

COPYRIGHTED BY

Satyajeet Padmanabhi

May 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Houston Institutional Repository (UHIR)

https://core.ac.uk/display/235095188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CREATION OF FLEXIBLE DATA STRUCTURE FOR

AN EMERGING NETWORK CONTROL PROTOCOL

A Thesis

Presented to

The Faculty of the Department of Engineering Technology

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science in Engineering Technology

By

Satyajeet Padmanabhi

May 2015

CREATION OF FLEXIBLE DATA STRUCTURE FOR AN

EMERGING NETWORK CONTROL PROTOCOL

Satyajeet Padmanabhi

Approved:

 Chair of the Committee

 Deniz Gurkan, Ph.D.

 Associate Professor

 Engineering Technology

Committee Members:

 Ricardo Lent, Ph.D.

 Assistant Professor

 Engineering Technology

 Mequanint Moges, Ph.D.

 Assistant Chair

 Engineering Technology

____________________________ ___________________________

Rupa Iyer, Ph.D. Wajiha Shireen, Ph.D.

Associate Dean for Research and Department Chair

Graduate Studies Engineering Technology

College of Technology College of Technology

Acknowledgments

I would like to express my deep and sincere gratitude to my advisor, Dr. Deniz

Gurkan. Her invaluable advice and guidance have provided a good basis for this

thesis. I am very thankful for her ideas, comments and consistent support throughout

this work. My special thanks to committee members Dr. Ricardo Lent and Dr.

Mequanint Moges for their valuable suggestions and help. I would like to thank

Sandhya Narayan and Dmitry Orekhov from Infoblox for their support during my

work at University of Houston. I am also thankful to my parents and all friends for all

their support and motivation.

Abstract

Due to increasing number of versions of OpenFlow protocol, it is getting harder day

by day to use isolated data structure support of OpenFlow protocol. There is high

degree of variability between each versions of OpenFlow protocol. Each version of

OpenFlow specifies an interface and the collection of abstractions present in a switch

that can be manipulated. So our focus of this thesis is to use the data structure (Avro)

which supports OpenFlow protocol through software infrastructure proposed by Warp

development group. Using this we have developed the OpenFlow version 1.2 support

to Warp controller. Warp architecture uses Avro data structure which has advantages

like easy integration of new version, update existing version and apply run time

changes, version control, data exchange and easy schema processing which heavily

impact on performance and flexibility of OpenFlow controller. These mentioned

factors are compared against other OpenFlow controller architectures such as

Floodlight, Ryu etc. Comparing obtained observations with different architectures

conclude that Warp is more flexible architecture as compared to Floodlight and Ryu.

Table of Contents

Acknowledgments ... 4

Abstract .. 5

Chapter 1 – Introduction ... 10

1.1 Software Defined Networking (SDN)... 10

1.2 OpenFlow Protocol .. 12

1.3 SDN Controllers ... 13

1.4 Thesis Work ... 14

1.5 Literature survey .. 15

1.6 Thesis Overview ... 16

Chapter 2 – Data Structure (Avro) and Warp Architecture 18

2.1 Avro ... 18

2.1.1 Schemas .. 20

2.1.2 Comparison with other systems ... 21

2.2 Warp Architecture with inclusion of OpenFlow version 1.2 22

Chapter 3 – OpenFlow ... 26

3.1 OpenFlow Version 1.0 .. 29

3.1.1 Slicing .. 29

3.1.2 Flow Cookies.. 29

3.1.3 User-specifiable data path description ... 30

3.1.4 Match on IP fields in ARP packets ... 30

3.1.5 Match on IP ToS/DSCP bits .. 30

3.1.6 Querying port stats for individual ports .. 30

3.1.7 Improved flow duration resolution in stats/expiry messages 30

3.1.8 Other changes to the Specification ... 31

3.2 OpenFlow Version 1.1 .. 31

3.2.1 Multiple Tables .. 31

3.2.2 Groups ... 34

3.2.3 MPLS & VLAN .. 34

3.2.4 Virtual Ports ... 35

3.2.5 Controller connection failure .. 35

3.2.6 Other changes ... 36

3.3 OpenFlow Version 1.2 .. 36

3.3.1 Extensible Match Support ... 37

3.3.2 Extensible ‘set field’ packet rewriting support ... 37

3.3.3 Extensible context expression in ‘packet-in’ ... 37

3.3.4 Extensible Error messages via experimenter error type 38

3.3.5 IPv6 support added ... 38

3.3.6 Simplified behavior of flow-mod request ... 38

3.3.7 Removed packet parsing specification .. 39

3.4 OpenFlow Version 1.3 .. 39

3.4.1 Refactor capabilities negotiation .. 39

3.4.2 More flexible table miss support .. 40

3.4.3 IPv6 Extension Header handling support .. 41

3.4.4 Per Flow meters .. 42

3.4.5 Per connection event filtering ... 42

3.4.6 Auxiliary connections .. 43

3.4.7 MPLS BoS matching ... 44

3.4.8 Provider Backbone Bridging tagging ... 44

3.4.9 Rework tag order... 44

3.4.10 Tunnel-ID metadata .. 45

3.4.11 Cookies in packet-in .. 45

3.4.12 Duration for stats .. 46

3.4.13 On-demand flow counters .. 46

3.4.14 Other changes ... 46

3.5 OpenFlow Version 1.4 .. 47

3.5.1 More extensible wire protocol .. 47

3.5.2 More descriptive reasons for packet-in .. 48

3.5.3 Optical port properties .. 49

3.5.4 Flow- removed reason for meter delete ... 49

3.5.5 Flow monitoring .. 50

3.5.6 Role status event ... 51

3.5.7 Eviction .. 51

3.5.8 Vacancy events .. 52

3.5.9 Bundles .. 53

3.5.10 Synchronized tables .. 53

3.5.11 Group and meter change notifications ... 54

3.5.12 Error code and bad priority ... 54

3.5.13 Error code and set-async-config .. 54

3.5.14 PBB UCA header field .. 55

3.5.15 Error code for duplicate instruction .. 55

3.5.16 Error code for multipart timeout .. 56

3.5.17 Change default TCP port to 6653 .. 56

Chapter 4 – Warp comparison with other OpenFlow Controllers 57

4.1 Integrate new version of OpenFlow .. 57

4.2 Update existing version/Run time changes .. 58

4.3 Version control ... 58

4.4 Data exchange .. 59

4.5 Code processing ... 59

4.6 Architecture Comparison .. 61

Chapter 5 – Results, Conclusion and Future Work .. 63

References .. 64

Appendix: A – Code ... 67

Appendix: B – Credits .. 106

List of figures

Figure 1: SDN Architecture .. 11

Figure 2: Data Definition (Avro) .. 21

Figure 3: Data exchange between different languages ... 22

Figure 4: Warp architecture .. 23

Figure 5: Actors of Warp controller.. 25

Figure 6: OpenFlow overview .. 26

Figure 7: Protocol decomposition ... 27

Figure 8: Message Layer ... 29

Figure 9: (a) Compilation process of source code (b) Processing of schema 60

List of tables

Table 1: Comparison of OpenFlow architectures ... 61

Table 2: Flexibility (%) ... 62

Chapter 1 – Introduction

Due to increasing number of versions of OpenFlow protocol, it is getting harder day

by day to use isolated data structure support of OpenFlow protocol. There is high

degree of variability between each versions of OpenFlow protocol. Each version of

OpenFlow specifies an interface and the collection of abstractions present in a switch

that can be manipulated. So our focus of this thesis is to use the data structure (Avro)

which supports OpenFlow protocol through software infrastructure proposed by Warp

development group. Using this we have developed the OpenFlow version 1.2 support

to Warp controller.

1.1 Software Defined Networking (SDN)

Traditional networks are complex and hard to manage due to two reasons: one is that

the control plane and data planes are vertically integrated and vendor specific, another

concurring reason is that typical networking devices are also tightly tied to line

products and versions. Software defined networking (SDN) is created to overcome

these problems [14]. SDN, often referred to a “radical new idea in networking”,

promises to dramatically simplify network management and enable innovation

through network programmability [10, 24] and could simplify network operations and

reduces cost of the network [11]. With SDN, network management moves from

codifying functionality in terms of low-level device configurations to building

software that facilitates network management and debugging [12]. SDN is an

emerging network architecture in which network’s control plane and forwarding

plane gets separated physically. This architecture is manageable, dynamic, cost

effective and adaptable for today’s network requirements. As it separates network

control and forwarding functionalities, it results network control directly

programmable. This approach is possible with the help of OpenFlow protocol.

Control plane is responsible for making decisions regarding traffic of the network.

It’s responsible for deciding where traffic should go and also for system

configuration, management and exchange of routing table information. Forwarding

plane, also known as data plane, forwards network traffic to the next hop along the

path which is decided by control plane. SDN gives network administrator better

control over the network thus increasing network performance [9].

Figure 1: SDN Architecture

Figure 1 shows SDN architecture which consists of 3 layers: application layer, control

layer and infrastructure layer. Application layer consist of business applications and it

communicates with control layer using application program interface (API) which is

known as northbound interface. Control plane communicates with data plane using

OpenFlow protocol and it also contains controller. Infrastructure layer consist of

different network devices and it will communicate with control layer using OpenFlow

protocol, a south bound interface [1].

1.2 OpenFlow Protocol

OpenFlow is an open standard that can be implemented in Ethernet switches, routers

and wireless access points (AP) [15]. It is a standard means of communication

between control layer and forwarding layer of SDN architecture. OpenFlow is a

standard communications interface defined between the control layers and forwarding

layer of SDN architecture which we can call it as SDN southbound interface.

OpenFlow allows direct access and programmability of forwarding plane devices

such as switches, routers and wireless access points. The OpenFlow protocol is

implemented on both sides of the interface between network infrastructure devices

and the SDN control software. Network flexibility is provided by OpenFlow which

describes high level tool support for performing dynamic changes to workflow [16].

OpenFlow-based applications have been proposed to ease the configuration of a

network, to simplify network management and to add security features, to virtualize

networks and data centers and to deploy mobile systems [17].

OpenFlow switch and controller communicate via OpenFlow protocol. OpenFlow

uses the concept of flows to identify network traffic based on pre-defined match-

action rules that can be statically or dynamically programmed by the SDN control

software. These rules are known as flow rules. OpenFlow protocol defines messages

such as packet-received, send-packet-out, modify-routing-table, get-state etc. Data

path of OpenFlow switch contains flow table. Each flow table consists of packet

fields to match and an action to be taken on packet. If packet is coming for the first

time and flow table does not know what to do with this, it will forward that packet to

controller. Controller then responsible to deal with that packet and decides on how to

handle it. Controller can add an entry to flow table for future incoming packets or it

can drop the packet [2].

1.3 SDN Controllers

There are different SDN controllers available to use in the market. They are

developed using different languages. i.e. C, Java, Python etc. Here we are considering

the Warp controller to create OpenFlow protocol version 1.2. Warp is a SDN

controller which uses Apache Avro protocol for serialization library and set of Avro

schema files for different versions of OpenFlow protocols. It is developed using Java.

Warp is a component based software defined networking framework built on top of

Akka. It maintains connection with SDN switches, supports dynamic (re)loading of

predefined or user defined components and provides event based way of

communication between loaded components and connected switches [3]. All

functions of the control and management plane are performed by the controller. It has

full network topology information and the location of hosts and external paths (MAC

and routing tables). When a switch receives a packet in which there is no entry in its

Flow Table, it forwards the message to the controller asking for the action to take

upon this new flow [18]. Given the importance of the OpenFlow controller for the

software defined network it directs, it is key to understand the performance and

behavior of this important software component for experimenters as well as for

operators of productive networks [19].

1.4 Thesis Work

Our aim of this thesis is so contribute to the isolated data structure support of

OpenFlow protocol through software infrastructure proposed by Warp development

group. Initially Warp controller was supporting only OpenFlow version 1.0 and 1.3,

our initiative was to develop OpenFlow version 1.2 schema which will be integrated

and supported by Warp controller. As explained in literature survey, it’s not easy to

make any updates to existing OpenFlow protocol as well as integrate new version of

OpenFlow protocol to any controller. Also it is hard to do such changes at run time.

Warp development group proposed a solution to it by using Apache Avro which is an

open source project supports services like data serialization and data exchange. We

have used the same data structure to create an OpenFlow version 1.2 schema by

which Warp controller will support all OpenFlow version 1.2 specifications.

1.5 Literature survey

Whenever there is an update in OpenFlow protocol, every controller should support

that particular version but it’s not that easy as it seems. Controllers are not supporting

new versions of OpenFlow protocol in an easy and integrated fashion. So there should

be some means by which it can be done in a manner which does not create any

problem and supports new version of OpenFlow protocol without any difficulty. As

there is a new version of OpenFlow protocol release every year and it already have

five active versions i.e. OpenFlow version 1.0, OpenFlow version 1.1, OpenFlow

version 1.2, OpenFlow version 1.3 and OpenFlow version 1.4, it increases the

complexity of which can cause the roadblocks for the networks, software’s and

hardware engineers. Each version has complex feature dependencies, unstable version

negotiation and lack of state machine definition which is very difficult to deal with.

The approach of distilling the core abstraction present in 5 existing versions of

OpenFlow and refactored them into a simple API is known as tinyNBI. The goal of

tinyNBI is to allow configuration of all existing OpenFlow abstraction without having

to deal with unique features of each version of OpenFlow or their level of support of

target switches. It defines a low level stack for all 5 OpenFlow versions which

provides facilities to manage messages, state machines, system interfaces and

configurations. This approach is unsuccessful at keeping the interface simple in the

face of multiple versions of OpenFlow and differing capabilities of switches.

