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RICCATI DIFFERENTIAL EQUATIONS

WITH ELLIPTIC COEFFICIENTS II

Katsuya Ishizaki1), Ilpo Laine, Shun Shimomura2) and Kazuya Tohge1)

Abstract. We study a Riccati di�erential equation whose coe�cient is expressible
in terms of a special Weierstrass pe-function. We show that all the solutions are
meromorphic, and examine the periodicity of them.

1. Introduction. In our preceding paper [4], we studied the Riccati di�erential
equation

(1.1) w0 + w2 +
1

4
(1�m2)}(0; g3; z) = 0;

where
(1) m is a natural number such that m � 2; m 62 6N = f6n jn 2 Ng;
(2) }(0; g3; z) is the Weierstrass }-function satisfying

(v0)2 = 4v3 � g3; g3 6= 0:

Let }(z) be an arbitrary }-function satisfying (v0)2 = 4v3�g2v�g3; g32�27g23 6= 0:
As was explained in [4, Section1], under a certain condition, if, for various values
of a; an equation of the form w0 +w2 + a}(z) = 0 admits a plenty of meromorphic
solutions, then it is either (1.1) or

(1.2) w0 + w2 +
1

4
(1�m2)}0(z) = 0;

where
(1) m is a natural number such that m � 2; m 62 4N = f4n jn 2 Ng;
(2) }0(z) = }(g2; 0; z) is the Weierstrass }-function satisfying

(1.3) (v0)2 = 4v3 � g2v; g2 6= 0:

Let !01 ; !
0
2 be primitive periods of }0(z) satisfying Im(!02=!

0
1) > 0 (cf. (2.3)).

The main results of this paper are stated as follows.
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Theorem 1.1. All the solutions of (1.2) are meromorphic in the whole complex

plane C :

Theorem 1.2. Suppose that m is even. Then,

(i) every solution of (1.2) is a doubly periodic function with periods (2!01; 2!
0
2);

(ii) there exist exactly two distinct solutions with periods (!01; 2!
0
2) (or with pe-

riods (2!01; !
0
2));

(iii) there exists no solution with periods (!01; !
0
2):

Theorem 1.3. For every odd integer m satisfyingm � 3; the equation (1.2) admits

no periodic solution except a doubly periodic one, which is expressible in the form:

 m(z) =
}00(z)

2}0(z)
+

kX
h=1

2}0(z)}
0
0(z)

}0(z)2 � �m;h
; if m = 8k + 3; k = 0; 1; 2; :::;

 m(z) =
}000 (z)

}00(z)
� }00(z)

2}0(z)
+

kX
h=1

2}0(z)}
0
0(z)

}0(z)2 � �m;h
; if m = 8k + 5; k = 0; 1; 2; :::;

 m(z) =
}000 (z)

}00(z)
+

kX
h=1

2}0(z)}
0
0(z)

}0(z)2 � �m;h
; if m = 8k + 7; k = 0; 1; 2; :::;

 m(z) =
k+1X
h=1

2}0(z)}
0
0(z)

}0(z)2 � �m;h
; if m = 8k + 9; k = 0; 1; 2; :::;

where, for each (m;h); �m;h is some complex constant.

Using the properties of }0(z) explained in Section 2, we prove these results in
Sections 3 and 4. For a related result concerning linear systems with doubly periodic
coe�cients, see [1].

2. Properties of the elliptic function }0(z). We review basic facts concerning
elliptic functions (see [6], [7]). The elliptic function }0(z) = }(g2; 0; z) satis�es
(1.3), which is written in the form

(v0)2 = 4v(v � e1)(v � e2);(2.1)

e1 = g
1=2
2 =2; e2 = �g1=22 =2; e3 = 0; g2 6= 0:

Consider the expression of }0(z) :

(2.2) }0(z) =
1

z2
+

X
(p;q)2Z2

�

�
1

(z � 
p;q)2
� 1


2
p;q

�
; Z2

� = Z2 � f(0; 0)g;

where 
p;q = p!01 + q!02; (p; q) 2 Z2
� constitute the lattice of poles. By (2.1) the

periods !01; !
0
2 of }0(z) may be given by

(2.3) !01 =
p
2g
�1=4
2 "0; !02 = i!01 ; "0 =

Z 0

�1

dtp
t3 � t

:

Then we have
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Proposition 2.1. }0(!
0
j=2) = ej (j = 1; 2); }0(!

