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Abstract

Robots have been widely used in the industrial applications where

they are often pre-programmed in a well-defined and controlled en-

vironment. With the significant improvements of robotic technology

nowadays, many special-purpose robots are entering human daily life.

Autonomous robots are becoming more and more skilled in performing

human-scale manipulation tasks. However, everyday tasks at home

demand much knowledge a robot needs to have. The main challenges

facing the robots are (1) what actions the robot needs to perform

in the task; (2) how to perform each action; (3) perceiving objects

(identification, pose, location) for manipulation actions.

This dissertation presents a proposal for learning and executing ev-

eryday manipulation tasks which involve in operating objects or home

appliances such as dispensing water from a water thermos pot, mak-

ing a cup of coffee by a coffee maker, warming a lunch box by a mi-

crowave oven, ect. To solve this, firstly, the tasks are planned by the

sequences of actions which are automatically acquired from instruc-

tion manual. Then, the knowledge about how to perform the action is

obtained by learning from hand movement in human demonstration.

A learning method of motion primitives from human hand movement

using Dynamic Movement Primitives model has been implemented for

generating movement trajectories adapted to new changes. In addi-

tion, this study also deployed the ability of perceiving objects for the

robot to recognize object and estimate its 6-DOF pose which is used

to manipulate that object. To confirm the proposal, the research in

this dissertation takes into account an example scenario with the task

’dispensing water’ from a water thermos pot.
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Chapter 1

Introduction

1.1 Motivation

Robots have been widely used in the industrial applications where they are often

pre-programmed in a well-defined and controlled environment. With the signifi-

cant improvements of robotic technology nowadays, many special-purpose robots

are entering human daily life. Cognitive robots are becoming more and more

skilled in performing human-scale manipulation tasks. Robots are expected to

serve everyday task for human in daily life at home, especially for elderly, dis-

abled person. However, everyday tasks at home demand much knowledge a robot

needs to have. The main challenges are that the robot needs to determine the

sequence of actions in the task, perform actions in the unstructured and dynamic

environment, and manipulate with a variety of differing objects.

Numerous everyday tasks often involve in operating objects or home appli-

ances, equipment such as water thermos pot, coffee maker, microwave oven, etc

which are supplied with user manuals containing the instructions for certain tasks,

for example dispensing some water, making a cup of coffee, cooking or warming

a food, etc. This motivates to use instruction manuals as the source of knowl-

edge to provide robots about everyday tasks. A task plan can be built from a

sequence of actions achieving from instruction manual. However, only knowledge

from instruction manuals is not enough for autonomously accomplishing the task.

The knowledge about how to perform the action is not shown in the instruction

manuals because they are common-sense knowledge for human. To overcome this

challenge, learning from observing human demonstration is a possible solution to

1



1.2 Example Scenario

recognize how to perform an action for the robot. Figure 1.1 shows the example

about actions which operate home appliances in everyday such as pick and place

a cup, press a key on a water thermos pot, open a oven’s door, push a button on

microwave oven.

Figure 1.1: Example of actions that manipulate home appliances in daily life.

From left to right: pick up a cup, press a key, open a oven’s door, push a button

The motivation for the work described in this thesis is to develop a method for

learning and executing the everyday tasks by providing the robots the knowledge

on two key problems:

1. What actions the robot needs to perform in the task

2. How the robot perform the action

1.2 Example Scenario

Imagine an example scenario that a home service robot receives the command

”dispensing water” or ”making a cup of coffee”. Given this command, it has to

create a plan to achieve the desired goal, which is usually solved by planning, for

example, searching for a sequence of actions and generating executable plan of

each action that leads to the given goal state. However, doing this from human

everyday tasks is still challenge to the capabilities of the intelligent robots nowa-

days. Solving this problem demands the robots the abilities to acquire actions in

the task, perform actions, and perceive the object that the action operates.

A common way to build an executable plan for a robot task is generating

manually the sequence of atomic actions from the initial state to the goal state

to accomplish the task. This way is dependent on the specific task and not

appropriate with the large number of tasks. Moreover, the more complex the task

is, the more complex this gets. Instead of generating a robot plan in this way,

we proposed to make use of existing description in instruction manuals of home

2



1.2 Example Scenario

appliances or equipment that explain how to perform a certain everyday task.

The robot can use these instruction manuals to look up the sequence of actions

the robot needs to perform in the task. After having read the instructions, the

robot is autonomously provided a plan containing actions that it needs to perform.

With the state-of-the-art techniques in natural language processing nowadays, it

is feasible to equip for robots the capability of reading these instructions.

There are lots of instruction manuals equipped for home appliances which

contain instructions for many everyday tasks. Figure 1.2 shows an examples of

instructions taken from user manual of a coffee maker and a water thermos pot.

These instructions are to guide a part of tasks ’how to dispense water’ or ’how to

make a cup of coffee’.

(a) ‘dispensing water’ from a water thermos pot (b) ‘making coffee’ from a coffee maker

Figure 1.2: An example of instruction taken from instruction manuals of some

common home appliances

However, the instructions only describe the overall series of actions on a very

abstract level, which is not sufficient to actually enable a robot to perform the

actions. One important reason is that they were written for humans and therefore

lack of information about how to perform the action that a robot needs to be

provided. Therefore, the knowledge about how to perform the action needs to be

complemented from other knowledge sources such as from observations of human

activities. Towards performing this example scenario, we will discuss how a robot

could proceed to obtain the sequence of actions from instruction manual and how

the robot perform the action from observing human demonstration.

3



1.3 Task, Action and Motion Primitive

1.3 Task, Action and Motion Primitive

In robotic research, some different terms can be used with equivalent meaning or

some similar terms can be used with different meaning depending on the research

context. The terms as ’task’, ’action’, ’motion primitive’ are used frequently in

this thesis will be explained as listed below.

Motion Primitive A motion primitive is a small unit of behavior that, for

example, can be a part of a motion trajectory or a specific motion type such as

”move the robot’s end-effector from position A to position B”.

Action An action consists of a sequence of motion primitives. For example,

the action ”pick up an object” consists of motion primitives: (1) reaching the

object, (2) grasping the object, (3) withdrawing from object’s location.

Task A task is composed by a sequence of actions. For example, the task

”dispensing water” which is collected from instruction manual can be composed

by three actions: (1) pick up a cup, (2) place the cup under the spout, (3) press

the button. The task plan is dependent on the specific task.

1.4 Research Purpose

The purpose of the research conducted in this dissertation is make the robot to

execute everyday manipulation task by automatically acquiring the sequence of

actions what the robot needs to perform in the task from instruction manual of

home appliances; and learning how to perform the action from hand movement

in human demonstration using Dynamic Movement Primitives (DMP) model for

generating sub-movements adapted to new changes in the execution of that action.

This is a method to build robot programs that avoids manually programming

for each one specific task in static conditions. The idea is for the robot ’under-

stand’ what action the robot needs to perform in the task and ’learn’ how to

perform each action from human demonstration.

To manipulate the object, the robot should recognize that object identifica-

tion, as well as object pose, location which also support the robot action to adapt

with new changes such as the change of object’s location in the action ’pick up

an object’. Therefore, one work in this research is to implement and evaluate the

4



1.5 Research Overview

method of object recognition and pose estimation using 3D object information

for robot vision ability.

There are two original points in this research:

• The robot can acquire the sequence of action and related object from in-

struction manual for task planing without understanding the meaning of

the task.

• The introduction of learning method of human hand movement using DMP

model for robot action.

1.5 Research Overview

The main contributions of the work in this dissertation is developing a method

to learn and execute everyday manipulation tasks by providing the robots the

knowledge about the task from two sources of knowledge: instruction manual and

human demonstration. In particular, the thesis solves three challenge problems:

(1) acquiring the actions the robot needs to perform in the task; (2) learning how

to perform the actions from human demonstration; and (3) perceiving objects for

manipulation actions. We propose the solution for each problem as follows

• Proposal 1. Instead of planning the task manually, the task plan which

contains the sequence of actions and the related objects is automatically

obtained from instruction manuals.

• Proposal 2. The executable plan of each action can be achieved from observ-

ing human demonstrations (in general, human activities in daily life). This

action execution plan is able to adapt to changes in dynamic environment

such as the change of object location in manipulation action.

• Proposal 3. The robot needs to perceive about objects for manipulation

actions, for example, object’s identification, object’s location, object’s pose.

Figure 1.3 illustrates a conceptual design for robot executing everyday tasks.

Firstly, the knowledge about a task includes the sequence of actions and the re-

lated object which can be acquired from instruction manual of home appliances.

5
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Human 
Demonstration

Action Knowledge
- Action execution plan
- Adaptation to changes

Learning 
movement 
with DMP model

Task Planner
Executable task plan

Robot Controller   
Control robot arm/hand

Action 
Plan DB

Instruction 
Manual

Task Knowledge
- Sequence of actions
- Related objects

Syntax Parsing
(Stanford Parser) 

& Searching 
(Action, Object) 

Task Plan 
DB

Objects

Object Knowledge
- Identification
- 6-DOF pose

Recognizing
using 3D object 
descriptor - VFH

Figure 1.3: Conceptual design for everyday task executing robot

Secondly, the knowledge about how to perform the actions achieved by learn-

ing from human demonstration. A learning method of movement is applied for

adapting to new changes which can come from dynamic environment such as the

change of object’s location, pose. Thirdly, the robots need to perceive the object

that the action manipulates. This is done by providing the robot with the vi-

sion ability for object recognition and pose estimation. A task planner will gather

these three knowledge and generate a executable plan for a robot controller which

controls a robot arm to perform the task.

Figure 1.4 represents an overview of the research presented in this dissertation.

The first work is to acquire the knowledge about the sequence of actions in the

task from instruction manuals. In the second work, the knowledge about how

to perform the action is acquired by learning from human demonstration. To

scale the robot’s ability in performing a large number of everyday tasks, actions

can be encoded as building-block units forming a library of popular actions and

they reused to generate different tasks. The third work is to deploy a solution

for recognizing object and estimating pose which can be used in real time for

object manipulation actions. We implement an application executing the task

’dispensing water’ to validate the proposals.

6



1.5 Research Overview

Acquiring 
Actions

Instruction 
Manual

Human
Demonstration

Executing 
Task

3D Object 
Recognizing

Robot 
systemTask-level command

Learning 
Actions

DB DB
Offline

Online

DB

Figure 1.4: The overview of research works in this dissertation

1.5.1 Acquiring Actions from Instruction Manual

This work aimed at acquisition of actions and objects from instruction manual for

automatically generating a task plan. The proposed method in this work includes

two main steps:

• Parsing the grammar structure of instruction sentences. This step outputs

the parse tree of each sentence.

• Searching on parse tree to extract actions and their following objects.

This work is presented in the Chapter 2.

1.5.2 Learning Action from Human Demonstration

The main objective of this work is to learn how to perform the action from

observing human demonstration. After having a task plan from previous work,

to automatic accomplish the task, the robot needs to refer to the knowledge about

how to perform each action in that task plan. This knowledge can come from

observation of hand movement in human demonstration of the desired action.

7



1.5 Research Overview

A learning method with the ability of adaptation to new changes was proposed.

The key points in this work are:

• Recording human hand movement

• Segmentation of movement

• Learning movement with adaptation to new changes

This work is described in the Chapter 3. A scenario of the task ’dispensing water’

is considered with the sequence of actions performing by a robot arm according

to the proposed method.

1.5.3 Perceiving Object for Manipulation Actions

The robots need to perceive about the objects that they want to manipulate. The

object information including identification, pose, location, size, etc are important

for object manipulation actions. Recognizing the change of object’s location in

real time also help to adapt a robot action to new location of the object. In this

work, a method of object recognition and pose estimation using a RGB-D camera

is implemented to provide a vision ability for robot in manipulating objects. The

method includes main steps:

• Retrieving point cloud data from RGB-D camera

• Segmenting and clustering object cluster

• Extracting feature using Viewpoint Feature Histogram

• Recognizing objects

• Estimating object pose

This work was described in Chapter 4
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1.6 Thesis Organization

1.6 Thesis Organization

This thesis is organized into six chapters as below.

• Chapter 1. Introduction

• Chapter 2. Acquiring Actions from Instruction Manual

• Chapter 3. Learning Action from Demonstration

• Chapter 4. Perceiving Object for Manipulation Actions

• Chapter 5. Discussion

• Chapter 6. Conclusion and Future Work
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Chapter 2

Acquiring Actions from

Instruction Manual

This chapter introduces a proposal to acquire actions and objects from instruction

manual to generate an executable plan of the everyday task for the robot.

2.1 Introduction

Everyday tasks at home such as dispensing water from a water thermos pot,

making a cup of coffee by a coffee maker, cooking or warming food by a microwave

oven, etc. are still hard for robots due to challenges in understanding the tasks

about what actions need to perform in the task, how to perform that actions.

These tasks can be decomposed into isolated actions such as pick up an object,

place object to somewhere, press a button, turn a knob, open or close a cover,

and so on. These actions are common and may be repeated many times in one

or some tasks in daily life.

A service robot should be able to automatically plan manipulation actions to

accomplish the task in domestic environments. If the service robot is ordered to

serve a cup of water, it should be able to move to the water pot, pick up a cup

and place under the spout, then press a button to pour out some water. The

robot should be able to perform this sequence of actions and plan it by the robot

itself. Therefore a method for automated task planning is essential for robots.

