directly, their protocol is not provably privacy
preserving, and thus may leak user data information to
the auditor. Juels et al. [11] describe a “proof of
retrievability” (PoR) model, where spot-checking and
error-correcting codes are used to ensure both
“possession” and “retrievability” of data files on remote
archive service systems. However, the number of audit
challenges a user can perform is fixed a priori, and
public auditability is not supported in their main
scheme. Although they describe a straightforward
Merkle-tree construction for public PoRs, this approach
only works with encrypted data. Dodis et al. [25] give a
study on different variants of PoR with private
auditability. Shacham et al. [13] design an improved
PoR scheme built from BLS signatures [17] with full
proofs of security in the security model defined in [11].
Similar to the construction in [8], they use publicly
verifiable homomorphic linear authenticators that are
built from provably secure BLS signatures. Based on
the elegant BLS construction, a compact and public
verifiable scheme is obtained. Again, their approach
does not support privacy-preserving auditing for the
same reason as [8]. Shah et al. [9], [14] propose
allowing a TPA to keep online storage honest by first
encrypting the data then sending a number of pre-
computed symmetric-keyed hashes over the encrypted
data to the auditor. The auditor verifies both the
integrity of the data file and the server’s possession of a
previously committed decryption key. This scheme
only works for encrypted files, and it suffers from the
auditor statefulness and bounded usage, which may
potentially bring in online burden to users when the
keyed hashes are used up.

In other related work, Ateniese et al. [19] propose a
partially dynamic version of the prior PDP scheme,
using only symmetric key cryptography but with a
bounded number of audits. In [20], Wang et al. consider
a similar support for partial dynamic data storage in a
distributed scenario with additional feature of data error
localization. In a subsequent work, Wang et al. [10]
propose to combine BLS-based HLA with MHT to
support both public auditability and full data dynamics.
Almost simultaneously, Erway et al. [21] developed a
skip lists based scheme to enable provable data
possession with full dynamics support. However, the
verification in these two protocols requires the linear
combination of sampled blocks just as [8], [13], and
thus does not support privacypreserving auditing. While

all the above schemes provide methods for efficient
auditing and provable assurance on the correctness of
remotely stored data, none of them meet all the
requirements for privacypreserving public auditing in
cloud computing. More importantly, none of these
schemes consider batch auditing, which can greatly
reduce the computation cost on the TPA when coping
with a large number of audit delegations.

6 CONCLUSION

In this paper, we propose a privacy-preserving public
auditing system for data storage security in Cloud
Computing. We utilize the homomorphic linear
authenticator and random masking to guarantee that the
TPA would not learn any knowledge about the data
content stored on the cloud server during the efficient
auditing process, which not only eliminates the burden
of cloud user from the tedious and possibly expensive
auditing task, but also alleviates the users’ fear of their
outsourced data leakage. Considering TPA may
concurrently handle multiple audit sessions from
different users for their outsourced data files, we further
extend our privacy-preserving public auditing protocol
into a multi-user setting, where the TPA can perform
multiple auditing tasks in a batch manner for better
efficiency. Extensive analysis shows that our schemes
are provably secure and highly efficient.

REFERENCES

[1] P. Mell and T. Grance, “Draft NIST working
definition of cloud computing,” Referenced on
June. 3rd, 2009 Online at
http://csrc.nist.gov/groups/SNS/cloud-
computing/index. html, 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.
H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A.
Rabkin, I. Stoica, and M. Zaharia, “Above the
clouds: A berkeley view of cloud computing,”
University of California, Berkeley, Tech. Rep.
UCB-EECS-2009-28, Feb 2009.

[3] M. Arrington, “Gmail disaster: Reports of mass
email deletions,” Online at
http://www.techcrunch.com/2006/ 12/28/gmail-
disasterreports-of-mass-email-deletions/, December
2006.

[4] J. Kincaid, “MediaMax/TheLinkup Closes Its
Doors,” Online at
http://www.techcrunch.com/2008/07/10/
mediamaxthelinkup-closes-its-doors/, July 2008.

International Journal of Science Engineering and AdvanceTechnology, IJSEAT, Vol 2, Issue 8, August - 2014 ISSN 2321-6905

www.ijseat.com Page 245

[5] Amazon.com, “Amazon s3 availability event: July
20, 2008 ,” Online at
http://status.aws.amazon.com/s3-20080720.html,
2008.

