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Abstract — This paper proposes a unique scheme of
scalable coding for PRNG encrypted images. In the
encryption stage, the original pixel values are masked
by a modulo-256 addition with pseudorandom
numbers that are resulting from a secret key. After
decomposing the encrypted data into a down sampled
sub image and some data sets with a multiple-
resolution construction, an encoder quantizes the sub
image and the Hadamard coefficients of each data set
to condense the data quantity. Then, the data of
quantized sub image and coefficients are observed as
a set of bit streams. At the receiver side, while a sub
image is decrypted to provide the uneven information
of the original content, the quantized coefficients can
be used to reconstruct the detailed content with an
iteratively updating procedure. Because of the
hierarchical coding mechanism, the principal original
content with advanced resolution can be
reconstructed when more bit streams are received.

Index Terms—Hadamard transform, image
compression, image encryption, scalable coding.

I. INTRODUCTION

In recent years, encrypted signal processing has
attracted considerable research interests [1]. The
discrete Fourier transform and adaptive filtering can
be implemented in the encrypted domain based on
the homomorphic properties of a cryptosystem [2],
[3], and a composite signal representation method
can be used to reduce the size of encrypted data and
computation complexity [4]. In joint encryption and
data hiding, a part of significant data of a plain signal
is encrypted for content protection, and the remaining
data are used to carry the additional message for
copyright protection [5], [6]. With some buyer–seller
protocols [7], [8], the fingerprint data are embedded
into an encrypted version of digital multimedia to
ensure that the seller cannot know the buyer’s
watermarked version while the buyer cannot obtain
the original product.

A number of works on compressing encrypted
images have been also presented. When a sender
encrypts an original image for privacy protection, a
channel provider without the knowledge of a
cryptographic key and original content may tend to
reduce the data amount due to the limited channel
resource. In [9], the compression of encrypted data is
investigated with the theory of source coding with
side information at the decoder, and it is pointed out
that the performance of compressing encrypted data
may be as good as that of compressing non encrypted
data in theory. Two practical approaches are also
given in [9]. In the first one, the original binary
image is encrypted by adding a pseudo-random
string, and the encrypted data are compressed by
finding the syndromes of low-density parity-check
(LDPC) channel code. In the second one, the original
Gaussian sequence is encrypted by adding an
independent identically distributed Gaussian
sequence, and the encrypted data are quantized and
compressed as the syndromes of trellis code. While
Schonberg et al. [10] study the compression of
encrypted data for memory less and hidden Markov
sources using LDPC codes, Lazzeretti and Barni [11]
present several lossless compression methods for
encrypted gray and color images by employing
LDPC codes into various bit planes. In [12], the
encrypted image is decomposed in a progressive
manner, and the data in most significant planes are
com-pressed using rate-compatible punctured turbo
codes. Based on local statistics of a low-resolution
version of the image, the original content can be
perfectly reconstructed. By extending the statistical
models to video, some algorithms for compressing
encrypted video are presented in [13]. In most of
aforementioned schemes, the syndrome of channel
code is exploited to generate the compressed data in a
lossless manner.

Furthermore, several methods for lossy compressing
encrypted images have been developed. In [14], a
compressive sensing mechanism is introduced to
achieve the lossy compression of encrypted images,
and a basis pursuit algorithm is used to enable joint
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decompression and decryption. In [15], the original
gray image is encrypted by pixel permutation; then,
the encrypted data are compressed by discarding the
excessively rough and fine information of
coefficients generated from orthogonal transform.
When having the compressed data and the per-
mutation way, a receiver can reconstruct the principal
content of the original image by retrieving the values
of coefficients. However, the rate–distortion
performance in [14] is low, and there is a leakage of
statistical information in [15] since only the pixel
positions are shuffled and the pixel values are not
masked in the encryption phase.
This paper proposes a novel scheme of scalable
coding for encrypted gray images. Although there
have been a lot of works on scalable coding of
unencrypted images/videos [16], [17], the scalable
coding of encrypted data has not been reported. In the
encryption phase of the proposed scheme, the pixel
values are completely concealed so that an attacker
cannot obtain any statistical information of an
original image. Then, the encrypted data are
decomposed into several parts, and each part is
compressed as a bit stream. At the receiver side with
the cryptographic key, the principal content with
higher resolution can be reconstructed when more bit
streams are received.

