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Abstract. The Phase Field Crystal model in hyperbolic formulation (modified PFC or MPFC), is investigated 
as one of the most promising techniques for modeling the formation of crystal patterns. MPFC is a convenient 
and fundamentally based description linking nano- and meso-scale processes in the evolution of crystal 
structures. The presented model is a powerful tool for mathematical modeling of the various operations in 
manufacturing. Among them is the definition of process conditions for the production of metal castings with 
predetermined properties, the prediction of defects in the crystal structure during casting, the evaluation of 
quality of special coatings, and others. Our paper presents the structure diagram which was calculated for the 
one-mode MPFC model and compared to the results of numerical simulation for the fast phase transitions. 
The diagram is verified by the numerical simulation and also strongly correlates to the previously calculated 
diagrams. The computations have been performed using software based on the effective parallel 
computational algorithm. 

1 Introduction 
The phase field crystal (PFC) model [1] has been 
proposed to incorporate the physics naturally embedded 
on nano-length scales and on diffusive time scales. The 
PFC-model uses the free energy functional of the Swift-
Hohenberg (SH) form that describes pattern formation in 
Rayleigh-Benard convection [2]. The PFC-model may 
also be expressed as a conserved version of the Swift-
Hohenberg equation and as an efficient method for 
simulating liquid-solid transitions [3,4], colloidal 
solidification [5], dislocation motion and plasticity [6,7], 
glass formation [8], epitaxial growth [9,10], grain 
boundary premelting [11], surface reconstructions [12], 
and grain boundary energies [13]. 

In the present paper, numerical calculations based on 
the Phase Field Crystal (PFC) model are presented which 
may lead to the solution of many practically important 
problems in metallurgical industry [14]. The 
determination of the conditions of the technological 
process for metal castings with predetermined properties, 
prediction of crystal structure defects during casting, 
evaluation of the quality of special coatings, and many 
others are among them can be start to solve beginning 
from micro-level analysis using PFC-method [14, 15]. 

1.1 Free energy of system and MPFC equation 

The modified phase field crystal model (MPFC) describes 
an atomic density field ϕ(x,t), which is conserved variable, 
and expressed by the sixth order in space and second order 
in time equation [14-17]: 

τ ∂
2ϕ
∂t2 + ∂ϕ

∂t =∇2μ .                      (1) 

Here t is the time, τ is the relaxation time of the atomic 
flux to its stationary state, and 𝜇𝜇𝜇𝜇 represents the chemical 
potential. The chemical potential may be obtained from 
functional of free energy: 
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associated to the computational domain Ω. The Eq. (1) 
includes the chemical potential μ as a variational 
derivative of the free energy functional F:  
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The function of the homogeneous reference energy 
density f takes on as: 
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where ε is the dimensionless undercooling ε=(Tc–T)/Tc 
with Tc – critical temperature of phase transition, T – 
temperature of the system, and the term α – the coefficient 
which controls the metastability of transition. For all our 
calculations, we state α=0 for the unstable phase 
transitions modeling with zero potential barrier of the 
phase transformation. Introduction of the inertial term 
with τ in Eq. (1) changes the class of equation from

MATEC Web of Conferences 129, 02035 (2017)	 DOI: 10.1051/matecconf/201712902035
ICMTMTE 2017

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution  
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/235149936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Fig. 1. Computed structures in comparison with the structural diagram “dimensionless undercooling ε – relative atomic density ϕ”.  
calculated in the present work. The existence and coexistence regions remarked right on the diagram : homogeneous Eq. (5), body 
centered cubic BCC Eq. (6), rods Eq. (7), stripes Eq. (8). The top-left region for ε>0.6, ϕ<0.4 represents region of coexistence of 
three structures, where the regions of coexistence of BCC+rods, homogeneous+BCC and homogeneous+rods intersect and match 
each other exactly. As it can be found on the depicted results of direct computation this region exposed to form irregular structures. 
For the structures depicted in the diagram we have employed the following parameters (for the illustrations from left to right): ε=0.3, 
ϕ=-0.6; ε=0.65, ϕ=-0.43; ε=0.5, ϕ=-0.45; ε=0.4, ϕ=-0.36; ε=0.5, ϕ=-0.369; ε=0.4, ϕ=-0.2; ε=0.17, ϕ=-0.1; ε =0.4, ϕ=-0.1.  
parabolic to hyperbolic and plays significant role in the 
analysis of fast phase transformations [16, 17]. 

