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In this paper we propose robust efficiency scores for the scenario in which the specification of the in- 

puts/outputs to be included in the DEA model is modelled with a probability distribution. This probabilis- 

tic approach allows us to obtain three different robust efficiency scores: the Conditional Expected Score, 

the Unconditional Expected Score and the Expected score under the assumption of Maximum Entropy 

principle. The calculation of the three efficiency scores involves the resolution of an exponential num- 

ber of linear problems. The algorithm presented in this paper allows to solve over 200 millions of linear 

problems in an affordable time when considering up 20 inputs/outputs and 200 DMUs. The approach 

proposed is illustrated with an application to the assessment of professional tennis players. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Data Envelopment Analysis (DEA), as introduced in Charnes,

ooper, and Rhodes (1978) , assesses relative efficiency of decision

aking units (DMUs) involved in production processes. DEA mod-

ls provide efficiency scores of the DMUs in the form of a weighted

um of outputs to a weighted sum of inputs. These scores are the

esult of an evaluation of each unit within a technology which is

mpirically constructed from the observations by assuming some

ostulates such as convexity, constant or variable returns to scale

nd free disposability. The selection of the inputs and outputs to

e considered in the analysis provides a description of the under-

ying technology, thus becoming one of the key issues of model

pecification in DEA. In practical applications, the prior knowl-

dge and experience may lead the analyst to select some vari-

bles considered as essential to represent this technology. How-

ver, as discussed in Pastor, Ruiz, and Sirvent (2002) , there are

ften other variables whose inclusion in the model the analyst is

ot always sure about. This situation can be addressed in differ-

nt ways. The methods for the selection of variables constitute an

mportant body of research to deal with this issue. The idea is to

omplement the prior knowledge and experience with information

rovided by the data, so that these methods may help make a de-

ision about the candidate variables. In this line, the F-tests devel-
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ped by Banker (1993, 1996) and those in Pastor, Ruiz, and Sirvent

2002) allow to statistically evaluating the role of inputs/outputs.

hese tests are empirically analyzed (and compared among them-

elves) with simulations in Sirvent, Ruiz, Borras, and Pastor (2005) .

ee also Natajara and Johnson (2011) , which provides comparisons

etween some of the methods widely used to guide variable selec-

ion: the tests in Pastor, Ruiz, and Sirvent (2002) , Principal Compo-

ent Analysis (PCA-DEA), regression-based tests and bootstrapping.

o the same end, Wagner and Shimshak (2007) propose a stepwise

pproach. In Li, Shi, Yang, and Liang (2016) it is proposed a method

ased on the Akaike’ information criteria (AIC), which mainly fo-

uses on assessing the importance of subset of original variables

ather than testing the marginal role of variables one by one as in

any other methods. 

Correlation either between efficiency scores and variables (for

heir incorporation into the model) or between variables (in or-

er to remove redundant factors) has also been used for the selec-

ion of variables, although it has been widely deemed as a criterion

f limited value. See Jenkins and Anderson (2017) for discussions.

his latter paper proposes instead an approach based on partial

ovariance. Eskelinen (2017) compares the approach in Jenkins and

nderson (2017) with that in Pastor, Ruiz, and Sirvent (2002) in an

mpirical retail bank context. Unlike previous research, Edirisinghe

nd Zhang (2010) develop a method for the selection of variables

hat employs a reward variable observed exogenous to the opera-

ion of DMUs. See also Luo, Bi, and Liang (2012) , which uses the

oncept of cash value added (CVA) for choosing variables. 

A different approach, which is the one we follow in the present

aper, is based on efficiency scores which are robust against the

election of the variables, while at the same time taking into

ccount the inherent uncertainty on the inclusion of some in-
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puts/outputs in the models. In the literature, some authors have

undertaken some exploratory work to examine the robustness of

results as they relate to the production function specification. Roll,

Golany, and Seroussy (1989) present one such study in which ten

different combinations of outputs are tried out with three inputs

to evaluate the efficiency of maintenance units in the Israeli Air

Force; Valdmanis (1992) tests ten different specifications of a hos-

pital efficiency model, and Ahn, Seiford, and Ijiri (1993) test four

different variable sets for each of the DEA models considered in

their study on higher education sector efficiency. For his part,

Smith (1997) investigates the implications of model misspecifica-

tion by means of a simulation study. See also Galagedera and Silva-

pulle (2003) for another simulation study with large sample which,

in particular, analyze the effects of omission of relevant input and

inclusion of irrelevant input variables on technical efficiency esti-

mates. 

The approach we propose goes one step further than the ex-

ploratory work done in the papers just mentioned, in the sense

that we not only examine the efficiency scores that result from

several combinations of inputs and outputs but we take into ac-

count all the scenarios associated with all of the specifications of

inputs and outputs that could be considered once a given set of

candidate variables is determined. In addition, we allow for the

uncertainty regarding the inclusion of variables in the DEA models.

The idea is the following: The inclusion of an input/output in the

set of selected variables is modelized here through the probability

of that variable being considered in the DEA model. For example, if

such probability is 0.8, this could be interpreted as saying that 80%

of experts would include the corresponding variable in the DEA

model. As a result, each specification of the inputs and outputs

to be included in the DEA model has a probability of occurrence

and, therefore, the efficiency score of a DMU would be a random

variable, which takes as values the DEA efficiency scores associated

with each specification of inputs and outputs with some probabil-

ity. The robust efficiency score of a given DMU is then defined as

the expected value of that random variable. 

The consideration of all combinations of inputs/outputs gives

rise to an exponential number of problems that must be solved.

To solve such large number of problems, an efficient algorithm is

needed. In this paper an exact algorithm is developed, which al-

lows us to solve over 200 millions of linear problems when consid-

ering up 20 inputs/outputs and 200 DMU’s. This algorithm reduces

the time and the number of problems to solve in half, approxi-

mately. 

We illustrate the use of the proposed approach with an appli-

cation to the assessment of professional tennis players. The Asso-

ciation of Tennis Professionals (ATP) assesses players through the

points earned in the different tournaments they play during the

season. Therefore, ATP assesses the competitive performance of

players. However, ATP also provides statistics regarding their game

performance. For instance, its official webpage reports data regard-

ing 9 game factors such as the percentage of 1st serve points won

or the percentage of return games won. Obviously, it would be in-

teresting to have available an index of the game overall perfor-

mance of players that aggregates into a single scalar the infor-

mation provided by the statistics of the factors that are consid-

ered. The DEA approach we propose provides a score of the player

game performance which is robust against the selection of game

factors that is considered for the analysis. Ruiz, Pastor, and Pas-

tor (2013) also deal with the assessment of game performance of

tennis players, but with an approach based on the cross-efficiency

evaluation that consider all of the 9 game factors available in the

ATP statistics. 

The paper is organized as follows: In Section 2 a short intro-

duction of DEA, through the original CCR (Charnes, Cooper and

Rhodes) model, is presented. In Section 3 we define the robust ef-
ciency score, and Section 4 presents three robust DEA efficiency

cores for a probabilistic specification of the inputs and outputs.

he exact solution algorithm used for the calculation of the robust

cores is described in Section 5 . In Section 6 the proposed algo-

ithm is used for obtaining the robust scores in a case study. Fi-

ally, some conclusions and outlines for future work are given in

ection 7 . 