There are different programming languages that have been developed to model

OpenFlow primitives like Frenetic [6], Maple and tinyNBI is developed using C

language. TinyNBI handles multiple concurrent OpenFlow versions and varying

capabilities without placing additional effort on the application developer.

Writing OpenFlow application that operate correctly in robust network environment

is a tough proposition. Building high level network abstraction is difficult so tinyNBI

provided stable foundation for designing these high level abstraction on top of

tinyNBI that allow for clean separation of operator versus developer concern [4].

There is a work related to non-uniformity of capable support across target switches.

NOXIS presents a high level interface and defined mechanism for meeting low level

details of a target switch with driver development [5].

By the discussion, we see how variable OpenFlow standard’s data structure has been

and needs to be standardize in easy manner. In our experiment we have used Apache

Avro for the data serialization purpose. It provides rich data structures, compact data

format, container file to store persistent data and simple integration with dynamic

languages. Furthermore, we have used Warp OpenFlow architecture and developed

OpenFlow protocol version 1.2 by creating schema with the help of Avro [7].

1.6 Thesis Overview

This thesis has a total of 5 chapters. Chapter 1 includes introduction of SDN,

OpenFlow protocol, SDN Controllers, thesis work and literature survey. Chapter 2

explains about the Avro data structure which is used to develop OpenFlow protocol

version 1.2 in Warp architecture. It also explains about the Warp architecture and

contribution in inclusion of OpenFlow protocol version 1.2. And, the actors in Warp

architecture. Chapter 3, describes OpenFlow protocol, OpenFlow Version 1.0,

OpenFlow Version 1.1, OpenFlow Version 1.2, OpenFlow Version 1.3 and

OpenFlow Version 1.4 specifications. Chapter 4 contains Warp comparison with

other OpenFlow architectures like Floodlight, Ryu etc. Finally, Chapter 5 concludes

the thesis work, results and explains about what else could be added to this solution as

extensions and future work. At last, in Appendix, the code for OpenFlow version 1.2

is mentioned.

Chapter 2 – Data Structure (Avro) and Warp Architecture

To implement the OpenFlow version 1.2 support for the Warp OpenFlow controller,

we have used the existing Warp architecture. We have developed an XML schema for

OpenFlow version 1.2 which can be integrated into Warp architecture very easily.

Also, this architecture allows us to integrate any update or new version of OpenFlow

version very easily.

The experiment consist of tool which allow us to integrate OpenFlow version 1.2 into

Warp controller. It consists of Apache Avro which we have used to create a schema.

Apache Avro is an open source project and data serialization system.

2.1 Avro

Apache Avro [21] is serialization framework developed as a Hadoop subproject. It

provides serialization formats for persistent data and communication between Hadoop

nodes. To integrate with dynamic programming languages, code generation is not

required to serialize and de-serialize structured data, but schema definitions for

Apache Avro are required in order to integrate it with other programming languages

such as C++, Java, Python etc. Avro uses JSON for schema definitions. When Avro

data is read, the schema is read at run time before reading the data. One of features

for Avro is that it enables direct serialization from schema definitions without code

generation. It just encodes one field after another and in the order they appear in the

schema definition [22].

Avro provides data serialization and data exchange services. serialization is the

process of translating data structures or object state into a format that can be stored

(for example, in a file or memory buffer, or transmitted across a network connection

link) and reconstructed later in the same or another computer environment. Avro

supports schema evaluation feature which allows building less decoupled and more

robust system [23]. Schema evaluation is another feature which is used for

serialization and deserialization and to see missing values, extra values and modified

fields within the schema [24].

Avro provides:

1. Rich data structures.

2. A compact, fast, binary data format.

3. A container file, to store persistent data.

4. Remote procedure call (RPC).

5. Simple integration with dynamic languages.

Code generation is not required to read or write data files nor to use or implement

RPC protocols. Code generation as an optional optimization, only worth

implementing for statically typed languages [7].

http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Computer_file
http://en.wikipedia.org/wiki/Data_buffer
http://en.wikipedia.org/wiki/Computer_network

2.1.1 Schemas

Avro relies on schemas. When Avro data is read, the schema used when writing it is

always present. This permits each datum to be written with no per-value overheads,

making serialization both fast and small. This also facilitates use with dynamic,

scripting languages, since data, together with its schema, is fully self-describing.

When Avro data is stored in a file, its schema is stored with it, so that files may be

processed later by any program. If the program reading the data expects a different

schema this can be easily resolved, since both schemas are present.

When Avro is used in RPC, the client and server exchange schemas in the connection

handshake. (This can be optimized so that, for most calls, no schemas are actually

transmitted.) Since both client and server both have the other's full schema,

correspondence between same named fields, missing fields, extra fields, etc. can all

be easily resolved.

Avro schemas are defined with JSON (JavaScript Object Notation). This facilitates

implementation in languages that already have JSON libraries. Figure 2 shows Avro

stores data definition i.e. Schema and data together in one file [7].

Figure 2: Data Definition (Avro)

2.1.2 Comparison with other systems

Avro provides functionality similar to systems such as Thrift, Protocol Buffers, etc.

Avro differs from these systems in the following fundamental aspects.

Dynamic typing: Avro does not require that code be generated. Data is always

accompanied by a schema that permits full processing of that data without code

generation, static data types, etc. This facilitates construction of generic data-

processing systems and languages.

Untagged data: Since the schema is present when data is read, considerably less type

information need be encoded with data, resulting in smaller serialization size.

No manually-assigned field IDs: When a schema changes, both the old and new

schema are always present when processing data, so differences may be resolved

symbolically, using field names.

One of the feature of Avro is it provides framework for storing and exchanging big

data between programs with any languages such as between Java and C, Hive and

Python, Pig and Java [7] as shown in figure 3.

Figure 3: Data exchange between different languages

2.2 Warp Architecture with inclusion of OpenFlow version 1.2

Figure 4 shows all the components of Warp enclosed in red dotted line box. The

broken purple line box encloses the Warp OpenFlow driver and the broken green box

encloses the Warp OpenFlow controller. The other controllers can use the Warp

OpenFlow driver separately. The Rest service provides restful interface to send

message to OpenFlow switches that are connected to the controller. SDN applications

can interface to the Warp controller using the controller's Java API.

Our contribution to this architecture is an inclusion of OpenFlow version 1.2, .avpr

schema file which is placed in Warp OpenFlow driver box. The Warp OpenFlow

version 1.2 is built from modified Avro library and the Avro schema files that

describe the OpenFlow protocol. The Avro schema files (.avpr) are kept external to

the Warp OpenFlow driver file, so that they can be modified if needed, without

needing to rebuild the jar file. When there is a need to modify the Avro file, say to fix

a bug or introduce new features, all that needs to be done is to invoke the "init"

method of the modified Avro schema file.

Figure 4: Warp architecture

Warp uses the Akka framework to build a concurrent and scalable controller. Akka is

an asynchronous, non-blocking and highly performance event-driven programming

model which provides simple and high level abstractions for concurrency and

parallelism using actors which are lightweight event driven process [32].

Figure 5 shows the different actors of the Warp controller. The controller itself is the

main supervisor of all other actors. TCP listener actor listens the port 6653 which is

configurable. When it gets an incoming connection from an OpenFlow switch the

TCP listener actor establishes a TCP session launches a OF session handler and OF

protocol session handler. The OF protocol session handler (one per switch) handles

OpenFlow protocol session related behavior such as exchange of "hello" & "echo"

message with switch. The OF session handler is an application developer defined

actor. The developer has to encapsulate all reactions to OF events in this actor.

Sending OpenFlow messages such as "Flow-mod" messages to the switch is also

implemented using events [7].

Figure 5: Actors of Warp controller

Chapter 3 – OpenFlow

OpenFlow, an instance of the SDN architecture, is a set of specifications maintained

by the Open Networking Forum (ONF). Figure 6 shows overview of OpenFlow

protocol. At the core of the specifications is a definition of an abstract packet

processing machine, called a switch. The switch processes packets using a

combination of packet contents and switch configuration state. A protocol is defined

for manipulating the switch's configuration state as well as receiving certain switch

events. Finally, a controller is an element that speaks the protocol to manage the

configuration state of many switches and respond to events [29].

Figure 6: OpenFlow overview

The OpenFlow protocol can be broken into four components: message layer, state

machine, system interface, and configuration. The image and table below illustrate

these components, their interaction, and describe their function at a high level.

https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://www.opennetworking.org/

Figure 7: Protocol decomposition

Figure 7 shows different components of protocol decomposition explained as

below:

1. Message Layer: The message layer is the core of the protocol stack. It defines

valid structure and semantics for all messages. A typical message layer

supports the ability to construct, copy, compare, print, and manipulate

messages.

2. State Machine: The state machine defines the core low-level behavior of the

protocol. Typically, it is used to describe actions such as negotiation,

capability discover, flow control, delivery, etc.

3. System Interface: The system interface defines how the protocol interacts with

the outside world. It typically identifies necessary and optional interfaces

along with their intended use, such as TLS and TCP as transport channels.

4. Configuration: Almost all aspects of the protocol have configurations or initial

values. Configuration can cover anything from default buffer sizes and reply

intervals to X.509 certificates.

5. Data Model: Another way to consider the OpenFlow protocol is to understand

its underlying data model. Each switch maintains a relational data model that

contains the attributes for each OpenFlow abstraction. These attributes either

describe an abstractions capability, its configuration state, or some set of

current statistics.

 Every OpenFlow message [figure 8] begins with the same header structure. This

fixed structure serves three roles that are independent of the version of OpenFlow

being used. First, the version field indicates the version of OpenFlow which this

message belongs. Second, the length field indicates where this message will end in

the byte stream starting from the first byte of the header. Third, the xid, or transaction

identifier, is a unique value used to match requests to responses. The type field which

indicates what type of message is present and how to interpret the payload, is version

dependent [28].

Figure 8: Message Layer

There are different OpenFlow versions i.e. OpenFlow Version 1.0, OpenFlow

Version 1.1, OpenFlow Version 1.2 and OpenFlow Version 1.3 and OpenFlow

Version 1.4 [20].

3.1 OpenFlow Version 1.0

Following are the specifications of OpenFlow protocol version 1.0 [26].

3.1.1 Slicing

OpenFlow now supports multiple queues per output port. Queues support the ability

to provide minimum bandwidth guarantees; the bandwidth allocated to each queue is

configurable. The name slicing is derived from the ability to provide a slice of the

available network bandwidth to each queue.

3.1.2 Flow Cookies

Flows have been extended to include an opaque identifier, referred to as a cookie. The

cookie is specified by the controller when the flow is installed; the cookie will be

returned as part of each flow stats and flow expired message.

3.1.3 User-specifiable data path description

The OFPST DESC (switch description) reply now includes a data path description

field. This is a user specifiable field that allows a switch to return a string specified by

the switch owner to describe the switch.

3.1.4 Match on IP fields in ARP packets

The reference implementation can now match on IP fields inside ARP packets. The

source and destination protocol address are mapped to the nw src and nw dst fields

respectively, and the opcode is mapped to the nw proto field.

3.1.5 Match on IP ToS/DSCP bits

OpenFlow now supports matching on the IP ToS/DSCP bits.

3.1.6 Querying port stats for individual ports

Port stat request messages include a port_no field to allow stats for individual ports to

be queried. Port stats for all ports can still be requested by specifying OFPP_NONE

as the port number.

3.1.7 Improved flow duration resolution in stats/expiry messages

Flow durations in stats and expiry messages are now expressed with nanosecond

resolution. Note that the accuracy of flow durations in the reference implementation

is on the order of milliseconds. (The actual accuracy is in part dependent upon kernel

parameters.)

3.1.8 Other changes to the Specification

• remove multi_phy_tx spec text and capability bit

• clarify execution order of actions

• replace SSL refs with TLS

• resolve overlap ambiguity

• clarify flow mod to non-existing port

• clarify port definition

• update packet flow diagram

• update header parsing diagram for ICMP

• fix English ambiguity for flow-removed messages

• fix a sync message English ambiguity

• note that multiple controller support is undefined

• clarify that byte equal’s octet

• note counter wrap-around

• removed warning not to build a switch from this specification

3.2 OpenFlow Version 1.1

Following are the specifications of OpenFlow protocol version 1.1 [26].

3.2.1 Multiple Tables

Prior versions of the OpenFlow specification did expose to the controller the

abstraction of a single table.

The OpenFlow pipeline could internally be mapped to multiple tables, such as having

a separate wildcard and exact match table, but those tables would always act logically

as a single table.

OpenFlow 1.1 introduces a more flexible pipeline with multiple tables. Exposing

multiple tables has many advantages. The first advantage is that many hardware have

multiple tables internally (for example L2 table, L3 table, multiple TCAM lookups),

and the multiple table support of OpenFlow may enable to expose this hardware with

greater efficiency and flexibility. The second advantage is that many network

deployments combine orthogonal processing of packets (for example ACL, QoS and

routing), forcing all those processing in a single table creates huge ruleset due to the

cross product of individual rules, multiple table may decouple properly those

processing.

The new OpenFlow pipeline with multiple table is quite different from the simple

pipeline of prior OpenFlow versions. The new OpenFlow pipeline expose a set of

completely generic tables, supporting the full match and full set of actions. It's

difficult to build a pipeline abstraction that represent accurately all possible hardware,

therefore OpenFlow 1.1 is based on a generic and flexible pipeline that may be

mapped to the hardware. Some limited table capabilities are available to denote what

each table is capable of supporting.

Packet are processed through the pipeline, they are matched and processed in the first

table, and may be matched and processed in other tables. As it goes through the

pipeline, a packet is associated with an action set, accumulating action, and a generic

metadata register. The action set is resolved at the end of the pipeline and applied to

the packet. The metadata can be matched and written at each table and enables to

carry state between tables.

