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Abstract. The iterative method of Schwarz domain decomposition (DDS) was used as a 

dynamic contact algorithm for two and more contacting 3D bodies allowing the consideration 

of the solution of the stress-strain state problem in the standard statement for each of the 

contacting body and the high-level parallelization of the solution process. According to the 

offered iteration algorithm, two steps are performed in each iteration, where the contact 

conditions for the displacement and stresses are fulfilled in turn for the nodes on the contact 

surface. The specific feature of the realization of the dynamic contact problem was the 

combination of the iteration procedures for the refinement of the contact problem solution 

according to the Newton-Raphson algorithm with the iterations of the DDS method. As the test 

calculation results have shown, the use of the Schwarz contact algorithm and the HHT-𝛼 

scheme in combination with the mass redistribution method on the contact boundary is a 

reliable, stable and sufficiently accurate way for the numerical integration of the contact 

problems at impact interaction. Finally, accuracy of the proposed method is verified by a 

conservation of momentum through three contact examples. 

1. Introduction 

In the case of dynamic contact problems, the using of the classical scheme of step-by-step time 

integration becomes complicated because the accurate fulfillment of the boundary conditions of the 

contact, when Newmark implicit scheme for time integration is applied, leads to unphysical 

oscillations at the significant deviation of the total energy in a system. The appearance of such 

oscillations is mainly connected with that, when the standard approximation of the mass matrix is 

used, all the nodes, including the nodes on the contact surface, are thought to have their own mass 

which contributes into the total energy of the system. At the point of time corresponding to the contact 

interaction, the nodes velocity on the interaction surface is zero and their kinetic energy is zero as 

well; this results in the redistribution of the energy contributions into the total energy of the system 

leading to considerable unphysical numerical fluctuations. 

The conservative properties of the schemes are preserved only for the linear elasticity problem with 

a constant contact surface, whereas, for the case of the varying contact boundary, the appearance of a 

new node in the contact area decreases the energy of the discrete system, and the node departure from 

the contact increases the energy. 

http://creativecommons.org/licenses/by/3.0
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The effective methods for solving 3D dynamic contact problems are characterized by the chosen 

scheme of the numerical time-integration which in much determines the presence of parasitic 

oscillations due to the impossibility of the sufficiently accurate reproduction of the contribution of the 

high-frequency forms of oscillations into the solution of the dynamic contact problem; the 

conservation of the total energy of the system of contacting bodies; the stability of solution. 

One of the ways to exclude parasitic oscillations in the contact region is the use of dissipative 

schemes. As the computing practice shows, it is effective to use generalized implicit methods based on 

Newmark scheme such as Hilber-Hughes-Taylor (HHT-𝛼) scheme [1], which is unconditionally 

stable, has the second order accuracy and is dissipative for high frequencies. However, the use of the 

above scheme for the considered mathematical model of the impact interaction has shown that the 

scheme is unstable. 

The alternative approach for preventing contact oscillations is also the mass redistribution method  

on the contact boundary [2]. The method can be summarized as follows: the mass of nodes in the 

contact area is nullified and, as a result, the inertia characteristics of the nodes are excluded. The 

method significantly stabilizes an unknown contact boundary and can be used in combination with any 

numerical schemes. 

In the present paper, the iterative method of Schwarz domain decomposition (DDS) [3] was used as 

a dynamic contact algorithm [4, 5] for two and more contacting 3D bodies allowing the consideration 

of the solution of the stress-strain state problem in the standard statement for each of the contacting 

body and the high-level parallelization of the solution process. According to the offered iteration 

algorithm, two steps are performed in each iteration, where the contact conditions for the displacement 

and stresses are fulfilled in turn for the nodes on the contact surface. The specific feature of the 

realization of the dynamic contact problem was the combination of the iteration procedures for the 

refinement of the contact problem solution according to the Newton-Raphson algorithm with the 

iterations of the DDS method. As the test calculation results have shown, the use of the Schwarz 

contact algorithm and the HHT-𝛼 scheme in combination with the mass redistribution method on the 

contact boundary is a reliable, stable and sufficiently accurate way for the numerical integration of the 

contact problems at impact interaction. 

Finally, accuracy of the proposed method is verified by a conservation of momentum through three 

contact examples. The results of the DDS method are validated by comparison with the experimental 

results of direct central collisions of three identical elastic spheres. In this case, two successive impacts 

were observed among three spheres. The DDS method results are agreed very well with the 

experimental results. 

