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DOCTORAL THESIS STRUCTURE

The present Doctoral Thesis corresponds to a compendium of publications,

presented before in the section “Results obtained during the research period: Peer-

reviewed indexed scientific publications derived from the present Doctoral Thesis”,

and has been prepared in agreement with the internal regulations of the Miguel

Hernandez University of Elche for the presentation of Doctoral Thesis with European

Mention.

The Thesis structure is the following:

» Introduction (Chapter 1): Includes a literature review based on the bioactive
compounds present in cruciferous food, including specific information about
sprouts, as well as an extensive explanation of the elicitation techniques to
enhance the amount of phytochemicals in the plants. Then, an overview of
the quality of sprouts during shelf-life is included, and finally, the beneficial
effects related to cruciferous consumption and attributed to the bioactive
compounds are described along with their absorption and metabolism. Part of
the information presented in this Chapter is included in the Annexes
(Chapter 7).

Objectives (Chapter 2): Based on the importance of the topics involved in the
Chapter 1, the four specific objectives were established, which correspond to
the four subsections showed in the publications on Chapter 4, achieving the
general objective of the present Doctoral Thesis.

General materials and methods (Chapter 3): Here, it is presented a summary
of the plant materials and the different methods used in the works included in

this Thesis, as well as the place where there have been carried out.



» Publications (Chapter 4): This Chapter is divided in four subsections
according to the specific objectives established:
Subsection 1. Selecting sprouts of Brassicaceae for optimum phytochemical
composition (Publication 1): where a screening of 10 different sprouts
species was carried out in order to highlight the most interesting sprouts in
terms of health-promoting compounds.
Subsection 2. Using elicitation to enhance the content of bioactive
compounds in cruciferous sprouts: once the suitable sprouts varieties were
selected, elicitation techniques were employed to enhance the content of
phytochemicals in cruciferous sprouts. First, the study of the effect of the
most effective elicitors found in literature over the bioactive compounds
present in selected cruciferous sprouts was developed (Publication 2), then,
an specific characterization of anthocyanins in red radish varieties was
carried out (Publication 3), and finally a optimization of doses and seed
priming of seeds with elicitors were performed (Publication 4).
Subsection 3. Evaluation of in vitro and in vivo biological activities of
broccoli and radish sprouts (Publications 5, 6 and 7). First, the metabolism
and functionality of broccoli and radish sprouts are presented in publications
5in and 6 in, respectively. Then, a study of the antinociceptive activity of
broccoli sprouts was carried out (Publication 7).
Subsection 4. Shelf-life quality and safety of eco-grown broccoli and radish
sprouts (Publication 8): this work was performed in order to demonstrate that

sprouts are safe and healthy foods for human consumption.



General results and discussion (Chapter 5): First, a summary of the results
and discussion related to the different publications presented in this Thesis is
presented along with a descriptive figure of the work-flow performed. Then, a
broader explanation of the results and their justification is included.
Conclusions (Chapter 6): Here, the global conclusions related to all the
results presented in this work are presented.

Annexes (Chapter 7): In this chapter two publications are included: a book
chapter about the bioactive compounds and nutrients present in cruciferous
foods, following with a literature review about elicitation.

References (Chapter 8): This final chapter includes the bibliography cites

used in complementary sections to the publications.
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ABSTRACT

Cruciferous sprouts are fresh plant foods very interesting because of their
higher levels of nutrients and bioactive compounds compared to adult plants.
Germinating seeds for 8 days has been established as optimum for harvest and
consumption, allowing manipulation while the content of phytochemicals remains
higher than in other vegetables, even though, the bioactive compounds contents
decrease during germination. Determining the bioactive compounds (phenolics,
glucosinolates and isothiocyanates/indoles) in cruciferous sprouts, as well as
selecting the suitable species and the germination time, have been found to be of
great importance to maximize the health-promoting properties of sprouts for
consumption.

Elicitation practices with phytohormones (MeJA, JA and SA), sugars
(sucrose and glucose) and amino acids (methionine), by priming seeds and using
exogenous spray applications enhanced the contents of glucosinolates, precursors of
the bioactive isothiocyanates and indoles, which have been widely studied because of
their anticarcinogenic, antioxidant and anti-inflammatory activities. Once broccoli
and radish sprouts were selected due to their high content in glucoraphanin and
glucoraphenin, respectively, among other health-promoting glucosinolates and
phenolic compounds, certain biological activities were evaluated. The metabolism
and antiproliferative effect of broccoli sprouts was studied in vitro using cell
cultures. The effects of radish sprouts cv. Rambo modulating the energy metabolism
was determined in the Drosophila melanogaster model, and the antinociceptive

effect of broccoli sprouts was evaluated using rodent models.



Finally, shelf-life quality and safety of these sprouts was studied for 7 and 14
days under refrigerated storage. This multidisciplinary work open views to design
studies of cruciferous foods for human nutrition, since their incorporation to diet and
regular consumption will likely provide positive effects for health and disease

prevention.



RESUMEN

Los brotes de cruciferas son alimentos de origen vegetal de gran interés debido
a su mayor contenido en nutrientes y compuestos bioactivos en comparacion con el
vegetal adulto. No obstante, un objetivo en nuestra investigacion es maximizar sus
propiedades beneficiosas relacionadas con el contenido en compuestos bioactivos
(glucosinolatos y compuestos fendlicos), para ello los estudios de la seleccion de la
especie y el tiempo Optimo de germinacion para su recoleccién y consumo, son
factores fundamentales que nos permiten una adecuada manipulacion y mantener un
contenido en fitoquimicos mas alto que el que encontramos en otros vegetales, a
pesar de que el contenido en compuestos bioactivos disminuye con la germinacion.

Para incrementar el contenido en glucosinolatos (precursores de los
isotiocianatos e indoles), se empled la elicitacion con fitohormonas (MeJA, JA and
SA), azucares (sacarosa y glucosa), y amino acidos (metionina) como inductores de
semillas y aplicados en spray sobre los brotes. Con todo ello, se seleccionaron los
brotes de brécoli y rabano por su alto contenido en glucorafanina y glucorafenina,
respectivamente, asi como en otros glucosinolatos y compuestos fenodlicos, y se
evaluaron algunas de sus actividades biologicas. Concretamente se estudié el efecto
antiproliferativo de los brotes de brécoli asi como la absorcion y metabolismo de sus
compuestos utilizando cultivos celulares. Por otro lado, se demostro el efecto de los
brotes de rabano cv. Rambo sobre el metabolismo energético con el modelo
Drosophila melanogaster y, por ultimo, se evalu6 el efecto antinociceptivo de los
brotes de brocoli utilizando modelos de roedores.

Finalmente, y con el objetivo de estudiar la vida util de los brotes, se analizé su

contenido microbiolégico y de compuestos bioactivos durante 7 y 14 dias de



almacenamiento, estableciendo que los brotes bajo condiciones de refrigeracion son
alimentos seguros para los consumidores. Este trabajo multidisciplinar abre
diferentes lineas de estudio sobre cruciferas para nutricibn humana, ya que su
incorporacion en la dieta y consumo regular, proporcionara efectos beneficiosos en la

salud y prevencion de enfermedades.
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Chapter 1

1. PLANT-DERIVED FOODS AND HEALTH
1.1. Phytochemicals in a healthy diet context

One of the key facts that are presented by the WHO (World Health
Organization) is that a healthy diet helps to protect against non-communicable
diseases (NCDs), including diabetes, heart disease, stroke and cancer (WHO, 2015a).
Based on this, several epidemiological studies have demonstrated that a diet rich in
vegetables is decisively associated with health-promotion and disease prevention.
The phytochemical content of plant foods, such as phenolic compounds, carotenoids,
vitamins and glucosinolates (GLS) among others, has been widely investigated as
responsible of these effects. Clinical studies based on interventions with
nutraceuticals, including vitamins E and C, carotenoids, GLS and phenolic
compounds, which have generally antioxidant capacity, preventing or diminishing
the excessive oxidation in body cells (Miller et al., 2014), have shown reduction in
parameters related to Diabetes Mellitus and Metabolic Syndrome (Cicero and
Colletti, 2016), cardiovascular risk factors (Kim et al., 2008), reduction of pro-
inflammatory cytokines (Surh and Na, 2008), and, basically, uncontrolled oxidation
of lipids, DNA, and proteins, which is associated with the increase of chronic
diseases in humans. Phytochemicals, either alone or in combination, showed
promising results against various cancers through genetic and epigenetic
modifications (Shukla et al., 2014). The traditional Mediterranean-type diet,
including plant foods and making an emphasis on plant protein sources, provides a

well-accepted healthy dietary pattern to reduce NCDs.
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Non-pharmacological treatments based on phytochemicals could involve the
use of food ingredients to prevent diseases and promote wellbeing and healthy

lifestyle.

1.2. Functional foods and consumers

Over the last decades, consumers have become more aware of how important
is to increase the consumption of fruits and vegetables as well as doing any kind of
regular physical activity in terms of health-promotion for preventing the
development of diseases. According to the Regulation (EC) No. 1924/2006 of the
European Union, there is a wide range of nutrients and substances including, but not
limited to, vitamins, minerals (including trace elements), amino acids, essential fatty
acids, fiber and various plants and herbal bioactive compounds with a nutritional or
physiological effect, present in foods that can be the subject of a claim. Health claims
describe a relationship between a food substance (a food, a food component or
ingredient) and a reduced risk of a disease or health-related condition, according to
the FDA (U.S. Food and Drug Administration) (FDA, 2013). The European Food
Information Council (EUFIC) described functional foods as those foods which are
intended to be consumed as part of the normal diet and that contain biologically
active components which offer the potential of enhanced health or reduced risk of
disease. Conducting well designed clinical studies to evaluate the bioactivity and
efficacy of phytochemicals should be a strategy in order to reduce the social and

economic costs of attempts to prevent or to treat different diseases.
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Changing global food systems and dietary patterns, while empowering
healthy food and consumer education policies, will be associated with improved food

quality to a balanced diet (Khoo and Knorr, 2014; Willett et al., 2006).

2. BRASSICACEAE

2.1. General aspects and nutritive value

Brassicaceae plants, also called crucifers, represent a monophyletic group
including approximately 350 genera and 3,700 species, and are among the oldest
cultivated crops, since have been cultivated from the Greeks and Romans (Janick,
2011) and continue to date for different uses. These vegetables has been the subject
of much scientific interest due to their economic importance, most of them are
produced as edible plants, including roots (kohlrabi, turnip), stems (radish), leaves
(kale, collards), inflorescences (broccoli, cauliflower, cabbages, Brussels sprouts)
and seeds (mustards, wasabi), and also are used for feed or oil extraction (rapeseed)
(Figure 1.1).

This family includes very common known species such as Brassica oleracea
(broccoli, cauliflower, kohlrabi, Brussels sprouts, cabbages, among others), B. rapa
(turnip, Chinese cabbage, pak choi, among others), B. napus (rapeseed, leaf rape),
Sinapis alba (white mustard), Raphanus sativus (radishes) and Lepidium sativum

(garden cress).
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italica

\(Broccoli)

Figure 1.1. Common vegetables from the Brassicaceae family.

The world production of crucifers (broccoli, cauliflower, cabbage and other

crucifers for consumption) was 90 million tons in 2013, being almost 14 million tons

the production of the European Union, and 700,000 tons the production in Spain

(FAOSTAT, 2013). Brassicaceae crops are mainly distributed in temperate regions

of the Northern Hemisphere: in areas of Southwestern and Central Asia, China and

Japan, Europe, the Mediterranean basin and North America. Brassicaceae production

has grown steadily and its vegetables represent a major item of the human diet

worldwide. Despite the great diversity among the Brassicaceae, members of only a

few genera are used in human diet (Fahey et al., 2001).
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There are numerous species with great potential for exploitation in the 21st
century agricultural and food commodities, particularly as sources for nutrients and
bioactive compounds.

The vegetables from the family Brassicaceae have been widely approved for
its beneficial effects on human health through epidemiological studies (Jahangir et
al., 2009), as good sources of a variety of nutrients and phytochemicals that may
work synergistically against certain types of cancer, cardiovascular diseases,
neurodegeneration and diabetes (Figure 1.2) (Clarke, 2010; Dinkova-Kostova and
Kostov, 2012). Although vegetable cruciferous plants are sources of fibre, folates,
vitamins (A, E, C, and K) and minerals (Ca, Fe, K, Cu, Zn, P, Mn, and Mg, among
others), the majority of the research literature is concentrated on the content of
secondary metabolites, such as flavonoids and carotenoids, and, specially, GLS.
These compounds are mainly present in the cruciferous family, within the
Brassicales Order, and their hydrolysis products, isothiocyanates (ITC) and indoles,
are the bioactive compounds which may be responsible of the anti-inflammatory and
chemopreventive activity, reduction of metabolic disorders and reduction of the risk
of a number of cancers, associated with the intake of crucifers. Besides, the
beneficial effects of crucifers have been also partly attributed to nutrients and
phytochemicals with antioxidant capacity, such as vitamins C and E, carotenoids and

phenolic compounds (Avato and Argentieri, 2015; Bjorkman et al., 2011).
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Figure 1.2. Nutrients and phytochemicals present in cruciferous foods and the associated

beneficial physiological functions (for references, see Annex I).

Cruciferous sprouts are usually collected and commercialized at 7 or 8 days
of age after germination, considering this young physiological state the optimum for
consumption in terms of biomass and size, which allow manipulation, as well as for
their health-promoting compounds content, since sprouts have significantly greater
concentrations of phytochemicals than mature plants (10-100 times) (Cevallos-
Casals and Cisneros-Zevallos, 2010; Hanlon and Barnes, 2011; Pérez-Balibrea et al.,
2008). This is due to the high content in bioactives that is found in seeds, which are
the storage organs of nutrients in the plant. On the other hand, over the growth period
of sprouts a decrease of these compounds is found, as a result of a dilution effect of

tissue expansion. The sprouts consist on the cotyledon, which may become the
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embryonic primary leaves of a seedling, the hypocotyl and the radicle or root, being
the cotyledons the organs with higher concentration of bioactive compounds (Pérez-
Balibrea et al., 2008), therefore, the harvest of the aerial portion of the sprouts
(hypocotyls and cotyledon) for consumption is a reasonable practice from the
perspective of capturing most of their bioactive compounds (Guo et al., 2014; Pereira
et al., 2002). These edible sprouts could be consumed raw, and they are very low
caloric foods, recommended for healthy diet.

Several intervention trials focuses on low-glycemic and low-fat food intake,
generally based on minimally processed vegetables, have shown different benefits
including weight loss, improvements in cardiometabolic biomarkers, reductions in
cardiac events and mortality, improving insulin sensitivity, and diabetes control, as
well as reductions of incidence of cardiovascular problems, inflammation and cancer,
both in adults and children (Jéquier and Bray, 2002; Katz and Meller, 2014; Mirza et
al., 2013). Edible sprouts are a rich source of nutrients and phytochemicals
(Dominguez-Perles et al., 2011a), and in cruciferous sprouts, GLS and phenolics are
cited as responsible of the health benefits derived from their consumption (Cartea et

al., 2011; Wagner et al., 2013).

2.2. Glucosinolates and isothiocyanates

2.2.1. Chemical structure, classification and role in plants

The GLS are a relatively large group (> 120 described to date) of sulphur and
nitrogen-containing compounds with a common structure which comprises a 3-D-

thioglucose group; a sulphonated oxime moiety; and a variable aglycone side-chain
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derived from one of eight natural amino acids that determine the final chemical
structure of the GLS, being methionine, tryptophan or phenylalanine the common
known (Fahey et al., 2001). Therefore, GLS can be classified by their precursor
amino acids as aliphatic (derived from alanine, leucine, methionine or valine),
aromatic (from phenylalanine or tyrosine) and indolic (from tryptophan) (Clarke,
2010).

Biosynthesis of glucosinolates proceeds in three stages (Figure 1.3.): (i) side-
chain elongation of amino acids through five reactions: initial transamination,
condensation with acetyl-CoA to form a 2-alkylmalate derivative, isomerization,
oxidative decarboxylation, and, finally a a-keto acid is elongated by one carbon,
which can be transaminated to an homoamino acid; (ii) development of the core
structure, where the amino acids are oxidated to aldoximes catalyzed by cytochrome
P450 (CYP family), then, aldoximes are oxidized to reactive aci-nitro or nitrile oxide
intermediates, next cleavage of the S-alkylthiohydroximate conjugate by a C-S lyase
produces thiohydroximates, which are glucosylated by UGT74B1 to desulfo-
glucosinolates, and the sulfation concludes the synthesis of primary glucosinolates
(aglycones); and (iii) secondary side-chain modifications by oxidation, elimination,
akylation or esterification, give rise to the formation of the diverse glucosinolates

found in nature (Grubb and Abel, 2006).

10
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Figure 1.3. Summary of stages of the biosynthesis of glucosinolates
(Grubb and Abel, 2006).

GLS are hydrolyzed to the biologically active ITC and indoles among other
compounds, which can include oxozolidine-2-thiones, nitriles, epithionitriles, and
thiocyanates. This hydrolysis takes place in presence of the enzyme myrosinase
(thioglucoside glycohydrolase, EC:3.2.1.147), when there is a tissue disrupted by
herbivory, insect or pathogen attack, crushing or chewing, since GLS are stored in
vacuoles separated from myrosinase cells (Borgen et al., 2010; Grubb and Abel,
2006). Also the action of the gut microflora upon human ingestion has myrosinase-

like activity (Angelino and Jeffery, 2014).
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The chemical nature of the hydrolysis products depends mainly on the
structure of the GLS side chain, the plant species, the presence of epithiospecifier
proteins (ESP), thiocyanate-formein proteins (TFP), and nitrile-specifier proteins
(NSP), as well as the reaction conditions (pH, presence of Fe ?*, etc.) (Figure 1.4).
The function of these compounds, other than ITC and indoles, is largely unknown,
and consequently, the biological role of specifier proteins (ESP) has remained
unclear (Burow and Wittstock, 2009). Intact GLS have not shown health promotion
activity; thus, the bioavailability of ITC in vivo is dependent not only on ingestion of
GLS, but also on their conversion rate prior to passage across the gut wall (Angelino
and Jeffery, 2014).

GLS and their hydrolysis products play a role as mediators in plant-insect
interactions. They can serve as poison or deterrent in the plant defense system
against generalist insects, herbivores and certain microbial pathogens and also as
attractants to specialist insects feeding on crucifers (Hopkins et al., 2009). An
increase of secondary metabolites (GLS) has been recorded in the damaged leaves
(local) and in the adjacent leaves and stems (systemic) for several days after infection
(Abdel-Farid et al., 2010). Most of the degradation products of GLS are responsible
for the characteristic taste and smell of cruciferous vegetables (Tang et al., 2013).
However, the presence of degradation products is not always beneficial, since the
product hydrolysis of the GLS progoitrin, present in high concentrations in cabbages
and turnips, the ITC goitrin, could produce goitrogenic effect in animals fed with
high amounts of rapeseed meal (EFSA, 2008). The exact mechanisms underlying

these results are not entirely elucidated.

12
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Figure 1.4. Glucosinolate hydrolysis by myrosinase and released products
(Borgen et al., 2010; Burow and Wittstock, 2009).

On the other hand, increasing epidemiological evidence have shown that high

intake, from 3 to 5 times per week, of cruciferous vegetables rich in GLS (i.e.
broccoli), such as glucoraphanin, glucoiberin and glucobrassicin, is associated with a
decreased cancer risk in humans (more details in Section 5) (Higdon et al., 2007,
Jeffery and Keck, 2008; Wagner et al., 2013). Rapid development of molecular and
genetic tools in combination with the availability of new data on the model plant

Arabidopsis thaliana has greatly enhanced the gain of knowledge in recent years.

13



Introduction

Further research work is needed to enrich plants in GLS to improve pest resistance

and value of cruciferous plants for food and health.

2.2.2. Factors influencing the glucosinolates content

Comparative studies of GLS profiles indicate significant differences among
species, varieties, developmental states, environmental (biotic or abiotic) factors,
growth conditions, storage, and processing methods (Bjorkman et al., 2011; Jahangir
et al., 2009; Vallejo et al., 2002). The amount of GLS in plant tissues and organs has
been shown to be highly variable, being seeds the part of the plant with the highest
content of these compounds, followed by sprouts, and inflorescences, leaves and
roots from the adult plants. This amount of GLS may range from 1 % of dry weight
up to 10 % in the seeds of some species (Fahey et al., 2001). Pre-harvest and/or post-
harvest conditions are also known to affect bioactive compounds, since plants
produce signalling molecules (e.g. salicylic acid, jasmonic acid etc.) after wounding
and/or pathogen attack and following stress, that cause a direct or indirect activation
of metabolomics pathways (Ren and Dai, 2012). Besides, the exposure of
Brassicaceae plants to exogenous treatments with phytohormones, such as SA, JA
and MeJA, resulted in an increase in these secondary phytochemicals (Ku et al.,
2014; Ramakrishna and Ravishankar, 2011). Fertilization with sulphur and nitrogen
supply, as well as other exogenous factors such as drought, UV light, temperature,
CO; and NacCl, also influences GLS concentrations (Martinez-Ballesta et al., 2013;
Ramakrishna and Ravishankar, 2011). Different studies indicate that indole GLS are
mainly altered by environmental changes, whereas the aliphatic GLS appear to be

primarily genetically and not environmentally controlled (Mikkelsen et al., 2003). In
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order to prevent the gradually decrease of bioactive compounds during postharvest
handling procedures, storage and transport, crucifers should be maintained at
refrigeration temperatures (4 — 8 °C) and should be consumed as soon as possible
upon harvest (Jones et al., 2006; Song and Thornalley, 2007; Vallejo et al., 2003a).
Moreover, the effect of different cooking methods on the GLS content in
Brassicaceae foods have been studied, being hard boiling the treatment which
showed significant losses of GLS by leaching into cooking water, while cooking by
steaming or stir-frying did not produce this significant loss. In general, the steaming

led to the lowest loss of total GLS (Kapusta-Duch et al., 2016; Vallejo et al., 2002).

2.3. Phenolic compounds: contents and functions

More than 8000 compounds divided into 12 subclasses belong to this group
of natural compounds, characterized by having at least one aromatic ring with one or
more hydroxyl groups attached and produced via shikimic acid pathway. The
aromatic amino acid phenylalanine act as a precursor for their biosynthesis and the
enzyme involved is known as phenylalanine ammonialyase (PAL) (Winkel-Shirley,
2001). Phenolics range from simple, low molecular-weight, single aromatic-ringed
compounds to large and complex tannins and derived polyphenols. The number and
arrangement of their carbon atoms are classified in flavonoids (flavonols, flavones,
flavan-3-ols, anthocyanidins, flavanones, isoflavones and others) and non-flavonoids
(phenolic acids, hydroxycinnamates, stilbenes and others), and are commonly found
conjugated to sugars and organic acids (Cartea et al., 2011; Del Rio et al., 2013).
These compounds perform a variety of functions in the plant, generally centered on

responses to pathogen attack and UV protection, attracting insects for pollination and
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seed dispersion, as well as contributing towards the color and sensory characteristics
of vegetables (Crozier et al., 2007).

Brassicaceae foods are generally rich in polyphenols, although the profile and
content of those compounds in the plant may vary depending on climatic conditions
and harvest season (Gorinstein et al.,, 2009; Vallejo et al., 2003b), as well as
genetics, since total phenolic contents ranged from 15.3 mg-100g™ fresh weight in
white cabbage, 27,8 mg-100g™ in cauliflower, 119 mg-100g™ in Chinese cabbage, to
337 mg-100g™ in broccoli heads; and within plant organs and plant stage, since total
phenolics in broccoli could vary from 34.5 to 337.0 g-100g™* F.W. (Dominguez-
Perles et al., 2011b; Podsedek, 2007). Generally, these vegetables contain higher
amounts of hydroxycinnamic acids, mainly sinapic acid and chlorogenic acid
derivatives, than flavonols, specifically quercetin, kaempferol and isorhamnetin
glycosides (Francisco et al., 2011). Phenolic acids are predominant in seeds and
sprouts, mainly sinapic acid derivatives, having these organs higher amounts of total
phenolics than the adult plant (Pajak et al., 2014; Sousa et al., 2007). On the other
hand, two-month leaves, three-month leaves, consumed organs and by-products
samples of several Brassica vegetables were composed mostly by kaempferol and
sinapic acid derivatives (Soengas et al., 2012).

Diets rich in foods containing phenolic compounds, such as cruciferous
foods, have been reported to possess many useful properties for prevention of non-
transmissible chronic diseases and promotion of health, including anti-inflammatory,
enzyme inhibition, antimicrobial, antiallergic, vascular and cytotoxic antitumor
activity, but the most important action of phenolics is their contribution to the

antioxidant protection in the human body (Crozier et al., 2009; Finley et al., 2011).
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Phenolic compounds can play an important role to scavenge free radicals and up-
regulate certain metal chelation reactions. Various reactive oxygen species (ROS),
such as singlet oxygen, peroxynitrite and hydrogen peroxide, must be continually
removed from cells to maintain healthy metabolic function. Diminishing the
concentrations of ROS could have several benefits possibly associated with ion
transport systems and so may affect redox signaling (Landete, 2012). Despite the
beneficial effects of phenolic compounds it must be taken into account that only a
small percentage of dietary phenolic compounds reaches the tissues, and very little of
this absorbed bioactives retains the structure found in the plant. Plasma
concentrations reached after polyphenol consumption varies highly according to the
nature of the polyphenol and the food source, in the range of 0.3-0.75 umol/L after
consumption of 80-100 mg quercetin equivalents (Manach et al., 2004). Moreover,
phenols are modified during the first part of their metabolism and the most important
modifications involve conjugation to produce glucuronide or sulphate conjugates by
intestinal and/or hepatic detoxification enzymes. However, the major part of these
molecules is metabolized by the colonic microflora rendering the so called microbial
metabolites. Those microbial metabolites can be detected in the blood and urine after
ingestion, but only a very small fraction of non-conjugated phenolics in their original
form can be found. This implies that these microbial metabolites rather than the
native phenolics are responsible for the beneficial biological effects in the body

(Crozier et al., 2009).
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2.3.1. Phenolic acids

Phenolic acids in plants consist of two subgroups, the hydroxybenzoic and
hydroxycinnamic acids. Hydroxybenzoic acids include gallic, p-hydroxybenzoic,
protocatechuic, vanillic and syringic acids, which in common have the C6-C1
structure, but they are not cited in Brassicaceae foods. Hydroxycinnamic acids are
the most common in cruciferous foods, and they are aromatic compounds with a
three-carbon side chain (C6-C3), with caffeic, ferulic, p-coumaric and sinapic acids
(Figure 1.5.), practically always found in conjugation with sugars or other
hydroxycinnamic acids (Ferreres et al., 2009). The higher antioxidant activity of the
hydroxycinnamic acid could be due to the CH=CH-COOH group, which ensures
greater H-donating ability and radical stabilisation than the —~COOH group in the
hydroxybenzoic acids (Terry, 2013).

Significant  levels of hydroxycinnamic acids (hydroxycinnamoyl
gentiobiosides and hydroxycinnamoylquinic acids) have been reported in B. oleracea
crops, like kale, cabbage, broccoli, and cauliflower (Soengas et al., 2012). However,
the predominant phenolic acids in seeds and sprouts in these vegetables were sinapic
acid derivatives, such as sinapic acid esters (1-sinapoylglucose, sinapoylmalate and
6,3’-disinapoylsucrose) (Lim, 2014; Takaya et al., 2003). The most common
glycoside of sinapic acid in Brassicaceae species is sinapoyl glucose (1-O-p-D-

glucopyranosyl sinapate).
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3-0-Caffeoylquinic acid Ferulic acid

Figure 1.5. Hydroxycinnamic acids commonly found in Brassicaceae foods.

The profile of hydroxycinnamic acids varies with genetics and the
developmental stage of the plant, showing seeds the higher amount of sinapic acid
derivatives compared to leaves and inflorescences from Brassica oleraceae, since
these compounds are precursors of lignin biosynthesis, important in the first plant
stages to rigidifying cell walls and rendering them impermeable to water (Francisco
et al., 2015). The antioxidant scavenger properties of Brassicaceae extracts rich in
phenolic acids have also been proved in vivo. Sinapic acid has shown to contribute to
the cellular defense avoiding oxidation, through scavenge of “OH, O?~, ‘OOH and
"NO radicals and inflammation, through inhibition of the NF-«xB, and consequently,
the expression of proinflammatory mediators such as inducible nitric oxide synthase,
cyclooxygenase-2, tumor necrosis factor-a, and interleukin-1p (Chen, 2016; Yun et

al., 2008).
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2.3.2. Flavonoids

Flavonoids are low molecular weight compounds, consisting of fifteen carbon
atoms with two aromatic rings A and B, connected by a three-carbon bridge (C6—
C3-C6) configuration usually in the form of a heterocyclic ring, C. Over 5000
different flavonoids have been described to date and they are classified into at least
10 chemical groups, depending on the substitution pattern to rings A and B give rise
to the different compounds, among them, flavones, flavonols, flavanols, flavanones,
anthocyanins and isoflavones are particularly common in the human diet (Kumar and
Pandey, 2013). These compounds have interesting biological activities connected to
cancer-prevention, and cardiovascular system protection, including inhibition of
oxidative damage (Del Rio et al., 2013). In Brassicaceae foods, flavonoids reached
higher contents at flowering (19.02 umol-g* D.W.) rather than in leaves
(9.28 ymol-g™* D.W.). Seeds usually show very low quantities of flavonoids

(Francisco et al., 2015).

2.3.2.1. Flavonols

Flavonols in Brassicaceae vegetables are mainly represented by O-glycosides
of quercetin, kaempferol and isorhamnetin (Figure 1.6.), conjugated with different
organic acids (Ferreres et al., 2004). Conjugation occurs most frequently at the 3
position of the C-ring, but substitutions can also occur at the 5, 7, 4", 3" and 5
positions (Francisco et al., 2009). The occurrence, position, structure, and total
number of sugar moieties in flavonols (glycosides) play an important role in
antioxidant activity, being aglycones more potent antioxidants than their

corresponding glycosides. Besides, bioavailability is sometimes enhanced by a
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glucose moiety (Kumar and Pandey, 2013). To date, more than 20 flavonols have
been described in crucifers such as kale, white cabbage, cauliflower, and broccoli as
well as in B. napus and B. rapa leaves. Among them, the main flavonols were
identified as kaempferol and quercetin 3-O-sophoroside-7-O-glucoside and its
combinations with different hydroxycinnamic acids, mainly kaempferol and

quercetin 3-O-(caffeoyl/sinapoyl)-sophoroside-7-O-glucoside.

Quercetin Kaempferol

Isorhamnetin

Figure 1.6. Flavonoid aglycones commonly found in Brassicaceae foods.

In the B. rapa group, in addition to quercetin and kaempferol derivates, it can
be found derivatives of the flavonol isorhamnetin (Romani et al., 2006). The
glycosylated flavonols, such as 3-sophoroside-7-glucosides of kaempferol, are

increasingly attributed beneficial health effects such as a reduced risk of age-related
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chronic diseases, like cancers and cardiovascular diseases (Park et al., 2009). In
addition, quercetin has received considerable attention as a major representative of
the flavonol subclass, found at high concentration in broccoli. This flavonol has
displayed the ability to prevent the oxidation of LDL by scavenging free radicals and
chelating transition metal ions. As a result, quercetin may aid in the prevention of
certain diseases, such as cancer, atherosclerosis and chronic inflammation by
retarding oxidative degradation and inducing enzymes that detoxify carcinogens
(Ackland et al., 2005; Batra and Sharma, 2013). Furthermore, isorhamnetin isolated
from mustard leaf showed a strong activity in reducing serum levels of glucose in

Diabetes Mellitus through an antioxidant activity tests (Yokozawa et al., 2002).

2.3.2.2. Anthocyanins

The presence of these compounds causes the red pigmentation of some
vegetables, such as red cabbage, red radish, purple cauliflower and purple broccoli.
The major anthocyanins identified in these crops are cyanidin derivatives (Figure
1.7.), consisting of a cyanidin as aglycon, glycosylated mainly with glucose and/or
sophorose (diglucoside), which are acylated with various aromatic and aliphatic
acids. The chromatographic profile of anthocyanins of red crucifers, such as red
cabbage and red radish, are one of the most complicated, because of the high number
of different anthocyanins, which are highly conjugated cyanidin glycosides with
several aromatic and aliphatic acids.

In red cabbage and broccoli sprouts the major anthocyanins were identified as
cyanidin 3-O-(sinapoyl)(feruloyl) diglucoside-5-O-glucoside and cyanidin 3-O-

(sinapoyl)(sinapoyl) diglucoside-5-O-glucoside (Moreno et al., 2010). Anthocyanins
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have been found to have a high antioxidant power and antigenotoxic properties
(Posmyk et al., 2009). These authors suggest that a mixture of anthocyanins not only

prevents and limits but also repairs the cytological injury caused by Cu®* stress on

lymphocytes.
Cyanidin aglycon
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Figure 1.7. Chemical structure type of acylated anthocyanins in Brassicaceae foods.

The absorption, gastrointestinal transit and plasma elimination are dependent
on anthocyanin structure. Absorption efficiencies of acylated cyanidins were lower
than those for non-acylated anthocyanins. Also the acylated anthocyanins exhibited a
shorter half-life for gastrointestinal absorption than the non-acylated ones. Fractional
elimination of non-acylated was slower than for acylated anthocyanins (Novotny et

al., 2012).
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3. ENRICHING FOODS IN HEALTHY BIOACTIVES:

ELICITATION

Elicitors are physical or chemical stimuli which induce physiological changes
in the plant. Plants respond to these stressors by activating an array of mechanisms,
similar to the defense responses to pathogen infections or environmental stimuli,
affecting the plant metabolism and enhancing the synthesis of phytochemicals. The
first biotic elicitors were described in the early 1970s (Keen, 1975). Since then,
numerous publications have accumulated evidence for pathogen-derived compounds
that induce defense responses in intact plants (Doughty et al., 1995; Pérez-Balibrea
et al., 2011) or plant cell cultures (Smetanska, 2008). The use of elicitors as a tool to
enhance the phytochemical content in plants, applied alone or in combinations at
selected time points of the vegetable growth, should not be confused with those
administered during the plant production cycle or pre-harvest, such as conventional

fertilization.

3.1. Classes of elicitors

Elicitors could be classified as biotic or abiotic compounds, also plant
hormones may be considered as elicitors (Table 1.1.) (Angelova et al., 2006; Poulev
et al., 2003; Radman et al., 2003). Biotic elicitors, such as chitosan and alginate,
have biological origin, often originated as a result of fungi, bacteria, virus or
herbivore infections (exogenous elicitors), and in some cases are released from the
attacked plant by the action of enzymes of the pathogen (endogenous elicitors) (Ebel

and Cosio, 1994).
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Biotic Elicitors

Lipopolysaccharides

Polysaccharides (e.g. pectin, chitosan and alginate)

Oligosaccharides (galacturonides, guluronate and mannan)

Proteins (e.g. cellulose and glycoproteins)

Complex composition (e.g. fungal spores, mycelia cell walls and pathogen
toxins).

Abiotic Elicitors

Chemical: acetic acid, benzothiadiazole ethanol, ethene, inorganic salts (e.g.
NaCl, CuSO, and CaCl,) and metal ions (e.g. Co®*, Fe**, AI** and Mn*").

Physical: chilling, CO,, O,, drought, temperature shock, high pressure, high or

low osmolarity, UV radiation, wounding.

Plant Hormones

Jasmonic acid (JA), methyl jasmonate (MeJA), methyl salicylate (MeSA),
salicylic acid (SA), ethylene, cytokinin, gibberellin GAs.

Table 1.1. Elicitor classification based on their origin (Angelova et al., 2006;
Poulev et al., 2003; Radman et al., 2003).

Salicylic acid (SA) and jasmonic acid (JA) and its methyl ester, methyl
jasmonate (MeJA), are widely known to elicit a wide range of compounds by
inducing the expression of plant genes for various biosynthetic pathways. These
small signaling molecules also defined as “hormones”, are induced in the cells in
response to wounding or pathogen attack in plants, and they can induce cellular

responses at low concentrations distant from their site of synthesis.
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Abiotic elicitors are produced by factors responsible for environmental stress.
These factors can be of chemical (inorganic salts, metal ions and others which
disturb the membrane integrity) and physical origin (UV radiation, wounding, saline
stress, ozone etc.) (Radman et al., 2003).

Apart from the classification of elicitors according to their nature, they can
also be classified upon their interaction with the host plant, as “general elicitors”,
such as carbohydrates, cell wall proteins, oligosaccharides etc., which induce non-
specific mechanisms for the induction of defense response in different plant cultures,
and “specific elicitors” from fungal, bacterial, viral or plant origin, which affect only
a specific host cultivar since the presence of its corresponding resistance gene in the
host plant is directly associated with specific gene pathogen (Thakur and Sohal,
2013). The defense mechanisms triggered by general elicitors have been studied as
remarkable similar than the innate immunity of animals, and it is tempting to
speculate that the recognition of general elicitors subsequently leads to plant innate

immunity (Nurnberger and Brunner, 2002).

3.2. Mechanisms of action

In plant defense systems cells have acquired the capability to respond to
pathogens and environmental stresses by building up a defense response. Plant
response is determined by several factors, mainly depending on their genetic
characteristics and physiological state. In the majority of cases, plant resistance to
diseases is known to be genetically controlled by plant resistance (R) genes and the
complementary pathogen avirulence (Avr) genes (gene-for-gene interaction concept),

that codifies a product recognisable by the plant (Surico, 2013). However, triggering
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resistance is not always due to specific Avr products but, instead, proceeds from the
action of general elicitors, able to activate defenses in different cultivars of one or
many species (Thakur and Sohal, 2013).

First step in the response of plant against elicitors is the stimulus perception
by receptors localized in plasma membranes of the plant cell, like protein kinases,
which represent one of the most important players in pathogen perception for a
number of fungal elicitors, or could be localized within the cell to initiate signaling
processes that activate plant defenses, as for certain bacterial elicitors (Ebel and
Mithofer, 1998). The elicitor signal transduction is an important area of
investigation. Plants respond to elicitors by activating an array of defense
mechanisms on the surface of the plasma membrane (Figure 1.8.): induction of
pathogenesis-related proteins (PR) and enzymes of oxidative stress protection;
hypertensive responses characterized by rapid cell death in the immediate vicinity of
the point of exposure to the pathogen; production of reactive oxygen species (ROS)
and reactive nitrogen species (RNS); activation of defense-related genes; changes in
the potential of plasma membrane cell and enhanced ion fluxes (CI™ and K* efflux
and Ca*" influx), responsible for a transient cytoplasm acidification that can act as a
signal for the production of secondary metabolites; rapid changes in protein
phosphorylation and dephosphorylation (changing enzyme activity, cellular location
or association with other proteins), and lipid oxidation; structural defensive barriers,
such as reinforcement and lignification deposition in cell wall; and, the activation
and the de novo biosynthesis of transcription factors, which directly regulate the
expression of genes involved in the production of secondary metabolites (Ferrari,

2010; Zhao et al., 2005).
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Figure 1.8. General mechanism after elicitor perception (Ferrari, 2010; Zhao et al., 2005).
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3.3. Elicitors application

Elicitation could be used as preharvest or postharvest treatment. Among
preharvest treatments, seed priming consists on soaking seeds in a water solution
with the elicitor, inducing the cellular plant defense responses (SAR and ISR). There
is evidence that seeds of parsley treated with jasmonates showed cells with induced
early oxidative burst and various phenylpropanoid defence responses (Conrath et al.,
2015; Conrath et al., 2002). Elicitors can be also applied as a gas in an enclosed
environment (such as MeJA), on a liquid form to a hydroponic solution, or by
exogenous sprays (Wasternack, 2014). The combination of seeds priming and
exogenous application of elicitors, could be highly effective to enhance bioactive
compounds production in the plant, as primed cells react more quickly and efficiently
to subsequent elicitor treatment or pathogen attack (Conrath, 2011).

In postharvest practices, specific elicitor treatments have been used to
enhance the phytochemical content and food quality, such as application of
temperature shocks, UV radiation or gas combinations before commercialization
(Terry and Joyce, 2004).

Elicitor nature, dosage and time of treatment, and combined application of
compounds strongly affects the intensity of the plant response, stimulating different
classes of secondary metabolites in different concentration levels, being more
dependent on plant genetics (species and cultivars) and organ treated than on the

elicitor nature (Ku et al., 2014).

29



Introduction

3.4. Effects on the content of bioactive compounds

Much effort has been put into identifying transcription factors and revealing
the signal transduction steps underlying elicitor activation of plant secondary
metabolism and also into the manipulation of regulatory and biosynthetic genes to
enhance the production of target secondary metabolites. The molecular mechanisms
by which elicitors regulate the expression of these transcription factors have not been
yet determined, since the metabolic pathway that is affected is not linear, but through
an extensive network of cellular responses. Cross-talk of multiple signaling pathways
is very common and important for accumulation of plant secondary metabolites and
other defense responses, but how different signaling pathways are integrated into the
single cellular process (such as phytoalexin biosynthesis) is still not very clear. The
regulation of cellular processes commonly occurs at several different levels including
transcription, RNA processing, and translation, as well as by post-translational
modification such as protein phosphorylation. However, the majority of studies show
that transcriptional modulation of related genes is a common response to pathogens
or elicitor signals and, studies on DNA sequences demonstrated that several elicitor-
response elements in these genes are involved in the biosynthesis of secondary
metabolites (Zhao et al., 2005).

Elicitor activation of defense genes requires action of transcription factors,
which can recruit the general transcription machinery to stimulate gene expression.
As a consequence, in plant tissues is observed the production of antioxidant
molecules, compounds of technological interest in healthy foods, such as phenolic
compounds, which are accumulated in plant cells after elicitor treatment due to the

activation of the phenylpropanoid pathway through specific transcription factors,
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such as PAL and CHS activities (Zhao et al., 2005). GLS also can be increased by
treatments with elicitors, however, the underlying regulatory mechanisms
responsible for this alteration are largely unknown, different resistance responses of
the plant have become a target of investigation as responsible of the de novo
biosynthesis of these compounds, such as the overexpression of the CYP79 gene
family, implicated in the biosynthesis of the GLS structure (Mikkelsen et al., 2003)
and the study of gene expression quantitative trait locus (QTLs), which are sections
of DNA related to a phenotype, where MYB28 and MYB29 expression activated
GLS biosynthetic genes (Pino Del Carpio et al., 2014).

Examples of induction of both phenolic compounds and GLS around 40 -
50 % is reported in radish sprouts treated with NaCl (100 mM) (Yuan et al., 2010)
and broccoli sprouts treated with sucrose and mannitol (176 mM) (Guo et al., 2011a)
after sowing seeds. Other bioactive compounds such as carotenoids, betalains,
vitamins and folates, as well as nutrients involved in the primary metabolism of the
plant (proteins, carbohydrates or lipids) are also influenced by elicitor applications,
affecting plant growth and productivity (Gémez et al., 2010). It is expected that a
better understanding of the signal transduction pathways, linking plant cell
stimulation and biosynthesis of natural compounds will help to develop new
strategies to induce the production of target compounds, by either activation or

suppression of certain metabolic pathways (Ferrari, 2010).

