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Abstract— Using Haze Storing, users can remotely
store their data and enjoy the on-demand high quality
applications and services from a shared pool of
configurable   computing resources, without the
burden of local data Storing and maintenance.
However, the fact that users no longer have physical
possession of the outsourced data makes the data
integrity protection in Haze Computing a formidable
task, especially for users with constrained computing
resources. Moreover, users should be able to just use
the Haze Storing as if it is local, without worrying
about the need to verify its integrity. Thus, enabling
Community auditability for Haze Storing is of critical
importance so that users can resort to a third party
auditor (TPA) to check the integrity of outsourced
data and be worry-free. To Protectedly introduce an
effective TPA, the auditing process should bring in
no new vulnerabilities towards user data
Confidentiality, and introduce no additional online
burden to user. In this paper, we propose a Protected
Haze Storing system supporting Confidentiality-
Conserving Community auditing. We further extend
our result to enable the TPA to perform audits for
multiple users simultaneously and efficiently.
Extensive security and performance analysis show
the proposed schemes  are provably Protected and
highly efficient.

Index Terms—Data Storing, Confidentiality-
Conserving, Community auditability, cryptographic
protocols, Haze computing ,independent resource
pooling, rapid resource

1 INTRODUCTION

CLOUD Computing has been envisioned as the
implications, Haze Computing is transforming the
next generation information technology (IT) very
nature of how businesses use information
architecture for technology. One fundamental aspect
of this enterprises, due to its long list of

unprecedented paradigm shifting is that data is being
centralized risk [1]. As a disruptive technology with
profound advantages in the IT history: on-demand
selfor outsourced to the Haze. From users’ service,
ubiquitous network access, location perspective,
including both individuals and IT enterprises, storing
data remotely to the Haze in a flexible on demand
manner brings appealing benefits: relief of the burden
for Storing management, universal data access with
independent geographical locations, and avoidance of
capital expenditure on hardware, software, and
personnel maintenances, etc [2].

While Haze Computing makes these advantages
more appealing than ever, it also brings new and
challenging security threats towards users’
outsourced data. Since Haze service providers (CSP)
are separate administrative entities, data outsourcing
is actually relinquishing user’s ultimate
control over the fate of their data. As a result, the
correctness of the data in the Haze is being put at risk
due to the following reasons. First of all, although the
infrastructures under the Haze are much more
powerful and reliable than personal computing
devices, they are still facing the broad range of both
internal and external threats for data integrity.
Examples of outages and security breaches of
noteworthy Haze services appear from time to time
[3]–[7]. Secondly, there do exist various motivations
for CSP to behave unfaithfully towards the Haze
users regarding the status of their outsourced data.
For examples, CSP might reclaim Storing for
monetary reasons by discarding data that has not
been or is rarely accessed, or even hide data loss
incidents so as to maintain a reputation [8]–[10]. In
short, although outsourcing data to the Haze is
economically attractive for long-term largescale data
Storing, it does not immediately offer any guarantee
on data integrity and availability. This problem, if not
properly addressed, may impede the successful
deployment of the Haze architecture.
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As users no longer physically possess the Storing of
their data, traditional cryptographic primitives for the
purpose of data security protection cannot be directly
adopted [11]. In particular, simply downloading all
the data for its integrity verification is not a practical
solution due to the expensiveness in I/O and
transmission cost across the network. Besides, it is
often insufficient to detect the data corruption only
when accessing the data, as it does not give users
correctness assurance for those un accessed data and
might be too late to recover the data loss or damage.
Considering the large size of the outsourced data and
the user’s constrained resource capability, the tasks
of auditing the data correctness in a Haze
environment can be formidable and expensive for the
Haze users
[10], [12]. Moreover, the overhead of using Haze
Storing should be minimized as much as possible,
such that user does not need to perform too many
operations to use the data (in additional to retrieving
the data). For example, it is desirable that users do
not need to worry  about the need to verify the
integrity of the data before or after the data retrieval.
Besides, there may be more than one user accesses
the same Haze Storing, say in an enterprise setting.
For easier management, it is desirable that the Haze
server only entertains verification request from a
single designated party.
To address these problems, our work utilizes the
technique of Community key based homomorphic
linear authenticator (or HLA for short) [8], [9], [10],
which enables TPA to perform the auditing without
demanding the local copy of data and thus drastically
reduces the communication  and computation
overhead as compared  to the straightforward data
auditing approaches. By integrating the HLA with
random masking, our protocol guarantees that the
TPA could not learn any knowledge about the data
content stored in the Haze server during the efficient
auditing process. The aggregation and algebraic
properties of the authenticator further benefit our
design for the batch auditing. Specifically, our
contribution  can be summarized  as the following
three aspects:
1) We motivate the Community auditing
system of data Storing security in Haze Computing
and provide  a Confidentiality-Conserving auditing
protocol, i.e., our scheme enables an external auditor
to audit user’s outsourced data in the Haze without
learning the data content.
2) To the best of our knowledge, our scheme is
the first to support scalable and efficient Community
auditing in the Haze Computing. Specifically, our

