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Abstract: 

 

Purpose: Molecular events regulating neutrophil extravasation have been extensively researched 

and described. However, relatively little is known about extravascular interstitial migration of 

neutrophils and then, much of what we do know has come from in vitro 2-D or 3-D matrix 

models. These models are limited by their ability to duplicate the nuances of the physiological or 

physical native environment. Neutrophils often migrate a considerable distance from the site of 

extravasation through the avascular corneal stroma to reach the site of injury. This migration 

involves contact with extracellular matrix and resident keratocytes. Ultrastructural morphometric 

data suggest neutrophil contacts with keratocytes are mediated by the leukocyte β2 (CD18) 

integrins and ICAM-1(a β2 ligand). While β1 (CD29) and β3 (CD61) integrin families are also 

expressed on extravascular migrating neutrophils, in vitro studies have shown that locomotion of 

activated neutrophils is dependent on integrin binding on 2-D surfaces, but not in 3-D matrixes. 

The role of integrin binding during in vivo corneal stroma migration has yet to be clearly defined. 

A greater understanding of this migration holds the promise of a more effective means for 

modulating neutrophil activity to control inflammation and improve the outcome of wound 

healing. Additionally, it may elicit details of motility applicable to other types of cells. The 

purpose of this dissertation is to provide insights into the mechanisms of neutrophil migration 

through the corneal stroma. Specifically, it addresses the influence of the keratocyte network on 

migrating neutrophils and the relative contribution of β1 (CD29), β2 (CD18) and β3 (CD61) 

integrins to neutrophil locomotion in the inflamed mouse cornea.  In vivo data obtained using 

Heidelberg Retinal Tomographer III with Rostock Corneal Module (HRT-RCM) time lapse 

sequences provided the means, for the first time, to quantify speed and directionality of cellular 

movement while observing neutrophil interaction with stromal keratocytes in the living eye. 
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Methods: Corneal inflammation was induced in female wild type C57BL/6 mice by mechanical 

removal of the epithelium using an Algerbrush. Eight hours after injury the corneas were imaged 

with the HRT-RCM. Scanning sequences provided the means to track individual cells for 

extended time periods to determine motility characteristics. The contribution of integrin binding 

to neutrophil migration was assessed by blocking antibody (anti-β1-, β2-, or β3-integrin) or IgG 

control antibody applied to the cornea at the time of epithelial injury. Image stabilization, cell 

tracking and movement analysis were accomplished with a custom MatLab program. 

 

Results: Time-lapse imaging showed an unequivocal preference for neutrophils to follow the 

network of keratocytes. Neutrophils in control eyes moved with an average speed of 7.56±0.20 

(SE) µm/minute. The average confinement ratio (CR) of the neutrophil population was 

0.55±0.02, where a value of 1.0 indicates confinement to a perfectly straight path. Compared to 

the results from control eyes, anti- β1-integrin antibody resulted in a 31 % reduction in speed 

(p<0.05) and a 33% reduction in CR (p<0.05), while anti-β2- or β3- integrin antibodies had no 

significant effect on cell speed or CR. 

 

Conclusions: Results clearly show that the keratocyte network is the preferred route for 

neutrophil migration within the corneal stroma. Contrary to expectations based on previously 

published histological and in vitro evidence, blockade of β2-integrin does not affect in vivo 

motility and the same is true for β3-integrin blockade.  However, β1 blockade produced a 

significant, but not total, reduction in cell speed and resulted in migrating cells being less 

confined to a straight path.  Therefore, neutrophil locomotion within the physically confined 

environment of the corneal stroma does not require integrin binding, though β1 binding facilitates 

the process. 
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CHAPTER 1 – INTRODUCTION 

 

 

1.1 – Inflammation 

Inflammation is a potentially dangerous process. Even though the body has an elaborate 

system of initiating and modulating inflammation, in patient care, it is frequently 

considered an undesirable event that should be diminished or suppressed. While that is 

true in many instances, it must be remembered that inflammation is the initiation of the 

highly effective and conserved innate immune system present in all animals. 

Inflammation involves a complex series of events and interactions between a variety of 

cells and chemical mediators [1]. It is a vital aspect of clearing pathogens and wound 

healing. Neutrophils are the most abundant cellular component and first line of defense of 

the innate immune system and are key components of all phases of the inflammatory 

response.  

 

1.1.1 Neutrophils and Hematopoiesis  

Metchnikoff, who first discovered neutrophils, was also the first to describe phagocytosis 

and identify developing phagocytes (including neutrophils ) in the bone marrow [3].  

Neutrophils and macrophages originate from the same bone marrow stem cells that 

differentiate through common progenitors. The bone marrow contains a delicate 

meshwork of collagen fibers and other extracellular matrix components along with stem 

cells and leukocyte precursor cells. Mature leukocytes are discharged into the many thin-

walled sinuses in the bone marrow. From there they join the systemic circulation. 
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 The surface of neutrophils consists of ridges and folds with sites for interaction 

between the neutrophil and its surroundings including Fc receptors, Toll-like receptors, 

chemotactic receptors and adhesions molecules such as selectins and integrins [4]. 

“Resting” PMNs are medium-sized leukocytes, measuring roughly 6-10 μm in diameter, 

although this changes dramatically upon activation and transmigration [5, 6]. 

 Neutrophils contain many granules which store large amounts of potent antimicrobial 

molecules, proteolytic enzymes and chemical mediators, many of which are highly 

cytotoxic and potentially destructive to host tissue. These neutrophil granules were first 

recognized by Ehrlich and Metchnikoff. The granules were later shown to be reservoirs 

of antimicrobial molecules and proteases that play a role in tissue destruction during 

inflammation [7].   Even though neutrophils were first described by Metchnikoff in 1905, 

it was not until late in the 20
th

 century when neutrophils were classified, along with 

monocytes/macrophages, as “professional phagocytes” [1]. Because of this potentially 

destructive nature of the neutrophils, they are tightly controlled and kept in reserve as 

quiescent cells in the systemic circulation and bone marrow. There is often collateral 

damage from neutrophils during response to inflammation [3].  

 Prolonged neutrophil recruitment and activation may lead to tissue damage and 

protein alterations thus promoting antigen-antibody reactions leading to chronic 

inflammation [8]. Chronic inflammation has been linked to numerous diseases such as 

atherosclerosis, myocardial infarction, diabetes, hypertension, and even some cancers [9]. 

In the eye it has been linked to ocular surface disease and age-related macular 

degeneration [10, 11]. Understanding the cause of unresolved inflammation has been the 

focus of extensive research efforts.  
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 Circulating (“resting”) neutrophils have been (historically) reported to have a lifespan 

of 6-12 hours which is prolonged to 24-48 hours (perhaps longer) by delaying senescent 

apoptosis after their activation.  If this prolongation is not properly controlled it may 

contribute to collateral tissue damage [1, 12].  When quiescent neutrophils are recruited 

from the blood by inflammation they are phenotypically transformed and armed with 

potent toxic molecules (Figure 1). When, where and for how long they remain in the 

tissue is determined, in part, by the tissue environment. Most neutrophils spend their 

entire life span in systemic circulation, ready to be called into service but never recruited 

to participate in an inflammatory response. 

  

 

Figure 1 – Extravascular neutrophil 

Example of an extravascular neutrophil that has become activated after 

transendothelial migration and transformed into a highly motile phenotype armed 

with numerous granules containing potent toxic molecules. 
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1.1.2 Overview of inflammation 

Acute inflammation is the body’s reaction to injury (or infection), providing a defense 

against microbial pathogens that might gain access through wounds or otherwise. It is by 

design self-limiting and self-resolving while setting in motion the chain of events that 

result in wound healing. Ultimately and ideally, healing restores tissue form and function.  

 Celsus was credited with first describing the four cardinal signs of inflammation (De 

Medicina volume I written in first century A.D., first printed in 1478) : rubor (redness), 

tumor (swelling), calor (heat), and dolor (pain). A fifth sign, functio laesa (loss of 

function) was added by Galen in 100 A.D. The response to injury is fairly consistent, 

showing that severity rather than etiology determines the response. Initially there is very 

brief vasoconstriction followed by a more prolonged period of vasodilation. In addition, 

previously inactive capillaries are filled with blood thus producing hyperemia (rubor) and 

heat (calor) due to the increased blood flow. The main vascular effect is in the post 

capillary venules which dilate. Subsequently the vascular endothelial cells contract which 

increases vascular permeability to where fluid and plasma proteins leak into the 

surrounding tissue (swelling). In more severe injury the increase in permeability may 

extend to include even the capillaries and arterioles.  

 There are many inflammatory mediators including histamine, serotonin, bradykinin, 

platelet activating factor, and prostaglandins from a variety of sources. In addition 

neuropeptides such as calcitonin gene-related protein and substance P produced by 

sensory nerves stimulated directly by injury also serve as inflammatory mediators. All of 

these produce increased swelling (tumor) which puts pressure on sensory nerves made 
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hypersensitive by the same mediators, thereby causing pain (dolor). Table 1 summarizes 

the processes and mediators of inflammation. 

 

 

 

 

 

 

 

 Glucocorticoids are the most commonly prescribed anti-inflammatory drugs but they 

have the potential for producing significant and sometimes irreversible adverse reactions 

[13, 14].  They reduce inflammation and control pain by suppressing or inhibiting pro-

inflammatory pathways, but do not treat the underlying cause. They provide temporary 

palliative treatment but can also potentially encourage bacterial infection due to the 

suppressed inflammation [15].  

 Most non-steroidal anti-inflammatory drugs (NSAIDs) work in a similar fashion but 

have less potential for encouraging bacterial infection. Both non-steroidal anti-

inflammatory drugs and corticosteroids target the formation of eicosanoids (Figure 2) and 

it is now known that several members of the eiconsanoid family are anti-inflammatory 

regulators and promote resolution of inflammation [16-19]. This opens the door for 

potential continual re-initiation of inflammation and inflammatory disease [8]. Aspirin 

(acetylsalicylic acid) is an exception since it not only blocks the formation of eicosanoids, 

Table 1 – Inflammation 

Acute Plasma 
derived 

Bradykinin, C3, C5a, MAC, Factor XII, plasmin, 
thrombin 

Cell derived Preformed Lysosome granules, histamine, serotonin 

De novo IFN, IL-8, TNF, IL-1, eicosanoids, NO, 
kinins 

Chronic Macrophage, epithelioid cell, giant cell, granuloma 

Processes Traditional Rubor, calor, tumor, dolor, (functio laesa) 

Modern Vasodilation, vascular permeability, exudates, 
leukocyte extravasation, chemotaxis 

[ adapted from http://en.wikipedia.org/wiki/Functio_laesa ] 
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but also is responsible for triggering formation of lipoxin LXA4 which actively helps to 

resolve inflammation [20]. 

 

 

 

  

 

Figure 2 – Glucocorticoids and NSAIDS 

Both glucocorticoids and NSAIDS inhibit the production of eicosanoids 

(prostaglandins and leukotrienes) and generally dampen the inflammatory response. 

However, anti-inflammatory eicosanoids may be inhibited in the process.  
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1.1.3 Neutrophil role in inflammation 

Damaged or inflamed tissue produces chemokines which attract the infiltrating 

inflammatory cells and results in large numbers of these cells arriving at the site of 

inflammation. Other signal molecules are released into the circulating blood and 

stimulate the bone marrow to produce and release more leukocytes. 

 If successful in breaching the formidable epithelial barrier, invading pathogens 

encounter the innate immune system.   Neutrophils, the most abundant leukocyte, mount 

a rapid and robust response to a breech in the physical barrier which protects the 

underlying tissues. The inflammatory response is the result of many different signal 

molecules produced by mast cells, nerve endings, platelets, leukocytes, and complement. 

Some of these molecules result in increased vascular permeability and activation of the 

vascular endothelium [1].  

 At the sites of inflammation, neutrophils are recruited from the systemic circulation 

and stimulated to transmigrate through the vascular endothelium into the extravascular 

interstitium. During this process they become activated, express different proteins, and 

transform from a round, non-motile cell into a polarized highly motile cell (Figure 1) 

with a greatly extended life span [2, 21, 22]. In order to reach the site of inflammation 

they must then migrate through the extravascular interstitium. Figure 3 summarizes the 

role of neutrophils in acute inflammation and illustrates the activation of the adaptive 

immune system. 
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Figure 3 – Acute inflammation 

Circulating neutrophils have a life span of 8-12 hours after which they undergo 

apoptosis and are replenished by new cells from the bone marrow. Recruited 

neutrophils become activated during extravasation with an extended life span. By 

releasing the contents of their granules and by phagocytosis, they clear acute 

inflammatory sites of invading pathogens. In addition, the expression of CCL2 

recruits monocytes and lymphocytes, thereby activating the adaptive immune system 

[2]. 
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Diapedesis and extravasation 

In 1841 William Addison first proposed that leukocytes get to tissues by diapedesis [7].  

The term “diapedesis” strictly refers to the movement of blood cells, primarily 

leukocytes, through the intact walls of blood vessels whereas “extravasation” is 

a more general term referring to leakage or movement out of a container, but when used 

to describe the movement of leucocytes it encompasses the events leading up to and 

including diapedesis.  