. DEA efficiency scores 

In a DEA efficiency analysis, we have n DMUs which use m in-

uts to produce s outputs. Each DMU j can be described by means

f the vector (X j , Y j ) = (x 1 j , . . . , x m j , y 1 j , . . . , y s j ) , j = 1 , . . . , n. 

As said before, the DEA models assess efficiency with reference

o an empirical technology or production possibility set which is

onstructed from the observations by assuming some postulates.

or instance, if we assume convexity, constant returns to scale, and

ree disposability (which means that if we can produce Y with X ,

hen we can both produce less than Y with X and Y with more than

 ), then it can be shown that the technology can be characterized

s the set T = { (X, Y ) ∈ R 

m + s 
+ / X ≥ ∑ n 

j=1 λ j X j , Y ≤ ∑ n 
j=1 λ j Y j , λ j ≥

 , j = 1 , · · · , n } . The original DEA model by Charnes, Cooper, and

hodes (1978) , the CCR model, provides as measure of the relative

fficiency of a given DMU 0 the minimum value θ0 such that ( θ0 X 0 ,

 0 ) ∈ T . Therefore, this value can obviously be obtained by solving

he following linear programming problem. 

min θ0 

s.t. 

n ∑ 

j=1 

λ j x i j ≤ θ0 x i 0 , i = 1 , . . . , m 

n ∑ 

j=1 

λ j y r j ≥ y r0 , r = 1 , . . . , s 

λ j ≥ 0 , ∀ j 

(1)

hich is the so-called primal envelopment formulation of the CCR

odel. Thus, DMU 0 is said to be efficient if, and only if, its ef-

ciency score equals 1. Otherwise, it is inefficient, and the lower

he efficiency score, the lesser its efficiency. The model in Banker,

harnes, and Cooper (1984) , the so-called BCC model, is that re-

ulting from eliminating the constant returns to scale postulate

nd allowing for variable returns to scale in the production pos-

ibility set. Its formulation is the linear problem resulting from

dding the constraint 
∑ n 

j=1 λ j = 1 to (1) . 

. Robust DEA efficiency scores: a probabilistic approach 

Throughout the paper we suppose that we have a set of can-

idate variables to be included in the efficiency model (1) , C =
 z 1 , . . . , z q } , which can be either inputs or outputs. It is assumed

hat the probability of including in (1) a given candidate variable,

ay z c , is p c . Thus, the inclusion of each of the variables in C into

1) can be determined by means of some independent random

ariables B c distributed Bernoulli, Be ( p c ), c = 1 , . . . , q . As a result,

ll the scenarios associated with all the possible specifications of

1) are determined by the random vector B = (B 1 , . . . , B q ) . If we

enote by p = (p 1 , . . . , p q ) , then the probability distribution of B

s 

 p (B = b) = 

q ∏ 

c=1 

p b c c (1 − p c ) 
(1 −b c ) b = (b 1 , . . . , b q ) ∈ { 0 , 1 } q . 

Let θb 
0 

be the efficiency score of DMU 0 provided by (1) when

he specification of the model is determined by b ∈ {0, 1} q . We

enote by �0 the random variable which takes the value θb . Then,

0 
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Fig. 1. Enumeration tree. 
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he expected efficiency score of DMU 0 is 

 p (�0 ) = 

∑ 

b∈{ 0 , 1 } q 

( 

q ∏ 

c=1 

p b c c (1 − p c ) 
(1 −b c ) 

) 

θ b 
0 (2) 

For consistency, we define θb=(0 , ... , 0) 
0 

= 1 , i.e, we assume that

ll DMUs are efficient when the input/output set is empty. The

alue of θb=(0 , ... , 0) 
0 

is not relevant to compare the expected effi-

iency scores between DMUs, because θb=(0 , ... , 0) 
0 

is the same con-

tant for all of them. 

These expected values can be seen as DEA efficiency scores

hich are robust against the selection of variables that is made

or the efficiency model. 

. The specification of p 

The key for obtaining the expected efficiency scores (2) is in

he specification of p . Three different approaches to deal with this

ssue are proposed below. 

.1. Using expert opinion 

The probability of selection of candidate variables can be deter-

ined by using information from experts, if available. The values

p ′ c s can be set reflecting the personal belief of a given expert re-

arding the importance to be attached to the corresponding vari-

bles z ′ c s in the underlying production process. Alternatively, these

robabilities can be estimated. If several experts are asked to give

heir opinion about whether or not to include a given z c in (1) (in

resence of the remaining variables), then the proportion of those

n favor of such inclusion provides an estimation of p c . 

.2. Maximizing the entropy 

The definition of entropy was introduced by Shannon (1948) . In

he probabilistic context, the entropy H ( p ) is a measure of the in-

ormation provided by p , where high values of entropy corresponds

o less information o more uncertainty, i.e., the maximum principle

ntropy is used in Statistics to obtain a value for the parameters

ith the least informative distribution assumptions. If information

rom experts is not available and the probabilities of selection of

andidate variables are unknown, we can obtain the value of p that

aximizes the entropy in the context of the approach previously

et out for providing robust DEA efficiency scores. 

The Entropy function associated with the discrete random vari-

ble �0 is: 

(p) = −
∑ 

b∈{ 0 , 1 } q 
P p (�0 = θ b 

0 ) log (P p (�0 = θ b 
0 )) 

here P p (�0 = θb 
0 
) = 

∏ q 
c=1 

p b c c (1 − p c ) 
(1 −b c ) . 

emma 4.1 ( Guiasu and Shenitzer (1985) and conrad ) . Suppose that

 random variable X takes exactly � values with positive probability.

hen H ( X ) ≤ log � . 

roposition 4.1. The entropy function associated with �0 has a

aximum in the probability vector p ∗ = (1 / 2 , . . . , 1 / 2) . That is, H ( p )

H ( p ∗) for all p . 

roof. Applying Lemma 4.1 , it is sufficient to prove that H(p ∗) =
og 2 q , because 2 q is the number of possible realizations of variable

0 (that is, the number of scenarios determined by all the possible

elections of inputs/outputs). 

Since P p ∗ (�0 = θb 
0 
) = 

∏ b 
c=1 

(
1 
2 

)b c ( 1 
2 

)(1 −b c ) = 

1 
2 b 

, then 

H(p ∗) = −∑ 

b∈{ 0 , 1 } q 1 
2 q 

log ( 1 
2 q 

) = 2 q 1 
2 q 

log (2 q ) = log (2 q ) . �
orollary 4.1. The maximum entropy expected efficiency score is 

 

e (�0 ) = 

1 

2 

q 

∑ 

b∈{ 0 , 1 } q 
θ b 

0 (3) 

roof. The score (3) is simply the result of calculating (2) with p =
(1 / 2 , . . . , 1 / 2) . �

This corollary shows that the average of efficiency scores across

ll the scenarios resulting from all the specifications of model (1) is

he one associated with the specification of p that maximizes the

ntropy. 

