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Abstract. The study of microhydrodynamic processes have not only practical significance, but 

also have a wide field for theoretical approaches and numerical investigation. The amount of 

accumulated data is large and growing, and allows us to consider the described problem for 

verification and validation numerical methods and algorithms for capillary flows with a free 

surface simulation. The feature of the process is the droplet pinning on cylindrical substrate 

with a cone cavity. The article is concerned with a numerical investigation of constrained 

oscillation of a liquid drop on a substrate which harmonically oscillates. The discretized form 

of equation of indicator function advection, after implementing the artificial compression term, 

leads to cumulative errors of capillary forces due to the unstable calculation of geometric 

characteristics of the interface surface. The algorithm for computing capillary term of the 

volume forces is proposed; including iterative regularization when gradient and divergence 

discrete operators is computed. 

1.  Introduction 

Understanding multiphase flow at low Weber numbers is of considerable importance in a variety of 

environmental, industrial and engineering applications such as atomization of the fuel, contaminant 

cleanup, fluid absorption and separation in porous media and many others. However, accurate 

numerical simulation of such flows is a tricky computational problem when interfacial tension effects 

become dominant.  

Mesh-based numerical methods are conventionally considered as the preferred approach for most 

applications, however, is the need for an algorithm to determine the shape of interface boundary and 

its evolution with time.  

One of the widespread approaches to solve the investigating problem is representing a bulk as a 

immiscible incompressible two phase mixture described by Navier–Stokes equations with the dynamic 

equilibrium condition at the interface and subsequent application algorithm, that represents the 

interface implicitly by marking the fluids on both sides of the interface, using an scalar indicator 

function such as a volume fraction 𝛼 (Volume-Of-Fluid method) [1]. 

The main advantage of this approach is that it does not require complicated interface tracking 

algorithms. This is important for modeling two-phase flows through complex geometries with large 
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interface motions and interactions. The surface tension force and the contact angle effect arise from 

calculation of interface normal vector 𝐧𝑠 = ∇𝛼 |∇𝛼|⁄  and curvature 𝐾 = ∇ ∙ 𝐧𝑠. 

The prediction of a liquid droplet natural frequencies and a free surface shapes under constrained 

oscillations are extensively studied by analytical [2], numerical [3] and experimental [4] methods. 

Consider these problems as the convenient testing tool of verification and validation numerical 

methods and algorithms for capillary simulation of the flows with a free surface. 

Next we consider a constrained oscillation of a liquid drop on a cylindrical substrate with radius 

𝑅 = 4 mm which harmonically oscillates at vertical plane 𝑥𝑂𝑦 (figure 1). Displacement along axe of 

symmetry 𝑂𝑦 is defined by the harmonic law ℎ = 𝐴 sin 𝜔𝑡. The feature of the process is the droplet 

pinning on substrate with a cone cavity with cone-angle 𝛽 = 140°. 

 

 

Figure 1. Geometry of the problem: small drop of 

distilled water (1) located on harmonically 

oscillated substrate (2) in air (3) environment. 

 

2.  Mathematical model and numerical method 

The equations of motion for an isothermal, immiscible incompressible two-phase mixture flow of 

Newtonian fluids can be written using a single-fluid continuum approach as follows: 

 
𝜕𝜌𝐮

𝜕𝑡
+  ∇ ∙ (𝜌𝐮𝐮) =  −∇𝑝 + ∇ ∙ 𝝉 + 𝐟sv, ∇ ∙ 𝐮 = 0, (1) 

where u is velocity vector, total pressure p is sum of dynamic and hydrostatic pressure, 𝛕 =
𝜇(∇𝑢 + (∇𝑢)𝑇) is viscous stress tensor, 𝐟sv is surface tension force per unit volume. The density and 

viscosity are defined by 

 𝜌 = 𝛼𝜌l + (1 − 𝛼)𝜌g, 𝜇 = 𝛼𝜇l + (1 − 𝛼)𝜇g, (2) 

where subscripts “l” and “g” denotes liquid (𝛼 = 1) and gas (𝛼 = 0) phase respectively. The scalar 

indicator function 𝛼 is evolved with an advection equation of the conservative form: 

 
𝜕𝛼

𝜕𝑡
+  ∇ ∙ (𝛼𝐮) = 0. (3) 

Volume-Of-Fluid method (VOF), defined by equations (1)-(3) is mass conservative, 

computationally efficient and flexible for treating complex interface shapes. Therefore, the VOF-

method is a popular and powerful tool for the direct numerical simulation of immiscible two-phase 

flow. 

