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Abstract

In this dissertation I developed or perfected unobtrusive methods to quantify sympa-

thetic arousals. Furthermore, I used these methods to study the sympathetic system’s

role on critical activities, arriving at intriguing conclusions. Sympathetic arousals

occur during states of mental, emotional, and/or sensorimotor strain resulting from

adverse or demanding circumstances. They are key elements of human physiology’s

coping mechanism, shoring up resources to a good effect. When the intensity and

duration of these arousals are overwhelming, however, then they may block memory

and disrupt rational thought or actions at the moment they are needed the most.

Arousals abound in three types of critical activities: high-stakes situations, chal-

lenging tasks, and critical multitasking. Accordingly, my research was based on three

studies representative of these three activity types: ‘Subject Screening’, ‘Educational

Exam’, and ‘Distracted Driving’. In the first study I investigated the association of

sympathetic arousals with deceptive behavior in interrogations. In the second study,

I investigated the relationship between sympathetic arousals and exam performance.

In the third study, I investigated the interaction between sympathetic arousals and

driving performance under cognitive, emotional, and sensorimotor distractions.

In the interrogation study, I used for the first time a contact-free electrodermal

activity measurement method to quantify arousals. The method detected deceptive

behavior based on differential sympathetic responses in well-structured interviews.

In the exam study, I documented that sympathetic arousals positively correlate with

students’ exam performance, dispelling the myth of ‘easy going’ super achievers.

Finally, in the driving study, my results revealed that not only apparent sensorimotor
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stressors (texting while driving) but also hidden stressors (cognitive or emotional)

could have a significant effect on driving performance.
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Chapter 1

Introduction

‘Stress ’ is a state of mental, emotional or motoric strain which results from adverse of

demanding circumstances. Its influence is seen both in the psychological as well as the

physiological realm. Its effects on physiology is a result of the bodys mechanism to

cope with the imminent threat by activating the sympatheic nervous system (SNS ),

which in turn triggers the adrenergic and cholinergic receptors. The former result

in elevation of the cardiovascular operation, while the latter result in activation of

sweat glands on the fingers, perinasal area and other peripheral parts of the body.

A lot is known and researched about the impact of stress on performance [32] on

critical tasking. These effects extend to cognitive functions too. Stress is present,

and part of most daily activities, however its manifestation is seen especially during

challenging or engaging tasks and during situations where the stakes are high. It

is extremely difficult to isolate specific causes of stress on cognitive functions as the
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effects of stress usually occur as a combination of several factors, sometimes triggered

by specific tasks, and sometimes external [22]. Sandi and Pinelo-Nava propose that

three factors related to delivery of stress have distinct effects on cognitive functions

[23]. These are a) the source of the stress, whether internal of external, b) the

duration of the stressor, whether acute or chronic and c) the intensity of the stressor.

Measurement of stress and its quantification is another delicate operation which

needs to be carefully considered in developing psychological experiments. Care must

be taken to ensure that the measurement process does not act as an additional source

of stress to the subjects. Ideal conditions for achieving this goal is to use unobtrusive

or minimally obtrusive devices. Thermal imagery is one such measurement device

capable of measuring at a distance. In [29], Tsiamyrtzis et al. use thermal imagery

of the face in a deception-detection application in an interrogation. This method

is unlike traditional means of measuring physiology with various contact sensors

probing the subject. Pavlidis et al. [18] used a similar methods to extract perinasal

perspiration. This was indicative of emotional perspiration modulated by stress as

surgeons performed training exercises while being evaluated on their precision and

speed in completing the task. In the recent years the introduction of the Q-Sensor [20]

has allowed measurement of emotions in settings outside the laboratory environment.

In [15], Mc Duff et al. continuously logged users emotional state over long periods

of time, allowing them to reflect upon it.
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Chapter 2

Background

2.1 Sympathetic Arousals

When faced with stressful events, a variety of physiological changes occur in an in-

dividual that are designed to assist in coping with the events. These physiological

changes aim to promote survival by activating the necessary attentional and energetic

recourses needed to contend with the immediate threat. There are two major physio-

logical systems involved in the stress responses: the Sympathetic-Adrenal-Medulllary

(SAM) system and the Hypothalamic-Pituitary-Adrenal (HPA) axis. The SAM sys-

tem is the rapid-response component of stress-system activation, and causes a nearly

immediate release of epinephrine (adrenaline) and norepinephrine, and the initial in-

crease in vigilance and arousal that accompany the perception of a potential threat.

This immediately produced stress is called instantaneous stress. If evaluation of the
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threat suggests that it is warranted, the SAM response is reinforced and extended

by the activity of the slower but longer acting HPA axis. The HPA response to

stress begins in the brain with the release of corticotropin releasing hormone (CRH)

from the hypothalamus, which stimulates the pituitary gland to release adrenocor-

ticosteriods (ACTH) into general circulation. ACTH in turn stimulates the release

of corticosteroids from the adrenal cortex into the bloodstream. The signal to de-

crease or shut down further production of cortisol comes from negative feedback of

cortisol to the brain, especially to receptors in the hippocampus, hypothalamus and

pituitary, with high circulating levels of the hormone suppressing further release of

CRH, ACTH and corticosteroids. The long-lasting stress is referred to as sustained

stress.

Sweat glands cover a large portion of the body and are present under the epider-

mis. They are coiled tubular structures and perform two vital functions; regulation

of the body temperature and providing emotional response to stimuli. Sweat glands

are of two kinds; eccrine and apocrine and both are controlled by the sympathetic

nervous system. The perspiration due to thermoregulatory effect occurs on most

parts of the body, while emotional perspiration/sympathetic arousal usually occurs

on the palms or soles of the feet.

It can be very useful to observe the activation of sweat glands in the event of stress

in order to measure rate of perspiration which can be linked to emotional stress.

Perspiration can be categorized as physical and emotional. Sympathetic arousal

occurs as a sudden outburst, while the onset of physical perspiration is gradual.
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Figure 2.1: Cross section of the skin.

Also, once sympathetic arousal starts, it continues to secrete at a rate that can be

correlated to the intensity of stimulation, and lasts no longer than the duration of the

stimulation. Another point of distinction between sympathetic arousal and physical

perspiration is that sympathetic arousal is transient and highly localized. In [12]

T. Kamei et al. present sweating as an indicator which is capable of identifying,

surprise, or emotional stress. In [26] Shastri et al. did a comparative analysis of the

EDA and the corresponding measurement at the perinasal region.
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2.2 Thermal Imaging

Our research mainly focuses on facial physiology, monitored in the mid-wave thermal

infrared spectrum. The thermal infrared spectrum is composed of electromagnetic

energy with wavelengths between three and eight micrometers (see Figure 2.3).

In contrast to energy in the visible band, which is reflected off surfaces, energy in

the thermal infrared spectrum of the electromagnetic spectrum represents energy

radiated by objects.

Figure 2.2: The electromagnetic spectrum. The mid-wave infrared spectrum is high-

lighted by the arrow.

All objects at finite temperature emit non-trivial amounts of electromagnetic

radiation in the thermal infrared (3-14 m). According to Plancks law, the power of

emission M(λ, T ) at a specific wavelength depends on the objects temperature as

follows:
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M(λ, T ) =
c1
λ5

(
1

e(c2/λT ) − 1

)
W

m2 − µm
, (2.1)

where the first radiation constant, c1 = 3.7411×108W−µm4/m2, the second constant

c2 = 1.4388×104µm−K, and λ is the wavelength expressed in µm . As temperature

increases, radiation (M(λ, T )) increases (see figure 2.3).

Figure 2.3: Black body spectrum. The graph shows a significant amount of en-

ergy radiation change in the thermal infrared band (300-1400 nm) due to change in

temperature.

According to the Stefan-Boltzmann law, the power of emission over several wave-

lengths can be obtained by integrating equation 2.2:

7



M(∆λ, T ) =

∫ λ2

λ1

M(λ, T )dλ, (2.2)

where ∆λ = λ1−λ2 . Since our sensing device operates in the Mid-Wave Infrared

(MWIR) spectrum, λ1 = 3µm and λ2 = 5µm in our case.

Thermal data collection in our research has been accomplished by ATHEMOS

(Automatic THermal MOnitoring System), which we have developed in-house (see

figure 2.4).

The 2D grid of the thermal camera captures the radiation energy of objects.

Based on the excitation level of grid points, the processing unit converts the energy

value at each grid point into a temperature value. Once the data have been converted

to temperatures, they are transferred to a data storage unit, such as a computer hard

disk. The raw image must be mapped to useful color values in order to visualize it

easily.

We used two different thermal-imaging cameras in our experiments 2.6. In the

deception detection experiment described in sections 3.1 respectively we used FLIR

SC6000 thermal imaging camera from FLIR, and for the driving study described in

section 3.3 we used the FLIR TAU 640 thermal imaging camera.
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Figure 2.4: Custom thermal imaging system, ATHEMOS. The custom thermal imag-

ing system developed by our group integrates a computer, a thermal camera, and

several peripheral hardware components.
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Figure 2.5: Thermal image. A sample thermal image of a subject. The bar on the

right side shows the mapping between color and temperature in degrees centigrade.

(a) FLIR SC6000 (b) FILR TAU 640

Figure 2.6: The thermal imaging cameras used in the experiments
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2.3 Q Sensor

The Q Sensor is a wireless device that allows the user to conveniently record skin con-

ductance as a function of activity of the sympathetic nervous system. It is designed

for assessment of both cognitive as well as emotional stressors and can be worn on

the palm or the distil forearm sites. Just like the traditional GSR instruments, the Q

Sensor too has two Ag/AgCl electrode probes that come in contact with the region

of measurement.

Figure 2.7: The Q Sensor worn on the palm, with the palm strap.

The Q Sensor is also embedded with a three-axis accelerometer. The data from

these channels can be used for various forms of analysis such as posture analysis, and

to measure the intensity and duration of fidgeting which is usually a sign of stress,

11



or disengagement, when looked at in proper context.

The Q Sensor can be setup with other recording devices and synchronized with a

common clock to record data from different devices and compared on a synchronized

time line. Its recording rate can be adjusted from 2 to 32 Hz. It is also capable of

being used in longitudinal studies ranging from few hours to several days. There are

a number of attachment straps which allow the Q Sensor to be worn on the palm,

wrist and the ankle.

2.4 Zephyr BioHarness

The Zephyr BioHarness [1] is a compact physiological-monitoring module. It is at-

tached to a lightweight Smart Fabric strap which incorporates ECG and breathing

detection sensors. It is worn under the subjects clothing just above the sternum.

The device can transmit physiological data wirelessly through Bluetooth or record

it to internal memory and later on be downloaded to a computer for analysis.

The BioHarness device comes with an accelerometer, which can record the angle

of the subjects’ posture, and make determination about the subjects’ activity. It

can record heart rates from 0 to 240 BPM, and breathing rates from 1 to 120 BPM

both with a sensitivity of ± 1 BPM. In addition to the calculated rates, the ECG

and breathing waveforms are also stored along with the data which could be used

for post-analysis to recompute rates based on needs. The Zephyr BioHarness data
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Figure 2.8: The Zephyr BioHarness worn on the chest.

logger can also be synchronized with other devices like the thermal camera and Q

Sensors being used simultaneously.
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Chapter 3

Experiments

This chapter describes three experiments conducted to induce sympathetic loading

and to cause stress. The main motivation for conducting these experiments is that

sympathetic arousals affects human performance in critical tasks. We are able to

quantify sympathetic arousals by measuring physiological changes in breathing rate,

heart rate and skin conductance. Human performance also can be quantified de-

pending on the domain. We choose three critical tasks of societal importance in our

research, deception detection, educational testing, and driving. Since we can quan-

tify both sympathetic arousals and human performance, we can study the interaction

between them.

