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Abstract- Efficient radio frequency signal coverage planning with well configured transmitters and receivers’ communication channels, is 
the heart of any cost-effective cellular network design, deployment and operation. It ensures that both network quality and coverage are 
simultaneously make best use of (i.e. maximized). This work aim to appraise the adaptive learning and predictive capacity of three neural 
network models on spatial radio signal power datasets obtained from commercial LTE cellular networks. The neural network models are 
radial basis function neural network (RBFNN), multilayer perceptron neural network (MLPNN) trained with Bayesian regulation algorithms 
and general regression neural network (GRNN) models.  Largely, it is established from the results that ANN prediction methods can tolerate 
and adapt to measurement errors of attenuating LTE radio signals. Performance comparisons reveal that all the neural network models can 
predict the propagated LTE radio signals with considerable errors. Specifically, RBFNN delivered the overall best performance with the 
smallest mean absolute percentage error, root mean square error, mean absolute error and standard deviation values. The GRNN model 
also gave better prediction results with marginal errors compared to the MLPNN. Thus, the predictive abilities of RBFNN and GRNN models 
can be explored as a useful tool to successfully plan or fine-tune mobile radio signal coverage area.  
 
Keywords- Neural networks; Signal power; attenuating radio signals; radial basis function multilayer perceptron, general regression neural 
network, Adaptive signal prediction 

  ——————————      —————————— 

1   INTRODUCTION 
 number of researchers from both the science and 
engineering field across the globe have come up 
with various theories, models and procedures to 

predict attenuating propagated signals and estimate 
their path losses between two or more transmitting 
antennas and their respective receivers in radio 
frequency (RF) cellular networks. The main intents and 
tasks of radio network planning process are clearly to 
achieve or exceed the minimum radio signal network 
coverage needed to guarantee the required service qual-
ity at the user equipment terminals with minimal costs 
within cellular networks. This is particularly essential 
when introducing or deploying Mobile Broadband 
cellular networks on existing ones. 

Thus far, the existing signal path loss estimation and 
prediction models as well as their theories and 
procedures have not been to acceptably predict the 
actual attenuating signal power when implemented for 
cellular network planning and deployment in 
propagation environment, other than the one with which 
they were initially designed (Neskovic et al., 2002; 
Mardeni & Kwan, 2010). For example, results from 
previous research works (e.g, Isabona & Isaiah, 2013; 
Isabona et al., 2013, Popescu, 2003), show that large 
prediction error exist between conventional prediction 
loss models and measurement signal loss data. The 
pressing need to surmount the above signal prediction 
challenges have in the past few years, led researchers to 
the domain of artificial neural network (ANN) modeling 
outfits. In most cases, the ANN has shown to be a better 
and preferred approach for nonlinear signal coverage 
data modeling (Neskovic, 2000; Baghirli, 2015; Isabona & 
Srivastava, 2016,). This can be ascribed to one of the key 
features on ANN, which is its capacity to extract and 
establish connection between input and output vectors, 
irrespective of the physical process involved. 

*Corresponding Author  

The application of ANN models for predictive modelling 
and regression analysis in general, has become largely 
acknowledged and explored virtually in all disciplines. 
This is clearly seen from the rising number of 
publications in previous research works/academic 
literatures. This work aim to appraise the adaptive 
learning capacity of RBFNN, GRNN and MLPNN 
models on spatial signal power prediction. The objective 
is to validate their adaptive prediction efficiency and 
accuracy on the landscape of attenuating and fluctuating 
propagated radio signal power in LTE urban 
microcellular terrain. 

 

2   METHODOLOGY 
In this work, seven basic workflow processes as 
summarised in fig. 1, were explored to actualize the 
above highlighted research goal. The first stage is data 
collection, which was specified in input vector form. 
Then, the collected data is preprocessed to enhance 
systematized network learning. This is followed by 
building and configuring the relevant network. The 
network building/configuring comes after the weights 
and biases initializing. The next stage is training and 
validation.  

This work considered a configured 2 hidden layered 
MLPNN, 0.001 error goal, 0.1 momentum value, 0.3 
learning rate transig/purelin activation function for 
hidden/output layer, and the Bayesian regulation as 
training algorithm; a two layered RBFNN with a spread 
of 9, and 0.2 error goal; and a two layered GR-NN with 9 
as spread. A 70%:15%:15% data division technique is 
adopted for optimal neural networks learning. The 
inputs and targets datasets were scaled to reside in the 
range [-1, 1] to enhance training and testing speed. Also, 
to avert overtraining, eliminate contemptuous impact 
stimulated by the initial values, and develop robust 
adaptive predictive ability, the early stopping measures 
were engaged for training and testing. Lastly, the neural 
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network workflow process is finalized, ready for use and 
performance testing. 

