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Abstract

Together with the high penetration of renewable energy into the utility, Solid-

State-Transformers (SSTs) have gained more and more attraction in recent years.

The exponential demand of electric energy also contributes to the promotion of

SSTs in such applications to interconnect grids within a nation or inter-nations

to form super-grids. It has also been applied for automotive applications as a

substitution for the hybrid energy storage system. As a transformer, SST is an

isolation device which can transform the voltage from one level to other levels.

Furthermore, SSTs have a lot of distinguished advantages which are not available

in the conventional passive transformer such as: improving voltage regulation,

load/short-circuit protection, power quality improvement, etc. Especially, the

communication capability makes SSTs intelligent devices enabling the concept of

the Energy Internet.

However, there are two major issues that restrict the popularity of SSTs: price

and efficiency. As for the first issue, it can be solved gradually by mass production

and/or by applying cutting edge innovations in the material technology. Nowa-

days, although SSTs are still costly, their price will be more competitive in the

near future.

Let us see from another aspect. Instead of making SSTs cheaper, they can be made

worthier with the high price by equipping with advanced functionalities. Func-

tions such as voltage regulation, protection, power management, power quality

enhancement, etc. can be accomplished by a correspondent control system.

The efficiency of a SST is not as high as a passive transformer in the same cir-

cumstance because it contains a lot of switching devices. Those devices consume

power when operating that restricting the overall system performance. However,

this issue can also be resolved by improving the modulation strategy. The power

dissipation in a SST can be identified and modelized. With an appropriate algo-

rithm, the loss can be significantly reduced. The stress on switching devices is

suppressed allowing the usage of lower-rating devices in heavy-duty applications.

Besides, the noise caused by the commutation operation is weaken and presents



less effects on other electronic equipments. As a consequence, the whole system

will become more reliable.

Motivated by the aforementioned reasons, this dissertation is reserved to deal with

modulation and dynamic control of SSTs:

Firstly, a new strategy is proposed to modulate Dual-Active-Bridge (DAB) con-

verters, the core technology of all SST types. The DAB converter is analyzed in

the time domain. After that, a closed-form modulation function is derived. The

function is then modified to operate when the frequency is restricted. The tar-

get is not only to achieve soft-switching in the wide operation range, but also to

minimize reactive power in the system.

Secondly, a new observer-based dynamic control system is proposed to improve the

voltage regulation as well as the power management capabilities of the converter.

The converter is modelized in the frequency domain with high accuracy. Thanks

to the decoupled control system, the active and reactive powers can be separated

from each other and are individually manageable. Furthermore, by controlling the

quadrature component of transferred current to adhere an appropriate reference,

reactive power can be handled intentionally. The soft-switching area is expanded

to the whole power range. Experiment results confirm that dynamic performance

of the converter is much improved.

Finally, all of the above approaches are applied for a Triple-Active-Bridge con-

verter, which is another configuration of SSTs derived from the Dual-Active-Bridge

topology, intentionally used for electric vehicle applications. The frequency do-

main analysis is carried out once again. Each operation modes of the converter

will be considered to develop its corresponding soft-switching modulation strategy.

The control system is then constructed for only one mode, but the same designed

procedures can be applied for other modes.
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Chapter 1

Introduction

1.1 Background

1.1.1 Issues of conventional passive transformer

Since invented by William Stanley in 1885, transformer has become one of the

essential components in many applications such as power transmission and dis-

tribution system, power supply, welding, voltage/current sensor, etc. In the AC

power system, transformers are everywhere to downscale the kV-level voltage to

few hundred volts for house equipments, or to boost the voltage from generators

to join the national utility, or just to perform a galvanic isolation between sides

of the transformer. In such systems, the transformers work at 50 Hz or 60 Hz

frequency. Because of operating at low frequency, transformers usually have low

power-per-volume and low power-per-weight ratios (i.e. low power density).

A transformer can have two or more windings, however, frequency at all windings

must be the same. Transformers used for transmission and distribution usually

have a fixed conversion ratio. That means, the voltage and current at one side are

proportional to the voltage and current at other side with a predictable correla-

tion. Transformer is one of the most robust, long-lasting, reliable and inexpensive

electrical device. Its efficiency is usually more than 95%. At the high power level,

it can be up to 99.5% [1].
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However, as the evolution of technology occurs, many applications need more com-

plicated and intelligent functions which cannot be fulfilled by using a transformer

standalone. Let us take some examples. In order to asynchronously interconnect

between two utilities having different frequencies (such as 50 Hz in the east and

60 Hz in the west sides of Japan), transformers cannot be used directly. Or in the

hybrid renewable energy system, the output of the Photo-Voltaic (PV) array as

well as the battery is DC; this DC power cannot be injected directly to the utility

simply just by using a transformer.

Let us take another example. In a factory, there are many electrical equipments.

When they are switched on or off, voltage sags/swells might occur and pass through

the transformer to the lines affecting the balance of the grid. Many nonlinear

equipments (e.g. rectifiers, switched-mode power supplies, etc.) generate harmon-

ics. Those harmonics, in turns, influence the utility via the transformer causing

the current distortion, reducing the power factor and thus, downgrading the power

quality. The transformer existing here just duplicates the phase and frequency.

The active and reactive powers are entirely transmitted from one side to other

sides with no changes. That also means the transformer cannot help improve the

power quality.

1.1.2 Solid-State-Transformer

The first prototyped of Solid-State-Transformers (SSTs) was announced in 1970 by

McMurray et. al. [2]. However, it did not gained a lot of attraction from scientists

until recently. The high penetration of renewable energy as well as the demand

to interconnect between distinguished grids has promoted the evolution of SSTs.

Numerous of outstanding advantages of SSTs [3–6] make them the perfect substi-

tutions for the passive transformers in the conventional applications. Furthermore,

in the circumstances where the passive transformers perform inefficiently such as

the aforementioned applications, SSTs can take the place.

As a transformer, a SST can interface between two or more isolated sources/sinks

bidirectionally. That means each side of a SST can be a source or a sink. For
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1.1 Background

this reason, from now on, a side of a SST will be so-called a port and a SST

can be also called a multi-port converter (however, a multi-port converter is not

necessarily a SST since it can be non-isolated). One SST has at least two ports

(or dual-ports). There are unlimited number of ports that a SST can have. The

maximum number of ports recorded in the literature was four [7]. However, as

the number of ports increases, the difficulty in management and control of power

flows between ports becomes exponentially complicated. Therefore, in practice,

the most popular configurations are dual-port [8] and triple-port [9] SSTs.

There are various topologies of SSTs to interact an AC (or DC) port with one

or more AC (or DC) ports [10]. AC/AC typed SST is the key technology in the

asynchronous interconnection application as it can perform the power transmission

regardless of the frequency distinction at ports [11]. A DC/AC SST can connect

a PV array directly to the AC utility with the maximum power point tracking

function installed. It can also be employed to transfer the power bidirectionally

between the utility and the battery storage bank in the hybrid energy storage

system [12]. In the DC micro grid, DC/DC SSTs play an essential role as they

can help reduce the number of converter counts compared to the conventional

architecture [13] or they can be used as individual devices to form the grid [14].

SSTs usually operate at high switching frequency ranging from several kHz [15] to

1 MHz [16]. Hence, in terms of size and weight, they are much smaller and lighter

than the conventional Low Frequency Transformers (LFTs). This allows SSTs to

be very promising choices for applications such as electric vehicles [17–19], where

size and weight are high priority. Moreover, SSTs have many advanced features

that are not available in case of LFTs, such as harmonics compensation, voltage

regulation, overload/short-circuit protection, etc. [5]. Besides, since each SST

is controlled by an embedded system, it can talk to each others by using some

communication protocols. Several individual SSTs can form a network, in which

each SST plays as an energy router [20, 21]. This makes SSTs more intelligent

than the conventional LFTs and enables the concept of the Energy Internet [22].
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Figure 1.1. Inter-grid concept basing on SSTs for interconnecting AC and DC
sub-grids by Boroyevich et. al. [24] .

Because of the high potential of SSTs, some smart grid concepts basing on them

have been proposed and developed [21–24]. Fig. 1.1 demonstrates a such concept

introduced by Boroyevich et. al. In this hierarchical structure, SSTs are located

everywhere to interconnect between grids and grids, renewable resources and grids,

electric vehicles and grids, or between grids and consumer electronic loads. Each

of them are equipped with the communication function enabling the possibility

for a high-level energy management system (EMS) to control the inter-grid either

partially or entirely from remote areas. Recently, the reputation of SSTs has been

expanded to locomotive [25], oil and gas processing [26], aircraft [27] applications,

etc. In those instances, the SST may be called a intelligent universal transformer

[23], a power electronic transformer [25], or a DC transformer [28], etc. Whatever

it is named, the bright prospect of SSTs is confirmed more assuredly.
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1.1.3 Issues of SST

There are two major issues that dominate the popularity of SSTs. The first one is

their price. They are too costly compared to LFTs. It is true because numerous of

power electronic devices must be utilized to build up a SST, the production tech-

nology is also more difficult, the operation and maintenance require higher-level

engineer to accomplish, etc. In spite of the high price, the benefits that a SST can

bring make it valuable and worthy. Besides, innovations in the material technol-

ogy will make the price of power electronic devices cheaper while the performance

is better each day. Therefore, in the near future, the price of SSTs will be more

competitive allowing them to become the better substitutions for LFTs.

The second issue that affects the proliferation of SSTs is their efficiency. Fig. 1.2

illustrates the efficiency comparison between SST and LFT according to Kolar et.

al. [5]. Aiming to transfer power between electric sources/sinks having different

properties, SSTs might have multiple conversion stages. Due to this reason, the

efficiency of a SST is not as high as a LFT when doing the same mission: AC to

AC conversion. In the such situation, the maximum efficiency of SSTs recorded

in the literature is 98.7%, less than 99.5% of LFTs. It is comprehensible because

power electronic devices in SSTs dissipate power when operating that restrict the

conversion effectiveness of SST.

Figure 1.2. Efficiency comparison between LFTs and SSTs [5] .

Nonetheless, in other circumstances such as DC to AC or AC to DC transforma-

tions, SST is the superior. For example, the MVAC to LVDC conversion described
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in Fig. 1.2 can be accomplished by using a LFT followed by a rectifier. Since lo-

cated at the low voltage side, the rectifier has to carry high currents causing the

system more lossier and bulkier. As for the SST, its rectifier is located at the

MVAC side to establish the MVDC bus. After that, a high frequency DC/DC

converter is taken place to generate the LVDC bus at the output side. Although

the conversion involves more stages, the efficiency of the SST configuration will

be higher and the size can be reduced.

1.1.4 Dual-Active-Bridge converter

Among various topologies of SSTs [5], the three-stage type illustrated in Fig. 1.3

is the most flexible. A three-stage SST consists of three main parts: an active

rectifier, a grid-tide inverter to synchronize with the utility, and a Dual-Active-

Bridge (DAB) DC/DC converter. Among those, the DAB converter is the key

component which:

- generates the galvanic isolation between two sides, and

- allows power transmission in bidirectional ways.

DC

AC

AC

DC

DC

AC

AC

DC

Active 

Rectifier
Dual-Active-Bridge DC/DC Converter

Grid-tied 

Inverter

AC AC

MVDC LVDC

Figure 1.3. Three-stage SST topology.

The DAB converter, which is sometime called DC transformer [29] or power elec-

tronic transformer [30], etc., itself is also one SST topology. It was first introduced

by De Doncker [31] in 1991. Since then, it has been applied popularly not only

in large scale systems [32] but also in small scale one, such as electric vehicles[33],

aerospace[34], etc. Compares to other DC/DC converter topologies, DAB-type

converters have many advantages:

6



1.1 Background

𝐿𝑠

𝑉1 𝑉2

Inverter 1

𝑖𝑝𝑟𝑖 𝑡

𝜓

S1 S3

S4 S2

T1 T3

T4 T2

𝑛: 1

Inverter 2

𝑣𝑖𝑛𝑣1 𝑡 𝑣𝑖𝑛𝑣2 𝑡

𝑖𝑠𝑒𝑐 𝑡

Figure 1.4. DAB converter topology.

- isolated and bidirectional power transmission;

- high voltage ratio can be achieved if a high frequency transformer is used;

- space is saved because the leakage inductance of the transformer can be

utilized as the power transmission container;

- inherent soft-switching capability.

DAB converter topology is depicted in Fig. 1.4. There are two H-bridge inverter

which link to each other by a two winding transformer. The inductor used for

transferring power between two sides is usually integrated inside the transformer

as its leakage inductance to save space. For that reason, shell structure, distributed

winding technique is employed to make the transformer.

The power flow within the DAB converter is usually manipulated by varying the

phase shift between the voltage across the primary and secondary windings of the

transformer. The most popular technique is single-phase-shift (SPS) modulation

scheme [8, 31, 35–37]. In which, all transistors switch with the duty cycle of 50%.

In each inverter, one leg is shifted 180 degrees from each other. Another phase

shift angle between two inverters is utilized to handle the power flow. Since the
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realization is very simple, the SPS scheme is widely used for DAB converter family.

Nevertheless, there are some challenges when operating the converter:

1. When transferring high power, although soft-switching is achieved, the cir-

culating current within inverters is high, especially when the voltage at two

terminals are not matched. As a consequence, the reactive power and the

conduction loss increase, thus, downgrading the performance of the system.

2. When the voltage of the sender is greater than the receiver, even the phase

shift is zero, there still exist unexpected power flowing between two ports.

That means the controllable power range is narrower when the voltage ratio

is greater than unity.

3. Although the converter has the inherent soft-switching capability, it might

be lost at small power range.

4. As the voltage pre-regulator for the grid-tied inverter, the DAB converter

should maintain a stable bus voltage. At the same time, it should also

eliminate the 300 Hz (or 360 Hz) voltage fluctuation reflected from the AC

side.

1.2 Literature review

1.2.1 In term of modulation techniques

Several phase-shift-based techniques have been developed in order to reduce the

circulating current and/or to extend the soft-switching region. By adding one or

two more degrees of freedom into the modulation, enhanced-phase-shift (EPS),

dual-phase-shift (DPS), or triple-phase-shift (TPS) schemes can be formed. The

EPS [38–40] scheme uses one more so-called inner phase shift modulation to han-

dle the duty cycle of the voltage across one side of the transformer. Thanks to

the inner phase shift, the voltage ratio is controllable. However, this also requires

some additional switching states that add more complexity into the analysis and
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controller design. The DPS method [41–45] introduces the inner phase shift mod-

ulation to both inverters. The voltage ratio is kept constant but the root-mean-

square (RMS) voltages are changeable. In TPS strategy [33, 46–51], the inner

phase shift angles of the two inverters are different, so that both the voltage ratio

and the RMS voltages can be modified. However, since only phase shift modula-

tion is employed in those studies, it is difficult to achieve soft-switching under the

light load condition.

The variable frequency modulation (VFM) scheme has been applied popularly in

the conventional unidirectional DC/DC resonant converters [52]. Unlike the phase-

shift-based modulation methods, VFM can extend the soft-switching region to the

light load condition by increasing the switching frequency. Furthermore, frequency

variation is also an alternative degree of freedom to help manage the power flow

in the converter. For such reasons, VFM has also been applied to DAB converter

applications. For example, the target of modulation technique presented in [53]

is to turn off the transistors at a specific current of Izvs by varying the switching

frequency. At the same time, the terminal current is controlled by phase shift

modulation. However, the selection method for the transition current Izvs was

not discussed in the dissertation. Besides, there were no results to validate if the

experimental Izvs matches the desired one.

In [54], a modulation strategy combining VFM with TPS was introduced. By

shaping the transferred current to the triangular waveform, the RMS value of the

current is reduced. This technique, however, is only utilized in the light load range

since it does not perform as well as the conventional SPS scheme does at the heavy

load condition. The strategy introduced in [55] varies the switching frequency

basing on the power level condition. When the power is under a certain level, both

VFM and EPS are applied to ensure ZVS. This scheme is also employed in the

medium and light load conditions. Note that, due to: i) the switching capability

of transistor; ii) the need to protect the magnetic devices from saturation; the

frequency variable range must be limited. As a consequence, this limitation will

affect the coverable power range of the converter. Nevertheless, this problem was

not discussed in the aforementioned publications.
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Besides, in spite of increasing the degree of freedom of the modulation by adding

more control variable(s), most of the methods mentioned above are based on unify

function. Thereby, only one or two variables are manipulated, the rest is derived

by the function. Nevertheless, how to choose the dominant variable was not dis-

cussed in the above studies, especially when the manipulated variable is saturated.

Furthermore, the modeling method as well as the operation of the proposed mod-

ulation strategy in the transient state was not addressed carefully.

1.2.2 In term of dynamic control

Referring to other publications, discussions on dynamic control for Dual-Active-

Bridge (DAB) converter can be found in the literatures. For example, single loop

voltage mode for such converter was reported in [44, 56, 57]. In [58], another

configuration utilizing feed-forward load current combined with a voltage loop

was represented. Two loops current mode topology was introduced in [33, 59].

In term of dynamic control for multi-phase DAB converter, a control strategy in

stationary αβ-frame was presented in [60, 61]. In the aforementioned publications,

only active power is regulated, none of them manages the circulating (reactive)

power within the inverters. Moreover, all of them used terminal current as the

feed-back signal. Since the current is DC, a high price transducer (such as the

Hall-sensor used in the last chapter) should be employed to sense such quantity.

Analysis and control in the frequency domain with the fundamental harmonic

approximation (FHA) method for DAB converter are presented in some recent

publications [51, 62]. In which, the inverter voltages and the transferred current

are approximated by their fundamental harmonics with high accuracy. Compared

to the time-domain analysis, FHA method has some distinguished advantages: 1)

active and reactive components of the power flow can be specified; 2) the equations

described voltages and currents are independent of operation state of the converter.

Based on the FHA analysis, the control method introduced in [62] can maximize

the power factor of the converter and enhanced the efficiency about 1% compared

to the conventional SPS method. The objective of the strategy addressed in [51]
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is to minimize the root-mean-square (rms) current. However, lower rms current or

higher power factor may not ensure the better efficiency. Besides, although block

diagrams for close loop control in both papers are quite simple which need only the

information of voltage ratio, no results about dynamic response were discussed.

Upon the topic of controlling the DAB converter in frequency domain, in [63],

a control system based on dq-rotation coordinator was addressed. In which, a

dq-transformation was employed to detach two current components. Actually,

that technique is very common for driving low frequency inverter. In which, the

instantaneous current will be sampled then transformed by using the Park trans-

formation. However, for high frequency converter, it is very challenge due to the

limitation of the sampling speed. Furthermore, this method is only applicable for

three phase system.

As for single phase system, the transformation technique cannot be used. Instead,

a single phase Phase-Lock-Loop based on the second-order-generalized integrator

[64] can be employed. The Adaptive-Notch-Filter [P.3] is another considerable

choice as it can also generates the orthogonal signal from the measured signal.

Nonetheless, in order to ensure the accuracy of the transformation, the sampling

frequency is usually greater than the fundamental frequency at least twenty times.

Therefore, when the fundamental frequency is in the range of few tens kHz to few

hundreds kHz, such techniques cannot be used due to the low resolution of the

sampled signal.

1.3 Objectives

Motivated by the challenges of modulation and control Solid-State-Transformer,

specifically DAB converter, as well as by the limitation of the published researches,

the main objectives of the dissertation are as follows:

• Improving the overall efficiency by achieving ZVS and reducing the

circulating current.
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• Extending both the ZVS area and the power range of DAB converters

• Developing a control system to implement the proposed modulation

technique in the transient state.

• The control system should have a good voltage regulation as well as noise

free characteristics.

• Operation of the whole system should be verified in several critical modes

such as overload or short-circuit.

• Simplicity. The proposed control algorithms should be simple and feasible

to be implemented in the popular digital signal processor platforms and in

the real time with low cost.

With the above objectives, the performance of the DAB converter is expected to

be improved making the performance of the whole SST system more effective.

1.4 Contributions

The contributions of the dissertation are as follows:

1 A new modulation strategy combining frequency and phase shift variation

is proposed:

– to reduce the circulating current (or the reactive power) of DAB con-

verters;

– ZVS area can be expanded;

– The reachable power range can be enlarged by 13% when the voltage

ratio is 1.5;

– Overall efficiency can be boosted the overall efficiency by up to 7%

compared to the conventional single phase shift method.

