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The collectivity of the electronic motion in finite systems is studied by using both the linear response density
functional theory (LRDFT) and the collectivity index defined by the transition density matrix. We demonstrate
a collectivity analysis on the size-dependent peaks of electronic excitations of small sodium clusters (rings
and linear chains). We find the excitation-mode dependence of the collectivity and large collectivities for the
higher-energy plasmonic excitations. The collectivity analysis also clarifies the existence of the nondipolar
collective motion at the energies very close to the higher-energy plasmonic excitations. The importance of the
nondipolar motion is pointed out in light of nano-optics.
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I. INTRODUCTION

Plasmonic excitations in metal nanoparticles have received
much attention in the past few decades [1,2] because they
play important roles in single molecular spectroscopy [3,4],
catalytic reactions [5], biomedical treatments [6], and plas-
monics [7]. They are associated with the collective electronic
motion in classical mechanics, called plasma oscillations, and
have been intensively studied by using the classical Maxwell
equation for continuous bodies with parameters of geometrical
shapes and dielectric constants [8–10]. Useful approximate
methods for solving the Maxwell equation have been recently
developed for particles with arbitrary shapes in complex envi-
ronments [11–14], and the effects of size, shape, and dielectric
environment on optical properties of metal nanoparticles were
studied [15]. The field enhancement near metal nanoparticles
found by these classical methods has been regarded as an
important mechanism of the intensity enhancement for the
surface-enhanced Raman scattering (SERS) in metal nanopar-
ticles with nanogaps. However, the classical treatment is not
necessarily suitable for discussing plasmonic excitations of
metal nanoparticles in recent diverse applications. The quan-
tum treatment is required for fully understanding properties
of nanofabricated materials consisting of tens to hundreds of
atoms, and the explicit description of individual electrons is
indispensable when the hybridization in the wave functions
of nanoparticles and their environments becomes important.
Such a situation appears in single molecular spectroscopy and
catalytic reactions because the electron transfer is essential in
the processes involved [3–5]. Recently, Zuloaga, Prodan, and
Nordlander showed [16] that the quantum treatment is required
to estimate the field enhancement for narrow-gap nanoparticle
dimers.

Quantum-mechanical studies of photoexcitation of metal
clusters have also been carried out over many decades
[17–24]. Although early interests were mainly in the size-
and geometry-dependence of the photoabsorption spectra,
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several authors have discussed the collectivity of the plasmonic
excitations in those spectra. Yannouleas, Broglia, and their
coworkers [18–21] have reported an important series of studies
about the collective excitations in alkali-metal clusters. They
found that the transition moments of individual particle-hole–
hole-particle excitations in spherical clusters were concen-
trated to essentially a single excited state and the corresponding
excitation was assigned to a plasmonic excitation. In deformed
clusters [21], the single plasmonic excitation splits into a
plural of excitations due to their low symmetries. However,
these excitations were also shown to be highly collective as
the result of the transition-moment concentration and they
were assigned to the plasmonic excitations. In the context
of nanofabricated plasmonic materials, Yan and Gao [22,23]
studied the plasmonic excitation of linear sodium clusters
with time-dependent density functional theory (TDDFT). The
chain-length dependence of the plasmonic excitations were
systematically investigated and it was shown that the transition
moments for these excitations were accumulated atom by
atom with increasing number of atoms in the cluster. It
manifests another type of concentration of transition moments
different from the findings of Yannouleas and Broglia. These
quantum-mechanical treatments clearly revealed the fact that
metal nanoparticles acquire special sensitivities in interacting
with light by the concentration of the transition moments.
However, the mechanism behind this has not yet been
sufficiently clarified. Recently, the large transition moments
of the plasmonic excitations have been found to play an
important role in the signal enhancement of SERS [25], and
the mechanism for generating large transition moments has
been an issue of great interest.