31



Introduction

4,  SHELF LIFE OF EDIBLE SPROUTS

In recent years, the production of sprouted seeds has increased as a result of
increased consumer demand for this type of fresh products. Postharvest practices
include the management and control of variables such as temperature, relative
humidity, light and time of storage, to maximize their organoleptic, functional and
microbial quality, avoiding physiological and physical disorders, such as freeze
injury, softening or discoloration and the loss of health-promoting phytochemicals.
Light conditions have shown to produce quality deterioration and weight loss in
sprouts, being the dark storage a better method of preservation for extending quality
and shelf life (Xiao et al., 2014). Rapid cooling is essential to achieve the full storage
potential of sprouts. According to the “Recommendations for Maintaining
Postharvest Quality” of University of California (UC Davis, USA) cruciferous adult
plants should be stored at 0°C to optimize their shelf-life (21-28 days), since
broccoli heads stored at 5 °C or 10 °C can have a storage life of 14 days or 5 days,
respectively (Cantwell and Suslow, 2015). Regarding sprouts, due to the high
respiration rates and perishable nature, distribution and storage should be carried out
also at 0°C (5 to 9days) (Pérez-Balibrea et al., 2015). However, the common
temperatures of refrigeration found during commercialization and storage of fresh

products at home are definitely higher (4 — 10 °C).
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4.1. Microbial content

It is particularly important to prevent microbial contamination during the
production of seeds because of the potential for pathogens to grow during the
sprouting process. High quality seed, proper germination process and postharvest
refrigeration are the primary controls, but washing sprouts before consumption, as
fresh produce, in chlorinated or ozonized water (or other effective and approved
disinfectant) will help control the possible decay and spoilage. Total plate counts as
high as 10® — 10° CFU/g are frequently reported in sprouts due to the intrinsic
microflora of the seeds (Gabriel et al., 2007; Martinez-Villaluenga et al., 2008;
Soylemez et al., 2001).

Seeds have been linked to outbreaks of food poisoning in humans. In fact,
after the outbreak caused by E. coli in May 2011 in the EU, consumption of sprouts
was identified as the most likely source of this food crisis. The European Food Safety
Agency (EFSA) issued a scientific opinion on the risk caused by toxin-producing E.
coli Shiga and other pathogenic bacteria in seeds and sprouted seeds in October
2011. In that opinion, EFSA said that the most likely initial source of the crisis
aforementioned food is contamination of seeds with pathogenic bacteria and that
these bacteria in the seeds can multiply during germination and be a risk to public
health due to the high humidity and the favorable temperatures reached during the
same process. In order to avoid or reduce potential risks of contamination of
germinated seeds, thus ensuring protection of public health in the EU, it is necessary
to observe the opinion of EFSA adopted in March 2013 Implementing Regulation
(EU) No 208/2013 of the Commission, the 11" March 2013 for requirements on the

traceability of sprouts and seeds intended for sprouts production. EFSA concluded
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that the contamination of dry seeds with bacterial pathogens was the most likely
initial source of the sprout-associated outbreak (EFSA, 2011). The World Health
Organization (WHO, 2015b) stated that when food supplies are insecure, people tend
to shift to less healthy diets and consume more ‘“unsafe foods”. Therefore,
contamination with pathogenic bacteria must be minimized by the application of
Good Agricultural Practices (GAP), Good Manufacturing Practices (GMP), Good
Hygiene Practices (GHP), and Hazard Analysis Critical Control Point (HACCP)
principles at all steps of the food production chain (EFSA, 2011). These challenges
put greater responsibility on food producers and research to ensure food safety and

quality.

4.2. Influence on bioactive compounds

The specific role of bioactive compounds in human metabolism has
encouraged food technologists and researchers to develop new processes and
technologies for preserving these health-promoting compounds during the shelf life
of fruits and vegetables. Brassicaceae sprouts continue their metabolic activities
upon harvest and during shelf-life, and their composition would change according to
storage factors such as temperature, water availability and time. Storage temperature
may be considered as the most important factor, which directly affects the
physiology of vegetables and consequently the cellular constituents (Jones et al.,
2006). Even though the contents of bioactive compounds of cruciferous sprouts may
be high at the time of harvest, decreases of their concentrations during storage are

found, particularly if produce is not cooled effectively. Besides, there is not accurate
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data that document the stability of these phytochemicals during storage. Variations in
phytochemical contents responsible of the antioxidant capacity of the plant, such as
phenolics, GLS and vitamins, may be due to the constant changes in the plant
physiology and metabolism during storage, as a result of oxidative stress, which may
include structural changes in synthesis or antioxidant compounds (Xiao et al., 2014).
Also bioactive compounds could serve as nutrients for specific microbial population
present in the seeds and sprouts, being subjected to biotransformation and, therefore,

giving rise to a decrease of phytochemical contents in the plant (Vale et al., 2015).
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S. CONNECTING CRUCIFERS AND HEALTH

Vegetables belonging to cruciferous family have long been studied as rich
source of nutrients and bioactive compounds with attributable beneficial effects on
human health, like antibacterial, antifungal, antitumor, anti-mutagenic, anti-
inflammatory, neuroprotective and antioxidative activities, which have been
demonstrated through many in vivo and in vitro studies, as well as in epidemiological
evidences. The promotion of consumption of these plant foods is highly desirable in
recent times in order to manage chronic diseases and enhance wellbeing and health

through life.

5.1. Absorption and metabolism of glucosinolates/isothiocyanates

(GLS/ITC)

The bioavailability of GLS/ITC is measured by the mercapturic acid pathway
which acts as an indicator to measure the bioavailability of the breakdown products
ITCs, which gives rise to N-acetylcysteine conjugates (Angelino and Jeffery, 2014).
GLS are hydrolyzed to ITC when come into contact with the enzyme myrosinase
from chewing and continue also with the action of the gut microbiota. An initial
reaction between the electrophilic central carbon of the -N=C=S group of the ITC
and the cysteine sulfhydryl group of glutathione (GSH) can take place spontaneously
and is enhanced by glutathione S-transferase (GST), forming a dithiocarbamate GSH
conjugate (Figure 1.9.). Then, cleavage of glutamine and glycine by the enzymes vy-
glutamyl transpeptidase (GTP) and cysteinylglycinase (CGase) respectively yields L-

cysteine conjugates, forming cysteinylglycine- (-CYS-GLY) and cysteine- (-CYS)
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metabolites and, finally, the N-acetyl-cysteine (-NAC) conjugate is formed in the

Kidney.
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Figure 1.9. Metabolism of sulforaphane (Angelino and Jeffery, 2014; Dominguez-
Perles et al., 2014).

The metabolites derived from sulforaphane (SFN), the predominant ITC
found in broccoli and hydrolyzed from the GLS glucoraphanin (GRA), have been the
most studied in terms of bioavailability and health benefits. SFN metabolites have
been found in plasma and urine (Atwell et al., 2015; Dominguez-Perles et al., 2014).
SFN-NAC has been studied as the major metabolite found in urine, used as a marker
of bioavailability, following by SFN-CYS and SFN-GSH. These compounds could
be analyzed by distinct HPLC-MS/MS methods up to nanomolar concentrations

(Angelino and Jeffery, 2014; Egner et al., 2008).
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Clarke et al., (2011) observed limited SFN absorption in healthy adults after
consuming GRA supplements with inactivated myrosinase, which was 7-fold lower
than when subjects consumed equivalents levels of GRA from fresh broccoli sprouts
containing the active enzyme. Urinary and plasma SFN metabolites appearance was
faster after consuming broccoli sprouts than using broccoli powder lacking
myrosinase (Cramer and Jeffery, 2011). ITC are absorbed rapidly, reaching peak
concentrations of 0.94 — 2.27 uM in plasma, serum and erythrocytes 1 hour after
consumption. The higher levels of ITC detected in plasma and urine have been
reported at 2-3 h and 4-5 h, respectively, after consumption of broccoli sprouts, and
ITC were mostly excreted within 24 hours in concentrations around 20 — 100
umol/24 h depending on the amount consumed (Angelino and Jeffery, 2014).
Vermeulen et al. (2006), observed 11 % higher excretion of SFN metabolites
following consumption of raw versus cooked broccoli. Therefore, inactivation of the
plant myrosinase by high temperature, as occurs during cooking, decreases
bioavailability of ITC. Thus, boiling or steaming for more than 3-5 min and
blanching prior to freezing will lead to lost activity (Tiwari et al., 2015).

Other interesting work showed in plasma and urine higher levels of total SFN
metabolites (3-5 times) in fresh broccoli sprouts consumers, compared to a
myrosinase-treated broccoli sprouts extract containing SFN but not GRA; therefore,
GRA conversion to SFN is not the only factor influencing SFN absorption, but also
other compounds present in broccoli sprouts, such as minerals, phytochemicals and
fibre may enhance SFN transport across cell membranes (Atwell et al., 2015). In
SFN bioavailability, also the total amount of SFN estimated could derive from the

interconversion of erucin, from glucoerucin, to SFN in vivo (Clarke et al., 2011).
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5.2. Current evidences of biological activities: in vitro and in vivo
studies

In vitro and in vivo studies have reported that ITC must be potentially triggers
of the Keapl/Nrf2/ARE pathway, which regulates the transcription of many
antioxidant genes that preserve cellular homeostasis and detoxification genes that
process and eliminate carcinogens and toxins before they can cause damage
(Stefanson and Bakovic, 2014). Thereby, stimulating expression of genes that
regulate an extensive network of inducible cytoprotective phase Il detoxification
enzymes, such as glutathione S-transferases (GST), UDP-glucuronosyl transferases,
and quinone reductase, that protect cells against reactive oxygen species (ROS),
inflammation, and DNA-damaging electrophiles (Baird and Dinkova-Kostova,
2011). Also the chemoprotective activity of ITC may involve inhibition of phase I
enzymes, being the cytochromes P450 the most important in mammals, blocking
chemically-induced carcinogenesis (Clarke et al.,, 2008). GST enzymes can
metabolize the products of phase | activity through formation of water-soluble
conjugates which are excreted in urine. Even though urinary levels of total ITC
metabolites may be an excellent biomarker of exposure to ITC in general, cancer
preventative potency varies widely for individual ITC actions.

The ITC SFEN present in broccoli sprouts is a multi-faceted chemopreventive
agent, with the ability to act not only in modulation of enzymes, but also blocking or
suppressing carcinogenic stages, by eradication of infection, inhibition of growth
promotion, alteration of signaling pathways, cell cycle arrest and apoptosis, and

inhibition of recurrence (Myzak and Dashwood, 2006). More recently, SFN
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metabolites were reported to inhibit histone deacetylases (HDAC), which remove
acetyl groups from proteins, altering gene expression and protein function (Myzak et
al., 2007). Therefore, ITC can act to reduce the incidence or progression of various
cancers, including colon (Byun et al., 2016), kidney (Hsu et al., 2007), breast
(Pawlik et al., 2013) and prostate (Wong et al., 2014) through various molecular
targets. Therefore, a diet of 3-5 servings per week of Brassicaceae vegetables (40-
50 grams) is sufficient to cause a 30 % or 40 % decrease in risk for a number of
cancers (Jeffery and Keck, 2008).

Induction of Nrf2-dependent antioxidant defense is reported to inhibit NF-xB
activation, a transcription factor that activates expression of multiple genes related to
inflammation  (Oeckinghaus and Ghosh, 2009). The presence of chronic
inflammation contributes to the development of type 2 diabetes, cardiovascular
disease, neurodegeneration and cancer. Several bioactive compounds present in
crucifers have been found to suppress proliferation of many cancer cell lines and to
suppress activation of NF-kB and the associated inflammation, protecting against
oxidative stress and inflammatory damage, as in the case of ITC, which are among
the most potent phytochemicals activating Nrf2 and antioxidant enzymes (Stefanson
and Bakovic, 2014).

Not only SFN, but also erucin, from the precursor GLS glucoerucin, iberin
from GLS glucoiberin, sulforaphene from GLS glucoraphenin (which differs from
GRA by a double bond) and phenethyl ITC from GLS gluconasturtiin, have been
studied because their bioactivity, triggering the transcription factor Nrf2 into de
nucleus, where the antioxidant response element (ARE) promoter region activate

multiple genes, including both phase 11 detoxification enzymes and several
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antioxidant enzymes, among others, and induce cell cycle arrest and apoptosis (La
Marca et al., 2012).

Recent studies have shown that indole-3-carbinol (13C) from indole GLS (4-
hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin and
neoglucobrassicin), plays important roles in apoptosis and arrest of cell growth in in
vitro experiments with breast and prostate cancer cells (Wang et al., 2015). The 13C
showed a potential benefit in preventing obesity and metabolic disorders, involving
multiple mechanisms including decreased adipogenesis and inflammation, along with
activated thermogenesis (Choi et al., 2012). It is well known that excess of adipose
tissue produces inflammation inducing cytokines, increases oxidative damage and
directly alters gene transcription. Research investigating the use of diet-derived
chemoprevention compounds may have significant impact on qualifying or changing
recommendations for high-risk cancer patients and thereby increase their survival
through simple dietary choices with easily accessible foods.

Recently, other health benefits have been associated with SFN-rich broccoli
sprouts, such as its capacity to reverse abnormalities that have been associated with
autism disorders after 18 weeks of consumption, including oxidative stress and
depressed glutathione synthesis, reduced mitochondrial function and oxidative
phosphorylation, increased lipid peroxidation, and neuroinflammmation (Singh et al.,
2014). Through similar mechanisms, SFN-rich broccoli sprouts during the juvenile
and adolescence may have therapeutic effects on cognitive impairment at adulthood
(Shirai et al., 2015). Further in vitro and in vivo assays to understand GLS

bioavailability and ITC actions would encourage the use of cruciferous vegetables as
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preventive and healthy foods in animal studies and human clinical trials to fight high

prevalence and non-communicable chronic diseases.

6. PERSPECTIVES IN NATURAL FUNCTIONAL FOODS

Interest in functional foods has been growing over the last decades as
consumers become increasingly aware with diet and nutrition related to health
promotion. Scientist and food manufacturers are continuously developing strategies
to improve phytochemical levels in vegetables. Elicitation in pre and post-harvest is a
cost-effective strategy to enhance the amount of active compounds with nutraceutical
or other functional properties without using genetic modifications. These
investigations on increasing levels of Brassicaceae phytochemicals may have a
potential for human intervention studies to investigate the effects of a specific
compound on human health.

There is an increasing global market of foods and products enriched in
cruciferous bioactives. In the last few years, pharmaceutical forms (pills, powders,
capsules, etc.) containing GLS or ITC as food bioactive compounds (especially
broccoli extracts that provide SFN, I13C and other phytochemicals) have appeared in
the markets (Arai et al., 2015). Also minimally processed broccoli by-products (stalk
or leaves among others) can be used as a source of bioactive ingredients, mainly GLS
and phenolic compounds (Dominguez-Perles et al., 2011a), to design new products,
such as novel beverages.

A better understanding of these dietary bioactive compounds and their modes
of action will help to elucidate mechanisms of prevention of diseases, as well as to

improve human health. Incorporating these sprouts and health-promoting compounds
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as natural foods, rich in functional ingredients (functional foods), may be an effective
way to guard against many of today's most common diseases.

Development of safe and effective foods, for reducing the risk of cancer and
other chronic diseases is a high priority of research in the connections between food,
nutrition and health. In this aspect, sprouts may be naturally-functional fresh foods
with a positive role in the future of personalized nutrition and global food for health

trends.
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The general objective of this Doctoral Thesis was to select and enrich

cruciferous sprouts in health-promoting bioactive compounds as well as to validate

their functionality to foster their applications as natural-healthy foods.

In order to achieve this general aim, the following specific objectives were

established:

Select suitable cruciferous sprouts varieties and appropriate germination

conditions, to reach acceptable biomass and high contents of phytochemicals.

Investigate the effect of exogenous application of elicitors and seed priming on

cruciferous sprouts, to enhance their content in bioactive compounds.

Ascertain the possible health-promoting effects of broccoli and radish sprouts,
through investigation of the absorption and metabolism of their bioactive
compounds, and their effects in cancer proliferation, glucose metabolism and

antinociception.

Evaluate the quality of broccoli and radish sprouts during shelf life, in order to
obtain microbiologically safe foods maintaining their phytochemical

composition.
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Chapter 3

This chapter describes materials and techniques used in the works carried out
in this Doctoral Thesis. More specific methods are included in the publications of

Chapter 4.

1. GERMINATION OF SPROUTS

Seeds of cruciferous sprouts used in this work (Table 3.1.) were of
commercial quality of ready-for-sprouting lines and were provided by Intersemillas,
S.A. (Valencia, Spain). Germination of the sprouts was carried out in the laboratories

of CEBAS-CSIC, Murcia, Spain.

Brassicaceae species

Common name Scientific name
Broccoli Brassica oleracea var. italica
Radish Raphanus sativus L.

Red Radish Raphanus sativus cv. Rambo
China Rose Radish Raphanus sativus var. sativus
Turnip Brassica rapa L.

Garden cress Lepidium sativum L.

Red cabbage Brassica oleracea var. capitata
Kohlrabi Brassica oleracea var. gongyloides
White mustard Sinapis alba L.

Table 3.1. Cruciferous species under study.
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Seeds were rinsed in distilled water, immersed in 5 g-L* sodium hypochlorite
for 2 h, drained and placed in distilled water again under aeration overnight. After
pouring off the soaking water, the seeds were weighed (day 0) and spread evenly on
trays lined with cellulose growth pads of white viscose (CN Seeds Ltd, UK) and
irrigated with 5g-L* sodium hypochlorite in distilled water. The trays were
transferred to a controlled environment chamber with a 16 h light/8 h dark cycle,
with temperatures of 25 and 20 °C and relative humidity 60 % and 80 %,
respectively. Photosynthetically active radiation (PAR) of 400 pmol-m%s* was
provided by a combination of fluorescent tubes (Philips TLD 36 W/83, Hamburg,
Germany; Sylvania F36W/GRO, Danvers, Massachusetts, USA) and metal halide
lamps (Osram HQIL.T 400 W, Munich, Germany). Brassicaceae sprouts were allowed
to grow for a maximum of 12 days depending on the experiment. Sprout samples
were gently collected in the middle of the light period, taking three replicates (trays)
for analysis. All samples were weighed (fresh mass), collected separately, flash

frozen in liquid nitrogen, stored at —80 °C and lyophilized prior to analyses.

2. TREATMENTS WITH ELICITORS

Treatments with different elicitors were carried out as exogenous spray
during four or five days before harvest, depending on the experiments (Figure 3.1.).
The elicitors used in the experiments were MeJA (S.A.F.C. St. Louis, USA), SA
(Panreac, S.A., Barcelona, Spain), JA, sucrose and glucose (Sigma-Aldrich Co.,St.

Louis, , USA) and methionine (Alfa Aesar GmbH & Co., Karlsruhe, Germany).
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Figure 3.1. Exogenous spraying of elicitors on the cotyledons of

cruciferous sprouts.

Sprouts were always treated with 10 mL of the elicitor per tray, at the
correspondent concentration under study, and applied as exogenous spraying on the
cotyledons (not as soaking or irrigation solution). Milli-Q water was used as control.
Also priming of seeds by 100 % imbibition and aeration of the seeds for 24 h was
performed, using MeJA and JA in a concentration of 250 uM and methionine at

10 Mm, respectively.

3. EXTRACTION AND DETERMINATION OF BIOACTIVE

COMPOUNDS

In this work, glucosinolates and their hydrolysis products isothiocyanates and
indoles; and phenolic compounds, quantified as flavonols, chlorogenic acid

derivatives and sinapic or ferulic acid derivatives; as well as, individual
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anthocyanins, from cruciferous sprouts, under study, have been analysed using
advanced techniques of HPLC-DAD, HPLC-DAD-ESI-MS", and UHPLC-QqQ-

MS/MS, as described ahead.

3.1. Glucosinolates and non-coloured phenolic compounds

Freeze-dried samples (50 mg) of sprouts were extracted with 1 mL of
methanol 70% V/V, then were heated at 70 °C for 30 min in a bath, shaking every 5
min, and centrifuged (17 500 x g, 5 min). The supernatants were collected and the
extractant was removed using a rotary evaporator. The dry material obtained was re-
dissolved in Milli-Q water and filtered (0.45 um Millex-HV13 filter, Millipore,
Billerica, MA, USA).

The quantitative analysis of glucosinolates and phenolic compounds was
carried out simultaneously by a LC multipurpose method (Francisco et al., 2009), in
an HPLC-DAD (Agilent Technologies 1260 Infinity or Waters Chromatograph,
depending the experiment), according to their UV spectra and order of elution
already described for similar acquisition conditions, as well as by HPLC-DAD-
ESI/MS" (Figure 3.2.) analysis in order to identify, with higher confidence, the
association of the UV/Vis spectra information with MS and MS" spectra information
of intact glucosinolates. Chromatograms were recorded at 227 nm for glucosinolates

and at 330nm for phenolics.
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HPLC-DAD-ESI/MS®

HPLC-DAD
Chromatography

of metabolites

Mass spectrometer

Ionization and mass analyzer
of metabolites

Figure 3.2. HPLC-DAD-ESI/MS" system consisting in HPLC-DAD (Agilent 1200)

coupled to a mass spectrometer (Bruker Daltonics Ultra HCT-ESI lon trap,

Glucosinolates were

Bremen, Germany).

quantified using sinigrin and glucobrassicin as external

standards of aliphatic and indole GLS, respectively (Phytoplan, Germany). Sinapic

acid and ferulic acid derivatives were quantified as sinapinic acid; chlorogenic acid

derivatives as chlorogenic acid and flavonols as rutin hydrate (Sigma-Aldrich Co.,

St. Louis, USA).
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3.2. Isothiocyanates and indoles

Freeze-dried samples (50 mg) were extracted with 1.6 mL of Milli-Q water,
shaken on a vortex mixer during 1 min and kept at room temperature for 24h. Then,
samples were shaken again and centrifuged (17 500 x g, 5 min). The supernatants
were collected and filtered (0.45 pm, PVDF filter, Millipore). Isothiocyanates were

analyzed following their MRM transitions by UHPLC-QqQ-MS/MS (Figure 3.3.).

Figure 3.3. Ultra-high performance liquid chromatography coupled with a 6460
tandem mass spectrometer with triple quadrupole technology (UHPLC-QQQ-
MS/MS, Agilent Technologies, Waldbron, Germany).

The analysis of GRA, SFN and its metabolites (SFN-GSH, SFN-CYS and
SFN-NAC) was performed according to Dominguez-Perles et al. (2014). Also the
optimization of the ITC sulforaphene (SFE) and iberin (IB); the indoles indole-3-
carbinol (I13C) and 3,3-diindolylmethane (DIM), and the glucosinolates

glucoraphenin (GRE), glucoiberin (GIB), glucobrassicin (GB), glucoraphasatin
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(GPH), were carried out, assigning their retention times and preferential transitions
(precursor and product ions) of the corresponding analytes. The MS fragmentation
energy parameters: fragmentor (ion optics capillary exit voltage) (Frag) and collision
energy (CE) were optimized for each compound to generate the most-abundant
product ions for the MRM mode (Table 3.2). All ITC and indoles were obtained

from Santa Cruz Biotech (Santa Cruz, CA).

Metabolite Rt Precursor lon Production Frag (V) CE (V) Polarity

SFN 1.7 178 114 75 4 Positive
SFN-GSH 0.8 485 178 115 0 Positive
SFN-CYS 0.8 299 178 80 0 Positive
SFN-NAC 0.9 341 178 80 0 Positive

SFE 1% 176.1 112 70 5 Positive

IB 1.5 164 105 90 6 Positive
13C 1.7 130.1 77.1 70 25 Positive

DIM 0.4 247 105 60 5 Positive

GRA 0.7 438 196 90 4 Positive

GRE 0.7 434.1 97.1 80 20 Negative

GIB 0.7 421.9 357.7 100 0 Negative

GB 1.2 447.2 97 80 20 Negative

GPH 1.2 418.1 96.8 80 20 Negative

Rt: retention time, Frag: fragmentor, CE: collision energy.

SFN: sulforaphane, SFN-GSH: sulforaphane-glutathione, SFN-CYS: sulforaphane-
cysteine, SFN-NAC: sulforaphane-N-acetylcysteine, SFE: sulforaphene, IB: iberin, 13C:
indole-3-carbinol, DIM: 3,3-diindolylmethane, GRA: glucoraphanin, GRE: glucoraphenin,
GIB: glucoiberin, GB: glucobrassicin, GPH: glucoraphasatin.

Table 3.2. Optimised MRM-ESI transitions for quantification and confirmation of the target

analytes.
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3.3. Anthocyanins

Tandem mass spectrometry (MS/MS), which acquires mass spectra from the
product ions produced from the fragmentation of a selected precursor ion, was used
for identification and characterisation of anthocyanins. Freeze-dried samples
(100 mg) were extracted with 1.5 mL of methanol/water/formic acid (25:24:1, viv/v)
(Moreno et al., 2010). Briefly, samples were extracted in an ultrasonic bath for
60 min, then were kept at 4 °C overnight, and extracted again during 60 min before
being centrifuged and filtered by 0.22 um (PVDF filter, Millipore). Samples were
first analysed by HPLC-DAD-ESI/MS" for qualitative analysis and then, analysed by
HPLC-DAD for quantification. Anthocyanins were quantified using cyanidin-3-
glucoside-B-glucopyranoside  (Polyphenols, Norway), as external standard.

Chromatograms were recorded at 520 nm.

4. EVALUATION OF BIOAVAILABILITY AND FUNCTIONAL

PROPERTIES OF SPROUTS

The absorption and metabolism, as well as different biological activities, of
the predominant glucosinolates (GLS) and isothiocyanates (ITC) present in broccoli
and radish cv. Rambo sprouts were evaluated using in vitro (cell cultures) and in vivo
(Drosophila melanogaster and rodent) models. The following experiments were

performed using an aqueous extract of broccoli or radish sprouts (Figure 3.4.).
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Figure 3.4. In vitro and in vivo evaluations of biological activities of broccoli and radish

sprouts

4.1. Absorption and metabolism of GLS/ITC of broccoli sprouts and

their antiproliferative activity using cell cultures as in vitro

model

Experiments using human intestinal (Caco-2) and hepatic (HepG2) cells in

order to evaluate the metabolism and antiproliferative effects of the ITC sulforaphane

and broccoli sprouts were performed in the Department of Metabolism and Nutrition

of the Institute of Food Science, Food Technology and Nutrition (ICTAN), CSIC,

Madrid.
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Sulforaphane’s metabolites (¢.g. SFN, SFN-GSH and SFN-CYS; from Santa
Cruz Biotech, CA, USA) in both cell models of absorption and metabolism (Caco-2
and HepG2), during 3, 6, and 24h of treatment, were analyzed using a selective
UHPLC-QqQ-MS/MS procedure (Dominguez-Perles et al., 2014).

The antiproliferative activity of broccoli sprouts, glucoraphanin and
sulforaphane was compared in Caco-2 and HT-29 human colorectal carcinoma cells,
and HepG2 hepatocellular carcinoma cells, establishing the minimal concentration,
of a given compound, to achieve half inhibition of the maximal cell growth (ICsp) by

using a MTT assay.

4.2. Absorption and metabolic activity of radish sprouts using

Drosophila melanogaster as in vivo model

The in vivo model system W**® D. melanogaster was used in order to study
absorption and metabolism of bioactive compounds of radish sprouts (Raphanus
sativus cv. Rambo). This experiment was carried out in the Institute of Human
Nutrition and Food Sciences of the University of Kiel, Germany.

Flies were subjected to a diet with sugar yeast medium supplemented with
lyophilized radish sprouts at concentration 10.6 g-L™*, containing 50 pmol-L™ of the
health ITC sulforaphene, for 10 days, while the organisms were kept in a climate
chamber under constant conditions of temperature (25 °C), humidity (60 %) and 12 h
day/night cycle. The analyses performed in flies were the followings: gustatory assay
(Linford et al., 2013), to exclude differences in the food intake between control and

treated flies; climbing assay by the negative geotaxis (RING)-assay method (Wagner
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et al., 2015), considered an indicator of overall fitness of the flies; glucose analysis
using the Fluitest°GLU (Analyticon Biotechnologies, Lichtenfels, Germany)
(Piegholdt et al., 2016); and real-time PCR for determining primer sequences of D.
melanogaster spargel gene (srl) (Tinkerhess et al., 2012), homologous of the
mammalian PGC-lo involved in the regulation of glucose homeostasis and
stimulation of mitochondrial biogenesis.

Finally, metabolites in fly homogenates were analyzed with UHPLC-QqQ-

MS/MS in order to evaluate metabolism of isothiocyanates.

4.3. Antinociceptive effects of broccoli sprouts using rodents, as in

vivo model

The antinociceptive effects of an aqueous extract obtained from broccoli
sprouts in models of visceral and nociceptive pain was carried out in the Department
of Neuroscience Research of the National Institute of Psychiatry Ramén de la Fuente
Mufiz (INPRFM), City of México.

Broccoli sprouts aqueous extract was administered at 50, 100, 250 and 500
mg/kg via i.p., and at 500, 1000 and 2000 mg/kg orally, to Swiss albino mice and
female Wistar rats, submitted to the writhing (Collier et al., 1968) and formalin tests
(Wheeler-Aceto et al., 1990), respectively.

Gastric damage (Robert et al., 1979) and sedative-like response (Gonzéalez-
Trujano et al., 1998), as possible adverse effect observed in the effect of anti-
inflammatory non-steroidal and opioid analgesic drugs, respectively, were also

explored in the effect of significant dosage (100 or 250 mg/kg BSE i.p.).
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5. SHELF-LIFE QUALITY AND SAFETY OF BROCCOLI AND

RADISH SPROUTS

Considering that broccoli and radish sprouts, collected at 8-day-old as
optimum for consumption and commercialization, are fresh products that continue
their plant metabolism during storage, the evaluation of changes in the
phytochemical and microbial content was performed after 7 and 14 days of storage,
at two different temperatures of refrigeration, 5 and 10 °C.

Microbiological determinations of pathogenic microorganisms, such as
species of Salmonella, Listeria, Staphylococcus, E. coli and Clostridium, as well as
Enterobacteriaceae organisms, aerobic mesophilic bacteria, aerobic psycrophilic
bacteria, moulds and yeasts were carried out in the Food Engineering and
Agricultural Equipment Department of the Technical University of Cartagena
(UPTC), Spain. Glucosinolates, isothiocyanates and phenolic compounds were

analyzed in CEBAS-CSIC by the methods described before.

62



Chapter 4. Publications




UNIVERSITAS
Miguel
Herndandez




Chapter 4

1. SELECTING SPROUTS OF BRASSICACEAE FOR
OPTIMUM PHYTOCHEMICAL COMPOSITION

(Publication 1)
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Selecting Sprouts of Brassicaceae for Optimum Phytochemical
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ABSTRACT: Cruciferous foods (Brassicaceae spp.) are rich in nutrients and bioactive compounds. Edible sprouts are becoming
popular fresh foods and, therefore, the phytochemical profiling of nine varieties of Brassicaceae (broccoli, kohlrabi, red cabbage,
rutabaga, turnip, turnip greens, radish, garden cress, and white mustard) was evaluated for this purpose. The glucosinolates in
seeds were significantly higher than in sprouts, and day 8 of germination was considered the optimum for consumption. The
sprouts with higher concentrations of glucosinolates in 8-day-old sprouts were white mustard, turnip, and kohlrabi {~815, ~766,
and ~653 mg 100 g' FW, respectively). Red cabbage and radish presented great total glucosinolates content (~516 and
~297 mg 100 g' FW, respectively, in 8-day-old sprouts) and also higher total phenolic contents, biomass, and antioxidant
capacity. The selection of the best performers in terms of germination quality and phytochemical composition is the key to
optimize new fresh foods enriched in health-bioactive compounds. Further research on the bioavailability of the bioactive
compounds in Brassica foods will allow backing of recommendations for dietarily effective dosages for nutrition and health.

KEYWORDS: germination, seeds, glucosinolates, phenolics, biomass, HPLC-PDA-ESI-MSn

Bl INTRODUCTION

Brassicaceae vegetables, or cruciferous foods, include a variety
of horticultural crops with global economical relevance
{oilseeds, forage, condiments, and vegetables). In Spain
{Murcia), broccoli and cabbage (>190,000 tons) are a major
agroeconomical activity." Genomics studies of the U triangle”
showed that Brassica oleracea (such as kale, cabbage, broccoli,
and kohlrabi), Brassica rapa (such as turnip and Chinese
cabbage), and Brassica nigra (black mustard) all originated from
a common ancestral. Other species from this family are Brassica
napus (such a rutabaga, rapeseed, and nabicol), Raphanus
sativus (radish), Lepidium sativum (garden cress), and Sinapis
alba {(white mustard). Brassica vegetables have received
considerable research attention because of their association
with health-promoting effects including improving the immune
system, protection against allergies, antihypertensive properties,
and reducing the risk for cardiovascular diseases and certain
types of cancer.”™ Even if these vegetables are mainly
recognized for their nitrogen—sulfur compounds, the glucosi-
nolates, Brassicaceae foods are also rich in phenolic com-
pounds, vitamins (A, C, E, and K), and minerals.® The content
of bioactive compounds in Brassicaceae vegetables varies
with geno‘cype,7’8 environmental stress,” growth conditions,'®
and storage, processing, and cooking methods."*** Phenolic
compounds and glucosinolates are present in high amounts in
seeds and during the first days of germination, reaching a 10-fold
increase compared to commerdial adult pIants.13 Glucosinolates,
nitrogen—sulfur compounds {f-p-thioglucoside-n-hydroxysul-
fates), are classified as aliphatic {the major group in almost all
crucifer seeds and sprouts of B. oleraceae, B. napus, B. rapa, and
R. sativus), indolic (representing lower amounts in the
glucosinolate profile), or aromatic (characteristic in S. alba and
L. sativum."***) and have been extensively studied due to their
hydrolysis compounds, the isothiocyanates (such as sulphoraphane™®

W ACS Pub"ca’tions © 2012 American Chemical Society

and benzyl isothiocyanate'”) and indoles (indol-3-carbinol), which
are associated with a reduced risk for particularly cancers of the
gastrointestinal tract, lung, and prostate. In contrast, progoitrin, also
present in crucifers, is an “undesirable” glucosinolate, because it is
converted to the antithyroid goitrin after myrosinase hydrolysis.'®
The phenolic profile of sprouts is composed mostly of sinapic
acid derivatives (hydroxycinnamic acids), a small portion of
flavonoids {mainly quercetin and kaempferol commonly found as
O-glycosides, and also isorhamnetin, characteristic of B. rapa
species), and other hydroxycinnamic acids (chlorogenic,
p-coumaric, and ferulic acids and their derivatives)."*”® Brassica-
ceae sprouts are becoming popular health-food items and widely
recommended by dieticians (highly nuttitious, low-fat foods, rich in
health-promoting phytochemicals, safe, and fresh); likewise,
consumers are demanding foods to enjoy and promote wellness."*

The aim of the present work was to characterize nine varie-
ties of Brassicaceae, highlighting their glucosinolate contents
and natural antioxidants {phenolic compounds and in vitro
antioxidant capacity) to foster their applications as naturally
healthy foods.

B MATERIALS AND METHODS

Plant Material and Experimental Conditions. Seeds provided
by Intersemillas S.A. (Valencia, Spain) were of commercial quality
of ready-for-sprouting lines. Nine varieties were used: broccoli
(B. oleracea L. var. italica), kohlrabi (B. oleracea L. var. gongylodes),
red cabbage (B. oleracea L. var. capitata), rutabaga (B. napus L. var.
napobrassica), turnip greens (‘Globo Blanco’, WAM seeds, Galicia) and
turnips (B. rapa L. subsp. rapa), radish (R sativus), garden cress
(L. sativum), and white mustard (S. alba). Seeds were rinsed in
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Table 1. Data of Biomass Increase Ratio (Sprouts vs Seeds) in Brassicaceae Sprouts”

variety scientific name % germination
broccoli Brassica oleracea var. italica >90
kohlrabi Brassica oleracea var. gongylodes T
red cabbage Brassica oleracea var. capitata S
rutabaga Brassica napus var. napobrassica 8
turnip green Brassica rapa var. rapa 10
turnip Brassica rapa var. rapa 2
radish Raphanus sativus 17
garden cress Lepidium sativum 49
white mustard Sinapis alba 18

LSDy,s° (ANOVA p < 0.001)

day 4 day 8 day 12 ANOVA* TSD) g os"

2.18a 3.17a 333 ns 075
0.28¢dB 0.70cA 0.97bcA ok 0.12
0.79bcB 1.03bcB 1.902bA sk 0.11
1.21bB 2.732AB 33324 * 0.51
0.88bB 2.23abA 3472A . 042
029 cd 0.87¢ 0.87bc ns 022
1.27bB 2.772A 2.832A * 046
0.00dB 0.60cA 0.60cA ok 0.0S
0.32¢dC 1.40bcB 2.372A sk 0.14
0.15 0.37 025

“Mean values (n = 3). Different lower case letters indicate statistically significant differences among varieties (for each sampling day). Different upper
case letters indicate statistically significant differences between days (for each variety). PLevels of significance for each sampling day between species.
Nonsignificant at p > 0.05 (ns); significant at p < 0.05 (#); significant at p < 0.01 (x); significant at p < 0.001 (). “Least significant difference
(LSD) for separating means in the respective column. The LSD was computed only after analysis of variance indicated a significant (p < 0.05) entry

effect.

distilled water, immersed in § g L7! sodium hypochlorite for 2 h, and
drained and placed in distilled water under aeration overnight. After
the soaking water had been poured off, the seeds were weighed (day 0)
and spreaded evenly on trays (S g per tray) lined with cellulose growth
pad (CN Seeds, UK) and irrigated with Milli-Q water. Aliquots of 5 g
of seeds were frozen in liquid nitrogen and stored at —80 °C pending
phytochemical analysis.

The trays were transferred to a controlled environment chamber
with a 16 h light/8 h dark cycle and air temperatures of 25 and 20 °C,
respectively. The relative humidity (RH) was 60% (day) and 80%
(night). Photosynthetically active radiation (PAR) of 400 gzmol m s~
was provided by a combination of fluorescent tubes (Philips TLD
36 W/83, Hamburg, Germany; Sylvania F36W/GRO, Danvers, MA,
USA) and metal halide lamps (Osram HQLT 400 W, Munich,
Germany). Brassicaceae sprouts were allowed to grow until they
reached 12 days of age. Sprout samples (all sprouts from a single tray,
germinated from § g of seeds) were collected at different time points
after germination (days 4, 8, and 12). Three subsamples were rapidly
and gently collected, always at 10 a.m.,, in the middle of the light period,
taking three replicates for analysis. All samples were weighed (fresh
mass), collected separately, flash frozen in liquid nitrogen, and stored at
—80 °C prior to analyses.

Antioxidant Capacity Assay. The free radical-scavenging activity
was determined using the free radical DPPH® as well as the ferric
reducing antioxidant power (FRAP) assay in aqueous media according
to the procedure of Mena et al.*! Freeze-dried fine powdered samples
(100 mg) were extracted with 10 mL of MeOH for 60 min in an
ultrasonic bath (§510E-MTH, Danbury, CT, USA) and then were
centrifuged at 10480g (model EBA 21, Hettich Zentrifugen) during
15 min at room temperature. Results were expressed as millimolar
Trolox equivalents (TE) per 100 g FW.

Extraction and Determination of Glucosinolates and
Phenolic Compounds. Sample Extraction. Freeze-dried samples
(100 mg) were extracted with 1.5 mL of 700 g L' methanol in a
sonicator bath for 10 min, then heated at 70 °C for 30 min in a heating
bath, with shaking every $ min using a vortex stirrer, and centrifuged
(17500g, 30 min, 4 °C). The supernatants were collected, and
methanol was completely removed using a rotary evaporator. The dry
material obtained was dissolved in 1 mL of ultrapure water and filtered
through a 0.45 ym Millex-HV13 membrane (Millipore Corp., Bedford,
MA, USA). Freeze-dried powder samples (lg) were homogenized
three times with 25 mL of 700 g L' methanol. The homogenates were
filtered through cheesecloth and kept in ice. The homogenates were
subsequently centrifuged (3600g, S min, 4 °C), and the supernatants
were evaporated under vacuum at 30 °C to approximately 1 mlL,
diluted to 2 mL with water, and filtered through a 0.45 ym Millex-
HV13 membrane (Millipore Corp.). Caffeoylquinic acid derivatives
were quantified as chlorogenic acid (S-caffeoylquinic acid; Sigma, St.
Louis, MO, USA), flavonoids as quercetin 3-rutinoside (Sigma), and
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sinapic acid and ferulic derivatives as sinapic acid (Sigma). The total
analyte content of phenolic compounds in broccoli sprouts was
expressed as milligrams per 100 g FW.

HPLC-PDA-ESI-MSn  Qualitative and Quantitative Analysis of
Glucosinolates and Phenolic Compounds. Glucosinolates and
phenolic compounds were determined using a LC multipurpose
method that simultaneously separates intact glucosinolates and
phenolics, according to the procedure of Francisco et al,'® with slight
modifications. The separated intact glucosinolates, hydroxycinnamic
acids (chlorogenic acid derivatives and sinapic acid derivatives), and
flavonols were identified following their MS2[M — H]~ fragmenta-
tions (and also MS3 fragmentation of the major MS2 ions for
hydroxycinnamic acids and flavonols), UV—visible spectra, and the
order of elution previously described for similar acquisition
conditions. '**

Glucosinolates were quantified in the HPLC-PDA using sinigrin as
standard (sinigrin monohydrate; Phytoplan Diehm & Neuberger,
GmbH, Heidelberg, Germany). Caffeoylquinic acid derivatives were
quantified as chlorogenic acid (S-caffeolylquinic acid, Sigma-Aldrich
Chemie GmbH, Steinheim, Germany), flavonols (quercetin and
kaempferol derivatives) as quercetin-3-rutinoside (Merck, Darmstadt,
Germany), and sinapic acid derivatives as sinapic acid (Sigma).

Statistical Methods. All assays were conducted in triplicate. The
data were processed using the SPSS 17.0 software package (LEAD
Technologies, Inc., Chicago, IL, USA). A Student’s £ test was used to
determine the significance of differences between means. A multi-
factorial analysis of variance (ANOVA) and Tukey's multiple-range
test were carried out to determine significant differences at p values
<0.05. Pearson correlation analyses were also performed to
corroborate relationships between selected parameters.