In the following example, five steel spheres arranged with a normal gap consistently collide. The 

initial velocity of the first body was half meter per second. Eight conditions of the contract were used. 

The results showed that there is no rotation of the spheres and the contact algorithm ensures high 

accuracy of the results at large time intervals. The difference in the maximum values of the contact 

force for each pair contact is two percent. 

Also, in this paper we present the validation of the three-dimensional finite-element model of a 

human head. This model is built with the using of voxel data and the computing algorithm which 

includes the solution of the contact problem by Schwarz domain decomposition method and the 

generalized Newmark implicit dissipative scheme with the mass redistribution on the contact 

boundary. 

Finally, three examples were demonstrated to verify the accuracy of results using the proposed 

method. 

2. Dynamic contact of deformed bodies 

We consider contact problem of 𝑁𝑏 homogeneous and isotropic linearly-elastic bodies that occupy the 

domains Ω(1), Ω(2), … , Ω(𝑁𝑏). These domains are bounded by the surfaces δΩ
(𝑘), 𝑘 ∈ [1,  𝑁𝑏], which 

are correspond to the undeformed state of the bodies. We denote the surfaces that bound the bodies Ω𝑘 
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at time 𝑡 ∈  [0, 𝑇] as Γ(𝑘) = δΩ
(𝑘)

. Contact of bodies occurs over a part of these surfaces which we 

call contact areas Γ𝐶 ⊂ ⋃𝑘=1
𝑁𝑏  Γ(𝑘). We assume that contact areas change during deformation. 

We will consider frictionless contact problem without adhesion. We use the notation 𝜈 and 𝜏 for the 

normal and tangential parts of the displacement and stress components on the contact boundary Γ𝐶. 

For the case of small increments of displacements, the correspondence bodies at time 𝑡 between the 

points on Γ𝐶
(𝑘)

 is given by the following overlap function: 

  𝛿𝑡 (𝑥) = 𝛿0(𝑥) + 𝐮𝑛
(𝑘)

  (1) 

Note that 𝛿𝑡 (𝑥) is negative when there is no contact and positive in the case of bodies overlapping. 

We assume that for each of interacting bodies the equilibrium equations, Hooke's law and Cauchy's 

relations are fulfilled: 

 𝐝𝐢𝐯𝛔 + 𝐟 = 𝜌𝐮̈, 𝛔 = 𝐃: 𝛆, 𝛆 =
1

2
(∇𝐮 + (∇𝐮)𝑇), in Ω𝑘 × [0, 𝑇], 𝑘 ∈ [1, 𝑁𝑏]   (2) 

On the boundaries of bodies kinematic and static boundary conditions are applied: 

 𝐮 = 0 on Γ𝑢 × [0, 𝑇], 𝛔𝐧 = 𝐩 on Γ𝜎 × [0, 𝑇] (3) 

The initial displacements and velocities are given: 

 𝐮(𝑥, 0) = 0, 𝐮̇(𝑥, 0) = 𝐯0 in  Ω𝑘 × [0,0], 𝑘 ∈ [1, 𝑁𝑏]  (4) 

We use the overlapping function (1) to specify the conditions on the contact surface: 

𝛿𝑡 (𝑥)  ≤ 0, 𝜎𝑣
(𝑘)

≤ 0, 𝛿𝑡 (𝑥) 𝜎𝑣
(𝑘)

= 0, 𝜎𝜏
(𝑘)

= 0 on Γ(𝑖) ∩ Γ
(𝑗) ⊂ Γ𝐶 × [0, 𝑇], 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ [1, 𝑁𝑏] (5) 

The first condition in (5) provides non-penetration, the second is compressive contact stresses, the 

latter is the compatibility condition when normal stresses are nonzero and there is no overlap but the 

contact exists. In many cases, the overlap between the surface and the contact boundary is considered 

as part of the known data determined by the geometry of the bodies. 

3. Mass redistribution method and implicit timing scheme 

In the model of dynamic contact interaction we consider numerical realization of contact conditions by 

using step-by-step analysis of the loading process and changing of contact conditions. Step-by-step 

analysis allows to correct the discrete contact boundary depending on the behaviour of interacting 

bodies, current state of the contact zone, level of the stress-strain state, etc. The step-to-step changing 

represents the contact nodes inclusion/exclusion conditions which significantly influence the stability 

of the solution. 