OpenFlow introduces a new protocol object called instruction to control pipeline

processing. Actions which were directly attached to flows in previous versions are

now encapsulated in instructions, instructions may apply those actions between tables

or accumulate them in the packet action set. Instructions can also change the

metadata, or direct packet to another table.

 The switch now expose a pipeline with multiple tables.

 Flow entry have instruction to control pipeline processing

 Controller can choose packet traversal of tables via go to instruction

 Metadata field (64 bits) can be set and match in tables

 Packet actions can be merged in packet action set

 Packet action set is executed at the end of pipeline

 Packet actions can be applied between table stages

 Table miss can send to controller, continue to next table or drop

 Rudimentary table capability and configuration

3.2.2 Groups

The new group abstraction enables OpenFlow to represent a set of ports as a single

entity for forwarding packets. Different types of groups are provided, to represent

different abstractions such as multicasting or multipathing. Each group is composed

of a set group buckets, each group bucket contains the set of actions to be applied

before forwarding to the port. Group’s buckets can also forward to other groups,

enabling to chain groups together.

 Group indirection to represent a set of ports

 Group table with 4 types of groups:

- All - used for multicast and flooding

- Select - used for multipath

- Indirect - simple indirection

- Fast Failover - use first live port

 Group action to direct a flow to a group

 Group buckets contains actions related to the individual port

3.2.3 MPLS & VLAN

Prior versions of the OpenFlow specification had limited VLAN support, it only

supported a single level of VLAN tagging with ambiguous semantic. The new

tagging support has explicit actions to add, modify and remove VLAN tags, and can

support multiple level of VLAN tagging. It also adds similar support the MPLS shim

headers.

 Support for VLAN and QinQ, adding, modifying and removing VLAN

headers

 Support for MPLS, adding, modifying and removing MPLS shim headers

3.2.4 Virtual Ports

Prior versions of the OpenFlow specification assumed that all the ports of the

OpenFlow switch were physical ports. This version of the specification add support

for virtual ports, which can represent complex forwarding abstractions such as LAGs

or tunnels.

 Make port number 32 bits, enable larger number of ports

 Enable switch to provide virtual port as OpenFlow ports

 Augment packet-in to report both virtual and physical ports

3.2.5 Controller connection failure

Prior versions of the OpenFlow specification introduced the emergency flow cache as

a way to deal with the loss of connectivity with the controller. The emergency flow

cache feature was removed in this version of the specification, due to the lack of

adoption, the complexity to implement it and other issues with the feature semantic.

This version of the specification add two simpler modes to deal with the loss of

connectivity with the controller. In fail secure mode, the switch continues operating in

OpenFlow mode, until it reconnects to a controller. In fail standalone mode, the

switch revert to using normal processing (Ethernet switching).

 Remove Emergency Flow Cache from spec

 Connection interruption trigger fail secure or fail standalone mode.

3.2.6 Other changes

 Remove 802.1d-specific text from the specification

 Cookie Enhancements Proposal - cookie mask for filtering

 Set queue action (unbundled from output port action)

 Maskable DL and NW address match fields

 Add TTL decrement, set and copy actions for IPv4 and MPLS

 SCTP header matching and rewriting support

 Set ECN action

 Define message handling: no loss, may reorder if no barrier

 Rename VENDOR APIs to EXPERIMENTER APIs

 Many other bug fixes, rewording and clarifications.

3.3 OpenFlow Version 1.2

Following are the specifications which supports OpenFlow version 1.2 [8]. We have

created a data structure (schema) for OpenFlow version 1.2 and integrated it with

Warp architecture.

3.3.1 Extensible Match Support

Prior versions of the OpenFlow specification used a static fixed length structure to

specify ofp_match, which prevents flexible expression of matches and prevents

inclusion of new match fields. The ofp_match has been changed to a TLV structure,

called OpenFlow Extensible Match (OXM), which dramatically increases flexibility.

The match fields themselves have been reorganized. In the previous static structure,

many fields were overloaded; for example tcp.src_port, udp.src_port, and icmp.code

were using the same field entry. Now, every logical field has its own unique type.

3.3.2 Extensible ‘set field’ packet rewriting support

Prior versions of the OpenFlow specification were using hand-crafted actions to

rewrite header fields. The Extensible set_field action reuses the OXM encoding

defined for matches, and enables to rewrite any header field in a single action. This

allows any new match field, including experimenter fields, to be available for rewrite.

This makes the specification cleaner and eases cost of introducing new fields.

• Deprecate most header rewrite actions

• Introduce generic set-field action

• Reuse match TLV structure (OXM) in set-field action

3.3.3 Extensible context expression in ‘packet-in’

The packet-in message did include some of the packet context (ingress port), but not

all (metadata), preventing the controller from figuring how match did happen in the

table and which flow entries would match or not match. Rather than introduce a hard

coded field in the packet-in message, the flexible OXM encoding is used to carry

packet context.

• Reuse match TLV structure (OXM) to describe metadata in packet-in

• Include the ’metadata’ field in packet-in

• Move ingress port and physical port from static field to OXM encoding

• Allow to optionally include packet header fields in TLV structure

3.3.4 Extensible Error messages via experimenter error type

An experimenter error code has been added, enabling experimenter functionality to

generate custom error messages. The format is identical to other experimenter APIs.

3.3.5 IPv6 support added

Basic support for IPv6 match and header rewrite has been added, via the Flexible

match support.

• Added support for matching on IPv6 source address, destination address, protocol

number, traffic class, ICMPv6 type, ICMPv6 code and IPv6 neighbor discovery

header fields

• Added support for matching on IPv6 flow label

3.3.6 Simplified behavior of flow-mod request

The behavior of flow-mod request has been simplified.

• MODIFY and MODIFY STRICT commands never insert new flows in the table

• New flag OFPFF RESET COUNTS to control counter reset

• Remove quirky behavior for cookie field.

3.3.7 Removed packet parsing specification

The OpenFlow specification no longer attempts to define how to parse packets. The

match fields are only defined logically.

• OpenFlow does not mandate how to parse packets

• Parsing consistency achieved via OXM pre-requisite

3.4 OpenFlow Version 1.3

Following are the specifications of OpenFlow version 1.3 protocol [27].

3.4.1 Refactor capabilities negotiation

Prior versions of the OpenFlow specification included limited expression of the

capabilities of an OpenFlow switch. OpenFlow 1.3 include a more flexible

framework to express capabilities.

The main change is the improved description of table capabilities. Those capabilities

have been moved out of the table statistics structure in its own request/reply message,

and encoded using a flexible TLV format. This enables the additions of next-table

capabilities, table-miss flow entry capabilities and experimenter capabilities. Other

changes include renaming the 'stats' framework into the 'multipart' framework to

reflect the fact that it is now used for both statistics and capabilities, and the move of

port descriptions into its own multipart message to enable support of a greater number

of ports.

List of features for Refactor capabilities negotiation:

• Rename 'stats' framework into the 'multipart' framework.

• Enable 'multipart' requests (requests spanning multiple messages).

• Move port list description to its own multipart request/reply.

• Move table capabilities to its own multipart request/reply.

• Create flexible property structure to express table capabilities.

• Enable to express experimenter capabilities.

• Add capabilities for table-miss flow entries.

• Add next-table (i.e. goto) capabilities

3.4.2 More flexible table miss support

Prior versions of the OpenFlow specification included table configuration flags to

select one of three 3 behavior for handling table-misses (packet not matching any

flows in the table). OpenFlow 1.3 replace those limited flags with the table-miss flow

entry, a special flow entry describing the behavior on table miss.

The table-miss flow entry uses standard OpenFlow instructions and actions to process

table-miss packets, this enables to use the full flexibility of OpenFlow in processing

those packets. All previous behavior expressed by the table-miss config flags can be

expressed using the table-miss flow entry. Many new way of handling table-miss,

such as processing table-miss with normal, can now trivially be described by the

OpenFlow protocol.

• Remove table-miss config flags.

• Define table-miss flow entry as the all wildcard, lowest priority flow entry.

• Mandate support of the table-miss flow entry in every table to process table-miss

packets.

• Add capabilities to describe the table-miss flow entry.

• Change table-miss default to drop packets.

3.4.3 IPv6 Extension Header handling support

Add the ability of match the presence of common IPv6 extension headers, and some

anomalous conditions in IPv6 extension headers. A new OXM pseudo header field

OXM_OF_IPV6_EXTHDR enables to match the following conditions:

• Hop-by-hop IPv6 extension header is present.

• Router IPv6 extension header is present.

• Fragmentation IPv6 extension header is present.

• Destination options IPv6 extension headers is present.

• Authentication IPv6 extension header is present.

• Encrypted Security Payload IPv6 extension header is present.

• No Next Header IPv6 extension header is present.

• IPv6 extension headers out of preferred order.

• Unexpected IPv6 extension header encountered.

3.4.4 Per Flow meters

Add support for per-flow meters. Per-flow meters can be attached to flow entries and

can measure and control the rate of packets. One of the main applications of per-flow

meters is to rate limit packets sent to the controller. The per-flow meter feature is

based on a new flexible meter framework, which includes the ability to describe

complex meters through the use of multiple metering bands, metering statistics and

capabilities. Currently, only simple rate-limiter meters are defined over this

framework. Support for color-aware meters, which support Diff-Serv style operation

and are tightly integrated in the pipeline, was postponed to a later release.

• Flexible meter framework based on per-flow meters and meter bands.

• Meter statistics, including per band statistics.

•Enable to attach meters flexibly to flow entries.

• Simple rate-limiter support (drop packets).

3.4.5 Per connection event filtering

Previous version of the specification introduced the ability for a switch to connect to

multiple controllers for fault tolerance and load balancing. Per connection event

filtering improves the multi-controller support by enabling each controller to filter

events from the switch it does not want. A new set of OpenFlow messages enables a

controller to configure an event filter on its own connection to the switch.

Asynchronous messages can be filtered by type and reason. This event filter comes in

addition to other existing mechanisms that enable or disable asynchronous messages,

for example the generation of flow-removed events can be configured per flow. Each

controller can have a separate filter for the slave role and the master/equal role.

• Add asynchronous message filter for each controller connection.

• Controller message to set/get the asynchronous message filter.

• Set default filter value to match OpenFlow 1.2 behavior.

• Remove OFPC_INVALID_TTL_TO_CONTROLLER config flag.

3.4.6 Auxiliary connections

In previous version of the specification, the channel between the switch and the

controller is exclusively made of a single TCP connection, which does not allow to

exploit the parallelism available in most switch implementations. OpenFlow 1.3

enables a switch to create auxiliary connections to supplement the main connection

between the switch and the controller. Auxiliary connections are mostly useful to

carry packet-in and packet-out messages.

• Enable switch to create auxiliary connections to the controller.

• Mandate that auxiliary connection cannot exist when main connection is not alive.

• Add auxiliary-id to the protocol to disambiguate the type of connection.

• Enable auxiliary connection over UDP and DTLS.

3.4.7 MPLS BoS matching

A new OXM field OXM_OF_MPLS_BOS has been added to match the Bottom of

Stack bit (BoS) from the MPLS header. The BoS bit indicates if other MPLS shim

header are in the payload of the present MPLS packet, and matching this bit can help

to disambiguate case where the MPLS label is reused across levels of MPLS

encapsulation.

3.4.8 Provider Backbone Bridging tagging

Add support for tagging packet using Provider Backbone Bridging (PBB)

encapsulation. This support enables OpenFlow to support various network

deployment based on PBB, such as regular PBB and PBB-TE.

• Push and Pop operation to add PBB header as a tag.

• New OXM field to match I-SID for the PBB header.

3.4.9 Rework tag order

In previous version of the specification, the final order of tags in a packet was

statically specified. For example, a MPLS shim header was always inserted after all

VLAN tags in the packet. OpenFlow 1.3 removes this restriction, the final order of

tags in a packet is dictated by the order of the tagging operations, and each tagging

operation adds its tag in the outermost position.

• Remove defined order of tags in packet from the specification.

• Tags are now always added in the outermost possible position.

• Action-list can add tags in arbitrary order.

• Tag order is predefined for tagging in the action-set.

3.4.10 Tunnel-ID metadata

The logical port abstraction enables OpenFlow to support a wide variety of

encapsulations. The tunnel-id metadata OXM_OF_TUNNEL_ID is a new OXM field

that expose to the OpenFlow pipeline metadata associated with the logical port, most

commonly the de-multiplexing field from the encapsulation header.

For example, if the logical port perform GRE encapsulation, the tunnel-id field would

map to the GRE key field from the GRE header. After de-capsulation, OpenFlow

would be able to match the GRE key in the tunnel-id match field. Similarly, by

setting the tunnel-id, OpenFlow would be able to set the GRE key in an encapsulated

packet.

3.4.11 Cookies in packet-in

A cookie field was added to the packet-in message. This field takes its value from the

flow and sends the packet to the controller. If the packet was not sent by a flow, this

field is set to 0xffffffff. Having the cookie in the packet-in enables the controller to

more efficiently classify packet-in, rather than having to match the packet against the

full flow table.

3.4.12 Duration for stats

A duration field was added to most statistics, including port statistics, group statistics,

queue statistics and meter statistics. The duration field enables to more accurately

calculate packet and byte rate from the counters included in those statistics.

3.4.13 On-demand flow counters

New flow-mod flags have been added to disable packet and byte counters on a per-

flow basis. Disabling such counters may improve flow handling performance in the

switch.

3.4.14 Other changes

• Fix a bug describing VLAN matching.

• Flow entry description now mention priority.

• Flow entry description now mention timeout and cookies.

• Unavailable counters must now be set to all 1.

• Correctly refer to flow entry instead of rule.

• Many other bug fixes, rewording and clarifications.

3.5 OpenFlow Version 1.4

Following are the specifications of OpenFlow protocol version 1.4 [26].