B RESULTS AND DISCUSSION

Biomass. The seeds used in the experiments were obtained
of commercial quality for sprouting; therefore, the germination
rate is usually lower than in the varieties used for plant
production. Only broccoli seeds reached >90% of germination
(Table 1), whereas garden cress seeds germinated 50%, and the
rate was <20% for the remaining seeds of the different varieties
(Table 1). Table 1 shows an increasing biomass ratio from day
0 to days 4, 8, and 12. Broccoli sprouts showed the highest
values, increasing 2-fold at day 4 and 3-fold at day 12 and
exhibiting the highest percentage of germination. The 8- and
12-day-old sprouts were more desirable for consumption and
marketing than the 4-day-old ones (not ready for manipu-
lation). At day 8 of the monitored period, broccoli, rutabaga,
turnip greens, and radish had biomass ratios significantly higher
than the rest (2—3-fold), consistent with the greater length

dx.doi.org/10.1021/jf302863c | 4. Agric. Food Chem. 2012, 60, 11409-11420
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(between 4 and § cm) {Table 1). On day 12, in addition to the
above, red cabbage and white mustard reached significantly
higher biomass values (2—3-fold) and greater growth (between
5 and 6 cm length). The higher values of biomass are indicative
of better sprout growth (length) and better rate of fresh weight
(FW) production. The biomass data of sprouts is not widely
available in the literature. Gu et al.,*® for example, recorded that
broccoli sprouts grew rapidly after 36 h of germination, and
similar sprout length as in our study was reported.”* The early,
noninvasive, and direct parameter of biomass is therefore a
useful parameter to screen plant material for production of
sprouts.

Glucosinolates. The main characteristic of the Brassicaceae
wellness composition is their glucosinolate {GLS) profile;*2>%¢
therefore, the presence of individual intact GLSs was studid in
seeds and sprouts (Table 2). The molecular ion [M — H]™ (m/z)

Table 3. Data of Total Glucosinolates (mg 100 g~* FW)
Present in Brassicaceae Seeds and Sprouts®

seeds sprouts
variety Do D4 D8 D12
broccoli 735.08e  209.32f  14148e 1174Sf
kohlrabi 135941c  994.40b  653.08b 450.54b
red cabbage 1307.78c  907.82¢  S1642c 246.81c
rutabaga 2131.97b  951.88bc 386.84d 276.74c
turnip greens 1364.30c  736.66d  164.5le 119.44ef
turnip 1131.06d  938.63bc  766.07a 474.76b
radish 1350.76c  $66.14e  296.77d 168.48de

174.04e  176.32d
815.10a 748.67a

323.0sf  194.94f
2862.12a  2353.70a

garden cress

white mustard

1SDges” (ANOVA p < 0.001)  37.40 26.96 2447 1424

“Mean values (n = 3). Different lower case letters indicate statistically
significant differences among varieties (for each samplig day). L east
significant difference (LSD) for separating means in the respective
column. The LSD was computed only after analysis of variance
indicated a significant (p < 0.05) entry effect.

of GLSs, their fragmentation ion patterns, and retention times
allowed the identification of 24 different compounds. The MS2
fragmentation of aglycone side chain produces the most
consistent ion at m/z 259, and the MS3 fragmentation of this
ion gives rise to fragments at m/z 97 (corresponding to the
sulfate group) by the disassociation of GLSs in the ion trap mass
spectrometer, constituting a very useful preliminary screening
method for determining the presence of GLS in sprouts
extracts.”” Results showed significant differences of the character-
istic GLS profiles among samples. All of the varieties studied
contained common GLSs: gluconapin (10), 4-hydroxiglucobras-
sicin (12), glucobrassicin (19), 4-methoxyglucobrassicin (22),
gluconasturtin {21), neoglucobrassicin {24), and glucoraphanin
(4), except for radish, which did not contain the last three
compounds. In B. oleracea species, kohlrabi and broccoli, we
found identical GLS profiles [glucoiberin (1), progoitrin (2), 4,
sinigrin (6), glucoalyssin (7), glucosinalbin (8), 10, glucoiberverin
(11), 12, glucoerucin (16), n-pentyl (18), 19, glucoberteorin
(20), 21, 22, n-hexyl-gls {(23), and 24]. By contrast, the red
cabbage samples showed certain differences having epiprogoitrin
(5), gluconapoleiferin (9), n-butyl-gls (13), and glucobrassicana-
pin {15), and not presenting compounds 7, 11, 16, and 20,
being dlosely related to rutabaga, which differed in only five
GLSs {containing 17 and 20 and not containing 1, 5, and 18).

70

The B. rapa samples of turnip greens and turnips showed also
similar profiles {2, 4, 6—10, 12, 13, 15, 18, 19, and 21—24), but
the glucosinalbin was not present in turnips, maybe due to their
different origin of seeds. Garden cress and white mustard, which
are dosely related,” resulted also in similar GLS profiles. Radish
presented 3, 7, 10—12, 17, 19, 20, and 22 GLS, quite different
from the rest of the species.

Therefore, Brassicaceae sprouts showed characteristic GLSs
according to species and their individual quantification (seeds;
4-, 8-, and 12-day-old sprouts; Tables 6—8). The general trend

for the majority of the GLSs is decrease over germinated time,

Table 4. Data of Total Phenolic Compounds (mg 100 g*
FW) Present in Brassicaceae Seeds and Sprouts”

seeds sprouts
variety DO D4 D8 D12
broccoli 1773.44d 1167.87d  832.16d 628.33e
kohlrabi 1149.34e 87032e  823.58d  765.5Sbc

red cabbage 2116.64c  1321.31c 1309.29ab 991.92a

rutabaga 2200.86bc 1429.29c  828.50d 661.99de
turnip greens 2283.88b 1844.5Sb  743.59d 620.78e
turnip 1792.63d 1343.1Sc 123641b 70623 cd
radish 3778.82a 2123.37a 107642c  751.89bc
garden cress 491.96f S16.65f  S07.24e  422.49f
white mustard 182.27¢  79996e 779.25d 797.96b

18Dy (ANOVA p < 0.001)  39.67 4107 3616 1904

“Mean values (n = 3). Different lower case letters indicate statistically
significant differences among varieties (for each sampling day). PLeast
significant difference (LSD) for separating means in the respective
column. The LSD was computed only after analysis of variance
indicated a significant (p < 0.05) entry effect.

having a greater amount of the compound until day 4
(Tables 6—8), followed by a marked decline between days 4
and 12 (in broccoli, rutabaga, turnip greens, and radish),
corresponding to 50—90% loss of individual GLSs. Kohlrabi,
red cabbage, turnip, garden cress, and white mustard showed
the highest loss of individual GLSs from seeds to day 8 of
germination. Consistent with their function in plant defense
and nutrient reserve compounds, seeds have the largest amount
of these metabolites, and the reduction in GLSs with germina-
tion upon a dilution effect of tissue expansion leads to an
intermediate GLS profile between seeds and mature tissues.”>”
Not all of the GLSs found in seeds are detected in sprouts,
as happened to sinigrin, glucoberteroin, or gluconasturtiin in
broccoli, glucobrassicin in turnip greens, and progoitrin and
glucoalyssin in garden cress (Tables 6—8), because the GLS
profile may vary significantly between tissues and organs.”® On
the other hand, some GLSs were present only in sprouting
seeds, such as neoglucobrassicin in broccoli, red cabbage, and
white mustard sprouts {Tables 6 and 8). Several reasons might
justify this fact, such as the activation of secondary metabolism
during germinati(m,28 interconversion between aliphatic GLSs,
or the interference between GLSs” and fatty nutrients in the
seeds during sample extraction. Some authors have avoided this
interference by defatting the samples.®

The values were recorded from 8-day-old-sprouts, being
considered the optimum for consumption (suitable germina-
tion time to allow manipulation and acceptable composition by
panelists and consumers). At this stage, broccoli and kohlrabi
showed glucoraphanin {sulforaphane GLS), as the major GLS

dx.doi.org/10.1021/jf302863c | L Agric. Food Chem. 2012, 60, 11409-11420
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Table 5. Antioxidant Activity (mM Trolox 100 g' FW) of Brassicaceae Seeds and Sprouts Estimated by DPPH* Radical-
Scavenging Assay and Ferric Reducing Antioxidant Assay (FRAP)“

DPPH" assay FRAP assay
variety seeds D4 D8 DI2 1SDy4s" seeds D4 D8 D12 LSDpe"

brocceoli 1.23bcA 047gB 0.28efC 0.21cdD 0.010 2.85¢cA 1.33fB 0.78cdC 0.63dD 0.053
kohlrabi 1.07deA 1.0aB 0.73¢cC 0.58aD 0.022 2.92bcA 2.46aB 1.61aC 1.18aD 0.044
red cabbage 1.51aA 0.952bB 0.77bC 0.40bD 0.035 3.432A 2.08bB 1.61aC 1.00bD 0.066
rutabaga 1.12cdA 0.63eB 0.27fgC 0.21cdC 0.023 3.17bA 1.74cdB 0.81bcC 0.52eD 0.026
turnip greens 1.23bcA 0.70dB 024gC 0.18¢D 0.017 2.75cdA 1.55deB 0.63deC 0.56deC 0.017
turnip 1.33bA 0.92bcB 0.71cC 0.46bD 0.022 2.51deA 1.84cB 1.57aC 0.96bD 0.057
radish 0.95eA 0.57{B 0.31eC 0.28¢C 0.030 2.76cdA 1.42efB 0.98bC 0.76¢D 0.068
garden cress 0.19gA 0.12hB 0.12hBC 0.09eD 0.010 0.52gA 0.49gA 0.45eB 0.326C 0.012
white mustard 0.70 fA 0.64eB 036dC 0.24cdD 0.017 2.11fA 1.61deB 0.83bcC 0.76¢C 0.060
LSDMSb 0.034 0.015 0.011 0.022 0.074 0.058 0.053 0.028

“Mean values (n = 3). Different lower case letters indicate statistically significant differences between seeds and days (for each sampling day).
Different upper case letters indicate statistically significant differences among varieties (for each variety). PLeast significant difference (LSD) for
separating means in the respective column. The LSD was computed only after analysis of variance indicated a significant (p < 0.05) entry effect.

ANOVA values are significant at p < 0.001.

(35% of total) (Table 6). Broccoli also included other major
GLSs, such as glucoerucin, 4-methoxyglucobrassicin, and neo-
glucobrassicin (15% of the total each), and kohlrabi showed
glucoiberin (20% of the total) and glucoiberverin and 4-hydro-
xiglucobrassicin (10% of the total each). Red cabbage and
rutabaga presented progoitrin, considered to be an antinutrient
(goitrogenic effects), as the major GLS (35% of total). Red
cabbage also included significant amounts of sinigrin (20% of
the total) and glucoiberin and glucoiberverin (13% of the total
each), and rutabaga presented gluconapin and 4-hydroxyghuo-
brassicin (25% of the total each) (Table 7). B. rapa varieties,
turnip greens and turnips, exhibited gluconapin as characteristic
GLS, with 75 and 50% of total, respectively (Table 7). Turnip
greens presented <10% of the total for the rest of GLSs, and
turnips also showed glucobrassicanapin {20% of the total) and
4-hydroxyglucobrassicin (14% of GLS). On the other hand, the
also beneficial GLS glucoraphenin'* was found to be dominant
in radish {65% of total), showing also 4-hydroxyglucobrassicin
as characteristic GLS (25% of the total) {Table 8). Finally,
garden cress and white mustard presented a characteristic aro-
matic GLS, glucotropaeolin {80% of total) and glucosinalbin
(87% of total), respectively, accounting for the rest of GLS,
<10% of the total for both species. The total GLS content
recorded in seeds (Table 3) was significantly higher and
variable (p < 0.001) within species (from 2862.12 mg 100 g™*
FW in white mustard to 323.05 mg 100 g~' FW in garden
cress) than in sprouts. The GLSs recorded were higher during
the first 4 days of germination, followed by a marked decrease
over time, dropping from seeds to days 8 and 12 of germina-
tion, by 30 and 60%, respectively, in turnip; by 60 and 80%,
respectively, in red cabbage; on average 60% in kohlrabi, garden
cress, and white mustard sprouts; and around 80 and 85%,
respectively, in broccoli, rutabaga, turnip greens, and radish
sprouts (Table 3), also in agreement with previous results.””
Our values are higher (2—15-fold) than those shown in studies
with mature plants of broccoli, kohlrabi, or red c:abbage15
due to the physiological stage of sprouts. The differences also
shown by other authors for broccoli, radish, and white mustard
sprouts may be also due to the quality of the seeds used in the
different works.®'**” We also found similar results when com-
paring garden cress™ and broccoli seeds of similar origin.”

11413

Aliphatic GLSs {1-7, 9—11, 13, 15—18, 20, and 23 as shown
in Tables 2 and 6—8, were the major GLSs in seeds and sprouts
in all varieties {representing between 70 and 85%) (Figure 1),
with values ranging from ~1000 mg 100 g FW in rutabaga
seeds to ~491 mg 100 g~* FW in broccoli seeds, which de-
creased over the 12 day study period. Apart from glucoraphanin
and glucoraphenin, the other predominant aliphatic GLS was
sinigrin {(which was mostly found in red cabbage, 91.83 + 8.88
mg 100 g~! FW, and kohlrabi, 28.99 + 1.15 mg 100 g* FW),
according to previous research (Tables 6—8)."*'® Aliphatic
GLSs are transformed by hydrolysis to isothiocyanates by
specific myrosinases, which have been acknowledged as bio-
active compounds with anticarcinogenic properﬁes.3’16 On the
other hand, garden cress and white mustard exhibited a high
content (90%) of aromatic GLSs (8, 14, and 21 shown in
Tables 2 and 6—8) in seeds (277 and ~2749 mg 100 g~ FW,
respectively) and sprouts (Figure 1). Neither species showed
any statistically significant difference among aromatic GLS
concentration on 8- and 12-day-old sprouts (~158 mg 100 g~*
FW in garden cress and ~700 mg 100 g~' FW in white mustard
sprouts) {Table 8). The content of these GLSs provides a spicy
taste, because the white mustard crop was bred for pungency as
a condiment and now contains one of the highest concen-
trations reported of glucosinalbin in seeds (2749.53 mg 100 g~*
FW). For the rest of the cruciferous plants, aromatic GLSs
accounted for <5% of the total GLSs. Indolic GLSs {12, 19, 22,
and 24 shown in Table 2) in cruciferous seeds and sprouts
showed values <30% of the total GLSs in all species except for
garden cress and white mustard, which presented even much
lower values (3.4 and 5%, respectively) (Figure 1). 4-Hydroxy-
glucobrassicin accounted for almost 90% of the indolic GLSs in
all species. The process of germination resulted in a decreas-
ing concentration of individual GLSs, except for the indole
4-methoxyglucobrassicin, which was found in trace amounts in
all seeds, and some varieties presented high amounts of this
GLS in growing sprouts {broccoli, red cabbage, rutabaga, turnip
greens, radish, garden cress, and white mustard). In terms
of biological effect, the expected breakdown product of the
indole glucosinolate 4-methoxyglucobrassicin during ingestion,
4-methoxyindole-3-carbinol, has been studied because it might
play a role in the cancer preventive effect by causing cell death and
inhibiting cell proliferation of human colon cancer cells in vitro.*®

dx.doi.org/10.1021/f302863c | L Agric. Food Chem. 2012, 60, 11409-11420
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Figure 1. Aliphatic, indolic, and aromatic glucosinolates in cruciferous sprouts at 0, 4, 8, and 12 days after sowing. Values are the mean of three
replicates representing mg 100 g~' FW. Bars represent £SD, and different symbols indicate significant differences between groups in the same

parameter (p < 0.05).

In radish, the decreases of glucoraphenin and the increases of
4-methoxyblucobrassicin are convergent with data obtained
by Ciska et al.”” The age effect on the aliphatic, indolic, and
aromatic GLSs showed little differences among varieties
(Figure 1); because all species were cultivated under the same
conditions, the observed variation in the level of total GLSs is
expected to be mainly due to the genetic variation, as found by
other authors,' as well as differences in characteristic individual
GLSs in each species. Kohlrabi, red cabbage, turnip, and white
mustard sprouts showed the highest amount of GLSs on days 8
and 12 of the germination period. The importance of GLSs,
and more specially their hydrolysis products, in human health
has been demonstrated by many researchers.”'”** By selection
of cruciferous crops, the level of desirable glucosinolates (ie.,
glucoraphanin) can be enhanced considerably, which can lead
to a substantial increase of the intake of health-promoting
glucosinolates even without increasing the overall vegetable con-
sumption. By contrast, a reduction of detrimental glucosinolates
(progoitrin) has been carried out as a potential application for
producing improved Brassicaceae vegetable breeding.*' To reach
this goal also the critical points in the finally consumed product
(industrial processing and consumer preparation) have to be
optimized and controlled."

Phenolic Compounds. The phenolic composition of
Brassicaceae vegetables has been recently investigated and,
nowadays, the profile of the Brassica species is well established.
The main classes of phenolic compounds found in crucifers
were flavonols (mainly quercetin and kaempferol, but also

isorhamnetin in some species) and hydroxycinnamic acids
(specifically sinapic acid and chlorogenic acid derivatives).
Phenolic compounds in seeds were significantly higher in content
(Table 4) and variability (p < 0.001) than in sprouts (from ~3778
mg 100 g~' FW in radish and ~1149 mg 100 g~' FW in kohlrabi)
except for garden cress and white mustard, which had lower values
(~ 492 and 182 mg 100 g~' FW), respectively). These results in
seeds showed differences among varieties and species suggesting
the genotype as the main factor of variation. A decrease of
phenolic compounds with growth was observed, although in
terms of total contents, from seeds to days 8 and 12 of ger-
mination, by approximately 50 and 65%, respectively, in
broccoli; by 30% in kohlrabi; by 35 and 55%, respectively, in
red cabbage and turnip; and 70, 75, and 75% in rutabaga, turnip
greens, and radish, respectively (Table 4). Garden cress showed
similar values from seeds to 8-day-old sprouts (~505 mg
100 g”' FW), recording a decrease by 15% in 12-day-old
sprouts. White mustard presented a 75% increase in total
phenolics after sprouting. The sprouting seeds, due to their
physiological stage,”® showed higher values of total phenolics
than commercial mature plants. The main phenolic compound
group is the sinapic acid derivatives in seeds and sprouts.*®
These compounds accounted for >98% of the total phenolics,
whereas flavonols and chlorogenic acid derivatives were <2%
(Figure 2). In our study, sinapic acid derivatives accounted
for approximately 70 and 80% in B. rapa seeds and sprouts,
respectively, but showed higher values of flavonols in seeds
(25-30% of total phenolics) and sprouts (21% in 8-day-old

1417 dx.doi.org/10.1021/jf302863c | J. Agric. Food Chem. 2012, 60, 11409~11420
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sprouts of turnip; 11% in 8-day-old sprouts of turnip greens).
These values may be associated with the presence of
isorhamnetin, a flavonol that is almost absent in B. oleraceae.*>
Chlorogenic acid derivatives were reported between 1 and 4% in
turnip crops, recording higher values in seeds. Rutabaga, radish,
and white mustard also registered high values of sinapic acid
derivatives (~90%), as well as flavonols (from 2 to 6% in seeds
and from 2 to 7% in 8-day-old sprouts) and chlorogenic acid
derivatives (~1%). Garden cress seeds and sprouts recorded
between 75 and 80% of sinapic acid derivatives and between
15 and 20% of flavonols, containing traces of chlorogenic acid
derivatives (Figure 2). According to earlier works, red cabbage
seems to be a very good source of phenolics among B. oleraceae,
with values similar to those found in tumips on day 8 of
germination (~1300 mg 100 g~' FW total phenolics). After
12 days of sprouting, also radish (752 mg 100 g~' FW) and
kohlrabi (766 mg 100 g~' FW) showed high values of total
phenolics. In our results, and according to other authors,>*?%*3~3
hydroxycinnamic acids are predominant phenolics, and flavonols
were found in lower concentrations. The distribution of phenolic
compounds was variable according to the variety evaluated.

In Vitro Antioxidant Capacity. Comparison of antioxidant
capacity between varieties was used as a comparison criterion in
the study, and it is also useful to correlate with the phenolic
compounds in the sprouts and seeds. Similarly to what was
previously found, the antioxidant activity of the vegetables largely
depends on growth conditions.**® Two different methods to
evaluate the antioxidant capacity were used: a free radical scaveng-
ing method (DPPH® assay) and a ferric reducing antioxidant
potential (FRAP) assay (Table S). These methods have been
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widely used because they require relatively standard equipment
and provide rapid and reproducible results. Antioxidant activity
values obtained with the FRAP assay were higher than those
obtained with the DPPH* assay (Table ), coinciding with Ali
et al.’” All species tested showed a decrease of the antioxidant
capacity during the germination period. The activity expressed
on a fresh weight basis (FW) may be influenced by the dilution
effect. Statistically significant variations among species for seeds
and sprouts for the DPPH® assay were found, with values
ranging from 1.51 to 0.19 mM Trolox g~' FW in seeds, and for
the FRAP assay, these values ranged from 2.08 to 0.49 mM
Trolox g~' FW (Table 5). These values are similar to those
previously reported for broccoli sprouts,” cabbage,*® and
radish.*® As for germinating seeds, 4-day-old sprouts provided
the highest values of antioxidant capacity (from 1.00 to 0.12
mM Trolox g~' FW in the DPPH® assay and from 2.46 to 0.49
mM Trolox g~' FW in the FRAP assay). Because a minimum of
8 days of growth is necessary to provide commercial edible
sprouts, at this point red cabbage, turnip, and kohlrabi were the
varieties with the highest values of antioxidant capacity, around
0.75 and 1.60 mM Trolox g~' FW on day 8 and 0.50 and
1.00 mM Trolox g~' FW on day 12, obtained by the DPPH* and
FRAP assays, respectively. Results exhibited relatively signifi-
cant (p < 0.01) correlation between values of total phenolics
and antioxidant capacity (r* = 0.686 for the DPPH® assay and
r* = 0.712 for the FRAP assay). Because sinapic acid derivatives
were the predominant group of phenolic compounds analyzed,
similar values for correlation with antioxidant capacity were
found. The trend for both assays of the nine sprout varie-
ties tested did not vary markedly, and a significant correlation
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{(p < 0.001) between methods (* = 0.965) was found, in
agreement with Dudonné et al,* who reported »* = 0.822.
These values of antioxidant capacity of sprouts reached a 10-
fold increase com3pared to commercial adult plants studied by
different authors>*>* Some previouslz published results indi-
cated similar values in broccoli sprouts’ and radish sprouts.®® In
agreement with Podsedek et al,** red cabbage belongs to the
group of Brassica species with higher antioxidant capacity.
Phenolic compounds are the major natural antioxidants of
crucifers, and in broccoli,*® it was reported they were responsi-
ble for 80—95% of the total antioxidant capacity.

To summarize, Brassicaceae sprouts are foods rich in glucosino-
lates and natural antioxidants. The differences observed in GLS
profiling among genotypes are both qualitative and quantitative,
finding characteristic GLSs in different species. The phenolic
compounds also showed significant differences between varieties
in accordance with previous results>**> The sprouts with better
biomass ratio should be selected {ie, red cabbage and radish) also
with higher glucosinolates, phenolics, and antioxidant capadity. On
the other hand, white mustard, turnips, or kohlrabi, having the
highest concentrations of glucosinolates, showed lower values of
biomass.

The selection of suitable varieties and the germination time,
8- and 12-day-old sprouts, for biomass and size is important to
maximize the health-promoting properties of the sprouts, even
without increasing the overall vegetable consumption. To reach
this goal, also critical points of industrial processing and
consumer preparation need to be optim.ized15 Further research
is guaranteed for the understanding of the bioavailability and
metabolism of these phytochemicals to allow scientifically backed
statements and recommendations for dietary intake, effective
dosages, and dietary guidelines for nutrition and health.
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ABSTRACT: Several biotic elicitors have been used in Brassicaceae species to enhance their phytochemical quality. However,
there is no comparison between elicitors under controlled growth conditions. In order to draw general conclusions about the use
of elicitors to enrich ready-to-eat sprouts in health-promoting glucosinolates, the aim of this study was to unveil the effect of the
phytohormones methyl jasmonate {25 M), jasmonic acid (150 #M), and salicylic acid (100 zM), the oligosaccharides glucose
(277 mM) and sucrose (146 mM), and the amino acid pL-methionine (5 mM) as elicitors over 8-day sprouting Brassica oleraceae
(broccoli), Brassica napus {rutabaga cabbage), Brassica rapa {turnip), and Raphanus sativus (China rose radish and red radish),
representative species high in glucosinolates previously studied. Results indicated that the phytohormones methyl jasmonate and
jasmonic acid and the sugars acted as effective elicitors, increasing the total glucosinolate contents of the sprouts, particularly,
glucoraphanin {from 183 to 294 mg-100 g~* in MeJA-treated broccoli sprouts), glucoraphenin {from 33 to 124 mg:100 g~* and
from 167 to 227 mg-100 g~* in MeJA-treated China rose radish and red radish, respectively), and glucobrassicin (from 23.4 to
91.0 mg-100 g~! and from 29.6 to 186 mg-100 g~! in MeJA-treated turnip and rutabaga sprouts, respectively).

KEYWORDS: germinating seeds, Brassicaceae, elicitation, healthy edible sprouts, glucosinolates

B INTRODUCTION

Brassicaceae {cruciferous) sprouts are a good source of vitamin
C, vitamin A, folic acid, dietary fiber, and minerals, which have
higher levels of phytochemicals, glucosinolates {GLSs), and
phenolic compounds compared to adult plants because of their
physiological state.”” As the phytochemical content of the
sprouts decreases over the germination period due to a dilution
effect of tissue expansion, 8-day-old sprouts were considered
optimum for consumption, biomass, and size in order to deliver
their health-promoting pmperties.3

Cruciferous vegetables have been widely investigated because
of their economic importance and content of health-promoting
phytochemicals with a positive effect against various
pathologies and chronic diseases.® In particular, interest has
been focused on GLSs, nitrogen- and sulfur-containing
secondary metabolites mainly found in Brassicaceae, the
precursors of bioactive isothiocyanates (ITCs), which are
released by myrosinase {f-thioglucoside glucohydrolase; E.C.
3.2.1.147) hydrolysis upon chewing, cutting, or other
mechanical disruption or by the intestinal microflora upon
intake of vegetables tissues.” Brassica oleraceae is the mainly
harvested species of this family, such as broccoli and
cauliflower, and a variety of horticultural crops, such as Brassica
napus (rutabaga), Brassica rapa (turnip and rapini), and
Raphanus sativus (radishes). The differences in the phytochem-
ical profiling among species are both qualitative and
quantitative, finding characteristic GLSs in different spec:ies.3’6
Broccoli sprouts have been intensively studied due to their high
concentration of glucoraphanin and its hydrolysis product
sulforaphane (4-methylsulfinylbutyl ITC). Also, the ITC iberin
(3-methylsulfinylpropyl ITC) from its GLS glucoiberin has
shown properties as inducer carcinogen detoxification (phase II
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enzymes).” Radish sprouts contain beneficial GLSs as well, such
as dehydroerucin, also called glucoraphasatin, and glucoraphe-
nin, which breakdown products, raphasatin (4-methylsulfanyl-
3-butenyl ITC) and sulforaphane (4-methylsulfinyl-3-butenyl
ITC), respectively, and show selective cytotoxic/e}gpoptotic
activity on three human colon carcinoma cell lines.” Indolic
GLSs {glucobrassicin, 4-methoxyglucobrassicin, and neogluco-
brassicin GLS) are present in B. oleraceae, B. rapa, B. napus, and
R sativus species, and their hydrolysis products, indoles, have
also exhibited protective activities against many types of
cancer.’”

Elicitors are substances which induce physiological changes
in the plant. Biotic elicitors have biological origin and are
commonl}r a{)p]ied to enhance the phytochemical composition
of plants. ot Depending on the type of compound, the plant
activates different signaling pathways to synthesize an optimal
mixture of defensive metabolites. The phytohormones salicylic
acid {SA) and jasmonic acid (JA) play key roles in this signal
interplay for defense gene expression, being accumulated
following pathogenic or environmental stresses. Moreover,
addition of exogenous JA and its methyl ester, methyl
jasmonate (MeJA), or SA can also simulate pathogen-induced
plant defense responses and lead to production of bioactive
L Sugars,
such as glucose and sucrose, are also recognized as effective
signaling molecules throughout plant life, modulating many

developmental and metabolic processes including ROS-

secondary metabolites though several mechanisms.*
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scavenging functions, germination, development, photosyn-
thesis, carbon and nitrogen metabolism, flowering, stress
responses, and senescence.'® Finally, previous experiments
demonstrated that also application of the amino acid
methionine, as a biosynthetic precursor, led to enhanced
GLSs contents in radish as well as in broccoli heads."*'

The aim of this study was to investigate the effect of the most
active elicitors found in the literature, the JA,'® methyl
jasmcmate,”‘18 salicylic acid,"® glucose,19 sucrose,”**! and pL-
methionine,'® using § days of treatment from 3- to 8-day of
sprouting under controlled growth conditions of B. oleraceae
{broccoli), B. napus (rutabaga), B. rapa {turnip), and R. sativus
(China rose and red radishes), rich in aliphatic and indolic
GLSs because their young physiological state, in order to
provide fresh, safe, and ready-to-eat sprouts, maximizing their
health-promoting compounds.

B MATERIAL AND METHODS

Chemicals. Jasmonic acid, sucrose, and glucose were obtained from
Sigma-Aldrich Co. (St. Louis, MO, USA); methyl jasmonate was
purchased from SAFC (St. Louis, MO, USA); salycilic acid and
ethanol absolute were obtained from Panreac S.A. (Barcelona, Spain).
pL-Methionine was from Alfa Aesar GmbH & Co. (Karlsruhe,
Germany). Formic acid (98—100%) for analysis was obtained from
EMSURE, ACS, Reag. Ph Eur, Merck, KGaA (Darmstadt, Germany).
Trifluoroacetic acid for optima LC/MS was purchased from Fisher
Scientific Co. (New Jersey, USA). Methanol and acetonitrile were LC-
MS grade from HiPerSolv Chromanorm, BDH Prolabo (Leuven,
Belgium). Sinigrin monohydrate was obtained from Phytoplan
(Germany).

Plant Material and Germination Conditions. Seeds provided
by Intersemillas S.A. (Valencia, Spain) were of commercial quality for
ready-for-sprouting lines. Five varieties from the Brassicaceae family
were used: broccoli (B. oleracea L. var. italica), rutabaga (B. napus L.
var. napobrassica), turnip (B. rapa L. subsp. rapa), China rose radish
(R sativus L. cv. China rose), and red radish (R. sativus L. cv. Rambo).
Seeds were rinsed in distilled water and immersed in § g-L ™" sodium
hypochlorite under aeration for 24 h. After pouring off the soaking
water, the seeds were weighed (day 0) and spread evenly on trays (S g
per tray) lined with cellulose growth pad (CN Seeds, UK. and
irrigated everyday with Milli-Q water with § gL' sodium
hypochlorite. Aliquots of 5 g of seeds were frozen in liquid nitrogen
and stored at —80 °C pending phytochemical analysis.

The three replicates (trays) per sample were germinated for 2 days
in a controlled dark chamber at 28 °C, for increasing the stem
elongation of sprouts. Then, trays were transferred to a controlled
environment chamber with a 16 h light/8 h dark cycle and air
temperatures of 25 and 20 °C, respectively. The relative humidity
(RH) was 60% (day) and 80% (night). Photosynthetically active
radiation (PAR) of 400 #mol m™ s™! was provided by a combination
of fluorescent tubes (Philips TLD 36 W/83, Hamburg, Germany;
Sylvania F36W/GRO, Danvers, MA, USA) and metal halide lamps
(Osram HQLT 400 W, Munich, Germany). Three replicates per
treatment of Brassicaceae sprouts samples were rapidly and gently
collected at day 8 after germination, in the middle of the light period,
for analysis. All samples were weighed (fresh mass), collected
separately, flash frozen in liquid nitrogen, and stored at —80 °C
prior to analyses.

Treatments with Elicitors. The phytohormones jasmonic acid
(JA) (150 M), methyl jasmonate (MeJA) (25 #M), and salicylic acid
(SA) (100 M), the oligosaccharides glucose (277 mM) and sucrose
(146 mM), and the amino acid pL-methionine (5 mM) were selected
as elicitors according to a literature review. JA, MeJA, and SA were
dissolved in 0.2% ethanol in Milli-Q water. Sucrose and glucose were
also dissolved in Milli-Q water. pL-Methionine was dissolved in 0.04%
ethanol in Milli-Q water. Elicitors were applied as exogenous spraying
on the cotyledons (not as soaking or irrigation solution) with 30 mL of
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test solution per sample (10 mL per tray) from day 3 to day 7 of
sprouting (S days of treatment) using Milli-Q water as control.

Extraction and Determination of Glucosinolates. Sample
Extraction. Freeze-dried samples (100 mg) were extracted with 1.5
mL of methanol 70% V/V in a US bath for 10 min, then heated at 70
°C for 30 min in a heating bath, with shaking every 5 min using a
vortex stirrer, and centrifiged (17500 X g 15 min, 4 °C).
Supernatants were collected, and methanol was completely removed
using a rotary evaporator. The dry material obtained was redissolved in
1 mL of ultrapure water and filtered through a 0.45 gm Millex-HV13
filter (Millipore, Billerica, MA, USA).

HPLC-DAD-ESI-MS" Qualitative and Quantitative Analysis of
Glucosinolates. First, the separate intact GLSs were identified from
the extracted samples following their MS* [M — H] fragmentations in
HPLC-DAD-ESI-MS", carried out on a Luna C18 100A column (150
X 1.0 mm, 3 pgm particle size; Phenomenex, Macclesfield, U.K.).
Water:formic acid (99:1, v/v) and acetonitrile were used as mobile
phases A and B, respectively, with a flow rate of 20 #L/min. The linear
gradient started with 1% of solvent B, reaching 17% solvent B at 1§
min up to 17 min, 25% at 22 min, 35% at 30 min, 50% at 35 min,
which was maintained up to 45 min. The injection volume was 3 yL.
Chromatograms were recorded at 227 nm. HPLC-DAD-ESI/MS"
analyses were carried out in an Agilent HPLC 1200 (Agilent
Technologies, Waldbronn, Germany) and coupled to a mass detector
in series. The HPLC system consisted of a binary capillary pump
(model G1376A), an autosampler (model G1377A), a degasser
(model G1379B), a sample cooler (model G1330B), and a photodiode
array detector (model G1315D) and controlled by ChemStation
software (v.B.0103-SR2). The mass detector was a Bruker, model
UltraHCT (Bremen, Germany), ion trap spectrometer equipped with
an electrospray ionization interface (ESI) and controlled by Bruker
Daltonic Esquire software (v.6.1). Ionization conditions were adjusted
at 350 °C and 4 kV for capillary temperature and voltage, respectively.
The nebulizer pressure and flow rate of nitrogen were 65.0 psiand 11
L/min, respectively. The full-scan mass covered the range from m/z 50
to 600. Collision-induced fragmentation experiments were performed
in the ion trap using helium as the collision gas with voltage ramping
cycles from 0.3 up to 2 V. Mass spectrometry data were acquired in the
negative ionization mode for glucosinolates. MS" was carried out in the
automatic mode on the more abundant fragment ion in MSED, Then,
the extracted samples (20 yL) were analyzed and quantified in a Water
HPLC-DAD system (Waters Cromatografia S.A,, Barcelona, Spain) as
previously described by Pérez-Balibrea et al** Intact GLSs were
identified following their UV spectra and the order of elution
previously described for the acquisition conditions. Glucosinolates
were quantified using sinigrin as external standard, because of the
similar structure to the glucosinolates in the sample.”>>

Statistical Methods. All assays were conducted by triplicate. Data
were processed using the SPSS 15.0 software package (LEAD
Technologies, Inc., Chicago, IL, USA). We carried out a multifactorial
analysis of variance (ANOVA) and the Ducan’s Multiple Range Test
to determine significant differences at P values < 0.05.

Bl RESULTS AND DISCUSSION

Biomass. The weight of seeds and sprouts was collected on
day 0 {embebed seeds) and day 8. The ratio of fresh weight
between sprouts and seeds as an indication of biomass
production (Table 1) showed the expected increase in weight
over sprouting and served as a quality index to select species
with higher biomass production. Growing plants are exposed to
a range of genetic, environmental, biotic, and abiotic factors
which affect their growth and yield* The biomass of the
Brassicaceae sprouts treated with sucrose increased significantly
over other treatments, ranging from about 15% in turnip and
China rose radish to 80% in Red radish {Table 1), in agreement
with results of Guo et al.*® using a 146 mM sucrose treatment.
Stewart et al2® explained that sucrose (88 mM) alters the
growth rate and causes a dramatic increase in hypocotyl length.
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Table 1. Biomass of Sprouts:Seeds Ratio in Cruciferous
Edible Sprouts on a Fresh Weight Basis

china
rose
species broccoli  rutabaga  turnip radish  red radish
control 2.62% 4.34b 2.69c 3.29b 1.45b
methyl 224 od 5.5%a 27led  3.78b 1.61b
jasmonate
jasmonic acid 1.33e 3.18¢ 1.37e 2.14¢ 2.28a
salicylic acid 1.50de 4.24b 1.54de 2.50¢ 1.59b
glucose 0.9Se 3.94bc 1.03e 2.38¢ 1.92a
sucrose 421a 643a 3.17a 3.70b 2.65a
DL-methionine 347b 4.18b 2.81b $.15a 2.54a
LSDggs 0228F%% 0278 047* 0.IS*¥k 0 2kkk
B(ANOVA
P < 0.001)

“Mean values (n = 3) comparing species for each elicitor treatment,
followed by different lowercase letters are significantly different at P <
0.05. a—h, Different lowercase letters mean statistically significant
differences among elicitor treatments (p < 0.05). YLeast significant
difference (LSD) for separating means in the respective column. The
LSD was computed only after analysis of variance indicating a
significant (p < 0.05) entry effect. Levels of significance for each
sampling day between species. Nonsignificant at P > 0.05 (ns.);
significant at P < 0.05 (*); significant at P < 0.01 {(**); significant at p
< 0.001 (%),

Sucrose could supply a balanced carbon source for cell growth
by hydrolysis of invertase and sucrose synthase, with the
resulting hexose directly participating in the glycolytic and
pentose phosphate pathway (required for cells to synthesize
nucleic acids and quickly replicate).27 Stressful conditions such
as starvation or hypoxia result in low energy status in the cell;
Smeekens et al.”* showed that sugars repressed the bZIP
growth regulatory system activity in a concentration-dependent
manner; therefore, our employed dose (5g/100 mL) was
appropriate for biomass increase in sucrose treatment sprouts
but not in the case of glucose, also in accord with Mirnezhad.”®

pL-Methionine also showed a positive effect, increasing the
fresh weight of sprouts in almost all varieties, 30% in broccoli,
4% in turnip, $7% in China rose radish, and 75% in red radish,
except for rutabaga, agreeing with previous reports?’w’1
Gigolashvili et al®* reported a relationship between the
overexpression of the HAGI1/MYB28 gene, specific for
methionine-derived GLSs (aliphatics), and strongest growth
phenotype in Arabidopsis thaliana. On the other hand, glucose
and the phytohormones (JA, MeJA, and SA) did not increase
the fresh weight of sprouts and even reduced the size as for the
control, as happened in broccoli, turnip, and China rose radish,
founding a decrease around 60% in JA- and SA-treated sprouts,
as also found by Kastell et al>* MeJA and SA regulate the
overexpression of the OBP2 transcription factor involved in
GLS biosynthesis, which altered the phenotype of A. thaliana,
with smaller leaves,>* supporting our result. In red radish
sprouts, nonsignificant differences were found between the
glucose- and phytohormones-treated sprouts and the controls.
Higher values of biomass ratio not only means better growth
(data not shown) but also higher fresh weight, making the
sprouts more palatable. Concentration of elicitor and interval
between treatment and harvest induce different responses
characteristic of plant species, making it necessary to find the
required effective dose and time empirically.*®

Glucosinolate Profiles of Brassicaceae Sprouts. Identi-
fication and quantification of individual GLSs in seeds and 8-
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day-old sprouts of the five Brassicaceae cultivars are presented in
Tables 2—5. The molecular ion [M — H]™ {m/z) of GLSs, their
fragment ion pattern, and retention times allowed identification
of 16 different compounds.® The MS? fragmentation of
aglycone side chain produces the most consistent ion at m/z
259, and the MS?® fragmentation of this ion gives rise to
fragments at m/z 97 {corresponding to the sulfate group) by
disassociation of GLSs in the ion trap mass spectrometer,
constituting a very useful preliminary screening method for
determining the presence of GLSs in sprouts.>® Sixteen GLSs,
belonging to the aliphatic, indolic, and aromatic classes based
on their different side chain structure, were detected. Results
showed significant differences of the characteristic GLSs profile
among cruciferous seeds and sprouts (Tables 2—5). The
aliphatic GLSs were the major group in B. oleraceae, B. napus,
and R sativus sprouts, corresponding to 60% in Brassica and
90% in Raphanus varieties. In contrast, B. rapa sprouts showed
higher amount of indolic GLSs, corresponding to 65% of the
total (Table 4). Seeds exhibited the largest amount of GLSs
being the nutrient reservoir organ, containing ranging
concentrations from 563.79 to 1731.32 mg-100 g~' FW. in
turnip and broccoli, respectively {Table 2), of interest for the
composition of the sprouts during germination. According to
Pérez-Balibrea et al,,'®** the major source of glucoraphanin are
broccoli seeds and sprouts (987.02 and 182.46 mg-100 g™
E.W.,, respectively) (Tables 2 and 3), which has been intensively
studied because of its derived product sulforaphane, a potential
chemopreventive beneficial compound against cancer, cardio-
vascular, and neurological diseases.” Turnip and rutabaga seeds
and sprouts showed the antinutrient progoitrin as the major
GLS, and glucoraphanin and gluconasturtiin were absent in the
sprouts, probably degraded or diluted during germination.** In
radish cultivars, specific GLSs in seeds were found as well
(traces of the aromatic glucoberteroin). The major character-
istic GLS in this species is glucoraphenin, containing 1051.88
and 32.78 mg-100 g~' FW. in China rose radish and 887.20
and 166.93 mg-100 g~' E.W. in red radish in seeds and sprouts,
respectively {Table §). The bioactive sulforaphene, like
sulphoraphane, is a potential anticancer agent.® In Brassica
species, in addition to the parent indole GLS glucobrassicin, 4-
hydroxyglucobrassicin, 4-methoxyglucobrassicin, and neogluco-
brassicin were also detected in the samples (Tables 2—5). Only
the indole 4-hydroxiglucobrassicin GLS was present in all
species, being also one of the major compounds in seeds (from
15249 to 358.34 mg-100 g F.W. in China rose radish and
broccoli, respectively). On the contrary, in Raphanus sprouts
only 4-hydroxiglucobrassicin and 4-methoxyglucobrassicin were
detected.®

Phytohormones as Elicitors. The jasmonates are signal
compounds in the elicitation process leading to de novo
transcription, translation, and, ultimately, biosynthesis of
secondary metabolites in plant cell cultures. Methyl jasmonate
(MeJA) is believed to be, at least, partially hydrolyzed by
endogenous esterases to free jasmonic acid (JA) within the
plant tissue."” MeJA elicitor (25 4#M) was found highly effective
for almost all the 8-day-old Brassicaceae sprouts, increasing by
84%, 50%, 123%, 25%, and 23% the total GLSs amount in
broccoli, turnip, rutabaga, China rose radish, and red radish,
respectively, increasing the indoles more than the aliphatic
GLSs (Tables 3—5). After MeJA treatments, the broccoli
sprouts showed significantly much more glucoraphanin,
glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin

by 60%, 241%, 48%, and 247%, respectively, associated with

dx.doi.org/10.1021/jf404876z | J. Agric. Food Chem. 2014, 62, 1881—1889
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Table 3. List of Individual and Total Glucosinolates (mg 100 g~* F.W.) in Broccoli (B. oleraceae) Sprouts under Elicitor

Treatments
broccoli
peak compound control MeJA JA SA glucose sucrose DL-methionine LSDO_Osb
1 glucoiberin 10.8% 7.68ab 9.33a 341b 6.35ab 11.9a 11.5a 1.86°
2 progoitrin Tr Tr Tr Tr Tr Tr Tr
3 ghucoraphenin nd nd. nd. nd. nd. nd. nd
4 glucoraphanin 183c 294a 26Sab 288ab 297a 253b 200c¢ 13:28
S glucoalyssin 0.46b Tr 0.70a Tr Tr Tr Tr 0.16°
6 gluconapoleiferin nd. nd. nd. nd. nd. nd. nd
7 ghuconapin Tr il Tr Tr Tr Trs Tr
8 4-hydroxighucobrassicin 39.9bc 40.1bc 324c¢ 42.4b 54.7a 44.7b $S.6a 3.09°
Gl ghucobrassicanapin nd. nd. nd. nd. nd. nd. nd
10 glucoerucin SHL L7 36.5 39.1 36.8 41.0 37.8 4.35nd
11 dehydroerucin nd. nd. nd. nd. nd. nd. nd
12 ghucobrassicin $52cd 188.5a 86.4b 43.0d 53.8 cd 92.3b 74.2bc 8.66°
13 gluconasturtin Tr Tr Tr Tr Tr Tr Tr
14 4-methoxyglucobrassicin 28.7¢ 42.7ab 49.2a 39.8b 43 42b 45.4ab 40.2b 2.47°
15 n-hexyl Tr Tr Tt Tr Tr Tr Tr
16 neoglucobrassicin 30.9¢ 107.0a 95.6a 25.5¢ 43.1bc 61.2b 43.1bc 6.69°
total 388e 712a §75b 481 cd $36bc 549b 463d 21.1°

“Mean values (n = 3). Tr, traces, not quantified. n.d., not detected. a—d, Different lowercase letters mean statistically significant differences between
treatments (for each variety). P east significant difference (LSD) for separating means in the respective row. The LSD was computed only after
analysis of variance indicated a significant (p < 0.05) entry effect. ANOVA p value. °(*) p < 0.05. “(**) p < 0.01. °(***) p < 0.001; ns. p > 0.05.

potential health benefits due to the biological activity of their
products.” The enhancement of the aliphatic GLS glucor-
aphenin in China rose and red radish sprouts after MeJA
treatment was 278% and 35%, respectively. Indole GLSs in
turnip, rutabaga, red radish, and China rose radish sprouts were
also higher than the controls and increased by 109%, 223%,
549%, and 200%, respectively. The JA (150 uM) also produced
an increase of total GLSs, especially in broccoli {by 50%),
rutabaga {by 95%), and turnip (by 24%), having a higher effect
on the indoles than on the aliphatic GLSs (Tables 3 and 4). In
contrast, scarce differences were found in total GLSs in the
treated radish sprouts compared to control samples {Table §).
Salicylic acid (SA) caused an increase of 20% in total GLSs in
broccoli and radish sprouts, with aliphatic GLSs being the most
affected {Tables 3 and 5), and no effects were found in turnip
or rutabaga sprouts (Table 4). This phytohormone produced
an increase in glucoraphanin in broccoli (by 58%) as well as in
glucoraphenin (by 50% and 14%) and dehydroerucin (by 18%
and 29%) in China rose and red radish sprouts, respectively
(Tables 3 and ).