0
3=2) = 0; where !03 = !01 + !02 :

Furthermore the Weierstrass �-function

�0(z) =
1

z
+

X
(p;q)2Z2

�

�
1

z � 
p;q
+

1


p;q
+

z


2
p;q

�
; � 00(z) = �}0(z)

has the properties:

�0(z + !0j ) = �0(z) + 2�0j ; j = 1; 2; 3;(2.4)

�0j = �0(!
0
j=2) =

1

!0j=2
+

X
(p;q)2Z2

�

�
1

!0j =2� 
p;q
+

1


p;q
+
!0j =2


2
p;q

�
;(2.5)

�01!
0
2 � �02!

0
1 = �i:(2.6)

Relation (2.6) implies (�01; �
0
2) 6= (0; 0): Observing that �i
p;q = 
q;�p; from (2.3)

and (2.5), we obtain

Proposition 2.2. �01=�
0
2 = �0(!

0
1=2)=�0(!

0
2=2) = i:

Around each lattice pole z = �L = 
p(L);q(L); the Laurent series expansion of
}0(z) is given by the following

Proposition 2.3. For an arbitrary pole z = �L of }0(z);

}0(z) =
1X
n=0

b4n(z � �L)
4n�2; b0 = 1;

around z = �L:

Proof. It su�cies to consider the case where �L = 0:We put }0(z) =
P1

k=0 bkz
k�2;

b0 = 1; near z = 0: Then �}0(iz) =
P1

k=0 i
kbkz

k�2: Since �i
p;q = 
q;�p; we have
}0(z) = �}0(iz); which implies bk = 0 for k 62 4N : �

Let $0(z) = }0(z)
1=2 be a branch such that limz!0 z$0(z) = 1: Then $0(z) is

a doubly periodic function with the periods (2!01; !
0
3); which has two simple poles

with residues 1 and �1 in its period parallelogram. A simple computation leads us
to the following.

Proposition 2.4. The functions $0(z) and W0(z) = 2$00(z) = }00(z)}0(z)
�1=2

satisfy

(2.7) $00(z)
2 = $0(z)

4 � g2=4;

and

(2.8) W 00
0 (z) = 6}0(z)W0(z);

respectively.
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3. Proofs of Theorems 1.1 and 1.2. Consider the linear di�erential equation

(3.1) u00 +
1�m2

4
}0(z)u = 0;

which is associated with (1.2).

Lemma 3.1. Let z = �L be an arbitrary lattice pole of }0(z): Then (3.1) admits

linearly independent solutions expressed in the form

U1(z) = (z � �L)
(1�m)=2

1X
j=0

�
(1)
j (z � �L)

4j; �
(1)
0 = 1;

U2(z) = (z � �L)
(1+m)=2

1X
j=0

�
(2)
j (z � �L)

4j; �
(2)
0 = 1;

around z = �L:

Proof. Around z = �L; we have

}0(z) = (z � �L)
�2P0((z � �L)

4)

with

P0(t) =
1X
n=0

b4nt
n; b0 = 1

(cf. Proposition 2.3). Consider the equation

(3.2) t2
d2u

dt2
+

3

4
t
du

dt
+

1�m2

64
P0(t)u = 0

around the regular singular point t = 0: The roots �1 = (1�m)=8 and �2 = (1+m)=8
of the indicial equation

�(�� 1) +
3

4
�+

1�m2

64
= 0

satisfy �2 � �1 = m=4 62 Z: Hence, (3.2) admits local solutions of the form

'1(t) = t(1�m)=8
1X
j=0

�
(1)
j tj ; '2(t) = t(1+m)=8

1X
j=0

�
(2)
j tj ; �

(1)
0 = �

(2)
0 = 1;

around t = 0 (see [2], [3]). By the transformation t = (z � �L)
4; (3.2) becomes

(3.1) admitting the solutions U1(z) = '1((z � �L)
4); U2(z) = '2((z � �L)

4): This
completes the proof. �

An arbitrary solution w(z) of (1.2) is written in the form w(z) = U 0(z)=U(z);
where U(z) is a solution of (3.1). By Lemma 3.1, w(z) is meromorphic in the whole
complex plane C ; which completes the proof of Theorem 1.1.

Theorem 1.2 is proved by the same argument as that of the proof of [4, Theorem
3.1].
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4. Proof of Theorem 1.3.