Automated planning is the process in which the robots generate artificially
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2.1 Introduction

the sequences of actions to reach their goals. The planning is normally abstracted

to a symbolic level, so that a symbolic planner can handle and solve the problem.

Although solutions in the symbolic world can be found, it is still problem for

map the used symbols back to the real world. For example, if a symbolic planner

generates an action ”pick up a cup” without considering the arm reachability

and obstacles around the cup, the plan could not be performed in the real world,

although its symbolic formulation is correct. Automated task planning for the

service robots faces great challenges in handling dynamic domestic environments.

There are two challenges that can be foreseen. Firstly, service robots are required

to work in home environments, which are highly unstructured and present con-

siderable uncertainties. For example, a cup may have been observed to be one

location, yet might not be at the same location at a different time. Secondly,

the construction of a sequence of actions for a service robot presents another

challenge. Although a robot can detect an object using computer vision or other

sensing technologies, it will not know when it should search for the object or how

the object is linked to the task. The robot requires certain knowledge from human

users. Nowadays, in practice, action sequences for robots are mostly hard-coded

or predefined for certain scenarios. This method is rather inflexible as it requires

manual amendments of source code in orders to reprogram the action sequence

for each task.

The classical approach to solve a robot task is to generate a plan as a sequence

of actions which leads to desired goal, taking into account the prerequisites and

the effects of the actions. For common household tasks, the sequences of actions

are unspecified and there is no complete description of the prerequisites and effects

of actions. Moreover, the task is more complex, it is more difficult to get the

executable plans. Instead of generating a task plan in a manual way, we proposed

to acquire the sequence of actions in the task from instruction manual. The robots

can look up the sequences of actions of a certain task in the instruction manual

and transfer them into task plan. We proposed the method to extract action and

object in a task instruction taken from instruction manual of home appliances or

equipment. The method uses natural language processing technique for parsing

the grammar structure of instruction sentences and searching algorithm to obtain

action and object which will be used for building executable plans for the robot

in next work.
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2.2 Acquisition of Robot Knowledge

2.2 Acquisition of Robot Knowledge

When an intelligent robot acts in home environment, it is inevitable to consider

what tasks the robot is competent for and how the robot plans to accomplish the

task. Instead of pre-programming all actions that robots might need, automati-

cally acquiring the corresponding action knowledge is necessary to automatically

plan the task.

There are more and more open-source knowledge resources being available

including knowledge bases, ontologies, household appliance manuals. etc. Such

open knowledge provides a new opportunity for intelligent robots to dynamically

acquire the action knowledge. The challenge of translating open knowledge lies in

the formalization of natural language [11]. Many researches provide a number of

effective approaches so called semantic parsing, to translating natural language

into formal expression, for example in [70], [32]. Kunze et al. [31] present a

robotic system that translates the OMICS (Open Mind Indoor Common Sense)

knowledge into a formal presentation. Tenorth et al [63] proposed extracting the

action knowledge from the natural language instructions from the World Wide

Web.

Efficiently understanding natural language instructions is important for intel-

ligent robots. Many existing natural language instruction approaches either use

simple language understanding or large corpora of hand-annotated training data

to pair language with robot actions. Mericli et al. [36] allow users to specifiy a

task program to be stored and executed on the robot. Their method for under-

standing natural language is done by keyword search and assumes certain words

in a particular order. Cantrell et al [10] used semantic parsing to extract an

action, pre- and post-world conditions for that action, and the entities involved.

Natural language instruction can dictate a sequence of actions to a robot. Some

approaches pair robot actions with language descriptions, then build models that

map language instructions to action sequences in [38] and [61]. In [29] Klein and

Manning relied on a well-trained initial parser for interpreting the sequence of

actions from high-level instructions. Another approach enables a robot to learn

a sequence of actions and the lexical items that refer to them from language in-

struction and dialog [57]. Jesse Thomason et al. in [65] introduced a dialog agent

that understands human instructions through semantic parsing. They resolved

12



2.3 Extraction of Action and Object from Instruction Manual

the problem of ambiguities using a dialog manager, and incrementally learns from

human robot conversations by inducing training data from user paraphrases.

Some researches emphasized on solving the problem of understanding and

performance of everyday tasks by robots. Moritz Ternorth and et al. in [63],

[62], [64], Daniel Nyga and Michael Beetz in [44] translated the task instructions

from websites into the almost executable robot plans. These researches aim at

building up a robot knowledge framework which shares the large amount of robot

knowledge about every tasks, actions as well as related objects and world. Mario

Bollini and et al. [6] described a method of interpreting and executing recipes

with a cooking robot. The authors mapped from natural language instructions to

robotics instructions by designing an appropriate state-action space. Dipendra

K Misra and et al. [38] and [37] carried out grounding the natural language

instructions with appropriate environment context and task constraints.

2.3 Extraction of Action and Object from In-

struction Manual

For everyday tasks taken from instruction manuals, in order to build a task plan,

we proposed a method to automatically acquire the sequences of actions in the

task from instruction manual. The method uses syntax parsing of sentences to

extract actions and flowing objects if applicable.

From the linguistic point of view, verbs denoting actions and nouns denoting

objects are very important in a sentence because they can briefly convey the key

message of the sentence. This is more exact with the sentences in the instruction

manuals since they are often imperative statements that guide to perform certain

actions. For example, the instruction take from the user manual of a water

thermos pot ”Place a cup to fill with hot water just beneath the spout, and press

the ’Push’ key” contains two important pair of actions and following objects ’place

- cup’ and ’press - key’ which describe the actions need to be performed in this

instruction. From this key point, a method of extracting action and object from

instructions was proposed to provide robots necessary knowledge about what

actions the robots need to perform in the instructions of a certain task.

The extraction of information such as subjects and verbs from sentences is

a technique in natural language processing. This technique is often applied in
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2.3 Extraction of Action and Object from Instruction Manual

summarizing document or enriching knowledge for conceptual ontology. Delia

Rusu and et al. in [15] presented the methods to extract subject-predicate-object

triplets from English sentences by using four different well-known syntactical

parser including Stanford Parser, OpenNLP, Link Parser, and Minipar. However,

the extraction algorithms determined only one pair of verb and object in each

sentence. This leads to ignorance of other action verbs if the sentence combine

more than one action verb. In natural language sentence, action an object are

identified based on the part-of-speech (POS) of words in the grammatical struc-

ture. Accordingly, the extraction method of action and object includes three

steps. Firstly, parsing the syntax structure of a sentence to achieve parse tree,

then editing the parse tree to remove the indirect action if it exists, finally, search-

ing on each parse tree to determine action and object based on POS tags that

are labeled in the parse tree. The flow of this method is shown in figure 2.1

Parsing

S

VP

VB NP

DT NN

Searching

Input:
- Natural language sentences

- Syntax parsing the sentences

- Dependency parse tree

- Searching on the parse tree

Result:
- Pair of (action, object) in 
each instruction sentence

Instructions

Pairs of
(action, object) 

Editing

- To remove indirection action 
(if applicable)

Figure 2.1: The flow of method extracting action and object from instruction

sentences
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2.3 Extraction of Action and Object from Instruction Manual

2.3.1 Parsing Syntax Structure

In the first step, syntax parsing, the input data which are natural instruction

sentences in text files are parsed to determine the syntax structure of each sen-

tence. There are some syntax parsing tools satisfying this situation. This study

applied a state-of-the-art parsing tool, Stanford Parser, which is a well-known

PCFG (Probabilistic Context Free Grammar) parser working out the grammati-

cal structure of sentences [29]. This parser generates the dependence parse trees.

The parse trees are labeled with part-of-speech (POS) tag for their words and

phrases depending on their grammatical structure. Stanford dependence parse

tree is represented in text form as an example follows:

(ROOT
(S

(VP
(VP (VB Place)

(NP (DT a) (NN cup)
(S

(VP (TO to)
(VP (VB fill)

(PP (IN with)
(NP (JJ hot) (NN water)))

(PP
(ADVP (RB just))
(IN beneath)
(NP (DT the) (NN spout))))))))

(CC and)
(VP (VB press)

(NP (DT the) (JJ Push) (NN key))))))

Figure 2.2 shows the parse tree of given example in visualization. The leaf

nodes are POS tags that associate with words in the sentences, non-leaf nodes

are POS tags associate with phrases in grammatical structure of the sentences.

Example of POS tags are NN for a noun, VB for a verb, DT for a determiner,

NP for a noun phrase, PP for a preposition and so on. This statistical parser

still makes some mistakes, but commonly it is evaluated working rather well and

used widely in natural language processing.
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2.3 Extraction of Action and Object from Instruction Manual

2.3.2 Removing Indirect Action

Instruction statements may be a simple grammatical pattern consisting of one

action verb and one object noun or may combine more than one action. In

the case of the sentence with more than one action, a certain action may not

require to perform, so-called indirect action in the sentence. For example, in the

example of above given sentence, the action ’fill’ (with hot water) is an indirect

action which does not require to perform. Hence, this kind of actions need to

remove from extracted result. This situation mainly occurs when the instruction

sentence contains a dependence clause that can be omitted without changing the

key meaning of the sentence. As shown in figure 2.2, the action ’fill’ is located

in a sub tree with the node ’S’ which is a dependent clause and can be removed.

From this crucial point, the solution for removing indirect action is to prune the

sub tree of dependent clause from the parse tree of original sentence before having

next step to search pairs of action and object in the parse tree.

Figure 2.2: The parse tree of a given example is outputted by Stanford Parser

To this end, we exploited tree surgeon function which is known as TSurgeon

tool [34] built in Stanford NLP package. It provides the way of tree editing based

on the set of operations that are applied to tree locations which are matched to
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2.3 Extraction of Action and Object from Instruction Manual

a tregex pattern. This is similar to regular expression for tree matching. The

condition to identify the sub tree of a dependent clause is that its root node is

labeled with ’S’ tag and is dominated by a VP sub tree. The tregex pattern

(regular expression) is ”S=node � VP”. Then, the surgery operation ’prune’

is executed to remove this sub tree from original parse tree. This procedure is

illustrated as in figure 2.3. Figure 2.4 depicts the parse tree after pruning to

remove a sub tree of dependent clause of given example. The pairs of action and

object then are found in this edited tree. In case there is no dependent clause in

a sentence matching with the above condition, the parse tree will not change.

(place, cup)
Required to perform

(press, ‘Push’ key)
Required to perform

(fill, water)
indirect action

Pruning this sub-tree

Figure 2.3: The edited parse tree after pruning the sub tree of dependent clause

2.3.3 Searching for Action and Object

The second step of the extraction method is searching for actions and objects

on each parse tree. After achieving the parse tree and removing the sub tree

of dependent clause if it exists. The actions and objects are found based on

part-of-speech tags labeled in each parse tree. The searching procedure identifies

all possible pairs of action and object. To this end, the searching algorithm
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2.3 Extraction of Action and Object from Instruction Manual

Figure 2.4: The edited parse tree after pruning the sub tree of dependent clause

traverses sequentially each action verb and its following object noun in the parse

tree. Firstly, one verb is searched in the first VP sub tree and assigned as first

action. With each action verb found in the VP sub tree, an object is assigned by

noun following it by searching in siblings sub trees of that VP sub tree. Object

is assigned as last noun that is found firstly in sibling sub trees ”NP” or if not it

is assigned as the first noun found in sibling sub trees ”PP”.

In given example, the instruction sentence is parsed into a VP tree at top-

level as shown in figure 2.2. After pruning the sub tree of dependent clause, the

edited parse tree is obtained as shown in figure 2.4. The searching procedure is

implemented on this edited tree. The first verb found in the first VP sub tree

’place’ is assigned as first action. Then, its following noun ’cup’ which is found in

the NP sibling sub tree is assigned as the object that accompanies with the action

’place’. Next, the second pair of action ’press’ and object ’key’ is determined in

same way. The searching procedure is repeated until the end of each parse tree

to obtain all possible pairs of action and object.

2.3.4 Action-Object Extraction Algorithm

From the steps as mentioned above, the extraction algorithm of action and object

from instruction sentences is built as follows:
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2.4 Task Planning

Algorithm 1: Pseudocode of Action and Object Extraction

Function getParseTree(sentence)
word list ← tokenize the sentence ;
parse tree ← parse the world list ;

Function pruneDependenceTree(parse tree)
edit tree ← pruning the dependence sub tree ;

Function extractActionObject(parse tree)
VP subtree ← the top level VP sub tree of parse tree ;
for each verb leaf node found in VP subtree do

action ← word of verb leaf node ;
ao pair ← append action ;
siblings ← siblings subtrees of verb leaf node ;
for each sib tree in siblings do

object ← last noun in ”NP”, ”PP” sib tree ;
if object found then

break;

object ← first noun in other sib tree ;

ao pair ← append object

ao list ← append ao pair ;

In this algorithm, each extracted object is assigned by a single noun. However,

in some cases, better result can be achieved if an object is possibly identified by a

noun phrase which provides more detailed information, for example, ’coffee cup’,

’Push key’, ’Lock/Unlock key’. In order to assign an object by a two-noun phrase,

the searching procedure can be improved by finding and storing all nouns in a

noun phrase and assigning two last ones for object if it exists.