2 A control system is proposed to realize the new modulation method:
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– It can suppress the low frequency voltage fluctuation reflected from AC

side;

– It plays as a constant voltage source in the normal operation and as a

constant current source when overloading;

– It can regulate the voltage within -16.4% to +11% voltage fluctuation

when load is quadrupled;

– The dynamic is fast as the rise time of the voltage is about 22 ms;

– It can detect the short-circuit fault in 1.2 ms and protect the converter

by forcing shutdown.

3 An observer-based control system is proposed:

– to estimate the system state in all operation condition, including trape-

zoidal and triangle current modes;

– The dynamic performance of the system is improved;

– High current overshoot is avoided;

– Voltage overshoot when starting-up under low power condition is re-

duced;

– Voltage regulation is -14% to +15% as load is quadrupled;

– The constant voltage/current source function is preserved;

– Low frequency harmonics rejection capability is also preserved;

– ZVS capability is preserved;

– The detecting time when short-circuit fault occurs is 2.4 times faster as

it is only 500 µs;

4 All proposed control systems are feasible and executable:

– They are all implemented on a very popular digital signal processor

platform, TMS320F28335;

– As for the observer-based control system, low cost toroidal current sen-

sor can be employed instead of the expensive Hall transducer;
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– All signals necessary for the control system are DC, therefore high sam-

pling frequency is not required.

1.5 Works summary

This dissertation is composed of seven chapters:

Chapter 1 provides the general background of SSTs. By reviewing previous works

in the relevant areas, the challenges in term of electrical engineering are addressed.

Motivated by those challenges, objectives of this dissertation are presented.

Chapter 2 reports the frequency combined phase shift modulation method in detail.

The DAB converter is analyzed in the time domain. After that, a closed-form

modulation function is derived. The function is then modified to operate when the

frequency is restricted. The experiment validation is conducted in the comparison

with another method also based on frequency variation.

Chapter 3 presents the design process of the closed-loop control system to realize

the proposed MFPS scheme. The system is then validated in various operation

condition, including failure mode.

Chapter 4 describes the analysis of the converter in the frequency domain. Based

on that, an observer is developed to estimate system states. Experiment results

show that at the vicinity of the linearization point, the observation performance

is good. Away from that point, the accuracy of the observer is still acceptable.

Chapter 5 is reserved for designing the observer-based control system. In this

chapter, three controllers: two for adjusting direct and quadrature current compo-

nents and one for regulating terminal 2 voltage. As confirmed by experiment, the

dynamic performance is enhanced compared to that of the control system designed

in Chapter 3.

In Chapter 6, the approach used in the Chapter 4 is applied to analyze a TAB

converter intentionally used for electric vehicle applications. Each operation modes
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of the converter will be investigated to develop its corresponding ZVS modulation

strategy. Although the evaluation is then undertaken for only one mode, the same

designed procedures can be applied for other modes.

The dissertation ends with conclusions and future works in the Chapter 7.
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Chapter 2

Frequency Variation Combined

Phase Shift Modulation

In this chapter, a new modulation strategy for single phase isolated-dual-active-

bridge converters is proposed. The analysis starts with deriving the equations for

transition currents and the load angle in Section 2 using the well-known approach

reported in [31]. After investigating the impact of the dead-time on the transition

behavior of transistors, the new ZVS constraint is derived. Based on that, a new

modulation method is proposed in Section 3.

The idea is to vary the switching frequency to regulate the load angle to adhere

a reference trajectory which is the boundary of the ZVS area. A closed-form

modulation function is developed to determine that trajectory. The switching

frequency is selected as the dominant control variable, and the phase shift angle

is calculated by using the modulation function.

In order to eliminate the impact of the frequency limiter, a modification function

is established. Thanks to the function, the proposed modulation can help cover

all the power range regardless of how big of the voltage ratio or the frequency

limitation. Experiment results show that, by applying the proposed modulation

algorithm, the overall efficiency is enhanced up to 7% compared to that when

applying the conventional SPS scheme.
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2.1 Steady state analysis

2.1.1 Derivation of mathematic equations

The DAB converter is depicted in Fig. 2.1. The voltage at the two ports are V1

and V2, respectively. Because of the same role of the two ports, let V1 be the power

transmitter, and V2 be the receiver. The transformer ratio is n : 1. The inductor

Ls is utilized as the power deliverer. There are two full-bridge inverters located at

the two sides of the transformer. All transistors are switched at the frequency of

fs. Power flow within the converter is manipulated by a bridge shift angle of ψ.

Fig. 2.2 demonstrates one switching cycle of the converter at the steady state under

ZVS condition, where ωs = 2πfs; vinv1(t), vinv2(t) and ipri(t) are the voltages across

two sides of the transformer and the transferred current measured at the primary

winding, respectively. Let I0, Iψ, Iπ, and Iπ+ψ be the currents at transition. At

the steady state, obviously Iπ = −I0 and Iπ+ψ = −Iψ.

For simpler analysis, the primary referred diagram illustrated in Fig. 2.3 is utilized.

The voltage drop on anti-parallel diodes are assumed to be very small compared

to terminal voltages that can be neglected. The resistance of the transmission

network is also ignored. Since the switching frequency is usually much faster
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Figure 2.1. DAB converter topology.
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than the dynamic of capacitors located at the two DC sides, the assumption of

constant DC voltage in one switching cycle is made. By applying the analysis

method introduced in [31], transition currents I0 and Iψ of the inverter 1 and 2,

respectively, can be calculated by (2.1):
I0 = −nV2

XL

[
ψ − (1−M)

π

2

]
Iψ =

nV2
XL

[
Mψ + (1−M)

π

2

] (2.1)

where M is the voltage ratio, M =
V1
nV2

and XL is the reactance of the transmission

network, XL = 2πfsLs.

Ignoring the resistance of the windings and assuming that the current changes

linearly, the load angle φ, which is the phase delay between ipri(t) and vinv1(t),

can be derived from (2.1) as:

φ =
1

1 +M
× ψ − 1−M

1 +M
× π

2
(2.2)
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2.1 Steady state analysis

Substituting (2.2) into (2.1), the transition currents are rewritten as:
I0 = −nV2

XL

(1 +M)φ

Iψ =
nV2
XL

(1 +M)
[
Mφ+ (1−M)

π

2

] (2.3)

According to [31], ZVS is achieved if (2.4) is fulfilled. I0 ≤ 0

Iψ ≥ 0
(2.4)

In term of the load angle, ZVS condition is expressed by (2.5):

φ ≥ max

{
0,

(
1− 1

M

)
π

2

}
(2.5)

The ZVS constraint (2.5) is derived with the assumption that all MOSFETs transit

immediately with no time delay. However, due to the output capacitance Cds of the

MOSFET, the drain-source voltage vds needs some time to drop to zero. Therefore,

a dead-time (Td) is necessary, not only for avoiding shoot-through between switches

in one arm, but also for charging/discharging the Cds of the MOSFETs and for

achieving ZVS. Discussions on choosing an appropriate dead-time as well as the

effect of the dead-time on the converter operation can be found in the literatures

[53, 65–68]. In this chapter, the same and fixed amount of dead-time Td is added to

the rising edge of the modulation of all transistors. The next subsection discusses

the effect of the dead-time interval on the ZVS condition.

2.1.2 Effect of the dead-time

During the dead-time interval, the output capacitor Cds of MOSFETs are charged

(or discharged) by half of the current at the transition causing the drain-source

voltage vds(t) of the corresponding MOSFET to increase (or decrease). If vds(t) of

the next transistor is zero at turn-on, the transition is ZVS; otherwise it is partial

ZVS or hard-switching. Due to the charge/discharge time of Cds, both vinv1(t)
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Chapter 2. Frequency variation combined phase shift modulation

and vinv2(t) are drifted from the theoretical positions (phase drift phenomenon

[37, 53, 68]). The drifted phase, which is denoted as θdrift in Fig. 2.4, is equal to

a half of the phase required for turning-off the transistor. The drift phase θdrift

is not constant but depends on terminal voltages, and on the magnitude of the

transferred power. Because vinv1(t) is drifted, it is difficult to accurately determine

φ, which has been defined as the phase difference between vinv1(t) and ipri(t), in the

design and analysis stages. Therefore, from now on, the load angle φ is redefined

by the phase measured from the point where the transistor starts turning-off to

the zero crossing point of the transferred current. This definition also guarantees

the validity of the calculation of φ by (2.2).

As for the turn-on action of the switch S1 of the transmitting inverter, there are

two scenarios of switching behavior regarding the relationship between the dead-

phase θd (θd = ωsTd) and the load angle φ as shown in the simulation waveforms

in Fig. 2.4.

− φ < θd: when S4 turns off, Cds(S1) is discharged by half of ipri(t); vds(S1)(t)

drops gradually. If φ < θd, ipri(t) changes its polarity during the dead-time.

The capacitor Cds(S1) is recharged causing vds(S1)(t) to increase again. This

re-commutation phenomenon leads to current spikes in ids(S1)(t) as indicated

in Fig. 2.4(a).

− φ ≥ θd: when Cds(S1) is completely discharged, ipri(t) starts flowing through

D1 causing vds(S1)(t) to drop to zero. Since φ ≥ θd, ipri(t) is negative

when S1 turns on, therefore the transition is completely ZVS as depicted

in Fig. 2.4(b). Therefore, the condition for the transistors of inverter 1 to

achieve ZVS is:

φ ≥ θd (2.6)

Substituting (2.6) into (2.3), we have:

|I0| ≥ Izvs,min =
nV2
XL

(1 +M)θd =
V1 + nV2

Ls
× Td (2.7)
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Figure 2.4. Simulation waveform of two switching scenarios of S1 of inverter 1;
V1 = 400 V, V2 = 500 V (M = 0.8), Ls = 100 µH, and fs = 50 kHz.

where Izvs,min is the minimum transition current to completely charge/discharge

the body capacitor during the dead-time interval Td.

As for the secondary side, the transistors of inverter 2 turn on with the transi-

tion current of Iψ,sec = nM × Iψ as demonstrated in the simulation waveforms in

Fig. 2.5. When Iψ,sec < Izvs,min, the discharge process of the output capacitors

takes longer time than Td causing partial ZVS and current spikes on the transis-

tors. This situation is depicted in Fig. 2.5(a). Fig. 2.5(b) describes the switching

waveform of T1 when Iψ,sec ≥ Izvs,min. In that case, since Iψ is big enough, Cds(T1)

is completely discharged, and vds(T1)(t) is zero at turn-on. Therefore, the condition
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Chapter 2. Frequency variation combined phase shift modulation

for the transistors of inverter 2 to achieve full ZVS is:

Iψ ≥
Izvs,min
nM

=
V2
V1
× V1 + nV2

Ls
× Td (2.8)

Substituting (2.3) and (2.7) into (2.8), then combining with (2.6), the united ZVS

condition is derived as (2.9), where Φmin is the minimum load angle to maintain

ZVS.

φ ≥ Φmin = max

{
θd,

1

nM2
θd +

(
1− 1

M

)
π

2

}
(2.9)
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Figure 2.5. Two ZVS scenarios of T1 of inverter 2; V1 = 400 V, V2 = 300 V
(M = 1/0.75), Ls = 100 µH, and fs = 50 kHz.
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2.2 Modulation strategy

By rearranging (2.2), ψ can be calculated from the load angle φ as:

ψ = (1 +M)× φ+ (1−M)× π

2
(2.10)

From (2.9) and (2.10), the ZVS condition is rewritten in term of ψ:

ψ ≥


(1 +M) θd + (1−M)

π

2
,M ≤ 1

1 +M

nM2
θd +

(
1− 1

M

)
π

2
,M > 1

(2.11)

2.2 Modulation strategy

2.2.1 Modulation function

In order to reduce the reactive power in the system, the load angle should be as

small as possible. The united ZVS condition (2.9) suggests that the smallest load

angle to ensure ZVS of all switches is Φmin. If φ can be regulated at Φmin, the

reactive power (and thus, the conduction loss, rms current, current stress, etc.)

can be reduced. This can be done by using (2.10).

Equation (2.10) implies that there will always be a phase shift angle to help obtain

any given load angle. However, if ψ is used for regulating φ, there must be one

more modulation variable to handle the magnitude of the power flow which is

usually estimated by (2.12):

P =
nV1V2
πXL

ψ(π − ψ) (2.12)

Since P is inversely proportional to the switching frequency fs, let fs be the

additional control variable. A new modulation strategy combining both frequency

variation and phase shifting (FPS) can be established. The target of the proposed

modulation method is to minimize the load angle while maintaining ZVS for all

transistors by:

− manipulating the bridge shift angle ψ to regulate the load angle φ at Φmin;
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Chapter 2. Frequency variation combined phase shift modulation
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Figure 2.6. FPS function block.

− and at the same time, varying the switching frequency fs to control the

magnitude of the transferred power in the system.

Note that, when fs varies, the dead-phase caused by the dead-time also changes

according to the following equation:

θd = 2πFsTd × Fx = ΘdFx (2.13)

where Fx is the normalized frequency defined by the ratio between the actual

switching frequency fs over the nominal one Fs, Fx = fs
Fs

; and Θd is the dead-phase

at the nominal switching frequency, Θd = 2πFsTd. Substituting (2.13) into (2.11),

the modulation function of the proposed FPS method is expressed by (2.14):

ψFPS =


λ (1 +M) ΘdFx + (1−M)

π

2
,M ≤ 1

λ

nM

(
1 +

1

M

)
ΘdFx +

(
1− 1

M

)
π

2
,M > 1

(2.14)

The coefficient λ in (2.14) is necessary as it allows a margin for the phase drift

phenomenon and for parameters variation. Furthermore, λ can also be utilized to

handle the depth of ZVS. A greater value of λ results in the deeper ZVS, and vice

versa. For simplify the implementation, in this chapter, λ is set to 1 (λ = 1).
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2.2 Modulation strategy

Function block of the proposed FPS modulation method is demonstrated in Fig. 2.6.

The normalized frequency Fx is the dominant control variable. The controller

varies Fx to regulate the power flow at the desired state. The phase shift ψFPS

is derived from Fx and the feedback voltage ratio M to keep φ at its minimal of

Φmin.

Fig. 2.7 illustrates the FPS trajectory and its corresponding power curves in two

cases of the voltage ratio. The normalized frequency Fx is varied from 6.0 down-

ward until reaching the maximum power. At the same time, the bridge shift angle

ψFPS is calculated using (2.14). In both cases of M , the calculation results of P

are well matched to the simulation ones.
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Figure 2.7. FPS trajectories and their corresponding power curves.

2.2.2 Frequency variation limitation

There are some remarks observed from the illustration in Fig. 2.7:

− Remark 1: When transferring a small amount of power while maintaining

ZVS, the switching frequency is increased to a very high value. In the small

power range, although Fx increases dramatically, P decreases slightly, espe-

cially when M is close to unity. In fact, there must be a high limitation of

Fx,max for frequency variation due to the switching capability of switching

devices.
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Chapter 2. Frequency variation combined phase shift modulation

The selection of Fx,max also depends on the design of the transformer core

which is usually designed at a given nominal frequency (Fs). Operating the

core at a much higher switching frequency leads to the rise of winding AC

resistance due to the skin and proximity effects. Hence, overall performance

might be degraded by the unexpected additional copper loss.

− Remark 2: Contrarily, large power is transferred at very small Fx. The

transmission becomes very sensitive as a small drop in Fx may lead to a big

growth in P . Moreover, since the peak flux density is inversely proportional

to the switching frequency, when Fx drops too deeply, the transformer might

be saturated. Therefore, a low limitation of Fx,min should be applied to

prevent the transformer from saturating. Because of the low limitation, it is

hard to modulate the converter by the original FPS to reach the maximum

transmission power.

The reverse of the flux density of the transformer decides the selection of

Fx,min. Let Bpk be the peak flux density of the transformer at the nominal

frequency Fx (already known when designing the transformer). When the

converter operates at Fx,min, the peak flux density is Bmax; Bmax should be

equal to 70% ∼ 80% of the saturation flux density (can be found from the

datasheet of the magnetic material). According to [69], the number of turns

of the primary winding Npri can be calculated by (2.15), where V1,rms is the

rms voltage across the primary winding; Ac is the cross section area and

Kf = 4.0 for square voltage waveform:

Npri =
V1,rms

AcKfBpkFs
=

V1,rms
AcKfBmaxFsFx,min

(2.15)

From (2.15), Fx,min is selected as follows:

Fx,min =
Bpk

Bmax

(2.16)

When Fx varies within the range of [Fx,min, Fx,max], the modulation can control

the power flow while regulating the load angle at desired value of Φmin. As Fx

reaches its limitation, the number of degrees of freedom reduces to only one, which
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2.2 Modulation strategy

is the phase shift. At that time, Fx remains at its limitation and, conventionally,

ψ starts changing to adjust the power. However, as mentioned above, Fx has been

chosen as the dominant control variable while ψ is derived by using the unified

function (2.14). The change of the dominant variable from Fx to ψ will add more

complexity into the control system. Therefore, the FPS method is being modified

to compensate for the frequency limitation.

2.2.3 Modified FPS modulation strategy

Let Fx,nl be the frequency without limitation, ψnl is determined by substituting

Fx,nl into (2.14). The transmission power obtained by applying the combination

(Fx,nl; ψnl) is:

Pnl =
nV1V2
πXL

× ψnl(π − ψnl)
Fx,nl

(2.17)

When a limiter is applied, the output of the frequency limiter is Fx,wl. In order to

obtain the same amount of transferred power Pnl, the required phase shift is ψwl:

Pnl =
nV1V2
πXL

× ψwl(π − ψwl)
Fx,wl

(2.18)

Solving (2.17) and (2.18) for ψwl, we have the modification function (2.19) to

compensate for the limitation of Fx.

ψwl =
π

2
−

√
Fx,wl
Fx,nl

ψnl(ψnl − π) +
π2

4
(2.19)

When Fx,nl is in the range [Fx,min, Fx,max], Fx,nl = Fx,wl, therefore, from (2.19),

ψwl = ψnl. The modification function (2.19) does not affect the operation of the

original FPS method. When Fx,nl is out of the limitation, Fx,wl is fixed at Fx,min

or Fx,max. The phase shift ψwl calculated by (2.19) is other than ψnl to help

achieve the same amount of power Pnl. The function block of the FPS modulation

strategy with the addition of the modification function (2.19) is shown in Fig. 2.8.

Notes that, since both Fx,nl and Fx,wl are employed as the input signals of (2.19),
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the anti-windup function of the controller is not necessary, then realization of the

control system can be simpler.

Fig. 2.9(a) presents the differences between the original FPS and the modified FPS

(MFPS) modulation trajectories in various cases of the voltage ratio. In the figure,

the MFPS trajectories are indicated by the continuous curves whereas, the original

ones are graphed by the dashed lines. In the range [Fx,min, Fx,max], the original

FPS and the MFPS trajectories are coincident. And thus, the minimum load angle

Φmin can be achieved. As Fx,nl > Fx,max, ψnl keeps increasing corresponding to

the increment of Fx,nl. Since Fx,wl is fixed at Fx,max, the compensated phase shift
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Figure 2.9. The FPS and MFPS trajectories, and their corresponding power
curves (V1 = 50 V, Ls = 10.06 µH, Td = 500 ns, λ = 1, Fs = 50 kHz, Fx,min =

0.36, Fx,max = 3.0, P ∗ = 1 pu ⇔ P = 500 W).
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2.3 Experiment results

angle ψwl decreases to reduce the transfered power. As a consequence, the obtained

load angle is smaller than the desired one, Φmin. The ZVS constraint (2.9) might

be conflicted. However, this is a trade-off between switching loss and conduction

loss: ZVS and the AC resistance (conduction loss) will be increased, or partial

ZVS (or even hard-switching) and the AC resistance is kept at an acceptable level.

Similarly, when Fx,nl < Fx,min, ψwl rises to allow more power to be transmitted.

ZVS is ensured; however, the load angle tends to be greater than its minimal

Φmin. Although the dissipation might not be the minimum, the magnetic core is

prevented from saturation.

The relation between the switching frequency and the transmission power is de-

scribed in Fig. 2.9(b). In the figure, the dashed and continuous lines represent the

power obtained by applying the original FPS and the modified FPS, respectively.

When modulating the converter by the original FPS, the transmission power range

is narrower as M is closer to unity. In such a situation, it is very difficult to cover

all the power range; otherwise, the switching frequency must be ultra high or

ultra-low. When M is other than 1 (e.g. M = 1.25), although the original FPS

can cover the medium and heavy power range, it cannot expand the transmission

to the low power level. That is the common problem of the modulation techniques

based only on the frequency variation such as VFM [53]. By applying the MFPS,

the whole power range can be covered regardless of how big M is. For example,

in order to achieve an ultra-low power transmission, the switching frequency must

be very high. Thanks to MFPS, an equivalent combination (Fx,wl, ψwl) can be

utilized to achieve the desired transfered power without violating the frequency

limitation.