The motivation for the deception detection research is that there is a need for

improved methods to detect criminal intent and detect lies, especially while inter-

rogating suspect terrorists, detecting corporate and political lies and interrogating
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suspect criminals to extract information from them.

The motivation for the exam study is that there is a need to reexamine exam

assessment. Exams are an important part of a students life, and typically students

are judged by their grades only. Grades are singular data points and tell us just

the end result. It would be interesting to measure a students internal state. This

can be done by monitoring physiology throughout the exam. Hence in this way, the

students progress could be measured more holistically, by considering not only the

outward signs, which are their grades, but also looking at their inward state, which

is how did they arrive at that outcome.

Driving is an important part of most adults lives, and typically people spend

about an hour driving themselves from home to work daily. It is usually during the

rush hour commutes that there are accidents, sometimes even deadly. However, a

traffic backup always incurs large economic losses (taking into account the loss of

productivity of the large number of commuters sitting in traffic). A major known

cause of accidents is distraction. Texting is a major distraction [31], for which there

are now laws and rules to regulate such behavior while driving. This however is an

apparent distraction. Distractions can be mental too. Our motivation in this study

is to use sympathetic arousals, which is the most basic physiological response to ant

sort of stress, to study all sorts of potential stressors to a driver, which could be

either cognitive, emotional or morotic.

Several factors were considered in designing each of the experiments. Some of

these are 1) The experiments needed to be minimally obtrusive, 2) Realistic, 3)

15



Participants should be motivated to perform well, and 4) Subjects needed to be

carefully and appropriately recruited.

The human body is highly sensitive and reactive. Every additional probe intro-

duced makes the subject aware of the fact that they are being monitored and diverts

their attention towards this fact. This introduces more stress on the subjects. As

experimenters, we would like to have the subjects focused on the experimental task

at hand and create an environment in which the only factors causing the subjects to

experience stress are the experimental stressors. Hence, by using contact-free sensing

and/or wearable devices, we achieve this requirement. Realism enables the subjects

to engage completely into the experiment and effectively to treat it more seriously.

In case of the deception-detection experiment, this is achieved through making then

physically commit the simulated crime and having their rewards dependent on their

performance at the tasks. In the case of the experiment involving the exam diffi-

culty assessment, the experiment piggy-backed reality as students were monitored

while they took real exams for a class they were enrolled in. While in the driving

distraction study, we used a high-fidelity driving simulator, and subjects were told

that their compensation depended on their driving performance and the extent to

which they followed the roadsigns and speed-limits.

Though the experiments encompass few few different areas of research, they are

linked by several commonalities. The first aspect that unites these experiments is

conceptual unity. Sympathetic arousals can affect human performance in critical

tasks. We base our experiments on certain critical tasks of societal importance
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and study the effects that these arousals have on these tasks. Our experiments are

also united by their measurement approach. We measure sympathetic arousal by

measuring either perinasal EDA or palmar EDA, done in minimally invasive ways.

There is also unity in theme among these experiments. In each of the tasks that

subjects are put through they are cognitively engaged and what we measure is in

response to this engagement. In some cases, there is also emotional and motoric

involvement, but cognitive challenge is common across the three testbeds. Also,

each of theses experimental protocols present subjects with some significant stakes

to warrant their engagement. Finally, in each of these experiments are hypothesis-

driven and we test our hypothesis using mostly statistical tests.

3.1 Deception Detection Study

3.1.1 Overview

The experimental setup for the experiment was designed and implemented by DACA

(Defense Academy for Credibility Assessment) at the University of Arizona. DACA

is an organization that trains in the methods of deception analysis such as the tra-

ditional polygraph approach in addition to more recent credibility assessment tech-

niques and technologies. It was carried out in collaboration with the Computational

Physiology Lab (CPL) from the University of Houston. This experiment was de-

signed for the purpose of accumulating experimental data in various modalities to
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develop new and effective techniques to detect deception. The methods discussed in

this thesis use thermal imagery data and audio recording of the interviews captured

using ATHEMOS, the thermal monitoring system of the CPL.

The experiment was to setup a mock crime scene in which some participants were

randomly instructed to steal a ring from a designated office space in a building at

the University of Arizona [8]. This experiment was conducted on a large scale over

the period of a year and involving over 160 participants. When subjects arrived for

the experiment, they were first asked to enter a room where they listened to a set

of recorded instructions. These instructions briefed them about the experiment and

about their role during the experiment. Following the briefing, they were instructed

to leave that room and reach a room in another building nearby within 15 minutes.

They were also advised against speaking to anybody while getting to the other room.

They were asked to go up to the 4th floor of the building to room 429 and ask for a

particular individual. As part of the experimental protocol, the attendant at room

429 would respond by saying that he did not know the individual in question and

would go look for him, while he offered to have the subject wait within room 429.

The ring that was to be taken by the selected subjects was placed in a cash box,

within a desk drawer in this room. Subjects who were assigned a ‘Deceptive’ role

in this experiment were asked to extract the ring from the cash box and place the

ring on their person while they proceeded to the next room on the first floor of that

building. Here, they were to be interrogated about their involvement in the crime.

The role of all subjects whether they were asked to take the ring or not, was to try
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and convince the interrogator that they were innocent and that they did not take

any ring. All participants were awarded monitory compensation of $15 for their time

and involvement in the study. To serve as a motivation for participants to perform to

the best of their ability at convincing the interrogator of their innocence, there was

an additional bonus of $50 for participants who were successfully able to convince

the interrogator of their innocence.

Figure 3.1: Diagram of the experimental setup.

Table 3.1: Reward Table

Successful at convincing Unsuccessful at convincing

Deceptive $15 + $50 $15

Truthful $15 + $50 $15
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3.1.2 The Interrogation

The interview is designed to pose questions to the interviewees and to induce stress

on them particularly while being strongly accused of being involved with the taking

of the ring. The questions in the interview are structured purposefully to administer

different levels of stress at each stage of the interview. The role of the initial questions

is to extract the baseline response of the subjects. Some of the questions focus on

the whereabouts of the participants since the time they report for the experiment

while others directly accuses them of having some involvement in the crime which

the interviewer could prove with the various surveillance equipment put in place.

During the interrogation, participants face three different types of interviews,

namely the Behavioral Analysis Interview (BAI), Concealed Information Test (CIT)

and the Stress Test (ST). The behavioral analysis interview poses questions which

generally need to be answered in as much detail as possible. During this part of the

interview, the interviewer gradually comes to a point where he tries to establish a link

between the interviewee and the commission of the crime or action under discussion,

therefore, causing the interviewee to admit his or her guilt. In the concealed infor-

mation test, the interviewer says a word which is then repeated by the interviewee.

This word may be a place or a description of an object or the crime scene, which

when heard by a guilty interviewee may cause instantaneous physiological responses.

Finally in the stress test interview, questions that can be answered in a word or two

are asked, and the responses to which is expected quickly, allowing very little time

to think about the response. In this thesis we only analyzed the first set of interview
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questions, the BAI.

The questions asked as part of the behavioral analysis interview are as follows.

[Interviewer may follow up on any of the questions]

1. What color are the walls in this room?

2. Are there any lights on in this room?

3. Where were you born?

4. What is the name of the building we are in?

5. Did you ever take anything valuable from a place where you worked?

6. Have you ever lied to a person in position of authority?

7. How do you feel about taking the credibility assessment examination?

8. You know you are going to be tested about a crime committed in this building

today. If you were involved in the crime in any way, you should tell me now.

9. Would you please describe everything you did for the first two hours after

you awoke today? Think about what you were doing, how you felt, and what

happened.

10. Now I’d like you to describe everything you did and saw from the moment you

left the Esquire Building until you arrived here.

11. At any time were you on the fourth floor of this building?
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12. We sometimes verify the information that people in this study give us. If I call

the receptionist in Room 429, is there any reason that he will say you might

have been near his desk? Im not saying that you are being dishonest, but we

put you on the spot here and maybe you misremembered.

13. Is there any reason why your fingerprints should be on a desk on the 4th floor

of this building? Maybe you just opened a receptionists desk to look for a pen?

14. Is there any reason why we may see you entering room 429 on any surveillance

camera tapes?

15. Id like you now to describe in reverse order everything you did and saw from

the moment you arrived here back to when you left the Esquire Building.

16. Is there anyone who can vouch for you coming directly to this room from the

Esquire Building?

17. What is the item that was taken?

18. A ring was taken. Do you know where it is now?

19. What do you think should happen to the person who stole the ring?

20. Under any circumstances would you give that person a break?

21. What kind of person would steal jewelry from someones desk?

22. Is there anything that you said in this interview so far that you would like to

change?
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23. At any time during this study, were you instructed to lie?

24. How do you think this credibility assessment of you will turn out today?

3.2 Exam Study

3.2.1 Overview

This study has some exploratory goals for which we measured students physiological

signals throughout their exams to try to uncover how sympathetic signals differ

from good-to poor-performing students. Furthermore, we test to see if, through

sympathetic signals, we can come up with some kind of assessment measure to assess

their performance or to give them an alternate grade.

In this experiment, students enrolled in a Kinesiology course (Kin 3304) Anatomy

and Physiology, at the University of Houston, volunteered to take part in an exper-

iment aimed at studying if affective means could be used in determining a students

performance in a test and the exam difficulty as experienced by the student. The

affective sympathetic responses measured were provoked by the exam’s perceived

challenge and the level of student engagement.

Traditionally, students are evaluated by their grades in course exams. Provided

that the course is well delivered and the exams are well designed, the weighted mean

of exam scores is considered a reliable skill indicator. We challenge this conventional

wisdom and we investigate if there is a hidden sympathetic cost that qualifies student
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performance. In other words, we argue that in addition to apparent performance, the

‘internal’ cost at which this performance is attained matters. We are also interested

to find if the mean sympathetic response of a class during an exam can track the

difficulty of this exam. If this is true, then exam difficulty can be affectively sensed.

This study was conducted over the course of Fall of 2012, Spring of 2013 and

Summer of 2013 and enrolled eight, eight and seven students respectively; a total of

23 subjects. Affective measures were acquired through an array of wearable sensors

and self-report questionnaires. The course was designed by its instructor to have

5 exams in total of varying difficulty, and each contributing towards the students

aggregate course performance. The most difficult of the exams being the final exam

and the rest of the four exams in decreasing difficulty from exam 1 to exam 4.

Another design factor which makes the selected course a desirable test bed for this

study is the balance between free-response questions and multiple-choice questions

and between critical-thinking questions and declarative-knowledge questions.

3.2.2 Measurements

We captured a number of physiological measurements from the students while they

engaged in their exams. These measurements were taken through wearable sensors,

so as to not constraint the students to any limitations. Students wore a Q Sensor

on the palm of their non dominant hand, and one on the ankle. On their chest, we

strapped a belt which recorded their heart rate and breathing rate throughout the

exam. In addition both the Q Sensors and the Zephyr belt measured subject kinetics
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from the hand, leg and torso. Self assessment forms about subjects trait anxiety lev-

els was administered at the time subjects signed up for the study. State anxiety [2]

and PANAS [3] questionnaires were also administered before and after each exam to

evaluate subjects subjective stress levels. Further more, in addition to the previously

described ‘inside’ measurement, we also took ‘outwards’ measurements in the form

of observational recordings. Each students face and exam booklet was recorded by

individual video cameras. These allow for contextual and causational links between

their inwards stress levels, through physiological measurements, and outwards stress

manifestation through facial observations.