3.5.1 More extensible wire protocol

The OpenFlow protocol was initially designed with many static fixed structures and

limited extensibility. The introduction of the OpenFlow Extensible Match (OXM) in

version 1.2 added much needed extensibility in the OpenFlow classifier. In version

1.4, many other parts of the protocol have been retrofitted with TLV structures for

improved extensibility. This TLV work affected many areas of the protocol. New

TLVs have been added in previously fixed structures in the form of properties at the

end of the structure. In some areas, the existing TLVs have been changed to use the

common property TLV format. TLVs rules have been clarified. This additional

extensibility of the protocol will allow a much easier way to add new features to the

protocol in the future, and also greatly extend the Experimenter Extension API.

 Port structures: add port description properties, add port mod properties and

add port stats properties.

 Table structures: add table mod properties, add table descriptions multipart,

add table status asynchronous message.

 Queue structures: migrate queue description to multipart, convert queue

description properties to standardized TLVs and add queue stats properties.

 Set-async structures: convert set-async-config to TLVs, add set-async

experimenter property.

 Instruction structures: clarify instruction TLVs.

 Actions structures: clarify actions TLVs.

 Experimented structures: clarify experimenter TLVs.

 Properties errors: add a set of unified error codes for all properties.

3.5.2 More descriptive reasons for packet-in

The OpenFlow pipeline saw extensive changes since 1.0, however, the reason values

in the ofp_packet_in messages did not change. As a result, many distinct parts of the

pipeline are using the same reason value. Version 1.4 introduces more descriptive

reasons, so that the controller can properly distinguish which part of the pipeline

redirected the packet to the controller. The main change is that the ”output action”

reason OFPR_ACTION is effectively split into four reasons, ”apply-action”, ”action-

set”, ”group bucket” and ”packet-out”, representing the four distinct context where

this action is used. The ”no match” reason OFPR_NO_MATCH is renamed to

properly reflect the fact that it is generated by the table miss flow entry. The new set

of reason values for ofp_packet_in message is:

 OFPR_TABLE_MISS: No matching flow (table-miss flow entry).

 OFPR_APPLY_ACTION: Output to controller in apply-actions.

 OFPR_INVALID_TTL: Packet has invalid TTL.

 OFPR_ACTION_SET: Output to controller in action set.

 OFPR_GROUP: Output to controller in group bucket.

 OFPR_PACKET_OUT: Output to controller in packet-out.

3.5.3 Optical port properties

A new set of port properties add support for Optical ports, they include fields to

configure and monitor the transmit and receive frequency of a laser, as well as its

power. Those new properties can be used to configure and monitor either Ethernet

optical port or optical ports on circuit switches.

 Optical port mod property ofp_port_mod_prop_optical to configure optical

ports.

 Optical port stats property ofp_port_stats_prop_optical to monitor optical

ports.

 Optical port description property ofp_port_desc_prop_optical to describe

optical port capabilities.

3.5.4 Flow- removed reason for meter delete

Add a new reason value OFPRR_METER_DELETE for the ofp_flow_removed

message to denote that the flow entry was removed as a result of a meter deletion.

When a meter is deleted on the switch, all the flow entries that use that meter are

removed. This is similar to how group operates. The flow that are removed may

generate a flow-removed message (depending on config). In version 1.3, we did not

have a reason for this condition, version 1.4 fixes that bug.

3.5.5 Flow monitoring

The OpenFlow protocol defines a multi-controller scheme where multiple controller

can manage a switch. Flow monitoring allows a controller to monitor in real time the

changes to any subsets of the flow table done by other controllers.

The flow monitoring framework allows a controller to define a number of monitors,

each selecting a subset of the flow tables. Each monitor includes a table id and a

match pattern that defines the subset monitored. When any flow entry is added,

modified or removed in one of the subset defined by a flow monitor, an event is sent

to the controller to inform it of the change.

 Multipart request ofp_flow_monitor_request to set flow monitors on the

switch.

 Flow monitor update events sent to controller, with full details using

ofp_flow_update_full or abbreviated using ofp_flow_update_abbrev.

 Monitor flags to define the format of the updates.

 Flow control mechanism to avoid backlog of monitor updates.

3.5.6 Role status event

Version 1.2 of the specification added the ability for a controller to set its role in a

multi-controller environment. When a controller elected itself to “master” role, the

previous master controller is demoted to “slave” role, however that controller was not

informed about it. In version 1.4, the Role Status message enable the switch to inform

a controller about change to its role.

 Role status event OFPT_ROLE_STATUS to inform controller to change to

role.

 Role status properties for experimenter data, ofp_role_prop_experimenter.

3.5.7 Eviction

Most flow tables have finite capacity. In previous versions of the specification, when

a flow table is full, new flow entries are not inserted in the flow table and an error is

returned to the controller. However, reaching that point is pretty problematic, as the

controller need time to operate on the flow table and this may cause a disruption of

service. Eviction adds a mechanism enabling the switch to automatically eliminate

entries of lower importance to make space for newer entries. This enables to smoother

degradation of behavior when the table is full.

 Table-mod flag OFPTC_EVICTION to enable or disable eviction on a table.

 Flow-mod importance to optionally denote the importance of a flow entry for

eviction.

 Table-desc eviction property ofp_table_mod_prop_eviction to describe the

type of eviction performed by the switch.

3.5.8 Vacancy events

Most flow tables have finite capacity. In previous versions of the specification, when

a flow table is full, new flow entries are not inserted in the flow table and an error is

returned to the controller. However, reaching that point is pretty problematic, as the

controller need time to operate on the flow table and this may cause a disruption of

service. Vacancy events adds a mechanism enabling the controller to get an early

warning based on a capacity threshold chosen by the controller. This allows the

controller to react in advance and avoid getting the table full.

 Table status event OFPT_TABLE_STATUS with reasons

OFPTR_VACANCY_DOWN and OFPTR_VACANCY_UP to inform

controller of vacancy change.

 Hysteresis mechanism to avoid spurious events using two threshold,

vacancy_down and vacancy_ up.

 Table-mod vacancy property to set vacancy thresholds,

ofp_table_mod_prop_vacancy.

3.5.9 Bundles

Add the bundle mechanism, enabling to apply a group of OpenFlow message as a

single operation. This enables the quasi-atomic application of related changes, and to

better synchronize changes across a series of switches.

 Bundle control message OFPT_BUNDLE_CONTROL to create, destroy and

commit bundles.

 Bundle add message OFPT_BUNDLE_ADD_MESSAGE to add an OpenFlow

message into a bundle.

 Bundle error type OFPET_BUNDLE_FAILED to report bundle operation

errors.

3.5.10 Synchronized tables

Many switches can perform multiple lookups on the same lookup data. For example,

a standard Ethernet learning table performs a learning lookup and a forwarding

lookup on the same set of MAC addresses. Another example is RPF checks which

reuses the IP forwarding data. The synchronized table feature enables to represent

those constructs as a set of two tables which data is synchronized. Synchronized

table is expressed using a new property in the table feature,

OFPTFPT_TABLE_SYNC_FROM. It defines the synchronization abstraction between

the two flow tables, however it does not define and express the flow entry

transformation between the flow tables.

3.5.11 Group and meter change notifications

The OpenFlow protocol defines a multi-controller scheme where multiple controller

can manage a switch. Group and Meter change notifications allow a controller to

monitor in real time the changes to the group table or meter table done by other

controllers.

The “group-mod” and “meter-mod” requests are simple encapsulated in an

OFPT_REQUESTFORWARD asynchronous message sent to other controllers. Those

notifications are enabled and disabled via the “setasync-config” message.

3.5.12 Error code and bad priority

Some switches may have restrictions on the priorities that can be used in a table. For

example a switch may be enforcing some “longest prefix match” rule in a table,

requiring the priority to be related to the mask. A new error code,

OFPFMFC_BAD_PRIORITY, enables the switch to properly inform the controller

when this happens.

3.5.13 Error code and set-async-config

The OFPT_GET_ASYNC_REQUEST feature was introduced in version 1.3.0. There

was no error messages defined for that features, however it is possible for this request

to fail. A new error type, OFPET_ASYNC_CONFIG_FAILED, which appropriate

code, enables the switch to properly inform the controller when this happens.

The set of error codes defined for OFPET_ASYNC_CONFIG_FAILED are:

 OFPACFC_INVALID: One mask is invalid.

 OFPACFC_UNSUPPORTED: Requested configuration not supported.

 OFPACFC_EPERM: Permissions error.

3.5.14 PBB UCA header field

A new OXM field OFPXMT_OFB_PBB_UCA has been added to match the “use

customer address” header field from the PBB header.

3.5.15 Error code for duplicate instruction

The OpenFlow specification defines the instructions included in a flow entry as a set,

and that an instruction cannot be duplicated in that set. A new error code,

OFPBIC_DUP_INST, enables the switch to properly inform the controller when flow

entries contain duplicate instructions.

3.5.16 Error code for multipart timeout

Multipart request and replies are encoded as a sequence of messages. This version of

the specification defines how to deal with unterminated sequence, some minimum

timeout are defined as well as error codes.

 Define minimum timeout (100 ms) and error code

(OFPBRC_MULTIPART_REQUEST_TIMEOUT) for unterminated multipart

request sequences.

 Define minimum timeout (1 s) and error code

(OFPBRC_MULTIPART_REPLY_TIMEOUT) for unterminated multipart

reply sequences.

3.5.17 Change default TCP port to 6653

IANA allocated to ONF the TCP port number 6653 to be used by the OpenFlow

switch protocol. All uses of the previous port numbers, 6633 and 976, should be

discontinued. OpenFlow switches and OpenFlow controllers must use 6653 by

default (when not using a user specified port number).

Chapter 4 – Warp comparison with other OpenFlow Controllers

Warp architecture relies on Avro schema. OpenFlow protocol is defined in Avro

schema file which consists of fields contained in header format of OpenFlow

messages.

Warp supports OpenFlow version 1.0, OpenFlow version 1.2 and OpenFlow version

1.3. Each version is represented by separate schema files. Schema file defines static

data type and constraints.

This chapters clearly explain about how Avro data structure has upper hand than the

other existing data structures comparing factors which could heavily impact the

performance of OpenFlow controller architecture.

Following are the factors used for comparison of Warp and Floodlight, Ryu controller

architectures.

4.1 Integrate new version of OpenFlow

As Avro stores data definition i.e. schema and data together, while data is read, it will

already have schema present which reduces the process of translating data structure or

object state into a format that can be stored and reconstructed later in same or other

computer environment. Also less type information need to be encoded with data.

When we want to integrate new version of OpenFlow in Warp, we can either use

schema already present for older version and update it with new features or we can

create new schema file which will have all required features’ header format field.

In case of other OpenFlow controllers like floodlight, Open daylight, we have to

create a different class files for different features of OpenFlow and rebuild the source

code file every time we integrate the new version of OpenFlow.

So, the basic difference between Warp and other OpenFlow controller’s architecture

is that we don't have to rebuild the source code file every time we integrate the new

version of OpenFlow which will reduce a lot of overhead.

4.2 Update existing version/Run time changes

When we have to update any version of OpenFlow in Warp, we don't have to compile

the code every time we make changes in schema file. Data is always accompanied by

a schema that permits full processing of that data without code generation, static data

types, etc. This facilitates construction of generic data-processing systems and

languages. We just have to invoke “init” method in order to make run time changes in

the schema. This will initialize all the new variables in the schema. Other OpenFlow

controller architecture does not support this feature as if we want to do any changes in

code we have to compile the code every time before making it executable.

4.3 Version control

When an Avro schema changes, the old schema contents are still present in the

schema file so differences may be resolved symbolically, using field names. This

states that version control is very easy as we can easily differentiate the old data and

newly added data. Other OpenFlow controller architecture provides OpenFlow

support using code generated in different languages. Every time we update the code

new file is generated in order to maintain the versions. If we update in the same file

we cannot differentiate old and new data contents. It is difficult to maintain such

version files.

4.4 Data exchange

One of the features of Avro, it provides framework for storing and exchanging big

data between programs written in different languages such as Java and C, Hive and

Python, Pig and Java. As Warp architecture has schema file for different OpenFlow

versions, the logic defined to access the schemas can be written in any languages and

schemas can be accessed via Avro API.

4.5 Code processing

Figure 7.1 shows the processing of source code and schema respectively. Source code

processing contains different stages before it gets ready to use.

In figure 9 (a), source code is given to the preprocessor which will process it and give

source code w/substitutions to parser. Parser will parse the source code and create

parse tree and give this input to translator. Translator will translate it to assembly

code and give this input to assembler. In assembly stage, assembly code is directly

translated into machine instructions. Some minimal pre-processing, padding and

instruction reordering can occur in this stage. In linking, for each function our

program calls, the assembly to that function is actually included in the executable file.

Linkers output is .exe file which is an executable.

In figure 9 (b), when we have schema file and wants to update it or integrate a new

file into architecture, we just have to call “init” method of that particular schema

definition.

This clearly shows schema processing requires less steps and overhead.

Figure 9: (a) Compilation process of source code (b) Processing of schema

4.6 Architecture Comparison

Warp Floodlight Ryu

File type schema java code python code

Data Serialization Avro JSON Pickle

Data Exchange Yes No No

Version Update Easy Difficult Difficult

Version Control Easy Difficult Difficult

Integration Time Less More More

Run-Time Changes Possible Not possible Not possible

Storage and CPU

Utilization for

serialization scheme Less More More

Code processing stages Less More More

Compression Best Good Good

Read/Write data Schema needed

Schema not

needed

Schema not

needed

Serialization speed Slow Medium Medium

Table 1: Comparison of OpenFlow architectures

The major factors which could impact the performance of the architectures are

considered here for comparison. As we can clearly see in the comparison table, Warp

has more positive points/factors than other OpenFlow architectures (Floodlight and

Ryu)

If we consider 10 major factors of comparison between all, we see 8 factors are in

favor of Warp. If we take the ratio of positive factors to total number of factors

considered we can clearly mention which is the more flexible architecture.