2.3 Experiment results

2.3.1 System description

In order to evaluate the proposed modulation strategy, a laboratory-scaled experi-

ment system illustrated in Fig. 2.10 is built. Parameters of the experiment system
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Chapter 2. Frequency variation combined phase shift modulation

are summarized in Table 2.1. A programmable power supply is connected to port

1, whereas a DC electronic load is connected to port 2. The voltage at port 1

is fixed at 50 V, meanwhile port 2 voltage is varied to achieve different voltage

ratio M . The port currents are measured by two Hall-effect current transducers,

FA-050P. The port voltages are sensed by two Hall-effect voltage sensors, LV25-

P. The proposed MFPS method is then implemented in a DSP TMS320F28335

control card.

The transformer used in experiment is shown in Fig. 2.11. In order to achieve

high leakage inductance while avoid using an external inductor, shell winding

structure (Fig. 2.11(a)) is employed for constructing the transformer. In which,

the core height is divided into two halves, each half is filled by a winding. At the

designated switching frequency of 50 kHz, the skin depth [70] is:

ε =
0.662√
Fs
≈ 0.3(mm) (2.20)

Hence, magnet wire sized AWG28 with the bare width of 0.32 mm is employed.

Both primary and secondary windings are wound on a ETTD52 ferrite core by Litz

wire which is made by twisting 21 strands to reduce the proximity effect as well

High-frequency 

Transformer
Inverter 1

Inverter 2

TMS320F28335

ControlCard

LEM FA-050P

Current transducer

LEM LV25-P 

Voltage 

transducer

Figure 2.10. Laboratory-scaled 500 W experiment system.
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as the winding resistance. The number of turns of both windings are 11, thus the

transformer ratio is 1 : 1. The magnetizing and leakage inductance measured at

Creepage tape

Bobbin

Primary 

winding

Secondary

windingCreepage

tape

Creepage

tape

(a) Shell winding topology.

(b) Actual transformer.

Figure 2.11. Transformer used in experiment

Table 2.1: List of parameters of the DAB converter.

Parameter Symbol Value Unit/Note

Transformer ratio n 1:1

Transformer core ETD54 EPCOS

Number of turns N 11 turns

Total inductance Ls 10.06 µH (@ 50 kHz)

Total resistance Rs 100 mΩ (@ 50 kHz)

MOSFET
S1−4

CSD19536KCS
T1−4

Terminal 1 voltage V1 50 V

DC capacitor C1, C2 6400 µF

Nominal switching frequency Fs 50 kHz

Dead-time Td 500 ns
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Chapter 2. Frequency variation combined phase shift modulation

50 kHz are 530 µH and 10.06 µH, respectively. The designated peak flux density

is about 90 mT. The maximum flux density Bmax is set to 250 mT, thus the low

limitation Fx,min is 0.36 (i.e. the minimum switching frequency is 18 kHz). The

high limitation Fx,max of 3.0 is selected (i.e. the maximum switching frequency is

150 kHz). The dead-time is fixed at Td = 500 ns. The coefficient λ is set to 1.0.

Aiming to examine the performance of the proposed MFPS, open-loop evalua-

tions is conducted in comparison with the VFM (which is also based on frequency

variation) and the conventional SPS methods. As for the VFM, since there is

no specific recommendation for selecting the transition current Izvs in [53], it is

examined with Izvs = Izvs,min, Izvs = Izvs,min + 1 and Izvs = Izvs,min− 1 simultane-

ously. Here, Izvs,min (see (2.7)) is selected as a reference since it is the minimum

transition current to completely charge/discharge the drain-source capacitor of

MOSFETs within the dead-time as mentioned above. All three modulation meth-

ods are investigated under some different conditions of voltage ratio M . The

MFPS and VFM modulation trajectories used in the experiments are shown in

Fig. 2.12. When M < 1 the MFPS trajectory is coincident with the VFM when

the transition current of VFM, Izvs, is set to Izvs,min as shown in Fig. 2.12(a) for

the case of M = 0.95. In contrast, if M > 1, the MFPS and VFM (Izvs = Izvs,min)

trajectories are different from each other (Fig. 2.12(b)).
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Figure 2.12. Modulation trajectories used in experiment.
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2.3.2 Load angle maintenance capability

The load angle comparison is illustrated in Fig. 2.13. In the experiments, the load

angle is determined by measuring the time from the point when vds(S1)(t) starts

falling to the zero crossing point of the transferred current ipri(t). In Fig. 2.13, the

trajectory of the minimum load angle Φmin is indicated as the dashed black line.

When M is closest to unity (Fig. 2.13(b)), the load angle φMFPS obtained by using

MFPS (the square-marked, red curve) is most coincident to Φmin in the frequency

variable range. As M gets farther from unity, the phase drift phenomenon has

more effect leading to a larger gap between Φmin and φMFPS. The biggest gap

of approximately 1.7 degrees is recorded when transferring 500 W at M = 1.25

(Fig.2.13(d)). In the scale of 360 degrees, this error is insignificant and ignorable.

Hence, it can be concluded that, in all investigated cases of M , the φMFPS is

well adhered to Φmin, especially in the high frequency (low power) range. When
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Chapter 2. Frequency variation combined phase shift modulation

the switching frequency reaches its limits, the load angle tends to rise/fall at the

heavy/light power transmission, as claimed above.

2.3.3 ZVS achievement capability

Regarding the VFM method, when it is implemented with Izvs = Izvs,min + 1, the

obtained load angle is greater than Φmin. Contrarily, when Izvs is set to Izvs,min−1,

the measured load angle is smaller. Since Φmin is the minimum load angle to

overcome the dead-phase θd (caused by the dead-time), when the generated load

angle is less than Φmin, partial ZVS might occur. One example for this situation is

demonstrated in Fig. 2.14. The comparison results are summarized in Table 2.2.

When transferring a 265 W with M = 0.95 by employing VFM (Izvs = Izvs,min−1)

(VFM 1), the calculated Fx and ψ are 0.36 (fs = 18 kHz) and 9.51, respectively.

The measured efficiency is 93.87%, however the peak current is 10.4 A. ZVS is not

achieved and current spikes appear as shown in Fig. 2.14(a). The peak voltage

stress on the MOSFET is 70.8 V, which is 1.42 times higher than the terminal

voltage.

If MFPS is utilized, the power of 265 W is transferred at the switching frequency

of 40 kHz (Fx = 0.8). As observed from Fig. 2.14(b), the measured load angle is

7.26 degrees which is almost equal to Φmin at 40 kHz (7.2 deg). The peak current

is reduced 8 A while ZVS is fully achieved. As a result, the efficiency is boosted

by 1.83%.

When using VFM with setting Izvs to be Izvs,min+ 1 (VFM 2), in order to transfer

the same amount of power, modulation parameters of the VFM method are Fx =

Table 2.2: ZVS capability comparison between VFM and MFPS.

VFM 1 MFPS VFM 2

Izvs = Izvs,min − 1 Izvs = Izvs,min Izvs = Izvs,min + 1

Vds,peak 70.8 V 50 V 50 V

Ipri,pk 10.4 A 8.0 A 7.8 A

Efficiency 93.87% 94.25% 92.42%

ZVS NO YES YES
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1.5 (fs = 75 kHz) and ψ = 36.29 deg. Although ZVS is achieved and the peak

current is reduced to 7.8 A, the conduction loss increases due to the increment
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with M = 0.95.
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Chapter 2. Frequency variation combined phase shift modulation

of the circulating power. Consequently, the overall efficiency is slightly decreased

to 92.42%. This is due to the increment of the load angle from 2.46 deg in the

previous case to 15.66 deg (Fig. 2.14(c)).

2.3.4 Power range expansion

When M ≤ 1, the voltage at the transmitter side is smaller than the receiver one,

thus, the DAB converter operates like a voltage booster. If the phase shift is zero,

there will be no power flowing from port 1 to port 2, regardless of the switching

frequency.

However, when M > 1, the converter undertakes a step down conversion. Under

this condition, even when the phase shift is reduced to its minimum at zero, energy

is still transferred to the low voltage side due to the potential difference. Hence,

there exist a minimum power in the transmission which varies corresponding to

the voltage ratio M .

As for the conventional SPS method, it is impossible to expand the power range

since the phase shift cannot be smaller than zero or the power flow will be reversed.

However, the power range can be significantly expanded by using the proposed

MFPS method as reported in Fig. 2.15. In that experiment, the phase shift is kept

0
.1

7

0
.1

4 0
.2

7

0
.1

8 0
.3

0

0
.2

0 0
.3

3

0
.2

2 0
.3

7

0
.2

4

0
.8

3

0
.8

6

0
.7

3

0
.8

2

0
.7

0

0
.8

0

0
.6

7

0
.7

8 0
.6

3

0
.7

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
o
w

e
r 

[p
.u

]

𝑀 = 1.1 𝑀 = 1.2 𝑀 = 1.3 𝑀 = 1.4 𝑀 = 1.5

Figure 2.15. Power range comparison between SPS and MFPS methods; shaded
areas express the non-coverable range.

36
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at zero, whereas the switching frequency is fixed (Fx = 1 for SPS and Fx = Fx,max

for MFPS); at the same time, the voltage ratio is changed by gradually increasing

the terminal 1 voltage.

As the voltage ratio increases, the power range appears to be narrower indicated

by the in enlargement of the grayish areas in Fig. 2.15. When SPS method is

employed (Fx = 1), the effect is very remarkable, especially at high voltage ratio.

For example, the size of the non-coverable zone rises from 17% when M = 1.1 to

37% when M = 1.5 and even more for bigger value of M .

When the proposed MFPS method is used, by setting Fx to 3, the power range

is significantly expanded. When M = 1.1, the expansion is only 3%. However,

it grows gradually as M increases and becomes 12% when M = 1.5. That is

because the power is inversely propositional to the switching frequency. Hence, the

increment of the maximum frequency will result in the decrement of the minimum

power.

The maximum switching frequency, which depends on the switching capability of

the MOSFET, can be further increased for more expansion of the power range.

However, due to the skin and the proximity effects, the AC resistance of the

transformer will significantly ascend that lead to the downgrade of the system

efficiency. Therefore, compromise should be taken between the efficiency and the

coverable power range.

2.3.5 Efficiency comparison

2.3.5.1 MFPS versus SPS

Fig. 2.16 presents the efficiency comparisons among the proposed MFPS, the VFM

and the conventional SPS modulation strategies. As for the SPS method, its

switching frequency is set to the nominal one (Fx = 1) meanwhile the phase shift

is increased gradually from ψFPS until reaching the maximum power of 500 W.

In the low power range, the efficiency obtained by SPS method is higher than by

methods based on frequency variation. Although hard-switching is occurred, the
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Chapter 2. Frequency variation combined phase shift modulation

switching loss it caused is smaller than the additive conduction loss due to the

increment of switching frequency. Nevertheless,as the transferred power increases,

the conduction loss caused by SPS method becomes significant resulting in the

decrement of efficiency at medium and high power range.

In contrary, the frequency variation based methods like MFPS, can maintain high

efficiency at high power because under that condition, both switching frequency

and phase shift are smaller than that of the SPS method. Therefore, not only

switching loss is eliminated because of soft-switching, conduction loss is also re-

duced as another consequence. In other words, MFPS method can enhance the

efficiency at medium and high power range. For example, when transferring 1 pu of

power under the condition: V1 = 50 V and V2 = 40 V (M = 1.25), the maximum

efficiency enhancement is approximately 7% (Fig. 2.16(d)).

Since SPS can help achieve higher efficiency at low power range whereas MFPS is
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(P ∗ = 1 pu⇔ P = 500 W).

38



2.3 Experiment results

the superior at the medium and high power range, a combination method between

SPS and MFPS can be formed by setting the maximum switching frequency to be

the nominal one, or Fx,max = 1. Thereby, high efficiency can be maintained in the

whole coverable power range, however, at some prices:

− Since Fx = 1, switching frequency is not increased, hence the coverable power

range cannot be expanded as claimed before.

− Not only the coverable power range, but also the soft-switching range is not

expanded. The converter might suffer from hard-switching at low power

range.

2.3.5.2 MFPS versus VFM

Comparison between the MFPS and the VFM is more difficult since performance

of the VFM depends on the selection of Izvs. In term of maximum efficiency, a

comparison among the three methods is presented in Table 2.3 with data taken

from Fig. 2.16. As seen, when the voltage of the transmitting side is less than the

receiving one (M ≤ 1), the proposed MFPS shows the highest performance. How-

ever, when M > 1, though MFPS can still maintain high efficiency, the maximum

efficiency of other methods is a little bit higher.

The MFPS works less efficiently than the VFM with Izvs = Izvs,min− 1 in the low

and medium power ranges since transistors commutate under near ZVS condition.

Among all investigated cases, the biggest gap in efficiency between MFPS and

VFM (Izvs = Izvs,min − 1) is about −5% when transferring 190 W and M =

Table 2.3: Maximum efficiency comparison

M
VFM VFM VFM

SPS MFPS
(Izvs = Izvs,min − 1) (Izvs = Izvs,min + 1) (Izvs = Izvs,min)

0.85 93.32% 93.39% − 93.11% 93.43%

0.95 94.42% 94.75% − 93.90% 94.83%

1.15 94.18% 93.84% 93.12 % 93.84% 94.14%

1.25 93.13% 92.66% 93.03 % 93.25% 93.03%
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0.95 Fig. 2.16(b). As the power increases, the transition condition becomes hard-

switching leading to the downgrade of efficiency in the high power level. When

increasing the transition current Izvs of the VFM strategy, its performance becomes

worse than MFPS, especially in the medium and low power ranges. The maximum

difference between MFPS and VFM is about 3% and 4.8% for two cases: Izvs =

Izvs,min and Izvs = Izvs,min + 1, respectively, when sending 165 W and M = 1.25

as depicted in (Fig. 2.16(d)).

Moreover, while the controllable power range covered by VFM depend on the

voltage ratio M , MFPS can handle all the coverable power range regardless of

how big of M . As observed in Fig. 2.16(b), when Fx is clamped at Fx,min, the

efficiency is still high because ZVS is attained. However, corresponding to the

growth of P , the efficiency falls gradually due to the increment of reactive power

(load angle). When Fx reaches Fx,min, however, the efficiency increases at first then

decreases. The reason is when ψ is big enough, partial ZVS is achieved leading to

the rise of efficiency. Along with the reduction of ψ, the transition condition turns

to be hard-switching then the converter works less efficiently. By increasing the

high limitation Fx,max, ZVS operation area can be expanded. However the rise of

AC resistance due to the skin effect and proximity effect of transformer winding

at high frequency may downgrade the performance of the converter.

2.4 Conclusion

This chapter presented a new modulation strategy, in which frequency variation

and phase shift modulation are combined. Some main advantages of this study

are as follows:

− The new modulation strategy, MFPS, can control the load angle equally to

the phase caused by the dead-time. As a consequence, reactive power was

reduced.

40



2.4 Conclusion

− A modification function was proposed to modify the modulation parameters.

Thanks to the tool, MFPS can extend the coverable power range compare

to the conventional SPS method.

− A formula to estimate the minimum transition current to completely charge/dis-

charge the output capacitor of MOSFET during the dead-time was intro-

duced. It can be used as a reference for other research on the same topic.

− The proposed MFPS can boost the efficiency by approximately 7% compared

to the conventional single-phase-shift method.

− By limiting the maximum switching frequency to the nominal one, the pro-

posed MFPS method acts as the conventional one (SPS) under the light

load condition then the efficiency will be highest, however, at the prices of

hard-switching and narrow power range.

However, there are still also some limitations needing further studies:

− The proposed method can extend but cannot cover the whole power range.

This can be conducted by combining not only frequency variation and phase

shift, but also the duty cycle modulation. However, this is beyond the scope

of this dissertation.

− As experimented, the efficiency when operating the converter under the par-

tial ZVS condition was sometimes even higher than under the completely

ZVS one. Since MFPS can handle the load angle, it can also manipulate the

converter under the partial ZVS condition. This can be done by reducing

the depth of ZVS, or in other words, decreasing the coefficient λ in the mod-

ulation function (2.14). However, determining the appropriate value for λ is

also out of the scope of this study.
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Chapter 3

Dynamic control

In the previous chapter, a new modulation method named MFPS which combines

frequency variation and phase shift modulation was proposed. As confirmed by

open loop experiment, it perform very well in the medium and high power range.

Furthermore, it can help extend the soft-switching area as well as the power range

of the converter.

In this chapter, a closed-loop control system is developed to implement the pro-

posed modulation strategy. Intentionally, the control system is designed with one

inner current-loop and one outer voltage loop as indicated in Fig. 3.1. The current

and the voltage at the port 2 are selected as the controlled variables, whereas the

normalized switching frequency is the only control variable.
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Figure 3.1. Control system diagram.
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3.1 Current loop

3.1 Current loop

3.1.1 Modeling

The average current at port 2 in one half cycle, I2,avg, is defined by:

I2,avg =
1

π

∫ π+ψ

ψ

(
−ipri(θ)

n

)
dθ (3.1)

where θ = ωst and:

dipri(θ)

dθ
=


−Rs

XL

ipri(θ) +
1

XL

(
V1(θ)− nV2(θ)

)
, θ ∈ [ψ, π]

−Rs

XL

ipri(θ)−
1

XL

(
V1(θ) + nV2(θ)

)
, θ ∈ [π, π + ψ]

(3.2)

where Rs is the equivalent resistance of the transmission path.

From (3.1) and (3.2), I2,avg can be represented as:

dI2,avg
dt

= −Rs

Ls
I2,avg +

2V1
nπLs

ψ − V1 − nV2
nLs

(3.3)

It is obvious that I2,avg depends on the bridge phase shift angle ψ. Since Fx is

selected as the only control variable, the right hand side of (3.3) should be rewritten

with regard to Fx. However, when substituting (2.14) and (2.19) into (3.3), two

possible models will be obtained depending on the value of the voltage ratio; and

both models will become highly nonlinear when Fx,nl is out of [Fx,min, Fx,max]. This

makes the control system more complicated.

From another aspect, assume that there is no loss in the transmission, the current

at the port 2 can be determined from (2.12):

I2,avg =
nV1
πXL

ψ(π − ψ)× 1

Fx
(3.4)

By linearizing (3.4) around the nominal operation point (Fx = 1), the small signal

model i2,avg is:

i2,avg = − nV1
πXL

ψ(π − ψ)× fx (3.5)
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Chapter 3. Dynamic control

Accordingly, the transfer function from fx(s) to i2,avg(s) is:

Gi2fx =
i2,avg(s)

fx(s)
= − nV1

πXL

ψ(π − ψ) (3.6)

3.1.2 Current controller design

The diagram of the current loop is shown in Fig. 3.2. Assumes that, in one

sampling cycle, the voltage is constant that the current controller can be designed

independently of the influence from the voltage variation. Notes that, since Gif

is negative, the feedback network is positive whereas the reference current is set

negative. It is true because the current is inversely proportional to the switching

frequency. According to the diagram, when the feedback current i2f is smaller than

the reference, the error is negative then fx is decreased leading to the decrement

of the frequency. Contrarily, when i2f exceeds the reference current, the error

becomes positive then fx is increased yield to the increment of the switching

frequency.

ZOH
DAB 

converter

LPF

𝑓𝑥 𝑖2

𝑖2𝑓

𝐺𝑐𝑖(𝑠)
−

+𝑖2𝑓
∗

Figure 3.2. Current loop diagram.

The sampling frequency of the current loop is fixed at 50 kHz. Due to the sampling

operation, the zero-order-hold (ZOH) is introduced in the control diagram. The

transfer function of the ZOH block is approximated by the Pade approximation

(3.7). The first order low pass filter LPF is designed with the crossover frequency

of one-tenth of the switching frequency (3.8).

GZOH(s) =

1− s

4Fsample

1 +
s

4Fsample

(3.7)

GLPF (s) =
1

1 +
10s

ωs

(3.8)
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3.1 Current loop

where s is the Laplace operator, Fsample is the sampling frequency and ωs = 2πfs.

From (3.6), (3.7) and (3.8), the model of the plant of the current loop is derived

as:

Gif = − nV1
πXL

ψ(π − ψ)×
1− s

4Fs

(1 +
s

4Fs
)(1 +

10s

ωs
)

(3.9)

Since the switching frequency varies from Fx,min to Fx,max, the crossover frequency

of the open-loop is chosen equal to one-tenth of the minimum switching frequency.