 In order for neutrophils to extravasate several steps are required for them to overcome 

high hemodynamic shear forces and make their way into the extravascular tissues. With 

the initiation of an inflammatory response an intricate cascade of events begins and 

continues for an extended period of time. Pro-inflammatory signaling activates the 

vascular endothelium near the site of insult. This initiates the recruitment of leukocytes, 

primarily neutrophils, from the systemic circulation. Neutrophil extravasation which has 

been thoroughly studied and well characterized, requires at least two major types of 

adhesion molecules. Selectins which are expressed on activated vascular endothelium (E-

selectin, P-selectin) and neutrophil (L-selectin) provide a means of slowing the passage 

of neutrophils, causing them to roll along the vascular endothelium and potentially 

becoming firmly adherent via leukocyte integrins (β1 and β2) and endothelial ligands 

(ICAM-1 and VCAM-1)  [23-25].  After becoming firmly adherent they transmigrate the 

vascular wall with the aid of endothelial intercellular adhesion molecules (ICAMs) 

interaction as well as platelet endothelial cell adhesion molecule (PECAM-1), into the 

extravascular tissue, becoming activated in the process [26]. Margination, the crowding 

of leukocytes at the outer margin of vessels, and subsequent transmigration of leukocytes 

into extravascular tissues, was first reported by von Haller in 1756 [27].  
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Phagocytosis and degranulation 

Early in the 20
th

 century neutrophils were classified, along with monocytes/macrophages, 

as “professional phagocytes” [1] and phagocytosis has long been considered their 

primary function. Once neutrophils have arrived at the site of inflammation they are 

engaged in phagocytosis and releasing granule contents; in this way killing invading 

micro-organisms and clearing residual debris. Activated neutrophils become polarized 

with a pseudopodium in the front of the cell and a knoblike uropod at the rear [12, 28, 

29]. During phagocytosis the pseudopodium of the activated neutrophil flows around the 

particle and forms a phagosome. The granule membranes fuse with the phagosomes and 

release their antimicrobial proteins and enzymes.  Neutrophils also release reactive 

oxygen species and cytokines outside the cells, through exocytosis, in order to kill 

extracellular micro-organisms. This release of granule contents is also pro-inflammatory 

and recruits additional leukocytes to the site [7]. 

 

Immuno-modulation and resolution of inflammation  

As previously mentioned, neutrophils have classically been described as primarily 

phagocytic cells. Not only do activated neutrophils phagocytize pathogens and cellular 

debris, they are also involved in activation of both the innate and adaptive immune 

response. They play a role in immuno-modulation by producing pro-inflammatory 

cytokines and chemokines (e.g. IL-1β and TNF-α) [1, 3]. Recent evidence suggests they 

also produce anti-inflammatory molecules and other factors that help resolve 

inflammation.  In addition, they block and scavenge chemokines and cytokines, and also 

contribute to the systhesis of resolvins, thereby contributing to the resolution of 
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inflammation [4]. Ultimately neutrophils undergo apoptosis (presumably) and thereafter 

are cleared by scavenger macrophages [21]. This also helps to resolve inflammation and 

stimulates macrophage transformation to the anti-inflammatory M2 phenotype, 

contributing to the resolution of inflammation and also promoting tissue repair [1, 4, 21, 

30]. 

 The whole process of inflammation and its resolution is complex and involves 

interactions of inflammatory cells, the surrounding tissue, and chemical mediators. Each 

of these may be affected by environmental or genetic factors.  

 A recent study of neutrophil migration in the zebra fish embryo challenges many of 

the previous notions of neutrophil migration [31]. It showed repeat forward and reverse 

migration between the wound and blood vessels in the first 4-6 hours. Some, but not all, 

neutrophils returned back into the vessel lumen (intravasation) after leaving the wound.  

After returning to circulation they dispersed to diverse tissues which may explain how 

local tissue insult produces systemic inflammation. The number of neutrophils returning 

to the wound was shown to decrease with time, contributing to the resolution of 

inflammation. Surprisingly they did not detect any neutrophil apoptosis. This study 

suggests some drastically different concepts in the inflammatory process, but as the 

authors pointed out, these findings may or may not generalize to mammals.  

 

Interaction with other leukocytes  

Not surprisingly, due to their common progenitor cells, neutrophils and macrophages 

have many common characteristics such as being avid phagocytes, containing a large 

array of antimicrobials (although much more so in neutrophils), secreting common 

cytokines and chemokines, and expressing overlapping cell surface receptors. Recent 
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research has shown significant cooperation between the two types of immune cells in 

numerous ways including innate and adaptive immune responses [1]. Macrophages have 

been shown to recruit/attract neutrophils as well as control their lifespan and activity [3, 

4] while neutrophils are a major source of pro-inflammatory cytokines that can induce 

pro-inflammatory M1 differentiation of macrophages [32]. Macrophages are resident in 

tissues [33, 34] and contain fewer cytotoxic anti-microbial molecules.  They are therefore 

less likely to cause damage to surrounding tissues. Neutrophils on the other hand are 

recruited into the tissues only when needed and contain large amounts of potent 

molecules. It has been shown that neutrophils may transfer their anti-microbial molecules 

to macrophages by phagocytosis of apoptotic or even viable neutrophils [1, 35]. In 

addition there are bi-directional interactions with immune cells other than macrophages 

such as, dendritic cells, natural killer cells, B and T cells [4].  It has also been shown that 

neutrophils can function as antigen presenting cells [4] and even have anti-tumor 

properties in certain human tumors [3]. 

 

Migration – general 

Even though there has been rather extensive research emphasis on the extravasation of 

neutrophils, the process of migration from the site of extravasation to the site of injury, 

which has received less emphasis, is just as critical. Because neutrophils are not tissue 

resident but are the first cell responders to the wound site, their migration from the site of 

extravasation to the site of injury is prerequisite to their engagement in the inflammatory 

response. As such, the mechanism(s) used by neutrophils for locomotion is (are) 

important to understand. This understanding would help in knowing when and how to 
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modulate inflammation for optimal healing as well as how alterations in the physical or 

molecular tissue environment affect healing. 

 The activated and transformed neutrophils must provide intrinsic locomotion through 

the interstitium which is avascular and quite variable depending on the type and location 

of the tissue. Neutrophils are stimulated and guided during the migration by chemotaxis 

(along a chemo-attractant gradient in solution) and/or haptotaxis (along a gradient bound 

to the substrate). Figure 4 shows an example of numerous neutrophils migrating through 

the avascular corneal stroma. In this particular example they are responding to a scratch 

wound that was inoculated with Aspergillus fungus 12 hours prior. Neutrophils 

preferentially migrate in the anterior stroma for unknown reasons [36]. However, in my 

experience with mice, in the presence of overwhelming invasion of pathogens, 

neutrophils are also found in the posterior stroma and even between the endothelium and 

Descemet’s membrane. Although not confirmed, it is possible that some neutrophils may 

immigrate into the posterior stroma from the anterior chamber.  
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Figure 4– Anterior migration preference 

12Hr after aspergillus infection – note anterior migration preference. 

Infiltrating neutrophils are seen “training” through the anterior stroma (white arrows). 

Keratocytes are seen between the lamellae (black arrows). Separations between the 

lamellae are seen in the posterior stroma, which was more prevalent than anterior. 

Scale bar = 10µm. 
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1.2 - Cell motility 

Neutrophils are one of the fastest moving cells in the body and are recruited to sites of 

inflammation in large numbers. This makes them ideal candidates for studying cell 

motility. Motile cells have common mechanisms of locomotion and therefore an 

increased understanding of neutrophil motility would likely apply to other cell types as 

well. In vitro studies have provided potential mechanisms of neutrophil motility and 

elucidated some of the modulating factors. However, there is a need for additional 

understanding of in vivo migration and its regulation. 

 

 1.2.1 Cell Locomotion 

Once activated, neutrophils become polarized and highly motile, undergoing frequent 

shape changes. Their means of locomotion has been described as “amoeboid” where the 

anterior pseudopod protrudes followed by contraction of the posterior uropod, achieving 

average speeds of 7+ μm/min up to 30+ μm/min [12, 37, 38]. Locomotion by cell 

protrusion depends on tissue geometry and follows paths of least resistance, a process 

known as contact guidance [37, 39].   Leukocytes are particularly prone to using other 

cell surfaces for guided migration [12].  Mandeville described neutrophil motility as 

being similar to a balloon being squeezed through a hole and demonstrated that this 

squeezing can stretch the matrix to a certain degree in order to accommodate the cell, 

thus demonstrating exertion of mechanical force by the cell on the ECM [39]. This is an 

important consideration in regards to neutrophils migrating through the corneal stroma 

where they have to squeeze between the lamellae. Electron micrographs clearly show a 

displacement of the surrounding collagen fibrils to make room for the infiltrating 
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neutrophil [39]. Mandeville went on to propose that neutrophils migrate through a 3-D 

matrix by a combination of chemical and mechanical interactions, the relative 

contribution of which is determined by the features of the extracellular matrix and the 

adhesiveness of the cells. Tan, et al 2001 showed that maximum cell migration may be 

facilitated by the proper combination of both chemical (angstrom-scale) and mechanical 

(micron-scale) features (Figure 5) [40].  
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Figure 5 – Adherence vs. friction 

This 3-D plot illustrates that the maximum speed of motility is achieved with the 

proper combination of adherence of the cell to the substrate and the frictional 

forces due to the spacing of the elements of the matrix through which it is 

migrating. 

 

(Adapted from Tan, et al. 2001) [40] 
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 There seems to be no disagreement that neutrophil migration in 2-D in vitro models 

requires integrin adhesion [12] [41].  These models have been used primarily to study 

isolated characteristics of cell motility and chemokinesis/haptokinesis.  By adding 

another dimension, 3-D matrices provide some insight into how confinement by the 

surrounding environment may affect motility. Most 3-D migration studies have 

concluded that neutrophils are largely, if not completely, capable of migration through a 

3-D collagen matrix without the benefit of integrin binding, being mediated instead by 

actin flow, shape change and squeezing [12, 37, 41]. 

 Since neutrophil locomotion has been described as amoeboid it would therefore not 

be expected to follow a straight path. Several in vitro 2-D studies of neutrophil migration 

have concluded that neutrophils follow a pattern of random walk [38, 42, 43]. Random 

walk is a path consisting of a series of steps (either fixed or variable step size), whose 

direction is chosen at random. If a large sample of cells moved in a pattern of random 

walk, the resultant displacement of the group would be expected to be zero. When a 

chemoattractant is added neutrophils take a tortuous path described as a biased random 

walk, with frequent deviations from straight line and frequent stops. In this case the 

resultant displacement would have a magnitude and direction, with the direction 

presumably toward the chemoattractant. Interestingly, in 2-D assays, neutrophils were 

shown to choose the shortest route, avoid paths occupied by other neutrophils and tended 

to turn opposite to the direction of their previous turn [38, 43]. These events cannot be 

explained as purely stochastic.  In 3-D migration assays the pattern of motility is much 

more complex and influenced by the physical characteristics of the matrix. This pattern of 

locomotion which is directed by variation in the physical space surrounding a cell 
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(anisotropy) is described as contact guidance (Figure 6). While the cellular environment 

affects locomotion, stochastic events and biochemical factors still play a varying role in 

contact guided motility. Figure 7 and 8 show examples of migration patterns of cells that 

are not drawn by chemoattractants and ultimately result in random displacement from the 

point or origin. By contrast Figure 9 shows the effects of a cell’s response to guidance 

signals which could be induced from chemoattractants, topographical characteristics of 

the substrate, or cell polarity.  
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Figure 6 – 2-D and 3-D migration 

Migration on 2-D surfaces (A) depends on integrin binding while within 3-D matrixes 

(B) neutrophils are able to locomote using mechanical forces alone and thus integrin-

independent. Chemotaxis (C) is directed movement due a gradient of chemokines in 

solution whereas haptotaxis (D) is directed movement along substrate-bound 

chemokines. 

 

 

(Adapted from Friedl, et al. 2008) [12] 
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Random walk Levy walk 

Figure 7 – Migration patterns 

Shown here are two examples of possible cell migration patterns on uniform substrate 

without exogenous tactic stimuli. The random walk movement is totally random with 

orientation and step size normally distributed. It is characteristic of biological activity. 

The levy walk pattern is a modified form of Brownian movement where there is a 

relatively constant persistence of motion in a single direction before the next turn. The 

Levy walk pattern has been used to describe many types of cell migration patterns. 
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Figure 8 – Searching pattern 

This example shows the migration pattern typical for many eukaryotic cell types. In 

this case, the cells move in a zig-zag pattern with alternating right and left changes in 

direction. The duration of movement between turns and the amplitude of change in 

direction are both exponentially distributed. This is considered to be an efficient form 

of cell movement when searching for a target, i.e. in the absence of a chemoattractant 

 

 

Start 



33 

 

 

  

 

Figure 9 – Amoeboid locomotion 

Migrating neutrophils are guided to the site of inflammation rather than randomly 

searching. Morphologically they would resemble the cell on the right, showing a 

single lamellipodia. 
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1.2.2 Adhesion molecules  

Cell adhesion molecules (CAMs) are cell surface proteins that bind a cell to other cells or 

to the extracellular matrix. There are four main families of CAMs which include the 

immunoglobulin superfamily (IgSF), cadherins, selectins, and integrins. As mentioned 

previously, selectins and integrins are involved with neutrophil trafficking along with 

members of the IgSF. As neutrophils extravasate they shed selectins and up-regulate 

integrins.  

 Integrins are transmembrane heterodimer proteins composed of an alpha and beta 

subunit. Their main functions are cell-cell and cell-ECM attachment, cell migration, and 

cell signaling (both outside-in and inside-out). They are involved in embryogenesis, 

wound repair, immunological responses, and tumor invasion. There are more than 20 

different alpha subunits and 9 beta subunits. Neutrophils infiltrating the cornea have been 

shown to express β1 (CD29), β2 (CD18), and β3 (CD61) families of integrins, of which 

β2 is exclusively found on neutrophils. Keratocytes express β1 (CD29) and β3 (CD61) as 

well as ICAM-1, a ligand for neutrophil β2 (CD18) (Table 2 summarizes the stromal 

integrins). There are possibly other adhesion molecules which could be involved in 

neutrophil migration, such as CD44 however there are currently no studies linking them 

to acute neutrophil interstitial migration.  The scope of experiments included in this 

dissertation is therefore confined to the function of the integrins expressed on migrating 

neutrophils as a result of acute inflammation. 
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Table 2– Integrins in the inflamed stroma [1-4] 

Family Sub units Ligands Keratocytes  
in situ 

Fibroblasts 
in vitro 

Neutrophils 

CD29 
β1 

α2 CN, LN      

 α3 CN, LN, FN      

 α4 FN      

 α5 CN, LN, FN      

 α6 CN, LN, FN      

 α9 FN, TNC, vWF, FBN, TG, 
VEGF 

    

CD18 
β2 

αX ICAMs, FBN     

 αM iC3b     

 αL ICAMs,     

CD51 
αV 

β1 LN, FN      

 β3 FN, VN, Fbn, vWF, Tsp      

 

 

 
CN – collagen 

FN – fibronectin 

Fbn – fibrinogen 

LN – laminin 

TNC – tenascin-C 

 

TG – transglutamine 

Tsp – thrombospondin 

VEGF-C 

VN – vitronectin 

vWF – von Willebrand Factor 
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1.3 - Cornea 

The experiments described in this dissertation are related to the migration of neutrophils 

within the corneal stroma. This chapter will describe some general features of the human 

cornea, with occasional reference to the mouse cornea, in order to provide the context for 

migration. In a later chapter the anatomical differences between human and mouse cornea 

will be described in detail. 