3.2.3 Experiment

Subjects were recruited during the first week of class. In total students made 6

visits. During the first visit, subjects filled out the consent forms and took the

baseline which involved filling out the Trait anxiety and the PANAS questionnaire

which was relatively a non-stressful time as compared to during an exam. During

each visit, four of the eight subjects took the exam starting an hour before the regular

exam session, and the other four started their exam an hour after the regular exam

start time. This was done because the experiment facility and resources allowed for

monitoring of four students simultaneously. The students arrived 45 minutes prior to

their exam start time and they filled the state anxiety and PANAS forms. These were

to determine the pre-exam stress levels. Following these, the Q Sensors and Zephyr
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Figure 3.2: A view of the study in progress. 4 students take their examination while

being monitored with wearable sensors, on the palm, ankle and a chest strap. Their

facial expressions and exam booklets are recorded with video cameras.

belts were attached on each of the subjects, and they took their positions in the

examination room. Once all subjects were fitted with their devices, the examination

would start. When subjects finished their exams, they would leave the examination

room and the devices would be unstrapped. They would also fill out the state anxiety

form and PANAS after the exam to measure their post-exam stress levels.
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Figure 3.3: The timeline of administration of the various measurements throughout

the course of the semester.
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3.3 Driving Study

3.3.1 Overview

A central goal of this study is to understand better how driver-based and vehicle-

based data might be used to detect higher-risk driving scenarios that might lead

to motor-vehicle crashes. One of the focus is to test/validate driving conditions

that induce high cognitive load, acute stress, and high emotional arousal and to

determine the types and degree of driver performance decrements associated with

these conditions. The knowledge and results derived from this study can be used for

development of an online driver monitoring system and effective countermeasures for

adverse cognitive and emotional states. More specifically we would like to find out

if we can reliably detect various cognitive states of interest, and how these cognitive

states affect drivers performance and safety.

3.3.2 Experiment

This experiment was a collaborative study between the Human Factors Group at the

Texas A&M University and the Texas Transportation Institute (TTI). We recruited

subjects from the Texas A&M campus (population about 60,000) through email

solicitations and flyer postings. Subjects had to carry a valid driving license and have

normal or corrected-to-normal vision. We restricted admission to individuals with at

least one-and-a-half years of driving experience who were between 18 and 27 years of
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age (Young cohort) or above 60 years of age (Old cohort). We excluded subjects on

medications affecting their ability to drive safely. A total of 88 subjects participated

in the experiment in a high fidelity driving simulator by Realtime Technologies, Inc

(Fig. 3.4).

Figure 3.4: The driving simulator experimental setup. A thermal imaging camera

mounted above the center TV screen records the subjects face. The virtual car is

controlled by an accelerator pedal and a brake pedal, and steered with a steering

wheel.

Upon signing the consent form, the subjects completed three questionnaires:
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Biographic Questionnaire: It inquired key facts about the subject, such as

gender, age, and driving record.

Trend Anxiety Inventory: Long-standing stress might have an effect on sym-

pathetic responses and thus, scoring trend anxiety was of potential interest to this

study.

Personality Type A/B: This was a modified version of the Jenkins Activity

Survey. Some studies have shown association between type A personalities and spe-

cific driving behaviors; thus, scoring of type A/B personalities was also of potential

interest to this study.

Next, the subjects went through Tsession = 7 experimental sessions.

1: Baseline Session (BS) The subjects sat quietly in a dimly lit room, listening

to spa music for 5 min. Following this baseline session, the subjects went through

seven driving sessions on the simulator.

2: Practice Drive (PD) The subjects familiarized themselves with the simulator

by driving on a 5 mi section of a four-lane highway at posted speeds; two lanes were

dedicated to traffic in each direction, with the subject’s car traveling in the right

lane (R); the speed limits changed every couple of miles (50 mp → 30 mph → 60

mph). ‘3.5
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Figure 3.5: The practice drive scenario.
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3: Relaxation Drive (RD) The subjects had to drive on a 6.75 mi section of

a four-lane highway with posted speed limit of 45 mph; two lanes were dedicated

to traffic in each direction, with the subject’s car traveling in the right lane (R);

there was light traffic on the oncoming lanes ( 5 vehicles per mile). The subjects

were forced to change lane (R to L) after 3.25 mi into the drive. They stayed in the

left lane (L) for 0.75 mi, before they were directed back to the right lane (R). The

rationale for this lane change was to break the monotony of the drive.
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4-7: Loaded Drives We randomized the order of four special driving sessions,

called ‘loaded’ drives, featuring the same challenging driving conditions (construction

zone). Each loaded drive was uniquely characterized by an additional stressor or

absence thereof. This stressor assumed the form of a secondary activity that was

forced in two phases during the course of the drive. All loaded drives were on the

same 6.75 mi section of a two-lane highway with posted speed limit of 45 mph; one

lane was dedicated to traffic in each direction, with the subject’s car traveling in the

right lane (R). The drives featured heavy traffic on the oncoming lane (> 20 vehicles

per mile) and construction pylons on both ends of the right lane (R). The subjects

were forced to change lane (R to L) after 2.75 mi into the drive. They stayed in

the left lane (L) for 0.75 mi, before they were directed back to the right lane (R).

During the detour, construction barrels appeared on the right side of the lane. In

more detail, the loaded drives were as follows:
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• Loaded Drive: (LD) Driving with no secondary activity (no additional stres-

sor).

• Cognitive Drive: (LDC) Driving under a cognitive stressor. The cognitive

stressor was mathematical questions in one phase of the drive and analytical

questions in another phase of the drive, posed orally by the experimenter. The

subjects had to answer these 5 questions to the best of their abilities. The

mathematical vs. analytical phase order was randomized.

• Emotional Drive: (LDE) Driving under an emotional stressor. The emotional

stressor was emotionally stirring questions posed orally by the experimenter in

two phases. The subjects had to answer these questions to the best of their

abilities.

• Motoric Drive: (LDM) Driving under a motoric stressor. The motoric stres-

sor was texting back words, sent one by one to the subject’s smartphone; this

texting exchange took place in two phases.

The phase layout within each LDX drive (x ∈ [C,E,M ]) was as follows:

• Phase P1LDX
: Driving without distractions for 80 s.

• Phase P2LDX
: Driving while engaging in a secondary activity x for 160 s.

• Phase P3LDX
: Driving without distractions for 240 s (coincided with the

detour).
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• Phase P4LDX
: Driving while engaging in a secondary activity x for 160 s.

• Phase P5LDX
: Driving without distractions for 120 s.

37



Chapter 4

Methods

4.1 Deception Detection Study

4.1.1 Interview Segmentation

To study the physiological effect caused in response to each question, we segmented

each Question - Answer pair in the interview, including any follow-up questions asked

by the interviewer. The start frame number and end frame number for the question

and respective response was recorded, therefore we would be able to analyze question

answer segments individually. However, because we apply a wavelet transform [30] on

the physiological signals, the approach would not be suitable for performing analysis

on each individual segment due to the short length of the question and its response.
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The length of an individual segment would be too short to extract meaningful infor-

mation as the physiological signals are weak having a very low signal-to-noise ratio

and a very short length signal would only provide details about local or momentary

physiological variations. Because we are more interested in analyzing the changes

in physiology in succession to the increasingly incriminating questions, we grouped

similar questions and their interlaced follow-up questions into segments.

Figure 4.1: Audio segmentation of the interview questions.

For the Behavioral Analysis Interview (BAI), we grouped the 24 questions form-

ing six segments. Each of these segments is of similar nature and is strategically

included to serve a very specific purpose. The first group of questions is the baseline

questions. The questions constituting this segment are answerable in one word or

line. While these questions are being asked, a baseline response from the participant

is extracted. It is against the baseline response that is collected, that we will com-

pare the physiological response to a stimulus. The next group of questions inquires

39



about the subjects general deceptive behavior, e.g., if they ever lied to authority or

stole from a work place in the past. The third segment is an irrelevant question,

having no direct implication with the crime in question. It is a question requiring

a descriptive response and its purpose is to bring the participants physiology at a

state of rest so as to collect an additional baseline. The responses of the first and

third segment are considered while determining the participants physiology at rest.

The fourth segment contains questions which directly accuse the subject of having

direct involvement in the crime, which can be proved by the interviewer with the

help of the affixed surveillance and forensic equipment and through extraction of fin-

ger prints. The next groups of questions ask the participant about what they think

would be the nature of the person who could have taken the ring and what would

be an appropriate punishment for such an act. A deceptive participant may propose

a more severe punishment for the person responsible in attempts to seem innocent;

however the surprise of being faced by such a question causes physiological changes

in the participants which they cannot control. The last group of questions concludes

the behavioral analysis interview.
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Table 4.1: Constitution of segments

Behavioral Analysis Interview Segments

Questions Segment Name

1 - 4 IR1

5 - 8 R1

9 IR2

10 - 16 R2

17 - 21 R3

22 - 24 R4

(IR - Irrelevant) (R - Relevant)
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4.1.2 Tracking Region of Interest

The tracker used is a facial-tissue tracker based on the particle-filtering approach [33].

In contrast to a single particle filter-based tracker, the tracker used is a network-

collaborative tracker, using multiple individual particle-filter trackers resulting in

superior tracking abilities even in more challenging conditions. Since the resultant

tracker is composed of multiple trackers, it is able to track dynamic scenes well,

especially facial tissue in our case, hence compensating for deformation of the facial

tissue. This kind of tracker is sufficiently robust to track abrupt changes in position

and physiology. It handles head poses and partial occlusions well.

(a) Tracking region of interest (b) Measurement region of interest

Figure 4.2: The tracking region of interest is depicted in 4.2(a). Within the tracking

region of interest the measurement region is selected as shown in 4.2(b) from which

the signal is extracted.

The method of tracking we used consists of the following steps:

1. First select the initial region for the tracker to track. This region is shown in

42



4.2(a), surrounded by the yellow box. This is the Tracking Region of Interest

(TROI).

2. On the tracked region of interest, we outline the Measurement Region of Inter-

est (MROI) 4.2(b). The MROI is a constant region from which physiological

measurements will be extracted.

3. Once the two initial selections are made, the tracker will estimate the best

matching TROI in the next thermal frame.

There are a few reasons for making two selections instead of one. Because the

desired region of interest is very small, choosing a larger region would encompass lots

more thermal features (steep gradients in temperature values) which makes track-

ing more robust. Also because physiology is constantly changing, a larger region

is bound to have a more gradual change due to physiology than a smaller region.

Finally, because we are extracting the perinasal signal (from the upper lip), this re-

gion is constantly being deformed due to the fact that the participants are speaking

during the interview. Tracking only the perinasal region as the TROI would intro-

duce huge amount of noise in the signal, mainly due to jittery tracking and excessive

reselection of TROI.
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4.1.3 Perspiration Signal Extraction

From the MROI in each thermal frame, we extract perspiration energy, which is ob-

tained through a morphological based image processing method [26]. The rationale

behind this method of extracting the perspiration signal is that the centers of the

perspiration spots have low thermal emission due to emission of latent heat. Its sig-

nature is its physical characteristic of having ‘cold’ inner spots and ‘hot’ surrounding

neighborhood. Also the boundaries of the perspiration spots are fuzzy due to ther-

mal diffusion.

Figure 4.3: Extraction of the perspiration signal.
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4.1.4 Signal Processing

4.1.4.1 Normalization

Each signal segment which is created by segmenting the perspiration signal corre-

sponding to the entire interview is considered individually by the wavelet transform.

The main motivation behind applying the normalization step to these signals is that

the perspiration signals extracted are very weak, and therefore have low signal-to-

noise ratios. The physiological responses to stimuli vary from one segment to another,

as well as physiological intensity varies from on subject to another. Because we are

not interested in the magnitude of the energy but the rate at which it changes within

the segments; we normalize each segment in the range of 0 to 1 before proceeding

with applying the wavelet transform.