Biosynthesis of glucosinolates can be drastically induced by
wounding, hormone application, and pathogen or herbivore
attack. Berger®* demonstrated the induction of several pathway
genes after phytohormones spraying application in A. thaliana,
where IQD1 protein, OBP2 transcription factor, and ATR1/
MYB34 and HIG1/MYBS1 genes were overexpressed and
regarded as a regulator with respect to increased concentrations
of major indole GLSs. Nevertheless, the genes respond
differently to biotic stress conditions in time and the site of
metabolites accumulation in the plant.* These treatments
increased the concentration of individual health-promoting
glucosinolates (such as glucoraphanin, glucoraphenin, dehy-
droerucin, and indole GLSs) and also of great interest had not
effect or even decreased the concentrations of the antinutrient
progoitrin by JA and MeJA, present in rutabaga and turnip
sprouts {Tables 3—5). Similar induction of GLSs by exogenous

application of phytohormones as elicitors has been previously
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found by different authors, particularly, increased indole-
GLSs.'18333% Consistent with Brader et al,’ MeJA is able
to trigger accumulation of the indole GLSs by inducting the
tryptophan biosynthesis as demonstrated in A. thaliana, in
contrast to SA, which seems to play a minor role in this
response. The above-mentioned treatments, particularly, JA and
its ester MeJA, were highly effective elicitors in Brassica sprouts.
On the other hand, SA was more effective in radish sprouts
than JA, with the MeJA solution being an interesting common
elicitor to enrich in GLSs all species studied.

Sugars as Elicitors. Nonstructural carbohydrates, both
sucrose and glucose, used as elicitors, enhanced the total GLSs
amount in all sprouts under study, in accordance with some
studies on broccoli, cabbage, and radish sprouts.”*° Sucrose
(146 mM) showed higher effects in Brassica species, increasing
by 42%, 31%, and 159% the total GLSs in broccoli, turnip, and
rutabaga, respectively (Tables 3 and 4). By contrast, total GLSs
in radish sprouts were increased higher after glucose treatment
(277 mM) by 22% and 26% in China rose and red radish,
respectively (Table §). It must be emphasized the elicitation
effect observed in broccoli sprouts, where glucoraphanin was
increased by 40% and 60% under sucrose and glucose
treatments, respectively (Table 3). Glucoraphanin was
enhanced as well, by 50% and 30%, under both sucrose and
glucose spray in China rose and red radish, respectively {Table
5). The other major aliphatic GLS from radish, dehydroerucin,
was increased by the glucose treatment by 22% and 33% in
China rose and red radish, respectively. In contrast to what was
found by Wei et al,’® who showed a decrease in this
compound. These results were consistent with those previously
reported by Guo et al,*® indicating that the Bo-Elong gene
involved in the aliphatic GLSs pathway was up-regulated by
sucrose. Gigolashvili et al.>* described glucose as an important
signaling molecule that may induce transcriptional regulatory
mechanisms, integrating carbohydrate availability and hormone
action, regulating this class of GLSs by the HAG1/MYB28
gene, in response to carbohydrate availability, in A. thaliana.

dx.doi.org/10.1021/jf404876z | J. Agric. Food Chem. 2014, 62, 1881-1889
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As for the indole-GLSs, no effects were found on radish
sprouts, while both sucrose and glucose highly and significantly
enhanced 4-hydroxiglucobrassicin, 4-methoxyglucobrassicin,
and neoglucobrassicin in Brassica species, with the glucobrassi-
cin being mainly increased by sucrose (Tables 3 and 4).
Sivanandhan et al.*>® showed that the type and concentration of
carbon source induces profound effects on growth and quality
of the metabolites produced. Sugars serve as the carbon and
energy source and also affect the osmotic pressure of the
medium, which stimulates mitochondrial activity and, hence,
energy production for metabolites synthesis.>* The secondary
product formation after sugar application could be attributed to
a certain level of osmotic stress, which initiated the signal
perception through a receptor in the cell membrane to activate
the signal transduction network. This activates the transcription
factors, which regulates gene expression involved in biosyn-
thesis of the target metabolites.>**°

pL.-Methionine as Elicitor. Aliphatic GLSs, such as
glucoraphanin and glucoiberin, are secondary metabolites
derived from amino acids, mainly methionine.’" The effect of
the exogenous spray application of this amino acid (5 mM) has
been studied in order to increase the amount of GLSs in
sprouts, mainly aliphatic ones.'”'® In the biosynthesis of
glucosinolates, first, methionine is transaminated to the
corresponding a-keto-acids, and subsequently, the side-chain
elongation of the amino acid is produced, followed by
formation of the GLS core structure mediated by cytochrome
P450 mono-oxygenase.>> Only in broccoli and rutabaga sprouts
a significant effect after application of this amino acid was
found, where the total GLSs were increased by 19% and 85%,
respectively (Tables 3 and 4). China rose radish sprouts
remained without changes in GLSs contents, while turnip and
red radish sprouts showed a small decrease in total GLSs after
the pL-methionine applications (Tables 4 and 5). Opposite to
our first hypothesis, aliphatic GLSs were not affected to a
higher degree than indole GLSs upon pL-methionine treatment,
probably resulting from expression of HAG1/MYB28 in young
sprouts, reported by Gigolashvili et al 3 Broccoli-treated
sprouts showed a weak increase of 7% and 28% in aliphatic
(glucoiberin and glucoraphanin) and indole GLSs (4-
hydroxiglucobrassicin, glucobrassicin, 4-methoxyglucobrassi-
cin), respectively. Rutabaga sprouts registered a significant
increase {by 85%) in both aliphatic (progoitrin and gluconapin)
and indole GLSs (glucobrassicin and 4-methoxyglucobrassicin).
Some authors reported that application of methionine to
growing broccoli plants increased not only their aliphatic GLSs
content but also the indolic GLSs.*! Few reports on the effect
of methionine elicitor have been found, and based on our
results we may conclude that low concentrations of methionine,
such as § and 10 mM applied by Pérez-Balibrea et al,'® allowed
a certain increase of total GLSs (23% and 21% respectively)
than higher concentrations, such as 200 mM applied by
Scheuner et al,*" where a similar increase by 28% was found in
broccoli at the time of head formation, while no significant
impact on total GLSs was found in broccoli heads or radish
hypocotyls.

All elicitors promoted the accumulation of GLSs in
Brassicaceae sprouts. Detected differences in the quantified
total and individual GLSs between controls and treated sprouts
were not only due to cultivar differences but also due to the
specific elicitor nature used. Indole GLSs in all species were
found to either increase or remain stable after elicitor
treatments. The total GLSs performed in similar way. Major
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desirable aliphatic GLSs, such as glucoraphanin, glucoraphenin,
and dehydroerucin, were increased by elicitors, except with prL-
methionine. Only undesirable aliphatic progoitrin and the
glucoiberin decreased after the treatments, and minor GLSs,
such as glucoerucin or gluconapin, were not affected. Elicitation
practices, particularly using MeJA, could be established as an
effective treatment to enrich in health-promoting GLSs
cruciferous sprouts, for natural functional foods, a source of
bioactive ingredients. The increase in the production of
desirable healthy GLSs {glucoraphanin, glucoraphenin, dehy-
droerucin, and indole-GLSs) is important in order to enhance
the intake of beneficial phytochemicals on a daily basis.
Understanding the changes in the metabolism of sprouts is
crucial to design strategies that would enhance the biosynthesis
of secondary metabolites as novel cost-effective tools for
nutrition and health applications that guarantee further
research.
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The anthocyanin profile of two varieties of red radish sprouts (Raphanus sativus), cv. China rose and Rambo, were
studied using HPLC-DAD-ESI-MS" and HPLC-DAD. The most abundant type of anthocyanin was cyanidin and its
derivatives, with one or two acylating groups, with qualitative and quantitative differences among varieties.
Some compounds were identified for the first time in both varieties, to the best of our knowledge. Radish sprouts
were treated during germination (days 3 to 8) using methyl jasmonate, jasmonic acid, salicylic acid, sucrose and
glucose as elicitors in order to enrich their total anthocyanin content (TAC). An increase in TAC was achieved by
50% in China rose radish sprouts and by 30% in Rambo red radish after glucose treatment. Methyl jasmonate and
sucrose also contribute to enhance TAC. Enriching natural food in anthocyanins may contribute to sustaining
their regular intake with preventive and therapeutic roles in a number of human diseases.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Promising results regarding nutrition and health benefits have been
found when eating cruciferous sprouts containing significantly greater
concentrations of bioactive compounds (glucosinolates and phenolics)
than mature plants (10-100 times) (Hanlon & Barnes, 2011; Moreno,
Pérez-Balibrea, & Garcia-Viguera, 2006). Even though cruciferous
foods are recognized for their high glucosinolates content, Brassicaceae
foods are also rich in phenolic compounds (flavonols and anthocya-
nins), carotenoids, vitamins and minerals (Manchali, Chidambara
Murthy, & Patil, 2012). Within the bioactive compounds classes, antho-
cyanins are water-soluble flavonoids that usually exist in plants in the
form of glycosides and acylated form. Their non-carbohydrate moieties
(aglycones) are called anthocyanidins. There are many types of antho-
cyanins, which are distinguished according to the number and position
of the hydroxyl and methoxyl groups as substituent on the B ring, type
and number of conjugated sugars, and the presence or absence of an
acyl group. The six most important types are pelargonidin (Pg), cyanidin
(Cy), delphinidin (Dp), peonidin (Pn), petunidin (Pt) and malvidin (Mv)
(Jaakola, 2013). Cy and its derivatives, which possess two hydroxyl
groups on the B-ring, are the most widely distributed, followed by Dp
and its derivatives (De Pascual-Teresa & Sanchez-Ballesta, 2008). They
are not only responsible for the red, blue and purple colors of many fruits,
vegetables, flowers and seeds, but also protect plants against various biot-
ic and abiotic stresses (Harborne & Williams, 2000). In recent years,
human intervention studies have focused on the preventive and suppres-
sive effects of these compounds against obesity and diabetes, reducing

* Corresponding author. Tel.: +34 968 396369; fax: + 34 968 396213.
E-mail address: dmoreno@cebas.csices (D.A. Moreno).

http://dx.doi.org/10.1016/j.foodres.2015.01.009
0963-9969/© 2015 Elsevier Ltd. All rights reserved.

inflammation associated with cancer pathogenesis, cardiovascular
diseases, improvement of visual function and the positive effects of intake
of anthocyanin-rich fruits on memory and on cognitive decline by
delaying the deterioration of neural function in aged individuals by inhi-
bition of neuroinflammation (Pojer, Mattivi, Johnson, & Stockley, 2013).

The differences in the total anthocyanin content (TAC) among red
radish sprouts varieties are qualitative and quantitative, presenting
mainly cyanidin derivatives, glycosylated at C-3, with the presence of
one or two cinnamoyl groups (sinapoyl, feruloyl, p-coumaroyl and
caffeoyl), and at C-5 position, with the presence of malonyl (Matera
etal,, 2015; Park et al., 2013; Wu & Prior, 2005).

Exogenous application of elicitors has been considered as a suit-
able strategy for the activation of secondary metabolites pathways,
methyl jasmonate (Me]A), jasmonic acid (JA), salicylic acid (SA), su-
crose and glucose have been selected as successful treatments for the
accumulation of anthocyanins (Baenas, Garcia-Viguera, & Moreno,
2014a). Previous studies showed that jasmonates could induce
defense responses in the plant though encoding PR proteins and
genes involved in biosynthesis of flavonoids (phenylalanine ammo-
nia lyase [PAL], chalcone synthase [CHS] and chalcone isomerase
[CHI]). The F-box protein coronative insensitive 1 (COI1) functions as
a jasmonate receptor in Arabidopsis, modulating the up-regulation
of PAP1 proanthocyanidin transcription factor, and dihydroflavonol
reductase (DFR), anthocyanidin synthase (LDOX/ANS) and UDP-
glucose:flavonoid 3-0-glucosyltransferase (UF3GT) specific anthocy-
anin biosynthetic genes (Shan, Zhang, Peng, Wang, & Xie, 2009). An
induction of PAL and CHS activity has been also proved after SA
treatment (Ghasemzadeh, [aafar, & Karimi, 2012; Obinata et al., 2003).
The induction of anthocyanin synthesis genes has been studied as
sugar specific (Guo, Yuan, & Wang, 2011a; Hara, Oki, Hoshino, &
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Kuboi, 2004; Solfanelli, Poggi, Loreti, Alpi, & Perata, 2006; Teng,
Keurentjes, Bentsink, Koornneef, & Smeekens, 2005); interestingly,
Solfanelli et al. showed that at least one gene up-regulated by sucrose
was detected in each step of the biosynthetic pathway (i.e. flavonoid
biosynthetic genes such as PAL, CHI, CHS, and those specific for anthocy-
anin biosynthesis PAP1, DRF, LDOX/ANS, UF3GT). It is speculated that
hypocotyls in radish sprouts take up sucrose rapidly and metabolize it
into glucose (Hara, Oki, Hoshino, & Kuboi, 2003}. In this work, two vari-
eties of Raphanus sativus ready-to-eat sprouts (cv. China rose and
Rambo), different in color and visual appearance (white and rose hypo-
cotyls and green cotyledons; and purple and deep red in hypocotyls and
cotyledons, respectively), were selected in order to study their anthocy-
anin pigments, discussing their differences and investigating the poten-
tial for enrichment by elicitation of the anthocyanin concentration,
as natural healthy foods likely to be consumed daily by the general
population.

2. Material and methods
2.1. Plant material and germination conditions

China rose radish (R. sativus var. sativus) and Rambo radish
(R. sativus cv. Rambo) seeds were provided by Intersemillas S.A.
(Valencia, Spain). Radish sprouts were grown according to Baenas,
Garcia-Viguera, and Moreno (2014b) with some modifications; sprouts
were covered with perforated aluminum foil for increasing stem elon-
gation in the environment chamber from days 0 to 3. Three replicates
per treatment of radish sprouts were collected at day 8 after germina-
tion for analysis. All samples were frozen in liquid nitrogen and stored
at — 80 °C prior to analyses.

2.2. Treatments with elicitors

The phytohormones jasmonic acid (JA) (150 uM ), methyl jasmonate
(MeJA) (25 uM), salicylic acid (SA) (100 uM) and the oligosaccharides
glucose (277 mM) and sucrose (176 mM) were selected as elicitors ac-
cording to literature review (Baenas et al., 2014a). JA (Sigma-Aldrich,
Co., 3050 Spruce Street, St. Louis, MO 63103, USA), MeJA (SAFC,
3050 Spruce Street, St. Louis, MO 63103, USA) and SA (Panreac, SA.,
Barcelona, Spain) were dissolved in 0.2 % ethanol in Milli-Q water.
Sucrose and glucose (Sigma Chemical Co., 14508, St. Louis, MO 63178,
USA) were also dissolved in Milli-Q water. Elicitors were applied as
exogenous treatment (spraying} on the cotyledons with 30 mL of test
solution per sample (10 mL per tray) from day 3 to day 7 of sprouting
(5 days of treatment), using Milli-Q water as control.

2.3. Extraction and determination of anthocyanins

2.3.1. Sample extraction

Freeze-dried samples (100 mg) were extracted with 1.5 mL of
methanol/water/formic acid (25:24:1, v/v/v), according to Moreno,
Pérez-Balibrea, Ferreres, Gil-Izquierdo, and Garcia-Viguera (2010)
with slight modifications. Briefly, samples were vortexed and extracted
inan ultrasonic bath for 60 min at room temperature. The samples were
kept at 4 °C overnight and sonicated again for 60 min. A centrifugation
(model EBA 21, Hettich Zentrifugen) step (9500 xg, 5 min) was used
to separate the supernatant from the solid residue. This supernatant
was filtered through a 0.22 um (HPLC-DAD-ESI/MS") or 0.45 um
(HPLC-DAD) PVDF filter (Millex HV13, Millipore, Bedford, MA, USA)
and stored at 4 °C before the analyses were performed.

2.3.2. Identification of anthocyanins by HPLC-DAD-ESI-MS™ and
quantification by HPLC-DAD

Chromatographic analyses with HPLC-DAD-ESI/MS™ for qualitative
analysis were conducted as described by Moreno et al. (2010). An
HPLC-DAD system (Waters Cromatografia SA, Barcelona, Spain} was
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employed for the quantification, consisting of a W600E multisolvent
delivery system, an in-line degasser, a W717Plus autosampler and a
W2996 photodiode array detector set at 520 nm. Anthocyanins
were quantified using cyanidin 3-0-glucoside-p-glucopyranoside
(Polyphenols, Norway) as external standard. Chromatograms were
recorded at 520 nm.

The retention time (Rt) of Tables 1 and 2 have different values than
those of Table 3 because the study of MS (Tables 1 and 2) has been
carried out in a different HPLC equipment than the quantification UV
study (Table 3).

2.3.3. Statistical methods

All assays were conducted by triplicate. The data were processed
using the SPSS 15.0 software package (LEAD Technologies, Inc., Chicago,
USA). We carried out a multifactorial analysis of variance (ANOVA) and
the Duncan’s multiple range test to determine significant differences at
P values < 0.05.

3. Results and discussion
3.1. Qudlitative and quantitative analysis of anthocyanins

The identification of anthocyanins was achieved by HPLC-DAD-ESI-
MS™ analysis of the lyophilized radish sprouts extracts, according to
our results, the most abundant anthocyanins were cyanidin derivatives,
diglycosylated at C-3 and glycosylated at C-5 position, mainly with the
presence of one or two cinnamoyl groups on the glycosylated fraction
at 3 position (sinapoyl, feruloyl, p-coumnaroyl and caffeoyl} and malonyl
at hexose in 5 position, according to the anthocyanins commonly
described in Brassicaceae: cyanidin-3-0-sophoroside-5-0-glucoside
derivatives (Andersen & Jordheim; 2006}, with quantitative differences
among species and crops (Cartea, Francisco, Soengas, & Velasco, 2011;
Giusti, Rodriguez-Saona, Griffin, & Wrolstad, 1999; Park et al,, 2014;
Wu & Prior, 2005 ). Interpretation of mass spectra was based on previous
observations that fragmentation of anthocyanins occurs almost exclu-
sively at the glycosidic bonds, attached to hydroxyls, at the 3 and/or 5 po-
sition, in addition to the possible loss of the carbonyl group ( —44) or the
malonyl radical (—86) (Giusti et al., 1999; Matera et al., 2012). Acylated
groups were determined by calculating possible combinations of aliphatic
and aromatic acids found in acylated anthocyanins (Wu & Prior, 2005).

Molecular ions of anthocyanins ([M] ™, m/z) and MS fragmentation
are presented in Tables 1 and 2 (tables have been prepared gathering
compounds with similar structure and increasing Rt; the numbers
assigned to compounds in Tables 1-2 are not comparable between
them, being independent by variety).

The MS screening allowed the detection of 24 anthocyanins in China
rose radish (Table 1) and 47 anthocyanins in Rambo red radish (Table 2}
sprouts. A mass spectroscopic analysis is absolutely required for antho-
cyanin characterization because compounds with similar UV spectral
characteristics can have similar retention time (Giusti et al., 1999).
These pigments showed similar fragmentation patterns and their rela-
tive ion intensities according to their abundance are presented in
Tables 1-2.

The anthocyanin composition of the varieties China rose and Rambo
red radish sprouts are reported here for the first time. Some anthocya-
nins have been tentatively identified for the first time while others
have been reported before in Sango red radish sprouts (Matera et al.,
2012; Matera et al., 2015).

Radish cv. China rose showed only acylated anthocyanins:
cinnamoyl, malonyl and cinnamoyl malonyl derivatives (Table 1). The
glycosylation loss from C-5 was 162 [glycosyl]* (5, 6, 11) or 248
(162 + 86) [glycosyl-malonyl]™ (1-4, 7-10, 12-24) to give rise to the
anthocyanidin ion bond to the glycosidic fraction at the 3-position.
Moreover, a diglucosyl loss (324) (1) with their corresponding
cinnamoyl acid ([diglucosyl-acyl] ™} (2-4, 8, 9, 10, 12-15 and 20) or
[diglucosyl-acyl1-acyl2]™ (7,10, 15-19 and 21-24) was observed,
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Table 1
Anthocyanins in China rose radish sprouts."
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Anthocyanin 3-0-(cinnamoyl )sophoroside-5-0-glucoside derivatives

MS2 [M]*, m/z (%) MS3 [M-162]%, mjz (%) Compound
Peak Rt (min) [M]*myz -162 —(324 + acyl) Agle
5 26.8 979 817 (100) 443 (7) 287(17) 287 (100) Cy?-3-0-(SI)soph-5-0-glu
6 2638 949 787 (100) 449 (20) 287(21) 287 (100) Cy-3-0-(FE)soph-5-0-glu
1 284 963° 801 (100) 433 (7) 271(8) 271 (100) Pg-3-0-(SI)soph-5-0-glu®
Anthocyanin 3-G-sophoroside-5-0-(malonyl)glucoside derivatives
MS3 [M-324], m/z (%)
—44 —248 —324
1 172 859 - 611(15) 535 (100) 449 (16) 287 (49) 449 (16),490 (13), 287 (70)  Cy-3-0-soph-5-0-(MA)glu
Anthocyanin 3-0-(cinnamoyl )sophoroside-5-0-(malonyl)glucoside /sophoroside derivatives
MS3([535/519]*, m/z (%)
~(324 + acyl) —(324 + acyl + 44)
2 240 1021 977 (20) 773(68) 535 (100) 491 (15) 287 (28) 287 (100) Cy-3-0-soph-5-0-(MA)soph
3 249 1035 991 (48) 787(67) 535 (100) 491 (46) 287(7) 287 (100) Cy-3-0-(FE)soph-5-0-(MA)glu
4 260 1021 977 (20) 773(93) 535 (100) 491(31) 287 (17) 517 (29),449 (22),287 (100) Cy-3-0-(CA)soph-5-0-(MA)glu
8 276 1035 991(8)  787(76) 535 (100) 491 (20) 287 (46) 449 (55), 287 (100) Cy-3-0-(FE)soph-5-0-(MA)glu
9 276 1065 1021 (5) 817(73) 535(100) 491 (17) - 287 (100) Cy-3-0-(SI)soph-5-0-(MA)glu
12 292 1005 961 (15) 757 (52) 535 (100) 491 (24) 287 (36) 287 (100) Cy-3-0-(pCoA)soph-5-0-(MA)glu
13 294 1035 991(7)  787(43) 535 (100) 491 (10) 287 (11) 287 (100) Cy-3-0-(FE)soph-5-0-(MA)glu
14 293 1065 1021 (8) 817 (71) 535 (100) 491 (1) 287 (100) Cy-3-0-(SI)soph-5-0-(MA)glu
20 312 1019 975(13) 771(68) 519 (100) 475(15) 433 (100), 271(52) Pg-3-0-(FE)soph-5-0- (MA)glu
MS3 [M-248]*, m/z (%)
-(324 + acyll) -(324 + acyll +acyl2) [535-44]
7 276 1227 1183 (2) 979(100) - 535 (39) - 797 (13),703 (14),287 (100) Cy-3-0-(CA-SI)soph-5-0-(MA)glu
10 283 1197 1153 (18) 949 (100) 697 (49) 535 (43) 491 (14) 287 (100) Cy-3-0-(CA-FE)soph-5-0-(MA)glu
15 300 1227 1183 (12) 979(100) 679 (6) 535 (90) 491(8) 662 (6),287(100) Cy-3-0-(CA-SI)soph-5-0-(MA)glu
17 303 1187 1153 (17) 949 (100) - 535 (53) 491 (16) 287 (100) Cy-3-0-(CA-FE)soph-5-0-(MA)glu
22 319 1227 1183 (23) 979(100) - 535 (90) 491(27) 481(100), 287 (81) Cy-3-0-(CA-SI)soph-5-0-(MA)glu
23 319 1197 1153 (14) 949(74) - 535 (100) = 287 (100) Cy-3-0-(CA-FE)soph-5-0-(MA)glu
MS3 [535]%,
myz (%)
16 303 1271 1227(8) 1023 (88) - 535 (100) 491 (11) 287 (100) Cy-3-0-(di-SI)soph-5-0-(MA)glu
18 307 1241 1197 (11) 993(66) - 535 (100) = 287 (100) Cy-3-0- (SI-FE)soph-5-0-(MA)glu
19 31.1 1241 1197 (12) 993 (65) - 535 (100) = 287 (100) Cy-3-0- (SI-FE)soph-5-0-(MA)glu
21 315 g = e 963 (100) 535 (43) 491 (14) 287 (100) Cy-3-0-(pCoA-SI)soph-5-0-(MA)glu
or Cy-3-0-(di-FE)soph-5-0-(MA)glu
24 325 1211 1167 (11) — 963 (37) 535 (100) 491(9) 287 (100) Cy-3-0-(pCoA-ST)soph-5-0-(MA)glu
or Cy-3-0-(di-FE)soph-5-0-(MA)glu

1 Main observed fragments. Other ions were found but they have not been included.

2 Cy = cyanidin, glu = glucoside, soph = sophoroside, pCoA = p-coumaroyl, CA = caffeoyl, ST = sinapoyl, FE = feruloyl, MA = malonyL

# The anthocyanins tentatively identified for the first time are in holdface.

giving rise to the anthocyanidin ion bonded to the glycosidic fraction
at the 5-position (m/z 535/519 in the malonyl derivatives, and 449/
433 in the nonmalonated derivatives) (Table 1). Some cyanidin
derivatives found were similar and coincident with previously pub-
lished data on anthocyanins in Brassicaceae species (Matera et al.,
2012; Matera et al., 2015; Park et al, 2014); nonetheless, we
found and tentatively identified some new anthocyanins displayed
[M]™ at m/z 963 (pelargonidin 3-0-(sinapoyl)sophoroside-5-0-
glucoside) (11}, 1065 (cyanidin 3-0-(sinapoyl)sophoroside-5-0-
(malonyl)glucoside} (9 and 14), 1227 (cyanidin 3-0-(caffeoyl,
sinapoyl)sophoroside-5-0-(malonyl)glucoside} (7, 15 and 22) and 1271
(cyanidin-3-0-(disinapoyl }sophoroside-5-0-(malonyl }glucoside} (16).
Red radish cv. Rambo sprouts exhibited a wide range of anthocya-
nins, with cyanidin being the predominant aglycone, along with smaller
amounts of peonidin and delphinidin in this cultivar. Unusually, some
anthocyanins have been detected whose glycosylation at position 5
is dihexoside instead of monoglucoside, tentatively identified as
sophoroside (3, 11, 12, 18, 19, 23, 25, 26, 28, 29-33, 39, 40 and 44),
the fragmentation is similar to that described above. We observed in
the malonyl-sophorosides (11, 12, 18, 19, 23, 25, 28, 31, 32, 39,40, 44,
except for 3) the loss of m/z 410 (324 + 86) due to fragmentation of

the glycosydic fraction in 5-position ([diglucosyl-malonyl]"), instead
of the m/z 248 (162 + 86) ([glucosyl-malonyl]”} found in the
malonyl-glucoside derivatives. For the first time, we identified the
following anthocyanins in red radish: the [M]' at m/z 757
(pelargonidin-3-0-sophoroside-5-0-glucoside) (2}, 859 (cyanidin
3-0-sophoroside-5-0-(malonyl}glucoside) (6}, 873 (peonidin-3-0-
sophoroside-5-0-(malonyl)glucoside) (8), 1065 (cyanidin 3-0-
(sinapoyl)}sophoroside-5-0-(malonyl)glucoside} (13, 20 and 37),
1181 (cyanidin 3-O-(p-coumaryl, feruoyl}sophoroside-5-0-(malonyl)
glucoside) (46}, 1255 (peonidin 3-0-(feruoyl,sinapoyl}sophoroside-5-O-
(malonyl)glucoside} (47), 1227 (cyanidin 3-O-(sinapoyl)sophoroside-
5-0-(malonyl}sophoroside)} (11 and 18), 1183 (cyanidin 3-0-(caffeoyl}
sophoroside-5-0-(malonyl}sophoroside) (23}, 1167 (cyanidin 3-0-(p-
coumaric}sophoroside-5-0-( malonyl}sophoroside) (31}, 1389 (cyanidin
3-0-(caffeoyl, sinapoyl)}sophoroside-5-0-(malonyl}sophoroside}
(25) and 1359 (cyanidin 3-0-(caffeoyl, feruoyl}sophoroside-5-0-
(malonyl)sophoroside) (28) presented in Table 2.

Few published works showed that the characterization of anthocya-
nins in radish was dependent on the studied variety (Giusti & Wrolstad,
2003; Hanlon & Barnes, 2011). Hanlon and Barnes (2011} showed a
quantification of anthocyanins by classes (pelargonidin, cyanidin and
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Table 3

List of individual anthocyanins (mg - 100 g~-' FW.) tentatively identified and quantified in China rose radish and Rambo red radish sprouts by HPLC-DAD.

N. Baengs et al. { Food Research International 69 (2015) 305-312

Peak LC-MSHPLC  [M]Tm/z-DAD Rt HPLC-DAD  Compound(s) (3a) Chinarose radish
Control MeJA JA SA Glucose Sucrose  LSDgps
1 859 155 Cy©-3-0-soph-5-0-(MA)glu 0.03b 0.03ab  0.02b 0.03b 0.04a 0.03b 0.004 n.d
2 1021 202 Cy-3-0-s0ph-5-0-(MA)soph 0.16cd 0252  017cd  021b 02lab  020bc  0.12™
4 1021 290 Cy-3-0-(CA)soph-5-0-(MA)glu 0.95de 1.08cd  0.60f 1.10c 1286 152a 004"
10 1197 308 Cy-3-0-(CA-FE)soph-5-0-(MA)glu 099cd 1.00d  088de  1.24b 152a  120c  004™"
12+13+14 1005 + 3226 Cy-3-0-(pCoA)soph-5-O-(MA)glu + 743c  107a  589d  848h 1032a  872a 033"
1005 + 1065 Cy-3-O-(FE)soph-5-0-(MA)glu +
Cy-3-0-(SDsoph-5-0-(MA)glu
16 + 17 127141197 338 Cy-3-0-(diSI)soph-5-0-(MA)glu + 165c  1.84c  228b  248b 3352 174c 013"
Cy-3-0-(CA-FE)soph-5-0-(MA)glu
19 + 20 1241+ 1019 340 Cy- 3-O-(FE-SI)soph-5-0-(MA)glu + 249c 271k 258c  3.13c 377a  266c 010"
Pg-3-0-(FE)soph-5-0-(MA)glu
22+23 1227+ 1197 345 Cy-3-0-(CA-S)soph-5-0-(MA)glu + 079  0Scd 11l1b  094c 122a  083de 003™"
Cy-3-0-(CA-FE)soph-5-0-(MA)glu
24 1211 35.2 Cy-3-0-(pCoA-ST)soph-5-0-(MA)glu or 035cd 038bc 042ab  045a 0.44a 0.37c 0.02™
Cy-3-0-(diFE)soph-5-0-(MA)glu
Unidentified anthocyanins 099de 056e  1.64b 1.04c 263a  076cde 0.2
(3b) Rambo red radish
Control ~ MeJA JA SA Glucose Sucrose  LSDyps
1 773 16.0 Cy-3-0-s0ph-5-0-glu 062b  052bc  0.6bc 0.7%a 080a  056bc 004"
4 979 195 Cy-3-0-(SI)soph-5-0-glu 1.1bc 1.03c 0.98¢ 1.40ab 1.57a 1.14bc  0.09™
1 1227 260 Cy-3-0-(SI)soph-5-0-(MA)soph 0.75d 079cd 095bc  137a 148 089  0.06™
14 979 289 Cy-3-0-(SI)soph-5-0-glu 538cde 626b  511de  565hcd 8352  581hc 0217
27 1155 295 Cy-3-0-(FE-SDdiglu-5-0-glu 53cd  553bc  475de  597b 76la  568bc 018
32 1197 30.1 Cy-3-0-(FE)soph-5-0-(MA)soph 1127hc  1128bc 1077c¢d  125b 15.84a 11.61bc  039™"
33 +34 1317+ 1005 307 Cy-3-0-(FE-SI)soph-5-0-soph + 298c 298y 242d  3.28b 3.84a  315b  008™™
Cy-3-0-(pCoA)soph-5-0-(MA)glu
35 + 36 1005+ 1155 320 Cy-3-0-(pCoA)soph-5-0-(MA)glu+  23.5bc  24.04b  2335bc  233bc 3552  2482b 137
Cy-3-0-(FE-SI)diglu-5-0-glu
37 + 38 1065+ 1035 325 Cy-3-0-(SI)soph-5-0-(MA)glu+ 5037e  6517b 5349de 5667cd 6837a 5753 105"
Cy-3-0-(FE)soph-5-0-(MA)glu
40 1373 336 Cy-3-0-(pCoA-SD)soph-5-O-(MA)sophor  27.29c  28.82bc  22.93d  28.17bc  35.62a 3050b  0.59™"
Cy-3-0-(diFE)soph-5-0-(MA)soph
41 1241 338 Cy-3-0-(FE-SI)soph-5-0-(MA)glu 2627c  2886b 2520c  2519c  31.28a 264c 0.66™*
43 + 44+ 45 1211+ 342 Cy-3-0-(pCoA-SI)soph-5-0-(MA)glu+ 15.19b¢  1587ab 1322d  1460bed 17.34a 16792 047"
1371+ 1241 Cy-3-0-(pCoA-SI)soph-5-0-(MA) soph or
Cy-3-0- pCoA-ST)soph-5-G-(MA)soph +
Cy-3-0-(FE-SI)soph-5-0-(MA)glu
46 1181 350 Cy-3-0-(pCoA-SI)soph-5-0-(MA)glu 341bc  335hc  278d  3.76b 439a  368h 018"
Unidentified anthocyanins 8.1c 679d  1264a  7.96C 978  810c  034™

AMean values (n = 3). a-d, Different lowercase letters mean statistically significant differences between treatments.
B Least significant difference (LSD) for separating means in their respective columns. The LSD was computed only after analysis of variance indicated a significant (p < 0.05) entry effect.

Anova p value, *p <0.05; *p < 0.01; **p < 0.001; ns. p> 0.05

€ Cy = cyanidin, Pg = pelargonidin, glu = glucoside, soph = sophoroside, rut = rutinoside, pCoA = p-coumaroyl CA = caffeoyl, SI = sinapoyl, FE = feruloyl, MA = malonyl.

delphinidin} in 8 different varieties of R. sativus sprouts, finding large dif-
ferences between them. Several research groups (Giusti & Wrolstad,
2003; Park et al., 2013; Wu & Prior, 2005} also found that the major
anthocyanins in radish sprouts are acylated pelargonidins, such as
Daikon cultivar (De Nicola et al,, 2013}, while others reported the
isolation of cyanidin-based pigments in red radish (R. sativus L. var.
Benikanmi) (Tatsuzawa et al, 2010), Purple Bordeaux radish (Lin, Sun,
Chen, & Harnly, 2011} and radish cv. Sango sprouts (Matera et al., 2012).

The anthocyanins tentatively identified were then quantified in
HPLC-DAD by comparing their retention times and spectra to those of
compounds found in the mass spectra experiments, using peak spectral
characteristic and the absorption at 520 nm.

The total anthocyanin content (TAC) on China rose radish sprouts
was15.8 mg - 100 g~ ! fresh weight (F.W.) and in the red radish sprouts
was >10 fold more (180 mg - 100 g~ ! EW.) (Fig. 1). China rose radish
showed its most abundant anthocyanin at minute 32.6, comprising
the elution of three compounds with [M]™ at m/z 1005 (12, cyanidin
3-0-(p-coumaroyl}sophoroside-5-0-(malonyl)glucoside ), 1035 (13,
cyanidin 3-0-(feruloyl)sophoroside-5-0-(malonyl)glucoside), 1065
(14, cyanidin 3-0-(sinapoyl)sophoroside-5-0-( malonyl}glucoside)
(Table 3a), and representing 7.4 mg - 100 g~ ! F.W. from the total
(15.8 mg - 100 g~ ' EW.); (Fig. 1). These anthocyanins presented
three different aromatic groups (p-coumaroyl, feruloyl and sinapoyl)
in C-3 diglycosidic substituent while one aliphatic group (malonic
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acid) in sugar of €5, as previously described in red cabbage (Park
et al., 2014} and Sango radish sprouts (Matera et al., 2012, 2015).
The relevant anthocyanins in Rambo red radish sprouts showed
[M]™ at m/z 1065 (37, cyanidin 3-0-(sinapoyl)sophoroside-5-0-
(malonyl)glucoside) and 1035 (38, cyanidin 3-0-(feruoyl)sophoroside-5-
O-(malonyl)glucoside) (Rt 32.5) (Table 3b), representing almost
30% of the total anthocyanins (181.5 mg - 100 g~! FW.) (Fig. 1).
Also, compounds with [M]* at m/z 1005 (35, cyanidin 3-O-(p-
coumaryl)sophoroside-5-0-(malonyl)glucoside}) and 1155 (36,
cyanidin 3-O-(feruloyl, sinapoyl}sophoroside-5-O-glucoside) (co-eluting
at Rt 32.0); 1373 (40, cyanidin 3-0-(p-coumaric, sinapoyl}sophoroside-
5-0-(malonyl)sophoroside) and 1241 (41, cyanidin 3-O-(feruoyl,
sinapoyl}sophoroside-5-O-(malonyl}glucoside) were abundant in
this sample, each one representing 14% from the total amount of
anthocyanins.

Compared to other plants studied for their TAC, China rose radish
sprouts might be comparable to the values found in strawberry (19—
55mg - 100g~ ' EW.), plum (10-25 mg - 100 ¢~ ! EW.)and gooseberry
(2-40 mg - 100 g~ ' EW.), while Rambo red radish was found compara-
ble to red cabbage (50-300 mg - 100 g~ ' F.W.) (Zabaras, Roohani,
Krishnamurthy, Cochet, & Delahunty, 2013}, black currant (130-
476 mg - 100 ¢~ ' EW.) and blackberry (83-326 mg - 100 g~ ! FW.)
(De Pascual-Teresa & Sanchez-Ballesta, 2008 }. Anthocyanin compounds
have interesting biological activities connected to cancer prevention,
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25 | China rose radish 2 LSD: 0.53 plant secondary 'metabolite production was obsgrvgd in broccoli
sprouts treated with 88 and 176 mM of sucrose, which increased total
b b b anthocyanins by 26 and 44%, respectively (Guo et al., 2011a); the
20 & transcription level of PAL treated by sucrose is much higher than con-
< trols (Guo, Yuan, & Wang, 2011b). Hara et al. (2004) found an induction
15 of expression of the CHS, DFR and ANS genes after sucrose treatment,
s increasing as the TAC (7-fold) in red radish sprouts (cv. Comet) after
;' 10 6 days of sucrose optimized treatment (175 mM). Wie, Miao, and
w Wang (2011) observed an increase in TAC by 101%, 120% and 83% in
‘an 5 radish, Chinese kale and pak choi sprouts, respectively, after a 5%
8 glucose solution treatment. Sugars are an important source of energy
= and carbon for plant development (Loreti et al., 2008). In addition, the
téo 250 | Rambo red radish 2 sp:3.81 mechanism of sucrose and g_lucose—speciﬁc induction gf antho_cyani_n
£ biosynthesis gene expression were demonstrated in Arabidopsis

%() 200 b b b seedlings (Solfanelli et al., 2006).