2.4 Task Planning

After obtaining the sequence of action and following object if applicable, the task

plan is built by assembling the series of these actions. A task plan is simply

represented by:

T = {< Actioni, Objecti >} i = 1, 2, ..., n (2.1)

The pair of < Actioni, Objecti > is extracted from the task instructions taken
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2.5 Experiment and Result

from instruction manual. In next step, each action is built an executable plan for

the robot.

2.5 Experiment and Result

We collected test data including natural language sentences of many different

tasks taken from home appliance instruction manuals such as making coffee by

a coffee maker, dispensing water from thermos pot, cooking something by mi-

crowave oven, etc. These task instructions are stored in text files as input data.

We implemented the program of proposed algorithm to extract all possible pairs

of action and object in instructions from each input text file. The extracted re-

sults are evaluated by comparing manually the pairs of action and object with

respective to each described in the primary sentence to decide the accuracy of

outputs. We tested two examples of extracted results corresponding to two input

texts.

In the first example, the input texts consist of only two sentences guiding a

simple task ’dispensing water’ as described text 1, a principle task described in

many water thermos pot user manuals. In this case, all extracted results are

correct as shown in the table 2.1. Objects are also assigned by two nouns, if any,

including a main noun and an auxiliary which provides more specific information

on that object.

Text 1. Instructions of ’dispensing water’ task taken from a water thermos

pot user manual

1. Press the ’Lock/Unlock’ key once.
2. Place a cup to fill with hot water just beneath the spout and press the
’Push’ key.

Text 2. Instructions of ’cooking some food’ by microwave oven

1. Push the button and open the door
2. Place the food on the turntable or on the grill jack
3. Select the function and cooking time required
4. Close the door and press the Start button.
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Table 2.1: Extracted result of action and object from task instruction ’dispensing

water’

Sentence No. Action Object

1 ’Press’ ’Lock/Unlock’, ’key’

2 ’Place’ ’cup’

’press’ ’Push’, ’key’

Table 2.2: Extracted result of action and object from task instruction ’cooking

food’ by microwave oven

Sentence No. Action Object

1 ’Push’ ’button’

’Open’ ’door’

2 ’Place’ ’food’

3 ’Select’ ’function’

4 ’Close’ ’door’

’Press’ ’Start’, ’button’

In the second example, the input text is the instructions from an user manual

of microwave oven for the task ’cooking food’. The extracted result of action and

object is shown in table 2.2.

In the third example, the input texts are the instructions of a more complex

task, which combine many operations taken from a coffee maker user manual as

describe in text 3. The extracted results as represented in table 2.3 contain 6/10

instruction sentences obtaining the correct pairs of action and object (Sentences

No. 1, 4, 7, 8, 9, 10). Four sentences (2, 3, 5, 6) with complex grammar structure

return incorrect or empty actions due to the mistakes in syntax parsing by the

Stanford parser.

Text 3. Instructions of ’How to operate’ task taken from a coffee maker user

manual.
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1. Place the Brewer on a flat surface, remove protective sheet and plug into
outlet.
2. Do not remove or puncture the foil lid of the K-Cup portion pack.
3. Lift front facing of the brewer to insert K-Cup.
4. Place chosen K-Cup into the K-Cup Assembly Housing.
5. Lower the front facing completely and firmly to close the Lid and puncture
the K-Cup portion pack.
6. Depress the water marking button and the hot water tank will open auto-
matically.
7. Fill the Hot Water tank with filtered or bottled water up to the FILL
LEVEL indicator.
8. Close the Hot Water Tank cover.
9. Place a coffee cup in the dispense area on the drip tray.
10. Press the BREWNOW button.

Table 2.3: Extracted result of action and object from task instruction ’making a

cup of coffee’

Sentence No. Action Object

1 ’Place’ ’Brewer’

’remove’ ’sheet’

’plug’ ’outlet’

2 ’remove’ ”

’puncture’ ’pack’

3 ” ”

4 ’Place’ ’K-cup’

5 ” ”

6 ’open’ ”

7 ’Fill’ ’water’, ’tank’

8 ’Close’ ’tank’, ’cover’

9 ’Place’ ’coffee’, ’cup’

10 ’Press’ ’button’

The accuracy of extracted results depends on those of both syntax parsing

tool and the searching procedure of proposed method. Stanford parser applied in
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this study works with very high accuracy but still has errors when the instruction

sentences are formed by complex grammatical structures.

We did many experiments with other input texts, and showed here two exam-

ples. From these examples, we can confirm the availability of the processing steps

of proposed method, and pointed out different cases of instruction sentences. We

will consider a statistic evaluation with a larger number of data based on the

category of grammatical patterns such as simple grammatical pattern consisting

of only one pair of action and object or consisting of more than one pair of ac-

tion and object; grammatical pattern containing a dependence clause; complex

grammatical patterns including negative pattern, passive pattern, pattern with

several actions but pairs of action and object are not corresponding.
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Chapter 3

Learning Action from Human

Demonstration

3.1 Introduction

In chapter 2, the actions what the robot needs to perform in a task can be achieved

from instruction manual. In order to perform each action , the robot needs to be

provided an executable plan. The knowledge about how to perform the action is

necessary. The work in this chapter deals with the problem of planning action

for the robot by learning from demonstration provided by human. The goal is

to generate appropriate motion patterns for the robot (robot’s end-effector and

gripper in particular) to perform a desired action.

Learning from Demonstration (LfD) [1] (also known as Programming by Demon-

stration (PbD), Imitation Learning) aims to enable robots to autonomously per-

form new behaviors with the ability of adaptation to the new changes. This

paradigm allows to transfer the knowledge about how to perform behaviors from

an expert teacher to a robot through the use of demonstrations. This approach

takes the view that an appropriate robot controller can be derived from observa-

tions of a human’s own performance.

The ability of the robot to interpret the demonstration is an essential part of

robotic systems employing learning by demonstration. Many methods have been

proposed for teaching robots through demonstrations, depending on different lev-

els of complexity of the robot’s sensory capabilities. Although each approach has
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its own particularities, they can be classified into two main categories: learning

by observation and learning from experience.

Learning by observation includes techniques based on the robot observes pas-

sively the teacher’s performance, and attempting to reproduce the observed be-

havior. These techniques allow robots to gather external sensory information, in

most cases from a camera. This requires using complex computer vision tech-

niques to translate the teacher’s actions. In learning by observation, the robot

has to face with the major challenge of accurately perceiving the teacher’s demon-

stration which is dependent on the ability of observation and noise in the real

world domains. In addition, the robot must also be able to interpret the demon-

strations and map them to its own capabilities accounting for differences in body

structure with respect to the teacher. In this work, we rely on observed human

demonstration to transfer the knowledge about task and actions from a teacher

to the robot.

Learning from experience includes approaches which require the robot par-

ticipates actively in the demonstration, performing the actions along with the

teacher and experiencing it through its own sensors. From the physical guideline

of the teacher, the robot is able to record internal information such as joint an-

gles or positions relative to its own body. This approach is often appropriate for

humanoid robots.

In learning from observing, the demonstration of a human expert is recorded

and then reproduced by a robot. If the environment does not change during

the robot’s performance then learning to imitate the demonstrated trajectory of

teacher is sufficient. However, in many cases the actions that the robot should

learn are influenced by the state of the environment. Repeating exactly an ob-

served movement for the robot is not realistic in a dynamic environment. For

example, in the action ’pick up an object’, if the robot only records exactly the

trajectory of a particular instance of a demonstration, it would not be able to

get the object in a dynamic environment when the object’s location is changed.

Therefore, learning a demonstrated movement should have the ability of adap-

tation to new changes such as changing the goal, scaling of time. A learning

method that allows to adapt with new changes is essential.

Most of the actions in everyday tasks are performed by hand. Learning robot

action from observing hand movement in human demonstration is feasible. Many
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methods have been deployed to model the movements and reproduce them for

robot accurately and stably. Dynamic Movement Primitives (DMPs) framework

was used for encoding and and regenerating movement trajectories for the robot

in many studies, for example in [45], [35], [48], [42]. DMPs can be used to repre-

sent the movement trajectory in end-effector space (task space), which encodes

robot trajectories from start position to goal position. The DMPs model has

the generalization ability. The generated movement can be adapted to some new

changes such as the change of new goal. In addition, this representation can gen-

erate continuous robot movements and has robustness to perturbations. DMPs

framework can also be further extended to have capabilities such as joint limits

avoidance and obstacle avoidance [45].

The hand movement of manipulation actions is complex. To learn each sim-

ple unit of movement by using DMPs framework, the observed movement should

be segmented into simple units which are called motion primitives. This seg-

mentation plays an important role to describe each motion primitive by DMPs

models. The complex hand movements not only include translation motion from

start position to goal position but also contain the motion of operating object

such as grasping, releasing object by closing/opening hand fingers. These move-

ments are signals to control position and orientation the robot’s end-effector and

the state of robot’s gripper. The DMPs framework enables to combine multiple

control signals so that the movement trajectory adding the data of orientation

and gripper’s state is feasible for encoding by DMPs models. In other hand, the

complex movements for performing the actions by robot can be generated by

sequencing motion primitives which were encoded as generative DMPs models.

The idea is that common motion primitives, encoded by DMPs models, like low-

level building-blocks, can form to a library of motion primitives. Each motion

primitive is labeled accordingly to its DMPs models. The complex movement of a

robot action can be composed by sequencing motion primitives from this library.
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3.2 Background and Related Work

3.2.1 Learning from Demonstration

3.2.1.1 An Overview

The term ’learning’ in the context of this study is in a general sense. It implies the

ability of a robot system to autonomously acquire new skills, to adapt to changes

in the environment and/or tasks, and to improve its performance over time.

Instructions, experiences, demonstrations provided by a teacher may facilitate the

learning process. The learning process here is not completely equivalent to the

concept of machine learning but different machine learning techniques can be used

as tools for the learning method. The level of learning is subject to the abilities

that are desired from the system. The literature on learning from demonstration

does not make a clear distinction among these various levels. Generally, two

popular approaches are learning tasks and learning skills or actions.

In Learning from Demonstration (LfD), a teacher demonstrates a task or ac-

tion to a robot, then in such a way that the robot is able to reproduce that task

or action. A robot has ability of reproducing exactly certain behaviors as demon-

strated but it is difficult to adapt to changed environment or conditions which

come naturally to human. Although the idea of learning from demonstration at

first seems simple, it faces many challenges [43]:

• The sensing abilities of robots are limited and different from human per-

ception. What is the best way to give demonstrations to robots so that it

can maximize knowledge transfer ?

• The robot’s embodiment is different than a human’s. For example, the

motion of human arm and fingers is still difficult to be compatible with

the configuration of robot arm and fingers. What matching mechanism is

needed to create the mapping between teacher’s actions and the robot’s

own sensory-motor capabilities ?

• Learning is incremental process. This means that certain knowledge could

only be learned when an appropriate foundation knowledge already existed.

What could a robot learn and what are the required capabilities for learning

it ?
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An overview of learning from demonstration and its classifications can be

found in the survey article [3] and the book chapter [5]. These are some terms

including Learning from Demonstration, Programming by Demonstration and

Learning by Imitation, which are typically used as synonyms in most literature

with some slight differences.

Simple methods of learning from demonstration topic such as teach-in and

playback were developed from many year ago. In such scenarios, the teacher

moves the robot arm manually or by teleoperation and a sequence of exact po-

sitions and orientations are recorded. Then the robot imitate exactly the move-

ment as recorded. Although these methods are successful for some tasks, they

still suffer from drawbacks. For example, this kind of imitation is only suitable

for predefined work spaces and processes. Nowadays, advanced approaches in

learning from demonstration enable to overcome this limitation to make robots

operate in unstructured environments such as households.

3.2.1.2 Interface for Demonstration

The interface used to provide demonstrations influences how the information is

acquired and transmitted. Different types of interfaces can be distinguished to

two major categories:

• Directly Recording Human Motions This interface can use any of var-

ious different motion tracking systems, based on vision or wearable motion

sensors, markers. The teacher performs demonstration on his own. The

data is recorded either observed by external sensors like a camera or by

sensors attached to the teacher. These methods have the advantage in that

they allow the human to move freely in natural ways, but require good so-

lutions to the corresponding problem. The observed data does not match

with the actions of the robot. Therefore, a mapping between the different

embodiment must be employed. Typically, this is done by an explicit map-

ping between human and robot joints, but can be quite difficult if the robot

differs greatly from the human.

Some studies use this type of interface for gathering the hand movements

of human demonstration. Skoglund et al. in [58] used external marker

mounted on a data glove to record the hand motions of ’pick and place’
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actions for teaching a manipulator. Ren Mao et al. in [35], Oikonomidis et

al. in [22] used marker-less hand tracker which can reliably track a skeletal

hand model. This approach was based on a 3D hand model, which has the

advantage of accurate estimation of hand pose. The 3D data in real world is

captured from Kinect FORTH tracking system using the hand model based

method.

• Kinesthetic Teaching The teacher teleoperates the robot or moves the

robot limbs physically (kinesthetic teaching). All joint states of the robot

are recorded using sensors attached the joints. This results in good data

quality and is not affected by the corresponding problem. However, one

main drawback of this method is that the human must often use more of

their own degrees of freedom to move the robot than the number of degrees

of freedom they are trying to control. For example, the human must use

both hands to move a few robot fingers. In both cases, teleoperation as well

as kinesthetic teaching, a robot with dozens of joints is difficult to handle.