The result we get after taking the ratios is as follows:

Warp Floodlight Ryu

Flexibility (%) 80 20 20

Table 2: Flexibility (%)

Table 2 clearly shows that the flexibility of Warp is considerably greater as compared

to Floodlight and Ryu.

Chapter 5 – Results, Conclusion and Future Work

We have successfully wrote a schema for OpenFlow version 1.2 and integrated it with

Warp SDN architecture. As there is isolated data structure support of OpenFlow

protocol, we have used software infrastructure proposed by Warp development group

which uses Avro which provides rich data structures support. We also compare

Warp, Floodlight and Ryu to show how flexible Warp architecture is.

Now, Warp SDN architecture supports OpenFlow versions 1.0, 1.2 and 1.3. We could

easily write schema for other OpenFlow versions which are not supported by Warp

architecture and also do periodic updates to existing versions of OpenFlow protocols

supported by Warp if any with the help of Warp architecture.

References

[1] SDN Definition: https://www.opennetworking.org/sdn-resources/sdn-definition

[2] OpenFlow: http://archive.openflow.org/wp/learnmore/

[3] Warp: https://github.com/FlowForwarding/Warp

[4] tinyNBI: Distilling an API from essential OpenFlow abstractions

[5] NOSIX: A Lightweight Portability Layer for the SDN OS

[6] Frentic: A network Programming language

[7] Avro: http://avro.apache.org/docs/current/

[8] OpenFlow Switch Specification version 1.2, Open Networking Foundation

[9] Software Defined Networking: http://kimia.fi/papers/sdn.pdf

[10] A survey of Software Defined Networking:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6739370

[11] Software Defined Networking:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6386859

[12] Towards secure and dependable Software Defined Networking.

[13] Considerations of Software Defined Networking:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6496914

https://github.com/FlowForwarding/warp

[14] Software Defined Networking: A comprehensive Survey

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6994333

[15] OpenFlow switching: Data plane performance

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5502016

[16] Flexible workflow management in OpenFlow systems:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=950425

[17] Network Innovation using OpenFlow:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6587999

[18] Comparing OpenFlow controller paradigm scalability:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6531863

[19] A flexible OpenFlow controller benchmark:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6385047

[20] OpenFlow version specifications

[21] Apache Sqoop Cookbook.

[22] Comparative Survey of Object Serialization Techniques and the Programming

Supports:

http://www.davidpublishing.com/davidpublishing/Upfile/9/6/2012/201209068499280

1.pdf

[23] https://www.dataxu.com/three-reasons-why-apache-avro-data-serialization-is-a-

good-choice-for-openrtb/

[24] https://github.com/rfoldes/Avro-Test

[25] OpenFlow: Enabling Innovation in Campus Networks

[26] “OpenFlow Switch Specification”, version 1.0.0.

http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf

[27] “OpenFlow Switch Specification”, version 1.0.0.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-

specifications/openflow/openflow-spec-v1.3.0.pdf

[28] Message Layer

http://flowgrammable.org/sdn/openflow/message-layer/

[29] OpenFlow overview

http://flowgrammable.org/sdn/openflow/#tab_protocol

[30] http://blog.cloudera.com/blog/2011/05/three-reasons-why-apache-avro-data-

serialization-is-a-good-choice-for-openrtb/

[31] http://www.quora.com/What-are-pros-and-cons-of-Apache-Avro

[32] Warp openflow controller and driver - Infoblox

Appendix: A – Code

OpenFlow version 1.2

{ "namespace" :"of12",

 "protocol":"ofp12",

 "types":[

 {"name":"uint_8", "type":"fixed", "size":1},

 {"name":"uint_16", "type":"fixed", "size":2},

 {"name":"uint_24", "type":"fixed", "size":3},

 {"name":"uint_32", "type":"fixed", "size":4},

 {"name":"uint_48", "type":"fixed", "size":6},

 {"name":"uint_64", "type":"fixed", "size":8},

 {"name":"uint_128", "type":"fixed", "size":16},

 {"name":"pad_7", "type":"fixed", "size":7},

 {"name":"pad_6", "type":"fixed", "size":6},

 {"name":"pad_4", "type":"fixed", "size":4},

 {"name":"pad_3", "type":"fixed", "size":3},

 {"name":"pad_2", "type":"fixed", "size":2},

 {"name":"pad_1", "type":"fixed", "size":1},

 {"name":"ofp_type",

 "type":"enum",

 "items":"uint_8",

 "list":[

 {"name":"OFPT_HELLO", "default":[0]},

 {"name":"OFPT_ERROR", "default":[1]},

 {"name":"OFPT_ECHO_REQUEST", "default":[2]},

 {"name":"OFPT_ECHO_REPLY", "default":[3]},

 {"name":"OFPT_FEATURES_REQUEST", "default":[5]},

 {"name":"OFPT_FEATURES_REPLY", "default":[6]},

 {"name":"OFPT_GET_CONFIG_REQUEST", "default":[7]},

 {"name":"OFPT_GET_CONFIG_REPLY", "default":[8]},

 {"name":"OFPT_SET_CONFIG", "default":[9]},

 {"name":"OFPT_PACKET_IN", "default":[10]},

 {"name":"OFPT_FLOW_REMOVED", "default":[11]},

 {"name":"OFPT_PORT_STATUS", "default":[12]},

 {"name":"OFPT_PACKET_OUT", "default":[13]},

 {"name":"OFPT_FLOW_MOD", "default":[14]},

 {"name":"OFPT_PORT_MOD", "default":[16]},

 {"name":"OFPT_BARIER_REQUEST", "default":[20]},

 {"name":"OFPT_BARIER_REPLY", "default":[21]},

 {"name":"OFPT_ROLE_REQUEST", "default":[24]},

 {"name":"OFPT_ROLE_REPLY", "default":[25]},

 {"name":"OFPT_GET_ASYNC_REQUEST", "default":[26]},

 {"name":"OFPT_GET_ASYNC_REPLY", "default":[27]},

 {"name":"OFPT_SET_ASYNC", "default":[28]},

 {"name":"OFPT_METER_MOD", "default":[29]}

]

 },

 {"name":"ofp_length",

 "type":"enum",

 "items":"uint_16",

 "list":[

 {"name":"OFPL_HELLO_LEN", "default":[0,8]},

 {"name":"OFPL_ERROR_LEN", "default":[0,16]},

 {"name":"OFPL_ECHO_REQUEST_LEN", "default":[0,8]},

 {"name":"OFPL_ECHO_REPLY_LEN", "default":[0,8]},

 {"name":"OFPL_EXPERIMENTER_LEN", "default":[0,16]},

 {"name":"OFPL_FEATURES_REQUEST_LEN", "default":[0,8]},

 {"name":"OFPL_FEATURES_REPLY_LEN", "default":[0,32]},

 {"name":"OFPL_GET_CONFIG_REQUEST_LEN", "default":[0,8]},

 {"name":"OFPL_GET_CONFIG_REPLY_LEN", "default":[0,12]},

 {"name":"OFPL_SET_CONFIG_LEN", "default":[0,12]},

 {"name":"OFPL_PACKET_IN_LEN", "default":[0,32]},

 {"name":"OFPL_FLOW_REMOVED_LEN", "default":[0,56]},

 {"name":"OFPL_PORT_STATUS_LEN", "default":[0,80]},

 {"name":"OFPL_PACKET_OUT_LEN", "default":[0,24]},

 {"name":"OFPL_FLOW_MOD_LEN", "default":[0,56]},

 {"name":"OFPL_GROUP_MOD_LEN", "default":[0,16]},

 {"name":"OFPL_PORT_MOD_LEN", "default":[0,40]},

 {"name":"OFPL_TABLE_MOD_LEN", "default":[0,16]},

 {"name":"OFPL_BARRIER_REQUEST_LEN", "default":[0,24]},

 {"name":"OFPL_BARRIER_REPLY_LEN", "default":[0,24]},

 {"name":"OFPL_ROLE_REQUEST_LEN", "default":[0,24]},

 {"name":"OFPL_ROLE_REPLY_LEN", "default":[0,24]},

 {"name":"OFPL_GET_ASYNC_REQUEST_LEN", "default":[0,8]},

 {"name":"OFPL_GET_ASYNC_REPLY_LEN", "default":[0,32]},

 {"name":"OFPL_SET_ASYNC_LEN", "default":[0,32]},

 {"name":"OFPL_METER_MOD_LEN", "default":[0,16]}

]

 },

 {"name":"ofp_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_HELLO"},

 {"name":"length", "type":"ofp_length", "default":"OFPL_HELLO_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_hello_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_HELLO"},

 {"name":"length", "type":"ofp_length", "default":"OFPL_HELLO_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_hello_elem_type",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPHET_VERSIONBITMAP", "default":[0,1]}

]

 },

 {"name":"hello_elem_type_len",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"HEL_VERSIONBITMAP", "default":[0,8]}

]

 },

 {"name":"ofp_hello_elem_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_hello_elem_type"},

 {"name":"length", "type":"hello_elem_type_len"}

]

 },

 {"name":"ofp_hello",

 "type":"record",

 "fields":[

 {"name":"header", "type":"ofp_hello_header"}

]

 },

 {"name":"ofp_switch_features_request_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_FEATURES_REQUEST"},

 {"name":"length", "type":"ofp_length",

"default":"OFPL_FEATURES_REQUEST_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_switch_features_request",

 "type":"record",

 "fields":[

 {"name":"header", "type":"ofp_switch_features_request_header"}

]

 },

 {"name":"switch_features_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_FEATURES_REPLY"},

 {"name":"length", "type":"ofp_length",

"default":"OFPL_FEATURES_REPLY_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_switch_features",

 "type":"record",

 "fields":[

 {"name":"header", "type":"switch_features_header"},

 {"name":"datapath_id", "type":"uint_64"},

 {"name":"n_buffers", "type":"uint_32"},

 {"name":"n_tables", "type":"uint_8"},

 {"name":"auxiliary_id", "type":"uint_8"},

 {"name":"pad", "type":"pad_2"},

 {"name":"capabilities", "type":"uint_32"},

 {"name":"reserved", "type":"uint_32"}

]

 },

 {"name":"ofp_set_switch_config_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_SET_CONFIG"},

 {"name":"length", "type":"ofp_length", "default":"OFPL_SET_CONFIG_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_set_switch_config",

 "type":"record",

 "fields":[

 {"name":"header", "type":"ofp_set_switch_config_header"},

 {"name":"flags", "type":"uint_16"},

 {"name":"miss_send_len", "type":"uint_16"}

]

 },

 {"name":"get_config_request_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type",

"default":"OFPT_GET_CONFIG_REQUEST"},

 {"name":"length", "type":"ofp_length",

"default":"OFPL_GET_CONFIG_REQUEST_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_get_config_request",

 "type":"record",

 "fields":[

 {"name":"header", "type":"get_config_request_header"}

]

 },

 {"name":"ofp_config_flags",

 "type":"enum",

 "items":"uint_16",

 "list":[{"name":"OFPC_FRAG_NORMAL", "default":[0, 0]},

 {"name":"OFPC_FRAG_DROP", "default":{"shift":[1, 0]}},

 {"name":"OFPC_FRAG_REASM", "default":{"shift":[1, 1]}},

 {"name":"OFPC_FRAG_MASK", "default":[0, 3]}

]

 },

 {"name":"switch_config_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_GET_CONFIG_REPLY"},

 {"name":"length", "type":"ofp_length",

"default":"OFPL_GET_CONFIG_REPLY_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_switch_config",

 "type":"record",

 "fields":[

 {"name":"header", "type":"switch_config_header"},

 {"name":"flags", "type":"uint_16"},

 {"name":"miss_send_len", "type":"uint_16"}

]

 },

 {"name":"ofp_match_type",

 "type":"enum",

 "items":"uint_16",

 "list":[{"name":"OFPMT_STANDARD", "default":[0,0]},

 {"name":"OFPMT_OXM", "default":[0,1]}]

 },

 {"name":"ofp_match_length",

 "type":"enum",

 "items":"uint_16",

 "list":[{"name":"OFPML_EMPTY", "default":[0,4]},

 {"name":"OFPML_IN_PORT", "default":[0,8]},

 {"name":"OFPFF_IN_PHY_PORT", "default":[0,8]}]

 },

 {"name":"oxm_tlv_header_ingress_port",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[0, 9]}, {"shift":[0, 8]}, 4]}

 },

 {"name":"oxm_tlv_ingress_port",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ingress_port"},

 {"name":"tlv", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_in_phy_port",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[1, 9]}, {"shift":[0, 8]}, 4]}

 },

 {"name":"oxm_tlv_in_phy_port",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_in_phy_port"},

 {"name":"tlv", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_metadata",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[2, 9]}, {"shift":[0, 8]}, 8]}

 },

 {"name":"oxm_tlv_metadata",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_metadata"},

 {"name":"tlv", "type":"uint_32", "default":[0,0,0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_eth_dst",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[3, 9]}, {"shift":[0, 8]}, 6]}

 },

 {"name":"oxm_tlv_eth_dst",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_eth_dst"},

 {"name":"tlv", "type":"uint_48", "default":[0,0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_eth_src",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[4, 9]}, {"shift":[0, 8]}, 6]}

 },

 {"name":"oxm_tlv_eth_src",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_eth_src"},

 {"name":"tlv", "type":"uint_48", "default":[0,0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_eth_type",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[5, 9]}, {"shift":[0, 8]}, 2]}

 },

 {"name":"oxm_tlv_eth_type",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_eth_type"},