  

 

(telemedicine.orbis.org, public domain) 

Figure 10 – Diagram of human cornea 

A simplified diagram of the five major layers of the human cornea; (1) stratified 

epithelium, (2) Bowman’s layer, (3) stroma, (4) Descemet’s membrane, (5) 

endothelial monolayer. 
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1.3.1 Cornea anatomy review 

Epithelium 

The cornea consists of 5 distinctly different layers (Figure 10). The external layer is 

composed of 5-7 sub-layers of epithelial cells sitting on a basement membrane. 

Superficially there are the flattened non-keratinized squamous cells that form tight 

junctions with one another [44]. These cells not only serve as a fluid barrier but also 

serve as an effective physical barrier to protect the underlying tissues from microbial or 

other harmful agents. There is a single sub-layer of columnar basal cells attached to a 

basement membrane. These cells are still mitotically active and important in replacing 

epithelial cells lost from apoptosis or injury [45]. Between the basal cells and the 

superficial cells there are sub-layers of terminally differentiated wing cells. The 

epithelium in humans is approximately 50μm thick, roughly 10% of the total corneal 

thickness.  Primarily the epithelium serves as a barrier while providing a minimal role in 

tensile strength as shown by the fact that its removal causes little or no change in the 

anterior corneal curvature [46]. 

 Epithelial wounding produces an array of pro-inflammatory signals which engage the 

innate immune system and recruit neutrophils to the site [47]. In addition, a break in the 

tight epithelial barrier may allow pro-inflammatory cytokines from the tears to diffuse 

into the stroma and thereby initiating an inflammatory response [48]. The normal turn-

over rate for epithelial cells is between 1-2 weeks, but after epithelial injury, by way of 

cell proliferation and migration, the epithelium is repaired typically within 48-72 hours 

[49].  
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Bowman’s 

Immediately beneath the epithelium is Bowman’s layer (also referred to as anterior 

limiting lamina) an 8 to 12-µm-thick acellular condensation of stroma which consists 

primarily of randomly oriented type I collagen fibers [50]. This layer contributes to the 

anchoring of the epithelial cells and may provide some rigidity (strength) to the dome-

shaped cornea although there is still controversy as to the role of Bowman’s layer and 

whether or not it contributes to the mechanical properties of the cornea [48, 51]. 

 

Stroma  

The stroma, located beneath Bowman’s layer, constitutes the bulk of the cornea (roughly 

90% of the total thickness). On a weight basis, the stroma is approximately 78% water, 

15% collagen and 7% non-collagenous proteins, proteoglycans and salts. It consists of 

200-300 lamellae which are composed of mainly type I collagen fibrils of uniform 

diameter (approximately 30-35 nm), regularly spaced (approximately 50 nm center-to-

center) with proteoglycans surrounding them. The lamellae are 1.15 to 2.0 μm thick and 

9-260 μm wide (Histology of the human eye: an atlas and textbook by Michael J. Hogan, 

Jorge A. Alvarado, Joan E. Weddell; Saunders, 1971), laid down in criss-cross fashion in 

layers largely parallel with the corneal surface (Figure 11). Their orientation is somewhat 

more random in the anterior stroma where significantly more oblique branching and 

interweaving are noted [50]. Interlamellar (vertical) branching is also more extensive in 

the corneal periphery than in its center and varies among species [52, 53]. Interweaving 

of collagen bundles between neighboring lamellae provides an important structural 
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foundation for shear (sliding) resistance [54] and transfer of tensile loads between 

lamellae [55]. 

 

  

 

(Adapted from Hogan, et al – Histology of the human eye, 1971) 

 

Figure 11 – Illustration of keratocytes and lamellae 

The drawing on the left illustrates the interconnected network of keratocytes and the 

one on the right shows the keratocytes interspersed between the layers (lamellae) of 

criss-crossed collagen fibrils. 
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 During embryogenesis the anterior and posterior stroma develop separately and not 

surprisingly in the mature cornea, there are physical and biochemical differences. The 

posterior stoma differs from the anterior by having somewhat more organized and 

orthogonal orientation of lamellae, less dense and larger keratocytes, and slightly larger 

collagen fibrils. There is also a variation in the types of keratan sulfate proteoglycans 

(KSPGs) comparing anterior to posterior. In the adult mouse, for example, there is a high 

expression of lumican KSPG within the posterior stroma [56]. It has been proposed that 

the posterior stroma contains chains that are longer or more over-sulfated and the anterior 

stroma has more chains but shorter and/or less sulfated [57].  

 KSPGs consist of a horseshoe-shaped core protein with protruding 

glycosaminoglycan (GAG) side chains [56, 58, 59].  The shape of the core protein, along 

with type V collagen, is critical in controlling fibril diameter while the sulfated GAGs 

regulate fibril spacing [57, 60-62]. The sulfated side chain GAGs produce a stiffer 

macromolecule which interconnects neighboring fibrils at regular intervals and provides 

resistance to compression [58, 60].  Loss of KSPG expression during scarring and its 

replacement with larger chondroitin sulfate PGs produces larger fibrils and increased 

spacing [56].  Core protein interactions have a variety of functions including epithelial-

mesenchymal transition, cell proliferation and apoptosis [63]. During mouse 

embryological development, lumican core protein is synthesized by keratocytes as a 

glycoprotein not a KSPG [64, 65]. 

 A common feature of all primates, including humans and mice, is an annulus of 

highly aligned collagen surrounding the cornea at the limbus. The pattern of collagen is 

important for biomechanics of the cornea and maintenance of its shape [66-69]. In 
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addition to type I collagen there are lesser amounts of types IV, V, and VI which provide 

secondary support and aid in the uniformity of the collagen I fibrils.  

 Unlike the interstitium of many other tissues, the corneal stroma is tightly compact 

with no pre-existing channels or spaces for the migration of infiltrating cells. Thus the 

physical framework of the stroma may have a significant impact on cell migration. 

 

Descemet’s 

Descemet’s membrane, the basement membrane for the corneal endothelium, and also the 

thickest basement membrane in the body, is located immediately posterior to the stroma 

and plays a passive role in permeability. It is composed of type IV, VIII and XVII 

collagen and continually thickens throughout the life of the individual [70]. The 

extensibility and low stiffness of Descemet’s membrane help to ensure that it remains 

pliable over a broad range of intraocular pressures (IOP)  and may serve to prevent 

transmission of stromal stresses to the endothelium [71].  

 

Endothelium  

The endothelium, the innermost layer of the cornea, consists of a mono-layer of cuboidal 

hexagonal squamous cells. Endothelial cells are terminally differentiated and normally 

considered to be non-proliferating and their numbers decline with age, disease, and/or 

trauma [72].  They contain many mitochondria and dense endoplasmic reticulum, 

evidence of high metabolic activity. Primarily the endothelium serves to preserve corneal 

transparency by controlling the balance of fluids within the stroma. Junctions between 

cells allows some passage of fluid from the anterior chamber into the stroma due to 
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hydrostatic pressure imposed by the intraocular pressure as well as the osmotic pressure 

due to the concentration of GAGs in the stroma. To overcome the influx of fluid, the 

endothelial cells actively transport fluid from the stroma into the anterior chamber [73].  

 Figure 12 shows some representative electron micrographs of stromal details. As 

noted in panel (A) there are specialized structures called hemidesosomes which securely 

anchor the epithelium to the stroma. Panel B shows cross sections of the alternately 

oriented bundles (lamellae) that constitute the bulk of the cornea. At the posterior border 

of the stroma is Descemet’s membrane.  

In examining the intricate details of the cornea, one must keep in mind that the 

cornea is uniquely transparent. 
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Figure 12 – EM stromal details 

Upper left image (A) showing hemidesmosomes which help to secure the epithelium to 

the basement membrane and stroma (arrows). Upper right image (B) of stromal lamellae 

with closely packed, orthogonally arranged collagen fibrils. Lower left image (C) of 

posterior stroma, Descemet’s membrane (black arrow), and endothelium (white arrow). 

Scale bars = 0.5 µm 
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Corneal nerves 

The cornea is extensively innervated with sensory nerve fibers (the densest tissue of the 

body) from the ophthalmic division of the trigeminal nerve via the anterior ciliary nerves. 

Shortly after entering the cornea in a radial pattern, the nerves lose their myelin sheath 

and divide into anterior and posterior groups which form the sub-epithelial and sub-basal 

plexi, respectively. Nerves are found in the anterior and mid stroma but not in the 

posterior stroma [74]. Corneal neurons have been shown to be functionally heterogenous 

and expressing variable amounts of calcitonin-gene-related-peptide (CGRP) and 

substance P [75].  About 20% of sensory fibers respond to mechanical forces only 

(mechano-nociceptors) and 70% respond to mechanical as well as heat and chemical 

irritants (polymodal nociceptors). The remaining fibers are cold sensitive [76, 77]. 

Corneal nerves are important in regulating epithelial integrity, cell proliferation, and 

wound healing [78]. There are also autonomic sympathetic nerve fibers within the cornea 

which may serve to modulate epithelial Cl
-
 transport and other cellular processes [79] 

 

Deturgescence 

The corneal stroma has a natural tendency to imbibe water but is maintained in a state of 

relative deturgescence by the active transport of water molecules by the corneal 

endothelium. The swelling pressure of the rabbit stroma in vivo has been measured at 40-

50 mmHg [80].  When the intraocular pressure produces a hydrostatic pressure that 

exceeds the ability of the endothelial pump there is significant corneal edema and loss of 

transparency. The maintenance of stromal hydration is a delicate balance between 

numerous factors, alteration of any of which may result in corneal edema. Edema results 
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from excess accumulation of water within the stroma resulting in increased separation 

between stromal lamellae, and it affects the inter-fibrillar collagen spacing [81]. 

 

1.3.2 Resident stromal cells 

Historically the cornea was thought of as being essentially isomorphic and isotropic. 

However research through the years has shown it to be a highly structured cellular tissue. 

Keratocytes are by far the most prominent resident cells in the stroma and are the key to 

maintaining homeostasis as well as instrumental in wound repair. They have been termed 

“quiescent” but evidence suggests that they are active even at the status quo. However 

they can become highly activated and may phenotypically transform into fibroblasts and 

myofibroblasts [82-84]. Keratocytes are flattened, stellate cells with long cytoplasmic 

processes generally tightly interspersed between the lamellae and make up 2.5-5% of the 

stromal volume (Figure 13). At their thickest point, the location of the nucleus, they are 

approximately 2 μm thick. Keratocytes connect with one another forming a network 

essentially parallel with the surface and with occasional vertical connections between 

keratocyte layers (Figure 14). This extensive network potentially serves at least 3 

purposes:  1) may provide some tethering of lamellae to help maintain structural 

regularity; 2) establishes a communication network; 3) serves as a “cellular highway” for 

neutrophil contact-guided migration.  In Figure 15 details of a keratocyte can be seen. 

Even though keratocytes are described as quiescent, they have extensive rough 

endoplastic reticulum and many mitochrondria which suggests that they are quite active. 

In addition to keratocytes, macrophages and dendritic cells are also resident in the corneal 
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stroma [33, 34]. However, neutrophils are generally not found in the central cornea in the 

absence of inflammation. 
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Figure 13 – EM keratocytes 

EM images of mouse keratocytes tightly interspersed between the collagen lamellae. In 

both images the scale bars are 1µm. 
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Figure 14 – EM showing coupled keratocytes 

White line (added) separates two murine keratocytes which are part of a continuous 

network (note mitochrondia in the lower one, arrows). Mitochrondia and rough 

endoplasmic reticulum (arrow heads) are commonly seen in keratocytes, suggesting they 

are quite active. Scale bar = 1µm. 
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Figure 15 – EM keratocyte details 

A mouse keratocyte between collagen lamellae shows extensive rough endoplasmic 

reticulum (white arrow). Orientation of collagen fibrils within lamellae alternate between 

parallel and perpendicular to the cross-sectional plane. Scale bar = 0.5µm 
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Keratocyte cell death 

Keratocyte apoptosis is an exceedingly rare event in the normal uninjured cornea, 

however immediately following an epithelial injury stromal keratocytes beneath the 

injury begin to die due to apoptosis and/or necrosis [85, 86].  The early apoptosis serves 

as an initial defense against posterior extension of infectious organisms [87, 88].  

Keratocyte apoptosis is triggered by soluble mediators released from injured corneal 

epithelial cells [86] and/or from the tears [89], but does not require the removal of the 

epithelium. Direct mechanical trauma such as epithelial removal used in many wound 

models, has also been shown to contribute to keratocyte death beneath the wound [88, 

90].  

 

1.3.3 Optical properties of the cornea 

Being the sensory organ for sight, the eye is not unlike a camera. It must have the means 

to transmit and refract light onto the retina located at its focal plane.  The cornea has two 

critical roles in the optics of the eye.  In order to transmit a clear image onto the retina the 

cornea must be highly transparent, which is a unique tissue quality. Secondly the shape of 

the cornea must maintain the correct curvature to provide the dioptric power needed to 

focus in-coming light rays with minimal distortion.  In order to maintain shape and 

transparency, it must precisely regulate the state of hydration and architecture of its 

stromal elements. The tight epithelial barrier function and the endothelial pumping action 

are critical to maintaining the cornea in a relatively dehydrated state, while the small, 

uniform size, spacing and orientation of the fibrils comprising the stromal matrix assure 

its transparency and strength.  These qualities must be maintained, and restored when 
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necessary, throughout the lifespan of the animal. Because sight is critical for survival of 

most animal species, wound healing in the cornea is generally quite rapid. 