One of the solutions for removing unphysical oscillations in the contact region is the use of 

dissipative integration scheme. The practical results show that using generalized dissipative methods 

based on the Newmark scheme such as the HTT-𝛼 scheme which is unconditionally stable, second 

order of accuracy and dissipative for high frequencies is more effective.  

Another approach to prevent false oscillations is associated with the redistribution of the mass 

belongs to the nodes on the contact boundary area. Thus the resulting inertial characteristics of the 

mesh nodes change. This method significantly stabilizes the contact domain, in addition it can be used 

in combination with other schemes. Usually the matrix of masses is chosen to be diagonal and the 

mass of the cells adjusting to the node is concentrated in the node itself. One of the drawback of 

scheme (7) is that the nodes on the contact boundary also have their own inertia, which leads to 

instability even for conservative schemes. During contact phase node loses its kinetic energy and 

stops. In schemes with energy conservation, the oscillating movement of the contact node provides 

conservation of the total system energy. 

The equilibrium equations of dynamic system of contact bodies without damping according to 

HTT-𝛼 method can be written in the matrix form 

 𝐌 𝐮̈𝑡+Δ𝑡 + (1 + 𝛼)𝐊 𝐮𝑡+Δ𝑡 − 𝛼𝐊 𝐮𝑡 = (1 + 𝛼) 𝐑𝑡+Δ𝑡 ( 𝐮𝑡+Δ𝑡 ) − 𝛼 𝐑 +𝑡 (1 + 𝛼) 𝐏𝑡+Δ𝑡 − 𝛼 𝐏𝑡   (6) 

where 𝑡 + Δ𝑡 is the current time step; 𝐌, 𝐊 are the mass and stiffness matrices, respectively; 𝐏 is the 

vector of external loads; 𝐑 is the vector of contact forces; 𝐮 is the vector of nodal displacements; 𝐮̈ is 

the acceleration vector; 𝛼 ∈ [−1/3,0] is a dissipative parameter. 
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Expressing 𝐮̈𝑡+Δ𝑡  through 𝐮𝑡+Δ𝑡  and substituting in the expression (6) we get  

 𝐊̂ 𝐮𝑗+1
𝑡+Δ𝑡 = (1 + 𝛼)𝐑( 𝐮𝑗+1

𝑡+Δ𝑡 ) + (1 + 𝛼) 𝐏𝑡+Δ𝑡 + 𝐇𝑡  (7) 

where 

𝐊̂ = (
1

𝛽Δ𝑡2 𝐌 + (1 + 𝛼)𝐊) , 𝐇𝑡 = 𝛼(𝐊 𝐮𝑡 − 𝐑 − 𝐏𝑡𝑡 ) + 𝐌 (
1

𝛽Δ𝑡2 𝐮𝑡 +
1

𝛽Δ𝑡
𝐮̇𝑡 + (

1

2𝛽
− 1) 𝐮̈𝑡 ). (8) 

At each integration step 𝑡 + Δ𝑡 we construct an iterative process for solving a nonlinear system with a 

right-hand side depending on the contact forces 𝐑. 

[
(1 + 𝛼)−1

𝛽∆𝑡2
(𝐌𝐼𝐼

(𝑘)
0

0 0
) + (

𝐊𝐼𝐼
(𝑘)

𝐊𝐼𝐶
(𝑘)

𝐊𝐶𝐼
(𝑘)

𝐊𝐶𝐶
(𝑘)

)]

2𝑛+1

(
𝐔𝐼

(𝑘)

𝐔𝐶
(𝑘)

)

2𝑛+1

=

𝑡+Δ𝑡

 

 = (
0

𝐑𝐶
(𝑘))

2𝑛+1

𝑡+Δ𝑡

+ (𝐏𝐼
(𝑘)

0
) +

𝑡+Δ𝑡

(1 + 𝛼)−1 (
𝐇𝐼

(𝑘)

𝐇𝐶
(𝑘)

)

𝑡

 (9) 

In this paper the system of equations was solved in block form (9), although it is possible to represent 

and solve it in the form of a system of two equations with respect to the vector of unknown 

displacements on the boundary which perhaps provides other more economical ways. 