4.1. Case m = 8k + 3. When m = 8k + 3; k = 0; 1; 2; :::; we write (3.1) in the
form

(4.1) L�(u) = 0; L� = (d=dz)2 � (4k + 1)(4k + 2)}0(z):

In what follows, }0(z)
1=2 denotes the branch given in Section 2. Then we have

Proposition 4.1. For every k 2 N [ f0g; (4.1) admits a doubly periodic solution

of the form

Xm(z) = }0(z)
1=2

kY
h=1

(}0(z)
2 � �m;h)

(m = 8k + 3) with periods (2!01; !
0
3):

Proof. Let �
1=2
0 be the period parallelogram of }0(z)

1=2 with vertices (�!01 �
!03)=2; (3!

0
1�!03)=2; (�!01+!03)=2 and (3!01+!

0
3)=2: The poles of }0(z)

1=2 in �
1=2
0

are z = 0 and z = !01; whose residues are 1 and �1; respectively. By Proposition
2.3, for every q 2 N [ f0g; we have

(4.2.1) }0(z)
1=2}0(z)

q = z�2q�1
1X
n=0

b
(q)
4n z

4n; b
(q)
0 = 1

around z = 0; and

(4.2.2) }0(z)
1=2}0(z)

q = �(z � !01)
�2q�1

1X
n=0

b
(q)
4n (z � !01)

4n

around z = !01 : Then, for � = 0; 1; :::; k� 1; k;

L�(}0(z)
1=2}0(z)

2�) = z�4��3
1X
n=0

B�;k
4n z

4n

= B�;k
0 z�4��3 +B�;k

4 z�4�+1 + � � �+ B�;k
4� z

�3 + O(z);

where B�;k
0 = (4�+1)(4�+2)�(4k+1)(4k+2): Observing that Bk;k

0 = 0; B�;k
0 6= 0

(� 6= k); we can choose Ck;n 2 C ; n = 0; 1; :::; k; satisfying Ck;k = 1 in such a way
that

L�
�
}0(z)

1=2
kX

n=0

Ck;n}0(z)
2n
�
= O(z)

near z = 0: Then, by (4.2.1) and (4.2.2),

L�
�
}0(z)

1=2
kX

n=0

Ck;n}0(z)
2n
�
= O(z � !01)
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also holds near z = !01: By this fact and the Liouville theorem, we conclude that

Xm(z) = }0(z)
1=2

kX
n=0

Ck;n}0(z)
2n = }0(z)

1=2
kY

h=1

(}0(z)
2 � �m;h)

satis�es
L�(Xm(z)) � 0;

which implies the proposition. �

It is easy to see that

(4.3)  m(z) =
X 0
m(z)

Xm(z)
=

}00(z)

2}0(z)
+

kX
h=1

2}0(z)}
0
0(z)

}0(z)2 � �m;h

is a solution of (1.2).
In order to verify that there exists no periodic solution of (1.2) other than  m(z);

we examine another solution of (4.1). By the uniqueness of the solution of an initial
value problem associated with (4.1), every zero of Xm(z) is simple. Hence each
constant �m;h satis�es �m;h 6= 0; �m;h 6= �m;i for i 6= h: It is easy to see that all
zeros are located symmetrically with respect to z = 0: Furthermore, Xm(z)

2 is a
doubly periodic function with periods (!01; !

0
2): It follows from these facts and the

Liouville theorem, that

1

Xm(z)2
=

1

2

X
�2Z

1

X 0
m(�)

2

�
}0(z � �) + }0(z + �)� 2}0(�)

�
;

where Z denotes the set of all zeros of Xm(z) in

(4.4) �0 =
�
s1!

0
1 + s2!