Snorm =
S −Min(S)

Max(S)−Min(S)
(4.1)
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(a)

(b)

Figure 4.4: Figure 4.4(a) (top) and 4.4(b) (top) represents two perspiration signals

whose initial intensities are different by an order of magnitude. 4.4(a) (bottom) and

4.4(b) (bottom) show the normalized perspiration signals within the same intensity

range.
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4.1.4.2 Symmetric Extension

The wavelet transform is a convolution operation of the wavelet with the signal. Our

signals are of finite length, while convolving at the ends of the signal, the operation

would need additional data points beyond each end. This introduces an error called

borderline-discontinuity error. The borderline-discontinuity error would introduce

errors in wavelet analysis since it would lead incorrect local and global maximums

in wavelet energy curves. There are a few ways to do signal extension, such as zero-

padding, wraparound and symmetric extension. We used the symmetric approach

as our signals are non-stationary in nature. Our choice of length for the extension

was N/4 where N is the length of the signal.

Figure 4.5: Symmetrically extended signal.

The extension provides signal points beyond the ends of the origninals signal,

hence aleviateing the result from the border line discontinuity problem. The wavelet

energy curve no longer has wrong global maximas in its wavelet energy curves, there-

fore once again avoiding selection of improper scales for the frequency calculations.
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Figure 4.6: Effect of symmetric extension of signal on wavelet energy.
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4.1.4.3 Impulse Cleaning

Due to imperfections in tracking, caused by the reasons mentioned previously, the

perspiration energy signal is noisy. A large amount of this noise can be characterized

as spiky or an impulse, caused due to the momentary displacement of the tracker for a

frame or two. Due to the artificially introduced spikes of high intensity in the signals,

it affects the normalization of signals and does not allow the signal to be amplified to

entire potential. The presence of impulse noise is a category of high frequency noise,

which is characterized by stochastic impulses (i.e., random in nature), occurring very

frequently. The occurrence of such noise in the signals lead to the domination of high

frequency peaks in the wavelet energy curve, which exists at the lower wavelet scales.

Therefore it is necessary to perform impulse cleaning.

Ediff =

[
n−1∑
f=1

abs(E(f) − E(f+1))

]
/n (4.2)

If the difference in energy between two consecutive frames differs by an amount

greater than the mean difference (Ediff ) between all consecutive frames in the signal,

we reduce the difference in energy by an amount equal to the mean difference (Ediff ).

if(abs(Ef − Ef−1) > Ediff )

Ef = Ef−1 − Ediff

After applying the impulse-cleaning step, a wavelet transform applied on the
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Figure 4.7: Figure (a) represents the original perspiration signal, figure (b) represents

impulse cleaning applied on (a). Figure (c) and (d) represent normalization applied

on (a) and (b) respectively.

signal would now identify appropriately the mid frequency components as the dom-

inating harmonics in the signal. The same is observed in the wavelet energy graphs

of the wavelet transforms applied to the same signal, with and without impulse

cleaning.
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Figure 4.8: Effect of impulse on computed wavelet energy.
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4.1.4.4 Noise Cleaning

Even though impulse noise is cleaned, the perspiration signals are still embedded

with high-frequency noise. This is mainly due to systemic noise and tracker oscilla-

tions. Our intension is to analyze the lower-frequency variations in the perspiration

signals which are indicative of the changing rate of perspiration. We cancel out

the effect of the high-frequency fluctuations by passing the signal through a Fast-

Fourier-Transform-based low-pass filter setting with decay (σ) of 0.005. The decay

(σ) is experimentally chosen to be small so the influence of the signal points on the

output noise cleaned signal will not be confined just to its near vicinity in the input

signal, but it will be strongly influenced by signal points at a larger distance in both

directions. Finally, in figure 4.9, the noise reduced signal is free from sharp changes

in amplitude; however it still preserves the overall shape of the signal indicating true

physiological phenomenon.

Noise cleaning is the final step required for preprocessing the signal before the

wavelet transform cal be applied on it. The wavelet transform applied on the nor-

malized, impulse cleaned and symmetrically extended signal contains only one glob-

ally prevalent peak among the mid to low frequency scales, therefore, avoiding the

dilemma of selection of improper peaks and can also be used to automatically calcu-

late frequency.
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Figure 4.9: Raw, Impulse cleaned and Noise reduced signal.

Figure 4.10: Effect of noise cleaning on wavelet energy.
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4.1.4.5 Wavelet Transformation

The perinasal-perspiration signal, as its name suggests, measures the amount of

perspiration at any given point in time. This region of interest is constantly being

modulated by two factors. Firstly, by the large concentration on sweat glands in

this region and secondly, from the thermal effect of breathing, because it is situated

just under the nostrils [25]. Because we are interested in measuring the rate of

modulation of perspiration or the rate of activation of the sweat glands, we apply

a wavelet transformation to the perspiration signal. The Wavelet Transform with

its time-frequency analysis is a very useful tool in performing harmonic analysis.

Thus we can determine the strongest harmonic, which could be the representative

the phasic response of an entire interview segment.

Because our signal is extracted from a region on the face that is being affected by

a number of factors, we use multi-resolution wavelet in order to separate the effects

due to these factors. For example, the breathing is clearly evident at lower scales

while the perspiration is more pronounced at higher wavelet scales.

54



Figure 4.11: Noise-reduced signal superimposed with the wavelet fitting (top).

Wavelet energy graph (bottom). The peak at the lower wavelet scale corresponds to

high-frequency nose while the peak at the higher wavelet scale corresponds to true

perspiration phenomenon.
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4.1.4.6 Continuous Wavelet Transformation

We applied Continuous Wavelet Transform (CWT) on the signals with the “Mor-

let” wavelet as the choice of Mother Wavelet. We tried other mother wavelets like

Daubechies-2 and Mexican Hat wavelet. Among the different mother wavelets we

used, the power diagrams generated using the “Morlet” wavelet was able to produce

clearly distinguishable peaks. The choice of the wavelet was also fortified due to the

close resemblance between the perspiration signal and the “Morlet” wavelet.

(a) Wavelet energies using Mexican Hat and Morlet mother

wavelet

(b) Morlet mother wavelet

Figure 4.12: The figure compares the wavelet energies of the two mother wavelets

and it is observable that while using Morlet mother wavelet, the global maxima is

clearly distinguishable.

We apply the continuous-wavelet transformation on the noise-reduced perspira-

tion signal at all scales from 1 to 1000. From the wavelet power curve we choose
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the wavelet scale corresponding to the maximum energy in the range of 100 to 650.

We choose this range as such because in case of the Morlet wavelet, scales below 100

correspond to very high frequency. The presence of high energy at the lower scales

is due to the modulation effect of breathing on the perinasal region. In the figure

a, the high energy at scale 60 is caused to the strong cyclic pattern of period 4-6

seconds. In figure b, we see that there is a region of high energy around scale 650.

The reconstructed signal at that scale fits a global trend in the signal spanning well

over a 100 seconds.

Figure 4.13: The figure points out correspondence of low and high wavelet scales,

with high-frequency noise and global trends in the perspiration signal. (a) top:

Perspiration signal with dominant high-frequency noise. (a) bottom: Wavelet energy

corresponding to the (a) top. (b) top: Perspiration signal containing a very long

cycle. (b) bottom: Wavelet energy corresponding to the (a) bottom.
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4.1.4.7 Feature Extraction

From each segment of the perspiration signal, we wish to find the most prevalent

harmonic in the signal using which we can compute the mean rate of perspiration

during that segment of the interview. To do so we perform a scale to frequency

computation considering the scale with highest energy. This way we obtain a single

feature value for each segment of the interview. These values are frequency of per-

spiration. From these features we further create other features Relevant, Irrelevant

and Difference.

Irrelevant is the average of the two irrelevant segments IR1 and IR2, while Rel-

evant is the average of the relevant segments R1, R2 and R3. The final feature

Difference is the difference of the Relevant and Irrelevant.
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Figure 4.14: Translation of wavelet scale at maximum wavelet energy to perspiration

frequency values. (top) Wavelet energy graph with maximum energy at scale 227.

(bottom) Table containing perspiration frequency values for each segment for all

subjects.
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4.2 Exam Study

In this experiment, we do not have a definite number of stimuli or events that we

analyze. These events are each attempt of each question during an exam session

which are different for each subject. Hence we segment each attempt sequentially

using the feeds from the document cameras (see figure 4.15).

(a) Video annotation of subject reading a ques-

tion.

(b) Video annotation of subject writnig an an-

swer.

Figure 4.15: Video annotation of subjects actions at every instance when they start

and end an action.

Each of the questions belongs to one of two categories. 1) Declarative Knowledge

Questions and 2) Memory Response Questions. Declarative knowledge questions

require the students to recollect answers to questions which she/he has previously

learned from the study material, while critical thinking questions test the extent

to which the student has internalized the subject matter, and present an analytic

answer to the question.
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(a) Labeling parts of the brain. (b) Analytical thinking.

Figure 4.16: (a) - Declarative Thinking Question. (b) - Critical Thinking Question

Based on the video annotation, we split the physiological signals from the Q Sen-

sors and Zehpyr chest straps. Each of the measurement devices and video feeds were

synchronized with a common time server. Figure 4.17 illustrates the segmentation

of the palm EDA signal, palm and ankle motion, heart rate and breathing rates

signals with indexing from the video annotation. The green-highlighted portion in-

dicates that the subject is reading or thinking during those durations, while the

pink-highlighted portion indicates that the subjects are writing down the answers

during those durations. Each segmented question-answer segment is also labeled

indicating whether it is declarative-knowledge or critical-thinking type. We also ob-

tained a copy of the students graded exams and recorded the scores for each question,

allowing us to analyze their performance on the different types of questions.

We condense the physiological data per question and answer segments to a single

value by representing it by its mean intensity.
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Figure 4.17: Physiological signal segmentation and annotation.
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4.3 Driving Study

During the baseline session and all the subsequent drives, we continuously imaged

the subject’s face with a thermal camera 2.6(b). At the same time, the simulator

was programmed to save a record of the evolving driving parameters. These param-

eters included speed, acceleration, breaking, steering angle, and lane position. We

use the perinasal perspiration as the indicator of sympathetic arousal. Out of the

88 subjects that participated, we performed analysis on 59 (26 male / 33 female)

subjects. We could not perform analysis on nine male subjects because they had

facial hair, rendering extraction of perinasal perspiration signal problematic. For 20

other subjects, either the thermal imaging was out of focus, or certain session files

were missing. The ratio of males to females was 12/18 and 14/15 in the young and

old cohorts, respectively. Similar methods for tracking the region of interest and

extraction of the perinasal perspiration signal were used as described in 4.1.2 and

4.1.3 respectively.

The experiment had three parts:

Introductory Sessions One sitting session with soothing music to establish

the subjects’ resting baselines and two drives. These two initial drives were meant

to familiarize subjects with the simulator (PD drive) and relax them (RD drive),

respectively, in preparation for the main experimental drives.

Loaded Drives Four drives (order randomized) repeated on the same highway
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segment under similar ambient conditions; they featured a modicum of driving diffi-

culty ( LDj drives). One of these ‘loaded’ drives had no additional stressor (LD, j =

NULL). The remaining three loaded drives were characterized by forced distraction

through a j stressor - cognitive (LDC , j = C), emotional (LDE, j = E), or motoric

(LDM , j = M), respectively. The distraction applied twice during the correspond-

ing drive. The presence or absence of distraction divided the LDj drives into five

phases: P1LDj
(no distraction for all); P2LDj

(distraction in LDC , LDE, LDM vs. no

distraction in LD); P3LDj
(no distraction for all); P4LDj

(distraction in LDC , LDE,

LDM vs. no distraction in LD); P5LDj
(no distraction for all).