In the present article, we investigate the concentration
mechanism of transition moment in the plasmonic excitations
in small sodium clusters. To this end, we analyze the spatial
distributions of transition densities and the collectivity of
the plasmonic excitations by using the index derived from
the transition density matrix. We also discuss the excitation-
mode dependence of the collectivity and two mechanisms for
the acquisition of large transition moments in sodium clusters.
Finally, the nondipolar collective excitations are discussed in
light of nano-optics.
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II. METHODS

A. Photoexcitation spectrum by linear-response
density functional theory

Photoexcitation spectra are calculated by the conventional
approach based on linear-response density functional theory
(LRDFT) [26]. We make a brief review of the method of
calculations. The electron density and the total energy of the
ground state are obtained in terms of the Kohn-Sham (KS)
orbitals {φi(r)} and their energies {εi} are determined by the
KS equation [27]

(
1

2
∇2 + v(r) +

∫
ρ(r ′)

|r − r ′|d r ′ + vXC(r)

)
φi(r) = εiφi(r),

(1)

where v(r), ρ(r), and vXC(r) are the nuclear attraction
potential, electron density, and exchange-correlation func-
tional, respectively. The linear response of the obtained ground
state is determined by the eigenvalue problem

(
A B

−B∗ −A∗

) (
Xn

Yn

)
= ωn

(
Xn

Yn

)
, (2)

where vectors Xn and Yn are formed by collecting the
amplitudes for particle-hole (p-h) and hole-particle (h-p) pair
excitations, respectively, in the KS orbital representation. The
matrix elements of A and B are

Aia,jb = (εa − εi)δij δab + 2Kia,jb, (3)

Bia,jb = 2Kia,jb, (4)

where

Kia,jb =
∫

drdr′φ∗
i (r)φa(r)

[
1

|r − r′| + δvXC(ρ)

δρ
δ(r − r′)

]

×φ∗
b (r′)φj (r′). (5)

Here, the indices i,j and a,b denote occupied (hole) and vacant
(particle) orbitals, respectively. Since the working equation
given by Eq. (2) is a non-Hermitian eigenvalue problem, the
orthonormality relation is different from that for a Hermitian
problem. Then, the relation is defined by

∑
ia

(
Xn

iaX
m
ia − Yn

iaY
m
ia

) = δn,m. (6)

The electric transition dipole moment µ0n of the excitation
from |�0〉 to |�n〉 is obtained by

µ0n = 〈�0|µ̂|�n〉 =
∑
ia

√
2
(
Xn

iaµia + Yn
iaµ

∗
ia

)
, (7)

where µ̂ ≡ −r and µia ≡ ∫
φ∗

i (r)µ̂φa(r)dr. The quantity µia

is the transition dipole moment for the individual excitation
of φi → φa . If the B matrix can be neglected, the eigenvalue
problem is reduced to the form of AXn = ωnXn under the
Tamm-Dancoff approximation (TDA). For the TDA, the
orthonormality relationship and the transition dipole moment
are given by setting Yia = 0 for all ia pairs in Eqs. (6) and (7).

B. Transition density

In the present work, we characterize the computed exci-
tations by analyzing the transition density for the excitation
|�0〉 → |�n〉. The transition density is defined by

ρ0n
tr (r) = 〈�0|

N∑
i

δ(r − ri)|�n〉. (8)

This quantity is related to a Fourier component of the time-
dependent density distribution ρ(r,t), as shown below. Under
a weak perturbation, the electronic eigenstate becomes a wave
packet and its time evolution is written as

|�(t)〉 = |�0〉 +
∑

n

cn|�n〉e−i(En−E0)t/h̄. (9)