.3. A Bayesian approach 

In this subsection we develop a Bayesian approach as an alter-

ative for the specification of p when it is unknown. This means

hat the probabilities of selection of candidate variables are as-

umed to be random variables in [0, 1]. Denote by P = (P 1 , . . . , P q )

he random vector consisting of the independent random variables

ssociated with the probability of selection of each of the candi-

ates. Let f be the joint probability density function of P, which

an be expressed as f (p) = 

∏ q 
c=1 

f c (p c ) , p = (p 1 , . . . , p q ) ∈ [0 , 1] q ,

 c being the probability density function of P c , c = 1 , . . . , q . 

We need to introduce the following two elements for the sub-

equent developments 

efinition 4.1. The unconditional probability function of �0 is de-

ned as 

 (�0 = θ b 
0 ) = 

∫ 
p ∈ [0 , 1] q 

P (�0 = θ b 
0 | P = p) f (p) d p (4) 

Alternatively, the unconditional probability function of �0 can

e reexpressed as 

 (�0 = θ b 
0 ) = E 

[
P (�0 = θ b 

0 | P) 
]

(5) 

That is, P (�0 = θb 
0 
) can be seen as the expected conditional

robability to p. 

efinition 4.2. The unconditional expected efficiency score of �0 

s defined as 

(�0 ) = 

∑ 

b∈{ 0 , 1 } q 
θ b 

0 P (�0 = θ b 
0 ) (6) 

The following two propositions hold 

roposition 4.2. E(�0 ) = E [ E(�0 | P) ] 

roof. It follows directly from (6) . �

roposition 4.3. E(�0 ) = 

∑ 

b∈{ 0 , 1 } q E 
[
P (�0 = θb 

0 
| P) 

]
θb 

0 

roof. It follows directly from (5) . �

In a Bayesian approach, the probabilities are often assumed to

ollow a beta distribution. In that case, the unconditional expected

fficiency score is the following 
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Fig. 2. Enumeration tree algorithm. 
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Proposition 4.4. If P c follows a beta distibution, β( αc , γ c ), c =
1 , . . . , q, then 

E β (�0 ) = 

∑ 

b∈{ 0 , 1 } q 

∏ q 
c=1 

αb c 
c 

∏ q 
c=1 

γ 1 −b c 
c ∏ q 

c=1 
(αc + γc ) 

θ b 
0 (7)

Proof. 

P (�0 = θ b 
0 ) = 

∫ 
p ∈ [0 , 1] q 

P (�0 = θ b 
0 | P = p) f (p) d p 

= 

∫ 1 

0 

· · ·
∫ 1 

0 

q ∏ 

c=1 

p 

b c 
t (1 − p t ) 

(1 −b c ) 

× 	(αc + γc ) 

	(αc )	(γc ) 
p 

αc −1 
t (1 − p t ) 

γc −1 d p 1 · · · d p q 

= 

∫ 1 

0 

· · ·
∫ 1 

0 

q ∏ 

c=1 

p 

αc + b c −1 
t (1 − p t ) 

(γc −b c ) 
	(αc + γc ) 

	(αc )	(γc ) 
d p 1 · · · d p q 

= 

∫ 1 

0 

· · ·
∫ 1 

0 

q ∏ 

c=2 

p 

αc + b c −1 
t (1 − p t ) 

(γc −b c ) 
	(αc + γc ) 

	(αc )	(γc ) 
·
(∫ 1 

0 

p 

α1 + b 1 −1 
1 

(1 − p 1 ) 
(γ1 −b 1 ) 

	(a 1 + b 1 ) 

	(a 1 )	(b 1 ) 
d p 1 

)
d p 2 · · · d p q

= 

αb 1 
1 

γ 1 −b 1 
1 

α1 + γ1 

∫ 1 

0 

· · ·
∫ 1 

0 

q ∏ 

c=2 

p 

αc + b c −1 
t (1 − p t ) 

(γc −b c ) 

× 	(αc + γc ) 

	(αc )	(γc ) 
d p 2 · · · d p q = 

∏ q 
c=1 

αb c 
c 

∏ q 
c=1 

γ 1 −b c 
c ∏ q 

c=1 
(αc + γc ) 

 β (�0 ) = 

∑ 

b∈{ 0 , 1 } q 
E 
[
P (�0 = θ b 

0 | P) 
]
θ b 

0 = 

∑ 

b∈{ 0 , 1 } q 

q ∏ 

c=1 

αb c 
c 

q ∏ 

c=1 

γ 1 −b c 
c 

q ∏ 

c=1 

(αc + γc ) 

θ b
0

�

The uniform distribution is a particular case of the beta. Specif-

cally, U[0 , 1] = β(1 , 1) . 
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Table 1 

Computational results for a big random data. 

N DMU |C| Algorithm Reduction Total 

time N.Prob % time % N.Prob time N.Prob 

25 5 0.01 587 50% 76% 0.02 775 

25 10 0.21 16,529 60% 65% 0.35 25,575 

25 15 5.75 397,900 52% 49% 11.08 819,175 

25 20 132.00 7,190,698 42% 27% 317.47 26,214,375 

50 5 0.03 1,262 75% 81% 0.04 1,550 

50 10 0.51 38,923 55% 76% 0.92 51,150 

50 15 16.30 1,050,132 48% 64% 33.97 1,638,350 

50 20 400.63 22,374,653 44% 43% 901.38 52,428,750 

100 5 0.05 2,012 63% 65% 0.08 3,100 

100 10 1.51 82,954 55% 81% 2.74 102,300 

100 15 46.15 2,175,660 49% 66% 94.12 3,276,700 

100 20 1,095.13 52,321,522 44% 50% 2,480.91 104,857,500 

200 5 0.14 4,461 67% 72% 0.21 6,200 

200 10 4.41 167,624 53% 82% 8.26 204,600 

200 15 139.27 4,553,112 49% 69% 285.63 6,553,400 

200 20 4,498.19 108,572,383 49% 52% 9,118.91 209,715,0 0 0 

Table 2 

Output summary. 

OUTPUTS 

y 1 = percentage of 1st serve 

y 2 = percentage of 1st serve points won 

y 3 = percentage of 2nd serve points won 

y 4 = percentage of service games won 

y 5 = percentage of break points saved 

y 6 = percentage of points won returning 1st serve 

y 7 = percentage of points won returning 2nd serve 

y 8 = percentage of break points converted 

y 9 = percentage of return games won 
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orollary 4.2. If P is a random vector consisting of independent ran-

om variables distributed U[0, 1], then 

 U (�0 ) = 

1 

2 

q 

∑ 

b∈{ 0 , 1 } q 
θ b 

0 (8) 

Note that in this case the unconditional expected efficiency score

s again the average of efficiency scores across all the scenarios re-

ulting from all the specifications of model (1) , like the maximum

ntropy expected efficiency score . 

It can also be considered the case in which we do not distin-

uish between the probabilities of selection associated with all the

andidate variables. If we assume P 1 = · · · = P q = P to follow a dis-

ribution U [0, 1], and we denote by E U (�0 ) the unconditional ex-

ected efficiency score in that case, then (4.2) and (4.3) become in

he unconditional expected efficiency score presented in the next

esults: 

orollary 4.3. If P 1 = · · · = P q = P follows an uniform distribution

 [0, 1], then the unconditional expected score of �0 , E U (�0 
) , is the

xpected of the conditional expected score E(�
0 
| P) . 