3.2.1.3 How to Solve LfD

Approaches in the topic of LfD results in different views on the learning and the

representation of tasks. The most differing of the representations among learned

robotic skills are symbolic encoding (high-level) and trajectory encoding (low-

level). Symbolic encoding describes the task with a sequence of already known

action primitives, like reaching object. The trajectory encoding represents a task

as a sequence of sensor data such as positions, velocities and accelerations.

Learning high-level action composition

Learning complex tasks, composed of a combination of individual motions, is

the goal of LfD. A common approach is to first learn models of all of the individual

motions, using demonstrations of each of these actions individually [14], and then

learn the right sequencing/combination in a second stage either by observing a

human performing the whole task [16], [58] or through reinforcement learning

[39]. However, this approach assumes that there is a known set of all necessary

primitive actions. This may be true for specific tasks, but so far it does not exist

a database of general purpose primitive actions, and it is unclear whether the

human activities can really be reduced to a finite library.
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Another method is to observe the human demonstrate the complete task and

to automatically segment the task to extract the primitive actions which may

then become task-dependent, [30]. The main advantage is that both the primitive

actions and the way they should be combined are learned in one pass. One issue

that arises is that the number of primitive tasks is often unknown, and there

could be multiple possible segmentation which must be considered [18].

In the studies at [12], [13], a high-level approach of LfD was presented. The

learning method proposed in these publications focuses on extracting an abstract

description of the task from multiple demonstrations. The actual movements are

generated using a trajectory planner.

Low-level learning of individual motions

Individual motions/actions (e.g. picking up a cup, pressing a button) could be

taught separately instead of all at once. The teacher would then provide one or

more examples of each sub-motion apart from the others. If the learning proceeds

from the observation of a single instance of the motion/action, it is called one-shot

learning [69]. Examples can be found in [41] for learning locomotion patterns.

Different from simple record and play, here the controller is provided with prior

knowledge in the form of primitive motion patterns and learns parameters for

these patterns from the demonstration.

Multi-shot learning can be performed in batch after recording several demon-

strations, or incrementally as new demonstrations are performed [33]. Learning

generally performs inference from statistical analysis of the data across demon-

strations, where the signals are modeled via a probability density function, and

analyzed with various non-linear regression techniques from machine learning.

Popular methods nowadays include Gaussian Process, Gaussian Mixture Models,

Support Vector Machines.

of gestures by imitation.

The works in the studies at [56], [55] and [8], [9] was successfully done by

using a parametrized trajectory to encode the whole task. These approaches use

a regression method to generalize over multiple demonstrations. They do this

in both the joint space (positions of joints) and the 3D task space (Cartesian

coordinates calculated using robot kinematics). At task reproduction, several

constraints such as the distance to the objects of the scene, are respected. The

reproduction process generates a whole position-only trajectory which is executed
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using a standard controller. Thus interaction with the environment is impossible,

feedback at execution time can not be considered.

A more low-level approach on learning movements is presented in [54], [25].

These works use dynamical systems to encode a movement. The main advantage

of dynamical systems is their adaptation. In such systems the next state is always

calculated from the current state by applying the fixed rule. Regression methods

are used to approximated the non-linear part of these dynamical systems. Learn-

ing is possible with a single demonstrated trajectory [54] or by generalization

over multiple [19]. Improving a trajectory with reinforcement learning has also

been done successfully for example in [47]. This encoding of a trajectory is point

attractive, which means a trajectory is represented in terms of a fixed start and

goal state. Unfortunately, this limits the field of application to tasks with a pre-

defined goal position. In order to overcome this limitation it is possible to build a

sequence of these motion primitives to represent more complex tasks. This bases

on the assumption that complex movements can be described by small units of

action.

3.2.2 Learning Movements using Dynamic Movement Prim-

itives

To facilitate automatic planning of actions with the data recorded from demon-

strations, some frameworks of learning from demonstration are selected. The

goal is to generate appropriate motion patterns for the robot. A popular frame-

work for the representation and learning of movements with dynamical systems is

known as Dynamic Movement Primitives (DMPs), originally introduced in [25].

The DMPs framework has advantage of adaptive learning to new changes of en-

vironment or the own movements. Furthermore, this framework has also been

improved by modified DMPs versions which have advanced abilities such as gen-

eralization in 3D task space, joint limits avoidance and obstacle avoidance, for

example in publications in [20], [21], [46], [45].

3.2.2.1 Dynamic Movement Primitives

The dynamic movement primitives was proposed by Ijspeert et al. in [25], [26]

and then was developed over many years with improvements in [27], [53], [24]. In
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DMPs framework, a captured movement can be described by a set of differential

equations which is from a mathematical model of a dynamical system. It has the

advantages in generating smooth movements with the perturbation that can be

automatically corrected by the dynamics of the system. It addresses the flexibility

and does not rely on time. Moreover, it allows the capability of generalization

because the characteristic that the equations are formulated in way adapting

to a new goal by changing goal parameter. In [60] F. Stulp et al. proposed

an approach using DMP and a probabilistic model-free reinforcement learning

algorithm to learn motion primitives.

The DMP framework enables to learn a movement trajectory from one ref-

erence sample. It represents a movement as a time evolution of a nonlinear

dynamical system. Then it can reproduce the movement and optionally adapt

to different configurations by changing the goal parameter. The formulation of

a standard DMP model originates from a second order linear dynamical system

(like a spring-damper system model) which is stimulated with a nonlinear forcing

term, uses a set of differential equations:

τ v̇ = K(g − x)−Dv + (g − x0)f(s) (3.1a)

τ ẋ = v (3.1b)

where x(t) denotes a sample trajectory starting at start position x(t0) = x0

towards to goal position x(tf ) = g. K and D involve the inherent dynamics of

the second order linear system, as the spring constant and the damper coefficient,

respectively. K is chosen in advance to meet the desired velocity response of the

system. D is chosen to satisfy that the dynamic system be critically damped

and thus reach the goal position without overshoots. A suitable choice is D =

2
√
K. The forcing term f(s) is an arbitrary non-linear function which is used to

adapt the response of the dynamic system to an arbitrary complex movement. In

[27], Ijspeert et al. proposed a suitable choice for f(s) as a sum of M weighted

exponential basis functions:

f(s) =

∑M
i=1wiψi(s)∑M
i=1 ψi(s)

s (3.2)
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where ψi(s) are Gaussian functions defined as

ψi(s) = exp(− 1

2σ2
(s− ci)2) (3.3)

Parameters ci and σi define the center and the width of the ith basis func-

tion, while wi are the adjustable weights used to obtain the desired shape of the

trajectory [42]. The variable s is a phase variable and defined by the canonical

system:

τ ṡ = −αs (3.4)

where α is a pre-defined constant. This variable evolves exponentially from 1 to 0.

It used to remove the direct dependency on time of the forcing term f(s) and also

to weight the forcing term to continuously shift towards a purely goal-attracted

system [48]. The dynamical system as described above was called as a trans-

formation system. Figure 3.1 sketches the DMPs model: the canonical system

drives the nonlinear function f(s) which perturbs the transformation system.

Canonical 

System

Transformation 

System

𝜏  𝑠 = −𝛼𝑠

Learned 

weights 𝑤𝑖

Desired 

parameters 

x0, g

𝑓 𝑠,𝑤𝑖

Desired 

movement:

- Position x

- Velocity v

- Acceleration  𝑣

DMP

Figure 3.1: Illustration of a one-dimensional DMP model

3.2.2.2 Learning and Executing DMPs

The DMP model as described above can be used to learn a movement trajectory.

The parameters wi in (3.2) are adapted through the learning process so that the
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nonlinear function f(s) forces the transformation system to follow the observed

trajectory x(t).

The first step of learning procedure is to initialize values to the parameters

of the system. K and D is set beforehand responding to changes in the goal

parameter. τ is the time constant and should be set to the duration of the sample

trajectory τ = tf − t0. The factor α in the canonical system (3.4) determines the

decay rate of the phase variable, which is appropriate chosen to ensure that s will

evolve to 0 at t = τ .

Once these values are initialized, in the next step, the desired values of the

forcing term is computed by extracting it from (3.1a).

fdes(s) =
−K(g − x) +Dv + τ v̇

g − x0
(3.5)

Then the values of the sample trajectory x = x(t), which is recorded from

human demonstration and its derivatives v = τ ˙x(t) and v̇ = τ ¨x(t) are computed

for each time step t = t0, ..., tf and inserted in the (3.5). x0 and g are set to

x(t0) and x(tf ), respectively. Next, the canonical system in (3.4) is integrated.

s(t) is computed with an appropriately adjusted temporal scaling τ by: s(t) =

exp(−α
τ
t).

With these arrays of desired values fdes(s), the appropriate centers and widths

of the basis exponential functions in (3.2) can be set, and the weights wi in (3.2)

is found by minimizing the error criterion by least squares J =
∑

s(fdes(s) −
f(s))2, which is a linear regression problem. Figure 3.2 summarizes the process

of learning phase of DMPs model.

The results of learning phase are learned weights wi. The movement plan is

generated by reusing the learned weights wi. The desired start position x0 and

the goal position g are selected as required by the movement. The canonical

system is reset by assigning the phase variable s = 1. By replacing the learned

parameters wi, adapting the desired movement duration τ , evaluating s(t), and

computing the nonlinear function f(s), the desired trajectory is obtained from

integrating the transformation system in (3.1a). Figure 3.3 summaries the process

of executing phase of DMPs model.
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Canonical system
τ  s = −αs
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DMPs: Learning Phase

Figure 3.2: The summary of learning phase of DMPs model
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Control signals to 
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DMPs: Executing Phase

Figure 3.3: The summary of executing phase of DMPs model
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3.2.2.3 Characteristics of DMPs

DMPs framework has the characteristics which are advantages when applying

this framework for low-level learning of movements to generating total movement

for the action.

• Multiple Degrees of Freedom Using DMPs for real world applications

like moving a robot arm requires them to encode more than one-dimensional

movements. This can be obtained by using one transformation system for

each dimension of the data.

• Sequence DMPs DMPs are intended to be single basic units of movement.

To allow more complex movements it is possible to sequence several DMPs.

• Online Adaptation The goal position g in Equation 3.1a can changed

at any time of the execution. In the Learning for Demonstration context,

online adaptation is the crucial advantage of using DMPs to encode a move-

ment.

• Movement Recognition The similarity of two movements can be deter-

mined by comparing the weights wi of two movements with each other.

3.2.2.4 Improvements of DMPs

The original formulation of DMPs as presented in the previous section, has some

drawbacks with the adaptation to new goals. When the changes of the goal are

extremely small, the movement between start and goal position does not adapt

as expected. The work in [21] presents a modified version of DMPs which is not

affected by this drawbacks. While the transformation system is changed to the

following formulation, the canonical system stays the same as in equation (3.4).

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s)

τ ẋ = v
(3.6)

The function f(s) is the same as defined in the original formulation (Equation

(3.2)). But the function f is not multiplied by (g − x0) any more. This helps to

prevent the problems with movements which start and end at the same position
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(g = x0). It also makes the adaptation to only slightly changed goals more

optimal. The most important characteristic of this improved formulation is that

it generalizes to new goals well. The third term K(g − x0) is required to avoid

jumps at the beginning of the movements [45]. Learning and propagating DMPs

is achieved with the same procedure as before, except that the target function

fdess is computed according to

fdes(s) =
τ v̇ +Dv

K
− (g − x) + (g − x0)s. (3.7)

This new formulation are used in our implementation in the next section.

3.3 Learning Action from Hand Movement in

Human Demonstration

3.3.1 The Approach

Hand movement in human demonstration of desired action is tracked by a motion

tracker. There was numerous methods to capture human motions depending on

the different scenarios of application. Many methods are based on motion tracking

system using vision or other wearable motion sensors for directly recording human

motions. To capture hand motions, some approaches using external markers or

special equipment such as Data Gloves were proposed in [7], [59], [24]. In [23], [35],

the authors used a marker-less hand tracker which can reliably track a skeletal

hand model. This approach based on a 3D hand model, which has the advantage

of accurate estimation of hand pose. The 3D data in real world is captured from

Kinect FORTH tracking system using the hand model based method. To deal

with the generation of movement for robots from observed data, some approaches

have been proposed. The works at [17], [4], [66] solved the problems of trajectory

generation from a database of demonstrated movements. In [4], the authors

proposed to learn demonstrated movements for a robot by using Hidden Markov

Models. In [7], S. Calinon et al. also proposed an approach based on Hidden

Markov Model and Gaussian Mixture Regression for learning and reproducing of

gestures by imitation. Forte and et al. in [17] applied Gaussian process regression

for multiple sample trajectories to learn task parameters.
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We proposed a method for learning and reproduction of a demonstrated ac-

tion. This approach is based on a single demonstrated trajectory from hand

movements. The movement of a manipulation action is segmented into move-

ment primitives. Then movement primitives are encoded by DMPs with the

ability of adaptation to new changes. A sequence of DMPs is used to generate

the whole movement of desired action. The adaptation to changes in the environ-

ment is made possible by the ability to change the goal position of a DMPs. In

order to know how the goal position should be changed, a reference object must

be identified. Tracking the position of target object enables the system to update

the goal position online, which in turn makes it possible to move objects while

the action is performed.