In order to compensate for the variation of ψ due to the modulation strategy

MFPS, the phase margin of the open-loop is set to 75 degrees. Thereby, the PI-

modified typed II controller can be designed. Substitutes the parameters listed

in Table 2.1 into (3.9) and chose the operation point of: V1 = 60 V; V2 = 50 V

(M = 1.25), Fx = 1 and ψ = 30 degrees, we have:

Gci(s) =
4798

s
× s+ 1.09e4

s+ 2.27e4
(3.10)

The Bode diagram of the open loop system is illustrated in Fig. 3.3. The blue curve

represents the characteristics of the plant itself, while the red curve describes the

open loop response. As desired, at the chosen crossover frequency, the phase

margin of the open loop is 75 degrees. Besides, the gain margin of the open loop

Figure 3.3. Bode diagram of the open current loop.
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Chapter 3. Dynamic control

is 15.7 dB at 10 kHz ensuring all the noise which frequency higher than 10 kHz

will be reduced more than 6 times in amplitudes.

3.2 Voltage loop

The diagram of the voltage control loop is described in Fig. 3.4. In order to ensure

the assumption that the voltage is constant in one sampling cycle of the current

loop, the sampling frequency of the voltage loop is 10 times slower than that of the

current loop, thus, the ZOH function block of the voltage loop is approximated

by:

GZOH,v(s) =

1− s

4Fsample,v

1 +
s

4Fsample,v

(3.11)

where Fsample,v = 500 Hz.

ZOH
Output 

capacitor

LPFv

𝑖2
∗ 𝑉2

𝑉2𝑓

𝐺𝑐𝑣(𝑠)

−𝑉2𝑓
∗

Current 

loop

𝑖2

Figure 3.4. Voltage loop diagram.

The transfer function from i2,avg(s) to the terminal voltage v2(s) can be easily

derived as:

Gv2i2(s) =
v2(s)

i2,avg(s)
=

RLoad

1 + s(RLoad + rc)C2

(3.12)

where RLoad is the load equivalent resistance; rc and C2 are the series resistance

and the capacitance of the output capacitor of port 2.

The transfer function of the closed current loop can be also be determined without

difficulty as:

Gii∗(s) =
i2(s)

i∗2(s)
=

Gci(s)GZOH(s)Gi2fx

1 +Gci(s)GZOH(s)Gi2fxGLPF (s)
(3.13)
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3.2 Voltage loop

The low pass filter LPFv is designed with the crossover frequency of 1 percent of

the nominal switching frequency (i.e. 500 Hz):

GLPFv(s) =
1

1 +
100s

ωs

(3.14)

Finally, the transfer function of the plant of the voltage loop is yielded:

Gvi = GZOH,v(s)Gii∗(s)Gv2i2(s)GLPF,v(s) (3.15)

Since the DAB converter is intentionally employed as the voltage pre-regulator for

the grid-tied inverter within the whole solid-state-transformer (SST), the crossover

frequency of the voltage loop is selected as 35 Hz to reduce the influence of the

utility frequency. At the same time, the phase margin is set to 75 degrees for

ensuring the system robustness against load changes.

Based the above design parameters, the PI-modified typed II controller can be

derived. Upon the rated power operation point where

RLoad =
V 2
2

P2,rated

=
502

500
= 5 (Ω),

substitutes into (3.15) with information in Table 2.1, the controller parameters

can be calculated as:

Gci(s) =
2186

s
× s+ 32.1

s+ 1504
(3.16)

Fig. 3.5 shows the Bode diagram of the open voltage loop and the plant as the

red and blue curves, respectively. At the crossover frequency of 35 Hz, the phase

margin of the open loop is 75 degrees as desired. The gain margin is 21.4 dB at

the frequency of 253 Hz tells that all variation faster than 253 Hz will be weaken

nearly 12 times. That is meaningful as the DAB serves in the SST operating at

utility frequency. In that situation, the 300 Hz (or 360Hz) voltage fluctuation

reflecting from the AC side to DC side will be mostly suppressed.
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Chapter 3. Dynamic control

Figure 3.5. Bode diagram of the open voltage loop.

For faster response of the voltage to load change, the crossover frequency can be

increased but not too much as that one of the plant is about 100 Hz for the same

phase margin. In contrary, the voltage variation suppression effect will be weaken

due to the reduction of gain margin.

3.3 Experiment results

The experiment system is the same as depicted in Fig. 2.10 in Chapter 2. All

the control system is implemented in the DSP TMS320F28335. The system clock

is set at 150 MHz. The sampling time of the current loop is fixed at 50 kHz,

while that of the voltage loop is set 10 times slower at 500 Hz. Both DC terminal

currents are measured by two ADC channels for both protection and control. As

the maximum current is 10 amps, the threshold for shutting down as failure is

20 amperes (twice the rated current). Both port voltages are also measured for

calculating the voltage ratio for the MFPS strategy and for regulation.

In all experiments below, the programmable power supply at terminal 1 is con-

figured at the constant voltage mode of 60 V. While the DC electronic load at

terminal 2 is set at the constant resistance mode. The desired voltage at terminal

2 is 50 V, thus, the voltage ratio is expected to be M = 1.2.
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3.3 Experiment results

3.3.1 Current loop response

At first, only the current control loop is verified. The referent current is fixed at

8 amperes while the terminal voltages are 60 V and 50 V, respectively (M = 1.2).

Fig. 3.6 describes the response of the output current as the red curve.

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10

A
m

p
li

tu
d

e
 [

V
, 
A

]

Time [ms]

𝑖_2(𝑡)

4.3 ms

18.6 A

Figure 3.6. Response of the current loop.

The response time of the current is about 40 µs, which is much faster than ex-

pected. As the selected crossover frequency is 2.5 kHz, the expected rise time

should be 400 µs, which is ten times slower than the measured result. The set-

tling time is, however, much longer at 4.3 ms. Besides, there are high overshoot

(18.6 A) and oscillation. That is true because the dynamic of the current was

ignored when modeling to avoid nonlinearity and complexity. Nevertheless, since

the oscillation frequency is about 740 Hz, it does not affect the terminal voltage as

it is far bigger than the crossover frequency of the voltage loop (35 Hz). The high

current overshoot, however, may cause unexpected protection as the threshold is

only 20 A.

3.3.2 Starting up

In this experiment, the voltage loop performance is confirmed in starting up. The

voltage at port 1 is still 60 V and the reference for terminal 2 is 50 V. The test is

conducted in two cases: light load and full load start-up. According to Fig. 2.15
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about the coverable power range, because the voltage ratio is M = 1.2, the load

resistance is set at 25 Ω (which is 20% of the rated load (5 Ω)) for the light load

start-up.
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Figure 3.7. Start-up response.

Fig. 3.7 illustrates the start-up responses in two mentioned cases. When starting

up at the rated condition, the rising time is about 21.8 ms thank to the designed

crossover frequency of 35 Hz as shown in Fig. 3.7(a). After the rising time, the

voltage is stable without any overshoot or fluctuation. The corresponding current

response records an overshoot of 20%, but rapidly vanishes in few mili-seconds.

When stating up with small load, the rising time is even faster at only 12.5 ms

(Fig. 3.7(b)) showing that when the load grows, the crossover frequency of the

open loop increases. However, as discussed before, the other consequence it led
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3.3 Experiment results

is the decrement of the robustness as an overshoot of 18% is recorded. Besides,

although the rising time is short, the settling time is much longer at approximately

150 ms. The overshoot as well as the settling time can be shorten by designing

the voltage controller at the medium power range. However, under high power

condition, the rising time might be longer.

3.3.3 Load change

This experiment investigates the robustness of the voltage regulation system when

load changes. At first, the load is initialized at 20%, which is the minimum

coverable power at M = 1.2. At a certain instant, an additional 60% load is

suddenly connected to terminal 2 making the total load 80% of the rated. After

some time, the added load is shed from terminal 2, then the load once again

become 20%. The results are illustrate in Fig. 3.8.

When suddenly adding the load, there is an undershoot of -16.4% in the voltage

characteristics as shown in Fig. 3.8(a). At the same time, the current increases dra-

matically with an overshoot of about 14 amps to compensate for the undershoot.

After the response time of about 13 ms, the voltage is restored and becomes stable

after 80.5 ms. Because of the maximum current of the programmable power sup-

ply is 10 A, the output of the voltage controller was set to 10 A. If it is increased,

the voltage can restore faster and thus lessening the voltage undershoot.

On the other hand, when the added load is shed, the voltage is swollen about 11%

as described in Fig. 3.8(b). The rising time is short at 8 ms but the settling time

is relatively long at 113 ms. After shedding the added load, the remain is the

minimum coverable power at the voltage ratio of M = 1.2. Under this condition,

the switching frequency equals to its maximum, while the phase shift is zero as

analyzed in Chapter 2. Since all control variables reach theirs limitation, the

voltage decreases gradually due to the discharge operation of the output capacitor

on the load resistance without any control effort of the controller.
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Figure 3.8. Load change response.

3.3.4 Over loading

This experiment evaluate the protection operation of the control system under

the overload condition. The result is presented in Fig. 3.9. Firstly, the system is

operating at full load (i.e. V2 = 50 V and I2 = 10 A) and the load equivalent

resistance is 5 Ω. At a certain instant, the resistance of the DC electronic load

is suddenly reduced to 4.22 Ω. If the terminal voltage is kept stable, the output

power will become approximately 600 W, which is 20% overloaded.

Nevertheless, the current limitation is 10 A as stated before. Hence, when the

load steps up, after experiencing a 10% overshoot, the output current is regulated
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Figure 3.9. System response under the overload condition.

at its maximum value of 10 A in 4 ms. Since then, the converter acts as a current

source and the terminal voltage is reduced due to the small resistance of the load.

3.3.5 Short circuit

In this experiment, short circuit fault will be intentionally created to examine the

protection capability of the converter. As mentioned above, the current threshold

is set at twice the maximum current, i.e. 20 A. It is expected that, when the

current exceeds the threshold, the converter should shutdown by turning off all

switches. The examination is reported in Fig. 3.10.
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As shown, when the fault occurs, because the voltage is suddenly dropped, the

current is increased to compensate for the reduction. Consequently, the switching

frequency, according to the MFPS strategy, should be decreased to its minimum

to rise the current. When the current exceeds the threshold, the system protects

itself by forcing a shutdown after 1.2 ms since the occurrence of the fault.

As the sampling time is 50 kHz, it means that the shutdown command is given

after 60 sampling cycles. Notes that the protection activity operates upon the

DC terminal currents. Due to the large output capacitor as well as the delay

introduced by the current measurement board, the measured current is slightly

lagged from the original one. Besides, the digital low pass filter implemented

inside the DSP which crossover frequency is one-tenth of the nominal switching

frequency (5 kHz) also contributes 0.2 ms time lag.

3.4 Conclusion

This chapter reported the experimental verification of the MFPS strategy in Chap-

ter 2 in transient state. A dual-loop cascade control system was designed and im-

plemented for undertaking the proposed modulation technique. Some remarkable

points of this chapter are as follows:

− The converter can serve as a constant voltage source in normal operation.

− When load changes, the voltage fluctuation was about -16.4% to 11% which

are relatively high. They can be decreased by extending the range of the

current limiter before feeding to the current control loop.

− The system can help operate like a current source to prevent overloading.

− With the designed control system, the converter can withstand the short-

circuit fault in 1.2 ms before shutting down as a protection action.

− The current response was very fast. However, it contained high overshoot

that may cause unexpected shutdown due to over current.
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Chapter 4

Observer design for estimating

system states

In the previous chapters, a modulation method named MFPS and its accompanied

control system were proposed. The aim is to transfer the power between two

ports of the DAB converter with the load angle minimized. The approach was to

estimate and model the angle based on the linearity of the current slope. This

is only valid in the trapezoidal current mode. In other modes, such as sinusoidal

or triangle current modes, the load angle model changes, thus the modulation

function is not unique. That is because the analysis was conducted in the time

domain in which mathematic equations depend strongly on the current shape.

The approach of this chapter is to determine the load angle in the frequency

domain, where the analysis is independent of switching states. Accordingly, an

observer is designed to estimate the two current components from the transferred

AC current. Since the angle is the arctangent of the quadrature component over

the direct one, the load angle minimization issue becomes optimization of the

two current components. Firstly, the design and verification of the observer is

presented in this chapter.
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Chapter 4. Observer design for estimating system states

4.1 Fundamental harmonic approximation

The DAB converter was depicted in Fig. 2.1 in Chapter 2. For applying the fun-

damental harmonic approximation method, the primary referred equivalent circuit

of the converter expressed in Fig. 4.1 is used. The fundamental component of the

voltages across the primary and secondary winding of the transformer are denoted

as v1e(t) and v′2e(t), respectively; the fundamental component of the transferred

current is ie(t); Rs and Ls are the equivalent primary referred resistance and in-

ductance of the transmission network.

~𝑣1𝑒(𝑡) 𝑣2𝑒
′ (𝑡)

𝑖𝑒(𝑡)

~

𝑅𝑠
𝐿𝑠

Figure 4.1. Primary referred equivalent circuit.

Since both inverters are modulated with the same switching frequency, the output

voltages and the transferred current can be seen as rotation vectors ~v1e, ~v
′
2e, and ~ie

with the same angular speed of ωs (ωs = 2πfs). The projections of ~v1e, ~v
′
2e, and ~ie

on d-and q-axis of a dq-frame rotating synchronously with and being aligned along

~v1e are DC components. A vector diagram demonstrating the relation of those

vectors is depicted in Fig. 4.2 where δ is the impedance angle, δ = arctan

(
ωsLs
Rs

)
;

and two voltage vectors are determined by:

~v1e =

v1d(t)
v1q(t)

 =
4

π

v1(t)
0

 (4.1)

~v′2e =

v2d(t)
v2q(t)

 =
4

π

nv2(t) cosψ

nv2(t) sinψ

 (4.2)

where v1d(t), v1q(t), v2d(t), and v2q(t) are the d- and q-components of the corre-

sponding quantities.
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Figure 4.2. Vector diagram.

Let id(t) and iq(t) be the projections of the current vector ~ie on two axis of the

dq-frame. When Rs is neglected, id(t) and iq(t) can be determined by:

~ie =

id(t)
iq(t)

 =
1

ωsLs

 v2q(t)

v1d(t)− v2d(t)

 (4.3)

The instantaneous active and reactive powers seen from the DC side to the AC

side of two inverters are defined by (4.4) and (4.5), respectively:P1

Q1

 =
1

2

v1d(t)id(t) + v1q(t)iq(t)

v1d(t)iq(t)− v1q(t)id(t)

 (4.4)

P2

Q2

 = − 1

2

v2d(t)id(t) + v2q(t)iq(t)

v2d(t)iq(t)− v2q(t)id(t)

 (4.5)

Since d-axis of the rotating frame is intentionally aligned to ~v1e, the quadrature

component of ~v1e is zero, v1q(t) = 0. Therefore, (4.4) is rewritten:P1

Q1

 =
2v1(t)

π

id(t)
iq(t)

 (4.6)

From (4.6), assumed that v1(t) is constant in one switching cycle, the active power

P1 is proportional to the direct current id(t), and the reactive power Q1 is propor-

tional to iq(t). Therefore, by regulating two current components, both active and
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Chapter 4. Observer design for estimating system states

reactive powers at terminal 1 can be controlled. If the interaction between id(t)

and iq(t) can be eliminated, P1 and Q1 can be handled separately.

From another aspect, substituting (4.3) into (4.4) and (4.5), we have:P1

Q1

 =
1

2XL

 v1m(t)v2q(t)

v1m(t) [vmd(t)− v2d(t)]

 (4.7)

P2

Q2

 =
1

2XL

 −v1m(t)v2q(t)

−v1m(t)v2d(t) + v22m(t)

 (4.8)

where v1m(t) =
4

π
v1(t) and v2m(t) =

4

π
v2(t).

The displacement angles φ1 and φ2, which are the phase difference between the

current vector and the two voltage vectors, can be determined by:
tanφ1 =

Q1

P1

=
m− cosψ

sinψ

tanφ2 =
Q2

P2

=
−1 +m cosψ

m sinψ

(4.9)

where m =
v1(t)

nv2(t)
.

Equation (4.9) suggests that, ψ1 and φ2 depend tightly on the bridge shift angle

ψ. For a given voltage ratio M , one displacement angle among those two can be

regulated by varying ψ.

Note that, ZVS is achieved when φ1 and φ2 are positive and: φ1 ∈
[
0;

π

2

]
and φ2 ∈

[π
2

; π
]
, if P1 = −P2 ≥ 0

φ1 ∈
[π

2
; π
]

and φ2 ∈
[
0;

π

2

]
, if P1 = −P2 < 0

(4.10)

Combining (4.9) and (4.10), the limitation of the bridge phase shift to ensure ZVS

is: 
ψ ≤ min

{
arccos(m); arccos

(
1

m

)}
, if P1 = −P2 ≥ 0

ψ ≥ −max

{
arccos(m); arccos

(
1

m

)}
, if P1 = −P2 ≤ 0

(4.11)
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4.2 Current estimation using state observer

Since ψ is manipulated to maintain soft-switching of the converter, the active

power must be handled by another variable. From (4.4) and (4.5), it is obvious

that all the power components are inversely proportional to the switching fre-

quency. Thus, frequency variation is employed intending to regulate the active

power components.

4.2 Current estimation using state observer

From the primary referred equivalent circuit depicted in Fig. 4.1, the vector dia-

gram expressed in Fig. 4.2 and the Kirchhoff Law, the large signal model of the

converter can be obtained:
d

dt
id(t) = −Rs

Ls
id(t)− FxΩsiq(t) +

4

πLs
v1(t)−

4n

πLs
v2(t) cosψ

d

dt
iq(t) = FxΩsid(t)−

Rs

Ls
iq(t)−

4n

πLs
v2(t) sinψ

(4.12)

where Ωs is the nominal angular frequency, and Fx is the normalized frequency,

Fx =
ωs
Ωs

. At the steady state, the nominal operating point is determined by:

Id
Iq

 =
4nV2
πRs

× 1

1 +Q2
×

 Q sinψ +M − cosψ

Q (M − cosψ)− sinψ

 (4.13)

where Q is the quality factor of the transmission network, Q =
ΩsLs
Rs

; M =
V1
nV2

; V1

and V2 are the average terminal voltages at the steady state. In order to determine

id and iq, a state observer is developed.

4.2.1 Peak current approximation

Firstly, considering the fundamental current component, its peak, im(t), is:

im(t) =
√
i2d(t) + i2q(t) (4.14)
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Chapter 4. Observer design for estimating system states

The average absolute value of ie(t) is given by:

iabs,avg(t) =
2

π
im(t) (4.15)

In practice, both im(t) and iabs,avg(t) cannot be measured due to high switching

frequency and non-sinusoidal current waveform. However, iabs,avg can be approx-

imated by the average rectified transferred current, irec,avg(t). In experiment,

irec,avg(t) is detected easily by using a low cost AC current sensor, such as a low-

inductance-index toroidal core, to sense the transferred current before rectifying

and filtering the obtained signal with rectifier and a low-pass filter, respectively.

The form factor, which is the ratio between irec,avg(t) and iabs,avg, implies the

accuracy of the approximation. As named, its value depends on the waveform

of the current, thus depends on the voltage ratio and the bridge shift angle as

illustrated in Fig. 4.3. Since the current waveform is not affected by the frequency,

the form factor is independent from the variation of Fx.

In the simulation results depicted in Fig. 4.3, the form factor is investigated by

varying M from 0.5 to 2.0 and ψ from 0 degrees to 90 degrees, whereas the switch-

ing frequency is fixed at 50 kHz. As shown, the maximum form factor is about

1.1 pu., and the minimum is 0.95 pu. When ψ gets closer to 90 degrees, the form

factor converges to unity since the current waveform is more symmetrical. In all
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Figure 4.3. Form factor versus ψ and M , simulation condition: Ls = 10 µH,
V1 = 50 V, n = 1 : 1, Fs = 50 kHz and Fx = 1.
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4.2 Current estimation using state observer

over the investigated cases, the average form factor is 1.0. Therefore, it is reliable

to make the following approximation:

im(t) ≈ π

2
irec,avg(t) (4.16)

The accuracy of the approximation can even be enhanced by adopting an adaptive

coefficient, κ, as:

im(t) = κ
π

2
irec,avg(t) (4.17)

In experiment, the coefficient κ might be changed according to the operation

condition. For example, κ can be determined by using a lookup table based on

the simulation results reported in Fig. 4.3. In this study, for simplicity, κ is

intentionally set to 1.0.