 

1.3.4 KSPGs and corneal inflammation 

The KSPGs have been found to have functions beyond structural, including regulating 

cellular functions and contributing to wound healing [65, 91, 92]. For example, lumican 

is involved in cell migration and proliferation during embryonic development; it 

facilitates keratocyte migration, and its absence retards neutrophil migration in 

inflammation. Only in the cornea do the core proteins of KSPGs become sulfated and 

assume the character of proteoglycans. The changes that occur in KSPG sulfation during 

wounding may help to localize inflammatory cells at sites of injury [93]. 

The significant role of KSPGs in the sequence of events in corneal inflammation has 

recently been outlined by Carlson, et al. 2010 [94]:  

1. Exposure to microbes or microbial products such as LPS induces TLR signaling 

in resident macrophages and DCs, resulting in production of CXC chemokines, 

including CXCL1(KC) 

2. Chemokines bind to proteoglycans creating a haptotactic gradient 

3. Neutrophils are recruited from limbal vessels and migrate along the gradient 

4. At the site of inflammation neutrophils secrete matrix metalloproteinases (MMPs) 

or stimulate endogenous MMPs 

5. Keratocan and lumican are cleaved and the lower molecular weight KSPG 

products and CXCL1(KC) then diffuse into the anterior chamber thereby 

contributing to the resolution of inflammatory response 
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1.4 - The mouse as animal model 

The mouse has been a leading mammal for genetic research for the past century and has 

been a valuable model for human physiology and disease [95]. With both the human and 

mouse genomes sequenced there was found to be a 99% overlap [96]. Not surprisingly 

the mouse has been used extensively for corneal research. However similar the two 

species are genetically, they are not the same. Whenever research is conducted using an 

animal model and the results extrapolated to humans, there is a caveat. Even subtle 

differences can have a significant impact on experimental results. None the less, animal 

models such as the mouse are invaluable for scientific research.  

 

1.4.1 Mouse compared to human 

A mouse cornea is obviously smaller than a human’s but it is not uniformly down-scaled 

(Figure 16). The corneal epithelium in the mouse is nearly the same average thickness as 

a human’s (40μm vs. 50 μm) while the stroma is a fraction of the human thickness (65 

μm vs. 500 μm) (Figure 17). Even though the stroma is so much thinner, the size and 

organization of the collagen fibrils is quite similar but the arrangement of lamellae is 

somewhat different. In the mouse the stroma thins towards the limbus whereas in humans 

it thickens. Instruments such as optical coherence tomographers (OCTs) allow 

visualization of in vivo anatomical structures as seen in Figure 18. Figure 19 shows the 

mouse cornea diameter is nearly equal to the diameter of the entire globe, unlike human 

eyes where there is considerable sclera seen surrounding the cornea. In addition, the lens 

occupies a large portion of the mouse posterior chamber and causes bulging forward of 
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the iris, as seen in the gonioscopic view in Figure 19. The anatomical differences between 

human and murine corneas are summarized in Table 3.  

 There are biochemical differences as well. The type, relative distribution 

(anterior/posterior), and amount of sulfation of keratan sulfate proteoglycancs KSPGs is 

somewhat different between the species [97, 98]. There are differences in cytokines, 

chemokines, and growth factors as well, but by-and-large the mouse stroma provides a 

physical and molecular environment about as close to the human as possible in an animal 

model. 
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Figure 16 – Human vs. mouse schematic 

Schematic representation of the differences in eye anatomy comparing the mouse to 

human. The most obvious differences being the relative difference in size of the lens 

and the diameter of the cornea. The scaled mouse eye illustrates the overall size 

difference. 
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Figure 17 – LM human vs. mouse 

The image on the left shows a cross section of human cornea while the small image on 

the right shows a mouse cornea at the same magnification. The epithelium (1) is only 

slightly thicker in the human as is Descemet’s membrane (4) and the endothelium (5). 

Bowman’s layer (2) does not exist as a distinct layer. The bulk of the difference in 

thickness is the stroma (3). 
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Figure 18 – OCT human vs. mouse 

Corneal x-section views obtained with the Spectralis SD-OCT. Details obtained with this 

in vivo imaging are nearly equivalent to low magnification light microscopy of 

histological specimens. Only a small part of the central human cornea is able to be 

scanned at one time while the entire mouse cornea and anterior chamber is contained 

within one scanned image. Note the peripheral corneal thinning in the mouse. Images are 

roughly to scale.  

 

 

Table 3 – Summary Human vs. mouse 

 Human  Mouse  

1. Epithelium  50 µm (5-7 layers)  40 µm (6-9 layers)  

2. Bowman’s  8 µm ?  

3. Stroma  500 µm 70 µm 

4. Descemet’s  3-20 µm 1-4 µm 

5. Endothelium  5 µm (Single layer) 

2500/mm
2 
 

2-4 µm (Single layer) 

2500/mm
2 
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Figure 19 – Mouse eye images 

The top image shows that the corneal diameter, unlike the human eye, is nearly the same 

diameter as the entire eye. The bottom image is a gonioscopic view where the green line 

outlines the cornea and the red line the iris and pupil. The plane of the iris in human eyes 

is nearly flat as compared to the convex iris of the mouse. 
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1.4.2 Mouse cornea development 

Embryonic 

Corneal development essentially consists of differentiation of cells from surface ectoderm 

and migration of mesenchymal cells of neural crest origin. The surface ectoderm 

produces the epithelium (cornea and conjunctiva) by E12. The primary stroma is then 

formed by components synthesized by the corneal epithelium. Two waves of 

mesenchymal cell migration occur. The first forms the endothelium and the second wave 

of cells becomes keratocytes which then produce the secondary stroma present in adult 

vertebrates. However, in mice there is only a single migration of mesenchymal cells into 

the primary stroma and these cells differentiate into either endothelium or keratocytes by 

E17 [99-101]. The gestational period for mice is 19-21 days. 

 

Postnatal 

 Mice are essentially born premature with eyelids remaining closed until P12. Figure 

20 shows a developmental series of images obtained with SD-OCT and shows the 

development of the anterior chamber and changes in the thickness of the cornea up to 

P10, a couple of days prior to eyelid opening. While the epithelial thickness gradually 

increases from P0 to P30, the stromal thickness shows a rapid increase from P8-P12, a 

gradual decrease after eyelid opening and then a gradual increase to adult thickness at 

P30. The peak stromal thickness that occurs at P12, at the time of eyelid opening, is 

probably due to the increase in KSPG which increases water retention at a time when the 

endothelial pump is not yet fully functional [56]. Lumican is evenly distributed anterior 

and posterior at P10 and then by P45 it is almost exclusively in the posterior stroma. With 
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a higher level of lumican in the posterior stroma, there is also a higher concentration of 

keratocan sulfate and therefore a greater water retention capability [102].  

 At the time of lid opening (P12-14) the epithelium increases proliferation while 

keratocytes and endothelial cells cease proliferation. Keratocytes exit into G0 phase and 

are not terminally differentiated while endothelial cells are arrested in G1 phase and 

cannot be readily stimulated to proliferate [103]. The number of stromal cells rapidly 

decreases from P1-P12 and continues to decrease through P30 [56]. The electron 

micrographs in Figure 21 illustrate the differences in keratocyte density between the 

newborn and adult. Table 4 provides data from Song, et al. 2003 showing the decrease in 

density with development. This decrease in stromal cell density and the up-regulation of 

soluble proteins such as aldehyde dehydrogenase 3 (ALDH3) and transketolase (TKT) 

help reduce light scattering and increase transparency [56, 104, 105]. The epithelial cells 

continue a high rate of proliferation until P21 [103]. 
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Figure 20 – Postnatal OCT 

Pre-eyelid opening (P1-10) images with SD-OCT showing the development of the 

anterior chamber and changes in corneal thickness. The corneal thickness reaches a 

peak just before eyelid opening (P12-14) and decreases immediately after opening. 
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  One day old          10 week old  

 

 
Figure 21 – EM newborn vs. adult 

Electron micrographs showing the differences in keratocyte (arrows) density in the 

newborn compared to adult cornea. Scale bar = 2 µm. 

 

Table 4 – Keratocyte density 

Age (weeks) n K (cell/mm3) SD 

1 5 163,639 12,265 

2 5 92,063 11,671 

3 5 75,868 9,228 

4 5 65,967 12,032 

8 5 64,496 7.371 

12 5 48,382 16,574 

(Song, et al 2003)  [56] 
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1.5 – Direction and relevance 

Inflammation is critical to host survival with neutrophils playing a key role in this 

complex process. Neutrophils are the initial and primary cell-mediated innate immune 

response and therefore understanding their migration mechanisms is essential. While 

much has been gained in our understanding of this process, many gaps, and perhaps 

misunderstandings, remain. With tools and methods constantly evolving, gaps will be 

filled-in and processes clarified in the years to come. Gaps in our knowledge are 

especially evident when it comes to extravascular migration of neutrophils. Cell motility 

and locomotion have been extensively researched as they are vital for so many life 

functions, but there are many unanswered questions.  

 The management of corneal inflammation (now including dry eye syndrome) is a 

common task for ophthalmic practitioners. By and large it involves suppressing the 

immune response. However, inflammation is a necessary step in healing. Our 

understanding of neutrophil interstitial migration is important in order to know when and 

how to best modulate the innate immune response. In addition, we need to know the 

effect that medical and surgical intervention (e.g., LASIK, collagen cross-linking, dry eye 

treatment) have on neutrophil migration. Understanding the events involved in corneal 

inflammation is important for developing potential therapeutic interventions for corneal 

healing, but will also provide a more generalized understanding of inflammation.  For 

example, many systemic conditions such as insulin resistance, now known to have 

inflammatory components, would potentially have an effect on wound healing and 

neutrophil migration. 
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 In addition to potentially improving our management of inflammation, there are other 

reasons why information gained from these experiments may be useful. The mechanisms 

of neutrophil locomotion and guidance are likely to be applicable to other types of cells. 

For example, understanding cell migration details may help suppress invasion of tumor 

cells. An individual’s age, presence of disease, degeneration, or scarring (even contact 

lens wear) alter the corneal interstitium and in vivo studies are the only way to assess 

their effect on the ability of neutrophils to respond to inflammation.  Understanding the 

mechanics of cell migration also benefits the attempts to create artificial scaffolds for 

cornea tissue engineering where host cells are required to infiltrate the scaffold. 

 Until recently we have not had the means to non-invasively observe in vivo neutrophil 

migration. We have had to rely on in vitro studies or surgically manipulated tissues in 

vivo, not including the cornea. The corneal stroma is a very complex environment that is 

in a state of dynamic balance that can change rapidly in response to many factors. 

However, the simplistic cellular environment that has typically been used for research in 

this area bypasses many of the physiological events that occur in vivo. 

The overall intent of this dissertation research was to investigate neutrophil migration 

within the corneal stroma using in vivo methods and to examine histological evidence to 

provide additional explanation for migration mechanisms. In order to do this it was first 

necessary to establish the optimal minimal mouse age to use for these studies in order to 

avoid effects on migration that could be attributed to a changing developmental 

environment.  The significance of in vivo experiments lies in their ability to represent the 

unperturbed, naïve state of the animal/tissue. A second prerequisite was to establish a 

method that produced accurate, representative histological specimens which would reveal 
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evidence of physical changes, which might help to explain functional alterations observed 

with in vivo experiments.  

 The in vivo environment includes numerous types of molecular constituents including 

integrins. Integrins serve multiple purposes including cell migration. It has been clearly 

demonstrated that neutrophils express β2 integrins which are required for extravasation 

and mediate neutrophil/keratocyte surface contact [36]. β1 integrins are expressed on 

numerous cells including neutrophils where they are up-regulated upon cell activation. It 

has also been shown that αVβ3 integrin is found on both neutrophils and keratocytes in 

the inflamed cornea [106]. Therefore integrins seem likely to be involved in neutrophil 

migration within the corneal stroma. However there is still some question of whether or 

not they are necessary for neutrophil locomotion.  

  

Research Question 

 

 

 

 

  

 

What is the mechanism(s) of neutrophil locomotion during interstitial migration? 

 

Specifically - Is the interstitial migration of neutrophils in the murine cornea integrin 

dependent? 
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Aim 1 – Age of stromal maturity 

Determine accurate central corneal stroma thickness of mouse cornea from birth to 

maturity  

Wild type C57BL/6 mice are widely used in corneal research, but there is a surprising 

lack of information regarding postnatal corneal development and apparently no consensus 

as to when their cornea is fully developed. A biometric parameter commonly reported in 

the literature is the central corneal thickness (CCT) which may be used to evaluate 

normal corneal development. Measuring the corneal thickness in a mouse, which is 

roughly one-fifth the thickness and diameter of the human cornea, presents a challenge 

and many of the human measurement techniques are not applicable. Published biometric 

data show a wide-range of values for corneal thickness [107]. Since the CCT is an 

important consideration in determining the maturation level of the cornea, accurate 

measurement of corneal thickness is desirable. Clearly, there is a need to develop a 

simple method for accurately measuring the CCT in the mouse as a means of monitoring 

postnatal development of the cornea through to adulthood. A recent example 

demonstrating the importance of corneal maturation showed that conditional fibroblast 

(keratocyte) knock out of β1 (CD29) integrins had a profound effect on the stroma when 

deleted before reaching maturity (<40 days of age) but negligible afterwards [108]. 