The adaptive prediction performances of the respective 
ANN model have been appraised using four 
experimental data sets obtained from the four LTE base 
station sites as described in the field test data collection 
procedure in fig.1. Also, for a deeper evaluation of the 
respective NN model’s prediction accuracy with the 
experimental signal data, five different key statistical 
indexes as expressed in section 2.6 

 

 
Fig. 1: Predictive Modelling Process Flowchart 

 

2.1   FIELD MEASUREMENT 
In cellular mobile networks, the user equipment (UE) or 
a moving mobile device makes continuous cell selection 
and handover so as to keep and maintain the best 
possible communication link in the network. In LTE 
mobile networks standard, the UE measures two 
relevant parameters to establish connection either in idle 
mode when waiting for a call or active mode during a 
call (Benedicic et al., 2014). The parameters are the 
Reference Signal Received Quality (RSRQ) and 
Reference Signal Received Power (RSRP). The radio 
signal power coverage prediction involves forecasting or 
estimating the outlook trends of underlying signal 
coverage data over a specific area.  

Thus, for this work, the Reference Signal Received 
Power (RSRP) is the main signal data employed for 
signal coverage analysis and prediction. The RSRP data 
was collected from four operational base station (BS) 
transceivers, all which located in Waterline areas of Port 
Harcourt City with 4.8165° N, 7.0093° E coordinates. The 
Waterline is a typical urban area with a flat topography 
and mixed commercial and residential building edifices. 
With the aid of one Sony Ericson mobile phone, 
Samsung mobile phone, HP Laptop, scanner, all 
equipped with TEMS test software and housed in small 
Gulf car, field measurements round the four BS sites. 
The tools were connected, before embarking on the drive 
test. Every measurement locations with respect to 
longitude, latitude and measurement data points were 
acquired with the aid of a Garmin Etrex 10 GPS tool. The 
measurements covered all the major accessible parts of 
the LTE network target area, with over 5,000 data points, 
collected around the four base station sites. To eliminate 
or curtail small-scale fading effect on the measured 
RSRP values, all field test measurements were post-
processed to a single median value (Belloul & Saunders, 
2003). At every measurement distance (d) from the BS, 
the RSRP is related to effective radiated power (ERP) 

and propagation loss (    ) by the expressions in 
equations (1) and (2) (Ebhota et al, 2018): 

PLmiERPRSRP                            (1) 

TXTXTX CLGPERP                      (2) 

where:    , is the transmit antenna gain,    , the 
transmitted power, and     , denotes transmission cable 
loss, all in dB.                   
 
2.2   MODEL EVALUATION 
The following six performance indexes, namely, mean 
absolute percentage error (MAPE), root mean square 
error (RMSE), mean absolute error (MAE), standard 
deviation (STD), and correlation coefficient, have been 
engaged to evaluate the MLPNN, RBFNN and the 
GRNN prediction models. The mathematical definitions 
of these performance indexes are expressed in equations 
(3) to (7): 
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3   RESULTS AND ANALYSIS 
For results comparative analysis, figs. 2 to 5 were plotted 
to show at how each of the NN prediction model 
adaptively match the measured signal power for site I to 
IV. The plotted graphs reveal that the RBFNN model 
prediction values are much closer to the measured signal 
data compared with the GRNN and MLPNN models. 
Tables 1 to 4 reveal the detailed summary of each NN 
model prediction accuracy on the signal data employing 
the six statistical indexes for the four sites. A high 
fluctuation of signal power along the coverage area in 
the graphs can be ascribed to the strong influence of the 
terrain obstructions such as vast density and tall 
building of blocks as well as the effect of non-uniform 
distribution of the buildings and other terrain features 
on the propagated radio signals.  