 U (�0 ) = 

∫ 1 

0 

E p (�0 ) d p (9) 

roof. See Proposition 4.2 . �
orollary 4.4. The unconditional expected score of �0 , E U (�0 ) , is

iven by : 

 U (�0 )= 

1 

q + 1 

∑ 

b∈{ 0 , 1 } q 
1 (
q ∑ 

c b c 

) θ b 
0 = 

1 

q + 1 

q ∑ 

i =0 

⎛ 

⎜ ⎜ ⎝ 

∑ 

b∈{ 0 , 1 } q ∑ 

c b c = i 

1 (
q 

i 

) θ b 
0 

⎞
⎟⎟⎠

(10) 

roof. See Proposition 4.3 . �

Note that in this case the weight attached to each score θb 
0 

de-

ends on the 1-norm of b . It exists a relationship between the

robability P 1 = · · · = P q = P and the probability of each subset of

when the value of the 1-norm of b is fixed. The unconditional

fficiency expected score E U (�0 ) is the weighted average of effi-

iency scores where the weight attached to each of them is given

y the number of all specifications with the same number of in-

uts/outputs. 

.4. Summing up 

To end this section, we summarize the results obtained. We

ave proposed a probabilistic/combinatorial approach that provides

EA efficiency scores which are robust against the selection of in-

uts/outputs to be included in the model. This approach considers

ll the scenarios associated with the possible specifications of the

EA model together with their probabilities. The key is obviously

n the specification of such probabilities. If they can be set by using

xpert opinions, then the DEA efficiency scores will be obtained as

n (2) . Otherwise, if information from experts is not available, then

n interesting choice is 1 
2 q 

∑ 

b∈{ 0 , 1 } q θb 
0 
, that is, the average of DEA

fficiency scores across all the scenarios. The developments have

hown that this score is that which results both when p is set by

aximizing the entropy and when a Bayesian approach is adopted

y assuming the probabilities of selection of candidates as inde-

endent random variables distributed uniform in U [0, 1]. In partic-

lar, the entropy is maximized when the probabilities of selection

f candidates are all equal to one half. Having a look at (9) , we re-

lize that E U (�0 
) somehow summarizes the values E p (�0 ) across

he different values of a common p (with p = 1 / 2 among them). 

. Algorithm 

In order to compute the efficiency scores we have defined for

ach subset of inputs/outputs b ∈ {0, 1} q and for each DMU, we
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Table 3 

Data (Source: http://www.atpworldtour.com/ ). 

ATP Player OUTPUTS 

Ranking y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 

1 Novak Djokovic 67 75 56 88 63 33 58 45 33 

2 Roger Federer 64 79 58 91 71 32 51 39 26 

3 Rafael Nadal 70 72 55 85 66 35 56 48 35 

4 Stan Wawrinka 55 79 54 86 61 29 50 42 22 

5 Kei Nishikori 60 73 54 84 64 30 53 42 28 

6 Andy Murray 60 74 51 81 61 33 55 44 32 

7 Tomas Berdych 58 78 54 86 63 30 54 39 25 

8 Milos Raonic 61 83 54 90 69 27 45 39 16 

9 Marin Cilic 57 79 50 85 66 30 50 37 22 

10 David Ferrer 63 69 52 79 62 34 56 43 33 

11 Grigor Dimitrov 61 77 54 86 64 29 50 42 22 

12 Jo-Wilfried Tsonga 62 77 54 87 70 29 45 39 18 

13 Ernests Gulbis 60 78 51 85 64 29 50 40 21 

14 Feliciano Lopez 60 78 53 86 69 25 45 34 15 

15 Roberto Bautista Agut 69 70 53 81 65 31 53 43 26 

16 Kevin Anderson 66 75 51 86 69 26 48 35 18 

17 Tommy Robredo 64 74 54 85 64 29 49 37 21 

18 Gael Monfils 65 73 50 82 62 34 50 40 27 

19 John Isner 68 79 57 93 75 24 42 24 9 

20 Fabio Fognini 59 69 48 73 56 32 51 43 27 

21 Gilles Simon 56 71 51 78 63 31 53 45 26 

23 Alexandr Dolgopolov 55 75 52 82 62 30 51 38 23 

24 Philipp Kohlschreiber 59 73 56 84 62 29 50 43 23 

25 Julien Benneteau 64 72 50 82 63 28 49 37 21 

26 Richard Gasquet 65 73 56 84 59 28 50 38 21 

28 Leonardo Mayer 60 75 54 82 61 29 49 38 19 

29 Jeremy Chardy 59 77 50 82 63 27 50 39 19 

31 Lukas Rosol 57 72 50 78 60 27 47 41 17 

32 Santiago Giraldo 63 70 50 78 63 30 49 42 23 

33 Fernando Verdasco 66 72 51 82 66 30 49 39 22 

35 Sam Querrey 61 79 52 87 67 26 46 37 16 

36 Guillermo Garcia-Lopez 57 69 48 74 58 32 50 40 26 

38 Yen-Hsun Lu 64 71 52 80 66 26 51 41 21 

39 Dominic Thiem 58 71 51 77 60 29 50 37 22 

40 Benjamin Becker 59 74 49 79 60 27 49 37 20 

41 Pablo Andujar 66 64 52 73 57 32 53 42 29 

42 Jack Sock 59 76 54 86 69 25 47 42 19 

43 Jerzy Janowicz 60 74 47 79 60 27 48 39 18 

45 Andreas Seppi 57 70 52 77 64 31 49 37 22 

46 Marcel Granollers 61 69 48 73 54 29 49 40 23 

49 Denis Istomin 68 72 51 81 63 27 48 40 19 

54 Joao Sousa 60 67 48 72 61 29 46 38 19 

60 Federico Delbonis 62 71 53 81 63 27 49 36 18 

73 Jarkko Nieminen 65 70 49 77 58 26 52 38 20 

75 Marinko Matosevic 59 71 49 76 63 28 50 38 20 

87 Edouard Roger-Vasselin 67 70 51 82 68 26 48 37 18 
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need to solve (2 q − 1) · n problems, where n is the number of

DMUs to evaluate. To represent the subsets of C, we consider that

C is ordered and use a list of q binary numbers. If q = 4 , the num-

ber 1001 represents the subset with the first and the last elements

of the ordered set C. 

Fig. 1 shows the exploration tree, where each node in the tree

represents one of the 2 q = 16 problems, and only 4 inputs/outputs

have been considered. Each node is enumerated according to the

order of exploration. For example, node 12 will be explored after

node 11 and corresponds to the computation of the score when

b = { 0101 } . 
In order to reduce the number of problems to calculate, we

propose the following enumeration algorithm for each DMU 0 , see

Fig. 2 . The main contributions of the algorithm are summarized in

three points: 

1. The set of inputs/outputs C is sorted in such a way that the

scores of the first nodes are hopefully large. If an score equals

the upper bound given by θC 
0 

= θb=(1 , ··· , 1) 
0 

, then it is not neces-

sary to continue the exploration. Step 1.3 of the algorithm. 