Demonstration

Tracking 

Hand Movement

Segmenting 

Movement

Learning 

Movement 

with DMPs

Primitive Skills

Robot Controller

Figure 3.4: The flow of proposed method for learning action from hand movements

in human demonstration with Dynamic Movement Primitives (DMPs)

Figure 3.4 shows the architecture of proposed method including three main

steps:

• Recording Hand Movement

• Segmentation of Movement
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• Learning Movement with DMPs

3.3.2 Recording Hand Movement in Human Demonstra-

tion

3.3.2.1 Hand Movement Tracking Solution

B

Index finger (I)

Thumb (T)

Between (B)

Hand fixed 
frame

Position

Distance L

T

I

Zk

XkYk

Kinect coordinate 
system

Robot coordinate system

Xh

Yh

Zh

YR

ZR

XR

Oh

M

Figure 3.5: The hand motion tracker using Kinect camera with a color-marker

glove

We designed a hand motion tracker by using a Kinect camera to track the

movement of human hand wearing a color-marker glove. Figure 3.5 describes this

motion tracker. Kinect camera is mounted in a fixed coordinate system which is

Kinect’s coordinate system. To have the best view, it is mounted on the top of

working space for observing the hand movement of a human wearing the color-

marker glove and demonstrates a desired action. The color-marker glove has three

different color parts on the thumb, the index finger and the part between them.

When the human wears this glove and demonstrates the action, the color markers

are captured continuously by Kinect camera. We define three important points
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I, T, B which are center points of color parts on the index finger, the thumb and

the part between them, in respectively. Kinect camera captures both color image

and depth image at the same time in data streaming sequences with a sequence

of timestamp. The center points of color markers are detected in the image

color by applying image processing algorithms with color image. Then, their 2D

coordinates together with their depth values obtaining from Kinect’s depth sensor

are projected to world coordinate system to archive their three dimensional (3D)

positions. The series of these image processing steps is shown as in figure 3.6.

The detail of steps are summarized as follows:

Convert RGB Image to 
HSV color model 

Get RGB Image and 
Depth Image

Segment HSV image 
with thresholds

Filter color markers
(red, yellow, blue)

Calculate center point 
of each marker

(xc, yc)

Get depth value of 
each maker in depth 

image (depthC)

Convert (xc, yc, depthc) 
to world frame

(wX, wY, wZ)

Image sensor Depth sensor

3D position of each 
marker

Figure 3.6: Image processing steps for tracking color markers on the glove

1. Getting both color image and depth image from Kinect sensor simultane-

ously. Both images must be same size and be aligned (registration).

2. Converting RGB image to HSV color model.

3. Segmenting HSV image with each appropriate threshold. Removing seg-

mentation noise using morphological operations (erosion and dilation).
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4. Filter sequentially 3 color markers (red, blue, yellow). After this step, color

markers are detected as areas on HSV image.

5. Calculating center coordination (xC , yC) of each detected color marker using

the moments. Getting depth value at each color marker center to have

(xC , yC , depth).

6. Converting (xC , yC , depth) to world coordinate to obtain 3D position (wX,wY,wZ)

of each marker.

The 3D positions of points I, T, B are recorded during the demonstration

corresponding to the recording frequency of Kinect camera. The data is captured

as discrete points. Because these data are in the Kinect’s coordinate system, they

are transformed to Robot’s coordinate system when using as control signals for

the robot. This is easy by applying the coordinate system transformation. In

addition, the tracked data may contain errors or be affected by noise. Therefore,

we applied a moving average calculation to smooth the recorded trajectories of

points.

Figure 3.7 shows the trajectories of 3D position of points B, I, T are tracked

in the demonstration of the action ’pick up’ a cup.

From the 3D position of three points I, T, B, the tracked data of hand motion

is computed including hand position, hand orientation and distance between two

fingers. The hand position is assigned by the 3D position of point B. The hand

orientation is assigned by the orientation of a fixed frame Ohxhyhzh attached to

the hand where the origin Oh is at point B; the axis Ohzh is identical with vector

BM where M is middle of I, T; the axis Ohyh being right-hand perpendicular to

Ohzh and satisfying Ohyhzh is identical with the plane of B, I, T. the axis Ohxh

being upside perpendicular to Ohyhzh. The orientation data of hand is obtained

by the orientation of this fixed frame refer to the robot’s base coordinate system.

The distance between the index finger and the thumb is calculated by distance L

in mm between point I and T.

Figure 3.8 shows the 3D trajectory of point B along with orientation vector

OhZh.

41



3.3 Learning Action from Hand Movement in Human Demonstration

-200

-100

Y [mm]

0

100

200

300

400
450400350300

X [mm]

250200150100500-50

1180

1160

1140

1100

1120

1040

1020

1000

1080

1060

Z
 [m

m
]

Figure 3.7: The 3D position trajectories of points B, I, T are recorded in the

demonstration of the action ’pick up’ a cup
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Figure 3.8: The trajectory of point B and orientation vector OhZh, viewed in

OXY plane

42



3.3 Learning Action from Hand Movement in Human Demonstration

3.3.2.2 Hand Movement Data Description

By using the design and tracking solution as mentioned above, we can obtain

desired tracking data including a set of discrete points captured by Kinect camera.

The tracking data of hand motion for each demonstration of a manipulation action

can be described as follows:

D = {< posi, orienti, disti >} i = 1, 2, ..., n (3.8)

where:

posi = [pxi , pyi , pzi ] is 3D position of hand (point B),

orienti = [xZi
, yZi

, zZi
, α] is the orientation data of fixed hand frame which rep-

resents the hand orientation,

disti is distance L [mm] between index finger and thumb.

pos1 records the starting position of hand and posn records the position when the

demonstration finished.

The table 3.1 shows a part of hand movement data which is recorded in the

demonstration of the action ’pick up a cup’. The recorded data includes hand 3D

position data (Pos x, Pos y, Pos z), hand orientation data (Orient x, Orient y,

Orient z, Orient angle) and fingers distance (Dist L).

Table 3.1: A part of recorded data from demonstration of action ’pick up a cup’

Pos x Pos y Pos z Orient x Orient y Orient z Orient angle Dist L

401 112 242 -0.221 0.944 -0.245 0.255 31

396 135 236 -0.281 0.918 -0.281 0.285 30

387 163 233 -0.305 0.894 -0.328 0.340 34

379 182 233 -0.315 0.878 -0.360 0.369 30

370 208 226 -0.340 0.889 -0.307 0.328 30

358 236 220 -0.365 0.874 -0.321 0.335 28

346 261 217 -0.395 0.865 -0.310 0.322 31

334 285 210 -0.393 0.874 -0.284 0.292 29

326 301 210 -0.393 0.874 -0.284 0.292 29

315 327 207 -0.445 0.835 -0.323 0.355 30
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3.3.3 Segmentation of Movement

In movement learning from human demonstration, it is most common to teach

constituent units of complex movements in isolation, before sequencing them into

complex movements. This is realistic since demonstrations performed by humans

can be decomposed into multiple different movement primitives. Thus, segmen-

tation of observed movements plays an important role in learning movements for

robots. A complex action is commonly segmented into simple movement units

which are called motion primitives.

The human hand movements in manipulation actions are complex for robots.

Depending on the types of different manipulation actions, the hand movements

may contain: translation movement, rotation movement and fingers movement.

Translation movement changes the hand position from a start point to a goal

point. For examples, moving arm to approaching pose, moving arm to grasping

pose, and moving arm away from object location are translation movements.

Rotation movement makes the hand orientation change much around a axis. This

movement occurs in actions such as ’turn a knob’, ’open a bottle cap’, ’open a door

handle’. Fingers movement changes the distance between fingers when grasping

or releasing objects. Recognition of movements is also a challenge for robots.

In this study, we manually label for each simple units of movement (or motion

primitives) which are segmented from a complex movement. Then robots can

recognize what kinds of motion primitives to have appropriate executable plan

for that motion primitives.

The result of movement segmentation is a sequence of motion primitives. The

observed data of movement is segmented into segments of data. We present each

motion primitive by a set M of recorded data which describes the data from start

point to end point of that motion primitives.

M = {< poss, orients, dists >, ..., < pose, oriente, diste >} (3.9)

where < poss, orients, dists > are position, orientation and finger distance of

hand, respectively at the start point, and < pose, oriente, diste > are position,

orientation and finger distance of hand, respectively at the end point in one

motion primitive.
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For most common human hand movements, it is reasonable to assume that

the observed movement generally has three simple units. Firstly, reaching phase,

during which the hand moves from a start position until it comes desired posi-

tion such as a position in contact with the object for grasping that object or a

position for releasing the object being hold in the hand. Secondly, manipulating

phase, during which the hand conducts the movement to manipulate the object

depending on the types of different manipulation actions such as grasping, releas-

ing, turning (a knob), pressing (a button). Finally, withdrawing phase, which the

hand moves away from object location after the manipulation is done.

Approaching phase Grasping phase Withdrawing phase

Velocity 
threshold 𝜀

Figure 3.9: The segmentation technique based on two parameters distance L and

hand velocity MSV

In order to segment a total movement, the detection of segmentation points

is crucial. We proposed a segmentation technique using the velocity of hand

motion and the change of fingers distance as two important parameters to detect

segmentation points in the movement trajectories. First, the velocity of hand
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3.3 Learning Action from Hand Movement in Human Demonstration

Table 3.2: Segmentation Rules based on mean squared velocity (MSV) and fingers

distance (L)

Hand Velocity (MSV). Fingers distance L [mm] Motion Primitives

MSV > ε ∆L ≈ 0, L < L1 Reaching

MSV < ε ∆L > ρ Grasping

MSV > ε ∆L ≈ 0, L > L2 Withdrawing

motion is computed by the mean squared velocity, which is the sum of squared

velocity in 3D space, given by:

MSV (t) = (
dx(t)

dt
)2 + (

dy(t)

dt
)2 + (

dz(t)

dt
)2 (3.10)

where:

dx(t), dy(t), dz(t) are the 3D position differences,

dt is the time difference between two samples.

Mean squared velocity is used to determine stop points in hand motion trajec-

tory. In natural demonstration, the velocity of hand motion decreases significantly

to almost zero at the position of manipulating object such as grasping or releasing

object. Therefore, by using a tiny threshold of velocity, the ’stop points’ can be

detected in a movement trajectory.

Figure 3.9 shows the values of distance L [mm] between two finger (upper

grahp) in the hand velocity MSV (lower graph) in the demonstration of the actio

’pick up’ a cup. There are two segmentation point to separate the movement into 3

parts: reaching phase, grasping phase and withdrawing phase. The segmentation

rule to detect these segmentation points as shown in table 3.2.

3.3.4 Adaptive Learning of Hand Movement with DMPs

Imitating exactly an observed movement is unrealistic in a dynamic environment.

Learning a demonstrated movement can be adapted to a new change like the

change of goal of the movement. In other hand, an action can be performed

by many different ways of movement trajectories. Therefore, one solution is to
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3.3 Learning Action from Hand Movement in Human Demonstration

provide for the robot a generative model which can reproduce the movement to

perform the action learned from observing human demonstration.

Canonical 

System
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weights 𝑤𝑖

Desired 

parameters x0, g

𝑓1 Pos_x
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Pos_y

Pos_z

Orient_x
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Orient_z
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Dist_L
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System 3
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System 4
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System 5
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System 6

Transformation 

System 7

Transformation 

System 8

Transformation 

System 1

Figure 3.10: Sketch of a 8-dimensional DMPs to encode a motion primitive

The observed complex movements can be segmented in multiple simple move-

ment units, each described as a motion primitive. In order to encode each unit

of movement by DMP model, the ability of movement segmentation plays an im-

portant role. However, the complex movements often include not only translation

motion from start point to goal point but also motion of object manipulation such

as grasping or releasing the object. This leads to controlling both the translation

movement of robot end-effector and the opening/closing state of robot gripper.

The multiple degree-of-freedom characteristic of DMPs framework allows to ex-

tend this framework to describe the multi-dimensional data including the 3D
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3.3 Learning Action from Hand Movement in Human Demonstration

position and the orientation of robot end-effector and the open/closing state of

robot gripper.

The movement data of a motion primitive is encoded by multiple dimensional

DMPs. We used a 8-dimensional DMPs to represent a motion primitive which

is segmented from the recorded hand movement. The control signal includes 3D

position of orientation of hand, the distance L between two fingers. Figure 3.10

illustrates the sketch of a 8-dimensional DMPs to represent a motion primitive.

In the section 3.2 we describe the background of DMPs for one dimensional

trajectory. This model is extended for encoding a motion primitive from observed

data of hand movement. We separate each degreee of freedom of the observed data

and employ for each an individual transformation system of DMPs framework.

In particular, the employed variables include the 3D hand position (x, y, z) in

Cartesian coordination system, the hand orientation represented by (Orient x,

Orient y, Orient z, Orient angle) and fingers distance (Dist L) between the index

finger and the thumb as shown in figure 3.10.

The control signals for a robot arm is generated respectively with the adap-

tation to the changes of start or goal point of movement.

A complete movement plan for robot actions will be generated by combining

movement primitives which are represented by a set of learned DMPs. The DMPs

are sequenced to build the whole movement. The successive DMP is started just

after the preceding DMP has finished. This is straightforward since the boundary

conditions of a DMP are zero velocity.