II. PROPOSED SCALABLE CODING
SCHEME

a. Image Encryption

The original image is in an uncompressed format and
that the pixel values are within [0, 255], and denote
the numbers of rows and columns as N1 and N2 and
the pixel number as (N=N1 X N2). Therefore, the bit
amount of the original image is 8N. The content
owner generates a pseudorandom bit sequence with a
length of 8N. Here, we assume the content owner and
the decoder has the same pseudorandom number
generator (PRNG) and a shared secret key used as the
seed of the PRNG. Then, the content owner divides
the pseudorandom bit sequence into N pieces, each of
which containing 8 bits, and converts each piece as
an integer number within [0, 255]. An encrypted
image is produced by a one-by-one addition modulo
256 as follows:

        21
0 1,1,256,,,mod, NjNijiejipjig 

Where  j,ip represents the gray values of pixels at

positions  j,i ,  j,ie represents the pseudorandom
numbers within [0, 255] generated by the PRNG, and
  j,ig 0 represents the encrypted pixel values.

Clearly, the encrypted pixel values   j,ig 0 are

pseudorandom numbers since  jie , values are
pseudorandom numbers. It is well known that there is
no probability polynomial time (PPT) algorithm to
distinguish a pseudorandom number sequence and a
random number sequence until now. Therefore, any
PPT adversary cannot distinguish an encrypted pixel
sequence and a random number sequence. That is to
say, the image encryption algorithm that we have
proposed is semantically secure against any PPT
adversary.

b. Encrypted Image Encoding

Although an encoder does not know the secret key
and the original content, he can still compress the
encrypted data as a set of bit streams. The detailed
encoding procedure is as follows. First, the encoder
decomposes the encrypted image into a series of sub
images and data sets with a multiple-resolution
construction. The sub image at the  th1t  level
 1tG  is generated by down sampling the sub image

at the tht level as follows:

     1,,1,0,2,2, )(1  Ttjigjig tt 
Where )0(G just the encrypted image and T is is the
number of decomposition levels. In addition, the
encrypted pixels that belongs to )1t(G  but do not
belong to form data set  1tQ  as follows:

       .1T,1,0t,1)2,jmod(or12,imodj,igQ )t(1t  

That means each )t(G is decomposed into )1t(G 

and )1t(Q  , and the data amount of )1t(Q  is three

times of that of )1t(G  . After the multiple-level
decomposition, the encrypted image is reorganized as

    )t(1TT)T( Qand,Q,Q,G 

For the sub image  TG , the encoder quantizes each
value using a step Δ as follows:
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Where the operator   takes an integer toward
minus infinity and

M/256

Here, M is an integer shared by the encoder and the
decoder, and its value will be discussed later. Clearly

1M)j,i(b0 

Then, the data of b (i,j) are converted into a bit
stream, which is denoted as BG. The bit amount of
BG is

.Mlog.
4
NN 2TBG 

For each data set  T,2,1tQ )t(  the encoder
permutes and divides encrypted pixels in it into K(t)

groups, each of which containing L(t) pixels
 t)t()t( 4/N3LxK  . In this way, the L (t) pixels in
the same group scatter in the entire image. The
permutation way is shared by the encoder and the
decoder, and the values of L (t) will be discussed later.
Denote the encrypted pixels of the Kth group as
        tKk1Lq,,2q,1q )t()t(

k
)t(

k
)t(

k  , and
perform the Hadamard transform in each group as
follows:
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Where H is a L(t) x L(t) Hadamard matrix made up of
+1 or -1. That implies the matrix H meets

H’*H = H*H’ = L(t) * I

Where H(t ) is a transpose of H,I is an L (t) x L (t)

identity matrix, and L (t) must be a multiple of 4. For
each coefficient  lC )t(

k , calculate

     )t()t(
)t(

)t(
k)t(

k Llk1,Kk1
M/256

256,lCmodlC 









Where

 )t()t( L/MroundM 

and round (.) finds the nearest integer. The remainder
of )l(C )t(

k modulo 256 is quantized as integer )l(C )t(
k

, L (t), and the quantization steps are approximately
proportional to square roots of L (t). Then, )l(C )t(

k at
different levels are converted into bit streams, which
are denoted as BS (t). Since

1M)l(C0 )t()t(
k 

and the number of )l(C )t(
k at the th level is 3N/4t

the bit amount of BS(t) is

T,,2,1t,
4

MlogN3N t

)t(
2)t( 
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Fig. 1 : original image Lena and its encrypted versions