[ C <
5 4. Conclusions
The results supported the hypothesis that anthocyanin synthesis
100 may allow the plant to develop resistance to a number of elicitor treat-
ments by stimulation of the PAL pathway. All individual anthocyanins
50 identified were increased by elicitor treatments, leading to the observed
increase of TAC. Sugars were considered the most effective elicitors. The
0 selection of ready-to-eat cruciferous sprouts rich in anthocyanins, as
Il as the appropriate elicitor treatment, is a candidate strategy to
> 2 2 We PRIOD 5 3 i &y
Qéo Q>V“ > & c5)‘" ,‘o" develop novel plant foods with beneficial nutritional and health
® (39 9,0(‘ properties.

Elicitor treatments

Fig. 1. Total anthocyanin contents (TAC) {mg - 100 g~ ' EW.) in radish sprouts after
elicitor treatments.

oxidative damage and cardiovascular protection (Pojer et al,, 2013). The
results obtained in this work showed that radish sprouts are rich
sources of anthocyanins, especially in the red radish Rambo variety.

3.2. Elicitors enhance anthocyanin content in radish sprouts

The roles of spray treatments of elicitors as appropriate tools for the
enhanced production of anthocyanins in radish sprouts was studied
in this work. The effects were determined in 8-day-old sprouts after
exposure to elicitors for 5 days.

The signalling molecules salicylic acid (SA), methyl jasmonate
(Me]JA) and jasmonic acid (JA) play an important role in plant defense
signal transduction pathways through the expression of defense-related
genes, leading to the biosynthesis of secondary metabolites from the
stimulation of the flavonoid biosynthetic genes, such as PAL, CHI and
CHS (Ghasemzadeh et al., 2012; Obinata et al., 2003; Shan et al., 2009;
Tovar, Romero, Girona, & Motilva, 2002). Me]JA elicitor (25 uM) showed
higher effects in radish sprouts, increasing the TAC by 23% and 11% in
China rose (19.45 mg - 100 g~' FW.) and Rambo radish sprouts
(201.4 mg - 100 g~ ' EW.), respectively. By contrast, TAC in radish
sprouts were not affected by JA elicitor (Fig. 1); however, SA treatment
increased the TAC by 21% and 7% in China rose and Rambo radish, re-
spectively. The activity of MeJA as up-regulator of PAL was determined
by Kim, Park, and Lim (2011), who showed that MeJA-treated buck-
wheat sprouts had about twice as high as activity that of the control,
with an increase of total phenolic compounds. Few results have been
found about phytohormone treatments over Brassicaceae species, such
as the study done by Park et al. (2013), where the mRNA transcript
levels of genes involved in anthocyanin biosynthesis (RsMYB) were
higher in MeJA-treated radish sprouts than in the untreated control.

Glucose (277 mM) and sucrose (176 mM) effectively enhanced TAC
in China rose radish sprouts by 57 and 20% and, in red radish sprouts, by
33 and 8%, respectively (Fig. 1). In previous studies, sugar-regulated
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Elicitation is a cheaper and socially acceptable tool for improving plant food functionality. Our objective
was to optimize the treatment doses of the elicitors: methyl jasmonate (MeJA), jasmonic acid (JA) and DL-
methionine (MET), in order to find a successful and feasible treatment to produce broccoli and radish
sprouts with enhanced levels of health-promoting glucosinolates. Also a priming of seeds as a novel strat-
egy to trigger the glucosinolates content was carried out with water (control), MeJA (250 uM), JA
(250 uM) and MET (10 mM) before the elicitor exogenous treatment. The results showed that almost
all treatments could enhance effectively the total glucosinolates content in the sprouts, achieving the
most significant increases from 34% to 100% of increase in broccoli and from 45% to 118% of increase
in radish sprouts after MeJA priming and treatments. Consequently, our work demonstrates the feasibil-
ity of using elicitors, such as plant stress hormones, by priming and exogenously, as a way of increase the

Keywords:
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Natural functional foods
Glucosinolates

phytochemical profile of these sprouts to enhance their consumption in the diet.

1. Introduction

Consuming cruciferous vegetables is associated with many
health benefits due to their composition in antioxidant compounds
(mainly phenolic compounds and vitamin C) and glucosinolates
(GLS - sulfur and nitrogen compounds with a glucose and a vari-
able side chain derived from amino acids) (Dinkova-Kostova &
Kostov, 2012; Jahangir, Abdel-Farid, Kim, Choi, & Verpoorte,
2009). Particularly, Brassicaceae sprouts content higher amount of
GLS (20 times more), compared to the mature plants because their
young physiological state (Fahey, Zhang, & Talalay, 1997). These
bioactive phytochemicals have been widely investigated because
their hydrolysis compounds, the isothiocyanates (ITC) and indoles.
In plants, GLS are accompanied, but physically separated, by
myrosinases (EC 3.2.1.147). These enzymes are responsible of their
hydrolysis when there is a tissue disruption, mastication of fresh
plants, and also upon ingestion by humans, because B-D-
thioglucosidase activity of the gut microflora is largely responsible
for converting ingested GLS to their cognate ITC and indoles, bio-
logically active molecules which may impact in diseases preven-
tion (Dinkova-Kostova & Kostov, 2012). The ITC sulforaphane,
produced by hydrolysis of the predominant GLS of broccoli gluco-
raphanin, has demonstrated to have neuroprotective effects
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(Tarozzi, Angeloni, Malaguti, Morroni, Hrelia, & Hrelia, 2013) and
anti-inflammatory and chemoprotective activity (Surh and Na,
2009). Other broccoli ITC, such as iberin and erucin, have shown
similar antiproliferative activity in cancer cell lines, even though
these compounds have not been widely studied (Wang, Wang,
Howie, Beckett, Mithen, & Bao, 2005). The hydrolysis compounds
of the GLS glucoraphenin and dehydroerucin, from radish sprouts,
also showed inhibition of phase I or induction of phase Il xenobi-
otic metabolizing enzymes (Barillari et al., 2007). Indole GLS, such
as glucobrassicin, are hydrolyzed to indole-3-carbinol and its
derived compound 3,3'-diindolymethane, which have potentially
biological effects, including activity on carcinogen metabolizing
enzyme system (Aggarwal & Ichikawa, 2005).

The glucosinolates content of broccoli and radish sprouts can be
manipulated through treatments with elicitors, such as plant hor-
mones (methyl jasmonate (MeJA), jasmonic acid (JA), salicylic acid
(SA), ethylene (ET) or abscisic acid (ABA), among others) (Roberto &
Solano, 2005), sucrose (Guo, Yuan, & Wang, 2011), sodium chloride
(Yuan, Wang, Guo, & Wang, 2010), or the amino acid DL-
methionine (MET) (Scheuner, Schmidt, Krumbein, Schonhof, &
Schreiner, 2005), which act as stressors in the plants, activating
an array of mechanisms similar to the defense responses to patho-
gen infections or environmental stimuli, affecting the plant meta-
bolism and enhancing the synthesis of phytochemicals. Elicitors
are usually applied daily by spraying over the cotyledons, not as
irrigation procedure. In this work, using elicitors as a priming
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treatment is a novel tool to increase bioactive compounds, as this
method has been widely used only to reduce the time from sowing
to radicle emergence. Therefore, this work reports the effect of
combination of priming and elicitation with MeJA, JA and MET, in
order to maximize the total GLS contents in broccoli and radish
sprouts, to include the naturally healthy and functional food in
future human clinical trials and to enhance the bioactive com-
pounds intake through dietary interventions, in view of increased
interests in healthy foods from natural origin.

2. Material and methods
2.1. Plant material

Seeds for sprouts production were provided by Intersemillas S.A
(Valencia, Spain). Two varieties were used: broccoli (Brassica oler-
acea L. var italica) and red radish (Raphanus sativus cv. Rambo).
Seeds were equally hydrated by immersion in 5gL™! sodium
hypochlorite under aeration during 2 h, then, were immersed with
aeration in distilled water (control samples), and MeJA, JA and MET
(treated samples), involving the priming treatment, during 24 h
until radicle protrusion, in order to reduce the time from sowing
to emergence. After pouring off the soaking water, the seeds were
weighed (day 0) and spreaded on trays (5 g per tray) lined with cel-
lulose (CN Seeds, UK) and irrigated everyday with Milli-Q water.
Three replicates (trays) per sample were transferred to an environ-
ment controlled chamber with a cycle of 16 h light with 60% rela-
tive humidity and air temperature of 25 °C and 8 h dark with 80%
relative humidity and 20 °C. Photosynthetically active radiation
(PAR) of 400 pmol m~2 s~! was supported by a combination of flu-
orescent tubes (Philips TLD 36 W/83, Hamburg, Germany; Sylvania
F36 W/GRO, Danvers, Massachusetts, USA) and metal halide lamps
{Osram HQLT 400 W, Munich, Germany). During the first 3 days all
trays were kept in controlled dark for increasing the stem elonga-
tion of sprouts. Then, three replicates per treatment of broccoli and
radish sprouts were rapidly collected at day 8 after germination, in
the middle of the light period, for analysis. All samples were
weighed (fresh mass), flash frozen in liquid nitrogen and stored
at —80 °C prior to analyses.

2.2. Treatments with elicitors: priming and exogenous spraying

The phytohormones jasmonic acid (JA) and methyl jasmonate
(MeJA) (25-250 uM), and the amino acid DL-methionine {MET)
(1-10 mM) were selected as elicitors according to literature
review. JA (SIGMA-ALDRICH, Co., 3050 Spruce Street, St. Louis,
MO. 63103, USA) and MeJA (SAFC, 3050 Spruce Street, St. Louis,
MO. 63103, USA) were dissolved in 0.2% ethanol in Milli-Q water.
DL-methionine (Alfa Aesar GmbH & Co KG, Karlsruhe, Germany)
was dissolved in 0.04% ethanol in Milli-Q water.

Priming was performed with 100% imbibition and aeration of
the seeds for 24 h, with three different treatments: MeJA and JA
in a concentration of 250 uM and MET in 10 mM. Elicitors during
germination of sprouts were applied as exogenous spraying on
the cotyledons (not as soaking or irrigation solution) with 30 mL
of test solution per sample (10 mL per tray) from day 4 to day 7
of sprouting (4 days of treatment), using Milli-Q water as control.

2.3. Extraction and determination of glucosinolates

2.3.1. Sample extraction

Freeze-dried samples powder (50 mg) were extracted with
1 mL of methanol 70% V/V, then heated at 70 °C for 30 min in a
heating bath, with shaking every 5min and centrifuged
(17,500xg, 5 min). The supernatants were collected and methanol

100

was removed using a rotary evaporator. The dry material obtained
was re-dissolved in Milli-Q water and filtered (0.45 pm Millex-
HV13 filter, Millipore, Billerica, MA, USA).

2.3.2. HPLC-PAD-ESI-MS™ analysis of glucosinolates

The qualitative and quantitative analysis of glucosinolates was
performed according to Baenas, Garcia-Viguera, and Moreno
(2014) protocol. Briefly, the intact GLS were identified following
their MS? [M—H]~ fragmentations patterns in an HPLC-PAD-ESI-
MSn (Agilent Technologies HPLC 1200, Waldbronn, Germany; cou-
pled to a mass detector Bruker in series, model UltraHCT, Bremen,
Germany). Chromatograms were recorded at 227 nm. Mass spec-
trometry data were acquired in the negative ionization mode for
glucosinolates. Then, the extracted samples were analyzed and
quantified in a Waters HPLC-DAD system {(Waters Cromatografia
S.A.,, Barcelona, Spain) as described by Pérez-Balibrea, Moreno,
and Garcia-Viguera (2011). The intact GLS were identified follow-
ing their UV spectra and order of elution already described for sim-
ilar acquisition conditions. Glucosinolates were quantified using
sinigrin and glucobrassicin as standard of aliphatic and indole
GLS, respectively (Phytoplan, Germany).

2.4. Statistical methods

The data were processed using the SPSS 15.0 software package
(LEAD Technologies, Inc., Chicago, USA). The assays were con-
ducted by triplicate. We carried out an ANOVA and the Tukey’s
Multiple Range Test to conclude significant differences at P
values < 0.05.

3. Results and discussion
3.1. Glucosinolates profiles of broccoli and radish sprouts

The glucosinolates content in Brassicaceae vegetables varies
with genotype, and environmental and growth conditions (Cartea
& Velasco, 2008). Broccoli { B. oleracea var italica) and radish (R. sati-
vus cv. Rambo) 8-day-old sprouts show different glucosinolates
profiles (Fig. 1). These species are interesting due to their high con-
tent in total GLS, being 302.84 and 379.71 mg g~! FW., in broccoli
and radish sprouts, respectively (Tables 1 and 2), if compared with
other 7 and 8-days-old sprouts (100-250mgg~' FW.; Pereira,
Rosa, Fahey, Stephenson, Carvalho, & Aires, 2002; Zhou, Zhu, &
Luo, 2013), and adult plants (30-100 mg g~ ! F.W.; Verkerk et al.,
2009). These results are fairly consistent with previous studies from
our group, using controlled growth conditions to reduce the influ-
ence of external factors to the minimum (Baenas et al,, 2014). The
predominant individual GLS have been widely studied because of
their hydrolysis products, the ITC and indoles (derived from trypto-
phan), which might play a role in diseases prevention through the
anti-inflammatory and chemopreventive pathways (Wagner,
Terschluesen, & Rimbach, 2013). In broccoli sprouts, the predomi-
nant glucosinolate is glucoraphanin (4-methylsulphinylbutyl),
accounting for almost the 50% of the total, 144mgg~! FW.
(Table 1), which belongs to the aliphatic group (mainly derived
from methionine, but also from alanine, leucine, isoleucine, and
valine) and is hydrolyzed to the ITC sulforaphane. Also glucoiberin
(3-methylsulphinylpropyl), precursor to the ITC iberin, and
glucoerucin (4-methylthiobutyl), precursor to the ITC erucin, are
aliphatic GLS which account for the 15% of the total GLS in broccoli
sprouts (48.06 and 45.21 mg g~! FW, respectively). The GLS gluco-
raphenin  (4-methylsulphinyl-3-butenyl) and dehydroerucin
{4-methylthio-3-butenyl, also known as glucoraphasatin), are the
predominant in radish sprouts (162.20 and 195.22 mgg~' EW,
respectively). Both, broccoli and radish sprouts, contain indole
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A.
R T D2
Code Glucosinolate (GLS) Semisystematic name ; and Broccoli  Radish
(min)  (mz) o
GIB Glucoiberin 3-methylsulfinylpropyl-gls 6.5 422 +
GRE Glucoraphenin 4-methylsulfinyl-3-butenyl-gls 7.1 434 +
GRA  Glucoraphanin 4-methylsulfinylbutyl-gls 7.4 436 +
4-HGB  4-Hydroxyglucobrassicin  4-hydrony-3-indolylmethyl-gls 16.9 463 + +
GER  Glucoerucin 4-methylthiobutyl-gls 18.6 420 259 and 4
DER Dehydroerucin 4-methyltio-3-butenyl-gls 19.9 418 97 +
GB Glucobrassicin 3-indolylmethyl-gls 20.1 447 4 i
MGB  4-Methoxyglucobrassicin ~ 4-methoxy-3-indolylmethyl-gls 235 477 - +
NGB  Neoglucobrassicin N-methoxy-3-indolylmethyl-gls 28.4 477
R, , retention time; +, compound presence
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Fig. 1. (A) Identification of individual GLS present in broccoli and radish sprouts. (B) Full MS data of broccoli and radish sprouts. (C) MS2 and MS3 spectra of the fragmentation
of MGB glucosinolate, consisting of the aglycone m/z 259 and the MS3 of this ion, a fragment of m/z 97, corresponding to the sulfate molecule.

GLS, accounting for the 20% and 5% of the total GLSs, respectively.
Glucobrassicin (3-indolylmethyl) (GB), 4-hydroxiglucobrassicin
(4-hydroxy-3-indolylmethyl) (HGB) and 4-methoxyglucobrassicin
(4-methoxy-3-indolylmethyl) (MGB) are common to both species,
but broccoli sprouts also present the GLS neoglucobrassicin (N-
methoxy-3-indolylmethyl) (NGB).

3.2. Effect of the application of elicitors: priming and exogenous spray

In this work, MeJA (250 uM), JA (250 uM) and MET (10 mM)
were applied as priming treatment during 24 h, finding only slight
enhanced GLS content; but when priming was applied in combina-
tion with exogenous spray from day 4 to 7 of germination, the
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Table 1
Individual and total glucosinolates (mg 100 g ' E.W.) in broccoli sprouts under priming and elicitation treatments.
Treatment Glucosinolates Total
GIB GRA 4-HGB GER GB MGB NGB
Control 48.06' i 144.36 i 19.07 b-e 4521 a-¢ 17.27 1 11.93 g 16.95 n 302.84 1
Methyl jasmonate
25 pM 69.75 b-g 185.48 c-f 18.37 b-e 48.48 a-c 31.08 h-j 15.86 e-g 53.81 jk 426.45 e-i
50 UM 61.59  e-j 17336 e-h 1911 b-e 4400 a-c 3117 h-j 14.88 fg 67.11 ij 41595  f-j
125 pM 58.98 e-j 165.09 f-i 15.75 d-f 36.78 a-c 32.81 g-1 14.12 fg 78.09 hi 405.87 f-j
250 pM 7842 a-d 187.71 c-f 21.15 a-e 40.98 a-c 40.79 d-g 20.30 c-f 135.59 de 537.60 be
Prim® (250 uM)  67.02  d-h 17727 d-g 2364 a-c 4196 a-c 5309 ab 1688 e-g 4886 j-1 42758 e
Prim + 25 pM 71.75 a-f 176.30 e-g 17.75 b-f 36.59 be 45.05 b-e 17.48 d-g 115.74 fg 450.04 c-e
Prim + 50 pM 82.85 a-c 199.77  b-e 23.54 b-f 40.77 a-c 4949 bc 21.24 c-f 13344 d-f 56445 ab
Prim + 125 pM 68.43 c-g 151.37 g-i 15.80 d-f 32.10 c 3731 e-h 16.13 e=g 107.24 g 437.55 d-h
Prim + 250 pM 83.34 ab 20549 b-d 17.82 b-f 34.40 c 4254 c-f 22.80 b-e 189.21 a 626.46 a
Jasmonic acid
25 uM 55.89 g-j 144.56 i 17.16 c-f 38.12 a-c 36.33 f-h 17.42 d-g 54.86 369.93 i-k
50 pM 64.89 d-i 174.74 e-g 18.12 b-e 37.53 a-c 4469 b-f 19.50 d-g 86.91 h 456.27 d-f
125 pM 49.64 i 151.79 g-i 14.64 ef 3912 a-c 4133 c-g 18.54 d-g 151.86 cd 467.93 d-f
250 UM 5568  g-j 11538 ] 1077 f 4062 a-c 2985 h-j 1628 e-g 11793 e-g 38559 g-j
Prim (250 pM) 57.25 e-j 162.17 f-i 21.67 a-e 43.97 a-c 25.20 i-1 16.40 e-g 25.67 mn 355.07 i1
Prim + 25 pM 59.88 e-j 166.49 f-i 18.72 b-e 36.92 a-c 41.84 c-f 18.27 d-g 56.36 ik 406.70 f-j
Prim + 50 pM 58.55 e-j 169.10 f-i 16.83 cf 36.05 bc 4331 c-f 18.84 d-g 7755 hi 428.82 e-i
Prim + 125 pM 68.24 b-g 163.64 f-i 18.50 b-e 50.18 a-c 4931 b-d 24.72 a-d 165.54 be 544.38 be
Prim + 250 pM 2051 h-j 145.38 hi 16.00 d-f 3835 a-c 44.12 [ 2493 a-d 178.50 ab 495.84 cd
DL-Methionine
1mM 58.20 e-j 186.69 cf 24.69 ab 35.37 c 43.59 c-f 16.32 e-g 31.38 I-n 385.94 g-j
2.5 mM 68.15 d-g 178.34 d-g 17.88 b-f 4235 a-c 2330 i1 15.09 fg 21.72 n 363.41 i-1
5 mM 60.83 e-j 18042 d-f 21.17 a-e 54.75 ab 2730 i-k 14.78 fg 22.58 n 379.40 h-j
10 mM 51.27 ij 144.12 i 17.00 o f 46.43 a-c 20.63 kl 12.65 g 16.35 n 307.08 kl
Prim (10 mM) 51.68 ij 145.26 hi 16.17 d-f 41.61 a-c 19.07 kl 20.88 c-f 16.10 k-m 288.55 1
Prim + 1 mM 72.48 a-e 221.60 b 26.78 a 55.76 a-c 60.26 a 32.27 a 4349 n 496.76 cd
Prim + 2.5 mM 61.40 e-j 170.81 f-i 18.70 a-e 45.78 a-¢ 3737 e-h 27.42 a-c 25.97 mn 378.76 h-j
Prim + 5 mM 85.77 a 25445 a 21.17 a-e 54.75 a-c 2730 i-k 14.78 fg 22.58 n 555.98 be
Prim + 10 mM 77.81 a-d 209.25 be 22.68 a-d 5511 a-c 42.95 c-f 30.3 ab 20.60 n 450.14 d-g
LSDggs* 377 7.28 1.86 491 2175 1.95 4.83 16.88

The most effective treatments are indicated in bold, as well as, the results of intact and total GLS.
I Mean values (n=3). a-d, Different lowercase-letters mean statistically significant differences between treatments (for each glucosinelate).
+ Least Significant Difference (LSD) for separating means in the respective row. The LSD was computed only after analysis of variance indicated a significant (p < 0.05) entry

effect. ANOVA p value, p < 0.001.
& Prim (Priming).

effect was improved in terms of total GLS. Conrath, Beckers,
Langenbach, and Jaskiewicz {2015) defined defense priming as an
induced physiological state in which cells respond to very low
levels of a stimulus in a more rapid and robust manner than
unprimed cells. The higher increase of total GLS content after com-
bination of priming seeds and exogenous application of elicitors,
may be related to an activation of the seeds resistance, which pro-
duce enhance molecular mechanism of defense in sprouts. This
idea could be substantiated by the fact that plants treated with
elicitors such as UV radiation, salt or temperature, caused an
increased resistance for subsequent generations, and also treat-
ment of seeds with JA and MeJA primes plants enhance herbivore
resistance weeks later and in next generations (Rasmann et al.,
2012). These elicitors applied exogenously activate a large set of
cellular defense responses in the plant, including the expression
of enzymes involving in the synthesis of bioactive compounds, as
well as occurs after the attack by pathogens, insects or in response
to abiotic stresses, widely studied because of their effect in crop
protection and health promotion (Brader, Tas, & Palva, 2001).
There exist no single established and standardized protocol for
elicitor application as a sustainable and safe method to enrich cru-
cifers or other plant species in bicactive compounds, therefore, this
study provide useful information about the appropriate dose of
application of these natural elicitors in sprouts. Under Me]A treat-
ment, there was a statistically significant increase in the total GLS
in both species, not only after exogenous application of the elicitor
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(50-250 uM) but also after priming treatment (250 uM) together
with spray treatment on the cotyledons. According to Ku, Jeffery,
and Juvika (2014), the increase of total GLS is not correlated with
the concentration of the elicitor applied, may be because of a sat-
uration of the elicitor molecule in the plant tissues after a certain
dose. Therefore, selecting a cost-effective concentration of the elic-
itor for each species under treatment could be highly effective. In 7
selected both for broccoli and radish sprouts: Prim + 50 pM MeJA,
Prim + 125 uM JA and Prim + 5 mM MET (Tables 1 and 2). Even
though several authors showed a certain degree of specificity
between specie and elicitor, such as after application of MeJA in
broccoli florets and kale leafs (Ku & Juvik, 2013); or after applica-
tion of DL-methionine in broccoli heads or radish hypocotyls
(Scheuner et al,, 2005), in the present study, the results obtained
showed that sprouts have a similar metabolism in response of elic-
itors. This could be probably because of their young physiological
state and metabolism, unlike happens when elicitation is carried
out in different tissues in the adult plant, such as after the applica-
tion of MeJA in roots, leaves or broccoli heads (Ku et al., 2014),
where the increase of total GLS was different according to the
organ treated.

Theelicitors treatments in these sprouts were effective, as well as
other results found in bibliography which show an increase in GLS
after applying exogenous MeJA 250 uM on broccoli florets (60%
increase) (Kim & Juvik, 2011) or MeJA 10 uM on broccoli sprouts
(22% of increase) (Pérez-Balibrea et al., 2011), the variations in the
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Table 2

Individual and total glucosinolates (mg 100 g ' FW.) in radish sprouts under priming and elicitation treatments.
Treatment Glucosinolates Total

GRE 4-HGB DER GB MGB

Control 162.20 k 9.49 k 195.22 g 342 1 7.05 g 379.71 i
Methyl jasmonate
25 uM 215.46 -k 1458 e-k 240.84 b-g 18.10 gk 11.74 d-g 507.23 e-i
50 pM 300.24 b-f 18.05 d-h 295.91 a-f 20.21 f-j 16.33 b-f 663.75 b-e
125 pM 25359 d-i 17.01 d-i 235.05 c-g 22.03 e-i 12.81 d-g 557.00 d-h
250 pM 304.82 b-e 20.20 b-f 280.31 a-g 35.11 c-e 16.81 a-e 67833 a-d
Prim® (250 pM) 312.49 a-d 24.73 a-c 356.74 a 31.87 d-f 7.56 g 721.20 a-c
Prim + 25 pM 238.80 f-i 20.77 b-e 247.93 b-g 3345 c-e 12.45 d-g 563.81 c-h
Prim + 50 pM 374.23 a 28.75 a 339.07 ab 48.78 ab 17.88 a-d 829.88 a
Prim + 125 pM 331.14 a-c 25.09 ab 308.88 a-e 4334 b-d 12.87 d-g 738.86 ab
Prim + 250 uM 29439 b-f 21.75 b-d 212.73 e-g 45.63 a-¢ 12.9¢ c-g 610.63 b-g
Jasmenic acid
25 pM 150.94 i-k 10.85 i-k 196.06 fg 14.20 h-1 9.51 e-g 419.14 hi
50 pM 20447 h-k 12.10 h-k 194.68 o 20.10 f-j 8.38 g 43759 hi
125 uM 261.65 d-i 14.03 f-k 193.88 2 2842 e-g 12.50 d-g 501.86 f-i
250 uM 345.16 ab 19.74 b-g 218.55 d-g 5398 ab 23.99 a 653.34 b-f
Prim (250 pM) 22830 g-j 13.07 h-k 239.68 b-g 8.98 i-1 13.63 c-g 512.10 e-i
Prim + 25 pM 223,69 -k 1347 g-k 21563 e-g 2233 e-h 12.38 d-g 483.65 g-i
Prim + 50 pM 246.06 e-i 10.10 jk 21641 e-g 29.52 e-g 12.85 d-g 508.90 e-i
Prim + 125 pM 312.96 a-d 2031 b-f 267.48 a-g 4534 a-c 21.39 ab 66044 b-f
Prim + 250 pM 328.62 a-c 17.28 d-i 216.92 e-g 5820 a 20.38 a-c 628.91 b-g
DL-Methionine
1mM 186.17 i-k 13.95 -k 261.94 a-g 7.07 i1 13.53 c-g 485.27 g-i
25 mM 214.79 g-k 13.22 g-k 271.58 a-g 531 ki 13.39 c-g 517.52 e-i
5mM 276.81 d-h 17.15 d-i 309.16 a-e 7.49 i1 14.43 b-g 624.92 b-g
10 mM 172.39 jk 9.97 jk 226.81 c-g 3.74 1 935 fg 42230 hi
Prim (10 mM) 206.58 h-k 10.88 i-k 196.75 fg 452 1 12.26 d-g 431.01 hi
Prim + 1 mM 191.57 i-k 15.84 d-k 260.42 a-g 7.20 i1 14.18 b-g 488.69 g-i
Prim + 2.5 mM 248.54 d-i 16.26 d-j 318.13 a-d 6.42 ki 13.94 c-g 604.16 b-g
Prim + 5 mM 277.26 c-g 18.37 c-h 326.64 a- 6.66 kl 12.70 d-g 64153 b-g
Prim + 10 mM 1590.53 i-k 13.21 g-k 278.57 a-g 12.86 h-1 10.71 d-g 505.40 e-i
LSDg ps*

The most effective treatments are indicated in bold, as well as, the results of intact and total GLS.
T Mean values (n = 3). a-d, Different lowercase-letters mean statistically significant differences between treatments (for each glucosinolate).
* Least Significant Difference (LSD) for separating means in the respective row. The LSD was computed only after analysis of variance indicated a significant (p < 0.05) entry

effect. ANOVA p value, p <0.001.
A Prim (Priming).

% of increases of GLS could be produced by different environmental
factors, physiological states of the plant or doses of treatment.

The physiological and molecular mechanisms by which jas-
monates regulate the expression of certain transcription factors
have not yet been determined, since the metabolic pathway that
is affected is not linear, but through an extensive network of cellu-
lar responses, including induction of pathogenesis-related proteins
and enzymes of oxidative stress protection, the activation of
defense-related genes, changes in the potential of plasma mem-
brane cell and enhanced ion fluxes, rapid changes in protein phos-
phorylation, lipid oxidation, structural defensive barriers and the
activation and the de novo biosynthesis of transcription factors,
which directly regulate the expression of genes involved in sec-
ondary metabolites production, such as glucosinolates (Garcia-
Brugger et al., 2006). Regarding MET as elicitor; an increase of this
compound in the cells could enhance the biosynthesis of GLS, as
the side-chain elongation of this amino acid involves the formation
of the GLS core structure, representing a key component in the reg-
ulation of aliphatic derived GLS biosynthesis, as well as has been
studied when sulfur availability is increased by fertilization, a min-
eral which also takes part in the GLS formation (Kaur, Gupta,
Sukhija, & Munshi, 1990).

In broccoli sprouts (Table 1) not all compounds were increased
equally: the aliphatic GLS glucoiberin was enhanced to a maximum
around 75% after some treatments, such as priming+50 and
250 uM MeJA, and priming+5mM MET. The aliphatic GLS

glucoraphanin (recently accepted as safe, GRAS), increased by
40% and 70% after some MeJA (250 uM exogenous spray with or
without priming) and MET (priming + 1-10 mM exogenous appli-
cation) treatments, respectively, achieving significant differences
compared to the control (Table 1). However, JA treatments had a
very limited effect on this GLS. The aliphatic GLS of radish sprouts,
such as GRE and DER also were enhanced after MeJA, JA and MET
treatments (Table 2). GRE achieved the maximum concentration
of 374mgg~! FW. after priming+ 125 uM MeJA, 345mgg' F.
W. after 250 uM JA and 277 mgg~! FW. after priming+5mM
MET. Regarding DER, the elicitor JA did not show any effect, how-
ever, this compound increased to a maximum of 80% in case of
MeJA priming with or without exogenous treatment, and a maxi-
mum of 67% after MET priming + exogenous application of this
elicitor (Table 2). According to these results, using the amino acid
DL-methionine as elicitor in sprouts, could favored the biosynthe-
sis of aliphatic GLS, as this elicitor works as precursor of this meta-
bolic pathway (Scheuner et al., 2005).

Studying indole GLSs, GB from broccoli sprouts was enhanced
almost by all treatments under study, achieving a 2-fold increase
with MeJA priming (53 mg g~! EW.) and MET priming + 1 mM of
exogenous spray (60 mgg~! FW.) (Table 1). In case of radish
sprouts, GB was increased 13-fold and 16-fold by priming + the
higher concentrations of MeJA and JA exogenous treatments,
respectively. The GLS 4-HGB only was increased in radish sprouts
after MeJA and MET treatments (to a maximum of 2-fold in MeJA
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priming + 50 uM) and in broccoli sprouts after MET treatments. We
also found an increase of 2-fold and 3-fold in MGB in both sprouts
species, and 10-fold increase of NGB concentration in broccoli
sprouts, after application of the higher concentrations of MeJA
and JA priming + exogenous treatments. We could highlight that
phytohormones were more effective in increasing indole GLS than
MET, which is only implicated in the biosynthesis of aliphatic GLS.
The first step in biosynthesis of the core structure of GLS is the con-
version of amino acids to the corresponding aldoximes. This step is
catalyzed by cytochromes P450 from the CYP79 gene family,
Mikkelsen et al. (2003) showed an increase of CYP79B2 and
CYP79B3 expression levels by MeJA, according to an increase of
indoles GLS. However, not dramatically different gene expression
levels (CYP83A) involved in aliphatic GLS biosynthesis after appli-
cation of elicitors have been studied (Ku et al., 2013). Further stud-
ies with elicitors are needed to understand their molecular
mechanism of action in defense-related genes.

Sprouts could be consumed uncooked, allowing the activity of
the enzyme myrosinase and, therefore, the ITC and indoles produc-
tion and absorption is more extensive than when crucifers are sub-
jected to cooking (Cramer & Jeffery, 2011). Priming and exogenous
elicitation with plant hormones {generally accepted as safe, GRAS)
are a sustainable tool to improve the content of health-promoting
compounds (achieving in this work upon 2-fold increase of GLS
concentration after MeJA priming+ 250 uM in broccoli sprouts),
enhancing the concentrations of potentially anti-inflammatory,
anticarcinogenic and antioxidant bioactives in the consumers daily
diet.

4. Conclusions

Combining priming of seeds and spray treatments with natural
elicitors, mainly with very low dosages of phytohormones (Me]A
50-250 uM), offer effective and environmentally friendly strate-
gies to trigger the synthesis of target natural products in crucifer-
ous foods without using transgenic technology. Understanding the
metabolism pathways where elicitors act in the plant should be a
target in this field in order to make effective their use. These
enriched ready-to-eat sprouts can be used in preclinical and clini-
cal trials with potential for protective effects in cells against oxida-
tive and inflammatory processes, and therefore to study and
research on the prevention of the development of neurodegenera-
tive, cardiovascular diseases and certain types of cancer, through
dietary interventions with naturally healthy foods.
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Abstract The purpose of this work was to study the
absorption and metabolism of sulforaphane (SFN)
from broccoli sprouts, their major glucosinolate
glucoraphanin and its hydrolysis product SEN. This
was done by monitoring SFN’s main metabolites, i.e.
SEN, SFN-glutathione and SFN-cysteine, in two
different cell models of absorption and metabolism
(Caco-2 colorectal carcinoma cells and HepG2 hep-
atocellular carcinoma cells), during 3, 6, and 24 h of
treatment, using a selective UHPLC-QqQ-MS/MS
procedure. Concentrations ranging 0.5-90 nmol/l
were found within the cells and released in the
medium, depending on the type of analyte under
study. Cells were capable of conjugative metabolism,
since the SFN mercapturic derivatives could be
identified in the cell medium. The antiproliferative
activity of broccoli sprouts, glucoraphanin and sul-
foraphane was compared in Caco-2 and HT-29 human
colorectal carcinoma cells, and HepG2 hepatocellular
carcinoma cells, establishing the minimal
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concentration of a given compound to achieve half
inhibition of the maximal cell growth (ICsy) for
broccoli sprouts extract and sulforaphane. However,
glucoraphanin did not show an antiproliferative effect
in the cells under study.
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Cytotoxicity - UHPLC-QqQ-MS/MS

Introduction

There is consistent epidemiological evidence that a
diet rich in vegetables, particularly cruciferous, is
inversely related to the risk of suffering certain types of
cancer and more specifically colon cancer (Tse and
Eslick 2014). The chemopreventive benefit of these
vegetables is attributed in part to the glucosinolates
(GLS) in them. However, the biological activity
attributed to cruciferous is mainly caused by glucosi-
nolate hydrolysis metabolites isothiocyanates (ITC),
which are known to stimulate phase II carcinogen
detoxifying enzymes, such as glutathione S-transferase
(GST) and quinone reductase (Wallig et al. 1998). The
induction of cellular enzymes of phase II are largely
mediated by the antioxidant responsive element (ARE)
which is regulated by the transcription factor Nrf2
(Keum 2012). Recent studies suggest that Nrf2-medi-
ated signaling, which controls the expression of several
genes responsible for detoxification of carcinogens and

@ Springer

107



Publications

Phytochem Rev

protection against oxidative stress, is regulated by ITC
such as sulforaphane (SFN) (Yeh and Yen 2009).

The most potent stimulator of phase II enzymes
found in broccoli sprouts is SFN [1-isothiocyanato-4-
(methylsulfinyl)-butane], which is a hydrolysis pro-
duct of the inactive precursor glucoraphanin (GRA) by
the thiohydrolase myrosinase, found endogenously in
broccoli, or by the microflora present in the colon
(Angelino and Jeffery 2014). Also the chemopreven-
tive activity of SFN by blocking cancer initiation via
inhibition of the metabolic activation of carcinogens
by cytochrome P450 (CYS) (Phase I enzymes) has
been studied (Clarke et al. 2008). Once cancer is
initiated, SFN can act via several mechanisms that
modulate cell growth and cell death signals to suppress
cancer progression (Clarke et al. 2008).

The mechanisms by which ITC might exert their
anticarcinogenic effects remain unclear and the eval-
uation of anticarcinogenic and antiproliferation effect
of SFN is very limited. Some recent results suggest
that the chemopreventive activities of ITC may
involve other mechanisms in addition to the activation
of detoxifying enzymes, as specific mechanisms that
could also act at the DNA level or affect signal
transduction pathways leading to growth arrest or cell
death (Gamet-Payrastre et al. 2000).

Caco-2 and HT-29 cells feature many characteristics
of intestinal epithelial cells, representing a widely
accepted in vitro model for human intestinal absorption
and metabolism. The hepatoma cell line, HepG2, not
only resembles morphologically hepatocytes, but has
also been shown to retain many of the enzymes involved
in xenobiotic metabolism (Lenaerts et al. 2007).

SFN and other ITC are known to be metabolized in
the enterocytes and the liver through the mercapturic
acid pathway (Angelino and Jeffery 2014). An initial
reaction between the -N=C=S group of ITC and the
cysteine sulfhydryl group of glutathione (GSH) can
take place spontaneously and is enhanced by glu-
tathione S-transferase (GST). SF-GSH metabolites
have been found in plasma and urine. The liver is able
to carry out enzymatic modifications of the GSH
moiety, forming cysteinylglycine-(cys-gly), cysteine-
(cys); and the final N-acetyl-cysteine-(NAC-) conju-
gate is formed in the kidney (Angelino and Jeffery
2014).

The aim of this work was to examine the absorption
of SEN metabolites of broccoli sprouts extract, pure
SFN and GRA, in order to identify the possible
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metabolites in human colon Caco-2 and liver HepG2
cells. The effect of lyophilized broccoli sprouts, as a
food matrix, the glucosinolate GRA, and its metabolite
SFN on the proliferation of intestinal and hepatic
human cancer cell lines, Caco-2 and HT-29 colon
cells; and HepG2 liver cells using the colorimetric
assay method MTT was also studied. Different
concentrations of broccoli sprouts, GRA and SFN
were tested in order to find their ICs,.

Materials and methods
Standards

Glucoraphanin (GRA) and sulforaphane (SFN) were
purchased from CRA-CIN (Rome, Italy) and Sigma
(St. Louis, MO, USA), respectively. The standards of
SFN-gluthatione and SFN-cysteine (SFN-GSH, and
SFN-Cys, respectively) were from Santa Cruz Biotech
(Santa Cruz, CA, USA). All LC-MS grade solvents
were obtained from J. T. Baker (Phillipsburg, NIJ,
USA). Sinigrin monochydrate was obtained from
Phytoplan (Heidelberg, Germany).

Plant material

Broccoli seeds were provided by Intersemillas, S.A.
(Valencia, Spain). Broccoli sprouts were germinated
for 8 days according to Baenas et al. (2014) with a
slight modification; sprouts were covered with perfo-
rated aluminum foil for increasing stem elongation in
the environment chamber from day O to 3. Then,
8-day-old sprouts were collected, rapidly frozen in
liquid nitrogen and lyophilized prior to analyses.

For the development of the metabolism and cyto-
toxicity assay, 1 g of broccoli sprouts dry powder was
hydrolyzed following Cramer and Jeffery (2011)
protocol. Then, the supernatant was lyophilized,
dissolved again in the culture cells medium according
to the concentration of SFN understudy, and filtered by
0.22 umol/l before adding to the cells.

Determination of bioactive compounds

Dry samples were hydrolyzed following Cramer and
Jeffery (2011) method in order to quantify the
sulforaphane content by the UHPLC-QqQ-MS/MS
method described by Dominguez-Perles et al. (2014).
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The identification and quantification of individual
glucosinolates and total GLS was carried out in a
HPLC-DAD-ESI-MSn (Agilent Technologies HPLC
1200, Waldbronn, Germany; coupled to a Bruker mass
detector in series, model UltraHCT, Bremen, Ger-
many) and HPLC-DAD system (Waters Cro-
matografia S.A., Barcelona, Spain), respectively, as
previously described by Baenas et al. (2014). Glu-
cosinolates were quantified using sinigrin as external
standard, because of the similar structure to the
glucosinolates in the sample.

Cell cultures

Caco-2 and HT29 (human colorectal adenocarcinoma)
and HepG2 (human hepatocellular carcinoma) cell
lines were plated in 75 cm? tissue culture flasks. Cells
were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10 % heat-inactivated
fetal bovine serum (FBS), 1 % (v/v) non-essential
amino acids, and 1 % penicillin/streptomycin (5000
U/ml) (Lonza, Barcelona, Spain) in the presence of
5 % CO, at 37 °C and humidified atmosphere until
confluence. The culture medium was changed every
2-3 days. After a confluent monolayer appeared,
subculturing was carried out using Trypsin/EDTA
solution (Lonza, Barcelona, Spain).

Absorption and Metabolism assay using UHPLC-
QqQ-MS/MS

Caco-2 and HepG2 cells were seeded (1.5 x 10° cells/
well) in 6-well plates (Sarstedt, Niimbrecht, Germany)
until monolayer was formed. After that, cells were
incubated with broccoli sprouts extract (containing
1 pmol/l SF), GRA (50 pmol/l) or SEN (1 umol/l)
dissolved in serum-free DMEM. After 3, 6 and 24 h of
treatment the media was collected, and the cells were
washed twice and collected in PBS, all samples were
frozen until metabolite analysis. As for cell lysate
preparation, samples were defrosted and incubated on
ice for 15 min, shaking each 5 min in a vortex. Then,
were mixed in an ultrasound for 5 min and transferred
into an ultra-speed centrifuge (15 min, 9500x g). The
analysis of SFN and its derivatives (SFN-GSH and
SFN-Cys) in the different cell supernatants and culture
mediums was carried out in a UHPLC-QQQ-MS/MS
method described by Dominguez-Perles et al. (2014).
Multiple reactions monitoring (MRM) was performed

in positive electrospray ionization (ESI). MRM tran-
sitions were exclusive to a compound, so, GRA
(438.1 — 196), SFN-GSH (484.9 — 178), SFN-Cys
(299 — 178), SFN (178 — 114). The most abundant
fragment ion produced was considered as the product
ion for MRM. Data acquisition was performed using
MassHunter software version B.04.00 (Agilent Tech-
nologies, Waldbron, Germany). The limit of quantifi-
cation (LOQ) was 10 nmol/l for SFN-GSH and for
GRA, 8 nmol/l for SFN and 1 nmol/l for SEN-CYS.
The limit of detection (LOD) was 4 nmol/l for all
compounds, except for SFN-CYS which was
0.5 nmol/l. A higher dose of GRA compared to SFN
was selected in order to see whether there has been
absorption of this compound within the cells or
hydrolysis of this compound to SFN in the cell
supernatant before absorption.