The displayed graphs in figs. 6 to 11 are presented to 
reveal correlation coefficient performance fittings on the 
measured signal data along the test points. The 
prediction errors of each investigated models in terms of 
MAE, RMSE, MAPE and STD are provided in tables 1 to 
4. The higher the distribution of prediction error in the 
scatter plots,   the poorer the prediction performance. A 
large value of STD clearly reveals higher deviations of 
the predicted NN model values to that of the measured 
signal data. It is apparent from the results summary in 
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tables 1 to 4 that RBFNN delivered the overall best 
prediction performance in terms of MAE, RMSE, MAPE 
and STD values in all the study base station sites. 
RBFNN also attained best performance by having the 
highest R values. The optimum and superb performance 
of RBFNN can be attributed to its ability to adaptively 
make enhanced nonlinear mapping between input and 
output vector variables in dataset, provided that there 
are adequate amount of data samples. The GRNN model 
gave a preferable prediction marginal error results 
compared to the MLPNN. The poorer performance of 
MLPNN may be attributed its local minimum problem. 

Table 1. GRNN, RBFNN and MLPNN    Prediction Accuracy on 
Signal Power, site I 

Parameter GRNN, RBFNN MLPNN 

MAE 1.309 0.066 1. 686 

MAPE 1.30x10-2 6.57x10-4 2.58x10-2 

RMSE 1.806 0.575 1.742 

STD 1.245 0.571 1.083 

R 0.970 0.997 0.931 

              

 
 
 

 Table 2. GRNN, RBFNN and MLPNN Prediction Accuracy on 
Signal Power, site II 

Parameter GRNN, RBFNN MLPNN 

MAE 0.846 0.339 1.859 

MAPE 9.30x10-2 3.70x10-3 8.80x10-3 

RMSE 1.363 0.896 3.840 

STD 1.068 0.827 3.746 

R 0.979 0.990 0.856 

     
Table 3. GRNN, RBFNN and MLPNN Prediction Accuracy on 

Signal Power, site III 
Parameter GRNN RBFNN MLPNN 

MAE 3.016 0.327 3.438 

MAPE 2.94x10-2 3.70x10-3 3.29x10-2 

RMSE 4.420 0.734 4.964 

STD 3.231 0.657 3.942 

R 0.848 0.996 0.806 

                
Table 4. GRNN, RBFNN and MLPNN Prediction Accuracy on 

Signal Power, site IV 

Parameter GRNN, RBFNN MLPNN 

MAE 0.755 3.73x10-14 2.738 

MAPE 7.30x10-3 1.15x10-16 2.04x10-2 

RMSE 1.259 4.19x10-14 2.907 

STD 1.008 1.90x10-14 2.808 

R 0.995 0.999 0.969 

 
Fig. 2: Signal power prediction performance with GRNN, RBFNN and MLPNN models as function covered measurement distances in site I 

 
Fig. 3: Signal power prediction performance with GRNN, RBFNN and MLPNN models as function covered measurement distances in site II 

 

 
Fig. 4: Signal power prediction performance with GRNN, RBFNN and MLPNN models as function covered measurement distances in site II 
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Fig. 5: Signal power prediction performance with GRNN, RBFNN and MLPNN models as function covered measurement distances in site III 

 
Fig. 6: Signal power prediction performance with GRNN, RBFNN and MLPNN models as function of covered measurement distances in site 

IV 

 
Fig. 7: prediction against measured signal power with GRNN, RBFNN and MLPNN models in site I 

 
Fig. 8: prediction against measured signal power with GRNN, RBFNN and MLPNN models in site II 

 
Fig. 9: prediction against measured signal power with GRNN, RBFNN and MLPNN models in site II 

 
Fig. 10: prediction against measured signal power with GRNN, RBFNN and MLPNN models in site III 

 
Fig. 11: prediction against measured signal power with GRNN, RBFNN and MLPNN models in site IV  
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4    CONCLUSION 
Accurate prediction of propagated signal power play 
key role in planning an efficient signal coverage 
planning with well configured transmitters and 
receivers. Three different ANN soft computing 
methodologies have been explored in this work to 
predict the propagated radio signal power dataset of 
LTE cellular networks. Largely, it can be established 
from results that ANN prediction methods can tolerate 
and adapt to measurement errors of attenuating LTE 
radio signal datasets. Performance comparisons reveal 
that all of the ANN models used in this paper can 
predict propagated LTE radio signals with considerable 
errors. RBFNN delivered the overall best performance 
with the smallest MAE, RMSE, MAPE and STD values of 
training results. The GRNN model also gave better 
prediction results with marginal errors compared to the 
MLPNN. Thus, predictive abilities of RBFNN and 
GRNN models can be explored to successfully plan or 
fine-tune LTE radio signal coverage area. 
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