4.2.2 Observer design

Let im(t) be the output of the converter model, the small signal space state model

(4.18) is derived by linearizing the large signal model (4.12) around the nominal

operating point (4.13). In the model (4.18), the variation of terminal voltages in

one sampling cycle is neglected. The small signal model, in which im(t) is the

output, is expressed by: 
ẋ = Ax + Bu

im = Cx + Du

(4.18)

where x =

id
iq

, u =

fx
ψ

, A =

−Ωp −Ωs

Ωs −Ωp

, B =

−ΩsIq
4n

πLs
V2 sinψ

ΩsId − 4n

πLs
V2 cosψ

,

C =

[
Id
Im

Iq
Im

]
, D =

[
0 0

]
; Ωp =

Rs

Ls
; Im =

√
I2d + I2q ; id, iq, fx and ψ are the

small signals of the corresponding quantities.
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Considers the observability matrix:

O =

 C

CA

 =
1

Im

 Id Iq

−ΩpId + ΩsIq −ΩsId − ΩpIq

 (4.19)

Since rank(O) is two, the system (4.18) is observable.

The Luenberger-typed state observer to estimate id and iq is expressed by (4.20):
˙̂x = Ax̂ + Bu + L

(
im − îm

)
îm = Cx̂ + Du

(4.20)

where L is the observer gain matrix, L =
[
l1 l2

]T
; the symbol ˆ above quantities

denotes that they are the estimated ones.

Subtracting (4.20) from (4.18), the observer error x̃ , x̃ = x − x̂ , is expressed by:

˙̃x = (A− LC )x̃ (4.21)

By assigning values for l1 and l2 to make the real part of all eigenvalues of the

characteristic matrix (A − LC ) negative, the estimation error will vanish in a

limited time. According to Ackerman [71], those eigenvalues should be at least two

to six times greater than system poles. After selecting the appropriate positions,

the pole placement method can be utilized to place the eigenvalues. Consequently,

l1 and l2 are calculated without difficulty.

4.3 Experiment results

4.3.1 System description

The laboratory-scaled experiment system illustrated in Fig. 4.4 is almost the same

as Fig. 2.10 except for the current sensor. In Chapter 2, the control algorithm was

based on the terminal current, thus, a Hall-effect current transducer was employed

to sense such the DC current. The control strategy proposed in this chapter also
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High-frequency 

Transformer
Inverter 1

Inverter 2

TMS320F28335

ControlCard

LEM LV25-P 

Voltage transducer

Toroidal 

current 

sensor

with 

filter

Figure 4.4. Experiment system to verify the observer.

based on a DC signal, however, derived from the AC transferred current which is

measured by a low-cost toroidal ferrite core. The crossover frequency of the LC

filter used in the measurement circuit is 5 kHz, which is one-tenth of the nominal

switching frequency.

Parameters of the experiment system were listed in the Table. 4.1. All the observer

as well as the whole control system are implemented in the TMS320F28335 control

card. The sampling frequency is still 50 kHz (i.e. the sampling time is Tz = 20 µs).

The nominal operating point is chosen at Fx = 1.0, ψ = 25 degrees and V1 = 57.5 V

and V2 = 50 V (i.e. M = 1.15). The eigenvalues of the observer are placed at two

Table 4.1: Additional parameters of DAB converter.

Parameter Symbol Value Unit/Note

Transformer ratio n 1:1

Toroidal core R20/10/7 EPCOS

Number of turns Nt 100 turns

Sampling frequency Fsample 50 kHz

Nominal switching frequency Fs 50 kHz

Nominal phase shift ψ 25 degrees

Nominal voltage ratio M 1.15
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Chapter 4. Observer design for estimating system states

times of system poles. After discretized, the observer gain is:

L =

 1.5343

−0.0386


An open-loop test is then conducted to verify the validity of the observer. The test

is repeated in some cases of voltage ratio and switching frequency. The voltage at

port 1 is kept constant at 57.5 V, while that of port 2 varies from 42.5 V to 72 V

to obtain various voltage ratios. The nominal voltage ratio used for linearization

is M = 1.15 (i.e. V2 = 50 V). Accordingly, the minimum voltage ratio of 0.8

(equivalent to +25% overshoot) and the maximum ratio of 1.35 (i.e. -25%) are

investigated. Under each condition, ψ is increased gradually with the step of

5 degrees from the boundary of ZVS area until reaching the maximum power. At

each step, the observer output îm is recorded and compared to the measured one

to confirm the validity of the observer.

Furthermore, the observer states, îd and îq are also stored for comparison with the

estimated values which are determined from experiment as follows:

• A current clamp, HIOKI CT9694, is employed to measured the instantaneous

AC current, then the Fast Fourier Transform (FFT) function of the digital

oscilloscope is applied to detect the peak value of the fundamental current

element, Im.

• The actual load angle φ is detected by converting the time difference between

the zero crossing points of current and the primary voltage into degrees scale.

• From the peak current and the displacement angle, Id and Iq can be calcu-

lated by: Id = Im cosφ and Iq = Im sinφ.

From îd and îq, the observed load angle is then calculated by: φ̂ = arctan
îq

îd
, and

compared to the actual one to confirm the validity of load angle detected by the

proposed method.
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4.3 Experiment results

4.3.2 Observer performance

The error characteristic in estimating the peak value of the fundamental current

is illustrated in Fig. 4.5. The observer error is defined by subtracting the observed

value from the the actual one. In each case of the voltage ratio, it is sketched with

respect to the switching frequency and the transmission power.

The error vanishes at the linearization point as expected (Fig. 4.5(c)). At the

nominal voltage ratio M = 1.15, the error is from -0.5 A to about 0.25 A. As

the maximum recorded peak current Im is about 20 A (when M = 1.35, Fx =

0.5 and ψ = 20 degrees), that error takes only up-to-2.5% of the whole current

scale. When the voltage ratio changes, the error also varies slightly and quite

symmetrically among different voltage conditions. Nevertheless, the biggest error

(Fig. 4.5(f)) does not exceed 1 A. That means, the observer error is less than 5%

in all investigated cases.

The variation of the error is stronger upon the changes of switching frequency and

phase shift. That is comprehensible since the observer is designed by lineariza-

tion around one point. Away from that point, the performance will certainly be

downgraded. The performance downgrade can also come from another reason.

For example, when M = 1 (Fig. 4.5(d)), the error rises from about -0.2 A to

0.5 A when transmitting from 100 W to 260 W at 100 kHz. When doing the same

transmission at a lower frequency, the error variation is smaller. The reason is that

the sampling frequency is fixed at 50 kHz. If the switching frequency is greater

than that, the resolution of the feedback signal is low leading to the performance

quality of the observer. On the other hand, when the switching frequency is

smaller than 50 kHz, the collected information has relatively better in resolution;

and the quality of the observer becomes more stable and less depending on the

transmission power.

For that reason, in order to avoid high observer error, the maximum switching

frequency is limited to 100 kHz (less than 150 kHz of the previous chapters). The

performance can also be improved by increasing the sampling frequency. However,
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Figure 4.5. Observer error in term of Im.

it is a challenge. As that frequency is 50 kHz, there is only 20 µs for processing

ADC, observer, control system, PWM, etc. By better organizing the program,

the processing time can be reduced a little bit but not too much. For further

reduction, some functions should be implemented in an external FPGA or DSP.
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4.3.3 Direct current error

The error ∆id between the actual direct current id and the observed one îd is

shown in Fig. 4.6 for six different cases of voltage ratio. It can be seen from the
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Figure 4.6. Observer error in term of Id.
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figures that the variation of ∆id with respect to M , Fx and ψ are very similar to

that of im error which analyzed above.

The error also vanishes at the linearization point. Among all cases, it does not

exceed 0.8 A (Fig. 4.6(a)). As for the direct current, the maximum id recorded

in experiment is about 16 A. Hence, that error is equivalent to about 5%. This

point is important because, as claimed before, id should be used to handle the

active component P1, which is the real transmission power. The more accuracy in

estimating id, the more precise in handling P1, and 5% tolerance is acceptable for

such purpose.

Notes that, at the nominal voltage ratio, M = 1.15, the tolerance is even lower

at 3.13% as the maximum error is about 0.5 A when the switching frequency is

100 kHz (Fig. 4.6(c)). This allows a good regulation as the steady state error of

the current loop is less than 5% at any transmission power.

4.3.4 Quadrature current error

Fig. 4.7 demonstrates the error between the actual quadrature current iq and the

estimated value îq with respect to M , Fx and ψ. Unlikes the error characteristics

of either im or id, the quadrature current error is relatively higher.

The error almost disappears at the linearization point, and remains low (from -

0.3 A to 0.1 A) through the whole power range when the voltage ratio is at nominal

(Fig. 4.7(c)). As the maximum actual quadrature current is about 8 A, the error

in percentage is from -3.75% to +1.25% of the scale. The variation of the error

with respect to the switching frequency and the phase shift is similar to that of

im as explained. However, when M varies, the error increases significantly.

For example, when the voltage variation is +13% (Fig. 4.7(d)), the maximum

error grows to approximately 0.9 A which is 11.25% of the whole scale. As the

fluctuation is +25% (Fig. 4.7(f)), it rises to about 1.3 A (16.25%). Actually, the

absolute values of the iq error is just slightly bigger than that of id error of im

error. However, the smaller scale of iq makes it seem more sensitive.
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Figure 4.7. Observer error in term of Iq.

Notes that, iq is proportional to the reactive power Q1, or in other words, the cir-

culating power. Its value also implies the load angle as defined by (4.9). Therefore,

the error in iq is created not only by the aforementioned reasons (low sampling
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frequency, linearization), but also by the distorted and asymmetrical current wave-

form when the voltage ratio and the phase shift change. In order to comprehend

this matter more clearly, let us consider the error in the estimated load angle.

4.3.5 Load angle error

This comparison examines the error between the “actual” load angle and the

observed one. The “actual” load angle determined in experiment is approximated

by the phase different between the primary voltage and current. Although that

kind of load angle is the optimization target as discussed in Chapter 2, it does not

match exactly with the phase difference between the fundamental components.

Fig. 4.8 demonstrates the drift of the phase due to the distortion by simulation.
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Figure 4.8. Effect of the current distortion on observer performance.
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4.3 Experiment results

In both cases, the switching frequency is 50 kHz and the phase shift is 45 degrees.

When the conversion ratio is 0.9, the voltage of the sender is smaller than the

receiver. As seen in Fig. 4.8(a), the fundamental current appears to be drifted

backward making the estimated load angle smaller than the expected one. Con-

trarily, when transmitting power from the higher voltage port to the lower voltage

port as shown in Fig.4.8(b) for the case of M = 1.35, the fundamental current is

drifted forward. Consequently, the estimated result is greater than desired.

That effect is reflected very well by experiment. Fig. 4.9 describes the error charac-

teristic between the observed and the measured load angles. Because the observer

is designed upon one point by linearization, the error vanishes at that point. When

the transmission power change by varying switching frequency and phase shift un-

der the nominal voltage ratio, the error varies is from -5 (Fx = 2) to 1.5 (Fx = 0.5)

degrees (Fig. 4.9(c)). At its corresponding frequency, that error is equivalent to

−140 ns and +170 ns, respectively, which is very small compared to one switching

cycle.

The drifting effect becomes more obvious when voltage ratio M changes. As M in-

creases (Fig. 4.9(a) and Fig. 4.9(b)), the error characteristics seems to move down-

ward implying that, the estimated load angle is greater than the measured one.

On the other hand, when M gets smaller (Fig. 4.9(d), Fig. 4.9(e) and Fig. 4.9(f)),

the curves appear to move upward showing that the observed load angle is less

than the measured value.

The maximum load angle error recorded in all investigated cases is about 13 degrees

when M = 0.8 (+25% voltage overshoot) and Fx = 0.75 (Fig. 4.9(f)). At such the

frequency, that error is equivalent to approximately 1 µs (3.75% of one switching

cycle). Although it is very small compared to the switching cycle, it is two times

bigger than the dead-time (which is the desired load angle as discussed in Chapter

2). This, of course, will affect the effort to achieve soft-switching in the transient

state as well as the endeavor to optimize the system loss by modulation.

Notes that, the error is insignificant when the voltage ratio is at its nominal.

Therefore, if the voltage fluctuation can be kept within 10% (M varies from 0.9 to
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Figure 4.9. Observer error in term of φ.

1.35), the error variation will be in the order of±9 degrees (from -270 ns to +700 ns

at its corresponding frequency). Besides, increasing the sampling frequency is

another consideration to reduce the load angle error as explained above.
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4.4 Conclusion

Another option to improve the observer performance is to employ nonlinear ob-

server as reported in [P.6]. However, it might not eliminate the issue of phase

drifting because of current distortion. Compensation for the drift requires fur-

ther study which is beyond the scope of this dissertation. In the next chapter,

an observer-based control system is developed which target is to kept the volt-

age fluctuation when load changes as low as possible to reduce the error due to

distortion.

4.4 Conclusion

In this chapter a linear observer was designed to estimate the direct and the

quadrature components of the transmission current. Based on the estimated val-

ues, active and reactive powers can be handled directly. Follows are some main

point of this chapter:

• The observer used the transfered AC current as the input signal instead of

the terminal DC current. The transferred current can be measure easily by

using a low-cost toroidal ferrite core. Obviously, the proposed control system

is more economical than the others.

• Although using an AC signal for feedback, it was then transformed into

a DC signal. Therefore, the sampling frequency was not necessary to be

high. Therefore, it is possible to implement the whole control system in the

mid-range DSP platforms, such as C2000 series from TI.

• The observer can predict the system state well in the vicinity of the nominal

operating point. Away from such point, the accuracy was downgraded as

the load angle error was about 13 degrees or 3.75% of a sampling period. As

discussed, there are several options to improve the observation performance.

They will be the scope of the future study.
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Chapter 4. Observer design for estimating system states

• The accuracy of the fundamental harmonic approximation method depends

strongly on the voltage ratio and the phase shift angle (on the current wave-

form) strongly. When the current is asymmetrical, the fundamental current

is drifted forward or backward from the original signal. Phase drift compen-

sation should be considered for better prediction of system states.
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Chapter 5

Observer-based control system

In Chapter 4, an observer was designed to estimate the direct and the quadrature

components of the transferred current. As discussed, the direct current is propor-

tional to the active power, while the quadrature one is proportional to the reactive

power. By regulating both current components, the not only transmission power

can be handled, the load angle, which implies the circulating current, can also be

managed.

This chapter develops a control system based on the estimated data from the

designed observer to accomplish the above objectives. Accordingly, the control

system consists of three loops: two inner loops are reserved for regulating two

current components and one outer loop for adjusting the voltage at terminal 2.

The diagram of the control system is depicted in Fig. 5.1.

𝐹𝑠𝐺𝑐𝑖𝑑(𝑠)
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𝐺𝑐𝑣(𝑠)
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DC
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𝑉2

−

−

𝑉2
∗

Control system

𝑉2

 𝑖𝑞

𝑖𝑑
∗

 𝑉2 𝐺𝑐𝑖𝑞(𝑠)

Observer
𝐼𝑚

−  𝑖𝑑
Ref.

Cal.

𝑾𝑖𝑞
∗

Figure 5.1. Control system diagram.
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Chapter 5. Observer-based control system

5.1 Input-output pairing

Consider the model (5.1) which outputs îd and îq: ˙̂x = Ax̂ + Bu

y = C ′x̂ + D ′u
(5.1)

where x̂ =

îd
îq

, u =

fx
ψ

, A =

−Ωp −Ωs

Ωs −Ωp

, B =

−ΩsIq
4n

πLs
V2 sinψ

ΩsId − 4n

πLs
V2 cosψ

,

C ′ =

1 0

0 1

 and D ′ =

0 0

0 0

.

The model (5.1) is represented in form of a set of transfer functions from inputs

to outputs as:

Γ (s) =
Y (s)

U (s)
= C ′ (sI −A)−1 B + D ′ (5.2)

where s is the Laplace operator.

Considering the DAB converter with parameters listed in Table 2.1 operating at

the nominal point described in Table 4.1, the relative gain array [71] of the system

(5.2) is:

Λ = Γ (0)×
(
Γ (0)−1

)T
=

 1.8459 −0.8459

−0.8459 1.8459

 (5.3)

Since Λ(1, 1) = Λ(2, 2) = 1.8459, the control action from fx to id and ψ to iq

can be stabilized. Therefore, the pairing strategy is as follows: the normalized

frequency fx is manipulated to regulate id, at the same time, the phase shift ψ is

used to regulate iq.
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5.2 Decoupler

5.2 Decoupler

In order to reduce the interaction between id(t) and iq(t), a decoupled network is

designed. Let us split Γ (s) into two parts:

Γ = Γ̃Γ diag (5.4)

where Γ diag is diagonal matrix of Γ (s):

Γ diag(s) =

Γ11 (s) 0

0 Γ22 (s)


and Γ̃ = Γ (Γ diag)

−1.

By using static matrix W , defined by:

W = (Γ̃ )−1 = (Γ(0 ))−1 Γ diag(0), (5.5)

the interaction between id(t) and iq(t) at the steady state will be eliminated.

Substituting parameters in Table 2.1 and Table 4.1 into (5.5), we have:

W =

1.9547 1.5622

1.1946 1.9547



5.3 Current controllers

As the interaction is reduced, two current controllers, Gcid(s) and Gciq(s), can be

designed individually for two control channels, where Γ11(s) and Γ22 (s) are the

transfer functions, respectively. The diagram of each loop is described in Fig. 5.2.

Assumes that, in one sampling cycle, the voltage variation is ignorable that the

current controller can be designed independently from the voltage loop.

The sampling frequency of current loops is fixed at 50 kHz, therefore, the Zero-

Order-Hold blocks in Fig. 3.2 are also the same as described in (3.7). The low pass

filters are also configured with the crossover frequency of one-tenth the sampling
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ZOH 𝛤11(𝑠)
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(a) Control loop for îd.
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+

−𝑖𝑞
∗

(b) Control loop for îq .

Figure 5.2. Current loop diagram.

frequency as (3.8). The plants of two current, thereby, can be derived as:

Gfxid(s) = GZOH(s)Γ11(s)GLPF (s) (5.6)

Gψiq(s) = GZOH(s)Γ22(s)GLPF (s) (5.7)

In order to compare the performance of the observer-based control system in this

chapter to which designed in Chapter 3, the same design manner, same criteria as

used in Chapter 3 are employed:

- crossover frequency of open loop systems is chosen at 2.5 kHz (10 percent of

the minimum switching frequency), and

- phase margin is 75 degrees for ensuring high robustness

Thereby, the two current controller ares:

Gcid(s) =
6080

s
× s+ 6419

s+ 3.84e4
(5.8)

Gciq(s) =
7325

s
× s+ 5774

s+ 4.27e4
(5.9)

The Bode diagram of the open loop system is illustrated in Fig. 5.3. The blue curve

represents the characteristics of the plant itself, while the red curve describes the

open loop response. With the designed controllers, the phase margin of the open
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5.3 Current controllers

(a) Control loop for îd.

(b) Control loop for îq .

Figure 5.3. Bode diagram of the open current loop.

loop are 75 degrees at 2.5 kHz as desired. The gain margin is about 9 dB at 6 kHz

and more than 17 dB at 10.3 kHz. It means that the controllers can suppress the

noise which frequency higher than 10 kHz about 7.2 times in amplitudes, that is

a slightly improvement compared to the robustness of the controller in Chapter 3.
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5.4 Voltage controller

As mentioned in the last chapter, the transfer function from the terminal 2 current

to the terminal 2 voltage is (3.12):

Gvi2(s) =
v2(s)

i2,avg(s)
=

RLoad

1 + s(RLoad + rc)C2

Neglecting the loss in the transmission, we have P1 ≈ P2. Hence, from (4.6), the

average terminal 2 current can be approximated by:

i2,avg(t) ≈
2v1(t)

πv2(t)
id(t) (5.10)

From (3.12) and (5.10), the transfer function from id(s) to v2(s) is:

Gvid(s) =
v2(s)

id(s)
= ζ × RLoad

1 + s(RLoad + rc)C2

(5.11)

where ζ =
2V1
πV2

.

The diagram of the voltage control loop is described in Fig. 5.4. For comparison

purpose, the control system is designed with all stability criteria similar to that

reported in Chapter 3. Both the sampling frequency and the crossover frequency

of the low pass filter are chosen the same at 500 Hz. The crossover frequency of

the voltage loop is also 35 Hz and the phase margin is set to 75 degrees as in in

Chapter 3.