scheme achieves batch auditing where multiple
delegated auditing tasks from different users can be
performed simultaneously by the TPA.
3) We prove the security and justify the performance
of our proposed schemes through concrete
experiments and comparisons with the state-oftheart.
.

2 PROBLEM STATEMENT
2.1 The System and Threat Model We consider
a Haze data Storing service involving three different
entities, as illustrated in Fig. 1: the Haze user (U),
who has large amount of data files to be stored in the
Haze; the Haze server (CS), which is managed by the
Haze service provider (CSP) to provide data Storing
service and has significant Storing space and
computation resources (we will not differentiate CS
and CSP hereafter); the third party auditor (TPA),
who has expertise and capabilities that Haze users do
not have and is trusted to assess the Haze Storing
service reliability on behalf of the user upon request.
Users rely on the CS for Haze data Storing and
maintenance. They may also dynamically interact
with the CS to access and update their stored data for
various application purposes. To save the
computation resource as well as the online burden,
Haze users may resort to TPA for ensuring the
Storing integrity of their outsourced data, while
hoping to keep their data private from TPA.
We consider the existence of a semi-trusted CS as
[11] does.  Namely,  in most of time it behaves
properly and does not deviate from the prescribed
protocol execution. However, for their own benefits
the CS might neglect to keep or deliberately delete
rarely accessed data files which belong to ordinary
Haze users. Moreover, the CS may decide to hide the
data corruptions caused by server hacks or Byzantine
failures to maintain reputation. We assume the TPA,
who is in the business of auditing, is reliable and
independent, and thus has no incentive to collude
with either the CS or the users during the auditing
process. However, it harms the user if the TPA could
learn the outsourced data after the audit.
To authorize the CS to respond to the audit delegated
to TPA’s, the user can sign a certificate granting
audit rights to the TPA’s Community key, and all
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audits from the TPA are authenticated against such a
certificate. These authentication handshakes are
omitted in the following presentation.
2.2 Design Goals

To enable Confidentiality-Conserving Community

Conserving Community auditing scheme and its
support of data dynamics.

3.1 DEFINITIONS AND FRAMEWORK

We follow a similar definition of previously
auditing for Haze data Storing
aforementioned model, our protocol
achieve the following security and
guarantees.

under the
design should

performance

proposed schemes in the context of remote data
integrity checking [8], [11] and adapt the framework
for our Confidentiality-Conserving Community
auditing system.

1) Community auditability:  to allow TPA to A Community auditing scheme consists of four
verify the correctness of the Haze data on demand algorithms (KeyGen, SigGen, GenProof,
without retrieving a copy of the whole data or VerifyProof). KeyGen is a key generation algorithm
introducing additional online burden
users.

to the Haze that is run by the user to setup the scheme. SigGen is
used by the user to generate verification metadata,
which may consist of MAC, signatures, or other
related information that will be used for auditing.