We segmented and annotated these various phases of the drives using Subject-

Book(Fig. 4.18) [4], and represented each of these phases’ physiological and simu-

lator output signals by its mean value.
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Figure 4.18: A screenshot of SubjectBook showing Subject 29, LDE. The signal on

the top is the perinasal perspiration and the signals on the bottom are the output

of the various simulator parameters. Between the signals, we see a synchromized

playback of videos corresponding the the black vertical marker. The highlighted

section annotates the loaded part of the drive.
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Chapter 5

Results

5.1 Deception Detection Study

A total of 67 participants were considered as part of the analysis, of which ground

truth was available for only 25 subjects. Using the ground truth data set, we built

models of ‘Truthful’ and ‘Deceptive’ subjects. Using the model generated by these

25 subjects, we tested the classification on the remaining 42 subjects as ‘Truthful’ or

‘Deceptive’. We performed two independent tests of batch sizes 27 and 15 subjects

respectively. On the first test batch of 27 subjects, our model was able to classify

78 % accurately, and on our second attempt at testing with 15 subjects, the model

classified 80% correctly. For the total of 42 subjects tested, the overall classification

success rate is 78.5%. Table 5.1 and 5.3 contain the results of classification for the

validation set and test set 2 respectively.
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Table 5.1: Prediction on the validation set

Subject Ground Truth TH MLP AB(DS) DT AB(NB) Probability

D001 Deceptive 1 1 1 1 1 0.999953

D004 Truthful 1 1 1 1 1 1

D009 Truthful 1 1 1 1 1 1

D012 Truthful 1 1 1 1 1 1

D014 Truthful 1 0 1 0 1 0.80239

D016 Truthful 1 0 1 1 1 0.946574

D017 Truthful 1 1 0 1 1 0.794048

D018 Truthful 1 1 1 1 1 1

D020 Deceptive 1 1 1 1 1 0.998949

D024 Truthful 1 1 1 1 1 1

D025 Deceptive 1 0 1 1 0 0.999992

D026 Truthful 1 1 1 1 1 0.996255

D027 Truthful 1 1 0 1 1 0.69268

D029 Deceptive 1 1 1 1 1 1

D033 Truthful 1 1 1 1 1 0.999969

D036 Truthful 1 1 1 1 1 0.941929

D038 Deceptive 1 1 1 1 1 1

D039 Truthful 1 1 1 1 1 0.998106

Continued on next page
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Table 5.1 – continued from previous page

Subject Ground Truth TH MLP AB(DS) DT AB(NB) Probability

D043 Truthful 1 1 1 1 1 1

D044 Truthful 1 1 1 1 1 0.999953

D046 Truthful 1 1 1 1 1 1

D052 Deceptive 1 1 1 1 1 0.998949

D053 Deceptive 0 0 1 1 1 0.757142

D055 Truthful 1 1 1 1 1 1

D057 Deceptive 0 0 0 0 1 0.871645

Success Rate 92% 80% 88% 92% 96%

1 Correct Classification

0 Incorrect Classification

TH Thresholding

MLP Multilayered Perceptron

AB(DS) Boosting (Decision Stump)

DT Decision Tree

AB(NB) Boosting(Näıve Bayes)

The threshold classification approach classified 100% of the truthful subjects cor-

rectly and 6 out of 8 (75%) deceptive subjects correctly. The other machine-learning
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algorithms misclassify different subjects however other than the Multilayered Per-

ceptron, none of them misclassify more than 2 deceptive subjects. Also if we consider

a majority voting to decide classification, doing so will result in a classification of

96%. We also see this trend in the prediction results for test set 2. There seems

to be a high degree of agreement among the classifiers. The only information about

the classification results pertaining to the undisclosed test set is that it achieved an

overall success rate of 78% in blind predictions. The ground truth for these subjects

has not been revealed, probably with the intention to use the data to promote further

research in this field.
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Table 5.2: Prediction of Test Set 1

Subject Ground Truth TH MLP AB(DS) DT AB(NB) Probability

D064 ? T T T T T 0.957

D065 ? D D D D D 1

D069 ? D D D D D 0.988

D072 ? D D D D D 0.738

D076 ? D D D D D 1

D077 ? T T T T T 1

D078 ? T T T T T 1

D080 ? T T T T T 1

D082 ? T T T T T 1

D083 ? T T T T D 0.519

D084 ? D T D D D 1

D089 ? T T T T T 1

D091 ? T T T T T 1

D094 ? D D D D D 0.98

D096 ? T D D D T 0.765

D107 ? D D D D D 1

D110 ? T T T T T 1

D113 ? T T T T T 0.999

Continued on next page
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Table 5.2 – continued from previous page

Subject Ground Truth TH MLP AB(DS) DT AB(NB) Probability

D114 ? T T T T T 1

D115 ? T T T T T 1

D118 ? T T T T T 1

D121 ? T T T T T 0.999

D122 ? D D D D D 0.978

D123 ? T T T T T 1

D124 ? D D D D D 0.613

D127 ? T T T T T 1

Success Rate ?% ?% ?% ?% ?%

T Predicted Truthful

D Predicted Deceptive

TH Thresholding

MLP Multilayered Perceptron

AB(DS) Boosting (Decision Stump)

DT Decision Tree

AB(NB) Boosting(Näıve Bayes)
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Table 5.3: Prediction of Test Set 2

Subject Ground Truth TH MLP AB(DS) DT AB(NB) Probability

D130 Deceptive 1 1 1 1 1 0.984

D131 Deceptive 0 0 0 0 0 1

D132 Truthful 1 1 1 1 1 0.913

D136 Deceptive 0 0 0 0 0 1

D140 Deceptive 1 1 1 1 1 0.964

D144 Truthful 1 1 1 1 1 1

D145 Deceptive 1 1 1 1 0* 0.501

D147 Truthful 1 1 1 1 1 1

D149 Truthful 1 1 1 1 1 1

D151 Truthful 1 1 1 1 1 0.95

D153 Truthful 1 1 1 1 1 1

D154 Truthful 1 1 1 1 1 1

D161 Truthful 1 1 1 1 1 1

D162 Truthful 0 0 0 0 0 0.976

D163 Deceptive 1 1 1 1 1 0.894

Success Rate 92% 80% 88% 92% 96%
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* Refuse to classify

1 Correct Classification

0 Incorrect Classification

TH Thresholding

MLP Multilayered Perceptron

AB(DS) Boosting (Decision Stump)

DT Decision Tree

AB(NB) Boosting(Näıve Bayes)
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5.2 Exam Study

We obtained State Anxiety Inventory (SAI) scores just before and after the end of

each exam. We found significant paired differences between the pre-exam and post-

exam SAI scores (p < 0.05), with the post-exam SAI scores being significantly lower

than the pre-exam SAI scores Figure 5.1.
20

30
40

50
60

70
80

Pre-Exam SAI Post-Exam SAI

p < 0.05

n = 23

Figure 5.1: Distribution of SAI scores before (Pre) and after (Post) the exams for

all subjects.

Students arrived at the classroom with elevated (anticipatory) stress that sub-

sided once the exam was over. This is an unmistakable sign of a stressful experience,
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which supports the validity of this study’s design.

The main analysis depends on two variables: student performance in the exams

and student stress caused during the exams. Because each of the 5 exams were out

of a different maximum possible score, we used percent obtained (Score Obtained)

/ (Maximim Possible Score)*100 to normalize the exam score. Per the syllabus,

the five exams were weighted with (15%, 15%, 15%, 15%, 40%) to compute the the

students final score. By regressing Exam Scores over GPA we find that there is a

significant correlation between the two (Figure 5.2). In other words, the student’s

quality predicts her/his course performance, as expected. This is one more indicator

of normalcy in the study data.

Next, we put to the test the exam difficulty ranking suggested by the instructor.

The standard way to do this is by comparing the subjective ranking with a ranking

based on an exam performance measure. For each exam, we calculated the percent

exam score (Score Obtained)/(Maximum Possible Score)*100. Figure 5.3(a) shows

the distribution of percent obtained scores of all the students enrolled in the three

semesters per exam. Figure 5.3(b) shows the distribution of percent obtained scores

of the 23 students participating in the study across the three semesters per exam.

From the exam scores obtained by the students, we see that the objective exam score

ranking and subjective exam difficulty are in agreement. Further more, the subjects

participating in the study seem to be a representative sample of the students in the

class.
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Figure 5.2: Figure 5.2(a) represent scatterplots of exam scores vs. student GPA for

all 5 exams attempted by the 23 subjects. Figure 5.2(b) represent the scatterplots

of the mean exam scores vs. student GPA.
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Figure 5.3: 5.3(a) represent the percent score distribution of all students in the class.

5.3(b) represent the percent score of the 23 students who participated in the study.

Next, we test if any of the physiological or kinetic indicators of sympathetic

arousal can track exam performance, much like the GPA does. Figure 5.4 depicts

the exam boxplots for the 8 sympathetic indicators we recorded. We observe that
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Figure 5.4: Mean physiological and kinetic indicators of sympathetic arousal per

student.
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only palm EDA appears to track exam performance. There appears to be a high cor-

relation (r=0.6523) between the mean palm EDA per student and the mean percent

score per exam.

Because palm EDA seems to be able to predict exam performance, we further

explore the existence of any correlation between palm EDA and student’s GPA.

Figure 5.5 displays the distribution of mean palm EDA per exam for each of the

GPA’s of the participating students. Figure 5.6 displays the mean palm EDA per

student against GPA. There exits a positive correlation (r = 0.4032) between palm

EDA and GPA. Figure 5.7 displays the mean palm EDA per student against mean

percent score achieved. The correlation between these variables is even higher (r =

0.6523). The GPA of the student is a measure of their academic achievement and

is indicative of their ability. The positive correlations indicate that students scoring

higher, certainly do so due to the fact that they have prepared themselves for the

exams, however these students perform as such during their exam at a much higher

sympathetic cost. That is, they care more about the outcome of the exam and hence

stress more. On the other hand, students performing poorer seem to care less or are

satisfied with achieving lower, hence they exhibit lower sympathetic arousal.
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Figure 5.5: Distribution of mean palm EDA per exam per GPA.
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Figure 5.6: Mean palm EDA per student per GPA.
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Figure 5.7: Mean palm EDA per student against mean percent score.
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5.3 Driving Study

We measured the strength of the linear relationships on the scatterplots with the

Pearson’s product moment correlation coefficient and performed the respective test

of significance. We did hypothesis testing against a two-tail alternative, setting levels

of significance at = 0.05 designated by *, or = 0.01 designated by **, or = 0.001

designated by ***.

Introductory Sessions Analysis

Comparison among the perinasal perspiration signals in the baseline session, the

practice drive, and the relaxing drive indicated the absence of any significant differ-

ences (p < 0.05, analysis of variance). This suggests that in all these cases, subjects

were hovering close to their tonic levels, in the absence of any serious challenge.

Loaded Drives Analysis

We analyzed perinasal perspiration (explanatory variable) to determine the sym-

pathetic effect of distractions in loaded drives. Next, we analyzed steering angle

(response variable I) to determine how sympathetic effects associate with attempted

actions. Finally, we analyzed lane departure (response variable II) to ascertain how

attempted actions are modulated, shaping error prone driving behaviors.

Specifically, for the explanatory variable we computed the mean perinasal perspi-

ration signal intensity E(k,LDj,Pi) for each driving phase Pi, of each loaded drive

LDj , for each subject k. These values represented the mean sympathetic arousals

exhibited by the subjects in response to the presence or absence of stress stimuli.
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For response variable I, we computed the mean angular steering deviation (in

absolute terms) |ST(k,LDj,Pi)| for each driving phase Pi, of each loaded drive LDj

, for each subject k. These steering values served as indicators of attempted actions.

