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Abstract— A Lyapunov approach to constructing switching surfaces for variable structure systems is investigated in this paper. The 

method guarantees sliding mode for any initial condition of the state vector and asymptotic stability is always achieved during sliding 
motion. An application for  the design of  a variable structure ship steering controller is carried out and  simulation results are presented. 
The designed controller exhibits robustness as applied to a linear time-invariant ship model and a time varying non-linear  ship model 
operating in  an uncertain and  time-varying environment. 
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1 INTRODUCTION 

he theory of Variable Structure Systems (VSS) is 
based on the concept of switching the structure of 
the controller at a high speed. Such a controller 

exhibits the property of invariance to changes in plant 
parameters and external disturbances once the system is 
in the so called sliding mode (generally reached after a 
measurable time duration). The conditions under which 
these properties hold are investigated in 
(Drazenovic,1969), recalled in (Utkin, 1977) and  
(Zinober, 1981).  

Conventional controllers for ship steering generally 
require a knowledge of plant parameters. In practice, 
ship models are subject to variations as time goes by, 
aside the fact that those methods cannot be efficiently 
implemented due to their inability to track changes. In 
contrast, this method, namely the VSC, assumes that 
only the ranges of the variation of the plant parameters 
are known. In this paper, proof is first given (Section 2)  
as in (Zinober, 1981) of the fact that parametric 
invariance and disturbance rejection conditions in 
sliding mode are always met for  systems  in  phase 
canonic form. Section 3 is about the Lyapunov theory 
and the Lyapunov approach to switching surface design.   
Section 4 is about ship models and ship steering, where a 
ship proposed in (Mort & Linkens, 1981), is considered. 
The state vector of the ship is driven in sliding mode, 
onto the designed surface, and results are presented in 
Section 5. Finally, Section 6 is dedicated to discussion of 
the results. 

 

2  PHASE  CANONIC FORM  
2.1 Systems in Phase Canonic  

 Such systems are described by a set of  linear ordinary  

differential equations  (ODEs):  
 

          …                               1....2,1  ni               (1) 

                                 . 

* Corresponding Author 

             Here,          is a scalar control;     . is a disturbance 

term due to environmental changes ;      are constant or 

time- varying  plant parameters  and     is constant.  
 

The function        , and the plant parameters      may be 
unknown, but their ranges of variation are known. The 

control input           is a function of the state vector  
         and   undergoes discontinuities on the 
switching   surface G. 
 
                                                                                    (2)  
                                                                                            
Here, the switching surface matrix     is defined as in 
equation (3) below. 
 
                                                                                (3)     
                  
 The so called switching function         is defined as 
in equation (4). 
                                                                                                                
                                                                                        (4) 
The following   inequalities in (5) are sufficient 

conditions for sliding mode to exist (Zinober, 1981). 
 
               and                                                 (5) 

 

The velocity vector          
  

  
 undergoes 

discontinuities on the same plane (Drazenovic,1969),  

Zinober (1981), Zinober (1993) and  (Utkin, Guldner & 
Shi ,1999).  
 
2.2 The Invariance Proof   

To prove the invariance of the sliding mode with respect 
to the plant parameters      and  the disturbance      , 
we solve  equation   (1)   for the variable       and 
substitute into equation (2).  Such a substitution  of  the 
value of     from  the last  but  one of  the set  of  
equations   (6)  into the equation  of  the switching 

surface ,  is  carried out  as in  (Zinober, 1981).   
From equation   (2)    and   equation (3),  we  have  
                  . Then, from equation (1), we 
have           .   

T 
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Direct substitution gives                          
and finally we arrive at equation (6). 
 

       
 

  
                                                (6) 

This describes the dynamic system, independent of   . 
Therefore, the resulting  equations (7)  of  the sliding 
mode are independent of  the plant  parameters, but 
depend only on the switching surface matrix. The state 

   is discarded as suggested in (Zinober, 1981) and  
(Utkin, Guldner & Shi ,1999). There is an order reduction 
of the system from     to      . 
 

                                                     1....2,1  ni               (7) 

       
 

  
                       

 

3  REVIEW  OF LYAPUNOV  THEORY 
3.1 Definitions and Preliminaries  

Let          ,     
  

  
                ,     . 

and                       .          ,       

     
 
Definition 1: 
An equilibrium point    is stable in the sense of   
Lyapunov if : 
                                     , 
         
If      is  an  equilibrium point , then            is  a 
trajectory of the system. 
Any trajectory starting close to the equilibrium point 
remains close to it. 
 