Fig. 1: The architecture of Haze data Storing service

2)           Storing correctness: to ensure that there
exists no cheating Haze server that can pass the
TPA’s audit without indeed storing users’ data intact.
3) Confidentiality-Conserving: to ensure that
the TPA cannot derive users’ data content from the
information collected during the auditing process.
4) Batch auditing: to enable TPA with
Protected and efficient auditing capability to cope

GenProof is run by the Haze server to generate a
proof of data Storing correctness, while VerifyProof
is run by the TPA to audit the proof from the Haze
server.
Running a Community auditing system consists of
two phases, Setup and Audit:
• Setup: The user initializes the Community
and secret parameters of the system by executing
KeyGen, and pre-processes the data file F by using
SigGen  to generate the verification metadata. The
user then stores the data file F and the verification
metadata at the Haze server, and deletes its local
copy. As part of pre-processing, the user may alter
the data file F by expanding it or including additional
metadata to be stored at server.
• Audit: The TPA issues an audit message or
challenge to the Haze server to make sure that the
Haze server has retained the data file F properly at
the time of the audit. The Haze server will derive a

with multiple auditing delegations from possibly response message from a function of the stored data
large number of different users simultaneously. file F and its verification metadata by executing
5) Lightweight: to allow TPA to perform GenProof. The TPA then verifies the response via
auditing with minimum communication and
computation overhead.

3 THE PROPOSED SCHEMES

This section presents our Community auditing
scheme which provides a complete outsourcing
solution of data – not only the data itself, but also its
integrity checking. We start from an overview of our

VerifyProof.
Our framework assumes the TPA is stateless, which
is a desirable property achieved by our proposed
solution. It is easy to extend the framework above to
capture a stateful auditing system, essentially by
spliting the verification metadata into two parts
which are stored by the TPA and the Haze server
respectively.
Our design does not assume any additional property

Community auditing system and discuss two on the data file. If the user wants to have more
straightforward schemes and their demerits. Then we
present our main scheme and show how to extent our
main scheme to support batch auditing for the TPA
upon delegations from multiple users. Finally, we
discuss how to generalize our Confidentiality-

errorresiliency, he/she can always first redundantly
encodes the data file and then uses our system with
the data file that has errorcorrecting codes integrated.

3.2 CONFIDENTIALITY-CONSERVING
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COMMUNITY AUDITING SCHEME

Overview. To achieve Confidentiality-Conserving
Community auditing, we propose to uniquely
integrate the homomorphic linear authenticator with
random masking technique. In our protocol, the linear
combination of sampled blocks in the server’s
response is masked with randomness generated the
server. With random masking, the TPA no longer has
all the necessary information to build up a correct
group of linear equations and therefore cannot derive
the user’s data content, no matter how many linear
combinations of the same set of file blocks can be
collected. On the other hand, the correctness
validation of the block authenticator pairs can still be
carried out in a new way which will be shown
shortly, even with the presence of the randomness.
Our design makes use of a Community key based
HLA, to equip the auditing protocol with Community
auditability. Specifically, we use the HLA proposed
in [11], which is based on the short signature scheme
proposed by Boneh, Lynn and Shacham (hereinafter
referred as BLS signature) [12].

Efficiency Improvement. As shown in Equation 2,
batch auditing not only allows TPA to perform the
multiple auditing tasks simultaneously, but also
greatly reduces the computation cost on the TPA
side. This is because aggregating K verification
equations into one helps reduce the number of
relatively expensive pairing operations from 2K, as
required in the individual auditing, to K + 1. Thus, a
considerable amount of auditing time is expected to
be saved.
Identification of Invalid Responses. The verification
equation (Equation 2) only holds when all the
responses are valid, and fails with high probability
when there is even one single invalid response in the
batch auditing, as we will show in Section 4. In many
situations, a response collection may contain invalid
responses, especially {µ k}1≤k≤K, caused by
accidental data corruption, or possibly malicious
activity by a Haze server. The ratio of invalid
responses to the valid could be quite small, and yet a
standard batch auditor will reject the entire
collection. To further sort out these invalid responses
in the batch auditing, we can utilize a recursive
divideand-conquer approach (binary search), as
suggested by . Specifically, if the batch auditing fails,
we can simply divide the collection of
responses into two halves, and recurse the auditing on
halves via Equation 2. TPA may now require the
server to send back all the {Rk}1≤k≤K, as in
individual auditing. we show

through carefully designed experiment that using this
recursive binary search approach, even if up to 18%
of responses are invalid, batch auditing still performs
faster than individual verification.