2 The diagram of structures and 
analytical solutions  
The structure diagrams are calculated using the solution 
of the Maxwell area rule, using the chemical potentials 
and free energy functionals for each structure. The 
structure selection is based on the thermodynamic rule of 
the minimal energy for a virtually existed structure. The 
structure diagram is constructed in coordinates 
“dimensionless undercooling – relative atomic density” 
with the amplitude expansion of the free energy (2) for a 
given crystalline phase [18-20]. 

2.1 Free energy of crystalline states 

Using the summation of reciprocal lattice vectors [14] we 
can make the amplitude expansion and get the 
dimensionless density profiles indicating the symmetry 
and properties of a given phase (homogeneous, BCC, 
rods, stripes). For all structures we choose as a reference 
the homogeneous phase relative density ϕ: 

 ϕh = ϕ,  (5) 
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We substitute the amplitude representations of each 
structure Eqs. (5-8) to the free energy Eq. (2) and get a 
dependence from the complex atomic density vector 
amplitude module η, reciprocal lattice vector q and 
dimensionless atomic density ϕ. Following the 
minimization procedure, an equilibrium wave vector 
q=qeq and minimize the amplitude η are obtained 
numerically [18, 19]. Finally, we substitute this roots to 
the free energy (2) and obtain the form of the free energy 
for each structure. 

2.2 Construction of structure diagram 

For the determined above free energies, we construct the 
diagram of the coexistence of 3D structures in terms of 
the expressions Fh (for homogeneous phase), FBCC, 
Fstripes, Frods dependent from driving force ε and 
dimensionless atomic density ϕ. With this aim, we write 
the Maxwell area rule [13, 14, 18-21] and solve the 
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equations for the entire range of control parameter values 
0 ≤ ε ≤ 1. The example of the system of equations showed 
below representing the conditions for the coexistence of 
the homogeneous and BCC phases: 

 μBCC (ϕBCC, ε) = μh (ϕh, ε),  (9) 

 FBCC (ϕBCC, ε) - FH (ϕh, ε) = μH (ϕh, ε) ( ϕBCC - ϕh ).
 (10) 

Fig. 1 shows the domains of existence and coexistence of 
homogeneous (liquid or metastable melt) phase, the 
crystalline BCC, rods and stripes structures. We calculate 
the coexistence separately for the each pair of the 
structures and then select the existence regions for each 
structure by its minimal free energy as a criteria for 
selection for a given region of parameters. 

3 Numerical calculations of structure 
formations by the MPFC method 

The numerical formulation of the MPFC equation is based 
on the isogeometric analysis (IGA) [22, 23] for the spatial 
discretization. Such method allows us to perform the C2-
continuous functions for the discretization of the sixth-
order differential equation in primal form. The integration 
in time is executed by the generalized-α method which 
was suggested by Chung and Hulbert [24]. Thus an 
implicit finite element method (FEM) for solving the 
problem of modified PFC was performed. Within this 
procedure, a finite-element regular hexagonal mesh is 
used for simulations. The details of the algorithm and its 
software implementation are given in [25] where, in 
particular, was shown that the numerical solution of the 
MPFC problem is consistent to the diagram obtained by 
Jaatinen and Ala-Nissila in [26]. The computational 
efficiency of such algorithm was shown in [27,28]. In 
[29,30], the analysis of solution’s accuracy and physical 
stability was presented using this algorithm. 

The present numerical simulations have been provided 
using the special software [25] based on the PETIGA and 
PETSc libraries [31]. For the three dimensional 
computational domain the spatial mesh has been 
generated by C2-continuous quadratic elements. We set an 
initial distribution with a small spatial gradient of the 
atomic density.  Such an initial distribution has no 
influence on the modeled crystal pattern in our 
simulations. The boundary of the computational domain 
has as periodic conditions. 