The corresponding time evolution of electronic density distri-
bution is

ρ(r,t) = 〈�(t)|
N∑
i

δ(r − ri)|�(t)〉

= ρ0(r) +
∑

n

cnρ
0n
tr (r)e−i(En−E0)t/h̄ + c.c., (10)

where ρ0(r) = 〈�0|
∑N

i δ(r − ri)|�0〉 is the ground-state den-
sity. It follows that the transition density ρ0n

tr (r) is proportional
to the Fourier component of the time-dependent electronic
density ρ(r,t) at the frequency of (En − E0)/h̄. Therefore, we
can grasp spatial information of the electronic motion during
the excitation by inspecting the transition density, whereas the
coefficient cn depends on an explicit form of the perturbation.
The transition density has dynamical information and is often
more useful than the static electronic density difference given
by

δρ(r) ≡ 〈�n|
N∑
i

δ(r − ri)|�n〉 − 〈�0|
N∑
i

δ(r − ri)|�0〉. (11)

Within the LRDFT, the transition density is written as

ρ0n
tr (r) =

∑
ia

√
2
[
Xn

iaφ
∗
i (r)φa(r) + Yn

iaφ
∗
a (r)φi(r)

]
. (12)

The integration of the transition density ρ0n
tr (r) with the

operator µ̂ gives µ0n, as shown in Eq. (7).

C. Singular value decomposition analysis
of transition density matrix

In the TDA, the off-diagonal rectangular block of the
one-electron transition density matrix T is formed from p-h
excitation amplitudes Xia as Ti,a = Xia . By using the method
of the singular value decomposition (SVD), T is simplified to
a generalized diagonal form [28] of

� = UT TV =

⎛
⎜⎜⎜⎜⎜⎝

λ1 0 ... 0 0

0 λ2 ... 0 0

... 0

0 0 ... λn−1 0

0 0 ... 0 λn

⎞
⎟⎟⎟⎟⎟⎠

, (13)
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where the matrices U and V are determined from the following
eigenvalue problems:

TT†U = Uη, (14)

T†TV = Vη′. (15)

Since SVD gives the transformation to the natural orbital
representation [29], the vector λ defined by collecting the
diagonal elements of � is the minimal representation of the
excitation operator for an excited state. The excitation vector
λ satisfies the following normalization condition:

nocc∑
i=1

λ2
i = 1. (16)

While it is mathematically proven that the maximum number
of the nonzero elements is equal to the number of the occupied
orbitals, only a few dominant excitations are known to usually
contribute to each excited state in usual molecular systems
[30]. In contrast, many excitations are expected to contribute
to plasmonic excitation. To study the collectivity in electronic
excitations, we use the notion of the inverse participation ratio
(IPR) ν∗:

ν∗ = 1∑nocc
i=1 λ4

i

, (17)

which represents the effective number of excitations that
contribute to the excitation vector. For instance, ν∗ = 1 when
only one p-h pair contributes to the excitation, while ν∗ =
nocc when all excitation pairs equivalently contribute (λi =
1/

√
nocc). This notion has so far been used in many research

fields [31–35]. For analysis of the configuration-interaction
singles (CIS) wave functions, Luzanov first employed IPR to
discuss the collectivity in electronic excitations [36].

For LRDFT, the transition density matrix cannot be straight-
forwardly defined owing to the unusual orthonormalization
condition of Eq. (6). Luzanov and Zhikol [37] recently cir-
cumvented this difficulty by transforming the non-Hermitian
eigenvalue problem to the Hermitian one. However, the
transformation employed mixed the p-h and h-p spaces, and
the relationship to the TDA was not necessarily clear. We
alternatively define the pseudo transition density matrices as

T X
i,a = Xia√∑

ia X2
ia

, T Y
i,a = Yia√∑

ia Y 2
ia

, (18)

for p-h and h-p spaces, respectively. The above procedure
for estimating the IPR is simply applicable to these matrices,
and the IPRs (ν∗

X and ν∗
Y ) are separately obtained for p-h and

h-p spaces, respectively. The overall collectivity index n∗ is
calculated by averaging over these IPRs:

n∗ = (ν∗
X)

√∑
ia X2

ia (ν∗
Y )

√∑
ia Y 2

ia . (19)