3.3 SUPPORT FOR DATA DYNAMICS

In Haze Computing, outsourced data might not only
be accessed but also updated frequently by users for
various application purposes [10], [11]. Hence,
supporting data dynamics for Confidentiality
Conserving Community auditing is also of
paramount importance. Now we show how to build
upon the existing work [10] and adapt our main
scheme to support data dynamics, including block
level operations of modification, deletion and
insertion.
In [10], data dynamics support is achieved by
replacing the index information i with mi in the
computation of block authenticators and using the
classic data structure – Merkle hash tree (MHT) [12]
for the underlying block sequence enforcement. As a
result, the authenticator for each block is changed to
σi= (H(mi) • umi)x. We can adopt this technique in
our design to achieve Confidentiality Conserving
Community risk auditing with support of data
dynamics. Specifically, in the Setup phase, the user
has to generate and send the tree root TRMHT to
TPA as additional metadata, where the leaf nodes of
MHT are values of H(mi). In the Audit phase, besides
{µ,σ,R}, the server’s response should also include
{H(mi)} iIand their corresponding auxiliary
authentication information aux in  the MHT. Upon
receiving the response, TPA should first use TRMHT
and aux to authenticate {H(mi)} iIcomputed by the
server. Once {H(mi)} iIare authenticated, TPA can
then perform the auditing on {µ,σ,R,{H(mi)}i I} via
Equation 1, where Qs1≤i≤sc H(Wi) νiis now replaced
by Qs1≤i≤sc H(mi) νi. Data Confidentiality is still
preserved due to the random mask. The details of
handling dynamic operations are similar to [10] and
thus omitted.

3.4 LEARNING µ ′ FROM Σ

Though our scheme prevents the TPA from directly
deriving µ ′ from µ , it does not rule out the possibility
of offline guessing attack from the TPA using valid
σ from the response. Specifically, the TPA can
always guess whether the stored data contains certain
message m˜ , by checking 4.1 Security Guarantee
for Batch Auditing    Now we show that our way of
extending our result to a multi-user setting will not
affect the Aforementioned.
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TABLE 1: Performance under different number of
sampled auditing.

A. 59 bits and the embedding degree 6. The security
Our Scheme [9]

4 EVALUATION

4.1 SECURITY ANALYSIS

We evaluate the security of the proposed scheme by
analyzing its fulfillment of the security guarantee
described in Section 2.2,namely, the Storing
correctness and Confidentiality Conserving property.
We start and |p|= message during the Audit phase.
Under this setting, we quantify the cost introduced of
the Confidentiality Conserving auditing in terms of
server computation, auditor computation as well as
communication overhead.

The  experiment is conducted using C on a Linux
system with an Intel Core 2 processor running at 1.86
GHz, 2048 MB of RAM, and a 7200 RPM Western
Digital 250 GB Serial ATA drive with an 8 MB
buffer. Our code uses the Pairing-Based
Cryptography (PBC) library version 0.4.18. The
elliptic curve utilized in the experiment is a MNT
curve, with base field size of considering only the
total number of pairing operations. However, on the
practical side, there are additional less expensive
operations required for batching, such as modular
exponentiations and multiplications. Meanwhile, the
different sampling strategies, i.e., different number of
sampled blocks c, is also a variable factor that affects

the batching efficiency. Thus, whether the benefits of
removing pairings significantly outweighs these
additional operations is remained to be verified. To
get a complete view of batching efficiency, we
conduct 160. All experimental results represent the
mean of 20 trials.

level is chosen to be 80 bit, which means |νi| = 80
uµ˜′,v), where µ ′̃ is constructed from random
coefficients chosen by the TPA in the challenge and
the guessed message m˜ . Thus, our main scheme is
not semantically Protected yet. However, we must
note that µ˜′ is chosen from Zpand |p| is usually larger
than 160 bits in practical security settings  (see
Section 4.2). Therefore, the TPA has to test basically
all the values of Zpin order to make a  successful
guess.

4.2PERFORMANCE ANALYSIS

completeness, we will give a provably zero- We now
assess the performance of the proposed knowledge
based Community auditing scheme, Confidentiality-
Conserving Community auditing which further
eliminates  the possibilities of above schemes to
show that they are indeed offline guessing attack.