2. At each iteration, the solver uses the optimal solution of the

ancestor node in the tree as a feasible solution. Each solution
in the exploration tree is a feasible dual solution for the next

problem. Running the dual simplex algorithm with start basic

solution allows to reduce the computational time. Step 3 of the

algorithm. 

3. At each iteration, the resulting score is compared with the score

from set C. If both are equal, the exploration tree is cut. Step 5.1

of the algorithm. 

We have tested the algorithm using randomly generated in-

tances. We have used a uniform distribution in [50, 100] to gen-

rate the inputs/outputs values. The results are shown in Table 1 .

he first two columns are the number of DMUs ( N DMU ), and the

umber of inputs/outputs ( |C| ). The number of DMUs and in-

uts/outputs varies from 25 to 200, and from 5 to 20 respec-

ively. The next block of two columns gives the related elapsed

ime ( time ) in seconds and the number of solved problems by

he algorithm ( N. Prob ). The next two columns report the reduc-

ion in time (% time ) and the reduction in the number of problems

% N. Prob ) comparing the algorithm with the full exhaustive ex-

loration of the tree. Values for the exhaustive exploration are re-

orted in the last two columns. Note that the number of problems

o solve is (2 |C| − 1) ∗ N ( (2 5 − 1) ∗ 25 = 775 , (2 10 − 1) ∗ 25 =
DMU 

http://www.atpworldtour.com/
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Table 4 

Robust efficiency scores reflecting expert opinion. 

ATP p 1 = 0 . 4 ; p 2 = p 3 = p 5 = p 6 = p 7 = p 8 = 0 . 8 ; p 4 = p 9 = 1 . 0 

E p ( �0 ) 
√ 

V p (�0 ) 

1 Novak Djokovic 1.0 0 0 0 0 0.0 0 0 0 0 

2 Roger Federer 1.0 0 0 0 0 0.0 0 0 0 0 

3 Rafael Nadal 1.0 0 0 0 0 0.0 0 0 0 0 

4 Stan Wawrinka 0.99003 0.01369 

5 Kei Nishikori 0.96147 0.00334 

6 Andy Murray 0.98238 0.01122 

7 Tomas Berdych 0.99052 0.01435 

8 Milos Raonic 0.99764 0.00532 

9 Marin Cilic 0.98129 0.01760 

10 David Ferrer 0.98289 0.00957 

11 Grigor Dimitrov 0.98108 0.00579 

12 Jo-Wilfried Tsonga 0.98172 0.01036 

13 Ernests Gulbis 0.97374 0.01300 

14 Feliciano Lopez 0.96362 0.00744 

15 Roberto Bautista Agut 0.97068 0.01465 

16 Kevin Anderson 0.96617 0.00988 

17 Tommy Robredo 0.94801 0.00922 

18 Gael Monfils 0.97947 0.01824 

19 John Isner 1.0 0 0 0 0 0.0 0 0 0 0 

20 Fabio Fognini 0.92927 0.01139 

21 Gilles Simon 0.95820 0.01039 

23 Alexandr Dolgopolov 0.95108 0.01398 

24 Philipp Kohlschreiber 0.98006 0.01537 

25 Julien Benneteau 0.92934 0.01280 

26 Richard Gasquet 0.96783 0.01383 

28 Leonardo Mayer 0.94988 0.00270 

29 Jeremy Chardy 0.95884 0.01904 

31 Lukas Rosol 0.92203 0.01788 

32 Santiago Giraldo 0.92950 0.00862 

33 Fernando Verdasco 0.94870 0.01137 

35 Sam Querrey 0.96701 0.00704 

36 Guillermo Garcia-Lopez 0.92441 0.01561 

38 Yen-Hsun Lu 0.95274 0.01247 

39 Dominic Thiem 0.91262 0.00916 

40 Benjamin Becker 0.92654 0.01875 

41 Pablo Andujar 0.93772 0.00806 

42 Jack Sock 0.98524 0.01606 

43 Jerzy Janowicz 0.92598 0.01701 

45 Andreas Seppi 0.92717 0.00683 

46 Marcel Granollers 0.89783 0.01687 

49 Denis Istomin 0.94533 0.02649 

54 Joao Sousa 0.88430 0.00786 

60 Federico Delbonis 0.92443 0.00748 

73 Jarkko Nieminen 0.92289 0.02003 

75 Marinko Matosevic 0.92032 0.01334 

87 Edouard Roger-Vasselin 0.95572 0.01918 
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5575 , . . . ). In general, the use of the algorithm instead of the ex-

austive enumeration divides the time by two and avoids to solve

ore than half of problems. Nevertheless, we can see in Table 1

hat computational time required by our approach is very low

hen the number of input/output candidates is no larger than 10.

his means that, in many of the situations we usually find in prac-

ice, computational time will not be a limitation in order to yield

obust DEA efficiency scores (and, consequently, in those cases, the

se of the algorithm will not provide any important benefit in

erms of time). 

Our experiment was conducted on a PC with a 2.5 GHz dual-

ore Intel Core i5 processor, 8 Gb of RAM and the operating system

as OS X 10.9. 

. Combinatorial DEA efficiency scores: a case study 

To illustrate the approach proposed, we apply it in an example

n the assessment of profesional tennis players. The Association of

ennis Professionals (ATP) provides statistics of the game perfor-

ance of players, in particular regarding the game factors reported

n Table 2 . Table 3 records the values of those game factors corre-
ponding to the 46 players for whom we have available data for

ll these factors during the 2014 season (the data have taken from

ttp://www.atpworldtour.com/ ). With these 46 players, we have a

ample size large enough so as to avoid problems with the dimen-

ionality of the models used. These game factors are considered

s outputs in the DEA efficiency models used, while we do not

onsider any explicit inputs, since in our analysis there is no ref-

rence to resources consumed. We only include in the models a

ingle constant input equal to 1, which means that every player

s doing the best for playing his game. Thus, we will be actually

valuating the effectiveness of player game performance instead of

fficiency. It should also be noted that, in the case of having one

onstant input, the optimal solutions of (1) satisfy the condition
 n 
j=1 λ j = 1 . Therefore, in these special circumstances, the speci-

cation of returns to scale is not particularly relevant (see Lovell

nd Pastor (1995, 1999) for details and discussions). 

We present the results obtained by distinguishing between

hether information from experts is available or not. 

Suppose that some experts are asked to give their opinion

bout whether or not to include each of the factors listed in

able 2 in a DEA model aimed at providing measures of effective-

ess of the game performance of players. We might have observed

hat all the experts agree in considering y 4 and y 9 , 80% out of them

ould include y 2 , y 3 , y 5 , y 6 , y 7 and y 8 , while only 40% would be in

avor of incorporating y 1 . This would be showing that the most im-

ortant game factor in the opinion of experts are those that have

o do with winning games ( y 4 and y 9 ), whereas y 1 , which does not

ave a direct influence on the result of the matches, is viewed as a

ess relevant game factor. With such information from experts, the

robabilities of selection of candidates can be estimed as follows:

p 1 = 0 . 4 , p 2 = 0 . 8 , p 3 = 0 . 8 , p 4 = 1 , p 5 = 0 . 8 , p 6 = 0 . 8 , p 7 = 0 . 8 ,

p 8 = 0 . 8 and p 9 = 1 . The efficiency scores (2) associated with that

pecification of the probabilities (together with the corresponding

tandard deviations) are recorded in Table 4 . 