 

Hypothesis 1.1 – Spectral Domain-Optical Coherence Tomographry (SD-OCT) can be 

used to accurately determine in vivo corneal thickness 

Significance – Because of the small size and thinness of the mouse cornea, measuring 

the central corneal thickness in vivo is difficult and the various methods reported are 
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inconsistent. The SD-OCT does not make contact with the cornea and has high 

axial resolution, making it a good choice for thickness measurements. Accurate in 

vivo measurement of the central corneal thickness can then be used as a benchmark 

with which to compare histological specimen measurement. 

 

Hypothesis 1.2 – Lamellar separation commonly seen with histological sections is an 

artifact that erroneously adds to the stroma thickness measurements 

Significance – Many published studies of the cornea show corneal cross-sections with 

large separations between stromal lamellae and not surprisingly there has been a 

large variation in reported central corneal thickness measurements.  The in vivo 

measurements from hypothesis 1 serve as a benchmark to show that these 

separations are artifactual and should not be considered in thickness measurements. 

 

Hypothesis 1.3 – It is possible to produce histological sections with minimal artifacts that 

yield the same corneal thickness as in vivo (retaining ultrastructural dimensions) 

Significance –Being able to prepare histology specimens that are true representations of 

anatomical in vivo structure is important for evaluation of potential alterations in the 

ECM that may affect neutrophil migration during inflammation elicited by corneal 

epithelial abrasion. 

 

Hypothesis 1.4 – The mouse cornea continues to undergo significant developmental 

changes for some time after birth. 
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Significance – The mouse cornea undergoes rapid post-natal developmental changes in 

corneal thickness and cellularity.  Knowing the age at which the stroma reaches 

adult thickness is an indicator of overall corneal maturity. Corneal maturation is an 

important consideration for evaluating wound healing parameters in mice.  Using 

mice with mature corneas provides a level of standardization that removes the 

confounding influence of unfinished post-natal developmental changes.   
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Aim 2 – Characterizing and Quantifying in vivo migration 

Characterize neutrophil motility in the corneal stroma using in vivo confocal microscopy  

The cornea, being an externally visible transparent structure that requires leukocytes to 

travel a considerable distance from the point of extravasation to the remote central 

cornea, lends itself to in vivo studies of leukocyte interstitial migration of inflammatory 

cells in situ without tissue manipulation. In vivo confocal microscopy using instruments 

such as the HRTIII-RCM provide a novel approach to studying interstitial migration in 

the cornea.  

After transendothelial migration, the activated and transformed neutrophils must 

traverse avascular stromal tissue consisting of a dense matrix of near-orthogonally 

crossed layers of parallel collagen fibrils with interconnected keratocytes interspersed 

between these collagen lamellae. However keratocyte death directly beneath an epithelial 

abrasion begins shortly after wounding, even though the epithelial basement membrane 

remains intact [86, 88]. Infiltrating neutrophils then must migrate through regions with 

intact keratocytes as well as those with dead keratocytes; two distinctly different 

environments.  In vivo time lapse HRT-RCM sequences provided the means, for the first 

time, to quantify speed and directionality of cellular movement while observing 

neutrophil interaction with stromal keratocytes in the living eye. 

 

Hypothesis 2.1 – Neutrophils preferentially migrate along the keratocyte network 

Significance – Following a central corneal epithelial abrasion, previous ultrastructural 

studies showed close contacts exist between neutrophils and keratocytes, suggesting 

the migrating neutrophils were using the keratocytes as a “cellular highway,” a 
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classic structure/function relationship [36]. Live imaging of neutrophils migrating 

along stromal keratocytes has never been documented. In vivo confocal microscopy 

is a novel tool for examining the relative contribution of the keratocyte network to 

leukocyte migration within the corneal stroma.  Preferential migration along the 

keratocyte network is suggestive that integrin binding between neutrophil β2 

(CD18) integrin and ligands on keratocytes is involved.  

 

Hypothesis 2.2– Neutrophil migration motility is altered beneath the wound area where 

keratocytes have died 

Significance – Keratocytes die in the anterior stroma directly beneath the site of 

epithelial injury. Neutrophils that enter this region migrate without the presumed 

benefit of an intact keratocyte network. Observation and comparison of locomotion 

parameters in regions with and without viable keratocytes will provide additional 

data on how neutrophil locomotion is affected by the absence of a keratocyte 

network. 
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Aim 3 – Role of integrins in neutrophil migration 

Determine the role of the β1 (CD29), β2 (CD18) and β3 (CD61) integrin families in 

neutrophil locomotion within the corneal stroma using in vivo confocal microscopy 

Even though it has been shown that neutrophils can migrate through 3-D matrices 

without integrin binding, the question of whether or not integrin binding affects 

neutrophil migration in vivo has not been definitively answered previously. Leukocyte 

motility has been previously studied primarily on two-dimensional surfaces and in three-

dimensional cultures. From 3-D in vitro experiments it appears that integrin-independent 

neutrophil migration is possible and is accomplished by contact guidance, following 

paths of least resistance and using mechanical force to squeeze through the matrix.[12, 

39, 109]  The corneal stroma, for example has an organized architecture, contains cells 

and an assortment of proteoglycans, all of which may interact with migrating leukocytes.  

In vivo data obtained using HRT-RCM time lapse sequences, coupled with integrin-

targeted antibody blockade,  provide the means, for the first time, to quantify speed and 

directionality of cellular movement to determine the relative contribution of β1 (CD29), 

β2 (CD18) and β3 (CD61) integrins to neutrophil locomotion in the inflamed murine 

cornea. 

 

Hypothesis 3.1 – Neutrophil locomotion within the mouse corneal stroma is modulated 

by integrin binding 

Significance – The timing of neutrophil arrival and departure as well as their signaling 

roles undoubtedly involves integrins, but our understanding is far from complete. 

Integrin surface expression on neutrophils is up-regulated upon activation and if 
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they are not required for locomotion then it can be implied that they are important 

for other functions. 
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CHAPTER 2 – MATERIALS AND METHODS 

 

2.1 Animals  

As mentioned previously, the mouse model is commonly used for corneal research. There 

are some notable differences between mouse and human corneas however, the structural 

elements of the stroma and adhesion molecules expressed in the two species are quite 

similar. These similarities, in addition to the practical (breeding and handling) 

advantages, were the reasoning behind choosing the mouse for these experiments. 

 All animals used in these studies were C57BL/6 strain obtained from an established 

inbred colony bred and housed at the College of Optometry. Mice used for interstitial 

migration experiments were between the ages of 8-14 weeks. All animals were treated 

according to the guidelines described in the Association for Research in Vision and 

Ophthalmology Statement for the Use of Animals in Vision and Ophthalmic Research 

and University of Houston animal handling guidelines. Each animal was euthanized with 

CO2 asphyxiation followed by cervical dislocation for those more than 2 weeks old, and 

by isoflurane overdose for younger mice.  

 

2.2 Bench-processed histology 

After observing initial obvious processing artifacts, several modifications to our protocol 

were investigated and the data presented were obtained with the method that consistently 

produced the best results. From our experience, removing corneas in situ could not be 

accomplished without altering the corneal shape even when the eyes were pre-fixed with 

topical application of glutaraldehyde fixative prior to removing the cornea. Therefore 
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whole right and left eyes were immediately harvested from euthanized male and female 

mice (n = 39) briefly fixed (10 minutes, RT)  in 0.1M sodium cacodylate buffer (pH 7.2) 

containing 2.5% glutaraldehyde, the corneas were then removed and placed in the same 

fixative for another 2 hours  Corneas were post fixed in 2% osmium tetroxide in 0.1M 

sodium cacodylate buffer, dehydrated in an increasing series of acetone (30, 50, 70, 90, 

100, 100%; 15 minutes each), and embedded in Embed 812 resin (Electron Microscopy 

Sciences, Hatfield, PA). Transverse microscope sections (0.5 µm) through the center of 

the cornea were cut with an ultramicrotome (RMC, MT7000) and stained with Toluidine 

blue.  

 Initial light microscopic tissue processing produced stromal artifacts and 

subsequently the fixative solution was changed to 2.0% glutaraldehyde in 0.08M sodium 

cacodylate as recommended by Doughty, et al. (1997)[1]. However, the incidence and 

severity of artifacts and amount of swelling remained the same hence CCT data from 

both fixative solutions were combined for analysis. 

 Using a 20x objective (N.A. 0.75) a limbus-to-limbus digital montage was created 

(Sony Coolsnap camera) for each corneal transverse section using a DeltaVision Core 

deconvolution microscope system running SoftWorx software (Applied Precision, 

Isaquah, WA). A grid of three parallel lines spaced 50µm apart was over-laid on the 

montage at the geometric center and the total, epithelial, and stromal corneal thickness 

measured at each line with ImageJ software (NIH). The pixel to µm conversion factor 

was determined by measuring the full width of the image in µm using the SoftWorx 

software measuring tool and dividing the image size (1024 pixels) by this amount. 
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2.3 Ex vivo fixation effects 

To evaluate conventional fixation-induced artifacts (shrinkage, swelling and general 

distortion) eyes complete with extraocular muscles were removed from euthanized mice 

(n=9, >8 weeks of age) and a plastic clip was attached to the extraocular tissue. This 

allowed the eye to be held without any force being applied to the globe (Figure 22). The 

suspended eyes were then immersed in fixative in a plastic chamber with a glass 

coverslip observation window glued in-place to optimize scanning. The chamber was 

then placed in front of the Visante (Carl Zeiss Meditec, Dublin, CA) OCT such that the 

axis of the OCT was perpendicular to the iris plane and centered on the pupil. Scans were 

obtained every 5 minutes up to 60 minutes of total time in fixative.  Three different 

fixatives were used in an attempt to determine the optimum solution as well as varying 

the fixation time and tissue harvesting methods. Over one hundred eyes were sampled 

during the course of this investigation. 
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Figure 22 – Ex vivo eye holder 

Whole eyes were removed and held by their muscle cone in a fluid-filled chamber for 

Visante OCT imaging. 
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2.4 SD-OCT imaging and CCT 

To achieve the highest resolution and thus a more accurate CCT measurement, the 

Spectralis (Heidelberg Engineering, Dossenheim, Germany) Spectral Domain Optical 

Coherence Tomography (SD-OCT) instrument was used for in vivo and in situ 

measurements. It is designed for retinal imaging and therefore required optical 

modification for corneal scanning. To achieve focus on the cornea, a 30 diopter aspheric 

lens was attached to the front of the instrument (Figure 23). The optimum focal power 

and reference arm setting for image acquisition were determined and the same settings 

were used for all subsequent scans. The accuracy of the SD-OCT axial thickness 

determination was assessed using two approaches. In the first, a number 1.5 microscope 

glass coverslip was imaged by SD-OCT and the thickness was compared to that obtained 

using digital calipers (accuracy of 0.01mm) and that obtained by through-focus imaging 

on an Olympus IX70 inverted microscope equipped with a 40x objective lens (N.A. 1.4). 

In a similar manner, miniature polymethyl-methacrylate  (PMMA) contact lenses of 

1.4mm radius of curvature were scanned for center thickness with the SD-OCT and 

compared with the thickness estimate provided by through-focus imaging on an IX70 

Olympus inverted microscope. In each case, for the SD-OCT, appropriate compensation 

was made for the difference in index of refraction between glass, PMMA, and mouse 

cornea (1.523, 1.495 and 1.4015, respectively).  

 For SD-OCT corneal imaging, euthanized male and female mice (n=36) were 

immediately secured in a 50ml plastic tube (VWR Lab Shop, Batavia, IL) with a cutout 

for the nose and mouth as well as openings for the eyes (Figure 24). Very young mice 

were attached to a wooden tongue depressor for support. The corneas were scanned in a 
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series producing a sequence of horizontal cross-sectional views encompassing the entire 

cornea. Additionally, a series of radial scans was performed covering 360 degrees. When 

imaging neonates prior to lid opening (< 14 days), the animals were euthanized and lids 

were carefully removed before scanning. Eyes were kept moist by occasional misting 

with ophthalmic irrigating solution (OCuSOFT, Inc., Rosenberg, TX). Mice greater than 

4 weeks of age (n = 15) were anesthetized with ketamine/xylazine intraperitoneal 

injection (100/10 mg/kg) and scanned with SD-OCT in the same manner as the 

euthanized animals. The same animals were subsequently sacrificed, fixed and processed 

for histological sectioning.  

 Three scans were taken for each eye and the CCT was measured at the geometric 

center of the corneal cross sections. Each cross section measured was obtained by 

selecting the scan which passed through the center of the pupil and with the iris plane 

perpendicular to the scanning beam. Three measurements were made for each scan, one 

at the center and one 50 μm on either side of center. ImageJ software was used to create a 

“profile plot” (linear plot of image reflectivity).  Peaks on the profile representing the 

anterior and posterior corneal surfaces were selected for measurements. The 

measurements were obtained in pixels and the appropriate pixel to μm conversion factor 

was applied. 
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  Figure 23 – Cornea imaging with SD-OCT 

The background line drawing shows the Spectralis SD-OCT with the addition of a 30D 

aspheric lens to allow focus on the cornea. The image in the lower left is a representative 

mouse cornea with the red line indicating the location where the central corneal thickness 

was measured. Thickness was determined from the distance between peaks in the profile 

plot shown in the lower right. 
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Figure 24 – SD-OCT imaging apparatus 

The 30D aspheric lens is shown taped to the front of the SD-OCT and the anesthetized 

mouse is held in the plastic tube. 