The complex movements of an action for robot can be generated by sequential

composing of movement units represented by DMPs. To solve the problem of

generalization for complex movements, one idea is that the DMP framework

can be applied to build a library of movement primitives. Each of movement

primitives, which was recorded from human demonstration, is represented by

a DMP model, and labeled accordingly. The complex movements of a robot

action will be composed by sequencing movement primitives from this library.

In addition, a library of motion primitives containing learned DMPs for popular

motion primitives which can be reused with the change of parameters such as

start and goal position. With a library of motion primitives, the generation of

complete movement for robot action will be a simple high level command to

choose appropriate primitives, sequence them and set action specific required

48



3.4 Experiments and Results

parameters. The adaption to new situations is satisfied by adjusting the start,

the goal, and the movement duration.

5

3.4 Experiments and Results

3.4.1 Experiment 1. Learning a movement adapted to

new goal
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Figure 3.11: The 3D position data (x, y, z) of recorded demonstration (blue line),

reproduction (dashed green line) and adapted (red line) with the change to new

goal

Firstly, we implemented the procedure for learning hand movement with

DMPs as described in section 3.3. We recorded the hand movement in demon-

stration of the action ’pick up a cup’. After segmenting, the hand movement is

separeated into motion primitives including 3 phases: (1) approaching the cup;

(2) grasping the cup; (3) withdrawing from the cup’s location. The learning

method with DMPs is implemented the motion primitive ’approaching the cup’
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3.4 Experiments and Results

to validate the generated movement trajectory with the adaptation to the change

of goal position when the cup’s location was changed.

Figure 3.11 depicts the 3D position data (x, y, z) of recorded demonstration

(blue line), reproduction of movement without adaptation to new changes (dashed

green line) and adaptive learned movement (red line) with the change to a new

goal by adding an offset (+80, -40, 0) [mm]. These movement trajectories viewed

in 3D space are shown in figure 3.12 which are represented in robot’s coordinate

system.
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Figure 3.12: The 3D trajectories (in robot space) of recorded demonstration (blue

line), reproduction (dashed green line) and adaptive learning (red line)

As can be seen from these figures, the trajectory of reproduction movement

without the adaptive change imitates almost same as the trajectory of demon-

strated movement. While the trajectory generated by adaptive learning has sim-

ilar shape with demonstration trajectory. In addition, the generated movement

is smoother than recorded movement.

Figure 3.13 shows the orientation data of recorded demonstration (blue line)

and reproduction (dashed green line). The orientation with a change of desired

orientation is not shown in this figure. However, the change of orientation is
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3.4 Experiments and Results

learned in the same way for position. The change occurs in some situations, for

example, the change of object pose lead to changing the grasping pose (or hand

pose) of a robot. Similar to position trajectory, the data of orientation reproduced

is much smoother than recorded demonstration.
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Figure 3.13: The orientation data (x, y, z, angle) of recorded demonstration (blue

line), reproduction (dashed green line)

After generating the movement by using DMPs model, the generated move-

ment data is used for control a robot arm and 2-finger hand. The robot used in

this experiment is an 7-DOF (degree of freedom) robot arm Schunk LWA3 (Light

Weight Arm) with a parallel gripper Taiyo ESG1-FS-2840 as shown in figure ??.

In this experiment, we implement the action ’pick up the cup’ in two cases. In

first scenario, the robot perform the action with movement trajectory as demon-

strated (without change of cup’s location). Then, in second scenario, the robot

perform once again the action with movement trajectory adapted to new location

of the cup by adding an offset (+80, -40, 0) to have new location of the cup. Fig-

ure 3.15 shows photos of the robot arm LWA3 performing the action ’pick up the

cup’ with new location of cup. The robot performs the movement ’approaching
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3.4 Experiments and Results

Figure 3.14: Robot arm Schunk LWA3 and parallel gripper used in the experiment

cup’ with the generated movement data by DMPs model and the primitive skill

’grasping the cup’ is manually programmed for this robot hand.

Figure 3.15: Robot arm LWA3 performs the approaching movement to the cup in

new location (left photo) and grasping the cup (right photo) with 2-finger hand

3.4.2 Experiment 2. Executing the Task ’Dispensing Wa-

ter’

In this experiment, we implement a complete task ’dispensing water’ including

the actions: picking up a cup, placing the cup under the spout, pressing a button

on the water thermos pot. In order to perform these action by proposed method,

the DMPs model is applied for sub-movements which follows the demonstrated
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(a) pick up the cup (b) move to the desired location

(c) place the cup (d) press the button

Figure 3.16: Photos from (a)-(d): A human demonstrated the actions in the task

’dispensing water’

movement including approaching the cup, moving the cup to placing pose. For

other movements, robot perform by primitive skills which are programmed for

this robot arm and hand. The primitives skills are listed as below.

Firstly, the demonstration of the task ”dispensing water” by a human is

recorded. Figure 3.16 shows the actions in this demonstration including ’pick

up a cup’, ’place the cup under the spout’ and ’press the button’. The demon-

stration is observed by Kinect camera mounted on the ceiling of working space.

The observed data is transformed into robot’s coordinate system.

Figure 3.17 shows the whole movement trajectory along with the orientation

vector of hand movement of the demonstrated task. The figure 3.18 describes the

movement trajectory is represented using DMPs model and segmented into sub-

actions. The red symbols mark segmentation points where are critical points for

segmenting sub-actions. The movement is segmented into segments of ’pick up

a cup’, ’place the cup under the spout’, ’press the button’, and ’pick up the cup
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(with some water)’. Each action includes motion primitives such as ’approaching’,

’grasping’, ’releasing’,’pressing’.
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Figure 3.17: The 3D trajectory and orientation vector of hand movement acquired

from human demonstration

In this experiment, we implemented the learning method with DMPs model for

sub-movements which are following the movement trajectories in demonstrated

task. For other primitives such as grasping, pressing which strictly depends on

robot hand, we built as primitive skills for this robot. We proposed a collection

of primitives skills which is necessary for perform the actions in the tasks by the

robot. The primitive skills includes:

• FollowingTrajectory: To follow a movement trajectory from demonstration

by using the generative model, DMPs model, the reproduced movement can

adapt to a new desired goal of the trajectory.

• GraspingObject: To grasp an object by a parallel gripper. Assume that an

appropriate grasp for the object is known and selected in advance.

• ReleasingObject: To release the object holding in the gripper.
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• PressingButton: This skill is to move tip-point of gripper touching to a

button with an appropriate force in a known amount of time. Assume that

these parameters are known in advance. A vision ability helps the robot to

recognize the position of contact point, for example, using a marker for the

button.

• MovingToPos: To move the robot’s end-effector to desired 3D position and

orientation. This skill is not to follow demonstrated movement but to con-

trol freely the tip-point of end-effector to desired location when it is nec-

essary to refine a goal position, for example before grasping an object or

pressing a button.

In addition, this collection can be added more primitive skills, depending on

the type of task. For instance, the skill RotatingObject is to rotate an object

around a rotation axis with a desired angle. These primitive skills will be com-

monly used in many everyday tasks.

Ppick1

Ppress

Pplace Ppick2

Figure 3.18: The movement trajectory of demonstrated task is represented using

DMPs model. The red symbols mark segmentation points where are critical

positions for grasping cup (Ppick1 and Ppick2), releasing cup (Pplace) and pressing

button (Ppress).
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Figure 3.19: The trajectory of sub-movement ”approaching object” is generated

by DMPs model adapted to a new goal.

Figure 3.19 shows the movement trajectory of the sub-movement ’approach-

ing the cup’ which follows the recorded movement in the demonstration. The

blue path is original demonstrated trajectory. The dash-green path is movement

trajectory reproduced by DMPs model without change. The red path is move-

ment trajectory generated by DMPs model with the adaptation to the change of

goal by adding an offset (+60, -40, 0) [mm] to the original goal position. This

adaptation is for the change of cup’s location in comparison to the location in

the observed demonstration.

The sub-movements of the actions in the demonstrated task are learned to

generate adapted movements using DMPs framework. Then the task is automat-

ically reassembled from the sequence of primitive skills. The control signals are

generated to control the robot arm LWA3 including 3D position and orientation

of its end-effector and the open/close movement of the gripper’s finger. The con-

trol signal by position and orientation in task space is transformed to joint space

by an inverse kinematic solution for this robot.

Figure 3.20 shows screen shots (from a-f) of the robot arm Schunk LWA3

performing the actions in the task ’dispensing water’. The sub-movements which
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follow the demonstrated movement trajectories such as ’approaching the cup’ (a),

’approaching to placing location’ (c) are generated using DMP model. The other

motion primitives including ’grasping the cup’ (b), ’releasing the cup’ (d), and

’pressing the button’ (e) are built as primitive skills for this robot arm (and robot

hand).

(a) (b)

(c) (d)

(e) (f)

Figure 3.20: Screen shots from (a)-(f): Robot performs the actions in the task

’dispensing water’ from a water thermos pot
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3.4.3 Experiment 3. Performing the Action ’Open a Mi-

crowave Oven’s Door’

In this experiment, we implement the execution of the action ’open a door’

such as a microwave oven’s door by learning from human demonstration. In the

movement which follows the demonstrated movement trajectory like approach-

ing the cup in the task ’dispensing water’, the generated trajectory is without

constrains such as obstacle avoidance, robot’s joints limitation. With these condi-

tions, the movement trajectory also is generated by a simple method, solving the

inverse kinematic solution from start configuration (position and pose of robot

end-effector) to desired configuration without taking into account the shape of

movement trajectory. However, in the movement like ’open a door’, the move-

ment trajectory is required for the robot to move the door along with a certain

trajectory. Therefore, the reproduction of demonstrated movement by DMPs

model is effective in this situation.

Firstly, the hand movement in demonstration of the action ’open a microwave

oven’s door’ is recorded as shown in figure 3.21.

(a) (b)

Figure 3.21: Experiment for recording the hand movement in demonstration of

the action open microwave oven’s door

Figure 3.22 depicts the movement trajectory of points B, I, T in this action

which is transformed to the robot’s coordinate system. From this data, the hand

movement is assigned by the movement trajectory of point B and orientation of

hand frame. Figure 3.23 shows the movement trajectory (point B) along with

orientation vector ~Zh of the action ’open a microwave oven’s door’.
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Figure 3.22: The 3D position of point I, B, T in the demonstration of the action

open microwave oven’s door.

The movement trajectory obtained from demonstration then is learned with

DMPs model to generate the reproduction of movement trajectory. In this ac-

tion, the reproduction trajectory is imitated the same as demonstrated trajectory

without the change of goal position.

Figure 3.24 shows these movement trajectory after reproduction with DMPs

model. These movement data will be used to control the robot arm’s end-effector.

The movement trajectory is transformed to the robot arm’s coordinate system

which has the origin point at the robot base. However the limitation of working

space of the robot arm when mounting on the flat surface such as ground or a desk

surface is different in comparison with the working space of human arm. This

correspondence problem can be avoided if the robot arm mounted horizontally

like human arm.
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Figure 3.23: The movement trajectory (point B) along with orientation vector

OhZh.
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Figure 3.24: The movement trajectory of the action ’open microwave oven’s door’.

The blue path is demonstration, the dashed green path is reproduced by using

DMPs model.
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Chapter 4

Perceiving Object for

Manipulation Actions

4.1 Introduction

Robots manipulating in human environment often be working with uncertainty

due to their limited vision of a changing world. A perception system has the po-

tential to reduce this uncertainty and enable robust autonomous manipulation.

The perception becomes one of the key components of a robotic system that op-

erates in a dynamic, unstructured environment. This work considers the problem

of robot perception in domestic settings where, in order for the robot to be able

to detect and manipulate objects in the environment, the robust perception is

one important challenge demanding to be solved.

Humans use visual feedback extensively to plan and execute actions. However,

panning and execution is not a well-defined one-way stream: how we plan and

execute actions depends on what we already know about the environment we

operate in, what we are about to do, and what we think our actions will result

in.

Everyday manipulation tasks demand object manipulation as grasping, re-

leasing, pushing are very popular. These actions require attention to different

attributes in the environment such as the object’s location, object’s pose and

object’s identification. Many methods of object recognition and pose estimation

were interested in both computer vision and robotics communities. In general,
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there are two main categories of methods for object recognition: 2D-based meth-

ods and 3D-based methods. The 2D-based methods often extract key points from

an image. Then, a descriptor is evaluated for each key point, usually based on

its surrounding pixels, and the descriptors are saved in a database for using in

matching stage. These methods have the limit of the lack of spatial information.

The 3D-based methods can overcome this limits. With the introduction of many

types of 3D sensor devices, the 3D-based techniques for detecting, recognizing

and pose estimation has been studied and applied in many applications.

This work is to investigate the state-of-the-art technique for 3D object recog-

nition and pose estimation for developing a perception system for robot by a

RGB-D camera introduced by Microsoft. We address the problem of a robot

grasping 3D objects with known 3D shape from their projections in 3D point

cloud. A cutting edge technique is using a 3D object descriptor Viewpoint Fea-

ture Histogram which was introduced in [51]. We take the advantage of several

tools provided by the open source library, Point Cloud Library (PCL) [52] to im-

plement the method. The PCL provides tools for retrieving the 3D point cloud

from single view RGB-D image, segmenting objects from background and each

other, computing the 3D feature of object cluster and matching to recognize

object, and estimating the pose of object.