Given that the subjects were traveling on a straight highway for 6 out of the 6.75

mi of the drive, the mean absolute steering value should have been close to zero; the

further away from zero, the stronger the sympathetic effect on instantaneous motor

responses.

For response variable II, we computed the range of lane departures X (k,LDj,Pi)

for each driving phase Pi, of each loaded drive LDj , for each subject k. Here we define

lane departure as the distance of the car’s center from the right edge of the road.

Ideally, the driver should maintain a nearly constant distance from this reference

edge, driving in the middle of her/his lane (X ≈ 0). If her/his lateral position deviates

significantly, then the range of lane departure values X would change substantively

(erratic driving).

For each subject, we normalized the explanatory and response variables with re-

spect to the corresponding variables in the LD∅ drive that featured no stressor. These

LD∅ baselines represented the subject’s sympathetic state, steering performance, and

driving performance under normal conditions. Since the itinerary and environment

remained the same in all loaded drives, any mean deviations from the subject’s LD∅

baselines should be attributed to the forced distractions.
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Effect of Cognitive Load on Sympathetic State, Steering and Driving

Performance

For our sample of 59 subjects, we computed for each driving phase Pi the distri-

butions of paired differences between:

• Mean perinasal perspiration in LDC and LD∅ (Eq. 5.1) - proxy for sympathetic

changes

• Mean absolute steering angle in LDC and LD∅ (Eq. 5.2) - proxy for steering

changes

• Range of lane departures in LDC and LD∅ (Eq. 5.3) - proxy for driving changes

∆ln(E(·, C,Pi)) = ln(E(k,LDC ,Pi)[
◦C2])− ln(E(k,LD∅,Pi)[

◦C2]) (5.1)

∆ln(|ST(·, C,Pi)|) = ln(|ST(k,LDC ,Pi|)[rad])− ln(|ST(k,LD∅,Pi|)[rad]) (5.2)

∆X(·, C,Pi) = X(k,LDC ,Pi)[m]−X(k,LD∅,Pi)[m] (5.3)

From Equation 5.1 we obtained the first row of boxplots in Fig. 5.8, which

suggests that cognitive distraction of subjects in phases P2LDC
and P4LDC

had as a

result significant elevation of their mean sympathetic arousal, with respect to phases

P2LD∅ and P4LD∅ in the no-stressor drive (p < 0.001, paired t-tests in both cases).
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From Equation 5.2 we obtained the second row of boxplots in Fig. 5.8, which

suggests that cognitive distraction of subjects in phases P2LDC
and P4LDC

had as a

result significant deterioration in mean steering performance, always with respect to

phases P2LD∅ and P4LD∅ in the no-stressor drive (p < 0.001 in P2LDC
and p < 0.05

in P4LDC
, paired t-tests in both cases). It is interesting that deterioration in mean

steering performance remained significant in phases P3LDC
and P5LDC

with respect

to phases P3LD∅ and P5LD∅ in the no-stressor drive (p < 0.001, paired t-tests in

both cases), indicating that there was a lingering behavioral effect on subjects wrt

response variable I, which outlived each application of the cognitive stressor.

From Equation 5.3 we obtained the first row of boxplots in Fig. 5.9, which sug-

gests that cognitive distraction of subjects in phase P4LDC
had as a result significant

improvement in the range of lane departures, with respect to phase P4LD∅ in the

no-stressor drive (p <0.001, paired t-test). This behavioral effect on subjects wrt re-

sponse variable II tended to linger in P5LDC
, outliving the application of the cognitive

stressor (p < 0.01, paired t-tests).
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Effect of Emotional Load on Sympathetic State, Steering and Driving

Performance

For our sample of 59 subjects, we computed for each driving phase Pi the distri-

butions of paired differences between:

• Mean perinasal perspiration in LDE and LD∅ (Eq. 5.4) - proxy for sympathetic

changes

• Mean absolute steering angle in LDE and LD∅ (Eq. 5.5) - proxy for steering

changes

• Range of lane departures in LDE and LD∅ (Eq. 5.6) - proxy for driving changes

∆ln(E(·, E,Pi)) = ln(E(k,LDE,Pi)[
◦C2])− ln(E(k,LD∅,Pi)[

◦C2]) (5.4)

∆ln(|ST(·, E,Pi)|) = ln(|ST(k,LDE,Pi|)[rad])− ln(|ST(k,LD∅,Pi|)[rad]) (5.5)

∆X(·, E,Pi) = X(k,LDE,Pi)[m]−X(k,LD∅,Pi)[m] (5.6)

Using Equation (5.4) we produced the third row of boxplots in Fig. 5.8, which

suggests that emotional distraction of subjects in phases P2LDE
and P4LDE

had as a

result significant elevation of their mean sympathetic arousal, with respect to phases

P2LD∅ and P4LD∅ in the no-stressor drive (p < 0.001, paired t-tests in both cases).
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Using Equation (5.5) we produced the fourth row of boxplots in Fig. 5.8, which

suggests that emotional distraction of subjects in phases P2LDE
and P4LDE

had as

a result significant deterioration in mean steering performance, always with respect

to phases P2LD∅ and P4LD∅ in the no-stressor drive(p < 0.01 inP2LDE
andp < 0.05

in P4LDE
, paired t-tests in both cases). It is interesting that deterioration in mean

steering performance remained significant in phase P3LDE
with respect to phase

P3LD∅ in the no-stressor drive (p < 0.05, paired t-test - Fig. 5.8), indicating that

there was a lingering behavioral effect on subjects wrt response variable I, which

outlived the first application of the emotional stressor. This lingering behavioral

effect did not appear in phase P5LDE
, after the second application of the emotional

stressor.

Using Equation (5.6) we produced the second row of boxplots in Fig. 5.9, which

suggests that emotional distraction of subjects in phases P2LDE
and P4LDE

had as a

result significant improvement in the range of lane departures, with respect to phases

P2LD∅ and P4LD∅ in the no-stressor drive (p < 0.001, paired t-tests in both cases).
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Effect of Sensorimotor Load on Sympathetic State, Steering and Driv-

ing Performance

For our sample of 59 subjects, we computed for each driving phase Pi the distri-

butions of paired differences between:

•Mean perinasal perspiration in LDM and LD∅ (Eq. 5.7) - proxy for sympathetic

changes

• Mean absolute steering angle in LDM and LD∅ (Eq. 5.8) - proxy for steering

changes

• Range of lane departures in LDM and LD∅ (Eq. 5.9) - proxy for driving changes

∆ln(E(·,M,Pi)) = ln(E(k,LDM ,Pi)[
◦C2])− ln(E(k,LD∅,Pi)[

◦C2]) (5.7)

∆ln(|ST(·,M,Pi)|) = ln(|ST(k,LDM ,Pi|)[rad])− ln(|ST(k,LD∅,Pi|)[rad]) (5.8)

∆X(·,M,Pi) = X(k,LDM ,Pi)[m]−X(k,LD∅,Pi)[m] (5.9)

Using Equation (5.7) we produced the fifth row of boxplots in Fig. 5.8, which

suggests that sensorimotor distraction of subjects in phases P2LDM
and P4LDM

had

as a result significant elevation of their mean sympathetic arousal, with respect to
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phases P2LD∅ and P4LD∅ in the no-stressor drive (p < 0.001 in P2LDM
and p < 0.01

in P4LDM
, paired t-tests in both cases).

Using Equation (5.8) we produced the sixth row of boxplots in Fig. 5.8, which

suggests that sensorimotor distraction of subjects in phases P2LDM
and P4LDM

had as

a result significant deterioration in mean steering performance, always with respect

to phases P2LD∅ and P4LD∅ in the no-stressor drive (p < 0.001, paired t-tests in both

cases). It is interesting that deterioration in mean steering performance remained

significant in phases P3LDM
and P5LDM

with respect to phases P3LD∅ and P5LD∅ in

the no-stressor drive (p < 0.001, paired t-tests in both cases), indicating that there

was a lingering behavioral effect on subjects wrt response variable I, which outlived

each application of the sensorimotor stressor.

Using Equation (5.9) we produced the third row of boxplots in Fig. 5.9, which

suggests that sensorimotor distraction of subjects in phases P2LDM
and P4LDM

had

as a result significant deterioration in the range of lane departures, with respect to

phases P2LD∅ and P4LD∅ in the no-stressor drive (p < 0.001 in P2LDM
and p < 0.05

in P4LDM
, paired t-tests in both cases). This behavioral effect on subjects wrt re-

sponse variable II tended to linger in P3LDM
, outliving the first application of the

sensorimotor stressor (p < 0.05, paired t-test).
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Figure 5.8: Paired tests for the explanatory (perinasal perspiration) and response I

(steering) variables in each phase of the cognitively, emotionally, and sensorimotori-

cally loaded drives.
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Figure 5.9: Paired tests for the response II (lane departure) variable in each phase

of the cognitively, emotionally, and sensorimotorically loaded drives.
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Chapter 6

Conclusion

6.1 Deception Detection Study

To the best of our knowledge, this is the first research effort that investigated the

value of facial perspiration in high-stakes deceptive behavior. We validated the pro-

posed framework for a mock crime experiment where the subjects faced intense in-

vestigation. A pool of 67 subjects were used in our analysis (25 for training and

42 for testing). We devised a threshold-based classifier and modeled four machine

learning classifiers. The classifiers scored above 80% successful prediction rate on the

training set and close to 80% successful prediction rate on the testing set, indicating

that the proposed method scales up.

This research makes two significant contributions in the field of deception anal-

ysis: one at the feature level and one at the system level. At the feature level, we
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demonstrated that high-stakes lying causes detectable changes in facial perspiration

patterns. Specifically, most deceptive subjects in our experiment exhibited signif-

icant increase in perspiration frequency when faced with questions related to the

mock crime. Most truthful subjects, on the other hand, did not show any substan-

tial changes in perspiration frequency between the relevant and irrelevant question

sets. These findings indicate that the perspiration frequency can be used as a dis-

criminating feature for classifying deceptive from truthful behavior. Such a discrete

system for interrogating individuals can also be used to determine any mal-intent as

demonstrated in [7].

Our contribution at the system level is the proposed thermal imaging-based de-

ception detection framework. The framework features unobtrusive measurement,

rapid analysis, and generalizable classifiers. Specifically, the framework quantifies fa-

cial perspiration responses in a contact-free manner. Thus, it eliminates the need for

contact probing that may compromise the validity of a sympathetic measurement.

Given a thermal video with a synced interview audio, the framework offers a semi-

automated process for deception detection. In particular, its image processing-based

perspiration extraction module is near real-time. Only its signal processing-based

feature extraction module needs some human intervention for audio demarcations.

This process, however, requires only a few mouse clicks and thus, it is fast. Most

importantly, the proposed framework features a generalizable classification method.

Unlike the previous deception detection approaches that are limited to a specific
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interview question or a set of interview questions [14] [17] [29], the proposed clas-

sifiers operate on the difference in perspiratory responses between the relevant and

irrelevant question sets. Thus, this approach makes the framework a natural fit

to behavior analysis interviews (BAI) with any number of irrelevant and relevant

questions.
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6.2 Exam Study

It is interesting that Palm EDA (a cholinergic response), is the only sympathetic

indicator of consequence in this cognitive performance vs. stress study. The adren-

ergic indicators (breathing and pulsation) do not hold any differentiating power.

This is obvious even by causal observation of the adrenergic signals, which are much

less variable than the cholinergic signals. The exams induce moderate sympathetic

arousal to the students, enough to cause instantaneous perspiration bouts, but not

sufficiently strong to accelerate their cardiopulmonary rhythms at times.