Cytotoxicity assay

The growth inhibitory effect of SFN, GRA, and
broccoli sprouts extracts against Caco2 and HT29
cells was evaluated by using a MTT assay. Briefly,
cells were plated in 96-well plates (1 x 10 cells/well)
(Sarstedt) and cultured for 24 h at 37 °C in 5 % CO,.
Cells were treated with different concentrations of
SEN (100, 85, 70, 55, 40, 25 and 10 pmol/l in 0.1 %
DMSO), GRA (100, 85, 70, 55, 40, 25 and 10 pmol/1
in 0.1 % DMSO) and broccoli sprouts extracts (con-
taining 20, 10, 5, 1, 0.5, 0.1 and 0.05 pmol/l of SFN in
0.1 % DMSOQ) dissolved in serum-free DMEM. After
24 h of incubation 20 pl of a MTT solution (5 mg/ml
in PBS) was added to each well and incubated for 4 h
at37 °Cin 5 % CO,. Formazan crystals formed in the
wells were solubilized in 200 pl of DMSO (Panreac,
Barcelona, Spain). Absorbance was measured at
570 nm employing a microplate reader PowerWave™
XS (BioTek Instruments, Inc., Winooski, VT, USA).
The assay was repeated with three independent
experiment replications. The viability was calculated
considering controls containing a solvent control
(0.1 % DMSO) as 100 % viable. DMSO at experi-
mental concentrations was nontoxic to cells.

Statistical analysis
All analyses were conducted by triplicate, processed

by Graphpad Prism to determine ICso and SPSS 15.0
(IBM Corp., Armonk, NY, USA) to carry out a
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multifactorial analysis of variance (ANOVA) and
Tukey’s Test to determine significant differences at
p values <0.05.

Results and discussion
Analysis of broccoli sprouts

The contents of total glucosinolates as well as the
individual glucosinolates in 8-day-old broccoli sprouts
were tentatively identified following their MS? [M—
H]™ fragmentations by HPLC-DAD-ESI-MSn and
quantified by HPLC-DAD system, according to
previous reports (Baenas et al. 2014). The content of
glucosinolates in broccoli sprouts decrease over the
germination time. 8-day-old sprouts were selected as
optimum for consumption according to the length and
bioactive compounds content (Baenas et al. 2012).
The concentration of GRA in broccoli sprouts was
analyzed after the inactivation of the myrosinase
activity to prevent the hydrolysis of GRA to SFN
(Mellon et al. 2002). Total GLS amount was
377.64 mg 100 g fresh weight (F.W.), being GRA
the most predominant GLS, accounting 160 mg-100 g
F.W. of the total (Fig. 1), in accordance with several
authors (Avila et al. 2014; Guo et al. 2011).

In the hydrolyzed extracts of broccoli sprouts, only
SFN was quantified by UHPLC-QQQ-MS/MS and the

concentration was 13 mg 100 g F.W. These data are
in line with previous reports (Dominguez-Perles et al.
2014; Guo et al. 2014). According to these results, the
broccoli sprout extracts for cell culture tests were
prepared. Thus, the bioactivity of a similar concen-
tration of SFN as a pure compound (1 pmol/l) as a
component of a food matrix (broccoli sprouts), and a
higher concentration of GRA (50 pmol/l) were com-
pared in cell culture experiments.

Cell metabolism

The levels of sulforaphane (SFN) and its derivatives
(SFN-GSH and SFN-CYS) were measured in HepG2
and Caco-2 cells. After treating the cells with broccoli
sprouts extract containing 1 pmol/l SFN, gluco-
raphanin (50 umol/1) and pure SEN (1 pmol/l) for 3,
6 and 24 h. Metabolites were analyzed both, in whole-
cell lysates and in the culture medium (Figs. 2, 3, 4).
Metabolites of sulforaphane were absent in both
control groups and present in all treated groups at
nanomolar concentrations (0.5-90 nmol/1). Results
after 24 h of exposing the HepG2 cells to the broccoli
sprouts extract could not be measured because of the
high cytotoxicity of this product in this cell model.
SEN in cells, both intracellular and in the medium
was principally accumulated as glutathione (GSH)
conjugates (SFN-GSH) (Figs. 2, 3) in accordance with
different authors (Callaway et al. 2004; Zhang 2001).

Glucosinolates (mg - 100g E.W.)’

GRA HGB GER GBS 4-MGBS NGBS Total GLS
161.01 £8.52 3679 £1.03 6509 £1.73 36.11x 050 40.86 £0,50 37.78 + 285 377.64+ 9.37
1
+ GRA HPLC-DAD
= GER
5 MGBS
< 05 1 HGB NGBS
| GBS
,,: -
[ =4
2
0 el L s IS o P ; L . ]
0 5 10 15 20 25 Time (min)

*Mean values (n = 3 + SD). GRA: Glucoraphanin, HGB:4-Hydroxyglucobrassicin, GER: Glucoerucin, GBS:
Glucobrassicin, 4-MGBS: 4-Methoxyglucobrassicin, NGBS: Neoglucobrassicin.

Fig. 1 Individual and total glucosinolates present in 8-day-old broccoli sprouts (mg 100 g F.W.)
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Fig. 2 Concentration (umol/l) of sulforaphane (SFN) and its
metabolites sulforaphane-glutathion (SFN-GSH) and sul-
foraphane-cysteine (SFN-CYS) inside of HepG2 and Caco-2
cells, and their release in the culture medium after the

After 6 h of broccoli sprouts extract treatment, higher
amounts of SFN-GSH were found in cell lysates than
in the culture medium in both HepG2 and Caco-2 cells
(Fig. 2), then, similar levels were found in Caco-2 at
24 h of incubation, probably due to the release of the
molecules into the medium. The highest concentration
of SFN-GSH was found in cell culture medium after
24 h of incubation with 1 pmol/l SEN in Caco-2 cells
(89 £ 8 nmol/l) (Fig. 3). It should be noted that the
formation of SEN-GSH, not only requires the action of
the phase II enzyme glutathione S-transferase (GST),
involved in first pass metabolism in enterocytes (Petri

application of broccoli sprouts extract containing 1 pumol/l of
sulforaphane. Lower case letters show statistically significant
differences at **p < 0.01 and n.s. not significant p > 0.05

et al. 2003), butalso depletes the cell of GSH, resulting
in a rapid increase in GSH production within the cell,
therefore assisting carcinogen metabolism on two
fronts. Kim et al. (2003) showed that when cells were
treated with a GSH-depleting agent, the SFN could not
be accumulated in the cells, and the subsequent
induction of phase II enzymes was blocked. Phase II
enzyme induction is considered the most likely
contributing factor to the anticarcinogenicity of SFN.
Petri et al. (2003), showed that a significant proportion
of SFN absorbed into enterocytes was effluxed back
into the lumen as SFN-GSH conjugate, based on
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Fig. 3 Concentration (umol/l) of sulforaphane (SEN) and its application of 1 pmol/l of sulforaphane. Lower case letters show
metabolites sulforaphane-glutathion (SFN-GSH) and sul- statistically significant differences at **p < 0.01 and n.s. not
foraphane-cysteine (SEN-CYS) in the interior of HEPG2 and significant p > 0.05

Caco-2 cells and their release in the culture medium after the

Intracellular GRA levels Culture medium GRA levels
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Fig. 4 Concentration (umol/l) of glucoraphanin (GRA) and 50 umol/l of glucoraphanin. Lower case letters show statisti-
sulforaphane (SFN) in the interior of HEPG2 and Caco-2 cells cally significant differences at **p <0.01 and ns. not
and their release in the culture medium after the application of significant p > 0.05
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Fig. 5 Cell growth Inhibition (%) after application of broccoli sprouts extract, sulforaphane and glucoraphanin solutions. ICs, shows

the half-maximal inhibitory concentration

previous reports in cultured human cells, P-glycopro-
tein is likely to be responsible for the efflux of the SFN
conjugate (Zhang 2001).

Our results also showed the presence of SFN and
SFN-CYS, after the application of lyophilized broccoli
sprouts extract and pure SEN to the HepG2 and Caco-2
cells, in both media and cells (Figs. 2, 3). Higher levels
of pure SFN were found in the culture medium than
inside the cells, where this compound rapidly under-
goes conjugation with GSH (Zhang and Callaway
2002). Intracellular SEN and its metabolites remained
unchanged at the different times of incubation (3, 6 and
24 h) in both cell types after broccoli sprouts extract
application (Fig. 2). Not significant differences were
found in the accumulation of SFN metabolites after 3
and 6 h of broccoli sprouts and pure SFN treatments.
However, a clear decrease in this metabolite after 24 h
was found inside and in the culture medium of cell
lines treated by pure SEN (Fig. 3). After the applica-
tion of pure SFN, it seems that the release of
metabolites of SFN outside the cell is faster in HepG2
than in Caco-2 cells, where we found higher values of
SFN-GSH and SFN-CYS in cell lysates (Fig. 3).

The concentration of SFN-CY S was similar in both
cell lines after the application of broccoli sprouts

extract (Fig. 2). Nonetheless, higher levels of this
metabolite were found at 3 h of application of pure
SFN inside the cells and in the culture medium
(Fig. 3).

GRA was found in the medium in those samples
treated with broccoli sprouts extract, showing con-
centrations <LLOQ (data not shown), therefore, this
GRA, found in mmol/l concentrations in the extract,
could be rapidly hydrolyzed to SFN. In those samples
where GRA was added directly to the cell medium,
concentrations around 0.11 pmol/l after 3, 6 and 24 h
in Caco-2 and HepG2 cells were found (Fig. 4). We
also found that the standard GRA (50 umol/l) added to
the cells was hydrolyzed to sulforaphane in the cell
medium, since little concentrations of SFN (<LOQ)
were found (data not shown). Also concentrations of
GRA (Fig. 4) and SFN under LOQ were found inside
these cells. As far as we are concerned none works
using GRA as bioactive compound in cell cultures are
found in the literature.

In spite of strong epidemiological data which
support the potential role of dietary factors in cancer
risk, such as increased consumption of cruciferous
vegetables, particularly broccoli (Dinkova-Kostova
and Kostov 2012; Michaud et al. 2000), there are
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limited in vitro and in vivo studies examining the
absorption of the cruciferous bioactive compounds.
The results here presented showed that cells are
capable of conjugative metabolism, since, as we have
shown in our experiments, SFN mercapturic deriva-
tives could be identified in the incubation medium, as
well as in the cell lysate. SFN effect as modulator of
absorption and metabolism in enzymatic systems has
been proved before (Lubelska et al. 2012). Hence,
these cell lines are a good model for the examination
of metabolism regulation; even there are significant
differences with human enterocytes (Petri et al. 2003).
It is important to understand absorption and metabo-
lism of these compounds in order to properly translate
this work into future human clinical trials.

Cell proliferation

To study the antiproliferative effect of broccoli sprouts
(containing 20-0.05 pmol/l SFN) and its metabolites
SFN (100-10 pmol/l) and GRA (100-10 pmol/l) on
different cell lines, we examined their cytotoxicity on
Caco-2, HT-29 and HepG2 cells after 24 h treatment.
The inhibition of cell growth by broccoli sprouts
extract and its metabolites is shown in Fig. 5. Data
obtained was dose and time dependent for broccoli
sprouts and SFN, but not for GRA, which did not
achieve the half-maximal inhibitory concentration
(ICs0). Moreover they showed to have no effect in
HepG2 cells (Fig. 5), consistent with observations
made in other experiments where SFN induced a dose
dependent decrease in HT-29 cells using the MTT
assay (Gamet-Payrastre et al. 2000) and WST-1 assay
(Frydoonfar et al. 2004). Both GRA and a broccoli
sprout extract, in which the glucosinolate was not
hydrolyzed to isothiocyanates due to heat-induced
myrosinase inactivation, have been studied to demon-
strate their little antiproliferative activity compared to
extracts with isothiocyanates content (Tang et al.
2006).

The lowest ICs, was observed after broccoli sprouts
application; the ICsy was 1.6 and 3.2 pmol/l, in both
Caco-2 and HT-29 cells lines, and in HepG2, respec-
tively. The broccoli sprouts extract showed the highest
antiproliferative activity in all cells, even containing
lower concentration of SFN, suggesting that other
compounds in the food maftrix may act biologically
similar to SFN, and may not interfere with the antipro-
liferative activity (Tang et al. 2006). Lower
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concentrations of the SFN molecule (10-0.05 umol/1)
were also tested, nonetheless, the viability of cells were
not reduced (data not shown). The bioactivities of
different samples varied with the different cell lines. An
ICsp0f37.5, 50.9 and 69.9 was observed in Caco-2, HT-
29 and HepG?2 cells, respectively, after SEN application,
according to previous studies, such as Bonnesen et al.
(2001), who obtained aIC540f 55 pmol/1in Caco-2 cells
after 24 h; Lubelska et al. (2012), who obtained aICsq of
33.4 umol/l in Caco-2 cells after 48 h; and Jakubikova
et al. (2005), who reported an ICsq of 23 pmol/l after
72 h of treatment. Another study has shown SFN
(15 pumol/l) induced cell cycle arrest and apoptosis in
colon adenocarcinoma HT-29 cells (24 h after treat-
ment) (Parnaud et al. 2004).

The inhibitory effect on cell proliferation have been
confirmed also in in vitro experiments with other
cancer cell lines, including prostate cancer cells (PC3),
colon cancer cells (HCT116) (Singh et al. 2004) and
Barrett esophageal adenocarcinoma cells (BEAC),
where SFN has been shown to inhibit cell cycle
progression, induce apoptotic cell death, and inhibit
angiogenesis (Qazi et al. 2010). This cycle arrest was
correlated with the loss of viability and decrease of
GO/G1, S, and G2/M phase cells by SFN (Chaudhary
et al. 2014; Parnaud et al. 2004; Singh et al. 2004,
Tang et al. 2006). Apoptosis was associated with
activation of MAPK pathways (ERK,JNK, p38)
(Jakubikova et al. 2005), down-regulation of nuclear
factor kB (Xu et al. 2005), mitochondrial damage,
relocation of cytochrome c, cleavage/activation of
caspase-9 and caspase-3, as well as cleavage of
poly(ADP-ribose)-polymerase (Tang et al. 2006).
Other protective mechanisms of SFN related to cell
cytotoxicity have been studied, including the induc-
tion of phase II detoxification enzymes (such as
NADPH:quinone reductase, UDP-glucuronyl trans-
ferase or glutathione-S- transferase (GST)) and inhi-
bition of phase 1 carcinogen-activating enzymes
(Jakubikova et al. 2005). Harris and Jeffery related
the decrease in cell viability by SFN treatment
(2040 umol/l) with an increase of MRP1 and
MRP2 mRNA levels and protein levels in a dose-
dependent manner in HepG2, through the activation of
the transcription factor Nrf2. Activated Nrf2 enters to
the nucleus and interacts with the antioxidant response
element (ARE) in the promoter region of target genes,
altering the expression. The up-regulation of enzymes
involved in glutathione biosynthesis (GST and -
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GCS) in Nrf-2 overexpressing cells has been also
studied (Shih et al. 2003).

Conclusions

The results of this study indicate that broccoli sprouts and
sulforaphane inhibit proliferation of cancer cell lines
providing support to the role of Brassica foods inreducing
the risk of certain cancers, nonetheless, it is necessary to
study the potential synergy of SFN combined with other
food components, as in this work, broccoli sprouts
extract, with lower sulforaphane concentration, had a
greater antiproliferative effect than SFN its self. On the
other hand, concentrations of SFN-metabolites found
inside Caco-2 and HepG2 cells showed absorption of
SEN after the application of broccoli sprouts extract to the
cells, and showed its conjugation as mercapturic deriva-
tives, assisting carcinogen metabolism in the cell. These
results should encourage further in vivo assays to
understand glucosinolates bioavailability, and preventive
efficacy as therapeutic agents within the confines of
animal studies or human trials for any form of cancer.
Broccoli sprouts could be an excellent choice for
developing a food product for future human studies.
Their consumption or use as ingredient in food industry
would enrich the composition in health-promoting
bioactives of new foods. The development of human
preventive studies focusing on the components of
cruciferous vegetables would be advisable if an inhibitory
effect was detected in vitro.
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Abstract: We used Drosophila melanogaster as a model system to study the absorption, metabolism and
potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo),
a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet
supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of
glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates
sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes
up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite
sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose
content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian
PPARy-coactivator 1 o, as well as the inhibition of x-amylase and a-glucosidase in vitro. Overall, we
show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster
which is reflected by lower glucose levels and an increased expression of spargel, a central player
in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with
aging, including type II diabetes mellitus.

Keywords: Brassicaceae; sulforaphene; radish; spargel; energy metabolism

1. Introduction

Obesity and related diseases, such as diabetes and cardiovascular diseases, are a growing and serious
health problem in both industrialized and developing countries [1]. The consumption of cruciferous
plants (Brassicaceae family) has been associated with beneficial metabolic effects, although the underlying
cellular and molecular mechanisms have not yet been fully elucidated [2-4]. Brassicaceae contain high
amounts of glucosinolates (GLS), bioactive compounds that are enzymatically hydrolyzed to several
breakdown products, including isothiocyanates (ITC, Figure 1). Treatment with indole-3-carbinol
(I3C) and 3,3'-diindolylmethane (DIM), hydrolysis products of the GLS glucobrassicin, has been
shown to significantly decrease blood glucose levels in C57BL/6 mice receiving a high fat diet [5].
Furthermore, patients suffering from type II diabetes exhibited significantly improved fasting glucose
and lower insulin levels as well as an augmented homeostasis model assessment of insulin resistance
(HOMA-IR) index following the consumption of 10 g/day broccoli sprout powder for four weeks [6].
Radish sprouts have been widely studied because of their high content of potentially health-promoting
GLS [7,8]. The main compounds glucoraphenin and glucoraphasatin, belonging to the aliphatic group
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of GLS, are hydrolyzed by the plant endogenous enzyme myrosinase (thioglucoside glucohydrolase,
EC 3.2.1.147), following plant tissue disruption to sulforaphene (SFE; 4-methylsulfinyl-3-butenyl ITC)
and raphasatin (RPS; 4-methylsulfanyl-3-butenyl ITC), respectively [9]. Also, indole GLS, such as
glucobrassicin, 4-hydroxyglucobrassicin and 4-methoxyglucobrassicin, are present in radish sprouts
and have been studied because of their breakdown product I3C, which has been associated with
improved glucose tolerance and modulated expression of adipokines and lipogenic-associated gene
products, including acetyl-CoA carboxylase and peroxisome proliferator-activated receptor-y [10].

GLS ITc
i 0
o | I
AL A LS.
S L SEGENT N AN
Sulforaphene
Myrosinase
w8 activity s
N i o N
—T 8=C=N" TN
Glucose | Raphasatin

+HSO; |

Glucobrassicin Indole-3-carbinol

Figure 1. Glucosinolates in radish sprouts and their corresponding hydrolysis to isothiocyanates.

In mammals ITC are known to be metabolized in the enterocytes and the liver through the
mercapturic acid pathway. Initially, a reaction between the -N=C=S group of the ITC and the cysteine
sulfhydryl group of glutathione (GSH) catalyzed by glutathione-S-transferase (GST) takes place. Next,
hepatic enzyme modifications of the GSH moiety to cysteinylglycine (-cys—gly), cysteine (cys), and
N-acetyl-cysteine (NAC) conjugates are formed in the kidney of mammalian species [11]. Little is
known about the absorption, metabolism and metabolic effects of ITC in model organisms. In this
study, the fruit fly Drosophila melanogaster is used as a model system for studying the absorption and
metabolism of ITC in lyophilized radish sprouts. In addition, the bioactivity of these compounds in
terms of glucose and energy metabolism is evaluated.

2. Results and Discussion

2.1. Glucosinolate and Isothiocyanate Content in Radish Sprouts

The GLS profile of Brassicaceae species varies by genotype [12]. Radish sprouts (Raphanus sativus
cv. Rambo) display a characteristic GLS profile, which has been extensively studied because of its
hydrolysis products, ITC and indoles. ITC and indoles have been suggested to have protective effects
on disease development through anti-inflammatory, chemopreventive and epigenetic pathways [13].
The concentrations of GLS are the highest in seeds and decline exponentially with sprout development.
Aliphatic GLS are the predominant compounds in eight-day-old radish sprouts. Glucoraphenin and
glucoraphasatin account for approximately 40% and 50% of the total GLS, respectively, as summarized
in Table 1.

Following endogenous myrosinase hydrolysis of glucoraphenin and glucoraphasatin, these
compounds released SFE and RPS, respectively. RPS is the oxidized counerpart of SFE and was not
detected with our UHPLC method because a commercial standard was not available. However, this
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compound has been reported to be highly unstable, with a half-life of less than 30 min [9]. Besides its
instability RPS has been reported to significantly induce the expression of detoxifying enzmyes [14].
In addition to SFE, we also detected sulforaphane (SFN) in the hydrolyzed samples. The detection
of SEN is interesting because glucoraphanin, the precursor of SFN, was not detected in our radish
sprouts. However, these molecules only differ chemically by one double bond, suggesting that SFN
exists as a natural product or that the presence of SEN is an artifact of the analytical technique, as
we did not find any reports of this conversion taking place. We also detected indole GLS, which
accounts for 15% of the total GLS in our radish sprouts. In particular, 4-hydroxyglucobrassicin and
4-methoxyglucobrassicin were present at higher amounts than glucobrassicin and neoglucobrassicin
(Table 1). Their main hydrolysis compound, I3C (1 mg/100 g EW. (Fresh Weight)), has been shown to
lead to decreases in body weight via its effect on fat accumulation and blood glucose levels in mice [5,10].

Table 1. Quantification of glucosinolates and isothiocyanates in radish sprouts.

Glucosinolate Content in Radish Sprouts (mg/100 g FW.)

Glucoraphenin 202 +183
4-Hydroxyglucobrassicin 19.9 +£1.32
Glucoerucin 8.74 +1.85
Glucoraphasatin 250 4+ 23.5
Glucobrassicin 6.48 + 0.36
4-Methioxyglucobrassicin 1.9:8F1),72
Neoglucobrassicin 6.51 £ 031
Aliphatic GLS 461 +42.3
Indole GLS 524 +1.97
Total 514 +44.0
Isothiocyanate Content in Radish Sprouts (mg/100 g FW.)
Sulforaphene 9.93 + 0.01
Sulforaphane 0.97 £ 0.02
Indole-3-carbinol 1.00 + 0.09
Total 11,9 +0.11

Mean values (12 = 3) £ SD. EW. (Fresh Weight).

2.2. Evaluation of Food Intake and Fitness in Drosophila melanogaster

Food intake did not differ between control flies and radish sprout-treated flies (Figure 2a).
Climbing ability, as a marker of overall fitness of the flies, did not show statistically significant
differences between groups (Figure 2b), indicating that supplementation of the SY medium with
lyophilized radish sprouts did not affect the movement of the flies.
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Figure 2. Effect of 10-day radish sprout supplementation on male Drosophila melanogaster. (a) relative
food intake analyzed by the gustatory assay (n = 3 + SEM; extraction from 3 x 15 flies); (b) relative
fitness score detected by the RING assay (r = 3 + SEM).
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2.3. Sulforaphene, Sulforaphane, Indole-3-Carbinole, and Sulforaphane-Cysteine Concentrations in Fly Homgenates

The isothiocyanates SFE, SEN and I3C were present in our flies in concentrations of nanomol per gram
on a fresh weight basis. Thus, under the conditions investigated, the natural conversion of glucosinolates to
isothiocyanates, by the plant-derived enzyme myrosinase but also by gut microflora-derived myrosinase,
may have occurred [3].

Flies principally accumulate the ITC SFE (1.11 nmol/g EW. in flies, Figure 3). SFN was also found to
be present in radish sprout-fed flies, but we cannot confirm whether SFN derives from the radish sprout
extract, whether it is formed in the organism or whether SEN is formed due to a spontaneous conversion
between SFE and SFN. Support for a metabolic origin of SFN can be obtained by finding an additional
SEN conjugate—SFN-—cysteine (SEN-CYS)—which was also detectable in our flies (0.7 nmol/g EW.).
This finding suggests that GLS and ITC were metabolized in the flies and that the initial reaction
between ITC and GSH may be performed as a first step in SEN-CYS conjugation [11]. It has been
shown that SEN treatment elevated cellular GSH levels [15,16] which prevents the accumulation of free
radicals inside the cells and thereby reduces oxidative stress, which is generally associated with the
development and progression of diabetes and its complications [17]. Interestingly, the distribution of
GLS and ITC present in radish sprouts is partly reflected in ITC levels of our flies. The presence of the
SEN-CYS metabolite in radish sprouts fed flies suggests that the metabolization of brassica-derived
bioactive compounds in Drosophila melanogaster is similar to mammalian species.
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Figure 3. (a) Metabolites present in Drosophila melanogaster following the consumption of radish
sprouts for 10 days; (b) Representative chromatogram of metabolites found in Drosophila melanogaster
following the consumption of radish sprouts for 10 days. EW. = fresh weight, SFE = sulforaphene,
SEN = sulforaphane, I3C = indole-3-carbinole, SEN-CYS = sulforaphane—cysteine; n = 3 + SD.

2.4. Inhibition of x-Amylase and «-Glucosidase in Vitro by Radish Sprouts

An aqueous extract of lyophilized radish sprouts had an inhibitory effect on a-amylase and
«-glucosidase activity in vitro (Table 2). The calculated concentration of the extract required to achieve
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half of the maximal inhibitory concentration (ICsp) was higher in the a-glucosidase inhibition assay
(60.7 £ 1.2 mg/mL) than in the x-amylase inhibition assay (33.8 + 4.0 mg/mL). The concentration of
10.6 mg/mL radish sprouts which we have used in our Drosophila melanogaster experiments resulted

in a 23% inhibition of the c-amylase activity in vitro, while the in vitro «-glucosidase activity was not
affected (data not shown).

Table 2. In vitro a-glucosidase and «-amylase inhibitory activity of an aqueous extract of radish sprouts.

Inhibitory Activity of Radish Sprouts

«-Glucosidase ICgg 60.8 + 1.16 (mg/mL)
« -Amylase ICgq 33.8 + 4.00 (mg/mL)

Mean values (72 = 3) & SD; ICsq (concentration which shows 50% of the inhibitor’s response).

Inhibition of the enzyme «-amylase in the intestines delays the degradation of starch and
oligosaccharides to monosaccharides before they can be absorbed. The enzyme x-glucosidase catalyzes
the final step in the digestion and breakdown of carbohydrates; thus, its inhibition can be effective
for the regulation of Type II diabetes through the control of glucose absorption [18]. The inhibition
of «-glucosidase may retard the digestion and absorption of carbohydrates. In addition, it may
suppress post-prandial hyperglycemia, decrease calorie uptake, and result in lower levels of glucose in
Drosophila melanogaster. Thus, radish sprouts may improve glucose homeostasis and provide a dietary
strategy to control hyperglycemia in diabetic and obese patients. However, additional evaluation of

the in vivo potential of anti-diabetic activity of radish sprouts bioactives is necessary to verify these
beneficial effects.

2.5. Energy Metabolism in Drosophila melanogaster

The glucose levels in our radish sprout-treated flies were significantly lower than those in control
flies (Figure 4a). This finding is consistent with results obtained by Okulicz and co-workers [19], who
observed that I3C, a breakdown product also present in radish sprouts, affects glucose uptake in
adipocytes under basal as well as under insulin-stimulated conditions.
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Figure 4. Effect of 10-day radish sprout supplementation on male Drosophila melanogaster. (a) relative
glucose levels (# = 9 + SEM; extraction from 9 x 5 flies); (b) relative mRNA levels of spargel related
to the housekeeping gene RpL32 (n = 3 + SEM; extraction from 3 x 5 flies). * indicates significant
differences between control and radish sprout-fed flies (p < 0.05, Student’s ¢-test).

Because we have detected inhibition of a-amylase in vitro by radish sprouts and decreased
glucose levels in our flies, we suggest that intestinal glucose absorption decreased as a consequence
of radish sprout treatment. Glucose has been described to be a pro-aging factor and to interact
with several age-associated processes in the organism [20,21]. High glucose availability has been
shown to shorten life span whereas a glucose restriction increased life span in the model organism
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Caenorhabditis elegans [22]. Interestingly, PGC-1« has been suggested to be involved in the regulation
of glucose homeostasis in mammals [23,24]. Along with decreased glucose levels, we also showed that
there was an upregulation of the PGC-1« homologous gene syl in Drosophila (Figure 4b). PGC-1e¢/srl
plays an important role in the stimulation of mitochondrial biogenesis, in the reduction of ROS
levels in enterocytes and stem cells, in the induction of several ROS-detoxifying enzymes and in the
maintenance of optimal intestinal homeostasis [25]. Furthermore, an overexpression of PGC-1ac/stl in
the intestine of Drosophila melanogaster has been reported to be associated with life span extension [25].

Thus, we could not detect an improved resistance of our radish sprout-treated flies against
both hydrogen peroxide and paraquat-induced stress (data not shown), which may be attributed
to the relatively short intervention period of 10 days. However, there appears to be a connection
between insulin resistance and mitochondrial dysfunction because patients suffering from type II
diabetes have been reported to exhibit lower levels of mitochondria-related OXPHOS genes and
PGC-1« in their skeletal muscles [26,27]. In addition, insulin has been shown to induce PGC-1«x
expression in skeletal muscle [28]. Therefore, insulin resistance may lead to a decrease in PGC-1«
expression and mitochondrial dysfunction, which, in turn, increases insulin resistance further [26].
An increase in PGC-1a expression may provide a means to disrupt this vicious circle so that
glucose homeostasis in diabetic and obese patients can be improved. Furthermore, Fernandes and
co-workers have demonstrated that there is an approximately 40% increase in cellular PGC-1« levels
as a result of SEN administration in cultured rat cardiac myoblasts [29]. Thus, we suggest that radish
sprout-derived bioactives may affect glucose homeostasis—at least partially—through the modulation
of PGC-1x-expression.

3. Materials and Methods

3.1. Radish Sprout Production

Red radish sprouts (Raphanus sativus cv. Rambo) were germinated for 8 days, according to the
protocol of Baenas et al. [7]. Briefly, sprouts were collected, flash frozen in liquid nitrogen, and stored at
—80 °C prior to analyses. Samples were then lyophilized and ground into a fine powder before being
extracted for analyses and used as fly food supplement.

3.2. Analyses of GLS and ITC in Radish Sprouts and Drosophila Melanogaster by HPLC-DAD-ESI-MSn and
UHPLC-QqQ-MS/MS

GLS in radish sprouts were extracted and quantified by HPLC-DAD-ESI-MSn, according to the
protocol of Baenas [7]. Briefly, GLS were first identified following their MS2 [M-H]-fragmentations and
were then quantified following their UV spectra and order of elution as previously described for the
acquisition conditions. Sinigrin and glucobrassicin were used as external standards for aliphatic and
indole GLS, respectively. ITC in radish sprouts were extracted according to the protocol of Cramer and
Jeffery [30] and quantified by UHPLC-QqQ-MS/MS, according to the protocol of Dominguez-Perles et al. [31].
Also, this method was used to analyze metabolites in Drosophila melanogaster. First, 200 mg of flies
were extracted with 5 mL MeOH:H,O (70:30), mashed with a mortar until a homogenous liquid
was obtained, filtered by 0.22 pum PVDF and analyzed with UHPLC-QqQ-MS/MS. The standards
SFE, SEN, SEN-CYS and I3C were identified and quantified using MRM transitions and positive or
negative ESI mode for quantification and confirmation of the target analytes. Analyses of GLS and ITC
of radish sprouts were conducted in triplicate.

3.3. In Vitro c-Amylase and o-Glucosidase Assay of Radish Sprouts

The «-amylase and «-glucosidase inhibition assay was performed using a protocol modified
from Phan et al. [32]. Samples of lyophilized radish sprouts (n = 3) were extracted with distilled water.
The extracts were tested for a-glucosidase and a-amylase inhibition as previously described [33].
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Acarbose was used as a positive control and was equally dissolved in distilled water. ICsq values were
calculated using the program GraphPad prism (La Jolla, CA, USA).

3.4. Drosophila melanogaster Stocks and Treatment

In the present study, W& Drosophila melanogaster was used for the experiments. Flies were
maintained under conventional conditions on sugar yeast medium (SY) containing 10% sucrose
(Carl Roth, Karlsruhe, Germany), 10% inactive dry yeast, 2% agar, 0.3% nipagin (all Dominique
Dutscher SAS, Brumath, France), and 0.3% propionic acid (Carl Roth) in a climate chamber (HPP 1018,
Memmert, Schwabach, Germany) under the following constant conditions: a temperature of 25 °C,
relative humidity of 60% and 12-h day/night cycle. For all of the experiments, age-matched flies
from synchronized eggs were used [34]. The SY medium was supplemented with radish sprouts at
a concentration of 10.6 g/L, containing 50 umol/L of the ITC SFE.

3.5. Gustatory Assay

This method was performed to exclude differences in food intake between control flies and radish
sprouts treated flies. The gustatory assay was performed as described earlier [34]. In brief, 15 flies were
kept on SY medium or SY+radish sprouts. Both were supplemented with 0.2% w/v sulforhodamine B
sodium salt (Sigma-Aldrich, Steinheim, Germany) and kept under standard conditions for 500 min.
Next, the flies were homogenized in PBS (Life Technologies by Thermo Fisher Scientific, Darmstadt,
Germany) plus 1% Triton™ X-100 (Sigma-Aldrich) using a Qiagen TissueLyser II (Hilden, Germany).
The flies were then centrifuged, and the absorbance was measured in an Infinite 200 spectrophotometer
(Tecan, Crailsheim, Germany) at 535/25 nm excitation and 590/20 nm emission wavelength.

3.6. Negative Geotaxis Assay: Climbing Activity

Climbing ability was considered to be an indicator of overall fitness of the flies, which were
maintained under control conditions (§Y) and under SY+radish sprouts for 10 days. On day 10, flies
were transferred into empty vials to perform the rapid iterative negative geotaxis (RING)-assay as
previously described [33].

3.7. Glucose Analysis

Flies were maintained either on SY (n = 20) or SY+radish sprouts under standard conditions for
10 days. Five flies per sample were homogenized in PBS/1% Triton™ X-100 using a Qiagen TissueLyser IL.
The supernatant was removed and analyzed for glucose content with Fluitest®GLU (Analyticon
Biotechnologies, Lichtenfels, Germany) according to the manufacturer’s protocol. Sample concentrations
were calculated via the standard curve and related to the corresponding fly weights. The weighing of
flies was performed using previously described methods [35].

3.8. Real-Time PCR

Total RNA was isolated from 5 flies per sample using peqGOLD TriFast™ (Peqlab, Erlangen,
Germany) according to the manufacturer’s protocol. RNA concentration was determined using
a NanoDrop® spectrophotometer (Thermo Scientific, Schwerte, Germany). Primer sequences for
Drosophila melanogaster spargel (srl) are described elsewhere [36]. Primers for the housekeeping gene
Drosophila melanogaster Ribosomal protein 132 (RpL32) (forward 5'-GGCAAGCTTCAAGATGACCA-3/;
reverse 5'-GTTCGATCCGTAACCGATGT-3') were designed by Primer3 software (Whitehead Institute
for Biomedical Research, Cambridge, MA, USA). All primers were purchased from MWG Biotech
(Ebersberg, Germany). Real-time PCR was performed using the SensiFastTM SYBR® No-ROX One-Step
kit (Bioline, Luckenwalde, Germany) on a Rotor-Gene 6000 cycler (Corbett Life Science, Sydney,
Australia). The expression of st! was related to the expression of the housekeeping gene RpL32.
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3.9. Statistics

The results are presented as the mean + SEM unless otherwise indicated. All data were analyzed
using SPSS software (Statistical Package for the Social Sciences, IBM, Armonk, NY, USA). The significance
of the differences between the control and radish sprout-treated flies was evaluated using a Student’s
t-test. All data were tested for normality of distribution (Shapiro-Wilk) and the homogenicity of
variances (Levene). Significance was accepted at p-values <0.05.

4, Conclusions

In the present study, we showed, for the first time, that plant bioactives present in radish sprouts
are absorbed and hydrolyzed by Drosophila melanogaster either due to the presence of plant-derived
or Drosophila-derived microbial myrosinase in the gut. The presence of SEN-CYS in fly homogenates
suggests that ITC are metabolized by fruit flies. The intake of radish sprouts decreased the glucose
content in our flies and increased srl expression levels, thereby modulating energy metabolism.
Understanding the factors that determine the absorption and effects of ITC in in vive models is
critical for identifying effective dosages that can be used in nutritional studies. As we have only
analyzed flies on a radish sprout-supplemented diet for 10 days, analyses of flies receiving radish
sprout-supplemented food for a longer period are sorely needed to assess the robustness of our results.
To confirm the involvement of s/ in the potential beneficial metabolic effects of radish sprouts, life
span studies are important. Additionally, studies in mammalian species are needed to confirm our
results that were obtained in the model organism Drosophila melanogaster.
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PGCl«x PPARy co-activator 1 «

PPARy peroxisome proliferator activated receptor y
GSH glutathione

GST glutathione-S-transferase

NAC N-acetyl-cysteine

cys cysteine
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Chapter 5

The interest of consuming sprouts is increasing because these plant foods are
a healthy dietary alternative with higher nutritive value compared to the adult plants
(Cevallos-Casals and Cisneros-Zevallos, 2010; Fahey et al., 2001; O'Hare et al.,
2007). According to the general objective of this Doctoral Thesis, a characterization
of the bioactive compounds (GLS and phenolic compounds) and antioxidant
capacity, as well as the study of the biomass development of the sprouts, was
performed for 4, 8 and 12 days of germination (Publication 1), being 8-day-old
sprouts the best option for consumption, along with the studied Brassicaceae species
broccoli (Brassica oleracea var. italica), turnip (B. rapa var. rapa), rutabaga (B.
napus var. napobrassica), and radish (Raphanus sativus) sprouts, which were
selected among others (red cabbage, B. oleracea var. capitata; kohlrabi, B. oleracea
var. gongylodes; and turnip greens, B. oleracea subsp. rapa), as the best in terms of
their profile in bioactive compounds and size for manipulation.

Then, different treatments with elicitors (phytohormones, sugars or
methionine) were investigated in order to enhance the phytochemical contents in
these sprouts, according to the general and second partial objective. Generally,
exogenous spray of elicitors in different micromolar or millimolar concentrations
over the cotyledons, for four or five days, was effective to increase the content of
GLS in almost all tests allowing to choose a cost-effective dosage (Publications 2
and 4).

Anthocyanins, compounds belonging to phenolic compounds, were also
studied in radish sprouts cv. China Rose and Rambo in order to characterize these

novel varieties and elicit their red coloured flavonoids (Publication 3).
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According to the obtained results, the phytohormone MeJA was selected as
the most effective treatment to increase health-promoting GLS in Brassica and
Raphanus sprouts. On the other hand, priming seeds with elicitors in combination
with exogenous spray was highly effective as a novel strategy to trigger the GLS
contents (Publication 4).

Once GLS were identified and quantified in sprouts, broccoli and radish cv.
Rambo sprouts were selected as species rich in health-promoters (GRA and GRE,
respectively), in order to investigate the absorption and metabolism of their bioactive
hydrolysis compounds, isothiocyanates and indoles, as well as to validate their
functionality to comply with the general objective of this Ph. D. Thesis
(Publications 5, 6 and 7).

Regarding to this, broccoli sprouts as a food matrix, and the pure compound
SFN, showed antiproliferative effect in human intestinal (Caco-2 and HT-29) and
hepatic (HepG2) cancer cells. Furthermore, results showed that SFN and GRA were
metabolized in the cells through the detoxification mercapturic acid pathway,
contributing to the induction of Phase Il enzymes involved in anticarcinogenesis
mechanisms, since metabolites of SFN were measured in cell lysates and the culture
medium (Publication 5).

Also a beneficial effect in the energy metabolism, reducing the glucose levels
and increasing expression of spargel gen, central player in mitochondrial biogenesis
was demonstrated by the in vivo (Drosophila melanogaster) study of the absorption
and metabolism of isothiocyanates and indoles from radish cv. Rambo sprouts

(Publication 6).
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The antinociceptive (analgesic) effect of broccoli sprouts was evaluated in
rodent models of induced pain, and also gastric protection and no-sedative effects
were demonstrated. These effects may be originated by the positive modulation of
the anti-inflammatory and antioxidant mechanisms in the cells related to the presence
of these bioactive compounds (Publication 7).

Finally, the shelf-life of broccoli and radish sprouts was studied simulating
two storage conditions, showing that sprouts could be maintained in refrigeration for
14 days, not presenting pathogenic microorganisms, and should be consumed as soon
as possible from harvest, due to the rapid decline of phytochemicals during storage

(Publication 8).

The figure 5.1. summarizes the activities and results obtained in this Thesis.
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Selection of 8-
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N\ compounds
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Figure 5.1. Work-flow of the Doctoral Thesis project.
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The results showed that the general trend for the majority of the GLS and
phenolic compounds, presented in the sprouts, was a decrease over germination time.
Seeds have the highest amount of bioactive compounds and nutrients, as reserve
organ, and the reduction of compounds with germination could be due to a dilution
effect of tissue expansion leads to an intermediate phytochemical profile between
seeds and adult plants, in accordance with other authors (Ciska et al., 2008; Pérez-
Balibrea et al., 2008). Regarding our results, aliphatic GLS represented the 70 —
80 % of the total in broccoli, kohlrabi, red cabbage, rutabaga, turnip greens, turnip
and radish sprouts, except for garden cress and mustard, species usually consumed as
condiments, which showed aromatic GLS as the predominant class. Aromatic GLS,
such as gluconasturtiin, accounted for less than 5% in the rest of species. As
examples of specific GLS profile, broccoli and kohlrabi (Brassica oleracea)
presented the aliphatic GRA as the predominant GLS (40 % of the total), GRE was
the higher GLS in radish (Raphanus sativus) (65 % of the total), and gluconapin was
the main GLS in turnip varieties (Brassica rapa) (50 % of the total). Aliphatic GLS,
such as GRA and GRE, have been studied because of their hydrolysis compounds,
the isothiocyanates (ITC), which have shown anti-inflammatory and antioxidant
activities, reducing the risk for particular cancers, cardiovascular, neurodegenerative
and chronic diseases (Dinkova-Kostova, Kostov, 2012; Wagner et al., 2013). As for
indole GLS, 4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin and
neoglucobrassicin were generally present in all sprouts, accounting for less than the
30 % of total GLS in all species. Glucobrassicin is hydrolysed by myrosinase to
indole-3-carbinol (13C), which undergoes spontaneous condensation in acidic

medium, such as in the stomach, giving the compound 3,3-diindolylmethane (DIM).
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Both compounds have shown, as well as other ITC, stimulation of the cellular
detoxification pathways, decreasing NF-xB activation and inducing apoptosis in the
post-initiation phases of cancer (Watson et al., 2013).