4.2 Background and Related Work

4.2.1 Point Cloud Data from RGB-D Camera

There are various types of vision sensors which can be equipped for robots to ”see”

the environment such as LIDAR, RGB camera, stereo cameras, structured light

cameras, or a combination of these. With the advent of low-cost and open source

SDK (software development kit), such RGB-D cameras as Microsoft Kinect or

ASUS Xtion has become popular. These cameras contain a standard RGB color

sensor and a structured light sensor that is capable of measuring the depth in an

image. By means of an algorithm based on the color data and depth information,

3D image is generated as a set of 3D points known as a point cloud. Figure 4.1

shows an example of point cloud image taken with Microsoft Kinect.
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Figure 4.1: An example of point cloud containing objects from RGB-D camera

4.2.2 Object Descriptors

The algorithm to identify a 3D object uses the 3D feature descriptors of object

by quantifying its geometric properties such as the surface normal directions,

surface curvature, point distribution, etc. There are two main kinds of descrip-

tors, based on how they quantify the geometric properties, local descriptors and

global descriptors. The local descriptors describe the geometry at localized areas

in the point cloud. They are based on extracting key points from the 3D-object

model. Because each local descriptor corresponds to only one individual point,

there are as many local descriptors as extracted key points to effectively describe

an object. This requires much computational cost for local descriptors calcula-

tion. To address this issue, the local descriptors are generally only computed at

considered key points for the specific descriptors used. The local descriptors do

not require complete view to provide a sufficient description for object so that

they can handle occlusion better than the global descriptors.

Unlike the local descriptors, global descriptors do not require key points detec-

tion but use all the points present to describe the overall shape of the point cloud.

Therefore, it requires only one descriptor needs to be calculated to provide a suf-

ficient description. This results in reduced computational cost compared with

local descriptors especially in the matching stage. The description of an object
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with full view is better than the one that object is partially occluded. Although,

the global descriptors do not handle occlusion well, they typically handle noise

better than local descriptors. To compute a global descriptor for an object, the

object cluster has to be isolated from the whole point cloud by a process known

as segmentation of the point cloud. A global descriptor for object recognition and

pose estimation are more suitable for real time applications than local descriptors

because they are faster and more robust against noise.

4.2.3 Viewpoint Feature Histogram

Viewpoint Feature Histogram (VFH) is a global descriptor from the state-of-

the-art to achieve real time 3D object recognition and pose estimation. This

descriptor has advantages of high accuracy in the presence of noise and small

computation time. The VFH descriptor is based on the surflet-pair relation which

encodes the geometric properties of the object’s surface by using the surface

normals [67].

Figure 4.2: Surflet-pair Relation between two points pi and pj

Given, pi and pj are two arbitrary points of an object’s point cloud, ni and nj

are their corresponding surface normals. The surflet-pair relation describes the

Euclidean distance between pi and pj, the angles between each surface normal

and the connecting line of the two points as shown in figure 4.2. There are many

local and global descriptors that use the surflet-pair relation such as the Point

Feature Histogram (PFH) in research by R.B. Rusu and et al [49] and the Fast

Point Feature Histogram (FPFH) [50], and the Ensemble of Shape Functions

(ESF) proposed by Walter Wohlkinger and Markus Vincze in [68].

The VFH descriptor was developed in [51] and initially composed of two com-

ponents, the viewpoint component and the extended Fast Point Feature His-

togram (FPFH) component. To make this descriptor more robust, the third
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Figure 4.3: An example of Viewpoint Feature Histogram

component, Shape Distribution Component (SDC) was added. The first one,

viewpoint component features the direction of surface normals relative to the di-

rection of the camera’s central viewpoint. The angle between estimated normal

at each point cluster and the viewpoint vector is measured and stored in a 128

bin histogram. The second one, extended FPFH component characterizes the

relation of surface normals and the centroid of the point cluster. This component

is calculated by measuring pan, tilt and yaw angles of the normal at each point

in the cluster and stored in three histograms with 45 bins for each one. The

third one, SDC was originally not a part of VFH descriptor but was developed

as an extension of the VFH descriptor taken from Cluster View Point Histogram

(CVFH) descriptor introduced by Aitor Aldoma and Markus Vincze in [2]. The

SDC evaluates the distribution of points around the centroid by measuring their

distance from the centroid. Therefore, this component enables the descriptor

to distinguish objects with a similar size but different point distribution. These

distances are stored in a 45 bin histogram. Combining these three histogram

components together will form the full VFH consisting of 308 bins (128 bins for

the viewpoint component, 45 bins for each extend FPFH pan, tilt and yaw, and

45 bins for the SDC). Figure 4.3 shows an example of VFH descriptor.

However the VFH descriptor includes only geometrical information and does

not take into account color information. Therefore, it cannot distinguish between

two objects which have the same shape but different colors. In addition, the

accuracy of VFH descriptor is closely related to the estimation of the centroid’s
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4.3 Object Recognition and Pose Estimation

position. Therefore, in case the object is partly occluded, the centroid is not

correctly estimated, which may affect the recognition result. To overcome this

problem, a feature descriptor that combines geometry and color information, the

Viewpoint oriented Color-Shape Histogram (VCSH) was introduced in [40].

4.3 Object Recognition and Pose Estimation

This section presents the method using VFH descriptor to recognize an object and

estimate its pose from a RGB-D image recorded by Kinect sensor. The method

includes two phases: training phase and testing phase. The training phase is to

build a database which contain the VFH descriptors of trained objects from many

different views. The flow of this training phase is describe as in figure ??. Then

the testing phase is to recognize the object by matching its most similar models

from the database and estimate its pose. The flow of this method as shown in

figure 4.5

Segmentation 

& Clustering

Feature 

Extraction

RGB-D Image 

(Point cloud)

3D object’s VFH 

descriptors

Figure 4.4: The training phase of method to recognize object and estimate its

pose

In the training phase, because each viewpoint corresponds to an object pose

with respect to the camera, we need to generate as many viewpoints as possible

to be able to recognize object with different poses and provide more accurate pose

estimation. There are several ways to generate a large number of synthetic views

of an object such as manually scan 3D model of object by turning the cameras

view around the object, or turning the object to collect views of objects with

known orientation, or use a software to virtually scan 3D models of the object.
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Figure 4.5: The testing phase method to recognize object and estimate its pose

After achieving the synthetic views of an object, a VFH descriptor for each view

is estimated and stored with the object pose label into a database.

In the testing phase, the input is real color point cloud scene from an RGB-D

image and the target is to identify different objects in the scene and estimate

their poses. To this end, a segmentation of the scene need to be performed to

isolate object clusters from each other and from the scene. Each point cluster will

be a candidate for a detected object. After that, the global descriptor VFH is

computed in feature extraction step for each cluster. Then, it is compared to the

descriptors in the database of the training data. The object and its pose estima-

tion result from finding the best matching by nearest neighbors in the database

with respect to a certain metric. Finally, the pose estimation can be optimized

by using Iterative Closest Point (ICP) algorithm. To implement algorithms in

this method, the Point Cloud Library (PCL), an open-source library that allows

3D point cloud processing was used.

The raw point cloud image from camera contains a huge number of point data.

This leads to a computational load for algorithms such as segmentation, feature

descriptor estimation, matching and pose estimation. To satisfy the requirement

of real time application like robotic grasping, a pre-processing step of raw point

cloud data is useful to reduce the number of data samples. This can be done

by downsampling the point cloud using a Voxel filter. The point cloud is broken

into cube-shaped regions called voxels. This creates a voxel grid as a set of tiny

3D cubes in space. All the points inside a cube are replaced with a single point

that is the average XYZ component of all those points. The voxel resolution is

appropriately chosen depending on the accuracy of the raw point cloud.
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4.3 Object Recognition and Pose Estimation

4.3.1 Segmentation and Clustering

In the training phase, the object models are already clustered, so that each point

cloud each point cloud of object corresponds to a single object captured from

a known viewpoint. However, in the testing phase, the input is a real scene

containing objects that are not separated from the background or from other

objects. Therefore, before recognizing objects, we need to perform segmentation

of objects from the scene and cluster the segmented point clouds to single object

candidate to be recognized in next steps. Firstly, the large planar surfaces that

could be tables, walls, floor, etc will remove from the point cloud. This is done

by Random Sample Consensus (RANSAC) algorithm to find point clusters which

fit to a plane model. Because the objects may also contain a planar surface, only

planes with a number of points greater than a specific threshold are removed.

Once the planar surfaces is eliminated from the scene, the remaining points are

clustered into different clusters. The algorithm Euclidean Cluster Extraction

(ECE) is utilized to locate and isolate the point clusters of objects. This algorithm

is good for simple scenes with low clutter and when the objects are not occluded.

This algorithm is also implemented in Point Cloud Library (PCL).

4.3.2 Feature Extraction

After achieving the point cluster of an object, the feature descriptor VFH is

calculated with its components which are aforementioned. Firstly, the surface

normal at each point of the object cluster is estimated. The technique to estimate

a normal vector of the point cluster is determining an approximate plane which

is tangent to the point by using all the points in a specific radius around that

point. The normal vector at the given point is computed as normal vector of this

plane. Next, each component of VFH is calculated based on the normal at each

point. The viewpoint component is computed by collecting a histogram of the

angles between the viewpoint direction (camera’s viewpoint direction) and each

normal. The second component, extended FPFH is computed by collecting the

relative angles between the surface normals at each point to the surface normal

at the centroid of the object cluster. The computation of these two component

together the third component SDC was already implemented in Point Cloud

Library. From that, we can obtain the VFH descriptor of an object cluster and

use it for matching step to recognize the object.

68



4.4 Implementation and Experimental Results

4.3.3 Matching

Once the VFH descriptor of object candidate has been estimated, we can identify

what the object is by matching its VFH descriptor with the others in the database

of training dataset. The matching step is to search the most similar histogram

in the database which matches to the histogram of object cluster’s feature. The

best possible candidates are determined by the smallest chi squared distance

between the VFH descriptor and the one from the database. The nearest neighbor

algorithm is applied to search for candidates in the database which are stored by

kd-tree of trained dataset.

Ideally, the closest match is the correct view and will be able to provide the

correct pose estimation. However, due to noise and measurement errors, the

nearest match will not always produce a correct pose estimation. To overcome

this issue, the algorithm can search multiple nearest matches in the database and

then verify the result through hypothesis verification.

4.3.4 Pose Estimation

After the matches of object have been found, the pose of an object in the scene

can be estimated. Firstly, an initial 6 DoF pose estimation of a recognized ob-

ject is obtained through a centroid alignment with the Camera Roll Histogram

(CRH) [2]. Then this rough pose is refined by using Iterative Closest Point (ICP)

algorithm. ICP is used to minimize the difference between two point clouds. The

ICP will iteratively align a target point cloud and a source point cloud as closely

as possible. In this case, target point cloud is object in the testing data and

the source point cloud is the recognized object in the training data taken from a

certain viewpoint. After iterating a certain number of times of an error threshold

has been satisfied, the pose of recognized object is estimated with the alignment

by ICP algorithm.

4.4 Implementation and Experimental Results

We implemented the method of object recognition and pose estimation using

functions of the C++ open source Point Cloud Library. Figure 4.6 shows the

pipeline of the method implementation. The experimental setup with a Kinect
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pcl::apps::Dominant
PlaneSegmentation
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pcl::CVFHEstimation
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pcl::CameraRoll
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pcl::IterativeClo
sestPoint

ICP Refinement

pcl::Hypothesis
Verification

Hypothesis 
Verification

Object Recognition

Pose Estimation

Figure 4.6: The pipeline of method implementation using Point Cloud Library

functions

camera and testing objects as shown in figure 4.7. In training stage, we change

the views of Kinect around the object to have different viewpoints of a trained

object. The object cluster is segmented from the background, computed the

VFH descriptors corresponding to each view and stored in the database. In the

testing stage, the Kinect will see a real scene with some objects and objects

are segmented before recognizing. The time consumption of the method will be

measured for algorithms using in each step: segmenting step, matching step and

pose estimation step. From that, we will evaluate the accuracy and performance

of the method to apply for a robotic vision function in real time in our overall

system.

Figure 4.8 shows four objects used for testing in the method. And the figure

4.9 shows the point cloud data of the scene with four objects captured by Kinect

camera.

In the segmentation and clustering step, the clusters which are candidates

of planes are segmented and removed. The clusters of object candidates are

extracted separately. Figure 4.10 shows clusters of four object candidates viewed

in one point cloud data (PCD) viewer.

After obtaining object clusters, the VFH descriptor is computed for each

cluster from the current camera view. Figures 4.11, 4.12, 4.13, 4.14 show in turn
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4.4 Implementation and Experimental Results

Figure 4.7: Setup of experiment with Microsoft Kinect and testing objects

Figure 4.8: Four tested objects: box, can, cup, bottle
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Figure 4.9: Point cloud data of a scene with tested objects captured by Kinect

camera

Figure 4.10: Result after planar segmentation and cluster extraction. Four object

clusters is segmented and show in one viewer
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4.4 Implementation and Experimental Results

the VFH descriptor of object clusters of object candidates for a cookie box, a

cleaning bottle, a cup and a beer can, viewed in a histogram plotter of PCL.