4.2.1 BATCH AUDITING EFFICIENCY

Discussion in Section 3.5 gives an asymptotic batch
auditing for the TPA in multi-user  setting.
efficiency analysis on the batch auditing, by a timed
batch  auditing test, where the number of auditing
tasks is increased from 1 to approximately 200 with
intervals of 8. The performance of the corresponding
non batched (individual) auditing is provided as a
baseline for the measurement. Following the same
experimental  settings c = 300 and c = 460, the
average per task auditing time, which is computed by
dividing total auditing time by the number of tasks, is
given in Fig. 4 for both batch and individual auditing.
It can be shown that compared to individual auditing,
batch auditing indeed helps reducing the TPA’s
computation cost, as more than 11% and 14% of per-
task auditing time is saved, when c is set to be 460
and 300, respectively.

4.2.3SORTING OUT INVALID RESPONSES

Now we use experiment to justify the efficiency of
our recursive binary search approach for the TPA to
sort out the invalid responses when batch auditing
fails, as discussed in Section 3.5. This experiment is
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tightly pertained to the work in, which evaluates the
batch verification efficiency of various short
signatures.
To evaluate the feasibility of the recursive approach,
we first generate a collection of 256 valid responses,
which implies the TPA may concurrently handle 256
different auditing delegations. We then conduct the
tests repeatedly while randomly corrupting an
αfraction, ranging from 0 to 18%, by replacing them
with random values. The average auditing time per
task against the individual auditing approach is
presented . The result shows that even the number of
invalid responses exceeds 15% of the total batch size,
the performance of batch auditing can still be safely
concluded as more preferable than the
straightforward individual auditing. Note that the
random distribution of invalid responses within the
collection is nearly the worst-case for batch auditing.
If invalid responses  are grouped together, it is
possible to achieve even better results.

5. RELATED WORK
Ateniese et al. [8] are the first to consider
Community auditability in their defined “provable
data possession”  (PDP) model for ensuring
possession of data files on untrusted Storings. Their
scheme utilizes the RSAbasedhomomorphic linear
authenticators for auditing outsourced data and
suggests randomly sampling a few blocks of the file.
However, the Community auditability in their scheme
demands the linear combination of sampled blocks
exposed to external auditor. When used directly, their
protocol is not provably Confidentiality Conserving,
and thus may leak user data information  to the
auditor. Juels et al. [11] describe a “proof of
retrievability” (PoR) model, where spot-checking and
error-correcting codes are used to ensure both
“possession” and “retrievability” of data files on
remote archive service systems. However, the
number of  audit challenges a user  can perform is
fixed a priori,  and Community auditability is not
supported in their main scheme. Although they
describe a  straightforward Merkle-tree construction
for Community PoRs, this approach only works with
encrypted data.  Dodis give  a study on different
variants of PoR with private auditability. Shacham
et al. [3] design an improved PoR scheme built from
BLS signatures [7] with full proofs of security in the
security model defined in [11]. Similar to the
construction in [8], they use Communityly verifiable
homomorphic linear authenticators that are built from
provably Protected BLS signatures. Based on the
elegant BLS construction, a compact and Community
verifiable scheme is obtained.

In other related work, Ateniese et al. [9] propose a
partially dynamic version of the prior PDP scheme,
using only symmetric key cryptography but with a
bounded number of audits. In [10], Wang et al.
consider a similar support for partial dynamic data
Storing in a distributed scenario with additional
feature of data error localization. In a subsequent
work, Wang et al. [10] propose to combine BLS-
based HLA with MHT to support both Community
auditability and full data dynamics. Almost
simultaneously, Erway et al. [11] developed a skip
lists based scheme to enable provable data possession
with full dynamics support.

6. CONCLUSION

In this paper, we propose a Confidentiality
Conserving Community auditing system for data
Storing security in Haze Computing. We utilize the
homomorphic linear authenticator and random
masking to guarantee that the TPA would not learn
any knowledge about the data content stored on the
Haze server during the efficient auditing process,
which not only eliminates the burden of Haze user
from the tedious and possibly expensive auditing
task, but also alleviates the users’ fear of their
outsourced data leakage. Considering TPA may
concurrently handle multiple audit sessions from
different users for their outsourced data files, we
further extend our Confidentiality-Conserving
Community uditing protocol into a multi-user setting,
where the TPA can perform multiple auditing tasks
in  a batch manner for better efficiency. Extensive
analysis shows that our schemes are provably
Protected and highly efficient.
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