ZOH 𝐺𝑣𝑖𝑑 𝑠

LPFv

𝑖𝑑
∗ 𝑉2

𝑉2𝑓

𝐺𝑐𝑣(𝑠)

−𝑉2𝑓
∗

Current 

loop

𝑖𝑑

Figure 5.4. Voltage loop diagram.

The PI-modified typed II voltage controller can thus be designed as:

Gcv(s) =
4200

s
× s+ 16

s+ 3000
(5.12)

(5.13)
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5.5 Generation of I∗q

Figure 5.5. Bode diagram of the open voltage loop.

Fig. 5.5 expresses the Bode diagram of the open voltage loop and the plant as the

red and blue curves, respectively. At the crossover frequency of 35 Hz, the phase

margin is 75 degrees as expected. The gain margin is 13.4 dB at the frequency of

150 Hz, thus all third order harmonics will be suppressed by 5 times. At 250 Hz,

the fifth order harmonics is blocked about 90% by the effect of the controller as

the gain margin is 19.2 dB. This, however, slightly less than 21.4 of the voltage

controller designed in Chapter 3. Nevertheless, that suppression effect is enough

to eliminate almost of the noise reflected from the AC side.

5.5 Generation of I∗q

As discussed in the Chapter 2, the displacement angle φ1 should satisfy the con-

dition (2.9) to maintain ZVS and to keep the conduction loss small:

φ1 ≥ Φmin = max

{
θd,

1

nM2
θd +

(
1− 1

M

)
π

2

}
(with θd = FxΩsTd)

Accordingly, the MFPS modulation strategy was proposed intending to regulate

the load angle φ1 around Φmin. This intention can also be undertaken by using

the control system in this chapter to regulate the quadrature current iq(t) around

a suitable reference.
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Chapter 5. Observer-based control system

From (4.6) and (4.9), the quadrature reference current when φ1 = λΦmin is repre-

sented by:

i∗q(t) = i∗d(t) tan(λΦmin) (5.14)

where λ was defined in the last chapter as the coefficient to handle the Depth of

ZVS.

At 50 kHz, Φmin is 9 degrees. If λ is 1 and Fx varies within [0.5; 2], the approxi-

mation (5.15) can be utilized to avoid trigonometric function calculation.

i∗q(t) ≈ λΦmini
∗
d(t) (5.15)

Equation (5.14) can be utilized to generate commands for the quadrature current

loop. However, when the frequency is saturated at its limitation, the phase shift

becomes the only control variable. Thus, a modification function was proposed in

Chapter 2 to compensate the variation of the frequency into phase shift. Here, the

compensation is carried out in a different manner. Fig. 5.6 describes the diagram

of the whole voltage loop with the reference calculator for iq indicated inside the

dashed rectangle.

As seen in Fig. 5.6, since both id(t) and and iq(t) are components of the transferred

current, they should have the same dynamics. Therefore, same voltage controller

Gcv(s) is applied for generating i∗q(t). In order to satisfy (2.9), voltage ratio and

switching frequency are feed-forward to derive the minimum load angle Φmin. Two
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Figure 5.6. Reference calculator.
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low-pass filters with bandwidth equal to that of the voltage controller Gcv(s) are

employed for smoothing the two feed-forward signals. Multiplying them with

taking into account the Depth of ZVS coefficient λ results in the optimal reference

for the quadrature current loop.

In the normal operation (i.e. Fx is not saturated), two same voltage controller

should yield same output i∗d,1 = i∗d,2 = i∗d, thus i∗q is calculated by (5.15). When

Fx reaches its limitation but V2f does not meet its reference, the voltage error is

other than zero causing i∗d,1 and i∗d,2 continue to increase (or decrease) due to the

integral effect of the voltage controllers. As i∗d,1 is saturated, i∗d,2 keeps on changing

making i∗q independent from i∗d.

5.6 Experiment results

All experiments in this chapter are implemented in the same system depicted in

Fig. 4.4. All setting are the same as reported in Chapter 3. The limitation of the

control variables are listed in Table 5.1. As claimed in the last Chapter, Fx,max is

set to 2 to limit the observation error. The maximum direct current id,max is 16 A

because the maximum current rating of the power supply at Terminal 1 is only

10 A (according to (4.6), Id ≈
π

2
I1). The maximum quadrature current iq,max is

7 A for the load angle of about 23.6 degrees in the transient state. This will ensure

the margin of about 3 times for ZVS when Fx = Fx,min.

Table 5.1: Parameters of the observer-based control system.

Parameters Value Unit

id,max 16 A

id,min 0 A

iq,max 7 A

iq,min 0 A

Fx,max 2 A

Fx,min 0.5 A
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Read_ADC();

im>Isc? shutdown_PWM();

end

begin

Observer();

cnt = 0;

cnt >= 10 cnt = 0;

Ref_cal();

cnt++;

PID_v();

PID_i();

update_PWM();

end

YES

NO

YES

NO

Figure 5.7. Flow chart of the whole control system.

The diagram of the control system is described in Fig. 5.7. Firstly, ADC module

of the TMS320F28335 DSP reads the average rectified transfer current and the

terminal 2 voltage. If the obtained current is exceed the protection threshold, the

flow proceeds to shutdown all PWM signals. Otherwise, the observer procedures

are executed. After that, PID functions of the current loops are triggered to calcu-

late the modulation parameters. A counter is employed as a timer to call voltage

loop commands after each ten sampling periods. At the end of each counting cycle,

the references of current loops are refreshed.

5.6.1 Current loops

Only current control loops are examined in this experiment. Both terminal voltage

are kept constant at 60 V and 50 V, respectively by configuring the power supply

and the DC electronic load at the constant voltage mode.
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5.6.1.1 Step response

The first verification test the step response from 18% to 96% rated load. The

result is demonstrated in Fig. 5.8, in which îd and îq are represented by blue and

green curves, respectively, whereas the terminal 2 current is sketched as the red

curve.
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Figure 5.8. Current step response.

At first, both îd and îq are initialized at 0.4 A, accordingly the output power is

about 18% which is the minimum controllable power under the testing voltage ratio

(Fig. 2.15). At a certain instant, the current commands of both loops suddenly

steps up to 16 A and 6 A, respectively. As shown in the figure, both current

components are regulated very well at theirs references. There are no fluctuation

in the response of the two current component.

As for the terminal current, there is an overshoot of 20% which is much smaller

than that of 132% caused by the current controller in Chapter 3. The rising

time of the terminal current is 0.46 ms, which is mostly matched with the design

parameters as the desired bandwidth is 2.5 kHz. The settling time is almost the

same to the previous case as it is about 4.5 ms. The settling time of the two

current components are much smaller than that of the terminal current. However,

their response time is about 2 times slower, which are the same at 0.9 ms. That

is because the dynamic of i2(t) depends on the load and the output capacitor,
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Chapter 5. Observer-based control system

whereas that of îd and îq depend only on the leakage inductance of the transformer

and the series resistance of the transmission network. Any mis-determination of

such parameters might affect the accuracy of the model.

5.6.1.2 Interaction removal capability

Interaction effect between two control channels is illustrated in Fig. 5.9 and Fig. 5.10.

Signals sketched in the figures are obtained by using two PWM pins of the DSP

as two DAC channels to convert from the variables to duty cycles then filtering

with two low-pass filters. In these experiments, only current loops are examined.

First trial explores the impact of changes in îd(t) on îq(t). At initialization, îd(t)

and îq(t) are regulated at 12 A and 6 A, respectively. As shown in Fig. 5.9(a),

both current components are handled very well at the desired values. When the

reference I∗d steps up to 16 A, îd(t) starts increasing. After the settling time of

about 3 ms, îd(t) becomes stable at exactly 16 A. During the rising time of 1.25

ms, no overshoot or undershoot or oscillation in îd(t) is recorded. In the meantime,

there is a -0.8 amps sag in îq(t). As the desired regulation is 6 A, that current

sag is about -13% of the steady state value. When suddenly stepping down the

reference I∗d from 16 A back to 12 A (Fig. 5.9(b)), a swell of +0.6 A, in the îq

response, which is equivalent to 10% of I∗q , is recorded. In both cases, as îd(t)

reaches to its stable state, îq(t) also restores to its original value.
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Figure 5.9. Effect of changes in id(t) on iq(t).
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Figure 5.10. Effect of changes in iq(t) on id(t).

The changes in îq(t) also cause some fluctuations on îd(t). In the test reported in

Fig. 5.10, both components are initialized at 14 A and 6 A, respectively. During

the rising time of îq(t) to increase from 4 A to 6 A, an overshoot in îd(t) of 1.5 A is

recorded (Fig. 5.10(a)). And when îq(t) falls down from 6 A to 4 A, an undershoot

of -1.2 A occurs in îd(t) (Fig. 5.10(b)). Those fluctuation is +10.7% and -8.5%

of the preset. When îq(t) settles down at its new values, îd(t) also restores to its

original.

As seen, the interaction is not completely eliminated in the transient state. That

is because the decoupling technique used here is the static one, which based only

on the DC gain of the system model. If dynamic decoupling method is employed,

the interaction might be further suppressed.

5.6.2 Voltage loops

5.6.2.1 Start-up

Similar to experiment in Chap 3, start-up tests are conducted to verify the op-

eration of the observer-based control system. There are two cases corresponding

to 20% and 100% of the rated load. Results when starting up with 20% load are

reported in Fig. 5.11.
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Figure 5.11. Light load start-up response.

Compares to the small load start-up response in Fig.3.7(b), the voltage response

shown in Fig. 5.11(a) is significantly improved. The overshoot is reduced from

+18% to +9.4%. The rise time is 29 ms reflecting the desired bandwidth of 35 Hz.

The settling time is also slightly shorten from 150 ms to 130 ms. As for îd(t) and

îq(t) (Fig. 5.11(b), during the rising time, they are clamped at their maximum

values, which are 16 A and 7 A, respectively. This will maintain the load angle in

the transient state around 23.6 degrees which is enough to guarantee ZVS in the

transient state.

Fig. 5.12 describes system dynamics when stating-up at the rated load. This case,

however, have longer rise time and settling time. Unlikes results reported in Fig.

3.7(a), in the transient state shown in Fig. 5.12(a), i2(t) does not settle down at
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Figure 5.12. Rated load start-up response.

its maximum of 10 amps but increases gradually due to the control behavior of

the d-channel controller. Consequently, the rising speed of the terminal voltage

is slower. This can be solved with a better designed current controllers. At the

steady state, îd(t) and îq(t) are 14.8 A and 4.52 A respectively. That makes the

load angle of about 15.8 degrees to ensure ZVS in the steady state.

5.6.2.2 Load change

In this experiment, terminal 1 voltage is set to constant 60 V (M = 1.2). At the

same time, the DC electronic load operates in the constant resistance mode (25 Ω)

which is equivalent to 20% of the rated load. At a certain instant, it is changed
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Figure 5.13. System dynamics when load changes from small to high.

suddenly to 6.25 Ω (80% rated load). After some time, it is instantaneously

changed back to 25 Ω. The big of the change is just the same as the experiment

conducted in Chapter 3 to verify how difference of the dynamic performance of

the two control system. Fig. 5.13 and Fig. 5.14 express the system dynamics when

undertaking the experiment.

First, the voltage is regulated at 50 V. When the load suddenly changes, the voltage

drops to 43 V before recovering to its stable state at the preset (Fig. 5.13(a)). That

undershoot is equivalent to -14%, which is a little bit smaller than -16.4% reported

in Chapter 3. In term of current responses (Fig. 5.13(b)), at the instant of load

change, both current components rise rapidly to compensate for the voltage drop.

The peak currents in the transient state are 14.2 A and 5.6 A, respectively. That
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Figure 5.14. System dynamics when load changes from high to low.

means the load angle is about 21.5 degrees. Notes that, at the peak points, the

switching frequency appears to be smaller than at the steady state for steeper

current slope. Hence, a big load angle of 21.5 degrees will ensure ZVS of the

converter regardless the observation error. At the steady state, the two current

components are stable at 11.6 A and 3.3 A, respectively; implying that the load

angle is about 15.9 degrees. Experiment to verify the switching behavior and the

load angle is presented later.

The terminal voltage and current dynamics when reducing the load are described

in Fig. 5.14(a). As shown, a voltage swell of +7.5 V (15% of the steady state

value) is recorded. That, however, is slightly bigger than 11% of the performance

in Chapter 3. Although, the two observed currents fall rapidly down to zero, the
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terminal current slope is not as steep as that observed in Fig. 3.8(b). Consequently,

the transient state is relatively longer (13 ms versus 8 ms).

In both experiments above, the dynamic performance are almost the same with

that reported in Chapter 3, except the settling times are longer, which are about

300 ms. It can be lessen by optimizing the design of the voltage controller, for

example reducing the phase margin and/or widening the bandwidth of the open-

loop system.

5.6.2.3 Soft-switching verification

The switching behavior when regulating the terminal voltage at 50 V at 80% rated

load is demonstrated in Fig. 5.15. Voltage at Port 1 is 60 V and the load resistance

is 6.25 Ω. As described in Fig. 5.13(b), at the steady state, îd(t) and îq(t) are 11.6

and 3.3 A, respectively. Accordingly, the switching frequency is approximately

30 kHz. Under this condition, according to (2.9), the desired load angle is 16.9

degrees.

Because îd = 11.6 A and îq = 3.3 A, the observed load angle is about 15.9 degrees,

which is only 1 degrees different from expectation. The actual load angle, as seen

from Fig. 5.15, is 15.12 degrees, that is 0.8 degrees and 1.8 degrees different from

the observed value and the expectation. Besides, the waveform shown in Fig. 5.15

also confirms that ZVS is achieved.
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5.6.3 Overloading

This experiment evaluate the overloading protection capability of the control sys-

tem. The result is presented in Fig. 5.16. Firstly, the system is operating at 60%

of the rated load (V2 = 50 V, I2 = 6 A, the load equivalent resistance is 8.333 Ω

and thus, the power at Port 2 is 300 W). As shown in Fig. 5.16(b), îd(t) and îq(t)

are 8.9 A and 2.5 A, respectively.
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Figure 5.16. System response under the overload condition, observer-based
controller.

At a certain instant, the resistance of the DC electronic load is suddenly reduced

to 4.33 Ω that causes about 20% overload fault if the terminal voltage is kept

stable. Instantaneously, îd(t) and îq(t) increase rapidly leading to the increment

of the terminal current. When that current reaches its limitation of 10 A after a
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rise time of 10 ms, îd(t) also saturate at its designated maximum values of 16 A.

Nevertheless, as îq(t) continues increasing for an extra 4 ms, the load current has

an overshoot of +1A.

After that, since there is no more room the two current components to increase, the

voltage continue decreasing. Since then, the converter plays as a constant current

source which injects a constant current of 10 A into the load. Consequently, the

load voltage is stabilized at 43.3 V.

5.6.4 Short circuit

Similar to the test in Chapter 3, short circuit fault is intentionally created to

examine how difference in the protection capability of the two control methods.

The current threshold is set at the same at 20 A. The voltage and current waveform

of the converter through the fault when employing the control system designed in

this chapter is reported in Fig. 5.17.

As shown in the figure, the system is operating at the rated condition before the

incident. When the fault occurs, the system takes only 0.5 ms to detect the sharp

increment of the current and give the protection command. Which is 2.4 times

faster than the detection speed of the system in Chapter 3.
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Figure 5.17. Protection behavior of the new control method.
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That is because the protection mechanism used in this Chapter is based on the

transfer current which dynamics is much faster than that of the terminal current.

As the sampling time is 50 kHz, the processor needs only 25 cycles to issue the

shutdown command. Since the detection time is reduced, the converter is better

protected against risk from short circuit fault.

5.6.5 Efficiency comparison

This section investigate the difference in the overall performance of the two de-

signed control systems. The converter is operated by each strategy while varying

the load from 100 W to 500 W when the voltage ratio M = 1.15 (V1 = 57.5 V and

V2 = 50 V. After that, the transmitted and the received powers are recorded and

the efficiency is derived. Fig. 5.18 illustrates the overall efficiency of the converter

when controlling by two methods.

As the linearizion point of the observer is 300 W, there, the efficiency obtained

by both methods are the same at about 91.5%. When the power increases, due

to the observer error, the actual load angle seems to be greater than the observed

(and controlled) one (Fig. 4.9(c)). For this reason, the conduction loss is higher

than that obtained by the MFPS control system. Consequently, overall efficiency
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Figure 5.18. Efficiency comparison between the MFPS controller and the
observer-based controller.
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is slightly reduced as shown in Fig. 5.18. At 500 W, the efficiency reduction is

about 1.6%.

In contrary, under the small power condition, the switching frequency is higher.

As seen in Fig. 4.9(c), the observation error tends to be bigger downward. Hence,

the actual load angle tends to be smaller than expected. The converter operates

under the near ZVS condition and the efficiency is higher than that obtained by

the MFPS control system. The maximum difference is 4.4% at 200 W.

At 100 W, the error is big enough that cause hard-switching and, as a consequence,

the overall is degraded rapidly.

5.7 Conclusion

There are some remarks upon the observer-based control system presented in this

chapter:

• Two current components can be regulated well without overshoot or un-

dershoot or oscillation in the response. Interaction was still exist as it is

not completely eliminated by the static decoupler. The use of a dynamic

decoupler can help further suppressing the interaction.

• The overshoot of the terminal current was only 20% which is much reduced

compared to that when control by the controller in Chapter 3.

• The overshoot when starting-up under the light load is reduced by 8.6%.

• Voltage fluctuation when load changes is from -14% to +15%, which is almost

the same as the performance reported in Chapter 3.

• Soft-switching can be ensured in both the transient and steady states.

• Similar to the control system designed in Chapter 3, the observer-based

control system can also behave as a current source when overloading.
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5.7 Conclusion

• By using the transferred AC current as the feedback signal, protection capa-

bility was enhanced. When the short circuit fault occurs, it took the system

only 0.5 ms to detect whereas that of the detection system in Chapter 3 was

1.2 ms.

• The observation error causes some changes in the overall performance: slightly

decreasing under the high power condition and relatively increasing in the

low power range. The difference is insignificant in the medium power range.

• Moreover, the observer-based control system can control the converter not

only in all operation modes: including trapezoidal and triangle current mode.

97



Chapter 6

Extending the Fundamental

Harmonic Analysis Approach for

Zero-Voltage-Switch Modulation

of Triple-Active-Bridge

Converters

6.1 Introduction

In the previous chapters, the Fundamental Harmonic Approximation (FHA) method

was applied for modeling and control the Dual-Active-Bridge (DAB) converters.

Based on that, an observer was developed to estimate the direct and the quadra-

ture components of the transferred current. And then, a decoupled control system

was designed to regulate the two current components. The control system was

intentionally applied for frequency-modulated DAB converter. Nevertheless, from

the design procedures, we can realize that, the approach is not limit to frequency-

modulated converter. Yes, it can also be implemented for converters modulating

by other techniques such as phase-shift. This chapter discusses about how to

achieve soft-switching for Triple-Active-Bridge (TAB) converters modulating by a

so-called Quad-Phase-Shift (QPS) modulation technique using the FHA approach.

This study is intended to apply for electric vehicle applications.
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6.1 Introduction

In electric vehicles (EVs), there usually have numerous of DC sources and loads,

such as source for traction, auxiliary battery, small DC loads, etc. Recently, super

capacitor and fuel-cell are also introduced into the EV storage system [72, 73].

In order to interface those sources and loads, a lot of DC/DC converters will be

necessary [74]. However, the space inside an EV is very limited. Therefore, the

converters must: i) have small size and very high power density; or ii) the quantity

of converters should be reduced to save the space for more battery.

From other aspect, 42 V-DC bus has been introduced to the electrical system of

EV soon due to some economical benefits [75, 76]. In term of traction drive, the

traction motor need a power rail of few hundreds volt to operate. Meanwhile,

other equipments, such as horn, wiper, light, etc., requires a low voltage 12 VDC

for operation. This motivates to study about a TAB converter which can interface

between a 36 V battery bank, a high and a low voltage DC-buses (200 V and 12 V,

respectively) for an electric truck.

Due to the bidirectional power transmission capability, TAB converter is very

suitable for such application. It can help power both the high voltage DC Link

and the DC load in the normal operation as well as charge the regenerative energy

into the battery when braking or driving down a slope. Besides, because of high

power density, it can promisingly save a lot of space for battery. And its galvanic

isolation can satisfy the safety requirement of the EV.