We can see that the top 3 players in the ATP ranking also

chieve the maximum rating when evaluated with the robust DEA

fficiency scores: Djokovic, Federer and Nadal. Note, however, that

sner, which is also scored 1, occupied the 19th position in the

TP ranking. This shows that the assessment of Isner is better

hen game performance instead of competitive performance is

valuated, for this specification of p . In contrast, this analysis re-

eals that other players with lower efficiency scores, like Nishikori

0.961), perform better in competition (he ranked 5th). 

As discussed in Section 4 , if information from experts is not

vailable, the scores E e ( �0 ), which coincide with E U (�0 ) , and the

cores E U (�0 
) may yield useful information. These two scores are

eported in Table 5 , together with the corresponding standard de-

iations (which are somewhat larger than the standard deviations

f the scores in Table 4 . 

As said before, E U (�0 ) somehow summarizes the values

 p (�0 ) across the different values of a common p . Table 6 re-

orts the scores E p (�0 ) for some values of p . This information

an complement that provided by Table 5 . Note, in particular, that

he scores E e ( �0 ) are actually the ones under column p = 0 . 5 in

able 6 . 

Table 5 also shows that the top 3 players of the ATP ranking

re the ones with the larger values of E U (�0 ) : Djokovic (0.9899),

ederer (0.9855) and Nadal (0.9934). In order to provide a graph-

cal display of how the scores change as p varies, we have de-

icted graphically the values in the rows of Table 6 correspond-

ng to these three players ( Fig. 3 ). We can see that Nadal outper-

orms Djokovic and Ferderer irrespective of the value of p . Fre-

uently, the scores E p (�0 ) are larger with p . Note that a low p

mplies a low probability of input/output selection, also for the in-

uts/outputs that may benefit the player under assessment, while

f p is high, the best factors for each player will be in the DEA

http://www.atpworldtour.com/
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Table 5 

Unconditional expected score E U (�0 ) and the maximum entropy expected score E e ( �0 ). 

ATP Player E U (�0 ) 
√ 

V U (�0 
) E e ( �0 ) 

√ 

V e (�
0 
) 

Ranking 

1 Novak Djokovic 0.98992 0.02528 0.99467 0.01571 

2 Roger Federer 0.98550 0.04209 0.99302 0.02649 

3 Rafael Nadal 0.99340 0.02364 0.99739 0.01372 

4 Stan Wawrinka 0.96032 0.06051 0.96259 0.04108 

5 Kei Nishikori 0.95686 0.02159 0.95371 0.01229 

6 Andy Murray 0.96392 0.03703 0.96333 0.02641 

7 Tomas Berdych 0.96464 0.05112 0.96600 0.03437 

8 Milos Raonic 0.96831 0.07563 0.97674 0.04701 

9 Marin Cilic 0.95207 0.06091 0.95242 0.04247 

10 David Ferrer 0.96641 0.03692 0.96622 0.02542 

11 Grigor Dimitrov 0.97640 0.01520 0.97442 0.01080 

12 Jo-Wilfried Tsonga 0.95713 0.06473 0.96110 0.03774 

13 Ernests Gulbis 0.94822 0.05713 0.94836 0.03728 

14 Feliciano Lopez 0.93799 0.07853 0.94292 0.04579 

15 Roberto Bautista Agut 0.96293 0.04204 0.96425 0.02814 

16 Kevin Anderson 0.94745 0.06841 0.95185 0.03969 

17 Tommy Robredo 0.93902 0.05284 0.93975 0.02761 

18 Gael Monfils 0.95848 0.04582 0.95741 0.03163 

19 John Isner 0.96937 0.11114 0.98667 0.06277 

20 Fabio Fognini 0.91579 0.04771 0.91055 0.02786 

21 Gilles Simon 0.94054 0.04487 0.93859 0.02809 

23 Alexandr Dolgopolov 0.93136 0.05270 0.92907 0.03143 

24 Philipp Kohlschreiber 0.95484 0.05378 0.95472 0.03545 

25 Julien Benneteau 0.92161 0.05456 0.91868 0.02878 

26 Richard Gasquet 0.94954 0.05970 0.95132 0.03656 

28 Leonardo Mayer 0.94966 0.01981 0.94546 0.00802 

29 Jeremy Chardy 0.93265 0.06401 0.93022 0.04035 

31 Lukas Rosol 0.90260 0.06551 0.89649 0.03520 

32 Santiago Giraldo 0.91925 0.04587 0.91580 0.02293 

33 Fernando Verdasco 0.93944 0.04965 0.93934 0.02768 

35 Sam Querrey 0.94287 0.07236 0.94693 0.04235 

36 Guillermo Garcia-Lopez 0.90890 0.05076 0.90174 0.03105 

38 Yen-Hsun Lu 0.93516 0.05439 0.93480 0.03005 

39 Dominic Thiem 0.90117 0.05250 0.89569 0.02571 

40 Benjamin Becker 0.90732 0.06147 0.90126 0.03619 

41 Pablo Andujar 0.93193 0.04401 0.93072 0.02510 

42 Jack Sock 0.95629 0.06702 0.95888 0.04094 

43 Jerzy Janowicz 0.90613 0.06477 0.90113 0.03790 

45 Andreas Seppi 0.91392 0.05198 0.91156 0.02741 

46 Marcel Granollers 0.88992 0.05478 0.88115 0.02775 

49 Denis Istomin 0.94078 0.06500 0.94003 0.04246 

54 Joao Sousa 0.87863 0.05936 0.87207 0.02565 

60 Federico Delbonis 0.91450 0.06086 0.91361 0.02985 

73 Jarkko Nieminen 0.91497 0.06265 0.91095 0.03712 

75 Marinko Matosevic 0.90415 0.05746 0.89856 0.03113 

87 Edouard Roger-Vasselin 0.93960 0.06824 0.94121 0.04184 

Fig. 3. Djokovic vs Federer vs Nadal. 

 

 

 

Fig. 4. John Isner vs Leonardo Mayer. 

a  

I  

p  

h

analysis with high probability. We have also analyzed the case of

Isner, in particular against that of Mayer. Fig. 4 shows that, while

the scores of Mayer remain stable for different values of p , these
re quite smaller for low values of this probability. For instance,

sner, which has a very specialized game based on his service, is

enalized when p is low because p is the probability of selecting

is best factor, the factor y . 
1 
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Table 6 

E P (�
R 
0 ) for different values of P . 