The encoder transmits the bit streams with an order
of  .BS,,BS,BS,BG )1()1T()T(  . If the channel
bandwidth is limited, the latter bit streams may be
abandoned. A higher resolution image can be
reconstructed when more bit streams are obtained at
the receiver side. Here, the total compression ratio

CR , which is a ratio between the amount of the
encoded data and the encrypted image data, is
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c. Image reconstruction

With the bit streams and the secret key, a receiver can
reconstruct the principal content of the original
image, and the resolution of the reconstructed image
is dependent on the number of received bit streams.
While BG provides the rough information of the
original content, ( ) can be used to reconstruct the
detailed content with an iteratively updating
procedure. The image reconstruction procedure is as
follows.
When having the bit stream BG, the decoder may
obtain the values of ( , ) and decrypts them as a
subimage, i.e.,

( )( , ) = [ ( , ). ∆ − (2 . . 2 . ). 256]+ ∆2 ,1 ≤ ≤ , 1 ≤ ≤
Where (2 . . 2 . ) are derived from the secret
key.

If the bit streams ( ) ( ≤ ≤ ) are also
received, an image with a size of /2( ) ×/2( ) will be reconstructed. First, upsample the
subimage ( )( , ) by factor 2( ) to yield an/2( ) × /2( ) image as follows:2( ) . . 2( ) . = ( )( , ) ,1 ≤ ≤ , 1 ≤ ≤
and estimate the values of other pixels according to
the pixel values  using a bilinear interpolation
method.

Denote the interpolated pixel values of the Kth group
at the tth level as( )(1), ( )(2) …… . ( ) ( ) 1 ≤ ≤( ) , ≤ ≤ ) and their corresponding original
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pixel values as ( )(1), ( )(2) …… . ( ) ( ) . The
errors of interpolated values are∆ ( )( ) = ( )( ) − ( )( ) ,1 ≤ ≤ ( ) , 1 ≤ ≤ ( ) , ≤ ≤ .
Define the encrypted values of ( )( ) aŝ ( )( ) = ( )( ) + ( )( ) , 256 ,1 ≤ ≤ ( ) , 1 ≤ ≤ ( ) , ≤ ≤ .
Where ( )( ) are pseudorandom numbers derived
from the secret key and corresponding to ( )( ).
Then ∆ ( )( ) ≡ ( )( ) − ̂ ( )( ) 256.
We also define

⎣⎢⎢
⎢⎢⎢
⎡ ∆ ( )(1)∆ ( )(2)...∆ ( ) ( ) ⎦⎥⎥

⎥⎥⎥
⎤
= .

⎣⎢⎢
⎢⎢⎢
⎡ ∆ ( )(1)∆ ( )(2)...∆ ( ) ( ) ⎦⎥⎥

⎥⎥⎥
⎤

Where H is a ( ) × ( ) Hadamard matrix made up
of +1 or -1. Since only the addition and subtraction
are involved in the Hadamard transform

⎣⎢⎢
⎢⎢⎢
⎡ ∆ ( )(1)∆ ( )(2)...∆ ( ) ( ) ⎦⎥⎥

⎥⎥⎥
⎤
≡ .

⎣⎢⎢
⎢⎢⎢
⎡ ∆ ( )(1)∆ ( )(2)...∆ ( ) ( ) ⎦⎥⎥

⎥⎥⎥
⎤

− .
⎣⎢⎢
⎢⎢⎢
⎡ ̂ ( )(1)̂ ( )(2)...̂ ( ) ( ) ⎦⎥⎥

⎥⎥⎥
⎤

256
That means the transform of errors in the plain
domain is equivalent to the transform of errors in the
encrypted domain with the modular arithmetic.
Denoting

⎣⎢⎢
⎢⎢⎢
⎡ ( )(1)( )(2)...( ) ( ) ⎦⎥⎥

⎥⎥⎥
⎤
= .

⎣⎢⎢
⎢⎢⎢
⎡ ̂ ( )(1)̂ ( )(2)...̂( ) ( ) ⎦⎥⎥

⎥⎥⎥
⎤

We have∆ ( )( ) ≡ ( )( ) − ( )( ) 256
With the bit streams ( ) ( ≤ ≤ ) , the values
of ( )( ) can be retrived, which provide the
information of ( )( ). Therefore, the receiver may
use an iterative procedure to progressively improve
the quality of the reconstructed image by updating
the pixel values according to ( )( ). The detailed
procedure is as follows.