94 

 

2.5 Microwave-processed histology 

In an attempt to improve the fixation conditions and avoid distortion artifacts, eyes from 

mice (n = 24) at various ages were processed using a vacuum-assisted PELCO 

Biomicrowave (Ted Pella, Inc., Redding, CA) (Figure 25). Even though whole eyes could 

be processed using the recommended protocol from the microwave manufacturer without 

gross morphological distortion and minimal interlamellar separations, there was 

microscopic evidence of inadequate fixation.  Subsequently, modifications to the protocol 

were investigated to optimize the protocol used in this study. Whole eyes were removed 

from euthanized mice, placed in fixative (2.5% glutaraldehyde in 0.1M sodium 

cacodylate buffer, pH 7.2), and immediately processed in the microwave under vacuum, 

as follows: The eyes received microwave radiation for 1 minute on-1 minute off-1 minute 

on, at 150 watts. The whole eyes were then removed from the microwave, placed on a 

bed of paraffin, and the cornea removed by a single cut with a thin double-edged razor 

blade.  The cornea was placed back in fixative and the 3 minute microwave fixation cycle 

was repeated. The remainder of the protocol was as recommended by the microwave 

manufacturer which included the same post-fixation processes as with conventional 

fixation only performed with the microwave (Table 5). With microwave processing, the 

eyes were only exposed to glutaraldehyde fixative solution for 8-10 minutes and the 

entire fixation process up to resin polymerization was completed in approximately 75 

minutes as compared to 72 hours, or more, in conventional processing. CCT values of 

microwave fixed samples were obtained in the same fashion as with conventional 

histology specimens. 
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Figure 25 – The biomicrowave apparatus 

The plastic container in the microwave holds the tissue being processed and is air tight to 

provide a vacuum as indicated in the protocol. Beneath the plastic container is a heat-sink 

water container to prevent heating of the tissue. 
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Table 5 – Microwave processing protocol 

 

  

Step Description Time  Watts Vacuum 

1 Glutaraldehyde ON (2.5% /0.1M NaCac) 1:00 150 ON 
2 Glutaraldehyde OFF 1:00 0 ON 
3 Glutaraldehyde ON 1:00 150 ON 
4 Remove posterior shell 

   5 Glutaraldehyde ON (2.5% /0.1M) 1:00 150 ON 
6 Glutaraldehyde OFF 1:00 0 ON 
7 Glutaraldehyde ON 1:00 150 ON 
8 Buffer Rinse 0:40 150 Off 
9 Buffer Rinse 0:40 150 Off 

10 Osmium ON (1% /0.1M) 2:00 100 ON 
11 Osmium OFF 2:00 0 ON 
12 Osmium ON 2:00 100 ON 
13 Osmium OFF 2:00 0 ON 
14 Osmium ON 2:00 100 ON 
15 Nanopure Water Rinse 0:40 150 Off 
16 Cut corneas in half 

   17 Dehydration 50% Acetone 0:40 150 Off 
18 Dehydration 70% Acetone 0:40 150 Off 
19 Dehydration 90% Acetone 0:40 150 Off 
20 Dehydration 100% Acetone 0:40 150 Off 
21 Dehydration 100% Acetone 0:40 150 Off 
22 Dehydration 100% Acetone 0:40 150 Off 
23 Resin Infiltration 1- 1:1 Acetone:Resin 3:00 350 ON 
24 Resin Infiltration 2- 100% Resin 3:00 350 ON 
25 Resin Infilitration 3- 100% Resin 3:00 350 ON 
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Ultrastructural morphology 

Representative tissue blocks from adult mice (8-12 weeks) prepared using conventional 

processing and ones prepared using microwave processing were sectioned transversely 

with an ultramicrotome (RMC, MT 7000) at a thickness of 80-100nm and stained with 

uranyl acetate and lead citrate. Images were obtained using an FEI Tecnai 12 

transmission electron microscope equipped with an Ultrascan 1000 digital camera. 

Collagen fibril diameter and interfibril spacing were measured as previously described 

[2]. Briefly, using cross-sectional views, individual fibril diameters were measured and 

the center to center distances measured to the surrounding 6-7 fibrils (Figure 26). Images 

were captured at 49,000x magnification and measured using ImageJ. 
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Figure 26 – Collagen fibril spacing 

Collagen fibrils arranged in a pseudo-hexagonal pattern with central fibril. The Bragg 

distance is the distance between fibril centers measured between central red and each 

of the surrounding yellow fibrils 
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2.6 Wounding 

Animals were anesthetized between 0730 and 0830 hours with an intraperitoneal (IP) 

injection of ketamine (75mg/kg body weight) and xylazine (7.5mg/kg body weight). Each 

cornea was inspected, using a dissecting microscope, for signs of pre-existing corneal 

abrasion or infection and excluded if present.  With the aid of a stereo dissecting 

microscope the eyelashes were trimmed to prevent their interfering with imaging. The 

corneal epithelium was removed in a single vertical stripe approximately 0.5mm wide 

and extending to within 0.5mm of the 

inferior and superior limbus using an 

Algerbrush with 0.5mm burr (Alger 

Equipment Co., Inc., Lago Vista, TX)  

held tangent to the corneal surface.  The wound was initiated in the upper cornea 

(superior or inferior, depending on the orientation of the mouse) moving toward the lower 

limbus. The mouse was then rotated 180
o
 and the Algerbrush again applied moving from 

upper to lower cornea. This method provided the most consistent results, well defined 

vertical edges, and minimal effect on the basement membrane as shown later. The 

vertical stripe was used rather than a central circular wound in order to provide ample 

parawound area for imaging yet produce a wound roughly the size of a 1.5mm circular 

wound with a similar degree of inflammatory reaction.  The parawound was selected as 

our region of interest for analysis of neutrophil migration where the keratocytes and ECM 

are minimally disturbed and therefore allow neutrophil interaction in a relatively normal 

physical environment.  Mice were kept on an isothermal heating pad while under 

Figure 27 – Alger brush wounding 
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anesthesia and then placed in an isolation cage for the duration of the 8 hours before 

imaging to minimize the possibility of additional corneal injury.   

 

2.7 HRT in vivo confocal microscopy 

In vivo leukocyte cell motility was recorded after 8 hours using the HRT-RCM. At that 

time each mouse was anesthetized with IP ketamine (100mg/kg body weight) and 

xylazine (10mg/kg body weight) and placed in a heated holding device consisting of a 

50ml centrifuge tube (VWR Lab Shop, Batavia, IL) with the bottom cut out to allow the 

mouse head to protrude for imaging, The tube was wrapped with a rheostat-controlled 

heating cable and insulating foam (Figure 28). Body temperature was monitored by rectal 

probe and maintained between 36.5 and 37.0
o
C (Microtherma 2, ETI Ltd. UK). As we 

observed in previous experiments, and as others have reported [3], cell speed is heavily 

dependent on body temperature below this range. Corneal temperature was initially 

measured before and after imaging using an infrared thermistor (Vario-Therm 6000L, 

Everest Interscience, Inc., Tucson AZ)  and found to be nearly constant (33-34
o
C) as long 

as the body temperature was maintained within the indicated range.   

 The 8 hour time point was selected for imaging as it is before the peak influx of 

neutrophils [4], when they are making their way toward the wound. At this time there is 

minimal congestion of cell traffic that might affect individual cell speed but late enough 

that at least 12 cells would be typically observed in a single plane within the 400x400µm 

image frame. 
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Figure 28 – HRT imaging apparatus 

The Heidelberg Retinal Tomographer III (HRT) is shown on the left with the Rostock 

Cornea Module (RCM). The mouse being imaged is held in the tube on the right. A 

heating cable (brown wire) is connected to a rheostat and a blue wire connects the rectal 

probe to the temperature display. The insulated holding tube is supported by a gooseneck 

clamp attached to an I.V. stand. 
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Eyes were applanated and scanned using the Heidelberg Retinal Tomographer III 

with Rostock Corneal Module (HRT-RCM) (400umx400um resolution). The mouse 

holding tube was attached to a gooseneck clamp and was positioned such that the cap of 

the HRT-RCM objective was parallel to the mouse facial plane (Figure 28). The cornea 

was applanated with enough force to maintain a stable image.  During protocol 

development it was shown that even maximum force had no effect on cell speed. Six 100-

second scan sequences at 1 frame per second (the slowest capture rate on the instrument) 

were obtained in the nasal or temporal parawound area. Depth of the scans was 10-20 µm 

beneath the basement membrane where the keratocyte network was clearly visible but 

still within the anterior stroma where the vast majority of neutrophils are found, even 

though motility parameters were found not to vary significantly for various depths within 

the cornea.  For comparing neutrophil motility parameters beneath the wound as 

compared to the parawound area, 10 minute sequences were obtained in each of the two 

areas. For assessing the effects of antibody blocking only the parawound area was 

imaged. In each case the parawound area selected was at least 100µm from the edge of 

the wound to assure viable keratocytes were present. Areas selected for scanning had at 

least 12 inflammatory cells (neutrophils). After the sequence scans were completed, 

volume scans of the same location were obtained in order to determine the stromal 

thickness. Immediately after scanning the animals were sacrificed by CO2 asphyxiation 

and cervical dislocation. Harvested corneas were then processed for 

immunohistochemistry and prepared as corneal whole-mounts or microwave processed 

for light microscopy and/or transmission electron microscopy. 
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 For neutrophil motility assessment every attempt was made to eliminate or at least 

standardize any confounding variables. Table 6 summarizes the methods to control 

potential confounding variables. The inter-cornea coefficient of variation was slightly 

less than intra-cornea (between cells), thus suggesting that uncontrolled variables were 

not influencing our results. 
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Table 6 – Controlling motility variables 

Variable Control 

Age of mouse 8 to 14 weeks for all experiments 

Gender   female, non-pregnant 

Temperature body temperature monitored and regulated 

Time of day wound was done between 0730 and 0830 

Time after 

wounding 

cell tracking was done 8 hours after wounding 

Applanation force moderate applanation force 

Depth of scan 10 to 20 μm beneath epithelium 

Nature of wound same shape, size, and method by same person 

 



105 

 

2.8 Application of blocking antibodies 

In order to assess the effect of functionally blocking CD18 , CD29, or CD61, at the time 

of wounding 5µl of blocking antibody (GAME-46 anti-CD18, BD Pharmingen; HMβ1-1 

anti-CD29, BioLegend; HMβ3-1 anti-CD61, BioLegend), non-immune IgG antibody 

(25µg/ml diluted in normal saline), or normal saline alone, was applied topically to the 

wounded cornea and allowed to penetrate for 5 minutes. The excess solution was then 

wicked off the cornea along with any cellular debris and a second application of the 

antibody/saline was applied and allowed to penetrate until the animal recovered from 

anesthesia (typically 10-15 minutes without blinking). Left undisturbed, the droplet of 

solution could still be seen after 15 minutes and covered the entire cornea. In some 

experiments a cocktail of the three blocking antibodies (25µg/ml of each in normal 

saline) was applied. 

 

2.9 Immunohistochemistry 

Diffusion of the blocking antibodies was confirmed by indirect immunolabeling using the 

appropriate conjugated secondary antibody. Immediately after mice were sacrificed 

whole eyes were removed and placed in 2% paraformaldehyde fixative for 10 minutes at 

room temperature. At that time the posterior sclera shell and crystalline lens were 

removed from each eye and remaining cornea with sclera rim returned to fixative for 

another 50 minutes. Corneas were then thoroughly rinsed with PBS and placed in 

blocking buffer (2%BSA+ 10% mouse serum) with Fc block, overnight at 4
o
C.  Next 

they were transferred to permeabilizing solution containing 0.1% Triton-X for 30 minutes 

at 4
o
C after which they were transferred to permeabilizing solution containing the 
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fluorophore-conjugated secondary antibody with DAPI and left over night in the dark at 

4
o
C.  The whole corneas were then rinsed in PBS and whole-mounted on microscope 

slides using ProLong Gold mounting medium (Invitrogen, Grand Island NY). Labeling of 

neutrophils was accomplished in a similar manner using a primary conjugated Ly-6G 

antibody.  

 

2.10 Image processing 

To assess inflammatory cell motility, the six image sequences were combined into a 

single 10 minute sequence and post-stabilized using a custom MatLab (MathWorks, 

Natick MA) program. Cell tracking was accomplished using a second custom MatLab 

program which semi-automatically tracked 12 randomly selected cells from each 

stabilized movie sequence.  Since automatic cell trackers frequently need manual 

corrections, we chose to manually mark the cell location by selecting the centroid of the 

cells’ visible area. Cells that were non-motile (displaced < 10 µm in 10 minutes) were not 

included. Likewise, ones that were so close to the edge that they moved out of view 

during the image sequence were not included. Twelve was the typical minimum number 

of cells per imaging field although on rare occasions 12 cells were not visible (the fewest 

was 10 cells). The X,Y coordinates for the centroid of each cell was marked every 20 

frames (seconds) and the distance and direction of movement calculated for each time 

interval.  
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2.11 Motility parameters and cell tracking 

Several motility parameters (Table 7) were considered in analyzing our data. Cell speed 

(CS) is a commonly reported parameter regarding cell motility [5]  and is simply 

determined by dividing the total distance a cell traveled by the amount of time that it took 

to travel that distance. It is therefore an average speed and does not show bursts of speed 

or periods of relative inactivity. Cell velocity (CV), on the other hand, is the straight-line 

displacement of a cell from the initial location to the final location divided by the 

measured time period. Unless a cell travels in a straight-line the velocity will always be 

less than the speed, likewise velocity divided by speed will be between 0 -1 and gives an 

indication of how straight a cell moves. This value has been given several names 

including directionality [6-8], chemotactic index [9], McCutcheon index [10], and 

confinement ratio [5, 11]. We have chosen to use the term confinement ratio (CR) since 

chemotaxis would be an assumption that a chemoattractant gradient existed and 

directionality may be confusing when describing direction of migration for a group of 

cells. These parameters for single cell analysis were used to describe motility for an 

“average” cell. However when studying effects on cell migration it is also desirable to 

consider parameters describing the population of cells. One such parameter, commonly 

reported, is mean displacement (MD) which refers to the mean displacement for all cells 

tracked at each time interval. The mean displacement plot (MDP) displays the mean 

displacement vs. square root of the elapsed time and its shape is characteristic for 

directed, random walk, or confined motility, for long tracking times. However MDP 

cannot distinguish between migration affected by multiple local attractors and a true 
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random walk [5]. For a tracking time of only 10 minutes as in our experiments, the MDP 

is essentially linear and its slope is defined as the motility coefficient (MC)[3, 5, 12, 13].  