ATP p 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1 Novak Djokovic 0.97099 0.97167 0.98048 0.98892 0.99467 0.99787 0.99934 0.99987 0.99999 1.0 0 0 0 0 

2 Roger Federer 0.95663 0.95867 0.97238 0.98488 0.99302 0.99732 0.99921 0.99985 0.99999 1.0 0 0 0 0 

3 Rafael Nadal 0.97906 0.98069 0.98770 0.99373 0.99739 0.99915 0.99980 0.99997 1.0 0 0 0 0 1.0 0 0 0 0 

4 Stan Wawrinka 0.92217 0.91426 0.92913 0.94732 0.96259 0.97410 0.98263 0.98914 0.99431 0.99865 

5 Kei Nishikori 0.95726 0.94561 0.94594 0.94972 0.95371 0.95699 0.95948 0.96131 0.96259 0.96340 

6 Andy Murray 0.94381 0.93456 0.94210 0.95327 0.96333 0.97124 0.97726 0.98188 0.98557 0.98862 

7 Tomas Berdych 0.93177 0.92443 0.93711 0.95279 0.96600 0.97605 0.98370 0.98984 0.99514 1.0 0 0 0 0 

8 Milos Raonic 0.92162 0.92009 0.94043 0.96128 0.97674 0.98680 0.99297 0.99664 0.99878 1.0 0 0 0 0 

9 Marin Cilic 0.91717 0.90617 0.91945 0.93708 0.95242 0.96435 0.97346 0.98062 0.98651 0.99163 

10 David Ferrer 0.94732 0.93955 0.94704 0.95731 0.96622 0.97310 0.97836 0.98253 0.98599 0.98901 

11 Grigor Dimitrov 0.97395 0.96739 0.96829 0.97130 0.97442 0.97711 0.97932 0.98116 0.98268 0.98392 

12 Jo-Wilfried Tsonga 0.92086 0.91459 0.93019 0.94761 0.96110 0.97044 0.97689 0.98167 0.98561 0.98921 

13 Ernests Gulbis 0.91853 0.90697 0.91875 0.93465 0.94836 0.95886 0.96675 0.97282 0.97766 0.98164 

14 Feliciano Lopez 0.90 0 02 0.89019 0.90774 0.92773 0.94292 0.95293 0.95929 0.96347 0.96640 0.96861 

15 Roberto Bautista Agut 0.93961 0.93244 0.94220 0.95430 0.96425 0.97156 0.97683 0.98069 0.98357 0.98571 

16 Kevin Anderson 0.91127 0.90295 0.91914 0.93761 0.95185 0.96151 0.96785 0.97210 0.97503 0.97707 

17 Tommy Robredo 0.91825 0.90662 0.91679 0.92968 0.93975 0.94665 0.95140 0.95496 0.95793 0.96064 

18 Gael Monfils 0.93252 0.92273 0.93239 0.94566 0.95741 0.96684 0.97445 0.98085 0.98640 0.99132 

19 John Isner 0.90490 0.91171 0.94282 0.96985 0.98667 0.99514 0.99863 0.99975 0.99998 1.0 0 0 0 0 

20 Fabio Fognini 0.90873 0.88681 0.89046 0.90067 0.91055 0.91846 0.92452 0.92924 0.93302 0.93612 

21 Gilles Simon 0.92314 0.90843 0.91570 0.92774 0.93859 0.94701 0.95334 0.95815 0.96188 0.96480 

23 Alexandr Dolgopolov 0.91130 0.89505 0.90367 0.91722 0.92907 0.93816 0.94515 0.95084 0.95579 0.96024 

24 Philipp Kohlschreiber 0.92439 0.91443 0.92614 0.94148 0.95472 0.96505 0.97312 0.97973 0.98542 0.99061 

25 Julien Benneteau 0.90572 0.88779 0.89542 0.90789 0.91868 0.92685 0.93309 0.93819 0.94267 0.94684 

26 Richard Gasquet 0.91743 0.90793 0.92144 0.93792 0.95132 0.96110 0.96821 0.97363 0.97799 0.98164 

28 Leonardo Mayer 0.95676 0.94305 0.94117 0.94304 0.94546 0.94747 0.94894 0.94998 0.95071 0.95119 

29 Jeremy Chardy 0.90449 0.88853 0.89950 0.91575 0.93022 0.94173 0.95088 0.95851 0.96523 0.97150 

31 Lukas Rosol 0.88787 0.86394 0.87055 0.88400 0.89649 0.90662 0.91489 0.92201 0.92847 0.93452 

32 Santiago Giraldo 0.91185 0.89239 0.89693 0.90683 0.91580 0.92257 0.92739 0.93077 0.93303 0.93439 

33 Fernando Verdasco 0.91974 0.90702 0.91621 0.92889 0.93934 0.94689 0.95223 0.95613 0.95906 0.96128 

35 Sam Querrey 0.90697 0.89753 0.91369 0.93242 0.94693 0.95677 0.96324 0.96763 0.97084 0.97340 

36 Guillermo Garcia-Lopez 0.90186 0.87721 0.88028 0.89093 0.90174 0.91080 0.91817 0.92436 0.92982 0.93492 

38 Yen-Hsun Lu 0.91328 0.89939 0.90926 0.92312 0.93480 0.94345 0.94970 0.95419 0.95734 0.95933 

39 Dominic Thiem 0.89665 0.87221 0.87585 0.88611 0.89569 0.90304 0.90850 0.91267 0.91596 0.91864 

40 Benjamin Becker 0.89213 0.86865 0.87507 0.88854 0.90126 0.91166 0.92012 0.92735 0.93385 0.93996 

41 Pablo Andujar 0.92257 0.90692 0.91260 0.92247 0.93072 0.93639 0.940 0 0 0.94230 0.94379 0.94481 

42 Jack Sock 0.91650 0.90911 0.92521 0.94384 0.95888 0.96996 0.97826 0.98496 0.99086 0.99640 

43 Jerzy Janowicz 0.88965 0.86646 0.87375 0.88796 0.90113 0.91165 0.91986 0.92642 0.93184 0.93651 

45 Andreas Seppi 0.90325 0.88298 0.88930 0.90121 0.91156 0.91898 0.92394 0.92714 0.92915 0.93029 

46 Marcel Granollers 0.88988 0.86118 0.86243 0.87166 0.88115 0.88908 0.89563 0.90129 0.90644 0.91129 

49 Denis Istomin 0.91008 0.89766 0.91004 0.92626 0.94003 0.95069 0.95911 0.96615 0.97233 0.97792 

54 Joao Sousa 0.88095 0.85106 0.85306 0.86283 0.87207 0.87892 0.88361 0.88668 0.88856 0.88950 

60 Federico Delbonis 0.89905 0.88114 0.88999 0.90310 0.91361 0.92078 0.92551 0.92876 0.93111 0.93289 

73 Jarkko Nieminen 0.89592 0.87568 0.88401 0.89822 0.91095 0.92099 0.92892 0.93551 0.94124 0.94648 

75 Marinko Matosevic 0.89378 0.86961 0.87474 0.88694 0.89856 0.90788 0.91509 0.92067 0.92497 0.92821 

87 Edouard Roger-Vasselin 0.90610 0.89435 0.90869 0.92659 0.94121 0.95183 0.95950 0.96525 0.96979 0.97348 
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B  
. Concluding remarks 