D. Computational details

To investigate the size- and geometry-dependence of plas-
monic excitations, we studied the photoexcitation of the Nan

(n = 6, 10, and 14) clusters with the ring and linear geometries.
The lengths for all the bonds in the clusters are assumed to be
3.72 Å, being the free-dimer bond length and the same value

as employed by Yan and Gao [23]. Although these geometries
are not necessarily local minima of the clusters in the vacuum,
we employed these structures as prototypes for studying
general aspects of plasmonic excitation without discussing the
detailed electronic structures of the systems. Moreover, recent
advanced experimental techniques to manipulate adsorbate
atoms on solid surfaces enable us to locate sodium atoms
in arbitrary topological arrangements, and thus our numerical
experiment can, in principle, be realized.

The sodium atom is described by the norm-conserving
pseudopotential [38], and only the 3s electron is explicitly
included in the calculations. Three-dimensional uniform grids
are used for the spatial representation, and the local-density
approximation (LDA) [39] is employed for vXC.

III. RESULTS AND DISCUSSION

A. Electronic motion characterizing plasmonic excitation

Figure 1 shows the photoabsorption spectra for the ring
Na6, Na10, and Na14 clusters. Each peak was broadened
using a Gaussian distribution function with full width at half
maximum of 0.1

√
4 ln 2/π eV (∼0.094 eV). By setting this

value, the peak intensity becomes equal to ten times the
transition moment for each peak. For low-lying excitations,
the dimension of the p-h (h-p) excitation space can be largely
reduced without affecting the computational accuracy. The
dimensions employed were 81, 125, and 168 for Na6, Na10,

FIG. 1. (Color online) Photoabsorption spectra for ring Nan

clusters (n = 6, 10, and 14). The color insets illustrate the transition
density distributions for plasmonic excitations.
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and Na14, respectively. In each excitation space, there are
41, 65, and 83 dipole-allowed excitations for Na6, Na10,
and Na14, respectively. However, the photoabsorption spectra
clearly show that only a small number of strong peaks appear.
Although this fact seems to imply the concentration of the
transition moments, it will be shown in Sec. III B that such
a speculation is not always correct. The color insets in
Fig. 1 illustrate the transition-density distributions for some
representative excitations indicated by the gray-shaded areas.
The red and blue colors denote the increase and decrease,
respectively, in the electron density that are different from that
in the ground state. The transition-density distributions for
the lower-energy excitations at 1.57 (Na6), 1.39 (Na10), and
1.15 eV (Na14) show that these excitations cause the dipolar
electronic motion in the weakly confined direction parallel to
the ring plane. On the other hand, the dipolar motion along
the strongly confined direction perpendicular to the ring plane
is induced by the excitations at higher energies of 3.07, 3.09,
and 3.08 eV for Na6, Na10, and Na14, respectively. These are
consistent with the intuition that the motion of more confined
electrons requires large excitation energies. As indicated by
the arrows in the figure, the transition moments for these
excitations grow with increasing cluster size. They can be
assigned to plasmonic excitations. This is another type of
concentration of transition moments as was found by Yan and
Gao [22,23]. Therefore, the two types of transition-moment
concentrations mentioned in the introduction were actually
observed for the Na ring clusters.

Figure 2 shows the photoabsorption spectra for the linear
Na6, Na10, and Na14 clusters. The general features are
qualitatively similar to those for the ring clusters. Only a
small number of peaks have large transition moments, even
though there are 40, 63, and 84 dipole-allowed excitations for
Na6, Na10, and Na14, respectively. The transition moments for
the excitation inducing dipolar electronic motion grow with
increasing cluster size and they are assigned to plasmonic
excitations.

The simple dipolar picture of the motion generally becomes
worse for small particles. In fact, the plasmonic excitations
of the linear Na6 cluster give transition densities more
complicated than the simple dipolar distribution. However,
the deviations from the dipolar distribution are immediately
reduced for the linear Na10 cluster, and this implies that
the electrons in the Na clusters have a strong tendency to
collectively behave like a liquid droplet. Such a droplet picture
has been known to be qualitatively valid for various types of
nuclear matter [40].