4. Conjugate analysis of contacting bodies by the Schwartz method 

As can be seen from (7), after the linearization of the acceleration in the system, there is a nonlinearity 

due to the presence of contact forces. One of the variants of solving this kind of equation is the 

application of iterative refinement of the solution by Schwarz alternating method [5, 6] for the 

subdomains of contacting bodies. Construct a version of the Schwartz alternating method, at each 

iteration of which the approximation is sought, as the result of an independent solution of the 

equations (2) for each body  Ω(𝑘) with varying boundary conditions [7]. 

In this case, the displacement 𝐮(𝑘) of the body  Ω(𝑘) is computed in each iteration of the Schwartz 

method in two steps. In the first step, the initial displacement approximation is given starting from the 

range of expected values for the contact domain on the contact surfaces of the bodies. After solving 

this problem, the kinematic condition from (5) on the contact surface will be fulfilled, but the 

computed contact pressures on the surfaces belonging to the interacting bodies are unbalanced. In the 

second step, contact stresses are corrected and their equality is achieved, but the resulting 

displacements are not satisfied the condition (5). Further, the displacements are adjusted by the 

contacting surfaces aligning. The iterative process is performed until a given error is achieved in the 

kinematic and force conditions (5) at the contact. 

Let 𝑇(𝐼), 𝑇(𝐽), 𝐼 ≠ 𝐽 be incompatible finite element meshes for the domains Ω(𝐼), Ω(𝐽), respectively, 

ΛΓ𝐶

(𝐼)
, ΛΓ𝐶

(𝐽)
 are the sets of nodes of the meshes of Γ, 𝑁Γ𝐶

(𝐼)
, 𝑁Γ𝐶

(𝐽)
 is the number of such nodes where 𝐼 is 

the number of some body, and 𝐽 - that is in contact with it. Introduce the conjugate vertex 𝛘(𝐼) ⊂  Γ𝐶
(𝐽)

 

for the node 𝐱(𝐼) ⊂  Γ𝐶
(𝐼)

 which is on the surface of the mesh 𝑇(𝐼). So we note a vertex that is the 

intersection of the perpendicular dropped from the node 𝐱(𝐼) to the boundary of the domain Γ
(𝐽)

. The 

conjugate vertex for nodes on the surface of the mesh 𝑇(𝐽)is defined similarly. The distance between 

the conjugate vertex 𝛘(𝐼) and the node 𝐱(𝐼) coincides in modulus with the value of the sign-definite 

distance function for the mesh 𝑇(𝐼), computed at the node 𝐱(𝐼), that is, 𝑆𝐷𝑇(𝐽)(𝐱) = ‖𝐱(𝐼) − 𝛘(𝐼)‖. The 

node 𝐱(𝐼) is located inside of the body Ω(𝐽) or on the its boundary with 𝑆𝐷𝑇(𝐽)(𝐱) ≥ 0 [8]. 

For a certain body Ω(𝑘) on each force or kinematic iteration 𝑗 =  0,1,2 … it is necessary to form the 

set of contact nodes ΛΓ𝐶

(𝑘)
, (𝑘 = 1,2), for which it is necessary to specify the vector of or the nodal 

loads 𝐫̅𝑗
(𝐼)

⋅ 𝐧𝛘(𝐼)
< 0 or the given displacements (𝐮(𝐼) − 𝐮(𝛘(𝐼)) − 𝛿(𝐼)) /(𝐮(𝐼) − 𝛿(𝐼)) ≤ 𝜖. 
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For example, for the body Ω(𝐼) on the iteration 𝑗 =  0 in the set ΛΓ𝐶

(𝐼)
 all nodes lying on the surface of 

the mesh 𝑇(𝐼), which are inside the body Ω(𝐽) after a given displacement of the body Ω(𝐼), that is, the 

node 𝐱(𝐼) ∈ ΛΓ𝐶

(𝐼)
 if 𝑆𝐷𝑇(𝐽) (𝐱(𝐼) + 𝐮̅0

(𝐼)
) ≥ 0, where 𝐮̅0

(𝐼)
 is the specified initial displacement at the zero 

iteration for the node 𝐱(𝐼). 