 {"name":"tlv", "type":"uint_16", "default":[0,0]}

]

 },

 {"name":"oxm_tlv_header_vlan_vid",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[6, 9]}, {"shift":[0, 8]}, 2]}

 },

 {"name":"oxm_tlv_vlan_vid",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_vlan_vid"},

 {"name":"tlv", "type":"uint_16", "default":[0,0]}

]

 },

 {"name":"oxm_tlv_header_vlan_pcp",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[7, 9]}, {"shift":[0, 8]}, 1]}

 },

 {"name":"oxm_tlv_vlan_pcp",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_vlan_pcp"},

 {"name":"tlv", "type":"uint_16", "default":[0]}

]

 },

 {"name":"oxm_tlv_header_ip_dscp",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[8, 9]}, {"shift":[0, 8]}, 1]}

 },

 {"name":"oxm_tlv_ip_dscp",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ip_dscp"},

 {"name":"tlv", "type":"uint_16", "default":[0]}

]

 },

 {"name":"oxm_tlv_header_ip_ecn",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[9, 9]}, {"shift":[0, 8]}, 1]}

 },

 {"name":"oxm_tlv_ip_ecn",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ip_ecn"},

 {"name":"tlv", "type":"uint_8", "default":[0]}

]

 },

 {"name":"oxm_tlv_header_ip_proto",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[10, 9]}, {"shift":[0, 8]}, 1]}

 },

 {"name":"oxm_tlv_ip_proto",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ip_proto"},

 {"name":"tlv", "type":"uint_8", "default":[0]}

]

 },

 {"name":"oxm_tlv_header_ipv4_src",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[11, 9]}, {"shift":[0, 8]}, 4]}

 },

 {"name":"oxm_tlv_ipv4_src",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ipv4_src"},

 {"name":"tlv", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_ipv4_dst",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[12, 9]}, {"shift":[0, 8]}, 4]}

 },

 {"name":"oxm_tlv_ipv4_dst",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ipv4_dst"},

 {"name":"tlv", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_sctp_src",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[17, 9]}, {"shift":[0, 8]}, 2]}

 },

 {"name":"oxm_tlv_sctp_src",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_sctp_src"},

 {"name":"tlv", "type":"uint_16", "default":[0,0]}

]

 },

 {"name":"oxm_tlv_header_sctp_dst",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[18, 9]}, {"shift":[0, 8]}, 2]}

 },

 {"name":"oxm_tlv_sctp_dst",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_sctp_dst"},

 {"name":"tlv", "type":"uint_16", "default":[0,0]}

]

 },

 {"name":"oxm_tlv_header_icmpv4_type",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[19, 9]}, {"shift":[0, 8]}, 1]}

 },

 {"name":"oxm_tlv_icmpv4_type",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_icmpv4_type"},

 {"name":"tlv", "type":"uint_8", "default":[0]}

]

 },

 {"name":"oxm_tlv_header_icmpv4_code",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[20, 9]}, {"shift":[0, 8]}, 1]}

 },

 {"name":"oxm_tlv_icmpv4_code",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_icmpv4_code"},

 {"name":"tlv", "type":"uint_8", "default":[0]}

]

 },

 {"name":"oxm_tlv_header_arp_op",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[21, 9]}, {"shift":[0, 8]}, 2]}

 },

 {"name":"oxm_tlv_arp_op",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_arp_op"},

 {"name":"tlv", "type":"uint_16", "default":[0,0]}

]

 },

 {"name":"oxm_tlv_header_arp_spa",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[22, 9]}, {"shift":[0, 8]}, 4]}

 },

 {"name":"oxm_tlv_arp_spa",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_arp_spa"},

 {"name":"tlv", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_arp_tpa",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[23, 9]}, {"shift":[0, 8]}, 4]}

 },

 {"name":"oxm_tlv_arp_tpa",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_arp_tpa"},

 {"name":"tlv", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_arp_sha",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[24, 9]}, {"shift":[0, 8]}, 6]}

 },

 {"name":"oxm_tlv_arp_sha",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_arp_sha"},

 {"name":"tlv", "type":"uint_48", "default":[0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_arp_tha",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[25, 9]}, {"shift":[0, 8]}, 6]}

 },

 {"name":"oxm_tlv_arp_tha",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_arp_tha"},

 {"name":"tlv", "type":"uint_48", "default":[0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_ipv6_src",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[26, 9]}, {"shift":[0, 8]}, 16]}

 },

 {"name":"oxm_tlv_ipv6_src",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ipv6_src"},

 {"name":"tlv", "type":"uint_128", "default":[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_ipv6_dst",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[27, 9]}, {"shift":[0, 8]}, 16]}

 },

 {"name":"oxm_tlv_ipv6_dst",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ipv6_dst"},

 {"name":"tlv", "type":"uint_128", "default":[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_ipv6_flabel",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[28, 9]}, {"shift":[0, 8]}, 3]}

 },

 {"name":"oxm_tlv_ipv6_flabel",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ipv6_flabel"},

 {"name":"tlv", "type":"uint_24", "default":[0,0,0]}

]

 },

 {"name":"oxm_tlv_header_icmpv6_type",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[29, 9]}, {"shift":[0, 8]}, 1]}

 },

 {"name":"oxm_tlv_icmpv6_type",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_icmpv6_type"},

 {"name":"tlv", "type":"uint_8", "default":[0]}

]

 },

 {"name":"oxm_tlv_header_icmpv6_code",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[30, 9]}, {"shift":[0, 8]}, 1]}

 },

 {"name":"oxm_tlv_icmpv6_code",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_icmpv6_code"},

 {"name":"tlv", "type":"uint_8", "default":[0]}

]

 },

 {"name":"oxm_tlv_header_ipv6_nd_target",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[31, 9]}, {"shift":[0, 8]}, 16]}

 },

 {"name":"oxm_tlv_ipv6_nd_target",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ipv6_nd_target"},

 {"name":"tlv", "type":"uint_128", "default":[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_ipv6_nd_sll",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[32, 9]}, {"shift":[0, 8]}, 6]}

 },

 {"name":"oxm_tlv_ipv6_nd_sll",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ipv6_nd_sll"},

 {"name":"tlv", "type":"uint_48", "default":[0,0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_ipv6_nd_tll",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[33, 9]}, {"shift":[0, 8]}, 6]}

 },

 {"name":"oxm_tlv_ipv6_nd_tll",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ipv6_nd_tll"},

 {"name":"tlv", "type":"uint_48", "default":[0,0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_ipv6_tc",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[32, 9]}, {"shift":[0, 8]}, 6]}

 },

 {"name":"oxm_tlv_ipv6_tc",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ipv6_tc"},

 {"name":"tlv", "type":"uint_8", "default":[0]}

]

 },

 {"name":"oxm_tlv_header_ipv6_pn",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[32, 9]}, {"shift":[0, 8]}, 6]}

 },

 {"name":"oxm_tlv_ipv6_pn",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_ipv6_pn"},

 {"name":"tlv", "type":"uint_48", "default":[0,0,0,0,0,0,0]}

]

 },

 {"name":"oxm_tlv_header_mpls_label",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[34, 9]}, {"shift":[0, 8]}, 3]}

 },

 {"name":"oxm_tlv_mpls_label",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_mpls_label"},

 {"name":"tlv", "type":"uint_24", "default":[0,0,0]}

]

 },

 {"name":"oxm_tlv_header_mpls_tc",

 "type":"bitmap",

 "size":32,

 "default":{"or":[{"shift":[32768, 16]}, {"shift":[35, 9]}, {"shift":[0, 8]}, 1]}

 },

 {"name":"oxm_tlv_mpls_tc",

 "type":"record",

 "fields":[

 {"name":"header", "type":"oxm_tlv_header_mpls_tc"},

 {"name":"tlv", "type":"uint_8", "default":[0]}

]

 },

 {"name":"oxm_tlv",

 "type":"record",

 "fields":[

 {"name":"match", "type":["oxm_tlv_ingress_port",

 "oxm_tlv_in_phy_port",

 "oxm_tlv_metadata",

 "oxm_tlv_eth_dst",

 "oxm_tlv_eth_src",

 "oxm_tlv_eth_type",

 "oxm_tlv_vlan_vid",

 "oxm_tlv_vlan_pcp",

 "oxm_tlv_ip_dscp",

 "oxm_tlv_ip_ecn",

 "oxm_tlv_ip_proto",

 "oxm_tlv_ipv4_src",

 "oxm_tlv_ipv4_dst",

 "oxm_tlv_sctp_src",

 "oxm_tlv_sctp_dst",

 "oxm_tlv_icmpv4_type",

 "oxm_tlv_icmpv4_code",

 "oxm_tlv_arp_op",

 "oxm_tlv_arp_spa",

 "oxm_tlv_arp_tpa",

 "oxm_tlv_arp_sha",

 "oxm_tlv_arp_tha",

 "oxm_tlv_ipv6_src",

 "oxm_tlv_ipv6_dst",

 "oxm_tlv_ipv6_flabel",

 "oxm_tlv_icmpv6_type",

 "oxm_tlv_icmpv6_code",

 "oxm_tlv_ipv6_nd_target",

 "oxm_tlv_ipv6_nd_sll",

 "oxm_tlv_ipv6_nd_tll",

 "oxm_tlv_mpls_label",

 "oxm_tlv_mpls_tc",

]}

]

 },

 {"name":"match_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_match_type", "default":"OFPMT_OXM"},

 {"name":"length", "type":"uint_16", "default":[0,8]}

]

 },

 {"name":"oxm_tlv_fields",

 "type":"record",

 "fields":[

 {"name":"oxm_tlvs", "type":{"type":"array", "items":"oxm_tlv"}}

]

 },

 {"name":"ofp_match",

 "type":"record",

 "fields":[

 {"name":"header", "type":"match_header"},

 {"name":"fields", "type":"oxm_tlv_fields"},

 {"name":"closing_pad", "type":"bytes"}

]

 },

 {"name":"ofp_action_type",

 "type":"enum",

 "items":"uint_16",

 "list":[{"name":"OFPAT_OUTPUT", "default":[0,0]},

 {"name":"OFPAT_COPY_TTL_OUT", "default":[0,11]},

 {"name":"OFPAT_COPY_TTL_IN", "default":[0,12]},

 {"name":"OFPAT_SET_MPLS_TTL", "default":[0,15]},

 {"name":"OFPAT_DEC_MPLS_TTL", "default":[0,16]},

 {"name":"OFPAT_PUSH_VLAN", "default":[0,17]},

 {"name":"OFPAT_POP_VLAN", "default":[0,18]},

 {"name":"OFPAT_PUSH_MPLS", "default":[0,19]},

 {"name":"OFPAT_POP_MPLS", "default":[0,20]},

 {"name":"OFPAT_SET_QUEUE", "default":[0,21]},

 {"name":"OFPAT_GROUP", "default":[0,22]},

 {"name":"OFPAT_SET_NW_TTL", "default":[0,23]},

 {"name":"OFPAT_DEC_NW_TTL", "default":[0,24]},

 {"name":"OFPAT_SET_FIELD", "default":[0,25]},

 {"name":"OFPAT_PUSH_PBB", "default":[0,26]},

 {"name":"OFPAT_POP_PBB", "default":[0,27]},

 {"name":"OFPIT_EXPERIMENTER", "default":[255,255]}]

 },

 {"name":"action_length",

 "type":"enum",

 "items":"uint_16",

 "list":[{"name":"AL_OUTPUT", "default":[0,16]},

 {"name":"AL_COPY_TTL_OUT", "default":[0,8]},

 {"name":"AL_COPY_TTL_IN", "default":[0,8]},

 {"name":"AL_SET_MPLS_TTL", "default":[0,8]},

 {"name":"AL_DEC_MPLS_TTL", "default":[0,8]},

 {"name":"AL_PUSH_VLAN", "default":[0,8]},

 {"name":"AL_POP_VLAN", "default":[0,8]},

 {"name":"AL_PUSH_MPLS", "default":[0,8]},

 {"name":"AL_POP_MPLS", "default":[0,8]},

 {"name":"AL_SET_QUEUE", "default":[0,8]},

 {"name":"AL_GROUP", "default":[0,8]},

 {"name":"AL_SET_NW_TTL", "default":[0,8]},

 {"name":"AL_DEC_NW_TTL", "default":[0,8]},

 {"name":"AL_SET_FIELD", "default":[0,8]},

 {"name":"AL_PUSH_PBB", "default":[0,8]},

 {"name":"AL_POP_PBB", "default":[0,8]},

 {"name":"AL_EXPERIMENTER", "default":[255,255]}]

 },

 {"name":"ofp_action_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_action_type"},

 {"name":"len", "type":"uint_16"},

 {"name":"pad", "type":"pad_4"}

]

 },

 {"name":"ofp_controller_max_len",

 "type":"enum",

 "items":"uint_16",

 "list":[{"name":"OFPCML_MAX", "default":[255, 229]},

 {"name":"OFPCML_NO_BUFFER", "default":[255, 255]}]

 },

 {"name":"ofp_action_output",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_action_type", "default":"OFPAT_OUTPUT"},

 {"name":"len", "type":"action_length", "default":"AL_OUTPUT"},

 {"name":"port", "type":"uint_32", "default":[0,0,0,0]},

 {"name":"max_len", "type":"ofp_controller_max_len",

"default":"OFPCML_NO_BUFFER"},

 {"name":"pad", "type":"pad_6", "default":[0,0,0,0,0,0]}

]

 },

 {"name":"action_set_field_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_action_type", "default":"OFPAT_SET_FIELD"},

 {"name":"length", "type":"action_length", "default":"AL_SET_FIELD"}

]