We have proposed a probabilistic/combinatorial approach for

he assessment of DMUs in DEA by using efficiency scores which

re robust against the selection of inputs/outputs. Robust efficient

cores are defined on the basis of the information from expert

pinion, by using the entropy principle and following a bayesian

pproach. Computing these scores requires solving an exponential

umber of linear problems. In order to do so, we have developed

n exact algorithm that reduces approximately half the time and

he number of problems required. The method has been presented

ithin a conventional framework wherein efficiency is assessed by

eans of the classical radial DEA models. Obviously, the approach

roposed can be extended for use, for example, with external fac-

ors (non-controlled variables) whose incorporation into the anal-

sis is to be considered, provided that an appropriate efficiency

odel is chosen in order to deal with such type of inputs/outputs

see Aristovnik, Seljak, and Mencinger (2013) and Aristovnik, Sel-

ak, and Mencinger (2014) for some empirical work that considers

xternal factors). In that sense, the extension of the method for

se with other DEA models is also straightforward, because it only
eed from them the efficiency scores they provide. In particular,

e can derive robust efficiency scores from non-radial DEA mod-

ls (by using, for example, the enhanced Russell graph measure in

astor, Ruiz, & Sirvent (1999) ), which would be of special interest

hen models that minimize the distance to the efficient frontier

re used (see Aparicio, Ruiz, & Sirvent (2007) ). In the latter case,

he development of an heuristic algorithm for reducing computa-

ional time would become a key issue, due to the complexity of

he efficiency models involved. 

eferences 

hn, T. , Seiford, L. , & Ijiri, Y. (1993). Sensitivity of DEA to models and variable sets in

a hypothesis test setting: The efficiency of university operations. In Creative and
innovative approaches to the science of management quorum books (pp. 191–208) .

paricio, J. , Ruiz, J. L. , & Sirvent, I. (2007). Closest targets and minimum distance to
the pareto-efficient frontier in DEA. Journal of Productivity Analysis, 28 , 209–218 .

ristovnik, A. , Seljak, J. , & Mencinger, J. (2013). Relative efficiency of police direc-
torates in slovenia: A non-parametric analysis. Expert Systems with Applications,

40 , 820–827 . 

ristovnik, A. , Seljak, J. , & Mencinger, J. (2014). Performance measurement of po-
lice forces at the local level: A non-parametric mathematical programming ap-

proach. Expert Systems with Applications, 41 , 1647–1653 . 
anker, R. (1993). Maximum likelihood, consistency and data envelopment analysis:

A statistical foundation. Management Science, 39 , 1265–1273 . 

http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0005


154 M. Landete et al. / Expert Systems With Applications 86 (2017) 145–154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L  

L  

 

N  

 

 

P  

R  

 

R  

S  

S  

 

S  

V  

 

 

Banker, R. (1996). Hypotesis test using data envelopment analysis. Journal of Produc-
tivity Analysis, 7 , 139–159 . 

Banker, R. , Charnes, A. , & Cooper, W. W. (1984). Some models for estimating tech-
nical and scale inefficiencies in data envelopment analysis. Management Science,

30 , 1078–1092 . 
Charnes, A. , Cooper, W. W. , & Rhodes, E. (1978). Measuring the efficiency of decision

making units. European Journal of Operational Research, 2 , 429–4 4 4 . 
Conrad, K.. Probability distributions and maximum entropy. http://www.math.

uconn.edu/ ∼kconrad/blurbs/analysis/entropypost.pdf . 

Edirisinghe, N. , & Zhang, X. (2010). An optimized DEA-based financial strength in-
dicator of stock returns for u. s. markets. In K. D. Lawrence (Ed.), Applications

in multicriteria decision making, data envelopment analysis, and finance (applica-
tions of management science): vol. 14 (pp. 175–198). Emerald Group Publishing

Limited . 
Eskelinen, J. (2017). Comparison of variable selection techniques for data envelop-

ment analysis in a retail bank. European Journal of Operational Research, 259 ,

778–788 . 
Galagedera, D. , & Silvapulle, P. (2003). Experimental evidence on robustness of data

envelopment analysis. Journal Operations Research Society, 54 , 654–660 . 
Guiasu, S. , & Shenitzer, A. (1985). The principle of maximum entropy. The Mathe-

matical Intelligencer, 7 (1), 42–48 . 
Jenkins, L. , & Anderson, M. (2017). A multivariate statistical approach to reducing

the number of variables in data envelopment analysis. European Journal of Op-

erational Research, 147 , 51–61 . 
Li, Y., Shi, X., Yang, M., & Liang, L. (2016). Variable selection in data envelopment

analysis via akaike information criteria. Annals of Operations Research . doi: 10.
1007/s10479- 016- 2382- 2 . 

Lovell, C. A. K. , & Pastor, J. T. (1995). Units invariant and translation invariant dea
models. Operations Research Letters, 1 , 147–151 . 
ovell, C. A. K. , & Pastor, J. T. (1999). Radial dea models without inputs or without
outputs. European Journal of Operational Research, 118 , 46–51 . 

uo, Y. , Bi, G. , & Liang, L. (2012). Input/output indicator selection for DEA efficiency
evaluation: An empirical study of chinese commercial banks. Expert System with

Applications, 39 , 1118–1123 . 
atajara, N. , & Johnson, A. (2011). Guidelines for using variable selection tech-

niques in data envelopment analysis. European Journal of Operational Research,
215 , 662–669 . 

Pastor, J. T. , Ruiz, J. L. , & Sirvent, I. (1999). An enhanced DEA russell graph efficiency

measure. European Journal of Operational Research, 115 , 596–607 . 
astor, J. T. , Ruiz, J. L. , & Sirvent, I. (2002). A statistical test for nested radial dea

models. Operations Research, 50 , 728–735 . 
oll, Y. , Golany, B. , & Seroussy, D. (1989). Measuring the efficiency of mainte-

nance units in the israeli air force. European Journal of Operational Research, 43 ,
136–142 . 

uiz, J. L. , Pastor, D. , & Pastor, J. T. (2013). Assessing professional tennis players using

data envelopment analysis (DEA). Journal of Sport Economics, 14 , 276–302 . 
hannon, C. (1948). The mathematical theory of communication. The Bell System

Technical Journal, 3–4 , 379–423,623–656 . 
irvent, I. , Ruiz, J. L. , Borras, F. , & Pastor, J. T. (2005). A monte carlo evaluation of

several tests for the selection of variables in DEA models. International Journal
of Information Technology and Decision Making, 4 , 325–343 . 

mith, P. (1997). Model misspecification in data envelopment analysis. Annals of Op-

erations Research, 73 , 233–252 . 
aldmanis, V. (1992). Sensitivity analysis for dea models: An empirical example us-

ing public vs. n.f.p hospitals. Journal of Public Economics, 4 , 185–205 . 
Wagner, J. , & Shimshak, D. (2007). Stepwise selection of variables in data envel-

opment analysis: Procedures and managerial perspectives. European Journal of
Operational Research, 180 , 57–67 . 

http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0008
http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0013
http://dx.doi.org/10.1007/s10479-016-2382-2
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0024
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30400-1/sbref0027

	Robust DEA efficiency scores: A probabilistic/combinatorial approach
	1 Introduction
	2 DEA efficiency scores
	3 Robust DEA efficiency scores: a probabilistic approach
	4 The specification of p
	4.1 Using expert opinion
	4.2 Maximizing the entropy
	4.3 A Bayesian approach
	4.4 Summing up

	5 Algorithm
	6 Combinatorial DEA efficiency scores: a case study
	7 Concluding remarks
	 References