0
2

�� �1=2 < s1 � 1=2; �1=2 < s2 � 1=2
	
:

Then we have another solution of (4.1) written in the form

Ym(z) = Xm(z)

Z z

z0

dt

Xm(t)2
= �Xm(z)

2

X
�2Z

1

X 0
m(�)

2

�
�0(z��)+�0(z+�)+2}0(�)z

�

(see Section 2). For the linearly independent solutions Xm(z) and Ym(z); we have
the Floquet matrices

Mj =

�
1 �j
0 1

�
; �j = �!0j

X
�2Z

}0(�)

X 0
m(�)

2
� 2�0j

X
�2Z

1

X 0
m(�)

2
(j = 1; 2);

satisfying [!0j ](Xm(z); Ym(z)) = (Xm(z); Ym(z))Mj ; where [!
0
j ] denotes the analytic

continuation along the segment [z; z + !0j ] (cf. Sections 2 and [4, Section3]). Note
that Z is written in the form

Z = Z0 [
� k[
h=1

Zh
�

with

Z0 =
�
� 2 Z �� }0(�) = 0

	
;

Zh =
���h;�;��h;+ 2 Z �� }0(��h;�) = ��1=2m;h; }0(��h;+) = �

1=2
m;h

	
:
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Lemma 4.2. We have X
�2Z

}0(�)

X 0
m(�)

2
= 0:

Proof. Since every zero of Xm(z) is simple,

(4.5)
X
�2Z0

}0(�)

X 0
m(�)

2
= 0:

Observe that

X 0
m(�h;�)

2 = }0(�h;�) � 4}00(�h;�)2}0(�h;�)2
Y
q 6=h

�
}0(�h;�)

2 � �m;q

�2

= 4}0(�h;�)
4
�
4}0(�h;�)

2 � g2
� Y
q 6=h

�
}0(�h;�)

2 � �m;q

�2

= 4�2m;h(4�m;h � g2)
Y
q 6=h

�
�m;h � �m;q

�2
= �h 6= 0;

and that
X 0
m(��h;�)2 = �h 6= 0:

Hence we have

(4.6)
X
�2Zh

}0(�)

X 0
m(�)

2

= ��1h

��
}0(�h;�) + }0(�h;+)

�
+
�
}0(��h;�) + }0(��h;+)

��
= 0:

From (4.5) and (4.6), the lemma immediately follows. �

By Lemma 4.2, we have �j = �2�0j
P

�2Z X
0
m(�)

�2 (j = 1; 2); which satisfy
(�1; �2) 6= (0; 0): Indeed, if �1 = �2 = 0; then (4.1) admits a nontrivial doubly
periodic solution which vanishes at each pole of }0(z); contradicting the Liouville
theorem. Let � be the ratio

� =

�
�1=�2; if �2 6= 0,

0; if �2 = 0.

Now, we note the following criteria, which is proved by the same way as in the
proof of [4, Proposition 4.5].

Lemma 4.3. If � 62 Q ; then there exists no periodic solution of (1.2) other than

(4.3). If � 2 Q ; then every solution of (1.2) is purely simply periodic.

Since
P

�2Z X
0
m(�)

�2 6= 0; using Proposition 2.2, we have

(4.7) � = �01=�
0
2 = i:

Hence, by Lemma 4.3, there exists no periodic solution other than (4.3).
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4.2. Case m = 8k + 7. When m = 8k + 7; k = 0; 1; 2; :::; we can construct a
solution of (3.1) expressible in the form

~Xm(z) = }00(z)
�
}0(z)

2k +
k�1X
n=0

~Cn}0(z)
2n
�
= }00(z)

kY
h=1

�
}0(z)

2 � �m;h

�
;

by an argument analogous to that for the case m = 8k+ 3 (see also [4, Section 4]).
Then

(4.8)  m(z) =
~X 0
m(z)

~Xm(z)
=
}000(z)

}00(z)
+

kX
h=1

2}0(z)}
0
0(z)

}0(z)2 � �m;h

is a periodic solution of (1.2). By the same argument as in Section 4.1, we obtain
the Floquet matrices

~Mj =

�
1 ~�j
0 1

�
; ~�j = �!0j

X
�2 ~Z

}0(�)
~X 0
m(�)

2
� 2�0j

X
�2 ~Z

1
~X 0
m(�)

2
; (j = 1; 2);

where ~Z denotes the set of all zeros of ~Xm(z) in �0 (cf. (4.4)). Decompose the set
~Z into

~Z = ~Z 0 [
� k[
h=1

~Zh
�
;(4.9)

~Z 0 =
�
�
�� }00(�) = 0

	
=
�
!01=2; !

0
2=2; !

0
3=2
	
;

~Zh =
�
�
�� }0(�)2 = �m;h

	
:

Using the formulas

}0(!
0
1=2) =g

1=2
2 =2; }0(!

0
2=2) = �g1=22 =2; }0(!

0
3=2) = 0;

~X 0
m(!