The TAB topology is derived from the DAB configuration discussed in the previous

chapters. Unlike DAB type, TAB converter employs a three winding transformer

for connecting three inverters. Conventionally, the phase shift technique is usually

utilized [17–19, 77–80]. Two bridge shift angles are usually used to handle the

power flows within ports [19, 78–80]. However, since the three ports are coupled

using a transformer, three power paths (1 ↔ 2, 1 ↔ 3, 2 ↔ 3) will operate

simultaneously. Because there are only two control variables, it is impossible to

decouple the three power paths. Some recent researches introduced the so-called

inner phase shift angle which shifts the two legs of one inverter from each other

[17, 18, 77]. This adds at least one more degrees of freedom making the modulation
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Chapter 6. ZVS modulation of TAB converter

more flexible. Hence, the average power at one port can be kept constant or zero

(idle mode) while the transmission between the other two ports is still activated.

Furthermore, the introduction of the inner phase shift make soft-switching (which

is very difficult to be maintained if there are only two bridge shift angles) easier

to be achieved [18, 77]. However, in [18] and [77], the ZVS strategy was developed

based on the time domain analysis of the converter. Actually, as for TAB con-

verters, there are numerous of switching states making the analysis complicated.

The investigation reported in [17] also employed the FHA method. However, no

soft-switching algorithm was presented.

In this chapter, two inner phase angles are added into the modulation of two

secondary inverters. Hence, there are totally four phase shift variables. Among

those, the two inner phase shifts are used to handle the power flows, whereas the

two outer ones are served for achieving ZVS of all transistors. The converter is

then analyzed in the frequency domain based on the FHA method. From that,

active and reactive power components at all three inverters can be derived. Based

on the relation between reactive and active powers (QP -ratio), ZVS condition is

defined. After that, a new soft-switching strategy is proposed to help achieve ZVS

regardless of the switching states of the converter. Simulation study confirms that

the analysis method is reliable. As verified by experiment, ZVS is achieved in all

investigated power range and the maximum and average efficiency are 95.58% and

94.66%, respectively.

6.2 Fundamental harmonic analysis

The TAB converter is illustrated in Fig. 6.1. The main battery is connected to

port 1, whereas, the DC-bus and load are placed at port 2 and 3, respectively.

Since the voltage ratio between any port pairs are quite high, a three winding

transformer is used to match the voltage. There are three H-bridge inverters

located at the three windings of the transformer to handle the power flow among

ports. The inductors L1, L
′
2 and L′3, which are the leakage inductances of the
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Figure 6.1. Triple-Active-Bridge Converter.

𝐿13

𝐿12 𝐿23

𝑣𝑤1(𝑡) 𝑣𝑤2(𝑡) 𝑣𝑤3(𝑡)

𝑖13(𝑡)

𝑖12(𝑡) 𝑖23(𝑡)

𝑖1(𝑡) 𝑖2(𝑡)
𝑖3(𝑡)

Figure 6.2. Primary-referred
equivalent circuit.

𝑑

𝑗𝑞

 𝑣𝑤1𝑒

 𝑣𝑤2𝑒

 𝑣𝑤3𝑒
 𝑖1𝑒

 𝑖12𝑒

 𝑖13𝑒

𝜔s

𝜑

𝑖1𝑑

𝑖1𝑞

0

𝜓2
𝜓3

Figure 6.3. Vector diagram.

corresponding winding, are employed as the power containers. The transmission

power is usually regulated by varying the phase shift angle ψ2 and ψ3 of inverters 2

and 3 with respect to inverter 1. In order to simplify the analysis, the delta-typed

primary-referred circuit depicted in Fig. 6.2 is usually used. In which, L12, L13

and L23 are the equivalent inductance referred to the primary side.

Since all of the quantities: vwx(t), ix(t) and ixy(t) (the voltage and current at the

winding x; and the current flowing from port x to port y, respectively; x, y ∈ [1, 3],

x 6= y
)

are AC signals with the same frequency of ωs, the fundamental component

of them can be seen as rotating vectors ~vwxe,~ixe and~ixye. Considering a dq− frame

rotating with the speed of ωs which d-axis is aligned to ~vw1e, the projections of all
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vectors on d− and q− axis are DC quantities. The vector diagram demonstrating

the relation of those vectors is depicted in Fig. 6.3. Accordingly, the three voltage

vectors are determined by (6.1), where n2 = N1 : N2; n3 = N1 : N3; Nx is the

number of turns of the winding x, x ∈ [1, 3].

~vw1e =

v1d
v1q

 =
4

π

V1
0


~vw2e =

v2d
v2q

 =
4

π

n2V2 cosψ2

n2V2 sinψ2


~vw3e =

v3d
v3q

 =
4

π

n3V3 cosψ3

n3V3 sinψ3


(6.1)

Considers the transmission path from port 1 to port 2. By ignoring the winding

resistance, the transferred current ~i12e can be calculated by subtracting ~vw2e from

~vw1e then dividing by the reactance X12, where X12 = ωsL12. Calculations of

~i13e and ~i23e can be done by using the same manner. Hence, the port-to-port

currents ~i12e, ~i13e and ~i23e are expressed by (6.2). Notes that, since the d−axis is

intentionally aligned to ~vw1e, the quadrature projection v1q = 0.

~i12e =

i12d
i12q

 =
1

X12

−v1q + v2q

v1d − v2d


~i13e =

i13d
i13q

 =
1

X13

−v1q + v3q

v1d − v3d


~i23e =

i23d
i23q

 =
1

X23

−v2q + v3q

v2d − v3d


(6.2)

Similar to chapter 5, the instantaneous active and reactive power can be calculated

by: 
P =

1

2
(vdid + vqiq)

Q =
1

2
(vdiq − vqid)

(6.3)
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Accordingly, the port-to-port active and reactive powers can be easily derived:Pxy
Qxy

 =
1

2Xxy

 vxdvyq − vxqvyd
v2xm − vxdvyd − vxqvyq

 (6.4)

where v2xm = v2xd + v2xq; x, y ∈ [1, 3] and x 6= y.

From the primary-referred diagram in Fig. 6.2 and the Kirchhoff Law:
~i1e = [i1d i1q]

T =~i12e +~i13e

~i2e = [i2d i2q]
T = −~i12e +~i23e

~i3e = [i3d i3q]
T = −~i13e −~i23e

(6.5)

where ~ixe, x ∈ [1, 3] is the current flowing in the winding x.

Substitute (6.1) and (6.5) into (6.3), the instantaneous active and reactive power

at each winding is defined by:

P1 = K

[
M2

X12

sinψ2 +
M3

X13

sinψ3

]
P2 = KM2

[
− 1

X12

sinψ2 +
M3

X23

sin ∆ψ

]
P3 = KM3

[
− 1

X13

sinψ3 −
M2

X23

sin ∆ψ

]
Q1 = K

[
1

X12

(1−M2 cosψ2) +
1

X13

(1−M3 cosψ3)

]
Q2 = KM2

[
1

X12

(M2 − cosψ2) +
1

X23

(M2 −M3 cos ∆ψ)

]
Q3 = KM3

[
1

X13

(M3 − cosψ3) +
1

X23

(M3 −M2 cos ∆ψ)

]

(6.6)

where K =
8V 2

1

π2
; M2 =

n2V2
V1

; M3 =
n3V3
V1

; and ∆ψ = ψ3 − ψ2. Notes that:



P12 =
KM2

X12

sinψ2

P13 =
KM3

X13

sinψ3

P23 =
KM2M3

X23

sin ∆ψ

103



Chapter 6. ZVS modulation of TAB converter

and that: 
P1 = P12 + P13

P2 = −P12 + P23

P3 = −P13 + P23

Obviously, if the power dissipation on inverters is ignored, the active powers Px

(x ∈ [1, 3]) expressed in (6.6) are also the power at the corresponding DC ports.

By varying ψ2 and ψ3, the active powers can be controlled very well. Furthermore,

one port can be kept at the idle state, while the power flow between the other two

ports is variable. For example, from (6.6), the phase shift relation to keep P3 = 0

is:

ψ2 = ψ3 + arcsin

(
X23

M2X13

sinψ3

)
(6.7)

Or more generally, the control strategy to keep P3 constant at the desired value

P ∗3 is:

ψ2 = ψ3 + arcsin

(
X23

KM2M3

P ∗3 +
X23

M2X13

sinψ3

)
(6.8)

After that, the transmission is modelized as a function of ψ3 and P ∗3 , ψ2 is then

derived from ψ3 according to (6.7) or (6.8). Equation (6.8) can also be used to

decoupled control P2 and P3 where ψ2 takes the charge of P3 and ψ3 is responsible

for handling P2. Nevertheless, both (6.7) and (6.8) can control only the active

powers.

As discussed before, the reactive power should be put under supervision as well

for achieving ZVS and for limiting the conduction loss. In chapter 5, the switching

frequency was employed as the additional variable for managing the active power,

and the phase shift was charged for the reactive power. That two variables are

enough for controlling two power components of a DAB converter. However, as for

TAB converters, there are totally six power components must be supervised. With

only two phase shift angles, it is impossible to control all active and reactive power

components simultaneously. In other words, managing all power components at

the same time requires at least one or two more degrees of freedom.

Motivated from this, two inner phase shifts are introduced. An inner phase shift

is the added angle to make the phase difference between two legs of one inverter
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6.3 Zero-voltage-switch modulation strategy

less than π. Since there are four variables, two inner and two outer phase shifts,

can be used in the modulation, this method is named Quad-Phase-Shift (QPS).

Next section shows how the QPS scheme changes the mathematic equations and

how to achieve ZVS in each operation modes.

6.3 Zero-voltage-switch modulation strategy

6.3.1 Effect of the inner phase shift modulation

By introducing two inner phase shift angles to inverters 2 and 3, the amplitudes of

vectors ~vw2e and ~vw3e are modifiable. As a consequence, the fundamental voltage

components are also “drifted” by a half of the inner phase shift angle as demon-

strated in Fig. 6.4 for inverter 2. Let δ2 and δ3 be the inner phase shift angles of

the corresponding inverter. The three voltage vectors are changed as (6.9):

~vw1e =
4V1
π

1

0


~vw2e =

4n2V2
π

cos
δ2
2

cos
(
ψ2 + δ2

2

)
sin
(
ψ2 + δ2

2

)


~vw3e =
4n3V3
π

cos
δ3
2

cos
(
ψ3 + δ3

2

)
sin
(
ψ3 + δ3

2

)


(6.9)
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Figure 6.4. Waveforms when employing the inner phase shift modulation.
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Chapter 6. ZVS modulation of TAB converter

Recalculating the six power components with regard to the phase drift, we have:

P1 = K

[
m2

X12

sinψ21 +
m3

X13

sinψ31

]
P2 = Km2

[
− 1

X12

sinψ21 +
m3

X23

sinψ32

]
P3 = Km3

[
− 1

X13

sinψ31 −
m2

X23

sinψ32

]
Q1 = K

[
1

X12

(1−m2 cosψ21) +
1

X13

(1−m3 cosψ31)

]
Q2 = Km2

[
1

X12

(m2 − cosψ21) +
1

X23

(m2 −m3 cosψ32)

]
Q3 = Km3

[
1

X13

(m3 − cosψ31) +
1

X23

(m3 −m2 cosψ32)

]

(6.10)

where mx = Mx cos
δx
2
, x ∈ [2, 3]; ψ21 = ψ2+

δ2
2

, ψ31 = ψ3+
δ3
2

and ψ32 = ψ31−ψ21.

Notes that, ψ2 and ψ3 are the actual phase shift angle between bridges; whereas

the angles ψ21 and ψ31 are the relative phase shift between the fundamental com-

ponents of voltages.

The inter-port power flows are also recalculated:

P12 =
Km2

X12

sinψ21

P13 =
Km3

X13

sinψ31

P23 =
Km2m3

X23

sinψ32

(6.11)

Equations (6.10) and (6.11) suggest that m2 and m3 (or the inner phase shift angles

δ2 and δ3) can be used to regulate the active powers. Furthermore, as observed

from Fig. 6.4, in order for all MOSFETs to achieve ZVS, the phase difference ϕx

between the current ixe(t) and vxe(t) (x ∈ [1, 3]) must satisfy the condition (6.12)

of the QP -ratio:

ϕx = arctan
Qx

Px
∈
[
δx
2
, π − δx

2

]
, ∀x ∈ [1, 3], δ1 = 0 (6.12)

Condition (6.12) depends on the transmission direction, or in other words, on the

sign of the active powers Px. As described before, the converter system has three
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6.3 Zero-voltage-switch modulation strategy

sink/source components: battery (port 1), DC-Bus (port 2) and DC Load (port

3), accordingly, there are three possible transmission modes as follows:

• Mode 1: P1 ≥ 0, P2 ≤ 0, P3 ≤ 0

• Mode 2: P1 ≤ 0, P2 ≥ 0, P3 ≤ 0

• Mode 3: P1 ≥ 0, P2 ≥ 0, P3 ≤ 0

A positive sign implies that the port is sending power, and vice versa, a negative

sign means the port is absorbing power. Since port 3 is the passive load (e.g. light,

horn, wipers, etc.), it cannot send any power to other ports. Hence, in the three

modes listed above, P3 is always negative.

Among three modes listed above, Mode 3 is insignificantly useful in practice. In

this mode, the DC-load is powered by both the battery and the regenerative brak-

ing power. However, the rated power of the load is usually very small compared

to the dynamic power of the regeneration. Therefore, this mode is excluded from

the investigation of this chapter.

Following texts consider the ZVS condition in Mode 1 and Mode 2.

6.3.2 Mode 1: P1 ≥ 0, P2 ≤ 0 and P3 ≤ 0

Depending on the relation between ψ21 and ψ31, this mode can be further divided

into two submodes: submode 1A and submode 1B.

6.3.2.1 Submode 1A: ψ31 ≥ ψ21 ≥ 0

Fig. 6.5 describes the directions of power paths in this submode, where Pxy implies

the power flow between the port pair x and y. Since P1 ≥ 0, P2 ≤ 0 and P3 ≤ 0,

the battery discharges energy to power both the DC-Link and the load. And

because ψ31 ≥ ψ21 ≥ 0, energy also flows from the DC link to the DC load. Notes

that, although there is one flow in and one flow out at terminal 2, the average
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Chapter 6. ZVS modulation of TAB converter

1

2 3

𝑃23 > 0

Figure 6.5. Power paths in Mode 1A.

power P2 is negative. That means, the power portion port 2 passes to the load is

less than what it receives from the battery. Therefore, this submode is suitable

for operating the converter when the EV is standstill (P2 = 0) or running with a

constant low velocity (small P2).

Substituting (6.10) into (6.12) then rearranging the obtained result, the QP -ratio

equations becomes:

1

X12

× f1(δ2, ψ21) +
1

X13

× f2(δ3, ψ31) ≥ 0

1

X12

× g1(δ2, ψ21) +
1

X23

× g2(δ2, δ3, ψ32) ≥ 0

1

X13

× h1(δ3, ψ31) +
1

X23

× h2(δ2, δ3, ψ32) ≥ 0

(6.13)

where 

f1(δ2, ψ21) = 1−m2 cosψ21

f2(δ3, ψ31) = 1−m3 cosψ31

g1(δ2, ψ21) =
m2

2

M2

− cos

(
ψ21 −

δ2
2

)
g2(δ2, δ3, ψ32) =

m2
2

M2

−m3 cos

(
ψ32 +

δ2
2

)
h1(δ3, ψ31) =

m2
3

M3

− cos

(
ψ31 −

δ3
2

)
h2(δ2, δ3, ψ32) =

m2
3

M3

−m2 cos

(
ψ32 −

δ3
2

)

Inequalities (6.13) has four variables and highly nonlinear since it contains trigono-

metric functions. Thus, it is very difficult to solve (6.13) for a global solution

which covers all the ZVS region. However, a local solution partially covering the

region can be found by letting all the factors, f1(δ2, ψ21), f2(δ3, ψ31), g1(δ2, ψ21),
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6.3 Zero-voltage-switch modulation strategy

g2(δ2, ψ32), h1(δ3, ψ31), and h2(δ3, ψ32), be greater than or equal to 0:

f1(δ2, ψ21) ≥ 0

f2(δ3, ψ31) ≥ 0

g1(δ2, ψ21) ≥ 0

g2(δ2, δ3, ψ32) ≥ 0

h1(δ3, ψ31) ≥ 0

h2(δ2, δ3, ψ32) ≥ 0

(6.14)

Although a set (δ2, δ3, ψ21, ψ31) satisfying (6.13) might not make (6.14) appropriate,

a combination fulfills (6.14) will always gratify (6.13). That is the reason why the

such combination is so-called a local solution.

Assuming that δ2 and δ3 are known then solving (6.14) for ψ21, ψ31 and ψ32 with

the assumption:

ψ31 ≥ ψ21 ≥ 0,

we have:

ψ21 ≥ Ψ21,min = max


arccos

(
min

{
1

m2

, 1

})
arccos

(
min

{
m2

M2

, 1

})
+
δ2
2

ψ31 ≥ Ψ31,min = max


arccos

(
min

{
1

m3

, 1

})
arccos

(
min

{
m2

3

M3

, 1

})
+
δ3
2

ψ32 ≥ Ψ32,min = max


arccos

(
min

{
m2

2

M2m3

, 1

})
− δ2

2

arccos

(
min

{
m2

3

M3m2

, 1

})
+
δ3
2

(6.15)

As mentioned, the solution (6.15) may not cover all the ZVS area of this transmis-

sion mode; however, it can guarantee ZVS for all transistors. Fig. 6.6 demonstrates

the ZVS area according to (6.15) when M2 = M3 = 1. Since (6.15) is a local so-

lution, the shaded area might consist some ZVS operation points. However, the

non-shaded areas in the figure are surely the soft-switching zones. The boundaries

of the ZVS area are Ψ21,min and Ψ31,min. In order to reduce the conduction loss,

the displacement angle ϕx defined in (6.12) should be minimized. Therefore, in
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ZVS area

ZVS area

Ψ21,𝑚𝑖𝑛

Figure 6.6. ZVS area in Mode 1A, M2 = M3 = 1.

this study, the relative bridge shift angles are intentionally assigned to the smallest

ones (the lower boundary of the ZVS area) as (6.16). At the same time, δ2 and δ3

are used to regulate the active power components. ψ21 = Ψ21,min

ψ31 = max {Ψ31,min, Ψ21,min + Ψ32,min}
(6.16)

The actual bridge shift angles ψ2 and ψ3 can then be calculated from ψ21, ψ31, δ2

and δ3 as (6.17): 
ψ2 = ψ21 −

δ2
2

ψ3 = ψ31 −
δ3
2

(6.17)

Actually, the ZVS function described in (6.15) is quite complicated since it contains

trigonometric and inverse trigonometric functions. Hence, in practice, it can be

implemented by using lookup table to boost the calculation speed.
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6.3 Zero-voltage-switch modulation strategy

6.3.2.2 Submode 1B: ψ21 ≥ ψ31 ≥ 0

The directions of power paths in this mode is illustrated in Fig. 6.7. Since ψ21 ≥

ψ31 ≥ 0, there is energy flows from the load back to the DC Link. To ensure the

average power P3 negative, the power portion port 2 takes from port 3 must be

smaller than the portion port 3 obtains from the battery. This submode is thus

suitable for the acceleration process of the EV or running in the normal traffic

condition (horn, wiper, light, etc. are not used).

1

2 3

𝑃23 < 0

Figure 6.7. Power paths in Mode 1B.

Using the assumption ψ21 ≥ ψ31 ≥ 0 to solve (6.14) for ψ21 and ψ31, we have:

ψ21 ≥ Ψ21,min = max


arccos

(
min

{
1

m2

, 1

})
arccos

(
min

{
m2

M2

, 1

})
+
δ2
2

ψ31 ≥ Ψ31,min = max


arccos

(
min

{
1

m3

, 1

})
arccos

(
min

{
m2

3

M3

, 1

})
+
δ3
2

ψ32 ≤ Ψ32,max = min


− arccos

(
min

{
m2

2

M2m3

, 1

})
− δ2

2

− arccos

(
min

{
m2

3

M3m2

, 1

})
+
δ3
2

(6.18)

Fig. 6.8 illustrates the ZVS area in this mode according to (6.18). Actually, Fig. 6.8

and Fig. 6.6 are quite similar except the roles of ψ21 and ψ31 have been swapped.

That is because in the local solutions (6.15) and (6.18) solved from (6.14), ports

2 and 3 are treated equally as no impedance (Xxy) exists in the equations.
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ZVS area

ZVS area

Ψ31,𝑚𝑖𝑛

Figure 6.8. ZVS area in Mode 1B, M2 = M3 = 1.