[6] S. Wilson, “Appengine outage,” Online at
http://www.

cio-weblog.com/50226711/appengine outage.php, June
2008.

[7] B. Krebs, “Payment Processor Breach May Be
Largest Ever,” Online at
http://voices.washingtonpost.com/securityfix/
2009/01/payment processor breach may b.html,
Jan. 2009.

[8] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. Peterson, and D. Song, “Provable data
possession at untrusted stores,” in Proc. of CCS’07,
Alexandria, VA, October 2007, pp. 598–609.

[9] M. A. Shah, R. Swaminathan, and M. Baker,
“Privacypreserving audit and extraction of digital
contents,” Cryptology ePrint Archive, Report
2008/186, 2008.

[10] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,
“Enabling public verifiability and data dynamics
for storage security in cloud computing,” in Proc.
of ESORICS’09, volume 5789 of LNCS. Springer-
Verlag, Sep. 2009, pp. 355–370.

[11] A. Juels and J. Burton S. Kaliski, “Pors: Proofs of
retrievability for large files,” in Proc. of CCS’07,
Alexandria, VA, October 2007, pp. 584–597.

[12] Cloud Security Alliance, “Security guidance for
critical areas of focus in cloud computing,” 2009,
http://www. cloudsecurityalliance.org.

[13] H. Shacham and B. Waters, “Compact proofs of
retrievability,” in Proc. of Asiacrypt 2008, vol.
5350, Dec 2008, pp. 90–107.

[14] M. A. Shah, M. Baker, J. C. Mogul, and R.
Swaminathan, “Auditing to keep online storage
services honest,” in Proc. of HotOS’07. Berkeley,
CA, USA: USENIX Association, 2007, pp.
1 – 6.

[15] 104th United States Congress, “Health Insurance
Portability and Accountability Act of 1996
(HIPPA),” Online at http://
aspe.hhs.gov/admnsimp/pl104191.htm, 1996.

[16] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving
secure, scalable, and fine-grained access control in
cloud computing,” in Proc. of IEEE INFOCOM’10,
San Diego, CA, USA, March
2010.

[17] D. Boneh, B. Lynn, and H. Shacham, “Short
signatures from the Weil pairing,” J. Cryptology,
vol. 17, no. 4, pp. 297–319 , 2004.

[18] A. L. Ferrara, M. Greeny, S. Hohenberger, and M.
Pedersen, “Practical short signature batch
verification,” in Proceedings of CT-RSA, volume
5473 of LNCS. Springer-Verlag, 2009, pp. 309 –
324.

[19] G. Ateniese, R. D. Pietro, L. V. Mancini, and G.
Tsudik, “Scalable and efficient provable data
possession,” in Proc. of SecureComm’08, 2008, pp.
1–10.

[20] C. Wang, Q. Wang, K. Ren, and W. Lou,
“Ensuring data storage security in cloud
computing,” in Proc. of IWQoS’09, July 2009, pp.
1 – 9.

[21] C. Erway, A. Kupcu, C. Papamanthou, and R.
Tamassia, “Dynamic provable data possession,” in
Proc. of CCS’09, 2009 , pp. 213–222.

[22] R. C. Merkle, “Protocols for public key
cryptosystems,” in Proc. of IEEE Symposium on
Security and Privacy, Los Alamitos, CA, USA,
1980.

[23] G. Ateniese, S. Kamara, and J. Katz, “Proofs of
storage from homomorphic identification
protocols,” in ASIACRYPT, 2009 , pp. 319–333.

[24] M. Bellare and G. Neven, “Multi-signatures in the
plain publickey model and a general forking
lemma,” in ACM Conference on Computer and
Communications Security, 2006, pp. 390–399.

[25] Y. Dodis, S. P. Vadhan, and D. Wichs, “Proofs of
retrievability via hardness amplification,” in TCC,
2009, pp. 109–127.

K.Venkata Ramana,
Associate Professor,
Department Of Cse,
Gokula Krishna College Of
Engineering & Technology
Sullurpet.

M.Sreeharsha,
M. Tech(Cse)
Student,
Department Of Cse,
Gokula Krishna College Of
Engineering & Technology
Sullurpet.