B. Collectivity of electronic excitations and two mechanisms
of large transition moments

Let us here quantitatively explain the collectivity of the
plasmonic excitation by introducing the collectivity index n∗
defined by Eq. (19). The indices for the plasmonic excitations
are indicated in Figs. 1 and 2. We take here the case of Na10

and discuss the collectivity of the plasmonic excitations in
detail. A similar discussion is valid for all the sizes of the
clusters. The plasmonic excitations at the higher energies in
both geometries have large values of n∗. The maximum value
of n∗ is five for Na10 because it has 10 valence electrons

FIG. 2. (Color online) Same as Fig. 1 but for linear Nan clusters
(n = 6, 10, and 14).

and five occupied orbitals. Thus, the values of n∗ = 4.99
(ring) and 4.25 (linear) mean that almost all the electron pairs
contribute to the electronic motion induced by the plasmonic
excitations at the higher energies. In contrast, the lower-energy
plasmonic excitations give small values of n∗. In particular, the
lower-energy plasmonic excitation of the linear Na10 cluster
gives n∗ = 1.01, and thus only one p-h (h-p) pair contributes
to the excitation.

The origin of large transition moments is intuitively consid-
ered to be in the collectivity of electronic motion. However, the
lower-energy plasmonic excitation of the linear Na10 cluster
with the large transition moment has a small collectivity index.
Therefore, we need to elucidate the mechanism that leads
to large transition moments. To this end, we calculate the
excitation spectrum by neglecting the interaction between the
individual excitations in LRDFT [Fig. 3(a)] and compare it
with the original LRDFT spectrum [Fig. 3(b)]. In Fig. 3(a),
a strong individual excitation peak appears at 1.44 eV. The
peak shifts toward lower energy (0.74 eV) when including
the interaction between the individual excitations, whereas
its transition moment is not redistributed to other peaks. The
transition density for this individual excitation is shown in
Fig. 4(a). This dipolar motion along the molecular axis of
the linear cluster gives large transition moment because the
charge-transfer distance is long. This is the reason for that
the lower-energy plasmonic excitation has the large transition
moment despite its low collectivity. In this sense, such a

013201-4
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FIG. 3. Spectral change due to the configuration interaction
between individual excitations: (a) Excitation spectrum of the linear
Na10 cluster obtained by neglecting all the off-diagonal elements of
A and B matrices. (b) LRDFT spectrum of the linear Na10 cluster.
The vertical axis shows the transition dipole moment for each peak.

“plasmonic excitation” should be regarded as a long-range
charge transfer excitation.

For the higher-energy plasmonic excitation, the reason for
its large transition moment is completely different from that for
the lower-energy one. We numerically confirmed by inspecting
the eigenvector that the higher-energy plasmonic excitation
mainly consists of five individual excitations at ∼2.36 eV. The
transition densities for these individual excitations are shown
in Fig. 4(b). All the transition densities are delocalized over
the whole spatial region of the cluster and show the dipolar
electronic motion perpendicular to the molecular axis. Since
all of them are related to the one-quantum excitation in the
direction perpendicular to the molecular axis, the individual
excitation energies are nearly degenerate. Moreover, it is easily
understood from these transition densities that the interaction
between these individual excitations are of the same order of

FIG. 4. (Color online) Transition densities for the individual
excitations involved in the plasmonic excitations of the linear Na10

cluster: the plasmonic excitations at (a) 0.74 eV and (b) 3.07 eV.

magnitude. In fact, the TDA matrix A approximately has the
simple structure of

A ∼

⎛
⎜⎜⎜⎜⎜⎝

a b b b b

b a b b b

b b a b b

b b b a b

b b b b a

⎞
⎟⎟⎟⎟⎟⎠

, (20)

where the averaged values of a and b are 2.363 eV and
0.178 eV, respectively. From the structure of this matrix,
the vector (1,1,1,1,1)/