Alike Mode 1A, the low boundary of the ZVS area is selected as the ZVS trajectory

in this mode:  ψ21 = max {Ψ21,min, Ψ31,min −Ψ32,max}

ψ31 = Ψ31,min

(6.19)

And finally, (6.17) is employed to derive the actual phase shift angles for the

modulation.

6.3.3 Mode 2: P1 ≤ 0, P2 ≥ 0 and P3 ≤ 0

In this mode, the DC-bus absorbs the power from the regenerative braking process

(P2 > 0) to charge the battery (P1 < 0) and to feed the DC-load (P3 < 0).

Depending on the relation between ψ21 and ψ31, this mode is also divided into two

submodes.
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6.3 Zero-voltage-switch modulation strategy

6.3.3.1 Submode 2A: ψ21 ≤ ψ31 ≤ 0

Fig. 6.9 describes the power direction in submode 2A. As mentioned, port 3 is

powered by the regenerative energy. Since ψ21 ≤ ψ31 ≤ 0, there is a power flow

passes through the load to charge the battery (P13 < 0). This mode is useful when

we want to save most of the regenerative energy into the battery.

1

2 3

𝑃23 > 0

Figure 6.9. Power paths in Mode 2A.

ZVS area

𝜓31,𝑚𝑎𝑥

ZVS area

Figure 6.10. ZVS area in Mode 2A, M2 = M3 = 1.
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By using the same manner of analysis, the ZVS condition of this mode is:

ψ21 ≤ Ψ21,max = min


− arccos

(
min

{
1

m2

, 1

})
− arccos

(
min

{
m2

2

M2

, 1

})
− δ2

2

ψ31 ≤ Ψ31,max = min


− arccos

(
min

{
1

m3

, 1

})
− arccos

(
min

{
m2

3

M3

, 1

})
+
δ3
2

ψ32 ≥ Ψ32,min = max


arccos

(
min

{
m2

2

M2m3

, 1

})
+
δ2
2

arccos

(
min

{
m2

3

M3m2

, 1

})
+
δ3
2

(6.20)

In this situation, both ψ21 and ψ31 are negative. Therefore, the highest boundaries

are selected as the modulation trajectory. The modulation strategy of this mode

is (6.21) and is demonstrated in Fig. 6.10. ψ21 = min {Ψ21,max, Ψ31,max −Ψ32,min}

ψ31 = Ψ31,max

(6.21)

6.3.3.2 Submode 2B: ψ21 ≤ 0 ≤ ψ31

Fig. 6.11 describes the power direction in submode 2B. Since ψ21 ≤ 0 ≤ ψ31,

the load receives power from both the battery and the regenerative process. This

mode can be used when the battery is almost full, however, attention should be

paid on the power rating of the DC load.

1

2 3

𝑃23 > 0

Figure 6.11. Power paths in Mode 2B.
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6.3 Zero-voltage-switch modulation strategy

The ZVS condition of this mode is:

ψ21 ≤ Ψ21,max = min


− arccos

(
min

{
1

m2

, 1

})
− arccos

(
min

{
m2

2

M2

, 1

})
− δ2

2

ψ31 ≥ Ψ31,min = max


arccos

(
min

{
1

m3

, 1

})
arccos

(
min

{
m2

3

M3

, 1

})
+
δ3
2

ψ32 ≥ Ψ32,min = max


arccos

(
min

{
m2

2

M2m3

, 1

})
+
δ2
2

arccos

(
min

{
m2

3

M3m2

, 1

})
+
δ3
2

(6.22)

Fig. 6.12 describes the ZVS area of this mode. Since ψ21 ≤ 0 ≤ ψ31, the highest

boundary Ψ21,max is assigned for ψ21, whereas the lowest boundary Ψ31,min is chosen

ZVS area

ZVS area

𝜓21,𝑚𝑎𝑥

Figure 6.12. ZVS area in Mode 2B, M2 = M3 = 1.
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for ψ31. The modulation strategy of this mode is (6.23): ψ21 = min {Ψ21,max, Ψ31,max −Ψ32,min}

ψ31 = Ψ31,max

(6.23)

6.4 Closed-loop control consideration

The whole system diagram is illustrated in Fig. 6.13. A decoupled network is

employed to detach the two control channels to individually manage the power

flowing to port 2 and port 3. Two current controllers Gc2(s) and Gc3(s) are

utilized to regulate the flows of power. Discussion on designing Gc2(s), Gc3(s) and

the decoupled network are out of the scope of this chapter. They will be readdress

in the future study.
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Figure 6.13. The proposed control system.

6.5 Simulation and experiment results

6.5.1 System description

Fig. 6.14(a) indicates the diagram of the prototype system. A picture of the

system is shown in Fig. 6.14(b). Port 1 is connected to a programmable power

supply set at constant voltage mode. Port 2 and 3 are connected to two DC

electronic loads which are configured to operate under the constant voltage mode.
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Figure 6.14. Laboratory-scaled experiment system.
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Table 6.1: List of parameters of the TAB converter.

Parameter Symbol Value Unit/Note

Pri. number of turns N1 9 Turns

Sec. 1 number of turns N2 13 Turns

Sec. 2 number of turns N3 2 Turns

Transformer core ETD54 EPCOS

Pri. inductance L1 3.46 µH (@ 50 kHz)

Sec. 1 inductance L′2 10.85 µH (@ 50 kHz)

Sec. 2 inductance L′3 0.96 µH (@ 50 kHz)

MOSFETs

S11−14 CSD19536KCS Texas Instrument

S21−24 FCP104N60 Fairchild

S31−34 CSD19536KCS Texas Instrument

Terminal 1 voltage V1 42 V

Terminal 2 voltage V2 60 V

Terminal 3 voltage V3 12 V

DC capacitor C1, C2, C3 2000 µF

Switching frequency Fs 50 kHz

Dead-time Td 500 ns

Sampling frequency Fz 50 kHz

Terminal voltages are detected by three on-board voltage sensors, ISO124P. A

three-winding transformer is used to interface between all inverters. Number of

turns of the primary and two secondary windings are 9T, 13T and 2T, respectively.

All windings are wound by numerous of twisted AWG28 strands. The leakage

inductance of each winding measured at 50 kHz are 3.46 µH, 10.85 µH and 0.96 µH,

respectively. Referred to the primary side, the delta inductance are:

L12 = 9.5 µH

L13 = 35.8 µH

L23 = 53.3 µH

Summary of the system parameters is given in the Table 6.1.

PWM signals are generated from a floating point DSP TMS320F28335 control

card. The switching frequency and the sampling frequency are the same at 50 kHz.

The dead-time between two MOSFETs in one leg is fixed at 500 ns for all inverters.
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6.5 Simulation and experiment results

Because of the similarity of modes, only Mode 1B is examined in this section. The

same verification procedures can be applied for other modes.

6.5.2 Simulation verification

In order to evaluate the accuracy of the analysis, a simulation study is carried

out. Port voltages are set to 42 V, 60 V and 12 V, respectively. Consequently,

the voltage ratio M2 and M3 are 1.0 and 1.3. The inner phase shift δ3 is kept

constant at 60 degrees. This will theoretically initialize an inter-port transmission

between port 1 and 3 with P13 ≈ 100.8 W according to (6.11). The other inner

phase shift, δ2, is then gradually increased with a step of 10 degrees until one port

power changes its polarity. At each point, the bridge shift angles ψ2 and ψ3 are

calculated based on (6.19) and (6.17). All other parameters are taken from Table

6.1. Simulation results are illustrated in Fig. 6.15.

Fig. 6.15(a) shows the active power characterization in Mode 1B. The continuous

curves imply the calculated values whereas the dashed curves express the simulated

ones. Different markers describe different port powers. Equations (6.10) were

utilized for calculation. As shown, the calculated and the simulation curve pairs

are close to each other in the whole investigated power range. The maximum

error of about 43.6 W is recorded in the power characteristics of port 2. This

is equivalent to 7.27% of the whole scale (600 W). The errors are insignificant

between the calculated and the simulated powers of ports 1 and 3.

The accuracy of reactive powers estimation is evaluated by comparing the actual

load angles and the calculated ones. The comparison is illustrated in Fig. 6.15(b).

In simulation, the load angle is determined by measuring the lagged times of the

winding currents with respect to the primary voltage vw1(t) then converting into

phases. As shown, all load angles are well predicted by calculation as the simulated

and the calculated values are asymptotic to each other. The maximum distinction

is only 10.3 degrees. Over the scale of 360 degrees for one switching cycle, the gap

is equivalent to 2.78%. From the two comparisons above, it can be concluded that

the active and reactive powers estimated by (6.10) is reliable.
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Figure 6.15. Simulation results in Mode 1B; δ3 = 60 deg; δ2 = 0 ∼ 120 deg; ψ2

and ψ3 are derived by (6.19) and (6.17); V1 = 42 V, V2 = 60 V and V3 = 12 V.

In term of ZVS behavior, obviously, ϕ1 is positive, thus inverter 1 is ZVS. As for

inverters 2 and 3, the corresponding load angles are put in the correlation with

the ZVS limitation according to the condition (6.12) as presented in Fig. 6.16.

The ZVS boundaries sketched in Fig. 6.16(a) and Fig. 6.16(b) are shifted by the

relative bridge shift angles to match with the load angles obtained above. In those
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Figure 6.16. ZVS area in Mode 1B.

-30

-20

-10

0

10

20

30

0 5 10 15 20 25 30

V
o
lt

a
g
e
 [

V
],

 C
u

rr
e
n

t 
[A

]

Time [us]

-90

-60

-30

0

30

60

90

0 5 10 15 20 25 30

V
o
lt

a
g
e
 [

V
],

 C
u

rr
e
n

t 
[A

]

Time [us]

-60

-40

-20

0

20

40

60

0 5 10 15 20 25 30

V
o
lt

a
g
e
 [

V
],

 C
u

rr
e
n

t 
[A

]

Time [us]

𝑣𝑤1(𝑡)

𝑣𝑤2
′ (𝑡)

𝑣𝑤3
′ (𝑡)

𝑖1(𝑡)

𝑖2
′ (𝑡)

𝑖3
′ (𝑡)

2.36 μs

12.66 μs

8.36 μs

2.36 μs ~ 42.5 deg @50 kHz

12.66 μs ~ 227.9 deg @50 kHz

12.66 μs ~ 150.5 deg @50 kHz

ZVS is achieved

ZVS is achieved

ZVS is achieved

Figure 6.17. Simulation waveform in Mode 1B; δ2 = 30 deg, δ3 = 60 deg,
ψ2 = 79.7 deg, ψ3 = 15.35 deg, V1 = 42 V, V2 = 60 V and V3 = 12 V.

121



Chapter 6. ZVS modulation of TAB converter

figures, the non-shaded areas indicate the ZVS regions of the respective inverters.

As shown, the ϕ2 and ϕ3 trajectories are located inside the ZVS areas. Therefore,

ZVS achievement of all inverters in Mode 1B is confirmed.

Fig. 6.17 describes the voltage and current waveforms when δ2 = 30 degrees and

δ3 = 60 degrees. Using (6.19) and (6.17), ψ2 and ψ3 are derived as 79.7 and 15.35

degrees, respectively. The lagged times of winding currents with respect to vw1(t)

are 2.36 µs, 12.66 µs and 8.36 µs. At 50 kHz, those lagged times are equivalent

to 42.5, 227.9 and 150.5 degrees, respectively. Under the same condition, the

predicted angles obtained from calculation are 44.2, 231.3 and 152.5, respectively.

Once again, the accuracy in the estimation as well as the ZVS attainment is

validated.

6.5.3 Experiment verification

Fig. 6.18 demonstrates the experimental switching characteristic of the converter

when using the proposed modulation strategy to send a 150 W active power from

port 1. The winding currents are indicated as red curves, meanwhile the drain-

to-source voltages of the low side transistor (S14, S24 and S34) are shown as blue

curves. Notes that, the drain-to-source voltage vds(S14)(t) is also the positive por-

tion of the AC winding voltage vw1(t). The terminal voltages are: 50 V, 72.8 V

and 11.15 V, respectively. Thus, the voltage ratio M2 and M3 are equal to unity.

The inner phase shifts δ2 and δ3 are 0 and 7.5 degrees, respectively. The outer

phase shift ψ2 is 10.6 degrees and ψ3 is 5.3 degrees. Expectingly, the load angles

are 2.3, 182.3 and 182.3 degrees, respectively.

The lagged times measured in the experiment are 0.306 µs, 10.25 µs and 10.25 µs

for the corresponding winding currents with respect to the rising edge of vds(S14)(t).

At 50 kHz, correspondingly, they are equivalent to 5.51 degrees, 184.5 degrees and

184.5 degrees. Comparing with the theoretical values, the errors are 3.21, 2.2 and

2.2 degrees, respectively. Since the errors are insignificant, the precision of the

estimation method is verified.
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Chapter 6. ZVS modulation of TAB converter

The turn-on activity of transistor is highlighted in the shaded areas. Because the

transition currents are negative in all instances, ZVS is achieved for all transistors.

Moreover, as δ2 = 0 degrees, δ3 = 7.5 degrees, ψ2 = 10.6 and ψ3 = 5.3 degrees

(ψ21 = 10.6 and ψ31 = 9.05); ϕ1 must be positive, ϕ2 must be in [10.6, 190.6],

and ϕ3 must be in [12.8, 185.3] for ZVS of all inverters. Since ϕ1 = 5.51 degrees,

ϕ2 = ϕ3 = 184.5 degrees, the condition is satisfied. Besides, it can be observed that

the values of ϕ1, ϕ2 and ϕ3 are very close to their corresponding ZVS limitation.

That means, the depth of ZVS is small. Consequently, the overall efficiency in this

circumstance is 95.02%.

Fig. 6.19 shows the experimental power characterization and the overall efficiency

(i.e. the ratio between the sum of P2 and P3 over P1) when M2 = M3 = 1 and

δ2 = 0 degrees. The inner phase shift δ3 is increased with the step of 1 degree.

Consequently, P1, P2 and P3 rise gradually. The maximum efficiency of 95.58% is

recorded when δ3 = 7 degrees, P1 = 142.3 W, P2 = 120.5 W and P3 = 15.6 W. In

the investigated power range, the average efficiency is 94.66%.

6.6 Conclusion

This chapter proposed a new soft-switching technique for three-port bidirectional

DC/DC converter. Unlikes other published modulation method for such converter,

the bridge shift angles in this chapter were used for achieving ZVS. Two inner phase

shift angles are introduced to manipulate the transmission power. The analysis

was based on the fundamental harmonic approximation, therefore, the difficulty

due to numerous of switching states was avoided.

Simulation study has confirmed that the analysis method was reasonable as it can

ensure the maximum estimation error of 7.27% between the calculated and the

simulated active power over the scale of 600 W. Consequently, the ZVS behavior

was well predicted and achieved by the proposed modulation strategy for operating

in Mode 1B.
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6.6 Conclusion

As confirmed by the experiment results, by using the proposed modulation strat-

egy, ZVS can be achieved for all transistors regardless of the switching state. The

depth of ZVS was small as the load angles are closed to the soft-switching bound-

aries. As a result, the maximum efficiency of 95.58% was recorded. Furthermore,

in the examined power range, the proposed modulation method can ensure the

average efficiency of 94.66%.

However, though having totally four operation modes, only one Mode 1B was

validated in this chapter. Nevertheless, the same analysis method can be applied

for other transmission modes. Besides, a closed-loop control system to realize

the proposed modulation method was not designed in this chapter. It will be

readdressed in the future studies.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

This dissertation presented about modulation and dynamic control for Dual-Active-

Bridge (DAB) and Triple-Active-Bridge (TAB) bidirectional DC/DC converters

which are classified as DC-to-DC typed Solid-State-Transformers. Five topics

have been discussed: modulation and control for a DAB converter in the time

and frequency domains; and applying the proposed approaches to analyze a TAB

converter in the frequency domain then control it in the time domain.

Major contributions of this dissertation include:

1 A new strategy named MFPS was proposed in Chapter 2 for modulating

DAB converters:

– Soft-switching area as well as the coverable power range were extended,

– Efficiency was improved in the medium and high power range

– Maximum efficiency improvement was 7%

– By choosing an appropriate high limitation for the switching frequency,

high efficiency can be maintained in wide range, even in the low power

condition.
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2 A control system to realized the proposed MFPS was designed in Chapter

3:

– Terminal 2 voltage was well regulated as the fluctuation was from -

15.6% to 11%

– Low frequency harmonics reflected from AC side can be suppressed

– When overloading, the converter can operate like a constant current

source

– The control system can detect the short-circuit fault in 1.2 ms then

protect the system by forcing a shutdown

3 A linear observer was designed in Chapter 4 to estimate the direct and the

quadrature components of the transmission current:

– A toroidal core current sensor was used instead of the expensive Hall-

effect transducer to measure the current, thus, the cost can be reduced.

– In spite of feeding-back an AC signal, the sampling speed was just

comparable to the switching frequency. That allows to use mid-range

popular DSP in such application.

– At the designated voltage ratio, the observer worked well as the obser-

vation error was less than 5 degrees (1.4% of a switching cycle).

– The maximum observer error was 13 degrees, equivalent to 3.6% of a

switching cycle. If sampling frequency can be increased, the error can

be even lower.

4 An observer-based control system was developed in Chapter 5:

– The current modeling was more accurate as high overshoot and oscil-

lation were nearly eliminated in the current response.

– Dynamic performance of the current loop was much improved as the

current overshoot was suppressed from 96% to only 20%. Therefore,

wrong protection due to current overshooting is avoided.
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– The load angle minimization objective was accomplished by reference

assignment of the two current loops.

– A load regulation of -14% to 15% was achieved by the control system,

which is almost the same as obtained by the control system in Chap-

ter 3. Further improvement can be attained by carefully tuning the

parameters of the controllers.

– Similar to the control system designed in Chapter 3, the observer-based

control system can also behave as a current source when overloading.

– The short-circuit fault detection time was 2.4 times shorten for better

protection of the converter.

5 A new modulation technique named QPS was proposed for TAB converters

in automotive applications in Chapter 6:

– Soft-switching was achievable in all transmission modes

– Modulation functions are independent from the switching states

– The maximum efficiency recorded in experiments was 95.58%

– The average efficiency in the examined power range is 94.66%

7.2 Future works

There are still some issues that need further studies to accomplish, such as:

1 Although the proposed MFPS in Chapter 2 can extend the soft-switching

area to the light load range, it cannot perform the same characteristic in

the ultra-low or no load conditions due to the limitation in the switching

capability of transistors. This issue can be solved by combining the MFPS

method with, for example, the burst mode modulation scheme [55].

2 In the MFPS method, the depth of soft-switching was set equally to the

dead-time. However, the transition time of transistor is usually less than

128



7.2 Future works

the dead-time. Hence, if adaptive dead-time can be considered to further

minimized the soft-switching depth.

3 The observer model was obtained by linearizing around one operating point.

Therefore, away from such point, the accuracy of the estimation was down-

graded. This can be solved by employing nonlinear observer as reported

in [P.6]. Reduced-order configuration can also be considered to lessen the

calculation amount as presented in [P.5].

4 The performance of the observer also depended on the current waveform. As

it is more asymmetric (small phase shift, terminal voltage are not matched),

the phase drift between the fundamental and the actual current becomes

more significant. Hence, the observation error appeared to increase. How-

ever, the phase drift effect was not compensated in this study.

5 The interaction between the direct and the quadrature currents was not

completely eliminated and might lead to the lost of soft-switching in the

transient state. There are two possible methods to solve this issue:

– Increasing the depth of soft-switching to reserve for the observer error,

the fluctuation in the response and for the interaction between control

channels.

– The decoupled technique used in this dissertation was the static type.

Hence, employing an advanced scheme such as dynamic decoupled method

might help improve the decoupling performance.

6 The soft-switching proposed in Chapter 6 was not the optimal. The soft-

switching condition equations were not completely solved due to their com-

plexity. Consequently, the depth of soft-switching was not completely man-

ageable.

7 Although the same evaluation procedures can be applied for other operation

modes, only one mode was examined. Besides, mode selection mechanism

was also not discussed in Chapter 6.
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8 The design of the control system to realize the proposed QPS modulation

strategy was not discussed in 6. Since the QPS scheme was based on FHA

method, the same observer-based control algorithm as presented in Chapter 5

can be applied. If the simplicity of implementation is higher priority, the

control structure based on steady state relations as introduced in Chapter 2

is also a considerable choice.
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