During the iterations, the 𝑇(𝐼) mesh is also corrected for each node 𝐱(𝐼) ∈ ΛΓ𝐶

(𝐼)
, the presence of a 

compressive contact stress is verified, that is, the condition 𝐫̅𝑗
(𝐼)

⋅ 𝐧𝛘(𝐼)
< 0 where 𝐫̅𝑗

(𝐼)
 is the contact 

stress vector 𝐱(𝐼), will be defined below, 𝐧𝛘(𝐼)
 is the normal vector at the conjugate point. If 𝐫̅𝑗

(𝐼)
⋅

𝐧𝛘(𝐼)
≥ 0, then the node 𝐱(𝐼) is not considered at this iteration. 

In order to ensure the coherence of inclusions and exclusions of nodes in different sets ΛΓ𝐶

(𝐼)
, nodes 

whose relative displacement with the contact surface of the opposite body is greater than the specified 

allowable value 𝜖 were excluded from the contact domain . 

If (𝐮(𝐼) − 𝐮(𝛘(𝐼)) − 𝛿(𝐼)) /(𝐮(𝐼) − 𝛿(𝐼)) > 𝜖 then the node 𝐱(𝐼) is excluded from the set. This 

operation made it possible to reduce the number of contact iterations. In addition, the exception of 

inadmissible loads obtained at the previous iteration was considered. Similarly, for the body  Ω(𝐽). 

For each subdomain Ω(𝑘), systems of equations are constructed and degrees of freedom, connected 

with inner and contact nodes, are separated. In the iterative algorithm constructing for solving systems, 

the residual of the displacements 𝐮̅𝐶
(𝑘)

 and the forces 𝐑̅𝐶
(𝑘)

 on contact surfaces are used and alternately 

applied on iterations for each body and ensure the execution of kinematic and static conditions on the 

boundary of the bodies. 

For the kinematic system (even step), the displacement projection residual is defined as 

 𝑢̅𝐶
(𝑘)

(𝐱(𝑘))2𝑛 = {
𝑢(𝐱(𝑘))0, 𝑛 = 0

𝑢(𝐱(𝑘))2𝑛−1 + 𝜃2𝑛−1[𝑢(𝛘(𝑘))2𝑛−1 − 𝑢(𝐱(𝑘))2𝑛−1 − 𝛿(𝑘)]
,   𝑛 = 1,2,3 … (10) 

here 𝑢(𝐱(𝑘))2𝑛−1, 𝑢(𝛘(𝑘))2𝑛−1 are the projections of the displacement vectors of the node 𝐱(𝑘), 𝛘(𝑘) 

onto the normal 𝐧𝛘(𝐼)
; 𝜃2𝑛−1 is an iterative parameter; 𝛿(𝑘) = ‖𝐱(𝑘) − 𝛘(𝑘)‖ is the gap between the 

surfaces along 𝐧𝛘(𝐼)
, which allows us to find a solution in Ω(𝑘) and compute the forces acting on the 

contact boundary. 

For a force system, compute the contact load at the node 𝐱(𝑘), 𝐫(𝐱(𝑘))2𝑛 = 𝜎(𝐮2𝑛
(𝑘)

)𝐧𝛘(𝑘)
 and 

similarly 𝐫(𝛘(𝑘))2𝑛 at the conjugate point 𝛘(𝑘).  

The component of the load residual vector is defined as 

 𝐫̅𝐶
(𝑘)

(𝐱(𝑘))2𝑛+1 = 𝐫(𝐱(𝑘))2𝑛 + 𝜃2𝑛[𝐫(𝛘(𝑘))2𝑛 − 𝐫(𝐱(𝑘))2𝑛] (11) 

The vector of contact forces on the boundary Γ𝐶
(𝑘)

 is computed in the form 𝐑2𝑛+1
(𝑘)

= ∫ 𝐫̅2𝑛+1
(𝑘)

𝑑Γ
Γ𝐶

(𝑘)  and 

using the standard procedure of obtaining nodal forces equivalent to the distributed load, construct the 

component of the vector of the right-hand side 𝐑2𝑛+1
(𝑘)

 for a system of equations on odd iterations.  

To solve systems, the conjugate gradient method was applied with diagonal preconditioning and 

parallelization of computations based on OpenMP and CUDA technologies 

After the systems solving check the performance of force and kinematic contact conditions. The 

convergence of such algorithms was considered in the [7]. 