√
5 is immediately found to be the

eigenvector with the eigenvalue of a + 4b. The value of a + 4b

is 3.075 eV and is in good agreement with the actual excitation
energy of 3.070 eV. For this state, the individual transition
moments are constructively superposed by following Eq. (7),
and the transition moment for the high-energy plasmonic
excitation becomes approximately

√
5 times larger than the

value for the individual excitation. The averaged value of
the individual transition moment µ̃ is 2.481 a.u. and then√

5µ̃ becomes 5.548 a.u. The LRDFT value is 5.383 a.u.
and the agreement between them is semiquantitative. More
quantitatively, the contributions from the two atoms on the
edge of the cluster should be removed because they form the
edge-localized mode, as found by Yan, Yuan, and Gao [22].
The analysis of the ring cluster was also made. We have
confirmed that the relationship between the collectivity and the
transition moment for the lower- and higher-energy plasmonic
excitations is explained in the same way as in the linear cluster.

C. Existence of nondipolar collective motions

We have focused on the optically allowed excitations so
far. However, the importance of nondipolar excitations has
recently been recognized in the research field of nano-optics
[41], and thus the existence of nondipolar collective excitations
should be considered in the present plasmonic clusters.
Figure 5 shows the transition densities for the excitations that
have the four largest collectivity indices for the ring Na10 clus-
ter. As clearly shown in this figure, these transition densities

FIG. 5. (Color online) Transition densities for the excitations
with n∗ in the ring Na10 cluster: (a) monopole, (b) dipole, and
(c) quadrupole excitations.
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are delocalized over the whole spatial region of the cluster and
correspond to the monopole, dipole, and quadrupole collective
motions, respectively. It should be emphasized that these
excitations are energetically near-degenerate to each other.
The excitation energies are 3.09 (monopole), 3.16 (dipole),
and 3.08 (quadrupole) eV. Therefore, not only the dipole mode
but also the monopole and quadrupole modes are expected to
play an important role in the resonant energy transfer between
the ring clusters. Let us assume that two ring clusters are
placed nearby. If the resonant light for the dipole plasmon
mode is locally irradiated on the one of these two clusters, the
dipolar electronic oscillation with the frequency corresponding
to the excitation energy is induced in the cluster. By this
local dipole oscillation, not only the dipole but also the other
collective motions must be induced in the neighboring cluster.
In particular, the above modes are collective and energetically
near-degenerate, and the excitation transfer would effectively
occur.

IV. CONCLUSION

We have quantified the plasmonic excitations in small
sodium clusters in terms of collectivity index, which allows us
to study the nature of collective motions of electrons in ring and
linear-chain geometries. We found that sodium nanostructures
generally have plasmonic excitations irrespective of their
geometries. The transition density distribution clearly shows
that the strong peaks are assigned to the dipolar collective

motions. The dipolar motions have three directions, and
the energies of the corresponding plasmonic excitations are
degenerate for a spherical particle. In the present clusters,
the plasmonic excitations split into higher- and lower-energy
modes owing to their lower symmetries. The lower-energy
mode is attributed to the electronic motion along the direction
where the electrons can move through a longer distance. In
this case, the clusters have large transition moments although
the corresponding collectivity indices are small. Therefore,
we regard the lower-energy mode, which was called L-mode
plasmon by Yan, Yuan, and Gao [22], as a long-range charge
transfer excitation. In contrast, the higher-energy plasmonic
excitation is highly collective as a result of equal-strength
interactions among energetically degenerate individual elec-
tronic states. In the vicinity of the higher-energy plasmonic
excitation, we found that nondipolar collective modes exist.
They are expected to play an important role in the interaction
between nanoparticles in the context of nano-optics.
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