 The population migration velocity (MV) and migration angle (direction of 

migration) (MA) parameters take into consideration the direction that cells move when 

computing the average, whereas the average of individual cell CV’s does not. For 

example, two cells moving in opposite directions at the same velocity would have a net 

result of zero MV. MV is calculated by determining the resultant vector using the average 

total x displacement (+ or -) and average total y displacement (+ or -) for the group of 

cells. This describes the velocity and direction a group of 12 cells is moving which we 

then compared to the location of the wound for describing a tactic response. Dividing 

MV by the average of individual cell CV’s defines the Tactic Index (TI) where a value of 

1.00 indicates that all cells moved in the same direction.  MA for each cornea cell group 

was compared to the direction of the wound from the cell. The group movement was 

considered toward the wound if the MA was within ±75
o
 of horizontal, parallel if within 

±15
o 
of the vertical and away from the wound if >105

o
 or < -105

o 
. 
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Table 7 – Parameters assessed 
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2.12 Inter/Intra-observer comparison 

Five representative movies were analyzed by two independent observers and their 

summary data were compared for tracking of 12 cells. In the first instance the second 

observer used the identical same set of cells as the first observer and in the second 

instance each observer chose the set of cells randomly. Additionally, summary data were 

compared from the same eyes which were analyzed twice by the same observer. 

 

2.13 Statistical analysis 

Statistical analyses were made using Student’s t-test for two groups and ANOVA with 

Tukey post-test for multiple comparisons were used for comparisons among three groups 

in comparing the corneal thicknesses. For motility parameter comparisons ANOVA 

followed by Bonferroni post-hoc correction were used. In each case a p value of < 0.05 

was considered significant. Developmental growth curves were generated using the 

exponential rise to maximum equation.  All data are shown as mean ± SEM.  
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CHAPTER 3 – RESULTS 

 

3.1 – Age of Stromal Maturation 

3.1.1 Introduction 

It has been accepted as a matter of course that histological specimens of the cornea will 

many times include separations between the stromal lamellae. Many research articles and 

text books include figures displaying the cornea with many significant separations 

between lamellae. In some cases these (presumed) artifacts may not affect the study. 

However, when determining stromal or total corneal thickness these separations cannot 

be ignored and may explain why there is such a wide range of values reported for normal 

corneal thickness of mice (Figure 29). In addition, when investigators are looking at 

interactions between stromal cells and surrounding collagen, the separations may obscure 

the actual physical juxtapositions. So it seems to be a reasonable and necessary objective 

to propose a method of tissue fixation that will minimize lamellar separation within the 

corneal stroma and to show that these separations are indeed artifacts and not present in 

vivo. In this way stromal thickness can be determined separate from the total corneal 

thickness. As pointed out in a previous chapter, there are substantial changes taking place 

during the postnatal period [1-7]. Subsequent in vivo experiments require some 

indication, such as stromal thickness, that maturational changes are minimal. 

 Wild type C57BL/6 mice are widely used to study normal corneal structure [8], while 

mutant C57BL/6 mice with targeted deletions in cell adhesion molecules [9]
 
, chemokines 

[10] and proteoglycans [11-14]
  
have contributed much to our understanding of how the 

cornea responds to injury and infection. Despite their widespread use in corneal research, 
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there is a surprising lack of information regarding postnatal corneal development and 

apparently no consensus as to when the cornea is fully developed in the C57BL/6 mouse. 

 A biometric parameter commonly reported in the literature is the central corneal 

thickness (CCT) which may be used to evaluate normal corneal development and to 

diagnose a variety of ocular/corneal pathologies [15-20] as well as pre- and post-surgical 

conditions [21]. It is also a consideration in contact lens fitting and continuing care for 

contact lens wearers [22, 23]. The CCT in humans has been measured using several in 

vivo modalities including, optical pachymetry, ultrasound pachymetry, specular 

microscopy, confocal microscopy, and optical low-coherence interferometry. Measuring 

the corneal thickness in a mouse, which is roughly one-fifth the thickness and diameter of 

the human cornea, presents a challenge and many of the human measurement techniques 

are not applicable to the mouse. Since the CCT is one consideration in determining the 

maturation level of the cornea, accurate measurement of corneal thickness is desirable. 

 In the past, histology was the only method for determining murine corneal thickness, 

and is still a frequently reported method although it produces a large range of CCT values 

even for the same age, sex and mouse strain. Published biometric data show a wide-range 

of values for corneal thickness (Figure 30). Recently, for example, one study reported a 

mean CCT for C57BL/6 adult mice as 74.7±8.6 µm [24]  and another reported 

137.0±14.0 µm [25]. Both were measurements from histological sections. Histological 

artifacts including shrinking, swelling and distortion, which occur frequently, 

undoubtedly affect the native thickness of the cornea. 
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Figure 29 – Examples of lamellar separations 

Montage of the entire cornea cross-section (A) and a close up of the central cornea (B) as 

seen with DeltaVision bright field microscopy shows extensive separations between 

lamellae (*), predominantly in the central and posterior stroma. Transmission electron 

microscopy (C) shows details of separation between a keratocyte and the collagen (*). 

 

A B 
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1 – Lluch[8]; 2 – Haddadin[9]; 3 – Schmucker[12];  

4 – Lively[13]; 5 – Henriksson[14] 
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Figure 30 – Various CCT values reported  

Central corneal thickness values reported in the literature are quite variable even within 

the same adult mouse strain (C57BL/6). 
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 Not only is there a large variability in adult CCT values reported, but there is also 

apparently no published data on the CCT of C57BL/6 mice beginning from birth. One 

study reports the CCT  for CD1 mice from birth to 12 weeks [1] and measurements were 

made using confocal microscopy through-focus. Schmucker and Schaeffel [26] reported 

early corneal thickness changes for C57BL/6 mice from P25-P53 using frozen sections 

and optical  low coherence interferometry and Zhou and colleagues [27] measured 

corneas using a custom built optical coherence tomography instrument (from mice age 

P22 -P102).  

 Clearly, there is a need to develop a simple method for accurately measuring the CCT 

in the mouse as a means of monitoring postnatal development of the mouse cornea 

through to adulthood. This information would accomplish several goals. First, it would 

define the growth kinetics of the cornea and define the age at which the cornea reaches its 

adult thickness. Second, it would provide a baseline with which to determine if artifacts 

(shrinkage, swelling) exist in corneas prepared for histological analysis. Finally, if 

routinely-fixed histological artifacts are detected, it should be possible to modify the 

fixation protocol to yield artifact-free corneal tissue sections that preserve the true 

biometric dimensions of the mouse cornea and preserve ultrastructural details.  

 The purpose of this study was to evaluate postnatal corneal growth and development 

in C57BL/6 mice by obtaining accurate CCT values. Using spectral domain optical 

coherence tomography (SD-OCT), we show CCT data can be obtained and used to 

monitor postnatal corneal development. Moreover, the CCT information is a useful 

benchmark for evaluating corneal histology and correcting histological artifacts.  
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 The purpose of fixation of biological specimens is to permanently preserve the 

structural/anatomical integrity of the specimen in a way that is as close as possible to in 

vivo conditions and which prevents autolysis or degradation over time. There have been 

many proposed optimal chemical fixatives but there does not appear to be any consensus, 

largely due to the fact that each tissue responds to fixatives differently. As many authors 

have pointed out, histology specimens are subjected to harsh fixative and preparatory 

procedures which potentially have a significant effect. Many of the artifacts that occur 

during fixation are caused by physical contraction and compression as a result of the 

changes in osmolarity that occur during fixation or subsequent processing [28]. In studies 

reporting corneal thickness, various methods for histological specimen preparation have 

been described and they produce somewhat different results. As one looks at the 

biometric data published, it is noted that there is a wide-range of values, especially for 

corneal thickness which is most likely due to differences in tissue processing. 

 In the research conducted in support of this dissertation optimum tissue fixation was 

important for the following reasons: 1) establishing the age at which the stroma has 

reached mature thickness; 2) providing evidence for structural changes beneath the 

wound areas that might alter migration speed; 3) providing clues for structural changes 

induced by integrin-blocking antibodies. 

 

3.1.2 Results 

Accuracy of SD-OCT measurements 

Accuracy of thickness measurements obtained by the optically modified Spectralis SD-

OCT instrument was first assessed by measuring a flat glass coverslip whose thickness 



119 

 

was determined using digital calipers (170±0μm) and microscopic through focus 

(174±4μm). Employing the default μm/pixel used by Spectralis software for thickness 

measurements and after the adjustment for index of refraction (1.523 compared to 1.4015 

for the mouse cornea), the SD-OCT measurements of the glass coverslip (176±2 μm) 

were not significantly different from those obtained by digital calipers or through-focus.  

Secondly, in order to assess the effect of curvature, a PMMA contact lens with a radius of 

curvature similar to a mouse cornea (1.4mm) was measured. The contact lens thickness 

measured 272±3 μm with through-focus imaging on the Olympus IX70 and 270±0 μm 

with SD-OCT (Table 8). The shape of the cornea is somewhat distorted with Spectralis 

(increased convexity) as it is designed to image the concave retina and not the convex 

surface of the cornea (Figure 31). The glass cover slip image produced a curved 

(concave) image that could be mathematically corrected. Even though lateral dimensions 

were affected, the transverse (anterior/posterior) dimensions measured were accurate and 

consistent. Collectively, these calibration measurements confirm the accuracy of the SD-

OCT for axial thickness measurements. 
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Figure 31 – OCT thickness calibration 

The contact lens (radius 1.4mm) was held by tape (A, Spectralis infra-red frontal view of 

contact lens ) and imaged with the Spectralis OCT (B, cross section view). A microscope 

slide cover slip was also imaged (C). Both (B) and (C) show curvature of the image that 

did not affect the central thickness measurements. 

 
Table 8 – Calibration data 

 
DV SD OCT SD 

Contact Lens 272.1 ±2.8 269.9 ±0.0 
Cover slip 168.5 ±1.7 175.9 ±1.7 

 

(The OCT px/um = 3.8673)  
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Figure 32 – Sample OCT image of mouse cornea 

The modified Spectralis OCT provided excellent images of the mouse anterior segment. 

C- Cornea; I – Iris; L – Lens 
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CCT growth curve determined by SD-OCT measurements 

SD-OCT produced images with a resolution (approximately 4µm) approaching that of 

low powered light microscopy (Figure). Although individual lamellar layers are not 

discernible, there is evidence of a horizontal organization to the stroma. The images 

cover limbus to limbus, provide excellent visualization of the iris and show the anterior 

portion of the crystalline lens.  

 In order to characterize the rate of growth of the central cornea, after confirming 

the accuracy of SD-OCT thickness measurements, CCT data were obtained for mice 

ranging in ages from P0 to P250. There was no significant difference found between 

anesthetized and euthanized animals, nor between males and females (data not shown), 

therefore CCT data presented in Figure 33 include data from all mice. The data show that 

during the first few weeks postnatal there is a rapid increase in central corneal thickness 

and by P55 it has achieved 95% of its maximum value, after which it begins to level off.  

The maximum CCT predicted from fitting the exponential rise to maximum equation to 

the data (r
2
=0.84) is 106μm. The average of the measured values for greater than 55 days 

of age was 103±2μm. In summary, thickness measurements obtained by SD-OCT were 

shown to be accurate, and when applied to the murine cornea, to provide accurate CCT 

measurements representative of the native cornea.  The epithelial thickness is also shown 

in Figure 33. The epithelium achieves a stable thickness about a week before the CCT 

indicating that the stroma does not reach adult thickness until P55. 
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Figure 33 – Thickness exponential rise to maximum 

Central corneal thickness measurements from the day of birth to 250 days postnatal 

using in vivo OCT and conventional histology. There was a rapid increase in CCT which 

leveled off about 8 weeks of age (P56). The epithelial thickness leveled off 

approximately 1 week earlier (no significant difference between methods). Histology 

measurements were significantly higher and more variable for CCT. 
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Limitations of conventional histology CCT measurements 

Measuring the CCT using conventional histology sections produced considerable 

variation in values and some of the corneal transverse sections were distorted in shape 

and many had separations between the stromal lamellae some of which were quite large 

(Figure 38, Panel A).  Separations were more evident in the posterior stroma, but 

occasionally included the anterior stroma as well. In a few cases the whole stroma 

appeared obviously thickened, without large lamellar separations. It was of interest to 

note that the very young corneas (prior to lid opening) were more resistant to separations 

(data not shown). As mentioned in the methods, the central corneal measurements were 

made by randomly placing three lines in the geometric center. In many cases 

measurements were made in areas where there were separations between lamellae. This 

resulted in a large variation in the measured thickness and a high mean value as 

compared to SD-OCT (Figure 33). The initial, P0 CCT was similar to the SD-OCT value 

of approximately 50μm and rose to about 140μm (>2.5 fold increase) before beginning to 

level off at 50 days (95% of maximum) of age after which it remained constant. The 

maximum CCT predicted from fitting the exponential rise to maximum equation to the 

data (r
2
=0.56) was 141μm while the average of the measured values for greater than 50 

days was 138±5μm or approximately 33% thicker than what was found with SD-OCT 

and with greater variability.   

 The epithelium is only 1-2 cell layers thick at birth with an average thickness of 5-6 

μm and rapidly increases in number of layers and thickness during P0-P50 after which it 

levels off.  The percentage of the total corneal thickness attributed to the epithelium 

increases (approximately 10% - 30%) during the same time period before leveling off.  It 



125 

 

is readily apparent from Figure 33 that most of the histological variability in CCT is due 

to variations in stromal thickness rather than epithelial thickness.  

 Our results show that conventional histological processing of mouse corneas 

produced CCT values that were not representative of in vivo values as shown by SD-

OCT.  Clearly, the stroma is prone to artifactual separations between lamellae and 

generalized thickening beyond what can be explained by these separations. Hence, in 

order to collect meaningful morphological and ultrastructural details, a method of tissue 

preparation that minimizes artifacts induced by processing is desirable. 