5. Numerical results 

The presented numerical studies were performed on unstructured meshes with hexagonal cells with 

different parameters of the cell quality [8] and for several interpolation options between incompatible 

meshes. 
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5.1 Three spheres 

Considering the symmetry of the impact system of the three elastic spheres [9] with equal diameter 

13.49 mm and material, 8-node hexagonal elements are employed. The axis through the centers of the 

spheres is taken as symmetry axis. The finite element mesh was refined in the possible contact area as 

shown in figure 1. Three spheres have Young's modulus 217 GPa, Poisson ratio 0.3 and the mass 

density is 7752 kg/m3. 

 

 
Figure 1. Mesh model consisting of 3d adaptive meshes. 

 

Figure 2 a shows the velocities of the centers of the spheres computed by using DDS with results of 

full-scale and computational experiments [9]. 

 

 

 

  

(a)  (b) (c) 

Figure 2. Three spheres contact simulation with comparison to results [9], noted by triangle: (a) 

velocity at the spheres centers; (b) contact force; (с) energy. 

 

The difference was not more than 10%, which, among other things, is explained by different points 

of measurement of the reference values of velocities. The deviation of the total energy from the initial 

kinetic energy did not exceed 3%. 

 

5.2 Five spheres 

The sequence of pair contacts (figure 3) and the contact of several spheres (figure 4) were considered. 

In the first case, the distance between the spheres was chosen in such a way that the previous contact 

terminated at the beginning of the next one. The parameters of the spheres, the meshes and the speed 

of the first sphere were taken from the previous problem. 
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(a)  (b) (c) 

Figure 3. Five spheres pair contact: (a) velocity at the spheres centers; (b) contact force; (с) energy. 

Based on figure 3 b, it can be asserted that momentum is conserved. The difference in the contact 

force maximums for each pair contacted spheres was less than 2%. The maximum deviation of the 

total energy from the initial kinetic energy was about 6%. 

 

 

 

  

(a)  (b) (c) 

Figure 4. Contact of two and more spheres: (a) velocity at the centers; (b) contact force; (с) energy. 

As shown in figure 4 b total time of contact in case of several spheres interaction is few than pair 

contact case. In this case, there was interaction of four spheres. 

 

5.3 Head impact 

Modeling of biomechanical processes involves the study of complex shape objects which requires to 

construct boundaries that describe the inner structure of biological tissues. One of the known problems 

is the Nahum's head impact experiment (figure 5 a) [10]. To increase the realism of the computational 

experiment, the finite element model was constructed from computed tomography data and consisted 

of three main materials (figure 5 b): soft tissue, skull and brain using the algorithm [11]. 

 

 

 

 

(a)  (b) 

Figure 5. Nahum’s head impact simulation: (a) experiment scheme; (b) mesh model. 
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Note that along with the use of standard procedures for optimizing of the mesh cells quality, special 

functions for adjusting the shape of the material area and removing the "noisy" areas of the real 

physical model were used: filling internal cavities, searching for hanging cells not connected with the 

main model, etc. The unstructured mesh contains 1363369 nodes and 1308341 hexagonal cells. 
 

 

 

 

(a)  (b) 

Figure 6. Dependence on time (a) contact force (dashed line – Nahum’s experiment, solid - 

DDS); (b) energy (solid line - complete, dashed - kinetic, dotted - internal). 

 

The properties of the facial tissues, scalp and skull layer, considered as a single whole, as well as 

brain tissues, are linearly elastic, the material constants are borrowed from [12-14]. 

As a result of numerical modeling of Nahum's experiment, a maximum of 6882 N was obtained, which 

agrees well with the experimental results of 6900 N (figure 6 a). The deviation of the total energy from 

the initial kinetic energy of the impactor did not exceed 2%. 

6. Conclusion 
To solve dynamic contact problems, Schwarz's alternating algorithm is provided, which ensures that 

the conditions on the varying contact boundary are fulfilled with an implicit time integration scheme 

and the mass redistribution of the contact nodes. This approach does not require special contact finite 

elements, Lagrange multipliers or regularization. Computational experiments are shown that the 

applied approaches to the computation of contact forces are provided the same error in computations 

for a smaller number of iterations than known algorithms. The independence of the solution 

approximation for each body makes it possible to use efficient numerical schemes and multi-level 

parallelization. 
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