Figure 4.11: The VFH descriptor of the cluster for object candidate - a cookie

box

Figure 4.12: The VFH descriptor of the cluster for object candidate - a cleaning

bottle

In matching step, the VFH descriptor of each object candidate is matched

with the others in the database of training dataset. The most similar histogram

in the database which matches to the histogram of object cluster’s descriptor is

identified by the nearest neighbor searching algorithm. Figure 4.15 shows three

best possible candidates of the tested object, a cup, selected in turn by smallest

chi squared distance between the VFH descriptor and the one in the database.

Finally, the pose of identified object is estimated as described in previous sec-

tion. We measured the computation time of the steps by using functions of Point

Cloud Library. The computation time is shown in table ??. This measurement

shows that the computation time of the method is suitable to apply for perceiving

object in real time for object manipulation actions.
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4.4 Implementation and Experimental Results

Figure 4.13: The VFH descriptor of the cluster for object candidate - a cup

Figure 4.14: The VFH descriptor of the cluster for object candidate - a beer can

Figure 4.15: Three best matching candidates of the tested object - a cup, from

the trained database
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4.4 Implementation and Experimental Results

Table 4.1: The computation time of step in the method of object recognition and

pose estimation

Step Time (ms)

Segmentation 1102

VFH Computation 232

Matching 5

Pose Estimation 981

4.4.1 Applying for the Action ’Pick up a Cup’

The result of recognizing a cup and its pose will be applied for the action ’pick up

a cup’ as in the experiment in chapter 3. From the result of cup’s 6-DOF pose,

the cup’s 3D location (x, y, z) and orientation (yaw, pitch, roll) are computed.

When the robot recognizing the location and orientation of the cup was changed

different from original demonstration, the robot will use DMPs model to generate

the movement adapted with these changes for the movement ’approaching the

cup’. The grasping pose of robot hand is chosen based on the orientation of the

cup. The new goal position of movement is new location of the cup. Figure 4.16

shows a photo of the situation when the robot arm Schunk LWA3 with two-finger

hand approaching to the cup with a new location.

Figure 4.16: The robot arm and hand perform the movement approaching the

cup in the situation after recognizing the location and pose of the cup
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Chapter 5

Discussion

The research in this dissertation has solved several important proposals for exe-

cuting everyday manipulation tasks by a robot. The new findings and contribu-

tions of the research is the method to the robot automatically acquire the actions

and objects the task from instruction manual and the method using Dynamic

Movement Primitives model to regenerate the movements learning from human

demonstration for robot actions. However, there are also some limitations. This

chapter discusses contribution as well as drawbacks of the proposed approaches.

5.1 Acquiring Actions from Instruction Manual

In the first proposal of this dissertation, a task plan including a sequence of actions

was extracted from instruction manuals of home appliances. One advantage point

of this proposal is that the task plan can be obtained from the sequence of action

without understanding the meaning of task. In addition, the order of action in the

task has already known from the instruction sentences. This is easier compared

with some other methods which require understanding the meaning of instruction

by robot or determine the order of action in the task.

However, the instructions collected from instruction manuals may lack of the

action required in the task. For example, the instruction of the task ’dispensing

water’ may contain the actions: place the cup under the spout, press the ’Push’

button and without the action pick up a cup to tell the robot what to do before

having the cup in the robot’s hand. Therefore in some cases, this kind of knowl-

edge from the instruction manual is not enough for fully achieving a task plan.
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5.2 Learning Action from Hand Movement in Human Demonstration

One solution for reasoning the action which is absent in the task instruction is

necessary for this problem.

In addition, in the experimental evaluation part of this proposal, we proved

the effectiveness of the extraction method of action and object but simple by

manually compare the results with the input data in candidate examples of input

data. The accuracy of this method depends on the grammatical complexity of

input instruction sentences which should be evaluated in statistic way with more

input data.

5.2 Learning Action from Hand Movement in

Human Demonstration

Using inverse kinematic is a simply way to generate a movement from start po-

sition to goal position in 3D space for the end-effector of a robot arm. In the

action ’pick up a cup’ (or pick up an object in general), the movement trajectory

of sub-movement ’approaching the cup’ can be simply generated by an inverse

kinematic solution and it may have several different trajectories for this sub-

movement. However, generating movement using Dynamic Movement Primitives

(DMP) has some advantage points. Learning movement using DMP model can

adapt flexibly the generated movement to other contexts, such as different goal

position like approaching the cup when the cup’s location was changed, scal-

ing the duration of movement trajectory, or change of movement trajectory to

differing coordinate system. Using DMP model also allows to generate smooth

movement trajectory, generate not only position trajectory but also velocity or

acceleration of movement which can be scaled in desired duration.

Another ability of learning movement using DMP model is avoiding obstacles

even the obstacle appears suddenly in the movement trajectory. In this disserta-

tion, the problem of generating movement with obstacle avoidance does not take

into account. However, we can improve differential equations of DMP model to

have this ability as the work in [45].

In the action ’open a door’ (like a microwave oven’s door), the generated

movement trajectory demands to follow the movement trajectory which is record

from human demonstration. This is because of the trajectory of door opening.
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5.2 Learning Action from Hand Movement in Human Demonstration

In this situation, the movement trajectory is generated (or reproduced) without

changes. It means that the reproduction movement is almost same as demon-

strated movement. And this can be easily done with DMP model but it does not

with the inverse kinematic method. Inverse kinematic method may generate a

movement trajectory which is not for door opening trajectory. Beside that, using

DMP model still helps to generate movement trajectory of open door with new

goal like a different opening angle of door.

One other discussing point is that the correspondence problem between human

arm and robot arm as well as the limitation of working space in comparison

between them. This problem has not been included in this dissertation. In the

execution of the task ’dispensing water’, this problem does not happen. But in

the action open a microwave door, the limitation of working range of the robot

arm when it is mounted on ground/table surface is much different from the one

of human arm. This also lead to the joints limitation of the robot arm to perform

the movement trajectory and it is difficult select a suitable coordinate system

transformation to discriminate this problem. A robot arm mounted on a vertical

base similar to human arm may help to avoid this difficulty.

In other hand, in this research, we used DMP model for movement trajectory

in 3D space which then is solved into joints space to control joints of robot arm.

However, DMP model can be applied for the movement data in joint space if we

record the demonstration by kinesthetic teaching method (human directly guide

the robot arm the movement and record its joint movement). The problem of

joint limitation will be removed form this demonstration recording step.

The problem of segmentation of movement has not been completely solved

yet in this dissertation. Our proposed method for segmenting movement depends

on some conditions. The segmentation technique assumes that movement of the

actions including three phases: approaching (to reach the object), manipulating

(such as grasping, pressing, releasing, so on) and withdrawing. This may not

apply for all actions. The segmentation technique also based on the parameters

hand movement velocity and finger distance with appropriate thresholds however

these thresholds are simply selected by trial and error method. In addition, the

segmentation of movement also includes two levels. In low level, the movement of

the action is segmented into motion primitives. In high level, the whole movement

of a task is segmented into sub-actions. These concepts are understood as defined
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5.3 Recognizing Object for Manipulation Actions

in chapter 1. One ideas for the problem of segmentation of movement in the task

is determining task-critical events as work in [28].

5.3 Recognizing Object for Manipulation Ac-

tions

In adaptive learning of movement, we can input a new goal of movement and

generated movement will be adapted to this new goal by DMP model. In the

experiment in chapter 3, we assume that a new goal is already recognized by

robot. One example, robot recognize the cup’s location was changed to new

location and the approaching movement is to new location of the cup. Thus, the

work in chapter 4 is to provide the ability of recognizing an object such as a cup

for robot. This is similar if robot hand needs to change to a new orientation

of object. In that case, the object pose also should be recognized by robot’s

vision system. Therefore, a method for recognizing object and estimating its

pose based on object 3D information is implemented in chapter 4. However,

one of the challenge problems of this ability is building a database of common

objects in daily life at home. In this dissertation, we tested with a few object in

the experiment to verify the method and evaluate the computation time of the

method to satisfy in real time for robot action. This function needs to be added

to robot system for a fully testing of the proposals.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research proposed the method for learning and executing everyday tasks

at home from instruction manual and human demonstration. The final purpose

is that the robot can perform a task by automatically acquiring the sequence

of actions in the task from instruction manual and learning how to perform the

action from human demonstration.

The first issue, acquiring actions from instruction manual, is solved by the

proposal of extracting action and object from instructions which contain what

action the robot needs to perform. The solution is using a syntax parser in

natural language processing and the searching algorithm to determine the pairs

of action and object from each instruction sentence.

The second issue, learning action from human demonstration, the robot sys-

tem observed hand movement in human demonstration of the action, then by a

learning method using a generative model - Dynamic Movement Primitives model

- to generate movements for that action with the adaptation to new change such

as the scale of duration of movement or the change of goal position of movement.

We conducted the experiment with the task ’dispensing water’ from a water

thermos pot. The sequence of actions in this task can be achieved from the

instruction manual. The robot observed the demonstration of each action and

then reproduced the movements for the action with using Dynamic Movement

Primitives framework.
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6.2 Future Work

In addition, in order to provide the robot the perception about object for re-

lated manipulation actions in everyday tasks, for example, recognizing pose and

location of object when performing the action ’pick up the object’. we imple-

mented a method for recognizing 3D object and estimating its pose. The method

uses point cloud data from 3D devices such as a Kinect camera and applying the

cutting-edge descriptor - Viewpoint Feature Histogram descriptor.

6.2 Future Work

The actions in a task can be determined well from task instruction. Then these

actions need to be mapped to the execution plan for each one. In this study,

we mapped manually the action to its executable plan. However, a method for

automatically mapping each action to the executable plan will provide the ability

to full-autonomously accomplish the task by the robot. The method for this

issue can be done by understanding the semantic meaning of the actions. For

future work, a possible solution for this problem is to use conceptual knowledge

(e.g. ConceptNet) to provide the robots for understanding the action meaning

based on the relationship between action - action and action - object and/or the

relationship of actions with the condition in the instructions.

The idea of learning action from human demonstration for executing everyday

tasks can be enhanced by observing human activities in daily life and recognizing

the actions in the tasks. These have been being studied in some researches but

they are still challenges nowadays.

In order to generalize the method of learning action from demonstration for

numerous everyday manipulation tasks, a library of basic actions or primitive

skills for the robot can be built independently to the task. The executable plans

of the actions in this library is encoded and labeled with respect to the actions. A

complex task can be accomplished by reassembling the sequence of actions which

are performed by selecting skills available in the library and combining with some

new skills if it is necessary.
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Appendix A

Inverse Kinematic for Robot

Arm LWA3

We deployed a inverse kinematic solver using analytic method. This solver is

based on the kinematic structure of Schunk LWA3 A.2 and an approximation for

inverse kinematic analytic solution is selected as in A.1.

Figure A.1: An approximation of inverse kinematic analytic solution for Schunk

LWA3

As the operation space may at most have 6 dimensions (3D position and 3D
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orientation), LWA3 robot is redundant and some measures need to be assumed.

Usually redundancy is solved by specification of a secondary task for the robot.

Such task can have a goal of avoiding singular configurations and joint limits, op-

timizing joint torques or providing decoupled force/position control of the robot.

In this implementation, the secondary task for inverse kinematic solution is define

by keeping the angle value of the joint 3 at zero and assigning only positive angle

values to the joint 4. With these assumptions, the robot now can be modeled

as 4 links, 3 of which are connected with revolution joints, and the last one (the

end-effector) is attached with a spherical joint A.1. The input for an inverse

kinematics task is the position of the end-effector (point A(xA, yA, zA)) and its

orientation as a unit vector of Z-axis of end-effector’s coordinate frame
−→
Z7. From

these we can easily find the desired coordinates of the point O6:

−−→
OO6 =

−→
OA−

−→
Z7.l4 (A.1)

Next, the point O6 is checked whether it is reachable. If
∣∣∣−−−→O2O6

∣∣∣ > (l2 + l3),

then the point is out of range and no solution exist. In the opposite case, by

applying cosine theorem to the O2O4O6 triangle, we can obtain rotation angles

of the joint 1, joint 2 and joint 4:

θ1 = atan2(yO6 , xO6) (A.2)

θ2 =
π

2
− arccos(

∣∣∣−−−→O2O6

∣∣∣2 + l2
2 − l32

2.l2.
∣∣∣−−−→O2O6

∣∣∣ )− arcsin(
xO6 − l1∣∣∣−−−→O2O6

∣∣∣ ) (A.3)

θ4 = π − arccos(
l2

2 + l3
2 −

∣∣∣−−−→O2O6

∣∣∣2
2.l2.l3

) (A.4)

The θ3 = 0 as because of the assumption, only the angles of joint 5 and joint

6 need to be computed to provide the desired orientation of the end effector.

This task can be mapped to finding Euler angles α, βandγ that would rotate

the coordinate frame O5X5Y5Z5 to the frame O7X7Y7Z7 where X7 and Y7 are

arbitrary directed. The solution of this task is well known and we obtain:

θ5 = atan2(yZ5
7
, xZ5

7
) (A.5)
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θ6 = acos(zZ5
7
) (A.6)

where Z5
7 is the vector

−→
Z7 observed from the coordinate frame O5X5Y5Z5.

After the desired angle values have been found, they should be validated

against possible joint limits. If the test has been successfully passed, the calcu-

lated joint values are returned as output of inverse kinematics solver.

Figure A.2: The kinematic structure of the 7-DOF robot arm Schunk LWA3
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