4 Results and discussions 

The initial state of the atomic density has been 
characterized by the average value of ϕ. Then, the system 
is quenched with a strength given by the driving force 
parameter ε. These two values define a position in the 
phase diagram (see Fig. 1). The solid lines in Fig. 1 
represent the structure diagram calculated for three 
dimensional structures given by the static PFC-equations 
with free energy (2) and chemical potential (3) in one-
mode approximation. As it can be seen in the Fig. 1, the 

present modeling gives the following set of structures: (1) 
stripes, (2) mixture of stripes and rods, (3) rods, (4) 
mixture of BCC and rods, (5) BCC structure, (6) mixture 
of BCC and liquid, (7) multiple patterns highly sensitive 
to values of undercooling and atomic density, (5) liquid. 
All of these modeled structures are perfectly consistent 
with the regions of the predicted structure diagram. Also 
is important to note that our diagram correlates with the 
diagram Jaatinen et al. [26] that also was verified by the 
presented method [25]. The coincidence of the classical 
PFC model predictions and numerical dynamical 
calculations shows the viability of the presently 
developed algorithm for the numerical solution of the 
modified three dimensional PFC-equation. The most 
complicated region of the diagram is the coexistence of 
three structures (the top-left region for ε>0.6, ϕ<0.4, 
where homogeneous-BCC-rods regions of coexistence 
intersect) in which dynamical MPFC system has a 
tendency to evaluate to irregularly mixed structures. 
These mixed structures may be obtained in modeling very 
often that confirms the idea about evolution of the system 
through a series of the metastable states.  

The modeling of the real systems could face problems 
with the determination of the crucial parameters, which 
have to be overcomed by measuring the structure factor 
of the liquid and crystal state. The necessary data my be 
provided by the X-Ray diffraction measurements which 
gives us the reference parameters of the liquid state 
(density), equilibrium wave number and structure factor 
for both phases. The perspective system for the 
calculation of the nature of transition may be the pure Iron 
with the Homogeneous–BCC–FCC–BCC phase 
transformations [18-21]. Moreover there is an attempt to 
use the molecular dynamics data for such calculations 
[13, 21].  

The evolution away the mixed and defected structures 
can be provided by introducing the noise term. The noise 
is affected on the structure with the “shake-up” effect [30, 
32]. Indeed, locally metastable and structurally mixed 
states have to be correlated in time and in space, due to 
the overlapping of the fluctuating atomic configurations 
[33,34]. In this case, a colored noise should be added to 
the MPFC equation. Previously, in the analysis of 
spinodal decomposition, it was notable shown that the 
consistently introduced colored noise influenced the 
pattern formation in a great extent [34]. 

5 Conclusions 

Structure diagrams were calculated for the one-mode PFC 
model and compared with the numerical simulation of the 
full MPFC equation for the fast phase transitions. The 
computations were performed using parallel algorithms 
based on isogeometric analysis, which is known extension 
of the finite element method. The evolution of three 
dimensional crystal structures to their steady equilibrium 
state was simulated for various atomic densities and 
temperatures using the MPFC-equation and compared 
with the stationary solutions for regions of structural 
coexistence. The latter is obtained from amplitude 
expansion of free energies of the PFC-equations. The 
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obtained diagram verified by the direct simulation and 
also it is strongly correlate to the diagram Jaatinen et. al. 
[26].  

The proposed method makes possibilities to extend the 
description of the fast dynamical phase transitions by the 
calculation for metastable structural boundaries. The 
MPFC formalism allows us to model the bunch of the real 
liquid–crystalline and liquid–smectic phase transitions 
even for two-dimensional systems [15,18,19]. The 
extension of the method with the two-mode 
approximation creates the way to model the complicated 
three dimensional crystalline structures (such as crystals 
with FCC- and HCP-lattices). Further studies on the 
simulation of crystalline patterns by the MPFC method 
will allow developing an effective software tool for 
research and develop of materials in industry, including 
manufacturing and processing technologies. 
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