0
j=2)

2 = }000(!
0
j=2)

2
kY

h=1

�
}0(!

0
j=2)

2 � �m;h

�2

= g22

kY
h=1

(g2=4� �m;h)
2 (j = 1; 2);

we have

(4.10)
X
�2 ~Z0

}0(�)
~X 0
m(�)

2
= 0:

Furthermore, by the same argument as in the proof of Lemma 4.2, we have

(4.11)
X
�2 ~Zh

}0(�)
~X 0
m(�)

2
= 0 (h = 1; :::; k):

From (4.9), (4.10), (4.11) and Proposition 2.2, it follows that ~� = ~�1=~�2 = i: Hence,
applying Lemma 4.3, we conclude that there exists no periodic solution of (1.2)
other than (4.8).
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4.3. Cases m = 8k + 5 and m = 8k + 9. When m = 8k + 5; (3.1) is written in
the form

(4.12) Lk(u) = 0; Lk = (d=dz)2 � (4k + 2)(4k + 3)}0(z):

Then we have

Proposition 4.4. For every k = 0; 1; 2; :::; (4.12) admits a solution expressed as

(4.13) Wk(z) = }00(z)}0(z)
�1=2

kX
n=0

~Ck;n}0(z)
2n

with ~Ck;k = 1:

Proof. We show the conclusion by induction on k: By (2.8) the function W0(z) =
}00(z)}0(z)

�1=2 satis�es (4.12) with k = 0: Suppose that, for k = 0; 1; :::; � � 1;
(4.12) admits a solution expressed as (4.13). By Proposition 4.1, for suitably chosen
constants Cn; n = 0; 1; :::; �; the function

X(z) = }0(z)
1=2

�X
n=0

Cn}0(z)
2n; C� = 1

satis�es

(4.14) X 00(z) = (4�+ 1)(4�+ 2)}0(z)X(z):

Di�erentiate (4.14) and put w�(z) = X 0(z): Observing that

}00(z)

}0(z)
X(z)� w�(z)

2�+ 1=2
= }00(z)}0(z)

�1=2
��1X
n=0

C 0n}0(z)
2n; C 0n 2 C ;

we have

L�(w�(z)) = (4�+ 2)(4�+ 3)}0(z)

�
}00(z)}0(z)

�1=2
��1X
n=0

C 00n}0(z)
2n

�
; C 00n 2 C :

By supposition,

L�
�
w�(z) + ��1W��1(z)

�
= L�(w�(z)) + ��1��;��1}0(z)W��1(z);

��;��1 = (4�+ 2)(4�+ 3)� (4�� 2)(4�� 1) 6= 0:

Hence, if ��1 = �(4�+ 2)(4�+ 3)C 00��1=��;��1; then

L�
�
w�(z)+��1W��1(z)

�
= (4�+2)(4�+3)}0(z)

�
}00(z)}0(z)

�1=2
��2X
n=0

C(3)
n }0(z)

2n

�
:
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Repeating this procedure, we may choose j (j = 0; :::; �� 1) in such a way that

W�(z) = w�(z) +
P��1

j=0 jWj(z) satis�es (4.12) with k = �: Thus the proposition
is veri�ed. �

We can write (4.13) in the form

Wk(z) = }00(z)}0(z)
�1=2

kY
h=1

(}0(z)
2 � �m;h);

which yields the solution  m(z) =W 0
k(z)=Wk(z) of (1.2) with m = 8k + 5:

Next consider the case where m = 8k + 9; k = 0; 1; 2; :::: It is easy to see that
V0(z) = 6}0(z)

2 � 9g2=10 satis�es

V 000 (z) = 20}0(z)V0(z);

which means that V0(z) is a solution of (3.1) with m = 9: Using this fact, from the
solution of (3.1) with m = 8k + 7 given in Section 4.2, we can derive a solution of
(3.1) with m = 8k + 9 written in the form

Vk(z) =
k+1Y
h=1

(}0(z)
2 � �m;h);

by the same argument as in the proof of Proposition 4.4. Then,  m(z) = V 0k(z)=Vk(z)
is a doubly periodic solution of (1.2) with m = 8k + 9: Furthermore, in both cases
m = 8k + 5 and m = 8k + 9; we can also verify the non-existence of periodic solu-
tions of (1.2) other than  m(z) by the same way as in Section 4.1. This completes
the proof.
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