 

2.1.  Advection of indicator function 

By its definition, the indicator function has the form of a step function in the continuum limit, while 

numerical approximation of convective terms in equations (1), (3) leads to smear function jump. Let 

us distinguish among the others two general approaches to deal with this problem. One of them is 

using low-dissipative second order scheme with Van-Leer limiter for approximation of convective 

terms, the other is an introduction of artificial compression term.  

The last approach leads to the following form of advection equation (3): 

 
𝜕𝛼

𝜕𝑡
+  ∇ ∙ (𝛼𝐮) + ∇ ∙ (𝛼(1 − 𝛼)𝐮r) = 0, (4) 
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where 𝐮r is a compression velocity, the value of which is based on the scaled maximum fluid velocity 

magnitude in the transition region. 

 

2.2.  Calculation of interface curvature and normal vector 

The solution of equation (4) updates the indicator function in such a way that the interface remains as 

sharp as possible. The reverse side of this is cumulative errors of capillary forces due to the unstable 

calculation of the normal vector and interface curvature.  

For more accurate and stable calculation of the normal in cells near the interface, we first use 

smoothing of the indicator function procedure [5]. This is numerically done using the following 

relationship: 

 𝛼s
𝑖+1 = 𝐶fc〈〈𝛼s

𝑖〉f〉c + (1 − 𝐶fc)𝛼s
𝑖,   𝛼s

0 = 𝛼, 𝑖 = 0,1, ⋯ , 𝑁 (5) 

where the first operator 〈∙〉f means that the field values interpolated from the cell centers to the face 

centers and the second operator 〈∙〉c means that the field values at cell centers calculated by averaging 

values at face centers. A value of 𝐶fc = 0.5 and 𝑁 = 2 is used in present simulations. 

The smoothed indicator function 𝛼s is then used to obtain the interface normal vectors 𝐧s =
∇𝛼s |∇𝛼s|⁄  at cell centers. The next step is to calculate interface curvature 𝐾 = ∇ ∙ 𝐧𝑠. In accordance 

with the control volume method, the divergence of the vector function is calculated as follows: 

∇ ∙ 𝐧s =
1

𝑉𝑖
∑ [

∇𝛼𝑠

|∇𝛼𝑠|
]

𝑓

∙

𝑓∈𝑆𝑖

𝐒𝑓 , 

where for each grid block i, 𝑉𝑖 is its volume, 𝑆𝑖 is set of its faces, 𝐒𝑓 is the outward vector area of face.  

Direct calculation of gradient ∇𝛼s with subsequent normalization leads to nonzero vectors 𝐧s 

outside the transition region. To deal with this problem, an extra filtration procedure is used for 

dummy face flux 𝜓 = ∇𝛼𝑠 ∙ 𝐒. This filtering will explicitly set the dummy fluxes 𝜓 to zero when their 

magnitude is of the order of the numerical errors. The filtered flux reads: 

 �̅� = 𝜓 − max (min (𝜓, 𝜓∗) , −𝜓∗), (6) 

where 𝜓∗ is a threshold value below which flux �̅� is set to zero. The threshold value is chosen as 

𝜓∗ = 𝐶𝜓|𝐒𝑓||∇𝛼𝑠|̅̅ ̅̅ ̅̅ ̅
𝑓, where |∇𝛼𝑠|̅̅ ̅̅ ̅̅ ̅

𝑓 is the average gradient magnitude over all faces where they are 

non-zero. The filtering coefficient should be chosen sufficiently small. In our simulations, we use 

𝐶𝜓 = 0.01 ÷ 0.03. 

Once the interface curvature is computed, we smooth the calculated value in the direction normal to 

the interface, similar to that suggested in [6]. 

3.  Results and discussion 

First, we simulate a three-dimensional hemispherical water drop with a radius 𝑅 = 3.5 mm on 

horizontal plane with contact angle 𝜃 = 90°. The computational domain with dimensions 4𝑅 × 4𝑅 × 

 

Figure 2. Calculated drop height 𝐻𝐷: 1- 

𝐶𝜓 = 0.05; 2 - 𝐶𝜓 = 0.01; 3 - without any 

filtration and smoothing 𝐶fc = 𝐶𝜓 = 0. 
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2𝑅 is discretized using a uniform Cartesian grid with a cell size 𝛿𝐱 = 0.05𝑅. At the time 𝑡 = 0 

volume gravity force is applied and the drop begins to oscillate, tending to the equilibrium form. 