 },

 {"name":"ofp_action_set_field",

 "type":"record",

 "fields":[

 {"name":"header", "type":"action_set_field_header"},

 {"name":"fields", "type":"oxm_tlv_fields"},

 {"name":"closing_pad", "type":"bytes"}

]

 },

 {"name":"action_pop_vlan_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_action_type", "default":"OFPAT_POP_VLAN"},

 {"name":"length", "type":"action_length", "default":"AL_POP_VLAN"}

]

 },

 {"name":"ofp_action_pop_vlan",

 "type":"record",

 "fields":[

 {"name":"header", "type":"action_pop_vlan_header"},

 {"name":"pad", "type":"pad_4"}

]

 },

 {"name":"action_push_mpls_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_action_type", "default":"OFPAT_PUSH_MPLS"},

 {"name":"length", "type":"action_length", "default":"AL_PUSH_MPLS"}

]

 },

 {"name":"ofp_action_push_mpls",

 "type":"record",

 "fields":[

 {"name":"header", "type":"action_push_mpls_header"},

 {"name":"ethertype", "type":"uint_16"},

 {"name":"pad", "type":"pad_2"}

]

 },

 {"name":"action_set_queue_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_action_type", "default":"OFPAT_SET_QUEUE"},

 {"name":"length", "type":"action_length", "default":"AL_SET_QUEUE"}

]

 },

 {"name":"ofp_action_set_queue",

 "type":"record",

 "fields":[

 {"name":"header", "type":"action_set_queue_header"},

 {"name":"queue_id", "type":"uint_32"}

]

 },

 {"name":"ofp_action",

 "type":"record",

 "fields":[

 {"name":"action", "type":["ofp_action_output", "ofp_action_set_field",

"ofp_action_pop_vlan", "ofp_action_push_mpls", "ofp_action_set_queue"]}

]

 },

 {"name":"action_set",

 "type":"record",

 "fields":[

 {"name":"set", "type":{"type":"array", "items":"ofp_action"}}

]

 },

 {"name":"ofp_instruction_type",

 "type":"enum",

 "items":"uint_16",

 "list":[{"name":"OFPIT_GOTO_TABLE", "default":[0,1]},

 {"name":"OFPIT_WRITE_METADATA", "default":[0,2]},

 {"name":"OFPIT_WRITE_ACTIONS", "default":[0,3]},

 {"name":"OFPIT_APPLY_ACTIONS", "default":[0,4]},

 {"name":"OFPIT_CLEAR_ACTIONS", "default":[0,5]},

 {"name":"OFPIT_EXPERIMENTER", "default":[255,255]}]

 },

 {"name":"instruction_length",

 "type":"enum",

 "items":"uint_16",

 "list":[{"name":"IL_GOTO_TABLE", "default":[0,8]},

 {"name":"IL_WRITE_METADATA", "default":[0,24]},

 {"name":"IL_WRITE_ACTIONS", "default":[0,8]},

 {"name":"IL_APPLY_ACTIONS", "default":[0,8]},

 {"name":"IL_CLEAR_ACTIONS", "default":[0,8]},

 {"name":"IL_EXPERIMENTER", "default":[255,255]}]

 },

 {"name":"instruction_goto_table_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_instruction_type",

"default":"OFPIT_GOTO_TABLE"},

 {"name":"length", "type":"instruction_length", "default":"IL_GOTO_TABLE"}

]

 },

 {"name":"ofp_instruction_goto_table",

 "type":"record",

 "fields":[

 {"name":"header", "type":"instruction_goto_table_header"},

 {"name":"table_id", "type":"uint_8", "default":[0]},

 {"name":"pad", "type":"pad_3", "default":[0,0,0]}

]

 },

 {"name":"instruction_write_metadata_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_instruction_type",

"default":"OFPIT_WRITE_METADATA"},

 {"name":"length", "type":"bytes"}

]

 },

 {"name":"instruction_write_actions_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_instruction_type",

"default":"OFPIT_WRITE_ACTIONS"},

 {"name":"length", "type":"instruction_length",

"default":"IL_WRITE_ACTIONS"},

 {"name":"pad", "type":"pad_4", "default":[0,0,0,0]}

]

 },

 {"name":"instruction_apply_actions_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_instruction_type",

"default":"OFPIT_APPLY_ACTIONS"},

 {"name":"length", "type":"instruction_length",

"default":"IL_APPLY_ACTIONS"},

 {"name":"pad", "type":"pad_4", "default":[0,0,0,0]}

]

 },

 {"name":"instruction_clear_actions_header",

 "type":"record",

 "fields":[

 {"name":"type", "type":"ofp_instruction_type",

"default":"OFPIT_CLEAR_ACTIONS"},

 {"name":"length", "type":"instruction_length",

"default":"IL_CLEAR_ACTIONS"},

 {"name":"pad", "type":"pad_4", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_instruction_actions",

 "type":"record",

 "fields":[

 {"name":"header", "type":["instruction_write_actions_header",

"instruction_apply_actions_header", "instruction_clear_actions_header"]},

 {"name":"actions", "type":"action_set"}

]

 },

 {"name":"ofp_instruction_apply_actions",

 "type":"record",

 "fields":[

 {"name":"header", "type":"instruction_apply_actions_header"},

 {"name":"actions", "type":"action_set"}

]

 },

 {"name":"ofp_instruction_write_metadata",

 "type":"record",

 "fields":[

 {"name":"header", "type":"instruction_write_metadata_header"},

 {"name":"table_id", "type":"bytes"},

 {"name":"pad", "type":"pad_4"}

]

 },

 {"name":"ofp_instruction_write_actions",

 "type":"record",

 "fields":[

 {"name":"header", "type":"instruction_write_actions_header"},

 {"name":"table_id", "type":"bytes"},

 {"name":"pad", "type":"pad_4"}

]

 },

 {"name":"ofp_instruction_clear_actions",

 "type":"record",

 "fields":[

 {"name":"header", "type":"instruction_clear_actions_header"},

 {"name":"table_id", "type":"bytes"},

 {"name":"pad", "type":"pad_4"}

]

 },

 {"name":"ofp_instruction",

 "type":"record",

 "fields":[

 {"name":"instruction", "type":["ofp_instruction_goto_table",

 "ofp_instruction_write_metadata",

 "ofp_instruction_write_actions",

 "ofp_instruction_clear_actions",

 "ofp_instruction_apply_actions"]}

]

 },

 {"name":"instruction_set",

 "type":"record",

 "fields":[

 {"name":"set", "type":{"type":"array", "items":["ofp_instruction", "null"]}}

]

 },

 {"name":"ofp_flow_mod_flags",

 "type":"enum",

 "items":"uint_16",

 "list":[{"name":"OFPFF_SEND_FLOW_REM", "default":[0,0]},

 {"name":"OFPFF_CHECK_OVERLAP", "default":[0,1]},

 {"name":"OFPFF_RESET_COUNTS", "default":[0,2]}]

 },

 {"name":"ofp_flow_mod_command",

 "type":"enum",

 "items":"uint_8",

 "list":[

 {"name":"OFPFC_ADD", "default":[0]},

 {"name":"OFPFC_MODIFY", "default":[1]},

 {"name":"OFPFC_MODIFY_STRICT", "default":[2]},

 {"name":"OFPFC_DELETE", "default":[3]},

 {"name":"OFPFC_DELETE_STRICT", "default":[4]}

]

 },

 {"name":"flow_mod_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_FLOW_MOD"},

 {"name":"length", "type":"ofp_length", "default":"OFPL_FLOW_MOD_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"flow_mod_body_add",

 "type":"record",

 "fields":[

 {"name":"table_id", "type":"uint_8", "default":[0]},

 {"name":"command", "type":"ofp_flow_mod_command",

"default":"OFPFC_ADD"},

 {"name":"idle_timeout", "type":"uint_16", "default":[0,0]},

 {"name":"hard_timeout", "type":"uint_16", "default":[0,0]},

 {"name":"priority", "type":"uint_16", "default":[0,0]},

 {"name":"buffer_id", "type":"uint_32", "default":[0,0,0,0]},

 {"name":"out_port", "type":"uint_32", "default":[0,0,0,0]},

 {"name":"out_group", "type":"uint_32", "default":[0,0,0,0]},

 {"name":"flags", "type":"ofp_flow_mod_flags",

"default":"OFPFF_SEND_FLOW_REM"},

 {"name":"pad", "type":"pad_2", "default":[0,0]}

]

 },

 {"name":"flow_mod_body_delete",

 "type":"record",

 "fields":[

 {"name":"cookie", "type":"uint_64", "default":[0,0,0,0,0,0,0,0]},

 {"name":"cookie_mask", "type":"uint_64", "default":[0,0,0,0,0,0,0,0]},

 {"name":"table_id", "type":"uint_8", "default":[0]},

 {"name":"command", "type":"ofp_flow_mod_command",

"default":"OFPFC_DELETE"},

 {"name":"idle_timeout", "type":"uint_16", "default":[0,0]},

 {"name":"hard_timeout", "type":"uint_16", "default":[0,0]},

 {"name":"priority", "type":"uint_16", "default":[0,0]},

 {"name":"buffer_id", "type":"uint_32", "default":[0,0,0,0]},

 {"name":"out_port", "type":"uint_32", "default":[255,255,255,255]},

 {"name":"out_group", "type":"uint_32", "default":[255,255,255,255]},

 {"name":"flags", "type":"ofp_flow_mod_flags",

"default":"OFPFF_SEND_FLOW_REM"},

 {"name":"pad", "type":"pad_2", "default":[0,0]}

]

 },

 {"name":"ofp_flow_mod",

 "type":"record",

 "fields":[

 {"name":"header", "type":"flow_mod_header"},

 {"name":"base", "type":["flow_mod_body_add","flow_mod_body_delete"]},

 {"name":"match", "type":"ofp_match"},

 {"name":"instructions", "type":"instruction_set"}

]

 },

 {"name":"group_mod_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_GROUP_MOD"},

 {"name":"length", "type":"ofp_length", "default":"OFPL_GROUP_MOD_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"bucket_body",

 "type":"record",

 "fields":[

 {"name":"len", "type":"uint_16", "default":[0,16]},

 {"name":"weight", "type":"uint_16", "default":[0,0]},

 {"name":"watch_port", "type":"uint_32", "default":[0,0,0,0]},

 {"name":"watch_group", "type":"uint_32", "default":[0,0,0,0]},

 {"name":"pad", "type":"pad_4", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_bucket",

 "type":"record",

 "fields":[

 {"name":"body", "type":"bucket_body"},

 {"name":"actions", "type":["action_set", "null"]}

]

 },

 {"name":"bucket_set",

 "type":"record",

 "fields":[

 {"name":"set", "type":{"type":"array", "items":"ofp_bucket"}}

]

 },

 {"name":"ofp_group_mod_command",

 "type":"enum",

 "items":"uint_16",

 "list":[

 {"name":"OFPGC_ADD", "default":[0,0]},

 {"name":"OFPGC_MODIFY", "default":[0,1]},

 {"name":"OFPGC_DELETE", "default":[0,2]}

]

 },

 {"name":"ofp_group_type",

 "type":"enum",

 "items":"uint_8",

 "list":[

 {"name":"OFPGT_ALL", "default":[0,0]},

 {"name":"OFPGT_SELECT", "default":[0,1]},

 {"name":"OFPGT_INDIRECT", "default":[0,2]},

 {"name":"OFPGT_FF", "default":[0,3]}

]

 },

 {"name":"ofp_group",

 "type":"enum",

 "items":"uint_32",

 "list":[

 {"name":"OFPG_MAX", "default":[255,255,255,0]},

 {"name":"OFPG_ALL", "default":[255,255,255,252]},

 {"name":"OFPG_ANY", "default":[255,255,255,255]}

]

 },

 {"name":"group_mod_body",

 "type":"record",

 "fields":[

 {"name":"command", "type":"ofp_group_mod_command",

"default":"OFPGC_ADD"},

 {"name":"type", "type":"ofp_group_type", "default":"OFPGT_ALL"},

 {"name":"pad", "type":"pad_1", "default":[0]},

 {"name":"group_id", "type":"ofp_group", "default":"OFPG_ANY"}

]

 },

 {"name":"ofp_group_mod",

 "type":"record",

 "fields":[

 {"name":"header", "type":"group_mod_header"},

 {"name":"body", "type":"group_mod_body"},

 {"name":"buckets", "type":"bucket_set"}

]

 },

 {"name":"port_mod_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_PORT_MOD"},

 {"name":"length", "type":"ofp_length", "default":"OFPL_FLOW_MOD_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"OFPPC",

 "type":"record",

 "fields":[]

 },

 {"name":"ofp_port_mod",

 "type":"record",

 "fields":[

 {"name":"header", "type":"port_mod_header"},

 {"name":"port_no", "type":"uint_32"},

 {"name":"pad", "type":"pad_4"},

 {"name":"pad2", "type":"pad_2"},

 {"name":"config", "type":"OFPPC"},

 {"name":"mask", "type":"OFPPC"},

 {"name":"advertise", "type":"OFPPC"},

 {"name":"pad3", "type":"pad_3"}

]

 },

 {"name":"echo_request_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_ECHO_REQUEST"},

 {"name":"length", "type":"ofp_length",

"default":"OFPL_ECHO_REQUEST_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_echo_request",

 "type":"record",

 "fields":[

 {"name":"header", "type":"echo_request_header"}

]

 },

 {"name":"echo_reply_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_ECHO_REPLY"},

 {"name":"length", "type":"ofp_length",

"default":"OFPL_ECHO_REPLY_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_echo_reply",

 "type":"record",

 "fields":[

 {"name":"header", "type":"echo_reply_header"}

]

 },

 {"name":"ofp_packet_in_reason",

 "type":"enum",

 "items":"uint_8",

 "list": [

 {"name":"OFPR_NO_MATCH", "default":[0]},

 {"name":"OFPR_ACTION", "default":[1]},

 {"name":"OFPR_INVALID_TTL", "default":[2]}

]