Definition 2: 
An equilibrium point             is asymptotically  

stable   in region D if : 

                            . 

Any trajectory starting sufficiently close to the 
equilibrium point, will  eventually approach it. 

Theorem 1. (Lyapunov).  

Given a linear autonomous system of the form       ,                                                                                                  

the  existence  of  a  Lyapunov  function                                                                                                  

where      is a symmetric  positive definite matrix       , 

guarantees stability.  

Proof:  

                                       

   ≤      for all    ≠ 0.    

So,                     for some positive definite 

matrix   , provides necessary and sufficient conditions  

for  stability. That is            (Lyapunov 

equation).                                                                              

Given a particular matrix         the  symmetric matrix  

     , that solves the Lyapunov equation is unique.  

If    is stable, there is an explicit formula for solution of  

Lyapunov equation:  

      
      

 

 
    .       

             
       

 

 
  

           

  
 

  
  

         
 

 
    

       
 

 
      

 

3.2  Lyapunov’s Second Method (Direct Method) 

The Lyapunov’s  First Method developed the solution in 
a series which was then proved convergent within limits 

 (Wikipédia, 2017) and  a number of other websites. The 
Lyapunov’s  Second Method, which is now referred to as 
the Lyapunov Stability Criterion, makes use of a 
Lyapunov function to check the stability of an 
equilibrium point of a system.  

To apply the Lyapunov’s Second Method to 
asymptotically stabilize a dynamic system, the following 
assumptions are made: 
 
(i) There exists a stabilizing feedback       so that   

             is  stable; 

(ii) A Lyapunov function              exists and 

satisfies          
  

  
       

  

  
   ; 

(iii)         ≠     if   ≠    in the state trajectories, 

except at the origin ;                  ; 

(iv)               if                   ;          . 

 

The proposed approach is to synthesize the Lyapunov 
function into the design of the switching surface to 
achieve the same performance as if stabilizing feedback 
was employed. In other words, asymptotic stability is 
realized in sliding mode (Wu et al., 1996). 
 
3.3 The Lyapunov Approach to VSC Design 

 Considering the linear plant given by equation (8) 
 
                                                                                  (8) 
 Assume that          is  controllable, that is ,  
                          ≠   .  There exists a  
stabilizing feedback gain  K, as in equation   (9),  
 
                            

                                         (9) 
such  that the autonomous  system given  in  equation 
(10)  is asymptotically stable.  
 
                                                                               (10) 
The  eigenvalues  of            can be arbitrary 

assigned,  as  shown in  (Nagrath  &  Gopal, 1982) . 
There exists a unique symmetric matrix              that 
solves  the Lyapunov equation  (11). 
 
      

                                                                    (11) 
Here,                          
It is suggested that the switching surface matrix S   be   
chosen as  in  equation  (12). 

 
                                                                                 (12) 
The   sliding   surface   is   G  such that          
                                                                                (13) 
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Here  W   is an        nonsingular matrix (it has full 
rank). There are two fundamental results: lemma1  and 
lemma 2. 
 

Lemma 1 : 

The system           where            is a fictitious 
feedback to the initial system in  (8),  when undergoing sliding 
mode on G, is asymptotically stable. 
Proof:   
Choosing the following Lyapunov function          
            ;      and     

                                                                                          

where        , the  system matrix of the stabilized ship   is  

defined  as  in equation (14).  

                                                                               (14) 

                  ;            
        that  is, 

        
  

  
     can  be  written  as     

       
                        . 

On   the    sliding  surface  the equalities           0  
and   

           hold    (since W  is  of full rank);    and    

                        . Therefore           
since  Q > 0.  
 
The feedback  control  law      has  no  effect  on  the 

sliding  surface  G,  therefore,  it  does not affect  the  

sliding motion.  

Lemma 2 : 

The equality                     holds on the sliding 
surface  G. 
Proof:   
Substituting     from equation  (14)  yields: 
 
                     

        
                           

On the sliding surface  where        0  and           
(since W is of full rank), the  equality  is satisfied.  As 
pointed out in  (Wu et al. ,1996) , the last result reveals 
that the stabilizing linear feedback   –Kx   is realized on 
the switching  surface instead of being applied explicitly 
in the control. The  following  Theorem 2,   also in  (Wu 
et al. ,1996),  results from  the above two lemmas. 
 