1) For each group( )(1), ( )(2) …… . ( ) ( ) , calculatê ( )( ) and ( )( ).
2) Calculate( )( ) = ( )( ) . ∆( ) + ∆( ) 2⁄− ( )( ) .256
( )( ) = ( ), ( ) < 128( ) − 256 , ( ) ≥ 128

( )( ) are the differences between the values
consistent with the corresponding ( )( ) and( )( ). Then, considering ( )( ) as an estimate of∆ ( )( ), modify the pixel values of each group as
follows:

⎣⎢⎢
⎢⎢⎢
⎡ ̅( )(1)̅( )(2)...̅( )( )⎦⎥⎥

⎥⎥⎥
⎤ =
⎣⎢⎢
⎢⎢⎢
⎡ ( )(1)( )(2)...( )( )⎦⎥⎥

⎥⎥⎥
⎤ + ( ) .

⎣⎢⎢
⎢⎢⎢
⎡ ( )(1)( )(2)...( ) ( ) ⎦⎥⎥

⎥⎥⎥
⎤
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And enforce the modified pixel values into [0,255] as
follows:

̅( )( ) = 0, ̅( )(1) < 0̅( )(1) , 0 ≤ ̅( )(1) ≤ 255255 , ̅( )(1) > 255
3) Calculate the average energy of difference

due to the modification as follows:

= ∑ ∑ ∑ ̂ ( )( ) − ( )( )( )( ) ∑ 3 4⁄
If D is not less than a given threshold of 0.10, for
each pixel ̂( )( ) , after putting it back to the
position in the image and regarding the average value
of its four neighbor pixels as its new value ( )( ),

go to step 1. Otherwise, terminate the iteration, and
output the image as a final reconstructed result.

In the iterative procedure, while the decrypted pixels( )( , ) are used to give an initial estimation of
other pixels, the values of ( )( ) in bitstreams ( )
provide more detailed information to produce the
final reconstructed result with satisfactory quality. In
step 2, by estimating ∆ ( )( ) according to ( )( ),
the pixel values are modified to lower the
reconstruction errors. If the image is uneven and( )is big, the absolute value of actual ∆ ( )( ) may
be more than 128 due to error accumulation in a
group,

so that ( )( ) maybe not close to ∆ ( )( ). To
avoid this case, we let ( ) decrease with a increasing
t since the spatial correlation in a sub image with
lower resolution is weaker. For instance, ( ) = 24,( ) = 8, ( ) = 4 for T=3.

Fig. 2. Interpolated image used in both compression
and decompression techniques.

III. EXPERIMENTAL RESULTS AND
DISCUSSION

The test image Lena that is sized 512 X 512, 256 X
256, 128 X128 and 64X64 were used as the original
images in the experiment. We let T=3 and encoded
the encrypted images using M = 24, L(3) = 4, L(2) =8

and L(1) =24 to produce the bit streams BG, BS3 , BS2

, and BS1 . In this case, the total compression ratio Rc
= 0.318 . Fig. 3 gives the reconstructed Lena using
{BG} , {BG BS(3)} , {BG BS(3) BS(2)} and {BG BS(3)

BS(2) BS(1) }, respectively. Reconstructed results with
higher resolution were obtained when more bit
streams were used. When regarding the
corresponding down sampled versions of original
images as reference, the values of PSNR in
reconstructed results are denoted as PSNR2, PSNR1.
While the PSNR values of Lena are 38.4, 34, 37.1,
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and 38.4 dB. In addition, the iterative updating
procedure significantly improved the reconstruction
quality. For example, while PSNR in an interpolated
512 2 512, Lena is 23.9 dB; this value in the final
reconstructed image is 38.4 dB with a gain of 14.5
dB.

Table I lists the compression ratios; the PSNR in
reconstructed results and the numbers of iterations
with respect to different M when T=3 and encoded
the encrypted images using M = 24, L(3) = 4, L(2) =8
and L(1) =24 and were used for image  Lena.

Fig. 3. Final output images

IV. CONCLUSION

This paper has proposed a novel scheme of scalable
coding for encrypted images. The original image is
encrypted by a modulo-256 addition with
pseudorandom numbers, and the encoded bit streams
are made up of a quantized encrypted sub image and
the quantized remainders of Hadamard coefficients.
At the receiver side, while the sub image is decrypted
to produce an approximate image, the quantized data
of Hadamard coefficients can provide more detailed

information for image reconstruction. Since the bit
streams are generated with a multiple-resolution
construction, the principal content with higher
resolution can be obtained when more bit streams are
received. The lossy compression and scalable coding
for encrypted image with better performance
deserves further investigation in the future.
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