Cholinergic responses also proved to be highly informative in a study of dexter-

ous performance vs. stress, tracking level of experience, and hence perceived task

difficulty [18]. Provided that the subjects are pre-occupied with an intensive task,

and thus the context is well defined, the cholinergic channel emerges as the affective

channel of choice across moderately stressful domains. One might wonder why the

cholinergic signal on the ankle did not hold any differentiating power. This has to

do with the sensor placement. In the lower limbs, instantaneous perspiratory re-

sponses during sympathetic arousal are maximal on the underfoot and wear off with

distance. Hence, at the ankle are minimal. Unfortunately, there is no Q sensor form

for underfoot placement and this is the best we could do.

There has been some work in education about dynamic adjustment of exam

difficulty [11] [21]. Thus far, this adjustment is based solely on actual or anticipated
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grade performance, which is domain specific and is not always real-time. The research

presented here complements and transforms the state of the art by introducing the

notion of ‘attainment cost’, which qualifies grade performance. On similar lines,

Taamneh et al. investigated what sympathetic arousals can tell about children’s

performance in reading. [28].
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6.3 Driving Study

Driver safety is improved when the driver operates sensibly and her/his environment

does not change abruptly. An interesting question is what happens if either of these

conditions is not met. Here we restricted ourselves to the study of distracted driving

and unintended acceleration in busy thorough fares. Although distracted driving is

not the only form of non-sensible driving (e.g., driving under intoxication is another

infamous variety), it is certainly the most prevalent, especially during rush hours,

when the individual effects on traffic flow are maximized.

Pivotal to our approach is the abstraction of distracted driving into three main

categories, depending on the stressor involved: cognitive, emotional, and sensorimo-

tor. This is a comprehensive but diverse stressor set; thus, sensing its physiological

effects through a universal indicator can streamline the measurement process ren-

dering future applications practical. We used perinasal perspiration as a measure of

sympathetic arousal - a prime indicator of stressor effects, irrespectively of the stres-

sor type. We extracted this perspiratory signal using a clinically validated method

based on thermal imaging [26]. The sensing modality rendered the physiological

measurement process totally unobtrusive.

We measured the direct sympathetic effect on driving using the evolving absolute

value of the steering angle. We measured the filtered effect on driving using the

range of involuntary lane departures - an indicator that tracks propensity for error

and thus, accident.
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In a simulator experiment, designed to isolate each stressor type, we found that all

three stressors resulted in significant increases of the drivers’ sympathetic arousal lev-

els, all other things being equal (i.e., itinerary and traffic conditions). Furthermore,

we found that these elevated arousal levels were associated with significant increases

in the mean value of the absolute steering signal - an indication of attempted erratic

action directly driven by sympathetic arousal. Interestingly, we also found that these

attempted erratic actions were overcorrected when the hand-eye feedback loop was

not interrupted; this was true in the cognitive and emotional stressor cases. A likely

explanation for this paradox is that cognitive or emotional conflict activated the an-

terior cingulate cortex (ACC), which successfully counter-balanced erroneous motor

reactions. However, in the case of pure or mixed sensorimotor conflict, where the

hand-eye feedback loop was interrupted, ACC filtering was slipping, failing at times

to counterbalance instinctive motor reactions and thus, resulting into occasional lane

departures.

It appears that moderate levels of pure cognitive or emotional loading have ben-

eficial effects on driving behaviors. This result is intriguing. One should not rush to

generalize this conclusion, however, as it is almost certain that extreme cognitive and

emotional loads will tilt the scale towards unsafe driving behaviors. The question

is where is the threshold. Furthermore, the experiment’s results shed light to the

likely neurophysiological mechanism that renders texting while driving so disruptive

and dangerous, even in moderate amounts; it knocks out human’s last line of conflict

resolution defense, that is, the anterior cingulate cortex.
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A limitation of the perinasal imaging method is that it does not perform reliably

when the subject has facial hair. For this reason about 13% of the original data set

(nine male subjects) could not be processed. Other methods for peripheral sensing

of sympathetic arousal, such as palmar electrodermal activity sensing, have their

own set of problems, especially in the context of driving where the subjects’ hands

are engaged. Further research into measurement methods will solve these problems

in due course. What the current study convincingly demonstrates, however, is that

distractions, over-arouse the average driver and may result in significant deterioration

of her/his driving performance. Furthermore, real-time unobtrusive measurement of

driver’s arousal and its behavioral effects are within reach, opening the way for

engineering orthotic feedback loops. These loops will notify drivers (and perhaps

others in the vicinity) of their predicament, which often goes unnoticed because it is

subtle and subconscious, yet no less dangerous.
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Chapter 7

Appendix

7.1 Overview

We needed to first perform a validation study to measure the effectiveness of the Q

Sensor to detect sympathetic arousal from the palms of the students while they took

their exams, in the Exam Difficulty Assessment Study 3.2. In 2010, the first mobile

EDA sensor appeared in the market - Q Sensor (Affectiva,Waltham, Massachusetts).

The Q Sensor measured perspiratory responses on the palm or on the wrist. For the

former case the sensor was packaged in an open glove form (pod), while for the latter

case the sensor was packaged in a wristband form (curve). The Q Sensor was discon-

tinued in 2013, but several other mobile EDA sensors have appeared in the market

since then, such as the E3 Wristband (Empatica, Cambridge, Massachusetts) and

the Shimmer3 GSR + Optical Pulse Development Kit (Shimmer, Dublin, Ireland).
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The brands may differ but the basic technology within each family of EDA in-

struments (conventional vs. mobile) is the same. Hence, one can pick any model

from each family and perform a study that would be highly representative. Compar-

ing features across the two families of instruments one notes both similarities and

differences. Both instrument families use Ag/AgCl disc electrodes with contact areas

of 1.0 cm2 for their recordings, as recommended in the literature [9]. However, they

differ in terms of power mode (AC vs. DC), packaging (large vs. small form factor),

standard communication capabilities (wired vs. wireless), and wearable options. The

power mode has some implications in measurement accuracy (AC is better [5], while

the wearable options in the mobile family of sensors are both a blessing and a chal-

lenge. The challenge stems from the fact that sympathetically induced perspiratory

responses differ in their strength among various body locations [5]. Unfortunately,

the strongest responses do not necessarily correlate with the most ‘wearable’ body

locations. The combination of lesser accuracy with lesser responses may bias results

in studies of user affect. Such biases have not been sufficiently appreciated or studied

in the literature.

In the foundational paper of mobile EDA sensing, Poh et al. [20] compared the

Q Sensor measurements on the wrist against measurements taken with conventional

EDA sensors on the fingers; the stimuli included physical activity, mental arithmetic,

Stroop, and horror movies. Then, Poh and other researchers from the same lab used

the Q Sensor to collect affective data in a number of daily activity studies including

reading, walking, and sleeping [20] [24] . They even used the Q Sensor in an epilepsy
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study [19]. Chaspari et al. [6] used mobile EDA sensing to model verbal response

latencies in autistic children. McDuff et al. [15] used mobile EDA sensing to quantify

user emotions in a reflection study of past events. Overwhelmingly, in all these studies

researchers used the wristband form of mobile EDA sensing and reported interesting

findings.

There has been no rigorous validation of a representative mobile EDA device for

various body locations. Poh et al. [20] did validate the Q Sensor against a conven-

tional EDA instrument, but they did this only for the wrist location, and using an

array of stimuli that are not considered baseline in sympathetic studies. A universal

arousal stimulus is auditory startle, invoking a threshold response on the fingers of

healthy subjects [13]. An EDA device that successfully captures startle responses on

the fingers, meets the gold standard, as it has the capability of measuring sympa-

thetic arousal of low intensity and minimal duration on a prime neurophysiological

site. Conventional EDA devices belong to this category. Even a gold standard de-

vice, however, my not capture startle responses on a different body location (e.g.,

wrist), where there may be lower concentration of perspiration glands and sparser

innervation. Hence, an EDA device should be validated for every intended body

location.

Using EDA sensors on body locations that have not been validated against the

gold standard (i.e., conventional EDA on the fingers), is inherently prone to bias. In

a field study with sustained stressors of high intensity, the sensing device will likely

show responses, irrespectively of the sensor type and body location. In a field study
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with short stressors of mild intensity, if the sensor/location combination does not

correspond to the gold standard, the device may not show anything at all, giving the

illusion that the sympathetic system is in tonic mode.

7.2 Experimental Design

We conducted this study per a protocol approved by the University of Houstons

(UH) Institutional Review Board (IRB).We recruited subjects through email solici-

tations and flyer posting in the UH campus community (population about 35; 000).

We excluded children (< 18), subjects with hearing impairments, and subjects on

medications. Age brings psychological and physiological changes that are especially

prominent during developmental and late years [5]; for this reason, we did not include

children and older adults (> 59) in the subject pool. The use of auditory startle

stimuli in the experiment necessitated the exclusion of subjects with hearing prob-

lems. Certain medications affect sympathetic responses [10]; to simplify screening

and minimize confounding factors, we excluded all medication cases. A total of n =

25 subjects fulfilling the inclusion/exclusion criteria volunteered for the experiment.

After each subject consented, s/he filled out a biographic questionnaire, the Trait

Anxiety Inventory, and the State Anxiety Inventory. The last two meant to check

if any pathological or extraordinary conditions were biasing responses. Next, we

asked each subject to wash her/his hands and feet prior to sensor attachment. We
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waited 10 min for normal moisture levels to reestablish on their skin, before attach-

ing the sensors. This preparation ensured optimal and uniform skin conditions in

the attachment areas for all subjects. We used Galvanic Skin Response probes con-

nected to an ADInstruments PowerLab data acquisition unit (ADInstruments, Bella

Vista, Australia) as C EDA sensors; we used Q Sensor sets (Affectiva, Waltham,

Massachusetts) as M EDA sensors(16). Figure 7.1 depicts the node configuration.

We attached seven EDA sensors to each participant: three sets of a conventional

EDA sensor (C EDA) on the participant’s right-hand side and four sets of a mobile

EDA sensor (M EDA) on the participant’s left-hand side. We used the Galvanic

Skin Response probes from ADInstruments (ADInstruments, Bella Vista, Australia)

as C EDA sensors and Q Sensor sets as M EDA sensors. Specifically, we had the

following sensor arrangement (Fig. 7.1):

• Classic EDA on the right hand fingers (C Fingers)

• Classic EDA on the right palm (C Palm)

• Classic EDA on the right wrist (C Wrist)

• Mobile EDA on the left hand fingers (M Fingers)

• Mobile EDA on the left palm (M Palm)

• Mobile EDA on the left wrist (M Wrist)

• Mobile EDA on the left sole (M Sole)
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Figure 7.1: Experiment and sample outcome. A, Experimental setup, demonstrating

all seven nodes. B, Raw EDA signal on the fingers of subject S003, captured via the

conventional sensing device. The dotted lines mark the occurrence of the three

stimuli. Only the last minute of the baseline period is depicted to economize space.

C, The signal after noise filtering. There are multiple arousals after each stimulus;

circles mark onsets, triangles mark peaks, and crosses mark offsets; ton, denotes the

time of Onset occurrence, tp the time of Peak occurrence, and toff the time of Offset

occurrence; A stands for the arousals amplitude.

For two of the 25 subjects, the recorded EDA responses in all body locations

had a low signal to noise ratio, rendering analysis impossible; we excluded these

two subjects from any further consideration. Hence, the usable data set included 23

subjects (11 males / 12 females; age: 23.91 ± 8.12). Figures 7.2 - 7.5 depict the
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entire data set per location, facilitating cross-sensor comparison where

applicable. The main experiment lasted seven minutes for each subject. During

these seven minutes, the subject listened to soothing music via a headset in a near

dark room. This soothing music was interrupted three times with a glass breaking

sound, which served as the auditory startle stimulus. The first stimulus was delivered

in the fourth minute. After that, two more stimuli were delivered at one-minute

interval each. All sensor measurements were synchronized and recorded throughout

the experiment. Hence, our usable data bank accrued 161 EDA signals (23 subjects

× 7 EDA signals per subject - one for each node).