Theorem  2  (Wu et al. ,1996). 
 The system            undergoing  mode on the surface    
                is asymptotically stable. 
 
3.4  Algorithm  for Switching Surface  

and Controller  Design 

i) Given a Controllable Linear Plant  
                                            (15) 
 

                 (disturbance  vector)            (16) 
 

 ii) Stabilization by  State Feedback  
                                                                              (17)  
                                                                      

 iii) Solving the  Lyapunov  Equation  
        

                                                                (18)   
                                                               

iv) The Switching Surface Matrix 
                                                                                    (19) 
 Having  set            (identity matrix).                                                   
      
v) The Reaching  Phase Control Function                                                                  

                                                 (20)   

                                                             
It is generally sufficient, in the expression of the control 
function in equation (20), to consider only     , when 
dealing with linear systems, Drazenovic (1969). There is 
a minimum value       of    such that  no sliding mode 
on the prescribed surface occurs  if          . On the 
other hand,    must satisfy               . More on 

this discussion is found in (Rimbe, 2005).  

The sign function expression in the control function is 
defined as  in equation (21). 
 

          

      
      
       

                                              (21) 

4  SHIP STEERING 

A ship considered as a single-input, single-output 
system  (SISO) is represented by the schematic in Fig. 1    
     rudder angle (Input)  ;      heading  angle 
(Output). 
 

 
Fig. 1.  The Ship : Input and Output   

 

The following equation suggested in (Amerogen & 
Udink, 1975) and in (Mort & Linkens, 1981), is 
considered : 
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4.1 Linear Model  
A linear state model in phase canonic form is easily 
derived by setting  the so called spiral function          

equal  to        and neglecting the rate of change      of the 
rudder angle. 

                        
      
      

     
 

    
    

 

  
 

 

  
           

                       (23) 
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                is the state vector of  the 
ship’s dynamics ;                is the 
heading angle (output) ;  

    = Input , the input  (a notation from literature) 
is the rudder angle ; 

    is disturbance vector; 

       represents  the disturbance 
function (scalar);  

           are parameters  of the ship . 

4.2 Non-Linear Model  
We consider  the type of  nonlinearity suggested in (Mort 

& Linkens, 1981) and in (Utkin et al., 1999) , 

characterized by the spiral curve    in  equation  (25) 

below.   

           
                                                                 (25) 

                                                                                     
Here,    is a varying, but always positive parameter, 
whereas     is also varying but can take on to both 
negative and positive values. In this simulation, 
parameter     is  chosen  to be constant positive,   say  
   ,   and                  

                    yields          
  

  
   

  

  
   

The reduced order  ship dynamics in sliding mode are 
given by the following equations : 
 

                        
      
              

                        (26)                               

                                 

         
  
      

                                                              (27)    

                                              

         
  

  
 ;             

  

  
                                                     (28) 

                                                                                                                                   
                                                                        (29) 

               
The matrix     is the system matrix of the closed-loop 
motion in sliding mode. Equation (29)  is the constant 
switching surface matrix. 
 

  5  RESULTS  
Two types of results are considered ; namely the 
computed switching surface matrix   and the 
simulations of the ship models that are  steered by the 
controller. 
 
5.1 Computing the Switching Surface Matrix 

The values of the ship parameters for various water 

depth are from  a table provided in  (Mort & Linkens, 

1981). The so called depth to draft factor       

characterizes the changes in the environment that affect 

the ship parameters. The deeper the water, the greater 

that factor  is.  We use  the first column corresponding to 

infinity. The table in appendix provides only data  for 

two values of that factor. More data is found in (Mort & 

Linkens, 1981) and a table is reproduced in (Rimbe, 

2005). 

                                           . 

The system in equation (23) is not stable and will be 

stabilized by state feedback as shown in Section 3.                                          

The following notations are used in the results. 

 

                  is  the unstabilized system matrix 
                  is  the system input matrix 
                 is  the vector of poles of the unstabilized  ship 
                 is the vector of poles of the stabilized  ship                                      
                  is  the stabilized system matrix  
                  is  the solution to the Lyapunov equation  
                 is  the vector of the poles in sliding mode 
                  is the  stabilizing gain feedback  
  

        
        
        
               

    

                         ;  

             = [0   -0.0097   -0.1121 ]; 
           = [-0.3000   -0.6000   -1.8000 ];  
    K = [0.3240    1.7989    2.5782 ];   
 

          
        
        

                     
   

 

       = 

















1.2272    2.8135    1.5432 

2.8135    8.2622    4.5643 

1.5432    4.5643    3.6893
 ; 

 
                                         
 

           
       

              
   

 

        =                 . 
 