Regarding phenolic compounds, hydroxycinnamic acids (sinapic, chlorogenic
and ferulic acid derivatives) were the predominant class present in cruciferous
sprouts, representing sinapic and ferulic acid derivatives more than 90 % of the total
phenolics in B. oleracea (broccoli, kohlrabi, red cabbage, rutabaga) and Raphaus
sativus sprouts, and the 80 % of the total in B. rapa varieties (turnip). Flavonols
(mainly quercetin, kaempferol and isorhamnetin derivatives) achieved around a 17 %
of total phenolics in B. rapa varieties. Chlorogenic acid derivatives represented
between 1 and 4 % of the total phenolics in Brassicaceae sprouts. As for the GLS,
the concentrations of phenolic compounds found in seeds were higher than in
sprouts, except for the aromatic garden cress and white mustard, where the amount of
phenolics increased from day O to day 4, and slightly decreased up to day 12.
Phenolic compounds have shown different biological activities, such as anti-
inflammatory and antimicrobial, but the most studied is the antioxidant activity,
protecting mammals from the development of various chronic diseases (Cartea et al.,
2011; Crozier et al., 2009). The antioxidant capacity of sprouts measured by the
DPPH- and FRAP methods was used as a comparison criterion in this study. This
parameter also decreases during germination, and values obtained exhibited
significant correlation with contents of phenolics and reached a 10-fold increase
when compared to adult vegetables (Ou et al., 2002). The sprouts with better
biomass yield, broccoli and turnip greens, were consistent with the greater length (4

— 5 cm) and selected for production (Gu et al., 2012). According to our results, the
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genotype may be the main factor of variation of the phytochemical profile in
cruciferous sprouts; therefore, the selection of species rich in health-promoters
compounds (GLS and phenolics) may benefit the consumers even without increasing
the overall vegetable consumption.

In order to increase these bioactive compounds some modifications in the
cultivation were introduced as it is well known that phytochemicals are affected by
physiological changes with the application of elicitors, inducing the defence response
systems in the plants (SAR, ISR), which modulate metabolic processes leading to the
increase of phytochemicals in the tissues. In our work, the phytohormones MeJA (25
uM), JA (150 uM) and SA (100 uM); the sugars glucose (277 mM) and sucrose (146
mM); and the amino acid DL-methionine (5 mM) were employed, according to
literature, as elicitor treatments for broccoli, turnip, rutabaga and radishes cv. China
Rose and Rambo, 8-day-old sprouts. Results showed that sucrose and DL-methionine
were the most effective treatments for biomass production, may be because sucrose
were supply carbon for cell growth (Stewart et al., 2011), and methionine caused an
overexpression of aliphatic GLS specific biosynthetic genes related to stronger
growth phenotypes (Gigolashvili et al., 2007). Almost all treatments increased
significantly the total amount of GLS of 8-day-old sprouts. The elicitor MeJA was
highly effective, increasing GLS by 84, 125, 50 and 25 % in broccoli, rutabaga,
turnip and radishes varieties, respectively. It is noteworthy that the individual GLS
associated with potential health benefits (GRA, GRE and glucobrassicin) were
enhanced. The molecular mechanisms by which phytohormones regulate the
expression of certain transcription factors involving GLS biosynthesis have not been

determined, however, jasmonates activate an extensive network of cellular defence
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responses, such as induction of pathogenesis-related proteins and enzymes of
oxidative stress protection, which regulates the expression of genes involved in
secondary metabolites production (Ferrari, 2010; Garcia-Brugger et al., 2006). GRA
and GRE also were increased by sugars treatments, which could up-regulate genes
involved in aliphatic GLS pathway in response to carbohydrate availability
(Gigolashvili et al., 2007; Guo et al., 2011b). Indole GLS in all species were found
to either increase or remain stable after elicitation.

Since China Rose and Rambo radishes varieties have rose and purple colours,
respectively, the anthocyanins qualitative and quantitative profiles of both sprouts
were studied by HPLC-DAD-ESI-MS", showing mainly cyanidin derivatives,
diglycosylated at C-3 and glycosylated at C-5 position with the presence of
cinnamoy! (sinapoyl, feruoyl, p-comaroyl and caffeoyl) and malonyl groups. China
Rose radish sprouts but especially Rambo red radish sprouts were a rich source of
anthocyanins, containing ~16 and 180 mg-100g™ F.W., respectively. Also these
contents were enhanced by elicitors, being glucose (277 mM) the most effective
since, in addition to serve as source of energy, glucose enhance the anthocyanins
biosynthetic pathway. Phytohormones also increase the total anthocyanin contents by
similar mechanisms, as have been studied to induce the “late” anthocyanin
biosynthetic genes (DFR, LDOX, UF3GT) by up-regulation of the ternary complex
composed of MYB, bHLH and WD4O transcription factors (Shi and Xie, 2014).

After the evaluation of the bioactive compounds content in cruciferous
sprouts, as well as the effectivity of different elicitors treatments on enhancing their

phytochemical content, broccoli and radish cv. Rambo sprouts were selected as
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interesting varieties rich in bioactive compounds, mainly GLS health-promoters, and

acceptable biomass at day 8 of germination (Figure 5.2.).

Figure 5.2. Broccoli and radish sprouts at day 8 of germination.

The elicitors are usually applied as exogenous spray over the cotyledons, the
organ with higher concentration of phytochemicals in the sprouts, as well as over the
organs and leaves in the adult plants. However, the application of elicitors as seed
priming was also investigated as strategy to induce the plant defence system in the
seeds of broccoli and radish sprouts. The highest increase of total GLS was found
after combination of seed priming and exogenous spray, maybe because the
activation of seeds resistance enhanced the molecular mechanisms of defence in the
sprouts (Rasmann et al., 2012). A 2-fold increase of GLS in broccoli and radish
sprouts was obtained after application of MeJA (250uM) as priming treatment, as
well as exogenous spray for 4 days. There exist no single established protocol for
elicitor application to enrich crucifers in GLS, therefore, different concentrations of
elicitors were used in order to provide useful information about appropriate dosage,

as the response in terms of GLS biosynthesis after treatments was no correlated with
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the dose applied. Seeds priming with MeJA (250 uM), JA (250 uM) and methionine
(10 mM) combined with exogenous spray with MeJA (50 uM), JA (125 uM) and
methionine (5 mM), respectively, could be selected as sustainable treatments to
induce significantly increases of GLS contents. Under these treatments the sprouts
did not show any visual differences in aspect or in biomass, whereas some authors
reported that MeJA and SA altered the phenotype in Arabidopsis thaliana with
smaller leaves. On the other hand, both sprouts showed similar response to elicitors,
not showing specificity for any elicitor, as seen in adult plants (Ku and Juvik, 2013;
Scheuner et al., 2005).

Once the previous results were obtained, the evaluation of the absorption and
metabolism of bioactive compounds from broccoli sprouts was approached, by the
human cancer Caco-2 and HepG2 cell lines, which feature characteristics of
intestinal epithelial cells and hepatocytes, respectively. These cell lines were treated
with aqueous broccoli sprouts extracts (containing 1 uM of SFN) as a food matrix,
and pure GRA (50 uM) and SFN (1 uM), for 3, 6 and 24 hours. SFN, as well as other
ITC as it, is known to be metabolized in the enterocytes and the liver through the
mercapturic acid pathway, giving rise to metabolites conjugated with glutathione,
cysteine and N-acetylcysteine. In our work, cells were capable of metabolize SFN,
accumulated predominantly as glutathione conjugates (SFN-GSH) but also as SFN-
cysteine (SFN-CYS), which were determined in cells lysates and in the culture
medium in nanomolar concentrations (0.5 — 90 nM). Results after 24 h of exposing
the HepG2 cells to broccoli sprouts could not be analysed due to the high
cytotoxicity of this plant product in this cell model. The higher amounts of SFN-

GSH found in the culture medium involves the release of these molecules outside the
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cells, assisting the carcinogen metabolism on two fronts: enhancing the activity of
the phase Il enzyme glutathione S-transferase (GST) and depleting the cell of GSH
inducing ROS generation and apoptosis (Byun et al., 2016; Clarke et al., 2008). In
addition, broccoli sprouts and SFN showed dose-time dependent antiproliferative
activity in Caco-2, HT-29 and HepG2 cancer cell lines, while GRA did not achieve
the half-maximal inhibitory concentration (ICsg). A lower ICsy was observed after
broccoli sprouts treatment (~2 uM) compared to SFN (~50 uM), suggesting that
other compounds present in the food matrix may act biologically in synergy with
SFN. When lower concentrations of SFN were tested, no reduction of viability of the
cells was found. This inhibitory effect of cell proliferation may involve cycle arrest
of GO/G1, S, and G2/M phase cells through inactivation of cyclinB/CDK complex,
apoptosis associated with activation of MAPK pathways, ROS generation and
HDAC inhibition (Clarke et al., 2008), and down-regulation of NFkB factor
(Stefanson and Bakovic, 2014).

Moreover, to study the absorption and metabolism of bioactive compounds
present in radish sprouts cv. Rambo we used Drosophila melanogaster, as a model
organism. Flies were subjected to a diet supplemented with radish sprouts (10.6 g-L°
1) for 10 days, containing 50 uM of sulforaphene (SFE). Flies homogenizes after this
treatment showed nanomolar concentrations, per gram on a fresh weight basis, of
SFE (1.11 nmol-g* F.W. in flies), as the predominant ITC, and SFN and 13C
(< 0.4 nmol-g™* F.W. in flies), in lower amounts. Therefore, the natural conversion
from GLS to ITC by the plant enzyme myrosinase or by Drosophila-derived
microbial myrosinase-like enzymes in the gut may have occurred. In order to support

the conversion of SFE to SFN and the metabolism of SFN through the mercapturic
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acid pathway in the flies, the conjugated metabolites were studied, showing
homogenized flies the presence of SFN-CYS, suggesting that metabolism of SFN in
the D. melanogaster is similar to mammalian species. In addition, we suggest that
intestinal glucose absorption in the flies could be decreased by radish sprouts
treatment, as we found inhibition of 23 % of the enzyme a-amylase with radish
sprouts (10.6 g-L™) and lower glucose levels (20 %) in the radish sprouts-treated
flies. Interestingly, the homologous gene of PGC-1a in mammals, the spargel gen,
was up-regulated in flies after radish intake, associated with the regulation of glucose
homeostasis in mammals (Yoon et al., 2001), as well as stimulation of mitochondrial
biogenesis, reduction of ROS, induction of several detoxifying enzymes and, with
increased life span extension in model organisms (Rera et al., 2011).

After studying the absorption and metabolism of bioactive compounds,
elicited broccoli sprouts (by exogenous spray of MeJA at 250 uM for 4 days before
harvest) were evaluated for the potential to affect the nervous system by the
antinociceptive effects and the gastric protection in rodent models of induced pain.
Results showed analgesic effects of aqueous broccoli sprouts extracts in a dose-
dependent manner in both routes of administration, oral (p.o., 50, 100, 250 and 500
mg-kg™?) and intraperitoneal (i.p., 500, 1000 and 2000 mg-kg™), resembling the
response of the analgesic tramadol (TRADOL®), by using two models of
nociception: the writhing test (an acute pain model) in mice and the formalin paw
test (with an early phase of neurogenic nociception and a late phase of inflammatory
nociception) in rats. It has been previously described that broccoli sprouts may
positively modulate the inflammatory and oxidant processes in the cells through the

action of their bioactive compounds, inhibiting inflammatory processes, such as LPS,
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ROS, iINOS, COX-2 and TNF-a, via inactivation of NFkB (Heiss et al., 2001; Yun et
al., 2008). This anti-inflammatory activity is in agreement to the knowledge that the
human intake of broccoli sprouts, per se, modulates the inflammatory and vascular
prostainoids (Medina et al., 2015). The presence of naloxone (an opioid antagonist)
(United States pharmacopeia reference standard) reduced the effect of broccoli
sprouts in both phases of the formalin test, suggesting an opioid mechanism of action
at both central and peripheral levels of pain modulation. Broccoli sprouts did not
cause any gastric damage, and produced gastric protection against ulcerogenic
substances, which might be associated with stimulation of Nrf-2 gene-dependent
antioxidant, protecting and repairing cells from oxidative damage (Yanaka et al.,
2005). Also the possible sedative effect of the extract, often observed in the adverse
effect of the opioid analgesia, was evaluated, not showing any sedative effects per se,
but a synergism with the sedative-hypnotic sodium pentobarbital was observed.
Optimizing the bioactive compounds intake in the daily diet may be useful for
improving pain management in both central and peripheral nociceptors.

Finally, keeping in mind practical application of the results and
commercialization of sprouts, as well as their possible use in preclinical and clinical
trials, we studied the microbial safety and bioactive compounds contents (GLS, ITC
and phenolic compounds) of broccoli and radish sprouts in shelf-life. VVegetables
once harvested are stored in open grocery display cabinets (> 7 °C), even though
lower temperatures of storage are recommended (5 °C). Therefore, sprouts safety and
phytochemical contents were evaluated under storage at two different temperatures, 5
and 10 °C, for 7 and 14 days. Data of microbiological analysis showed no pathogenic

bacteria (Salmonella and Listeria spp.) development in sprouts, fulfilling the
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Regulation (EC) No 2073/2005 for food stuffs. Other microorganisms such C.
perfrigens and E. coli showed < 1 log CFU/g, while S. aureus showed < 2 log
CFU/g. Similar counts of Enterobacteriaceae, aerobic mesophilic and psychrophiolic
bacteria, moulds and yeasts (8 — 10 log CFU/g) were found in both sprouts at day 0
(after harvest) and during storage, showing a slight and roughly similar growth at
two temperatures during the 14 days of storage. Even this high microbial load in the
sprouts could inhibit the growth of pathogenic bacteria through competition during
sprouting and storage (EFSA, 2011), the time after harvest should be controlled, as
important factor for microbial content. Regarding the content of bioactive
compounds in the sprouts, significant decreases of GLS, ITC and phenolic
compounds were found depending on temperature and time of storage, being lower
temperatures (5 °C) essential to the adequacy of shelf-life conditions, and decreases
in compounds were very high when stored at 10 °C.

GLS present in broccoli (470 mg-100g™* F.W.) and radish (720 mg-100g™
F.W.) sprouts at harvest (day 0), decreased by 30 and 20 % during 7 days of storage
at 5 °C, respectively, and an additional 20 % on day 14. In spite of that, the first week
of storage was more relevant for GLS decreases, since no significant differences
were found in broccoli sprouts stored at 5 °C for 7 and 14 days. It is noteworthy that
slight losses (~7 %) were found in GRA and GRE contents, the predominant GLS in
broccoli and radish sprouts, respectively, after 7 days of storage at 5 °C. Therefore,
sprouts after one week of storage continue being a rich source of these compounds
compared to commercialized broccoli heads (Rangkadilok et al., 2002) and radish
mature taproots (Yi et al., 2016). The contents of ITC and 13C in the sprouts during

storage showed a marked reduction, being this decrease more than 80 % in all
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compounds studied except for SFN in broccoli sprouts, which concentration was
reduced a 50 % after 7 days of storage at 5 °C. This high loss could be due to the
decrease of the activity of myrosinase at low temperatures, slowing down the
hydrolysis of GLS to ITC and indoles (Lim et al., 2015).

Regarding phenolic compounds, only sinapic and ferulic acid derivatives
were found in broccoli and radish sprouts, and contents were also affected by time
and temperature of storage. As well as for GLS, the loss of phenolic compounds was
higher during the first 7 days of storage, being 40 and 15 % in case of broccoli and
radish, respectively, since no significant differences were found up to day 14 of
storage. However, similar contents of phenolics (120 mg-100g™ F.W.) were found in
both varieties at day 7 of storage at 5 °C. In spite of the microbial content and losses
of phytochemicals reported, sprouts did not show any visible sign of spoilage during
storage. However, low temperatures and days of storage are crucial to maintain the

quality acceptability of sprouts during shelf-life.
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Chapter 6

The selection of cruciferous sprouts according to biomass production and
phytochemical profile will maximize their health-promoting properties,

without increasing the overall vegetable consumption.

Exogenous spray application and seed priming with elicitors, particularly
using methyl jasmonate or sucrose at very low concentrations, could be
established as an effective strategy to enrich cruciferous sprouts in bioactive

compounds.

Sulforaphane, from broccoli sprouts, is bioavailable and bioactive in cells

assisting their anticancer mechanisms, by inhibition of the proliferation.

Sulforaphene, from radish sprouts, is absorbed by the same pathway of
sulforaphane and it may be used for the modulation of the glucose

metabolism in vivo.

Broccoli sprouts induce in vivo central and peripheral antinociceptive activity,
suggesting its potential use for treatment of pain without the adverse effect of

analgesic drugs.

Appropriate refrigeration conditions during shelf-life are necessary to provide
to consumers with safe broccoli and radish sprouts, rich in bioactive

compounds.
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Las propiedades beneficiosas para la salud derivadas del consumo de brotes
de cruciferas, se pueden favorecer mediante la seleccion de variedades con
mayor biomasa Yy ricas en fitoquimicos bioactivos, sin tener que aumentar la

cantidad de brotes consumida.

Una estrategia efectiva para enriquecer los brotes de cruciferas en compuestos
bioactivos es la aplicacion foliar y la induccién de las semillas con
elicitadores, especialmente con jasmonato de metilo y sacarosa a muy bajas

concentraciones.

El sulforafano, presente en los brotes de broccoli, ha demostrado ser
biodisponible y bioactivo en lineas celulares de cancer, promoviendo

mecanismos anticancerigenos a través de la inhibicion de su proliferacion.

El sulforafeno, presente en los brotes de rabano, se absorbe por la misma ruta
metabdlica que el sulforafano y puede ser modulador del metabolismo de la

glucosa in vivo.

Los brotes de brocoli poseen actividad antinociceptiva in vivo, pudiendo ser
atiles para el tratamiento del dolor sin provocar los efectos adversos de

algunos analgésicos farmacoldgicos.

Es imprescindible una refrigeracion adecuada durante el almacenamiento para
ofrecer a los consumidores brotes de broccoli y rabano seguros y ricos en

compuestos bioactivos.
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1. BIOACTIVE COMPOUNDS FROM BRASSICACEAE
AS HEALTH PROMOTERS

(Annex 1)
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CHAPTER 2

Bioactive Compounds from Brassicaceae as Health
Promoters

Nieves Baenas"’, Marta Francisco®’, Pablo Velasco’, Maria Elena Cartea’,
Cristina Garcia-Viguera', Diego A. Moreno®

! Phytochemistry Lab, Food Sci. & Technology Dept., CEBAS-CSIC, Murcia, Spain
? Group of Genetics, Breeding and Biochemistry of Brassicas, MBG-CSIC, Pontevedra, Spain
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Abstract: This work provides an up to date review of the information available about
bioactive compounds present in the Brassicaceaefamily (glucosinolates, phenolics and
vitamins) in relation to human health. The Brassicaceaeplant family includes a large
variety of species and cultivars, some of the most known are Brassica oleracea (e.g.
broccoli, cabbage, Brussels sprouts), Brassica rapa (e.g. turnips), Brassica napus (e.g.
rapeseed), Raphanus sativus (radishes), and Sinapis alba (mustards). In the recent
years, these crops are increasingly consumed for possible health benefits as a good
source of bioactive compounds. The sulphur containing compounds glucosinolates are
almost exclusively found in this family, being their beneficial health effect supposed to
be induced by their hydrolysis products, the isothiocyanates. In in vifro (human cell
lines) and im vivo studies (animal models and human intervention assays)
isothiocyanates have demonstrated their protective effects in carcinogenesis, chronic
inflammation and neurodegeneration. The phenolic compounds mainly studied are
flavonols, anthocyanins and hydroxycinnamic acids, which principal bioactivity is their
antioxidant capacity. The carotenoids [-carotene, lutein and zeaxanthin, as well as,
vitamins C, E and K have also been considered as nutrients with biological activity.
The phytochemical wealth of Brassica foods is gathering attention from the scientific
community for being potentially protective for the cardiovascular system and against
certain types of cancer, and neurological disorders, mainly because of their anti-
inflammatory and antioxidant properties.

* Corresponding author Diego A. Moreno: C.EB.A.S.-C.S.1.C. —- FOOD SCI. & TECHNOL. DEPT,,
Campus de Espinardo — Edificio 25, P.O. BOX 164, E-30100 Espinardo, Murcia (SPAIN); Tel: +34 968
39 6369; Fax: +34 968 39 6213; Email: dmoreno@cebas.csic.es.

Luis Rodrigues da Silva and Branca Maria Silva (Eds.)
All rights reserved-© 2016 Bentham Science Publishers

215



Annexes

28 Natural Bioactive Compounds from Fruits and Vegetables Baenas et al.

Even it is not yet possible to recommend a particular “daily dose” for human
consumption of cruciferous foods for disease prevention, there is growing evidence
regarding the protective effects of Brassica bioactive compounds for health via
regulation of signaling pathways and cellular metabolism

Keywords: Antiinflammatory, Antioxidant, Brassicaceae, Cardiovascular
disease, Carotenoids, Chemoprevention, Cruciferous, Glucosinolates,
Isothiocyanates, Minerals, Neurodegeneration, Phenolic compounds, Vitamins.

INTRODUCTION

Brassicaceae family, commonly termed the mustard family or Cruciferae,
represents a monophyletic group including approximately 350 genera and 3,700
species, which has been the subject of much scientific interest, with many crops of
socioeconomical relevance (food and spices, condiments, oils), forage or
ornamental. This family includes common species of food staples such as:
broccoli, cauliflower, Brussels sprouts, cabbages, belonging to Brassica oleracea;
turnips and Chinese cabbages of Brassica rapa; oilseeds of Brassica napus
(rapeseed, leaf rape); mustards (Sinapis alba); and radishes (Raphanus sativus),
among others. Brassicaceae crops are dated in Europe and northern Asia for at
least 600 years and in the earlier part of the 20th century they have grown in
North America, with productions in Europe around the 70 million tons/annum [1].

Brassicaceae crops are widely distributed in the World: Southwestern and
Central Asia, Mediterranean Europe, and North and South America. Brassica
production and consumption has increased worldwide in the last years, but only
from a few cultivated genera [2]. There are numerous further species with great
potential for exploitation in 21st century agricultural and food commodities,
particularly as sources of bioactive phytonutrients.

PHYTONUTRIENTS IN CRUCIFEROUS PLANTS AND FOODS

The Brassicaceae vegetables have been widely studied for their beneficial effects
on human health through epidemiological studies [3], being nutritive foods rich in
essential nutrients and phytochemicals that may act synergistically in the food
matrix to modulate the cell metabolism and help in the prevention and treatment
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of certain types of cancer, cardiovascular health problems, and neurodegenerative
conditions of the aging human being (Table 1) [4]. Although vegetable
cruciferous plants are sources of fiber, folate, vitamins (A, E, C, and K) and
minerals (Ca, Fe, K, Cu, Zn, P, Mn, and Mg, among others), the major body of
evidence in the scientific literature is concentrated in the contents of secondary
metabolites, such as flavonoids and carotenoids, and specially glucosinolates
(GLSs). These compounds are mainly present in this family and are hydrolyzed to
1sothiocyanates (ITCs), which may be responsible of the chemoprotective activity
and the reduction 1n the risk of suffering a number of cancers associated with the
Intake of cruciferous foods. Alse the health-promoting effects of crucifers have
been attributed at least in part to their bicactive composition rich in natural
antioxidants, such as vitamins (C, A, E, K, efc.), carotenoids and phenolic
compounds [5].

Table 1. Nutrients and phytochemicals presents in eruciferous plants and their physiological functions.

Compounds and Physiclogical References
chemical structures functions
GLSs and ITCs Induction of [4,6-8]
detoxification
OH enzymes
- ~|;\,,-0\ Z /N\ Apoptosis and arrest
H?«a\/,\o;‘_‘\/s\ ’_f’ ‘(‘;0 AP R .y ~ of tumor cell growth
= \S Decrease adipogenesis
R and inflammation
Glucosinotate Isothiocyanate Reduce oxidative
stresses
Flavonols Prevent the oxidation | [5, 9, 10]

of LDL
Capillary protective
effect

a i Reduce serum levels
Quercetin OH of glucose
Kaempferol H Tfuflcn:r inhibitory

Sor i ! effec
Isorhammnetin - OCH, o -
antimicrobial
and anti-allergic
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Table I} contd.....
Compounds and Physiological References
chemical structures functions
Anthocyanins Antioxidant power [11]
and antigenotoxic
Cyanidin-3-(sinapoyl)diglucoside-5-glucoside
Hydroxycinnamic acids Cellular defense of [12,13]
peroxynitrite-mediated
disorders
R, R,
R! o  P-Coumaric H H
Caffeic OH H
HO OH  Ferulic OCH; H
& Sinapic OCH; OCH,

nutritional functions

Vitamins and B-carotene Protection against free | [14-17]
HO radicals
T H .
: B0 Cytoprotective
HO \ Q functions
— Preserve protein
HO OH integrity
Vitamin C
Vit amin E
Minerals Fundamentally the elements or Mainly the elements Participation in [3,18]
K, Ca,Na, Mg, Fe, Zn, Se and Mn. metabolic activities
Biochemical and
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Glucosinolates and Bioactive Isothiocyanates

The GLSs are secondary metabolites, sulphur and nitrogen-containing compounds
with a common structure which comprises a f-D-thioglucose group, a sulphonated
oxime moiety, and a variable aglycone side-chain derived from natural amino
acids, that determine the final structure, being mainly derived from methionine,
tryptophan or phenylalanine. Therefore, GLSs can be classified by their precursor
amino acids as aliphatic {derived from alanine, leucine, methionine or valine),
aromatic (from phenylalanine or tyrosine) and indolic (from tryptophan). The
studies of the profile of GLSs indicate significant differences among species,
according to the type and intensity of environmental stress, growth conditions and
storage, processing and cooking methods [3, 19 - 21]. The GLSs load in plant
tissues 1s highly variable, being seeds the plant part with the highest contents,
followed by the germinating seeds and sprouts —that may present a 10-fold
increase compared to commercial inflorescences or heads from adult plants— and
generally followed by leaves and roots. This amount of GLSs may range from 1%
to 10% (on a dry weight basis) in the seeds of some species [2].

GLSs are hydrolyzed to ITCs, their biologically active hydrolysis metabolites,
both by the action of the enzyme myrosinase (thioglucoside glycohydrolase EC
EC:3.2.1.147), which comes into contact with GLSs when there is a tissue
disrupted by crushing or herbivory/chewing or by the action of the gut microflora
upon human ingestion. Intact GL.Ss have no known biological activity; thus, the
bioavailability of bioactive hydrolysis products is dependent not only on ingestion
of GLSs, but also on their conversion prior to passage across the gut wall [6].
Inactivation of the plant myrosinase also decreases bioavailability of ITCs
because the enzyme is heat sensitive, as occurs when Brassica vegetables are
ingested cooked, thus boiling or steaming for more than 3-5 min and blanching
previous frozen production will lead to loss of its activity [22].

The bioavailability of GLSs is measured by analyzing the mercapturic acid
pathway products (mercapturates) which acts as a bioindicator or marker of intake
and also are useful to study the bioaccesibility and bioavailability of the GLSs
breakdown products, the ITCs, which gives rise to N-acetyl-cysteine conjugates.
In vitro and in vivo studies mainly focused in the use of sulforaphane from
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broccoli (SFN), has shown the influence of this bioactive compound on the
cellular cytoprotective mechanisms involved in all the stages of development of
cancer, through the selective induction of detoxification Phase II enzymes, to
detoxify the products (electrophilic metabolites) of the activity of phase I enzymes
to avoid the damage on the DNA (glutathione S-transferases, UDP-glucuronosyl
transferases, and quinone reductase) [23] and through the limitation of the activity
of Phase I enzymes [24]. A diet of 3-5 servings per week is sufficient to cause a
30% or 40% decrease in risk for a number of cancers [25].

Glucoraphanin (GRA) is the GLS precursor of the bioactive ITC SEN, which is
being widely studied as a potent protector of carcinogenesis. Histone deacetylases
(HDAC), which remove acetyl groups from proteins, has been studied recently
and SFN metabolites were reported as inhibitors altering their gene expression
and protein function [26]. One major step to determine the absorption of SEN is
the hydrolysis of GRA by the action of the enzyme myrosinase. When comparing
the intake of supplements rich in GRA with inactivated myrosinase, against the
intake of fresh broccoli sprouts with the active enzyme, Clarke ef al., observed a
much limited SFN absorption in healthy adults (7-fold lower) [27]. Also
Vermeulen et al., observed higher excretion of SEFN metabolites after
consumption of raw versus cooked broccoli — by 11% [28]. Other interesting work
showed in plasma and urine higher levels of total SEN metabolites (3-5 times) in
fresh broccoli sprouts consumers compared to myrosinase-treated broccoli sprouts
extract containing SEN but not GRA; therefore, GRA hydrolysis to produce SEN
is not the only one factor affecting the absorption of SEN, other compounds
present in the broccoli sprout food matrix, such as minerals, vitamins, other
nutrients and phytochemicals and fiber may facilitate the transport of SEN across
cell membranes [29]. In SEN bioavailability, also the total amount of SFN
estimated could derive from the interconversion of erucin, from the GLS
glucoerucin, to SEN in vivo [8].

Not only the ITC SEN, but also erucin, from the precursor GLS glucoerucin,
iberin from glucoiberin, sulforaphene from glucoraphenin (which differs from
GRA by a double bond), phenethyl ITC from gluconasturtiin, and indole--
-carbinol (I3C) from indole GLSs (4-Hydroxi-, 4-Methoxy-, Neo- and

glucobrassicin), have been studied because their bioactivity, triggering the
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transcription factor Nrf2 into de nucleus, where the antioxidant response element
(ARE) promoter region activate multiple genes, including both phase II
detoxification enzymes and several antioxidant enzymes, among others, and
induce cell cycle arrest and apoptosis [30].

Recent studies have shown that the I3C plays important roles in apoptosis and
arrest of cell growth in breast and prostate cancer cells [31], and may potential
benefits in preventing obesity and its comorbidities through different mechanisms
including the reduction of adipogenesis and inflammation, and the increased
thermogenesis [32].

Further in vitro and in vivo assays to understand GLSs bioavailability, would
encourage the use of cruciferous vegetables as preventive and health food within
the confines of animal studies or human trial for any form of cancer.

Phenolic Compounds

Phenolic compounds are ubiquitous phytochemicals in plants and plant foods
(more than 8,000 described, characterized by having at least one aromatic ring
with one or more hydroxyl groups attached). The structure of phenolic compounds
may be very simple and with low molecular-weight, with single aromatic-ringed
compounds or very complex (i.e., tannins and other (poly)phenolics) [33, 34].
These compounds perform a variety of functions in the plant, generally centered
on responses to pathogen attacks, UV protection, colour and sensory
characteristics [35]. The phenolic compounds may be classified according to their
number and arrangements of their carbon atoms in flavonoids (flavonols,
flavones, flavan-3-ols, anthocyanidins, flavanones, isoflavones and others) and
non-flavonoids (phenolic acids, hydroxycinnamates, stilbenes and others) [36].

Diets rich in plant-derived foods rich in phenolic compounds, such as those from
the cruciferous family, have been reported to exert health-promoting benefits at
different levels: anti-inflammatory, enzyme inhibition, antimicrobial, antiallergic,
vascular and cytotoxic antitumor activity, and the most widely cited action of
phenolics, their antioxidant activity [37, 38]. Phenolic compounds can play
important roles in scavenging free radicals and up-regulation of certain metal-
chelation reactions. The reactive oxygen species (ROS, singlet oxygen,
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peroxynitrite, hydrogen peroxide), must be eliminated from cells to maintain
healthy metabolic functions, and such reductions are positively associated with
the ion transport systems and may affect the redox signaling in the cells [34].
Despite the beneficial effects of phenolic compounds it must be taken into account
that only a small percentage of the dietary phenolics get inside the cells and are
absorbed and metabolized. The plasma concentrations after intake of polyphenol-
rich foods depend on the food source, and the polyphenol chemistry, and for
example, it may vary from 0.3-0.75 pmol/L after consumption of 80-100 mg
quercetin equivalents [39]. Moreover, (poly)phenolics are modified during their
metabolism in the gastrointestinal tract and these modifications involve
conjugation to produce glucuronides or sulphate conjugates by intestinal and/or
hepatic detoxification enzymes. However, the major part of these molecules is
metabolized by the colonic microflora rendering the so called microbial
metabolites. Those microbial metabolites can be analysed in blood (plasma) and
urine extractions, after ingestion, but only very small fraction of non-conjugated
phenols in their original form can be found. This implies that these microbial
metabolites rather than the native phenolics are responsible for the beneficial
biological effects in the body [33].

Brassica vegetables are generally rich in polyphenols, although the profile and
content of those compounds in the plant may vary depending e.g. on climatic
conditions and harvest season [14, 40 - 42]. Moreover, differences in phenolic
content can be expected between different cultivars as well as within plant organs
[43]. Food processing may also affect phenolic content [44 - 47]. Phenolic
contents may vary from 15.3 mg-100g" in white cabbage (on a fresh weight
basis), to 337 mg-100g" in broccoli. Cartea and co-workers [48] extensively
reviewed the phenolic profiles in many different species of Brassicaceae and the
most widespread and diverse group of polyphenols in these species are the
flavonoids (mainly flavonols, but also anthocyanins) and the phenolic acids.

Flavonoids

Flavonoids are low molecular weight plant-secondary metabolites, consisting of
15 carbon atoms with two aromatic rings (A and B), connected by a three-carbon
bridge (C6—C3—C6) configuration that usually in the form of a C-heterocyclic

222



Chapter 7

Compounds from Brassicaceae Natural Bioactive Compounds from Fruits and Vegetables 35

ring. The flavonoids described in Brassica spp. are O-glycosides of quercetin,
kaempferol and isorhamnetin. Besides, they may be conjugated with different
organic acids, most frequently at the 3-position of the C-ring, but substitutions
may be also placed in the 5, 7, 4", 3" and 5" positions [33]. To date, more than 20
flavonols have been described in Brassica vegetables such as kale, white cabbage,
cauliflower, and broccoli as well as in B. napus and B. rapa leaves. Among them,
the main flavonols were identified as kaempferol and quercetin 3-O-sophoroside-
7-O-glucosides and combinations with hydroxycinnamic acids (i.e., kaempferol
and quercetin 3-O-(caffeoyl/sinapoyl)-sophoroside-7-O-glucoside). In the B. rapa
group, in addition to quercetin and kaempferol derivates, it can be found
derivatives of the flavonol isorhamnetin. In cruciferous varieties for fresh-cut and
baby leaf supply including Diplotaxis erucoides L., D. tenuifolia 1.., Eruca sativa
L., Bunias orientalis L., and Nasturtium officinale, quercetin and kaempferol
glycosylated derivatives are the major flavonols [38, 48].

The glycosylated flavonols (3-sophoroside-7-glucosides of kaempferol) are
receiving more attention in terms of beneficial health effects such as reduction in
the risk of suffering certain age-related chronic health problems [38].
Accordingly, quercetin glycosides found at high concentrations in broccoli
displayed the ability to prevent the oxidation of LDL by scavenging free radicals
and chelating transition metal ions [9]. As a result, quercetin glycosides may help
against certain conditions relevant to adult health: cancer, atherosclerosis and
chronic inflammation [9]. On the other hand, isorhamnetin glycosides in mustard
leaves were named responsible for the hypoglycemic effect using an antioxidant
capacity test [49].

Anthocyanins are also present in Brassica vegetables conferring red pigmentation
in red cabbages, red radishes, purple cauliflowers and broccolis. The major
anthocyanins identified in these crops are cyanidin derivatives. In red cabbage and
broccoli sprouts the major anthocyanins identified were the cyanidin
3-O-(sinapoyl)(feruloyl)  diglucoside-5-O-glucoside and the cyanidin
3-O-(sinapoyl)(sinapoyl) diglucoside-5-O-glucoside [50]. The biological activity
of the anthocyanins have been related also with the antioxidant capacity and the
antigenotoxic properties, also repairing the cytological injuries caused by Cu®*
stress on lymphocytes [11].
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Phenolic Acids and Derivatives

The compounds present in the phenolic acids class are consisting in two groups,
the hydroxybenzoic and the hydroxycinnamic acids. The hydroxybenzoates
include gallic, p-hydroxybenzoic, protocatechuic, vanillic and syringic acids,
which have the C6—C1 structure in common. In the hydroxycinnamic acids, the
compounds are aromatic with a three-carbon side chain (C6—C3), being caffeic,
ferulic, p-coumaric and sinapic acids the most common in Brassicas. It is
common to find the phenolic acids conjugated also with sugars or with other
hydroxycinnamic acids [48]. This phenolic class is abundant in B. oleracea crops,
such as kale, cabbage, broccoli, and cauliflower. In these crops,
hydroxycinnamoyl gentiobiosides (1-O-caffeoylgentiobiose and 1,2,6-tri-O-
sinapoylgentiobiose) and hydroxycinnamoylquinic (5-caffeoyl quinic acid) acids
are the major representatives [51].

The antioxidant scavenger properties of Brassicaextracts rich in phenolic acids
have also been proved in vivo. As a result, the intervention in human subjects with
a diet rich in Brussels sprouts showed a reduction on DNA damage in terms of a
decreased excretion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine
[52]. It has been also reported that even with a short intervention, with broccoli
sprouts in rats, a strong protection in the heart against oxidative stress and cell
death caused by ischemia-reperfusion or diabetes, can be measured [12]. The
sinapic acids, also present in high amounts in cruciferous foods, may also
contribute to the cellular defense mechanisms avoiding peroxynitrite-mediated
disorders [13].

NUTRIENTS: MINERALS AND VITAMINS

Minerals

The essential minerals (Na, K, Ca, Mg, Cl and P) are required in high amounts in
diet (>50 mg/day), while the metals and trace elements (Fe, Zn, Cu, Mn, L, F, Se,
Cr, Mo, Co, Ni) are needed in much lower concentrations (<<50 mg/day). The
mineral nutrients are involved in different life processes, e.g. as electrolytes, as
enzyme constituents, building materials in bones and teeth, ezc. [18]. The
microelements content in cruciferous foods are fundamentally K, Ca, Na, Mg, Fe,
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Zn, Se and Mn. Ready-to-eat cruciferous sprouts are an excellent source of these
compounds, showing higher concentrations of minerals than seeds (12-45%
higher according to the compound) [53]. The content of the main minerals could
vary among species and crops. Broccoli, cauliflower, turnip, cabbage, red cabbage
and rutabaga show values ranging 170-300 mg-100g™ (on a fresh weight basis of
K in raw products, being the predominant mineral in crucifers. The contents of P,
Ca, Na and Mg range 10 - 60 mg-100g™ (on a fresh weight basis), and for Fe and
Zn, 0.3 - 0.8 mg-100g" F.W. [54]. Seasonal variations could affect the content of
minerals, such as Fe, Ca and Zn, being higher in wet season than dry season [55].
Broccoli can be suggested as a ‘good source’ of Ca and Mg for human nutrition,
with comparable bioavailability to that of milk, and therefore, may be considered
an important alternative source of Ca in those population groups with limited
access or intake of dairy products [56]. Different cooking methods (boiling,
steaming, microwaving and frying) not affected significantly to the mineral
content of broccoli florets; therefore, on average, an edible portion (200g of raw
broccoli) could provide, over 20% of the daily requirements of minerals [21, 57].

Vitamins and Carotenoids

The vitamins present in cruciferous vegetables are: vitamin C, A, E, B and K,
thiamin, riboflavin, niacin and folate. The major natural antioxidants in
cruciferous foods are the vitamins (C, E, efc.), the carotenoids, and the
{(poly)phenolics [5]. The variation in the contents of these intrinsic antioxidants is
caused by many factors: variety, organ and maturity at harvest, soil conditions and
agricultural practices, post-harvest management, industrial and domestic
processing, inducing all, many differences in the health-promoting properties of
these vegetables when reaching the plate [58, 59]. These nutrients and
phytochemicals are radical scavengers that inhibit the chain initiation or break the
chain propagation (the second defense line) of the oxidative stress reactions.
Diverse studies have shown a synergetic effect of both hydrosoluble (vitamin C)
and lipid-soluble antioxidants (carotenoids and vitamin E), as in combinations of
a-tocopherol or vitamin C plus phenolic compounds [60].

Vitamin C (Ascorbic Acid and Dehydroascorbic Acid), has many biological roles
in human physiology, through its protective effects against free radicals,
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prevention of DNA mutation in the cells, as well as the protection against lipid
peroxidative damage, and repairing amino acid residues to preserve the protein
integrity [58, 61]. These mechanisms of actions involve the prevention of certain
cancer and cardiovascular diseases [62, 63]. For instance, vitamin C was
established as responsible of 10-12% of the total antioxidant capacity of broccoli
or cabbage [5]. The vitamin C can not be synthesized in the human body and
therefore needs to be taken through diet. Brassica vegetables generally contain
high amounts of vitamin C, and depending on dietary habits and geographical
locations, may provide up to 50% of the daily RDI (recommended dietary intake)
for human adults [58]. Among species, the vegetables from the genera Brassica
(such as broccoli, red cabbage, Brussels sprouts, and kale) exhibit higher content
of this vitamin (ranging 50-200 mg-100g’ F.W) than other species, depending
distinct plant organs and physiological stages [54]. Also cooking methods
decrease the Vitamin C content, causing steaming the lowest loss comparing to
microwave and boiling [58].

On the vitamin E group, a-tocopherol is the most common and biologically active
form, and like all essential nutrients, a minimum level of vitamin E is also
essential for wellness and health. It reduces the peroxyl radicals produced from
polyunsaturated fatty acids (PUFAs) in phospholipidic membranes or
lipoproteins. The severe deficiency of vitamin E results in various neurological
problems including ataxia (impaired balance and coordination), myopathy
(muscle weakness) and damage to the retina. Suboptimal dietary intakes (or
plasma levels of vitamin E below normal) are associated with increased risk of
cardiovascular disease, some cancers and decreased immune function [15, 64].

Vitamin K, being phylloquinone the major dietary form, is found ranging 15-100
ng-100g" F.W in common Brassica vegetables, such as broccoli, cabbage, red
cabbage and cauliflower, and act as cofactor for the enzyme vy-glutamyl
carboxylaseis, involved in the blood coagulation cascade and catalysis of the
carboxylation of osteocalcin in bone [65].

Thiamine (B1) and riboflavin (B2) have been studied in cruciferous sprouts,
radish, rapeseed and white mustard seeds contain vitamin B1 (0.41-0.70 mg-100g
' D.W.); however, its amount found in the ready-to-eat sprouts were 40% lower.
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In contrast, the content of vitamin B2 in ready-to-eat sprouts were 3 -fold higher
when compared to the seeds (0.096-0.138 mg-100g™" D.W.).