Figure 2 shows the dynamics of a drop height depending on the parameters of smoothing (5) and 

filtration (6). One can see that more aggressive filtering practically does not accelerate convergence, 

but leads to underestimation of the drop height with respect to its theoretical value (2.8mm in 

accordance with [2]). The use of a low-dissipative numerical scheme for solving equation (4) without 

filtering and smoothing leads to the excitation of continuous solution oscillations. 

 Next, we consider a three-dimensional droplet of volume 87μl positioned on a cylindrical substrate 

as described above (figure 1). For this case, we carried out both an experimental study and numerical 

simulation. 

The experiments were conducted with the use of a facility the detailed description of which is 

presented in [7]. The low-frequency vibrations of the substrate were generated by the speaker which 

was used as an electromechanical transducer. The vibrations of the speaker diaphragm were generated 

by alternating voltage supplied to the speaker coil by the amplifier of the signals of the signal 

generator.  

The observed oscillation processes were recorded by digital camera Canon EOS 650D. The scene 

was lit by light emitting-diode lamps that were synchronized with the signal generator to achieve a 

stroboscopic effect. In the experiment, zonal mode (4.0) (figure 3, b, e) and tesseral mode (3,1) (figure 

4, b, e) was obtained in the excitation frequency range from 38Hz to 45Hz. In the numerical 

experiments, the value of the substrate oscillation frequency was 40Hz. 

Computational block-structured grid was generated by rotating an 2-D flat grid around the axe of 

symmetry to become a three-dimensional grid containing 1 752 500 hexagonal cells. Let us note that 

the final 3-D grid is symmetrical about the axis of rotation 𝑂𝑦, ensuring that the computed asymmetric 

flow comes from the physics and not an asymmetric grid topology.  

It should be noted that in the numerical experiment it is necessary to initially introduce small 

asymmetry in the forcing vibrations of the substrate to achieve the non-axisymmetric (tesseral) mode 

of the drop oscillations.  

  
                         (a)                                                  (b) (c) 

 
 

                         (d)                                                  (e) (f) 

Figure 3. .Zonal oscillation mode (4,0). Calculated (a), (d) and observed (b), (e) free surface shape of 

the drop jointly with magnitude of the Umov–Poynting vector field (c), (e); when the phase of the 

oscillation (a)-(c) 𝜑 = 0, (d)-(f) 𝜑 = 𝜋. 
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Both the experimental and numerical drops experienced a similar free surface shapes (figures 3, 4) 

and close values of maximum and minimum drop heights 𝐻𝐷 (table 1). Drop height was measured 

from the top cross-section of the substrate. 

For a more thorough analysis of the numerical solution, the Umov–Poynting vector field was 

constructed. The Umov–Poynting vector 𝐒 = 𝐮(𝑝 + 𝜌𝐮𝐮/2) describes total energy flux in liquid. 

Figure 3, c, f and figure 4, c, f shows magnitude of the energy flux in the corresponding phase of 

oscillation. One can see that, for both zonal and tesseral modes, the most intense energy flow occurs at 

the top part of the drop near the interface surface. 

Despite the pinning of the drop, the low-frequency eigenforms obtained in the experiment and 

reproduced by the numerical simulation are close to those shown in [8]. The developed numerical 

scheme allows to obtaining a detailed structure of microflows in an oscillating drop and contribution 

of a different mechanisms to the transition from one mode to another.  

 

Table 1. Comparison of numerical values of 𝐻𝐷 with experimental data. 

 zonal mode (4,0) tesseral mode (3,1) 

 max 𝐻𝐷, mm min 𝐻𝐷, mm max 𝐻𝐷, mm min 𝐻𝐷, mm 

Numerical results 3.72 1.81 3.25 1.95 

Experimental data 3.70 1.78 3.23 1.91 
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Figure 4. Tesseral oscillation mode (3,1). Calculated (a), (d) and observed (b), (e) free surface shape 

of the drop jointly with magnitude of the Umov–Poynting vector field (c), (e); when the phase of the 

oscillation (a)-(c) 𝜑 = 0, (d)-(f) 𝜑 = 𝜋. 
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