5.2  Simulations 
In the following results, the states       (heading  
angle or output) and      ,  are plotted alongside the 
switching function        . The time     when hitting 

occurs is  also computed. The reaching control function 
         on a separate graph. 
 
5.2.1 Disturbance Function  

The disturbance  function   is  plotted first, as it is the 
same for all situations.  The disturbance  function  is  
              Such a function is chosen because  it  
distorts  very distinctly the response of the system (ship), 
so that its effect  can be easily observed.  
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5.2.2  The Linear Time-Invariant Ship Model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6   DISCUSSION 
 A practical advantage of this method of constructing 
switching surface is  that the coefficients of the matrix  S 
which are not freely chosen, automatically satisfy the  
conditions stated in (Utkin, 1977).  
 

6.1 Limitations of the Controller 
 The simulation results show the efficiency of the 
variable structure algorithm even when both system and 
environment are time varying. As  soon as the state 
reaches the sliding surface G (after  the hitting time   ), 
the effect of the disturbances and parameter variations 
are either stopped immediately or soon after. When    is 

small, the controller may not yield the expected 
property. Oscillations set in and carry on, soon after 
hitting occurs. However, that constraint is weakened  by  
the choice of  the controller defined by equation (20). 

Although this observation has not been plotted , when  
   and     are close to their critical values respectively, 

hitting occurs  more than once before sliding regime set 
in. Finally, when the two coefficients are simultaneously 
below their critical values, the controller fails 
completely. A main shortcoming of VSC is the chattering 

 
Fig. 3. Uncontrolled Time Invariant Ship 
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Fig.4. Controlled Linear Time Invariant Ship 

0 5 10 15
-10

-5

0

5

10

15

20

a
x
=0.5  a

f
=10.2  b=6.2832

s=[1.5432      2.8135      1.2272]

x
0
=[10  0  0]

t
s
=0.81743

time

x

x
1
(t)

x
3
(t)

g=sx  

' 

 
Fig.5. The Control Function (Time Invariant Ship) 
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Fig. 6.  Uncontrolled Nonlinear Ship 
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Fig. 7.  Controlled Nonlinear Ship 

 

0 5 1 0 1 5

-1 5

-1 0

-5

0

5

1 0

1 5

2 0

a
x

= 1 0     a
f
= 1 2   b = 6 . 2 8 3 2

s = [1 . 5 4 3 2       2 . 8 1 3 5       1 . 2 2 7 2 ]

x
0

= [1 0   0   0 ]

t
s

= 0 . 0 7 7 8

t im e

x
(t

)

x
1

(t )

x
3

(t )

g = s x   

' 

 
Fig.  8. The Control  Function  (Nonlinear Ship) 
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phenomenon due to the high frequency switching of the 
controller. 
 

6.2 Stability 
 During sliding mode, stability is always achieved since 
all states converge to zero. Eigen values of the reduced 
order system matrix        , have negative real parts.  

 

6.3 Robustness 
The concept of robustness of the controller refers to its 
ability to cope with changes in system parameters 
(uncertainties), system dynamics (nonlinearities) and in 
the environment (disturbances).  Robustness is intrinsic 
to VSC. This is seen in figures  Fig. 4. and  Fig. 7., once 
sliding mode sets in. 
 
6.4 Appendix 

Table 1. Mariner Ship Parameters (Mort & Linkens,981) 

Water Depth         

 

 2.50 

1T  (s) 
102.8 83.45 

2T (s) 8.92 9.57 

                3T (s) 19.51 17.71 

                 

321 TTTT 

 

92.22 75.32 

sK (s) 
-0.102 -0.095 

12

1

TT


    

-0.001091 -0.001252 

 21

11

TT


   

-0.121835 -0.116476 

1

01

1

T


 

-0.01 -0.012 

2

02

1

T


 

-0.112 -0.105 

03    0 0 

7  CONCLUSION 

In this paper, a procedure for deriving a variable 
structure controller that relies on the Lyapunov direct 
method  of constructing  switching surfaces has been 
presented.  Provided a system has a stabilizing feedback 
with a known Lyapunov function, a sliding surface can 
be obtained directly. The method has been  used  to 
simulate  the steering  of a nonlinear ship  and  to show 
features of  variable structure control. Disturbance 
rejection and invariance to parameter variations have 
also been  exhibited.  
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