 },

 {"name":"packet_in_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_PACKET_IN"},

 {"name":"length", "type":"ofp_length", "default":"OFPL_PACKET_IN_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_packet_in",

 "type":"record",

 "fields":[

 {"name":"header", "type":"packet_in_header"},

 {"name":"buffer_id", "type":"uint_32"},

 {"name":"total_len", "type":"uint_16"},

 {"name":"reason", "type":"ofp_packet_in_reason"},

 {"name":"table_id", "type":"uint_8"},

 {"name":"cookie", "type":"uint_64"},

 {"name":"match", "type":"ofp_match"},

 {"name":"pad", "type":"pad_2"},

 {"name":"data", "type":{"type":"array", "items":"uint_8"}}

]

 },

 {"name":"ofp_port_reason",

 "type":"enum",

 "items":"uint_8",

 "list":[

 {"name":"OFPPR_ADD", "default":[0]},

 {"name":"OFPPR_DELETE", "default":[1]},

 {"name":"OFPPR_MODIFY", "default":[2]}

]

 },

 {"name":"port_status_header",

 "type":"record",

 "fields":[

 {"name":"version", "type":"uint_8", "default":[4]},

 {"name":"type", "type":"ofp_type", "default":"OFPT_PORT_STATUS"},

 {"name":"length", "type":"ofp_length",

"default":"OFPL_PORT_STATUS_LEN"},

 {"name":"xid", "type":"uint_32", "default":[0,0,0,0]}

]

 },

 {"name":"ofp_port_status",

 "type":"record",

 "fields":[

 {"name":"header", "type":"port_status_header"},

 {"name":"reason", "type":"ofp_port_reason"},

 {"name":"pad", "type":"pad_7"}

]

 },

 {"name":"ofp_error_type",

 "type":"enum",

 "items":"uint_16",

 "list":[

 {"name":"OFPET_HELLO_FAILED", "default":[0,0]},

 {"name":"OFPET_BAD_REQUEST", "default":[0,1]},

 {"name":"OFPET_BAD_ACTION", "default":[0,2]},

 {"name":"OFPET_BAD_INSTRUCTION", "default":[0,3]},

 {"name":"OFPET_BAD_MATCH", "default":[0,4]},

 {"name":"OFPET_FLOW_MOD_FAILED", "default":[0,5]},

 {"name":"OFPET_GROUP_MOD_FAILED", "default":[0,6]},

 {"name":"OFPET_PORT_MOD_FAILED", "default":[0,7]},

 {"name":"OFPET_TABLE_MOD_FAILED", "default":[0,8]},

 {"name":"OFPET_QUEUE_OP_FAILED", "default":[0,9]},

 {"name":"OFPET_SWITCH_CONFIG_FAILED", "default":[0,10]},

 {"name":"OFPET_ROLE_REQUEST_FAILED", "default":[0,11]},

 {"name":"OFPET_METER_MOD_FAILED", "default":[0,12]},

 {"name":"OFPET_TABLE_FEATURES_FAILED", "default":[0,13]},

 {"name":"OFPET_EXPERIMENTER", "default":[255,255]}

]

 },

 {"name":"ofp_hello_failed_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPHFC_INCOMPATIBLE", "default":[0,0]},

 {"name":"OFPHFC_EPERM", "default":[0,1]}

]

 },

 {"name":"ofp_bad_request_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPBRC_BAD_VERSION", "default":[0,0]},

 {"name":"OFPBRC_BAD_TYPE", "default":[0,1]},

 {"name":"OFPBRC_BAD_MULTIPART", "default":[0,2]},

 {"name":"OFPBRC_BAD_EXPERIMENTER", "default":[0,3]},

 {"name":"OFPBRC_BAD_EXP_TYPE", "default":[0,4]},

 {"name":"OFPBRC_EPERM", "default":[0,5]},

 {"name":"OFPBRC_BAD_LEN", "default":[0,6]},

 {"name":"OFPBRC_BUFFER_EMPTY", "default":[0,7]},

 {"name":"OFPBRC_BUFFER_UNKNOWN", "default":[0,8]},

 {"name":"OFPBRC_BAD_TABLE_ID", "default":[0,9]},

 {"name":"OFPBRC_IS_SLAVE", "default":[0,10]},

 {"name":"OFPBRC_BAD_PORT", "default":[0,11]},

 {"name":"OFPBRC_BAD_PACKET", "default":[0,12]},

 {"name":"OFPBRC_MULTIPART_BUFFER_OVERFLOW", "default":[0,13]}

]

 },

 {"name":"ofp_bad_action_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPBAC_BAD_TYPE", "default":[0,0]},

 {"name":"OFPBAC_BAD_LEN", "default":[0,1]},

 {"name":"OFPBAC_BAD_EXPERIMENTER", "default":[0,2]},

 {"name":"OFPBAC_BAD_EXP_TYPE", "default":[0,3]},

 {"name":"OFPBAC_BAD_OUT_PORT", "default":[0,4]},

 {"name":"OFPBAC_BAD_ARGUMENT", "default":[0,5]},

 {"name":"OFPBAC_EPERM", "default":[0,6]},

 {"name":"OFPBAC_TOO_MANY", "default":[0,7]},

 {"name":"OFPBAC_BAD_QUEUE", "default":[0,8]},

 {"name":"OFPBAC_BAD_OUT_GROUP", "default":[0,9]},

 {"name":"OFPBAC_MATCH_INCONSISTENT", "default":[0,10]},

 {"name":"OFPBAC_UNSUPPORTED_ORDER", "default":[0,11]},

 {"name":"OFPBAC_BAD_TAG", "default":[0,12]},

 {"name":"OFPBAC_BAD_SET_TYPE", "default":[0,13]},

 {"name":"OFPBAC_BAD_SET_LEN", "default":[0,14]},

 {"name":"OFPBAC_BAD_SET_ARGUMENT", "default":[0,15]}

]

 },

 {"name":"ofp_bad_instruction_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPBIC_UNKNOWN_INST", "default":[0,0]},

 {"name":"OFPBIC_UNSUP_INST", "default":[0,1]},

 {"name":"OFPBIC_BAD_TABLE_ID", "default":[0,2]},

 {"name":"OFPBIC_UNSUP_METADATA", "default":[0,3]},

 {"name":"OFPBIC_UNSUP_METADATA_MASK", "default":[0,4]},

 {"name":"OFPBIC_BAD_EXPERIMENTER", "default":[0,5]},

 {"name":"OFPBIC_BAD_EXP_TYPE", "default":[0,6]},

 {"name":"OFPBIC_BAD_LEN", "default":[0,7]},

 {"name":"OFPBIC_EPERM", "default":[0,8]}

]

 },

 {"name":"ofp_bad_match_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPBMC_BAD_TYPE", "default":[0,0]},

 {"name":"OFPBMC_BAD_LEN", "default":[0,1]},

 {"name":"OFPBMC_BAD_TAG", "default":[0,2]},

 {"name":"OFPBMC_BAD_DL_ADDR_MASK", "default":[0,3]},

 {"name":"OFPBMC_BAD_NW_ADDR_MASK", "default":[0,4]},

 {"name":"OFPBMC_BAD_WILDCARDS", "default":[0,5]},

 {"name":"OFPBMC_BAD_FIELD", "default":[0,6]},

 {"name":"OFPBMC_BAD_VALUE", "default":[0,7]},

 {"name":"OFPBMC_BAD_MASK", "default":[0,8]},

 {"name":"OFPBMC_BAD_PREREQ", "default":[0,9]},

 {"name":"OFPBMC_DUP_FIELD", "default":[0,10]},

 {"name":"OFPBMC_EPERM", "default":[0,11]}

]

 },

 {"name":"ofp_flow_mod_failed_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPFMFC_UNKNOWN", "default":[0,0]},

 {"name":"OFPFMFC_TABLE_FULL", "default":[0,1]},

 {"name":"OFPFMFC_BAD_TABLE_ID", "default":[0,2]},

 {"name":"OFPFMFC_OVERLAP", "default":[0,3]},

 {"name":"OFPFMFC_EPERM", "default":[0,4]},

 {"name":"OFPFMFC_BAD_TIMEOUT", "default":[0,5]},

 {"name":"OFPFMFC_BAD_COMMAND", "default":[0,6]},

 {"name":"OFPFMFC_BAD_FLAGS", "default":[0,7]}

]

 },

 {"name":"ofp_group_mod_failed_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPGMFC_GROUP_EXISTS", "default":[0,0]},

 {"name":"OFPGMFC_INVALID_GROUP", "default":[0,1]},

 {"name":"OFPGMFC_WEIGHT_UNSUPPORTED", "default":[0,2]},

 {"name":"OFPGMFC_OUT_OF_GROUPS", "default":[0,3]},

 {"name":"OFPGMFC_OUT_OF_BUCKETS", "default":[0,4]},

 {"name":"OFPGMFC_CHAINING_UNSUPPORTED", "default":[0,5]},

 {"name":"OFPGMFC_WATCH_UNSUPPORTED", "default":[0,6]},

 {"name":"OFPGMFC_LOOP", "default":[0,7]},

 {"name":"OFPGMFC_UNKNOWN_GROUP", "default":[0,8]},

 {"name":"OFPGMFC_CHAINED_GROUP", "default":[0,9]},

 {"name":"OFPGMFC_BAD_TYPE", "default":[0,10]},

 {"name":"OFPGMFC_BAD_COMMAND", "default":[0,11]},

 {"name":"OFPGMFC_BAD_BUCKET", "default":[0,12]},

 {"name":"OFPGMFC_BAD_WATCH", "default":[0,13]},

 {"name":"OFPGMFC_EPERM", "default":[0,14]}

]

 },

 {"name":"ofp_port_mod_failed_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPPMFC_BAD_PORT", "default":[0,0]},

 {"name":"OFPPMFC_BAD_HW_ADDR", "default":[0,1]},

 {"name":"OFPPMFC_BAD_CONFIG", "default":[0,2]},

 {"name":"OFPPMFC_BAD_ADVERTISE", "default":[0,3]},

 {"name":"OFPPMFC_EPERM", "default":[0,4]}

]

 },

 {"name":"ofp_table_mod_failed_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPTMFC_BAD_TABLE", "default":[0,0]},

 {"name":"OFPTMFC_BAD_CONFIG", "default":[0,1]},

 {"name":"OFPTMFC_EPERM", "default":[0,2]}

]

 },

 {"name":"ofp_queue_op_failed_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPQOFC_BAD_PORT", "default":[0,0]},

 {"name":"OFPQOFC_BAD_QUEUE", "default":[0,1]},

 {"name":"OFPQOFC_EPERM", "default":[0,2]}

]

 },

 {"name":"ofp_switch_config_failed_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPSCFC_BAD_FLAGS", "default":[0,0]},

 {"name":"OFPSCFC_BAD_LEN", "default":[0,1]},

 {"name":"OFPSCFC_EPERM", "default":[0,2]}

]

 },

 {"name":"ofp_role_request_failed_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPRRFC_STALE", "default":[0,0]},

 {"name":"OFPRRFC_UNSUP", "default":[0,1]},

 {"name":"OFPRRFC_BAD_ROLE", "default":[0,2]}

]

 },

 {"name":"ofp_meter_mod_failed_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPMMFC_UNKNOWN", "default":[0,0]},

 {"name":"OFPMMFC_METER_EXISTS", "default":[0,1]},

 {"name":"OFPMMFC_INVALID_METER", "default":[0,2]},

 {"name":"OFPMMFC_UNKNOWN_METER", "default":[0,3]},

 {"name":"OFPMMFC_BAD_COMMAND", "default":[0,4]},

 {"name":"OFPMMFC_BAD_FLAGS", "default":[0,5]},

 {"name":"OFPMMFC_BAD_RATE", "default":[0,6]},

 {"name":"OFPMMFC_BAD_BURST", "default":[0,7]},

 {"name":"OFPMMFC_BAD_BAND", "default":[0,8]},

 {"name":"OFPMMFC_BAD_BAND_VALUE", "default":[0,9]},

 {"name":"OFPMMFC_OUT_OF_METERS", "default":[0,10]},

 {"name":"OFPMMFC_OUT_OF_BANDS", "default":[0,11]}

]

 },

 {"name":"ofp_table_features_failed_code",

 "type":"enum",

 "items":"uint_16",

 "list": [

 {"name":"OFPTFFC_BAD_TABLE", "default":[0,0]},

 {"name":"OFPTFFC_BAD_METADATA", "default":[0,1]},

 {"name":"OFPTFFC_BAD_TYPE", "default":[0,2]},

 {"name":"OFPTFFC_BAD_LEN", "default":[0,3]},

 {"name":"OFPTFFC_BAD_ARGUMENT", "default":[0,4]},

 {"name":"OFPTFFC_EPERM", "default":[0,5]}

]

 },

 {"name":"ofp_failed_code",

 "type":"record",

 "fields":[

 {"name":"code", "type":["ofp_hello_failed_code",

 "ofp_bad_request_code",

 "ofp_bad_action_code",

 "ofp_bad_instruction_code",

 "ofp_bad_match_code",

 "ofp_flow_mod_failed_code",

 "ofp_group_mod_failed_code",

 "ofp_port_mod_failed_code",

 "ofp_table_mod_failed_code",

 "ofp_queue_op_failed_code",

 "ofp_switch_config_failed_code",

 "ofp_role_request_failed_code",

 "ofp_meter_mod_failed_code",

 "ofp_table_features_failed_code"

]

 }

]

 }

]

}

Appendix: B – Credits

Dr. Deniz Gurkan, Mahi Panahi, Sandhya Narayan and Dmitry Orekhov.