7.3 Methods

The C sensor samples at the rate of 25 points per second while the M sensor samples

at the rate of 32 points per second. For this reason, we resampled the M signals

down to 25 points per second to establish uniformity across the signal bank. Then,

we applied a moving window filter twice to reduce noise. We set the window size

at W = 125 points. We arrived at this selection by performing sensitivity analysis

with window sizes W = 25 × k; k = 1, 2, 3, ... We chose the size of the increment

to be 25 points because it matches the minimum resolution (i.e., rate of sampling).

At k = 5 we attained optimal performance by substantively reducing noise without

destructing signal information; at k > 5 the signals exhibited over-smoothing, which

affected the performance of the Peak and Onset detection algorithms.
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On the noise-filtered signals, we focus on the non-baseline period from t = 4 to 7

min. We divide this period into three segments: S1 = [4; 5) min, S2 = [5; 6) min, and

S3 = [6; 7] min; each segment includes the respective stimulus S1 , S2 , S3 and the

period up to the delivery of the next stimulus or the end of the experiment. Within

each segment we seek arousals (firings), each characterized by a Peak and an Onset.

An Offset may or may not exist, depending on the recovery rate and the timing of

the next arousal. We execute the following algorithmic steps:

1. Peak Detection: We apply a Peak detection algorithm on the non-baseline

portion of the signal S1 ∪ S2 ∪ S3.

2. First Onset: Between each stimulus and the first Peak that follows it within the

respective segment, we determine the corresponding Onset; this is the Onset

of the first arousal in response to the specific stimulus.

3. Additional Onsets; If there are multiple firings in response to a stimulus, then

more than one Peak point exist within the respective segment, Si, i = 1, 2, 3.

We locate the Onset point corresponding to such an additional Peak in the

valley between the present and preceding Peak.

4. Offsets: For each Peak we determine the matching Offset as the 50×(Peak -

Onset) drop-off point. If this point occurs after the next Onset or stimulus, then

it is rejected and the Offset is treated as a missing value; this is an indication

that the subject has not recovered at the time a new arousal set in.

106



7.4 Results

Even under the best circumstances, EDA signals are noisy and variable (Fig. 7.1 B).

For this reason, signal abstraction is quintessential to fair comparisons; standard low

pass filtering is not sufficient (Fig. 7.1 C). What is of interest here is the ability of the

sensor to measure the essence of the stimulus’ response at the specific site. A normal

neurophysiological response (arousal) can be reconstructed to a good approximation

from three key points in the corresponding EDA signal [5]: Onset, Peak, and Offset.

The Onset point represents the start of the EDA activation; the Peak point represents

the culmination of the activation; and, the Offset point represents the ebbing of the

activation.

An electrodermal response may feature more than one Peak. Such peaks corre-

spond to multiple neurophysiological firings provoked by a single stimulus [5]. Hence,

for each stimulus a subject can experience none, one, or several peaks (Fig. 7.1 C).

Peaks are the most characteristic points of an electrodermal response. Hence, our

analysis proceeds at two levels:

• Detection-level We pay attention to the occurrence of peaks, as proxies of

neurophysiological responses; the absence of peaks signifies the absence of a

response at a node.

• Measurement-Level We pay attention to the parameters of the neurophys-

iological responses recorded at the various nodes. These parameters include

the times of occurrences for Onset (ton), Peak (tp), and Offset (toff ) as well as
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the amplitude of the recorded response (A = Peak - Onset). The times (ton),

(tp), (toff ) quantify the arousal’s evolution, while the amplitude quantifies the

arousal’s intensity.

To ensure that the subjects’ trait and state anxiety levels did not affect manifes-

tation of sympathetic activation [16], we obtained their trait (TAI) and state (SAI)

anxiety psychometrics [27]. Then, we examined in each node the correlations be-

tween the number of peaks detected per subject versus the corresponding TAI and

SAI scores. None of these correlations was statistically significant (p > 0.05)

Detection-Level Analysis

The numbers of peaks quantify arousal levels, with zero signifying a non-responsive

subject in the specific node. Different numbers of subjects exhibit different arousal

levels at the different nodes. As we observe in Fig. 7.6, the wrist locations have the

highest number of non-responsive subjects irrespectively of the sensor type. This

indicates that wrists respond poorly to stimuli. The rest of the locations have mini-

mal numbers of non-responsive subjects, indicating the regular presence of arousals

in response to stimuli.

We are interested to examine if indeed the proportion of non-responsive subjects

differs significantly among the nodes. To do so we use the Binomial distribution. In

each node we sampled 23 subjects, where each subject presented a binary outcome:

failure, if s/he was nonresponsive or success, if s/he had at least one arousal. Hence,

for each node if we call Yi the random variable that denotes the outcome of subject
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i and θ the unknown probability of success, we have Yi|θ Bernoulli(θ), giving:

Yi =

0 if no peaks in the entire experiment

1 if at least one peak in the entire experiment

We count on the total number of successes in the 23 subjects, forming the random

variable X|θ Binomial(n, θ), n = 23:

X =
∑n

i=1 Yi

As we observe in Fig 7.6, the maximum likelihood estimates (MLE) at the wrists

are quiet smaller compared to the other locations. In fact, running a seven-sample

test for equality of proportions shows that there are significant differences among

the seven nodes (p < 0.01). Next, we exclude the two wrist nodes that appear to be

the culprit and we compare the proportions in the remaining five nodes. This time

the test returns a non-significant number (p > 0.05), which indicates that with the

exception of the wrist nodes, all the other nodes are statistically equivalent in terms

of peak presence.

Measurement-Level Analysis We start the measurement-level analysis by

studying the relationship of arousal timing between each pair of nodes, taking into

account all three stimuli. Figure 7.7 shows a matrix that is split along its diagonal.

The matrix portion below the diagonal shows the scatterplots of Onset (ton), Peak

(tp), and Offset (toff ) times for all node pairs. The matrix portion above the diago-

nal shows the correlation coefficients for the corresponding scatterplots. As indicated
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both visually and numerically, the timing agreement between nodes is exceptionally

high. Hence, the arousal’s evolution is captured accurately at the locations of inter-

est (fingers, palm, wrist, sole), irrespectively of the type of sensor used. One has to

note, however, that in the case of wrist nodes, the number of points is small. This

is consistent with the finding in Fig. 7.6. Arousal detection at the wrist is rare, but

when it occurs, both the C and M sensors track equally well its evolution.

Next we study the relationship of arousal intensity between each pair of nodes,

taking into account all three stimuli. Figure 7.8 also shows a matrix that is split

along its diagonal. The matrix portion below the diagonal shows the amplitude

(A) scatterplots for all node pairs. The matrix portion above the diagonal shows

the correlation coefficients for the corresponding scatterplots. As indicated both

visually and numerically, the agreement is poor for pairs involving one wrist node,

irrespectively of the sensor type attached to this wrist node. Agreement is also

poor for pairs involving the mobile sole node. Agreement gets at least moderately

strong for pairs involving fingers, palms, or finger-palm, irrespectively of the sensing

modality.

This brings to the fore a problem with EDA sensing: while the timing of the

phenomenon is accurately captured across locations and sensor types, the magnitude

of the phenomenon poses a challenge. This challenge is bigger for the sole and

insurmountable for the wrist location, irrespectively of the sensor type.
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7.5 Discussion

We recognize the importance of quantifiable and objective information the EDA

responses can provide to studies of subject affect. Traditionally, EDA sensing is

performed on the fingers with conventional EDA devices. Although, this has serious

usability problems, it captures well minimal bursts of sympathetic activation. The

new mobile EDA sensors, attached on various body locations, have obvious usability

advantages. However, one has to be careful not to compromise measurement accuracy

or if s/he does, s/he should at least be aware of it.

In this study we found that in response to minimal standardized sympathetic

stimuli, conventional EDA devices are in moderate agreement with mobile EDA

devices on the fingers and palm. At the same time, we found that both conventional

and mobile EDA devices give significantly inferior measurements when attached to

the wrist. Actually, not only measurement but also mere detection of sympathetic

responses on the wrist is quite challenging. Given the proliferation of mobile EDA

devices, often in the form of affective wristbands, and the accompanying marketing

hype, these results are a waking call for a more careful examination of operational

limitations. Should this call go unheeded, the introduction of measurement bias in

affective studies appears likely.

Another body location - the sole - that is a candidate site for wearable EDA sens-

ing provides strong detection capability, but relatively poor measurement capability.

This study tested sensors and locations in a stationary context. While this was
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necessary to minimize confounding factors and establish a clear first-level comparison,

it certainly does not account for additional effects that are present in practice. The

main such effect is ambulatory motion that needs to be studied in a subsequent

study.
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Figure 7.2: C and M EDA responses on the fingers per subject. From the four

minutes of baseline only the last minute is depicted in the graphs to economize

space. Vertical dotted lines identify stimuli times and inverted triangles denote

peaks, facilitating arousal comparison. The M EDA signal for subject S009 was

not collected due to technical reasons. The graphs confirm qualitatively the high

responsiveness of the fingers location and the agreement between the two sensor

modalities.
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Figure 7.3: C and M EDA responses on the palm per subject. From the four minutes

of baseline only the last minute is depicted in the graphs to economize space. Vertical

dotted lines identify stimuli times and inverted triangles denote peaks, facilitating

arousal comparison. The M EDA signal for subject S005 and both and EDA signals

for subject S003 were not collected due to technical reasons. The graphs confirm

qualitatively the high responsiveness of the palm location and the agreement between

the two sensor modalities.
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Figure 7.4: C and M EDA responses on the wrist per subject. From the four minutes

of baseline only the last minute is depicted in the graphs to economize space. Vertical

dotted lines identify stimuli times and inverted triangles denote peaks, facilitating

arousal comparison. A,Signals manifesting sympathetic responses on the wrist. B,

Signals manifesting the absence of sympathetic responses on the wrist, which were

excluded from further processing and analysis. The graphs confirm qualitatively the

low responsiveness of the wrist location, a result that was documented quantitatively

in the text.
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Figure 7.5: M EDA responses on the sole per subject. From the four minutes of

baseline only the last minute is depicted in the graphs to economize space. Vertical

dotted lines identify stimuli times and inverted triangles denote peaks, facilitating

arousal comparison. The graphs confirm qualitatively the responsiveness of the sole

location, a result that was documented quantitatively in the text. However, ampli-

tude correlations with the finger and palm locations are not strong, suggesting that

precise EDA measurements on the sole may be challenging.
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Figure 7.6: Responsiveness of subjects per node. Each bar chart depicts the dis-

tribution of the number of subjects over different levels of response (i.e., number of

recorded peaks in the node). Red bars indicate the number of completely nonre-

sponsive subjects for the specific node. The maximum likelihood estimates(MLE, θ̂

= X/n) for getting at least one peak appear on the upper right corner of the node’s

panel.
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Figure 7.7: Arousal timing relationships between nodes. BELOW THE DIAGO-

NAL: Scatterplots of Onset (ton), Peak, (tp), and Offset (toff ) times for the various

node pairs. ABOVE THE DIAGONAL: The correlation coefficients that corre-

spond to the strength of the linear relationships depicted in the scatter-plots below

the diagonal (all are significant, p < 0.01).
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Figure 7.8: Arousal intensity relationships between nodes. BELOW THE DIAG-

ONAL: Scatterplots of amplitude (A) for the various node pairs. ABOVE THE

DIAGONAL: The correlation coefficients that correspond to the strength of the

linear relationships depicted in the scatter-plots below the diagonal (coefficients in

bold are significant, p < 0.01).
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