Brassica crops show high levels of folate (15-60 pg-100g® F.W.), which is a
scarce and important vitamin related to the reduced risk of vascular diseases,
cancer and neural tube defects [3].

Carotenoids (carotenes and xanthophylls) are yellow, orange, and red lipid-
soluble compounds characteristic of many fruits and vegetables. Leafy Brassicas
are sources of carotenoids, particularly lutein, zeaxanthin and f-carotene [54].
These compounds are also reported for antioxidant functions such as quenching of
singlet oxygen and other electronically charged molecules produced in reactions
after photo or chemical excitation and they also react with peroxyl or alkoxyl
radicals. The carotenoids are precursors of vitamin A (i.e.f-carotene, y-carotene,
and f-cryptoxanthin), and due to their conjugated double bonds they are both
radical scavengers and quenchers of singlet oxygen [66, 67]. Brussels sprouts (6.1
mg-100g" F.W.), broccoli (1.6 mg-100g™" F.W.), red cabbage (0.43 mg-100g™’
F.W.), and white cabbage (0.26 mg-100g" F.W.) are the species with higher
content of these compounds. Several studies have demonstrated that carotenoids
significantly down-regulated the expression of pro-inflammatory cytokines,
possibly due to alterations of the NF-xB pathway and impacted Nrf2, a
transcription factor related to the expression of detoxifying enzymes, in addition
to directly quenching ROS, all related to the cytoprotective systems that reduce
the risk for cardiovascular diseases and different types of cancer [68].

Even Brassicaceae vegetables are a good source of antioxidants, the potential
health benefits mainly depend on the genotype and subspecies, as after studying
different varieties and cultivars of cabbage, Chinese cabbage, cauliflower,
broccoli and Brussels sprouts, the major source of Vitamin C (52.9 mg-100g™
F.W.), B-carotene (0.81 mg-100g" F.W.), lutein (0.68 mg-100g" F.W.), DL-a-
tocopherol (vitamin E) (0.47 mg-100g” F.W.) and phenolics (63.4 mg-100g™’
F.W.) was represented by broccoli [69].

OTHER NUTRIENTS

The vegetables of the cruciferous family are good sources of other additional
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macronutrients. When comparing Brassica vegetables with other plant foods of
high water content, the levels of fiber are relatively high. In white cabbage more
than 30% of its total carbohydrate content is made from dietary fiber. Similarly,
and depending on the crop, they can also represent significant sources of amino
acids and proteins. Two hundred calories of steamed broccoli will provide 20g of
protein [70]. Raw broccoli, cabbages and cauliflowers also contain folates, a
relatively scarce and relevant nutrient that acts as a coenzyme in the synthesis of
DNA, RNA and protein components, as well as in many single carbon transfer
reactions [3]. Recently, it has been described that germinating seeds or prouts
from cruciferous varieties can be also a good source of other antioxidants such us
melatonin and serotonin [71]. As a conclusion, regular dietary Brassicavegetables
it may account for an important promising chemopreventive dietary constituents
(GLSs, vitamins, phenolics, minerals, fiber, efc.) which may protect the cell
systems against free radical damages, LDL oxidation, pathogenesis of
cardiovascular problems, and the DNA damages leading to cancer processes.

FUTURE PERSPECTIVES

The increasing awareness among scientists, food manufacturers, more and more
health-conscious consumers worldwide, on the beneficial effects of the
Brassicaceae phytochemical-rich foods, has prompt the production of these
vegetables in sustainable practices. From the plant genetics approaches, through
traditional breeding programs or through bioengineering of the secondary
metabolism, to induce the accumulation of a particular nutrient or phytochemical,
not many advatages have been reported. To the best of our knowledge, breeding
programs to increase or decrease the content of a particular phenolic compound
related to human health with horticultural Brassicacrops have not been carried
out. However, the modification of the synthesis of GLSs is being currently carried
out in different crops such as broccoli. Through the introgression of a Brassica
villosa MYB28 allele, that enhances sulphate assimilation and accumulates
methionine-derived GLSs, it was developed commercially broccoli F1 hybrids
with increased concentrations of GRA [72]. These investigations on increasing
levels of Brassica phytochemicals may have a potential for human intervention
studies to investigate the effects of a specific compound on human health.
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On the other hand, as a result of the increasing available information about the
health-promoting properties of cruciferous plants, there is an increasing demand
of foods and food products enriched in Brassica bioactives. Minimally processed
broceoli byproducts can be used as a source of bioactive ingredients, mainly GSLs
and phenolic compounds to design novel beverages. A squeezed liquid
composition is described by Kumazawa [73] that is rich in GLSs and has a good
balance of vitamin C, colour, flavour and similar attributes. Moreover, the use of
plant ingredients rich in Cruciferae bioactive compounds as functional foods and
ingredients provide additional routes for the industrial exploitation of these
attractive natural plant products. Only recently, pharmaceutical forms (pills,
powders, capsules, vials, efc.) containing GLSs as active principles {commonly,
broccoli extracts claiming sulforaphane presence in the formulation) have
appeared in the markets, even with mixes of varieties of sources to supply SEN
and I3C. In a very close future, a better understanding of the bioavailability,
metabolism and physiological relevance of these dietary bioactive compounds and
the intervention of the gut microbiota in the relationship will all help to elucidate
the mechanisms by which these compounds are useful and suitable tools in the
dietary interventions to treat and manage diseases as well as the maintenance of a
wellbeing status in animals and the human beign.
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Abstract: Elicitation is a good strategy to induce physiological changes and stimulate
defense or stress-induced responses in plants. The elicitor treatments trigger the synthesis
of phytochemical compounds in fruits, vegetables and herbs. These metabolites have been
widely investigated as bioactive compounds responsible of plant cell adaptation to the
environment, specific organoleptic properties of foods, and protective effects in human
cells against oxidative processes in the development of neurodegenerative and
cardiovascular diseases and certain types of cancer. Biotic (biological origin), abiotic
(chemical or physical origin) elicitors and phytohormones have been applied alone or in
combinations, in hydroponic solutions or sprays, and in different selected time points of
the plant growth or during post-harvest. Understanding how plant tissues and their specific
secondary metabolic pathways respond to specific treatments with elicitors would be the
basis for designing protocols to enhance the production of secondary metabolites, in order

to produce quality and healthy fresh foods.

Keywords: elicitor; phytochemicals; health; phenolics; glucosinolates; activity

1. Introduction: Secondary Metabolites in Plants, Foods and Human Health

Plant-based nutrients and phytochemicals present in vegetable foods include proteins, lipids,

carbohydrates, vitamins, minerals, and bioactive compounds, including phenolic compounds and
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glucosinolates, that confer additional advantages to plant cell adaptation capacity to the surrounding
environment, and act as precursors of molecules involved in the plant defense systems such as
antibiotics, antifungals, and antivirals. Therefore, secondary metabolites are able to protect plants from
pathogens (phytoalexins) [1] and insects [2], as well as constituting important UV-radiation absorbing
compounds, thus preventing serious leaf damage [3]. The content of secondary metabolites in
vegetables also confers a relevant role as health-promoting compounds and therefore contributes to
their economic importance of foods [4]. Phenolic compounds contribute significantly to imparting
specific flavours and colours to various plants widely utilized in foods and beverages. Examples
includes capsaicin, responsible for the pungent properties of the red peppers, alkylphenols, responsible
for the characteristic taste and odour of clove oil, tannins, which add a distinct bitterness or astringency
to the taste of certain foods, and the anthocyanin pigments, such as the pelargonidins, the cyanidins
and the delphinidins (responsible for red, blue and purple colours) [5]. The glucosinolates,
characteristic of cruciferous foods, also add bitter taste (progoitrin) and aroma intensity (total
glucosinolates) to vegetables [6].

The relevance of phenolic compounds [7] and glucosinolates [8] for human consumption has been
associated with a protective effect against oxidative processes in relation to cardiovascular and central
nervous system health, and neurodegenerative diseases, and with a reduced risk for cancers of the
gastrointestinal tract, lung, colon, bladder, pancreas, skin, breast and prostate [9]. Optimizing the
composition of fruits and vegetables would be a very cost-effective method for improving nutrition
and disease prevention, since diet-induced health improvements would not represent any added costs
for the health sector, even more it might help to reduce these costs [10-12].

The phytochemical composition of plants foods vary according to genetics (family, species,
cultivar, efc.), physiological (organ, maturity and age) and agronomical factors (photoperiod,
saline stress or fertilization) [13—19]. These factors are grouped as biotic (genetics, physiological
determinants, pests and diseases) and abiotic (environment and agronomical conditions) and can be
used to enhance valuable metabolites in foods and ingredients, in a year-round production [16,17,20].
Specific treatments, including precursor feeding and elicitor application can be used to increase
metabolite production in the plant and to enhance its qualitative value for fresh produce, enriched food,
or as a raw ingredient for feed/food and pharmaceutical products [21,22].

2. Elicitors
2.1. Concept and Classification

Elicitors are substances which induce physiological changes in the plant. Plants respond to these
stressors by activating an array of mechanisms, similar to the defense responses to pathogen infections
or environmental stimuli, affecting the plant metabolism and enhancing the synthesis of phytochemicals.
The first biotic elicitors were described in the early 1970s [23]. Since then, numerous publications
have accumulated evidence for pathogen-derived compounds that induce defense responses in intact
plants [24,25] or plant cell cultures [22,26]. The use of elicitors as a tool to enhance the phytochemical
content in plants, applied alone or in combinations at selected time points of the vegetable growth,
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should not be confused with those administered during the plant production cycle or pre-harvest, such
as conventional fertilization.

Elicitors could be classified as biotic and abiotic compounds, also plant hormones (salicylic acid
(SA), jasmonates, efc.) may be considered as elicitors (Table 1) [27,28].

Table 1. Elicitor classification based on their origin.

Biotic Elicitors

Lipopolysaccharides [27]

Polysaccharides: Pectin and cellulose (cell walls) [28]; chitosan [21,28], chitin and glucans
(microorganisms) [28], alginate, arabic gum [29], guar gum, LBG [27], yeast extract [27].
Oligosaccharides: Galacturonides, guluronate, mannan, mannuronate [27,30].

Proteins: Cellulase [31], cryptogein [32], glycoproteins [27], oligandrin [27], pectolyase, fish protein
hydrolysates[33], lactoferrin [33].

Complex composition: Fungal spores, mycelia cell wall, microbial cell wall [27].

Pathogen toxin: Coronatine [34].

Oregano extract [33].

Abiotic Elicitors

Chemical Physical [35]

Acetic acid [21] Altered gas composition
Benzothiadiazole [36] Chilling

Silicon [36] CO,

Bioregulator prohexadione Drought

Ethanol [37] Extreme temperature shock
Ethene [37] High pressure

Inorganic salts: mercuric chloride (HgCl12), copper
sulfate (CuSO4), calcium chloride (CaCl2), and
vanadyl sulfate (VSO4) [28]

Metal ions: Co™, Fe**, A**, Ag™, Ag", Mn*, Zn™,
Cu*", Pb** and Cd*" [28,38]

High or low osmolarity
UV irradiation

Saline stress
Wounding

Ozone

Plant Hormones

Jasmonic acid, methyl jasmonate [39], methyl salicylate, salicylic acid, ethylene [21,40], cytokinin,
gibberellin GA; [37].

Biotic elicitors (chitosan, alginate, cellulose, efc.) have biological origin, often originated as a result
of fungi, bacteria, virus or herbivore infections (exogenous elicitors), and in some cases are released
from the attacked plant by the action of enzymes of the pathogen (endogenous elicitors) [27]. Often
complex biological preparations have been used as elicitors, where the molecular structure of the
active ingredients is unknown. Examples of such elicitors are yeast extract and microbial cell-wall
preparations [27]. Yeast extract contains several components that can elicit plant defense responses,
including chitin, N-acetylglucosamine oligomers, B-glucan, glycopeptides and ergosterol.

SA and jasmonates (jasmonic acid (JA), methyl jasmonate (MeJA)) are widely known to elicit a
wide range of compounds by inducing the expression of plant genes for various biosynthetic pathways,
and are also defined as “hormones” because they induce cellular responses at low concentrations
distant from their site of synthesis, and can be applied to plants in a variety of ways. For instance,
MeJA may be applied to plants as a gas in an enclosed environment, on a liquid form to a hydroponic
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solution, or by jasmonate sprays [39]. The treatment of young red and black raspberry fruits with
0.01 mM or 0.1 mM MeJA increased their anthocyanins and phenolic compounds [41]. Analogs of
MeJA or JA have physiological activity. For instance, N-propyl dihydrojasmonate (PDJ) increased the
abscisic acid (ABA) and anthocyanin content of apples [42]. Abiotic elicitors are produced by factors
responsible for environmental stress. These factors can be of chemical (inorganic salts, metal ions and
others which disturb the membrane integrity) [28] and physical origin (UV irradiation, wounding,
saline stress, ozone efc.) [35] (Table 1). For instance, exposure of alfalfa, broccoli and radish 3-old-day
sprouts to high light intensity (700 umol-m > ™' for 1 day) or chilling (4 °C and and 120 pmol'm > s
for 1 day) resulted in higher total phenolic content and antioxidant capacity compared with controls, by
20% in alfalfa and 40% in broccoli, and showed a 25% increase of phenolic content and 40% of higher
antioxidant capacity in radish [43].

Apart from the classification of elicitors according to their nature, they can also be classified upon
their interaction with the host plant, as “general elicitors”, such as carbohydrates, cell wall proteins,
oligosaccharides efc., which induce non-specific mechanisms for the induction of defense response in
different plant cultures, and “specific elicitors” from fungal, bacterial, viral or plant origin, which
affect only a specific host cultivar since the presence of its corresponding resistance gene in the host
plant is directly associated with the resistance against a specific gene pathogen [4,44].

2.2. Mode of Action of Elicitors

In plant defense systems each cell has acquired the capability to respond to pathogens and
environmental stresses and to build up a defense response. Plant response is determined by several
factors, mainly depending on their genetic characteristics and physiological state. In the majority of
cases, plant resistance to diseases is known to be genetically controlled by plant resistance (R) genes
and pathogen avirulent avirulence (Avr) genes (gene-for-gene interaction concept) [45]. However,
triggering resistance is not always due to specific Avr products which activate defense responses in
cultivars possessing the matching R genes but, instead, proceeds from the action of general elicitors,
able to activate defenses in different cultivars of one or many species [45]. First step in the response of
plant against elicitors is the stimulus perception by receptors localized in plasma membranes of the
plant cell (Figure 1), like protein kinases, which represent one of the most important in pathogen
perception for a number of fungal elicitors [46], or could be localized within the cell to initiate
signaling processes that activate plant defenses, as for certain bacterial elicitors, which initiate
signaling processes that activate plant defenses [47].

The elicitor signal transduction is an important subject of investigation. In this sense, several
authors have described that plants respond to elicitors by activating an array of defense mechanisms on
the surface of the plasma membrane (Figure 1), including induction of pathogenesis-related proteins
and enzymes of oxidative stress protection, hypertensive responses, characterized by rapid cell death in
the immediate vicinity of the point of exposure to the pathogen [45], the production of reactive oxygen
species (ROS) and reactive nitrogen species (RNS), the activation of defense-related genes, changes in
the potential of plasma membrane cell and enhanced ion fluxes (C1” and K* efflux and Ca®" influx),
rapid changes in protein phosphorylation, lipid oxidation, and structural defensive barriers, such as

reinforcement and lignification deposition inn cell wall, efc. and the activation and the de novo
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biosynthesis of transcription factors, which directly regulate the expression of genes involved in
secondary metabolites production [48—50] (Figure 1).

Figure 1. General mechanism after elicitor perception. Abbreviations: SAR (systemic
adquired response), ISR (induced systemic resistance), ROS (Reactive oxygen species),
RNS (reactive nitrogen species), NADPH (nicotinamide adenine dinucleotide phosphate),
SA (salicylic acid), JA (jasmonic acid), ET (ethylene) [48-50].
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2.3. Preharvest Elicitation: Priming Seeds and Edible Plants

Preharvest elicitation could be done as seed priming [33,51], soaking seeds in a water solution with
the elicitor, or after seedling, applying exogenous spraying treatment over the leaves [52] or in a
hydroponic system [53].

Elicitor nature, doses and time of treatment strongly affects the intensity of the plant response
(Figure 2). Elicitors can stimulate different classes of secondary metabolites and affect in a different
way the concentration of these compounds, being more dependent on plant genetics (species and
cultivars) than on the elicitor nature.

A MelA elicitation, applied daily by exogenous spraying at 10 pM, resulted in a 31%, 23% and
22% increase of total flavonoid, phenolic and glucosinolates concentration, respectively, in 7 day old
broccoli sprouts [25]. Also a MeJA sprayed treatment (10 mM) at the beginning of veraison in grape
(Vitis vinifera) increased anthocyanin and flavonols content up to 81% and 131%, respectively [54].

Concentration of elicitor and interval between treatment and harvest induce different responses
characteristic of plant species, making necessary to find the adequate effective dose and time
empirically [4]. Radish sprouts (Raphanus sativus L.) treated with 100 mM of NaCl increased total
glucosinolates in 5- and 7-day-old sprouts, by 50% and 127%, respectively, and the phenolic contents
in 3- and 5-day-old sprouts, by 20% and 40%, respectively, while with a low and moderate level of salt
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stress (10-50 mM of NaCl) reduced these contents [55]. Bodnaryk showed that JA and MeJA were
equally effective at high doses (>5 nmol seedling™') in increasing the concentration of 3-indolylmethyl
glucosinolates (3-IMG), maybe because of the saturated effect of jasmonates, but at lower doses, JA
was more potent than MeJA [56]. The dose needed to cause a doubling of the concentration of 3-IMG
in the cotyledons of 7-day-old B. napus sprouts, in 24 hs, was 8.2 pmol for JA and 41 pmol for MeJA.
The sulphur effect, as elicitor, in broccoli sprouts was dependent on the dosage (K,SO, at 15, 30, and
60 mg/L) and augmented the total glucosinolates in sprouts by 14%, 18%, and 23%, respectively,
12 days after sowing [57].

Figure 2. Factors influencing bioactive compounds in plant response.

Plant Elicitor . .

: o Bioactive
Genetic characteristics Dose
Species, cultivar Different concentrations applied. compounds
Physiological state Nature
Seeds, sprouts, mature plant|  Abiotic (chemical/physical), biotic Phenolic compounds
Environmental factors Application way i Glucosinolates
Light, temperature Hydroponic solution, foliar spray. Carotenoids
Agronomical conditions | Synergistic effect Betalains
Irrigation, soil, fertility Additive or antagonist combination Vitamins
Handling and storage Treatment interval Others

Transport, temp., moisture | Acyte, long-term (hours, days)

Physiological conditions also play an important role in the elicitation techniques, which achieving
better results during the exponential phase of growth of the plant, when the concentration of bioactive
compounds is higher [58], and in the presence of growth regulators [59].

Different studies have reported an additive or synergistic response after combination of elicitor
treatments, different signal transduction pathways appear to exist in response to environmental stresses
and elicitors and these pathways could antagonize or harmonize with each other, leading to negative or
additive interactions, respectively [58,60,61].

2.4. Postharvest Elicitors Applications

Specific elicitor treatments has been used in postharvest practices to enhance the phytochemical
content and quality composition in many fruits and vegetables, such as the application of low or high
temperature treatments [62], ultraviolet (UV) [63,64] or gas combinations before commercialization [40].
In this context, it has to be mentioned that red orange fruits (Citrus sinensis) accumulated anthocyanins
(8-fold compared to control) in their juice vesicles during cold storage at 4 °C for a period of 75 days [62].
An accumulation of phenolic compounds was also found in apple (Malus domestica) during cold
storage which was coupled with increasing the phenylalanine ammonialyse (PAL) activity, a key
enzyme in the phenylpropanoid pathway [65]. A combination of visible light and UV-B irradiation
(380 nm) applied 12 h per day during a period of 10 days, increased the total phenolic compounds
(127% compared to irradiation of visible light alone) in apple peel. It was assumed that UV-stress also
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mediated the increase of PAL activity [64]. Ultraviolet irradiation can lead to grapes with enhanced
antioxidant properties, within normal conditions of market commercialization [63].

On the other hand, phytohormones applied to tissues will increase phenolic concentration. For
instance, ethylene applied to butter leaf lettuce at 10 uL-L ™" in a flow of humid air for 3 days at 5 °C,
induced synthesis of phenolic compounds by 38%, even though wounding increased by 87% these
compounds [40]. Furthermore, the authors observed that temperature also affected the concentration of
phenolics, at 10 °C ethylene and wounding induced increases of 174% and 155%, respectively. The
exogenous application of the phytohormone MeJA (170 pl. spontaneously vaporized at 25 °C) over
strawberry fruits during 7 days, induced an increase of 35%, 52% and 187%, on phenolic content,
antioxidant capacity, and anthocyanins, respectively [66]. A longer storage, after 11 days, resulted in a
considerable decline of total phenolic content and antioxidant capacity, detrimental of fruit quality. On
the other hand, through elicitor practices also the quality of food products could be enhance, such as
the improvement of the volatile profile, flavor and taste of wine after a chitosan treatment or the
increase of phenolic compounds of peppermint resulting infusions after SA foliar application in the
plant [67,68]. Understanding the interactions among the stressor applied and the tissue response will
help to optimize the right application.

Alternatively to a hierarchical response, additive or synergistic responses can be used to selectively
target the increase of bioactive compounds [21,69]. Synergistic effects have also been found for
postharvest elicitors, in sorghum seedlings exposed to low moderate temperatures during 24 h before a
red light irradiation by fluorescent tubes (661 nm), resulting the optimum temperature at 20 °C for
enhancement of red light induced anthocyanin synthesis (185%) compared that for seedlings growth at
24 °C [70]. The use of wounding (3 mm thick disks sliced) in combination with ethylene (1000 ppm)
and MeJA (250 ppm) in purple carrot (Daucus carota L.) increased the total phenolic content by about
176% and 210%, respectively, compared to the separate treatments [71].

3. Elicitation Effects on Primary Metabolism

Plant primary metabolism includes physical and chemical processes that fulfill the essential
functions for the maintenance of plant life: survival, growth and reproduction. Photosynthesis, respiration,
nutrient uptake, transport and partitioning, protein synthesis, tissue differentiation, biosynthesis of
carbohydrates, lipids and the proteins involved in these processes or in structural parts are all chemical
processes belonging to the primary metabolism. Biotic and abiotic stresses (variation in agronomical
conditions, such as plant organ, plant competition, fertilization, pH, season, climate, water availability,
light, and CO; [9]) are expressed in plants by a series of morphological, physiological, biochemical
and molecular changes that adversely affect plant growth and productivity [72].

Goémez et al., studied MeJA spray application (0.5 mM) to the foliage of tomato plants for 4 h.
There was a significant decrease in the fixation of CO, (20%) and an increase in the export of newly
acquired carbon and nitrogen (1-fold) out of MeJA-treated leaves [73]. These results showed a change
in the allocation of resources after MeJA application, this may reduce the chance of resources being
lost to herbivores and act as a buffer to biotic stress by increasing the potential for plant regrowth and
survival after the attack.
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The effects on the germination of alfalfa and broccoli seeds stimulated by dry smoke (by the
complete combustion of Artemisia vulgaris) during 30 and 45 min, respectively, and aspirin solution
(0.145 g/100 mL in pure water) during 10 and 30 min, respectively, showed higher growth ratio than
control group (>112%) [74].

A treatment of chitosan (28 kDa), a deacetylated derivative of chitin, at 0.5% dissolved in 0.5%
lactic acid, increased the total weight (12.9%), germination rate (16%) and total isoflavone content
(11.8%) of sunflower sprouts [51], while a treatment in soybean sprouts with 0.05% chitosan (493 kDa)
in 0.05% acetic acid solution increased the total weight (26%) and vitamin C content (14%) compared
with that of the control [51,75].

Baenas et al., showed an increase in biomass weight of 5 different Brassicaceae sprouts after
5-days spray elicitation with sucrose (146 mM), as a supply of carbon source for cell growth, and
DL-methionine (5 mM), enhancing the overexpression of some genes [52].

4. Elicitors Affecting the Content of Bioactive Compounds

The most actively pursued strategies to increase the production of target natural products in plants,
are the applications of chemical elicitors and the study of the signal transduction pathways and
transcription factors required for the expression of genes, involved in the biosynthesis of specific
bioactive phytochemicals [50].

Much effort has been put into cloning biosynthetic genes, identifying transcription factors,
revealing the signal transduction steps underlying elicitor activation of plant secondary metabolism
and also into the manipulation of regulatory and biosynthetic genes, to engineer plant cells and
enhance the production of target secondary metabolites [76]. It is expected that a better understanding
of the signal transduction pathways, linking plant cell stimulation and biosynthesis of natural
compounds may help to develop new strategies to alter the production of target compounds, by either
activation or suppression of certain metabolic pathways [48]. As a consequence, in plant tissues is
observed the production of antioxidant molecules, compounds of technological interest in healthy
foods [48]. Hao et al., showed a feasible strategy to combine MeJA and SA treatment with transgenic
technology for the enhancement of tanshinone, an active diterpene which is widely used in the
treatment of cardiovascular diseases, in Salvia miltiorrhiza hairy roots [77], also SA was reported to
enhance anti-inflammatory activity of Aloe vera by increasing its anthraquinones [78].

4.1. Phenolic Compounds

Phenolic compounds (more than 8,000 in Nature), can be classified based on the number and
arrangement of their carbon atoms in flavonoids (flavonols, flavones, flavan-3-ols, anthocyanidins,
flavanones, isoflavones and others) and non-flavonoids (phenolic acids, hydroxycinnamates, stilbenes
and others) and they are commonly found conjugated to sugars and organic acids.

Phenolic compound contents have been associated with flavour and colour characteristics of
fruits and vegetables. These compounds have additional multiple roles in plants, including attracting
insects for seed dispersion and pollination and being part of the natural defense system [79]. Moreover,
in recent years, phenolic compounds have been intensively investigated because of their potential
health-promoting effects, such as anti-inflammatory [80], antimicrobial [81], antiallergic [82], vascular [83]
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and cytotoxic antitumor activity [84], but the most cited biological activity is based on their
antioxidant capacity, related with its chemical structure that confers them redox properties [85,86]. The
accepted wide range of beneficial effects of phenolic compounds initiated, attempts to stimulate their
accumulation in crop plants by agricultural technologies. Several reviews summarized the advantages
of targeted pre- and post-harvest elicitor treatments to obtain fruits and vegetables enriched with
beneficial phytochemicals [87-89]. Alfalfa three-day-old sprouts subjected to high-light (700 pmol'm ™
for 1 day) and chilling (a growth chamber at 4 °C with a light intensity of 120 umol'm 2 s for 1 day)
accumulated about 2.0 and 1.5 times, respectively, significantly higher concentration of ferulic acid.
Therefore, high-light seems to elicit a stronger response than chilling in enhancing the phytochemical
content [43]. The largest accumulation of sinapic acid (by 83% more compared to untreated control)
occurred following high-light treatment (700 umol'm > s™* for 1 day) in broccoli sprouts, similar to
ferulic acid in alfalfa, however, chilling did not seem to have any effect on the sinapic acid content in
broceoli sprouts [43]. Examples of biotic and abiotic elicitors affecting different groups of phenolic
compounds are listed in Table 2.

Table 2. Phenolic compounds increased by elicitors.

Target Compounds

Plant Food Elicitor Treatment Application Reference
Class and Increase
“Fuji” apples Ethephon Sprayed for 4 weeks Anthocyanins (8-fold), [90]
(2-chloroethyl before commercial and flavonols (2-fold)
phosphonic acid) harvest during fruit maturation
(100 mg/L)
Grape berry fruits  Ethanol Sprayed for 89 weeks  Anthocyanins [01]
(5 g/100 mL) after anthesis (3-fold)
Butter Lettuce JA1puM Sprayed after 21 days of Total phenolics (280%) [92]
germination Flavonoids (133%)
Phenolic acids (360%)
Lettuce cv. UV-full range Radiation during Flavonoids (130%) and  [93]
“Lollo Rosso” (UV-A and UV-B) cultivation phenolic acids (200%)
Purple-flesh Wounding After harvest Total phenolics (60%)  [94]
potatoes (vegetable slicer)
Strawberry fruits  CO, 28 months Anthocyanin and [95]
(ambient + 600 umol) flavonols (30%—-50%)
Sweet basil MeJA 0.5 mM Sprayed when the plants Rosmarinic acid (50%) [96]
had five or six leaves and caffeic acid (38%)
Greek oregano Chitosan Sprayed for 2 weeks Phenolic acids and [97]
oligosaccharides prior to the anticipated ~ flavonoids (30%)
(50 and 200 mg/L) flowering time
Pea sprouts Folin acid (50 pM) Soaking seeds Total phenolic [98]
and vitamin C for 1248 h compounds (20%)

(500 uM) solutions
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Table 2. Cont.
Plant Food Elicitor Treatment Application Target Compounds Reference
Class and Increase
Pea sprouts Folin acid (50 pM) Soaking seeds Total phenolic [98]
and vitamin C for 12-48 h compounds (20%)
(500 uM) solutions
Olive trees Nutrient solution Sprayed for 120 days Tyrosol, catechin, and ~ [99]
organs “Brotomax”’ after anthesis oleuropein (20%)
(0.3 /100 mL) (urea
nitrogen, copper,
manganese and zinc)
Radish sprouts NaCl (100 mM) In 0.5% agar media for ~ Total phenolics [100]
3, 5 and 7 days after (30% and 50% in 5 and
sowing seeds 7-days-old sprouts,
respectively)
Radish, chinese Glucose (5 g/100 mL) Hydroponic system Total phenolics [53]
kale and pak choi for 3 days after (20%)
3-day-old sprouts sowing seeds
Broccoli Sucrose, fructose and  In 0.5% agar media Total anthocyanins [55]
7-day-old sprouts  glucose (146 mM) for 5 days after (10%)
sowing seeds
Broceoli Sucrose and mannitol  Hydroponic system Total anthocyaning [101]
7-day-old sprouts (176 mM) for 5 days after (40%) and

sowing seeds

phenolics (50%)

Elicitors also have been applied as a complementary treatment to fungicides, such as the exogenous
application of benzothiadiazole and MeJA, increasing, at the same time, the flavonoids content
(anthocyanin, flavonol, and proanthocyanidin) in grapes and showing higher color intensity and total

phenolic content in wines [54].
4.2. Glucosinolates

Glucosinolates (GLS) comprise a relatively small but diverse group of over 130 nitrogen and
sulfur-containing natural products found almost exclusively in cruciferous plants [102]. The
glucosinolate core structure comprises a f-thioglucoside N-hydroxysulphate, containing a side chain
and a f-D-glucopyranose moiety [14]. The structure of the side chain is highly variable and determines
the glucosinolate classification as aliphatic, indolic, or aromatic [103,104] according to whether their
amino acid precursor is methionine, tryptophan, or an aromatic amino acid (tyrosine or phenylalanine),
respectively [14]. Glucosinolates are plant defense compounds against various pathogens and pests,
and are accumulated preferentially in the organs that contribute most to the growth cycle of the plant [102].
Besides, these compounds have a potential benefit to protect humans against certain cancers,
particularly lung and those of the gastrointestinal tract, and also in the reduction of risks for
cardiovascular diseases [9,105,106]. However, there are still many areas that need further research to
avail the full health benefits of these compounds [107]. Glucosinolates are also responsible of
organoleptic properties in some plants, such as cauliflower and mustards [108].
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Glucosinolates profiles can be altered by treatments with elicitors [21,109]. Exogenous application
of SA, JA and MeJA have been widely studied because of the results in expression of large number of
genes involved in resistance responses, among these are genes related to biosynthesis of phytochemicals
in plants [110]. SA, JA and MeJA serve as signaling molecules induced by pathogen infestation [24]
and mechanical wounding [56]. Treatment of Brassicaceae plants with these elicitors can stimulate
the increase of glucosinolate content. Baenas et al., (2014), reported that MeJA elicitor (25 pM) was
highly effective to increase the total glucosinolates in 5 different 8-day-old Brassica and Raphanus
sprouts, specially, the concentration of the health-promoting glucoraphanin and glucoraphenin
by 50% [52].

The individual classes of glucosinolates respond differently to the elicitor treatment. Treatment
with SA and MeJA increased the total amount of glucosinolates, particularly levels of aromatic and
indole glucosinolates, in secondary roots of turnip, in contrast, SA or MeJA either reduced or did not
affect the levels of aliphatic glucosinolates [111]. Kiddle ef al. reported that JA induces mainly indole
glucosinolates in leaves, and the intensity of this “induction” depended on the JA concentration
applied and the age of the leaf, retaining developing leaves higher levels than mature leaves [112].

Examples of biotic and abiotic elicitors affecting glucosinolates are showed in Table 3.

Table 3. Glucosinolates increased by elicitors.

Target Compounds

Plant Food Elicitor Treatment Application Class and Fold Increase Reference
Brassica JA spray (5 nmol) Topically 3-indolylmethyl GLS [56]
7-day-old sprouts (6-fold) in B. napus;
cotyledons and 4-hydroxy-3-indolylmethyl
leaves GLS (9-fold) in B. rapa;
both indole GLS
(2-fold) in B. juncea
Turnip root MeJa (130 uM) Added in the Indole GLS (4-fold) [113]
exudates hydroponic system
for 10 days
Broceoli sprouts  Sucrose (146 mM) In 0.5% agar Total GLS (2-fold) [55]
media for 5 days
after sowing seeds
Broccoli 1. Methionine (5 mM)  Daily exogenous 1. Aliphatic GLS (30%) [25]
7-day-old sprouts 2. Tryptophan (10 mM) spraying during 2. Indole GLS (80%)
3. SA (100 upM) 3, 5 and 7 days 3. Indole GLS (30%)
4. MeJA (25 uM) 4. Indole GLS (50%)
Radish, chinese Glucose (5 g/100 mL) Hydroponic Gluconapin (150% and [53]
kale and pak choi system for 3 days ~ 60% in Chinese kale and

3-day-old sprouts

after sowing seeds

pak choi, respectively)
Glucobrassicanapin
(110-fold in pak choi)
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Table 3. Cont.
o _— Target Compounds
Plant Food Elicitor Treatment Application Clasgs grie] Fol: i s Reference
Sauerkraut 0.5%NaCland 0.3 mg  Added to fresh Indole GLS hydrolysis [114]
(B. oleracea L. of sodium selenite/kg cabbage before products (indole-3-
var. capitata) fermentation carbinol and indole-3-
acetonitrile in 70% and
10%, respectively)
Radish sprouts NacCl (100 mM) In 0.5% agar Total GLS (50% and [100]
media for 3, 5and  120% in 5 and 7-days-old
7 days after sprouts, respectively)
sowing seeds
Brassica MeJA (25 pM) Sprayed for 5 days Total GLS [52]
8-day-old JA (150 uM) before harvest Broccoli: >50%
sprotuts Sucrose (146 mM) Turnip: >20%
Rutabaga: >100%
Raphanus MelJA (25 pM) Sprayed for 5 days  Total GLS: > 20% [52]
8-day-old SA (100 uM) before harvest
sprotuts Glucose (277 mM)
Broccoli Sucrose and mannitol Hydroponic Total GLS: > 50% [101]
7-day-old (176 mM) system for 5 days
sprouts after sowing seeds
Broccoli florets Ethanol evaporated 6 h after harvested  Total GLS: > 50% [115]
(500 pL/L)
Broccoli florets MeJA spray (250 uM) Aerial portions Indolyl GLS: > 30% [91,116]

twice per week
from flowering to
head formation

4.3. Carotenoids and Betalains

Over the past few years, there has been a surge in interest in fat-soluble compounds, such a
carotenoids, and water-soluble compounds, such as betalains, due to their beneficial effects on human
health [117]. Carotenoids were initially described as playing a role in the protection against photo-
oxidative processes, and they have been extensively studied for the prevention of cancers and
cardiovascular diseases and for their photoprotective properties [118].

Tomato fruits cv. Liberto were subjected to UV-B radiation before harvest with an UV-B
dosage of 0.075 and 0.15 Wh m  after different adaptation times of 22 and 44 h, the concentrations of
carotenoids, lycopene and B-carotene, in ripe tomato fruits were higher increased by an UV-B dosage
of 0.075 Wh m? after 22 h of adaptation time [119].

Betacyanins (red-violet pigments) and betaxanthins (yellow pigments) are a group of chromoalkaloids
known as betalains presents in Caryophyllales. Interest in betalains is determined by their antiradical
activity and their use as additives for food, drugs and cosmetic products. Hydrogen peroxide treatment
(sprayed and infliltrated with 0.1%, 0.33% and 1% H,0,) led to a significant betacyanin accumulation
in Suaeda salsa L. sprouts, the oxidative stress signal leading to betacyanin production, may be
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perceived by roots initially, then was transferred to leaves and the signal transduction was performed
as betacyanin accumulation induced in leaves [120]. The increase in the microelement Co>" from
1-5 uM also resulted in an 60% increment on the production of betalains, however, Mo™", Fe*" and
Cu®" presented a positive (10% increment) but less marked effect, while the increase of Mn®" did not
show effects on the production of betalains compared to control medium [121].

4.4. Nutrients with Biological Activity

Elicitation of plants has been studied not only to improve the nutraceutical potential of low-processed
food, but also the nutritional value (content of vitamins, bioactive peptides and carbohydrates). Vitamins
are vital nutrients required by organisms. Vitamin A is essential for normal cell growth, immunological
functions and vision, and is found in foods in the form of provitamin-A [122]. Vitamin E, with the
a-tocopherol form being the most active in humans, is considered to be one of the most potent lipid-
soluble antioxidants 77 vivo [123]. Folate (a collective term used for folic acid and its derivatives) is an
important component of vitamin B, which is involved in a number of cellular metabolic processes,
mainly playing a role as co-factor in the synthesis of nucleic acids, amino acids, pantothenate and
formyl methionine-transfer RNAs [124]. Most recent evidence from a population-based cohort study in
Europe lends further support to the notion that an increased intake of folate from food sources, may be
associated with a lower risk of pancreatic cancer [125]. Vitamin C, including ascorbic acid and
dehydroascorbic acid, is one of the most important nutritional quality factors in many horticultural
crops and has many biological activities in the human body, such as the prevention of scurvy,
reduction of plasma cholesterol level and as antioxidant, reportedly reduces the risk of arteriosclerosis,
cardiovascular diseases and some forms of cancer [126]. Therefore, there is an increasing interest in
fortifying many foods with vitamins.

The content of vitamins in fruits and vegetables can be influenced by various factors such as
genotypic differences, pre-harvest climatic conditions and cultural practices, maturity and harvesting
methods, and postharvest handling procedures [26,127]. Special treatments, including precursor
feeding and elicitor application can be used to increase metabolite production. Foliar application (250 uM)
of MeJA and SA caused rapid 2-fold increase of folate in coriander (Coriandrum sativum) foliage, as
well as, treated plants presented higher stability of folates than untreated foliage, during processing and
storage [124]. The application of 200, 300 uM of SA and 0.01% chitosan induced increases, by 26%,
18% and 54%, respectively in the content of vitamin C in 5 days old broccoli sprouts [25]. Higher
levels of ascorbic acid (in comparison with controls) have been found in 4-day-old lentil sprouts after
elicitation with temperature stresses (4 °C and 40 °C for 1 h) [128]. Broccoli sprouts grown in an
environment chamber with a 16 h light/8 h dark cycle were found to have much higher concentrations
of vitamin C (by 83%) than those grown in the dark [19]. A considerable enhancement on the
production of a-tocopherol was observed after the administration of 5 uM JA or by hypoxic conditions
both in sunflower and Arabidopsis thaliana cell cultures [26]. Folic acid and vitamin C have been also
used as exogenous growth enhancers to elicit pea (Pisum sativum) seedling vigour and phenolic
content. Concentration of 50 uM folic acid and 500 uM vitamin C were optimum to both agronomic
and biochemical seed vigour parameters, as well as, the levels of enhanced phenolic content, which
were highest on days 8 and 10 of germinating seeds [98].
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The starch content has been influenced in lentil sprouts after different germination conditions
(elicitation by solution with 100 and 300 mM NaCl), being reduced by 50%, as well as the in vitro
digestibility and predicted glycemic index of sprouts [129]. Also a decrease in total starch, high
content of resistant starch and low starch bioaccessibility, a decrease in protein content and subsequent
elevation of non-protein nitrogen fraction was reported in lentil sprouts after a elicitation treatment
with H,O, [130].

Food-derived bioactive peptides may have regulatory functions in the human system beyond normal
and adequate nutrition (such as antimicrobial properties, blood pressure-lowering (ACE inhibitory)
effects, cholesterol-lowering ability, antioxidant activities, efc.) [131]. As an example, some soy peptides
induced the expression of defense genes implicated in phytoalexin production and pathogen defense
after treatment of the aerial portion of soybean plants with hormones involved in elicitation [132].

Mineral content also could be affected by elicitation. Salicylic acid (0.5 mM) completely alleviated
the negative effects of mustard plants growth under NaCl stress, increasing the uptake of major
nutrients such as nitrogen, phosphorus, potassium and calcium [133]. The use of elicitation, based on
natural defence mechanisms of plants, allowed the differentiation of food products and production of
directed food designed for specific consumer groups (e.g., diabetics, the overweight, Alzheimer’s and

cardiovascular disease sufferers, among others).
S. Future Trends

The controlled short-time elicitation stresses, during the pre-harvest and post-harvest period, can be
used as a tool by the fresh produce industry to obtain healthier products by enhancing their
nutraceutical content. Similarly, controlled treatments can be utilized by the food processing and
dietary supplement industry as tools to enhance the extractable yields of specific active compounds
that have nutraceutical or other functional properties.

Interest in functional foods has been growing over the last decade as consumers become
increasingly concerned with diet and nutrition. The industry continues to seek new and unique
ingredient and health claims, making the idea of developing more functional food quite compelling. A
special emphasis is placed on the biologically active compounds or groups of compounds responsible
for the therapeutic applications, and their action mechanisms. Also, the quality and safety regulation of
functional products should be established in food industry. Thus, elicitors may be a complementary
strategy to breeding programs, production management, or genetic engineering activities. Understanding
the interaction among stressors will make possible to find practical applications.

On the other hand, studying elicitor-activated signaling pathways with the purpose of identified
signaling components, should be an efficient strategy for activating defense responses in the plant,
in order to replace or reduce chemical applications to protect crops [45,110]. .

For new or enhanced plant products, it would be appropriate and unavailable the evaluation of
functional properties to demonstrate the potential to obtain safe and effective non-pharmacological
alternatives for human health. This may provide a new approach for disease prevention and population
wellbeing monitored in clinical trials [134].
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6. Conclusions

Understanding how plant tissues and their specific secondary metabolic pathways respond to
different abiotic and biotic stresses, applied alone or in combinations, would be the basis for designing
strategies to enhance phytochemicals in foods. The accurate determination of the effect, driven by the
use of the distinct elicitors applied in selected time points of the plant growth, may allow strategies and
tools to obtain tailored foods with enhanced health-promoting phytochemicals [69]. The resulting
products and ingredients could be considered for functional foods or nutraceutical development that
will provide benefits beyond basic nutrition and/or claims for health benefits.
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