 

Fixative induced distortions 

The primary fixative utilized for our conventional histology was glutaraldehyde, which  

would be expected to penetrate a 100 µm cornea in approximately 30 minutes [29] and 

crosslink resident proteins. Post-fixation with osmium tetroxide enhances the process by 

stabilizing cell membrane lipids. Cells are killed while tissues stabilize during primary 

fixation and this seems the most likely step in processing to induce artifacts.  In order to 

assess the overall effects of glutaraldehyde, whole eyes were imaged by OCT during 

fixation in real-time. 

 Ex vivo scanning revealed distortion of the shape and swelling of the cornea with 

exposure to glutaraldehyde. With a concentration of 2.5%, the distortion began after 

about 10-15 minutes and after 30 minutes it was severe, sometimes ultimately resulting in 

total loss of the anterior chamber. During this time the CCT increased by 25-35%. When 

the concentration of glutaraldehyde was reduced to 2.0% the distortion took longer to 

occur, however the CCT increased by the same amount after 60 minutes (approximately 
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40-45% as shown in Figure 35). Figure 37 shows an example of a whole eye in 2.5% 

glutaraldehyde initially (Panel A) and then after 30 minutes (Panel B). The same eye 

processed for microscopy showed large lamellar separations.  

 Figure 36 illustrates the effect of fixation time on the amount of swelling and 

therefore, in order to produce histological specimens with minimal artifacts, it seemed 

imperative that the exposure time to glutaraldehyde be minimized while at the same time 

providing adequate preservation of the tissue. 

 

  



127 

 

 

Figure 34 – Fixative solution effect on CCT 

There was no significant difference in CCT for the three different fixative solutions.  

Fixative A (circle) = 2.5% glutaraldehyde/0.1M NaCac 

Fixative B (filled square) = 2.0% glutaraldehyde/0.05M NaCac 

Fixative Berg (triangle) = 2.0% glutaraldehyde/0.08 NaCac 
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Figure 35 – Comparing fixative solution swelling 

Fixative “A” contains a higher concentration of glutaraldehyde and higher osmolarity 

than fixative “Berg”. There was no significant difference in the amount of swelling after 

60 minutes or 120 minutes (n = 5).  

Fixative A = 2.5% glutaraldehyde/0.1M NaCac (Osmolarity 450mOsm) 

Fixative Berg = 2.0% glutaraldehyde/0.08 NaCac (Osmolarity 360mOsm) 
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Figure 36 – Swelling as a result of time in fixative  

Fixation with 2.5% glutaraldehyde is commonly used for tissue preservation with fixation 

times typically 2 hours or more. Significant swelling occurs in less than 30 minutes  

(n = 5). These values were slightly lower than thicknesses in Figure 35 from a different 

set of mice. 

 

  

0

5

10

15

20

25

30

35

40

45

20 25 30 75 120

Pe
rc

en
t 

sw
el

lin
g 

Minutes in 2.5% glutaraldehyde 



130 

 

 

  

 

 

Figure 37 – Ex vivo images of fixation effects 

Visante OCT image before (A) and 30 minutes after immersion in fixative “A” (B) 

showing gross distortion of the eye. Spectralis OCT 3-D rendering (lower panel) shows 

similar distortion with same time and fixative. 
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Microwave tissue preservation 

To determine if histological artifacts could be reduced and thereby preserve the native 

corneal thickness, corneas were prepared using an optimized microwave protocol. 

Microwave fixed corneas had few or no lamellar separations (Figure 38, Panel B), when 

compared to conventional fixation, (Figure 38, Panel A) were without gross corneal 

distortion (Figure 38, Panel D), and appeared to be well fixed when examined by electron 

microscopy.  Figure 39 is a montage of images showing no lamellar separations across a 

large portion of the cornea. At the ultrastructural level, the stroma of microwave 

processed corneas was compact and did not exhibit interlamellar separations compared to 

conventionally fixed corneas (Figure 40 Panels A and B) while the preservation of 

keratocyte cytoplasmic structure was similar to that obtained with conventional fixation 

(Figure 40 Panels C and D). The mean microwave processed CCT beyond 8 weeks was 

99 (±2) μm and this value is in close agreement with in vivo CCT estimates made by SD-

OCT (Figure 41). In addition, the epithelial thickness determined from conventional 

histology agreed with that obtained from measuring microwave-fixed sections, 

suggesting that most of the artifactual increase in CCT following conventional processing 

occurs within the stroma. Table 9 shows the values for collagen fibril diameter and Table 

10 for the interfibrillar spacing in the anterior and posterior central cornea for specimens 

prepared by conventional fixation versus microwave processed. No difference in fibril 

diameter was observed between the two fixation processes. However, the interfibrillar 

spacing was statistically different with approximately 20% less anteriorly, and 35% less 

posteriorly in the microwave processed specimens compared to the conventional 

processed corneas. Figure 42 shows representative sections of collagen fibrils used to 



132 

 

measure diameter and spacing. Collectively, our results support microwave-assisted 

histological processing as a method which produces CCT values not significantly 

different than SD-OCT values, while providing superior stromal ultrastructural 

preservation compared to conventional histological processing. 
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Figure 38 – LM conventional and MW images 

A conventional histology specimen (A) with numerous large separations is compared to a 

microwave processed specimen (B) (same magnification for both). Panel (C) shows the 

OCT image of (A) and panel (D) shows OCT of (B).  
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Figure 39 – Microwave processed montage 

Microwave processed specimens were largely free of separations across the entire cornea. 

Scale bar = 30 µm. 
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Figure 40 – EM conventional and MW images side-by-side 

Left side panels (A and C) show conventional histology specimens and panels (B and D) 

were microwave processed. The white asterisks mark keratocytes and the arrow in (A) 

illustrates a separation between the keratocyte and the collagen. The white arrow heads in 

(C and D) point out the rough endoplasmic reticulum and show similar details. 
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Figure 41 – Comparing 3 thickness measurement methods 

The Spectralis OCT (OCT) and microwave prepared corneas (MW) were comparable at 

all ages, but conventional bench processed corneas (Hist) were significantly thicker at 7 

weeks and beyond. Conventional bench processing included both 2.5% and 2.0% 

glutaraldehyde specimens as no difference in thickness was found between the two. 
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Table 9 – Collagen fibril diameter 

Fibril Diameter (nm) 

 Conventional (n=3) Microwave (n=4) 
Anterior 24.3±0.5 25.8±0.6 
Posterior 25.2±0.8 27.3±0.5 

 
 
 

Table 10 – Spacing between collagen fibril centers 

Interfibrillar Spacing (nm) 
 Conventional (n=3) Microwave (n=4) 

Anterior 67.8±2.8 53.6±1.1* 
Posterior 75.8±1.1 55.9±2.3* 
 

*p < 0.05 compared to conventional histology 
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Figure 42 – EM conventional and MW collagen fibrils 

In both the conventional (A) and microwave processed (B) corneas the anterior fibrils 

were slightly smaller than posterior (C and D). The spacing between fibrils was 

significantly greater in the posterior stoma with conventional histology (C). Scale bar = 

100nm 
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3.1.3 Discussion 

Consistent with the purpose of this study, postnatal corneal growth and development in 

C57BL/6 mice were elucidated by validating the SD-OCT as a method for obtaining 

accurate CCT values and measuring the CCT of mice from P0 to P250. These CCT data 

were used, not only to establish a minimum age for subsequent studies, but also as a 

benchmark for establishing an optimized histology protocol which minimized processing 

artifacts. In this way providing improved ability to observe structural changes beneath the 

wound areas that might alter migration speed and/or providing clues for structural 

changes induced by integrin-blocking antibodies. 

 A comprehensive normal growth curve was established for C57BL/6 mice and 

corroborated by measurements of microwave-fixed histological sections. Our results 

show that the C57BL/6 mouse is born with a CCT of approximately 50-60 μm. During 

the first 7-8 weeks it shows rapid thickening, more than doubling in thickness, after 

which it remains nearly constant at about 103 μm (SD-OCT, mean value >8 weeks) or 99 

μm (microwave histology, mean value >8 weeks). The mouse is essentially born pre-

mature with the eyelids not opening until approximately day 12-14, after which the 

cornea undergoes maturational changes for several weeks [1, 26, 27, 30-33].  Several 

parameters of eye growth and maturation either level off or slow to a minimal rate of 

change for the remainder of their adult life [27, 34]. The CCT developmental curve 

provides an important gauge for eye development in general, and suggests that animals 

younger than 7-8 weeks should not be considered adults for corneal research since they 

are still in a phase of rapid growth and development. However, in many murine corneal 
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studies, mice as young as 6 weeks of age are often used and assumed to represent the 

mature, fully developed cornea. 

 It has recently been reported that there is a range in mean CCT values in 17 different 

strains of adult mice ranging from approximately 90µm to 124 µm (similar measurements 

by cryosections and ultrasound pachymetry) [35].  Our study was confined to a colony of 

inbred C57BL/6 mice and it remains to be shown whether or not other strains of mice 

would exhibit an age-dependent growth curve temporally similar. When considering 

animal models for corneal research it is therefore important to consider the age of the 

mouse in the context of the specific strain.  

 Obtaining accurate CCT data is necessary, for example, for monitoring corneal 

development and for determining volumetric values to assess cell density and surface 

area ratios [9]. Frequently, the process of fixing corneal tissue results in separations 

between the stromal lamellae, and/or shrinkage or swelling of tissues, obviously adding 

error to thickness measurements. When measuring stromal or total corneal thickness, or 

calculating volume, these separations cannot be ignored. In addition, when investigators 

are looking at interactions between stromal cells and surrounding collagen, the 

separations may obscure the actual physical juxtapositions. Histology specimens are 

subjected to harsh fixative and preparatory procedures which have the potential to 

produce artifacts. Since there are many methods for fixing corneal tissue, they may all 

produce somewhat different results.  

 Corneal specimens prepared for light and electron microscopy are commonly 

preserved using glutaraldehyde as a primary fixative with fixation times varying from 

hours to a few days.  For electron microscopy, osmium post-fixation is also typically 
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incorporated into the process, after which the tissue is dehydrated. In each step of the 

tissue preparation there is potential for artifactual alteration. During this process 

metabolic activity ceases, which results in cell permeability and ion concentration 

changes [29]. While the osmolarity of solutions used is a consideration for avoiding 

artifactual changes in tissue and cell volume, the specific ion concentration is even more 

important [20]. As observed in our ex vivo imaging, our standard fixative solution, with 

an osmolarity of approximately 450 mOsm caused considerable distortion (apparent 

overall shrinkage) of the intact eyeball and a paradoxical increase in corneal thickness (as 

much as 35%) beginning after about 15 minutes.  Ex vivo scans with fixative solutions 

containing glutaraldehyde dramatically demonstrated significant distortion and swelling 

and separations between lamellae.  

 It has been shown that stromal lakes (inter/intralamellar spaces) are a typical 

consequence of stromal edema [36]. In our study, there was no reason to expect that the 

corneas would be edematous as the eyes were not inflamed and had been harvested from 

healthy mice and processed immediately after enucleation (the absence of edema was 

also confirmed with SD-OCT). An obvious conclusion was that the fixation process was 

inducing interlamellar separations (and distortions). This was confirmed with ex vivo 

imaging of the eyes during the process of fixation. It was also interesting to note that in 

nearly every case the separations occurred coincident with the location of keratocytes and 

were much more likely to occur in the posterior stroma, as opposed to the anterior. It was 

also noted that separations were minimal in mice prior to eyelid opening. These findings 

suggest keratocytes are the “weak link” in stromal tethering and prone to “letting go” 

during swelling. A possible explanation for the increased tendency of the posterior 
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stroma to exhibit interlamellar separations may lie in the organizational and 

compositional differences between anterior and posterior stroma. It has been well 

established that there is a higher keratocyte density, a lower keratan sulphate to 

chondroitin/dermatan sulphate ratio, and less prone to swelling in the anterior stroma 

[37]. Interestingly, very young corneas have more densely packed keratocytes and 

relatively low amounts of keratan sulphate [1], which may make them less susceptible to 

edema and interlamellar separation after fixation.  

 In the current study, CCT measurements obtained with SD-OCT avoided the potential 

for distortions and artifacts resulting from fixative effects and it was established as a valid 

and reliable method for CCT determination in the mouse.  The SD-OCT, designed for 

scanning the retina, was easily modified with a 30D ophthalmic condensing lens attached 

to the front of the instrument. Measuring objects of known thickness established the 

validity of using the SD-OCT for thickness measurements. Results for CCT obtained by 

SD-OCT were much less variable and thinner on average than values obtained from 

conventional histology samples. This alone was evidence that CCT values obtained from 

conventional histology samples were influenced by artifacts occurring during fixation. 

This was corroborated by data obtained from microwave processed samples which 

showed minimal separations and CCT values within a few microns of the SD-OCT. SD-

OCT yielded a CCT value that became the goal to maintain during tissue fixation. 

Microwave processing minimized the fixation time and eliminated the artifactual lamellar 

separations while maintaining the CCT values estimated from SD-OCT data and 

provided reliable morphometric data representative of the native, unfixed cornea.  

Collagen fibril diameter was essentially the same with microwave-processing as with 
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conventional histology processing and similar to values reported for x-ray diffraction 

analysis. However, collagen fibril packing was tighter in the microwave processed 

corneas (Table 10). This leads to the conclusion that, other than interlamellar separations, 

the thicker stroma seen in conventional histology sections is also due to an increase in 

interfibrillar spacing. 

 Microwave-assisted tissue fixation has been described in the literature since the early 

1970’s but is still not a commonly used method for either light or electron microscopy 

even though it accomplishes the entire fixation process in 1-2 hours with results as good, 

or better, than conventional fixation protocols requiring several days processing time [38-

40] . The energy absorbed from microwave radiation produces heat and molecular 

motion. In the current study unwanted heating of specimens is averted by using a low 

wattage magnetron setting and incorporating a cold-spot water-filled heat sink [41]. The 

microwave-generated molecular motion combined with vacuum processing greatly 

enhances fixative penetration and reduces the distorting effects of fixative osmolarity 

[38].   

  Corneas prepared in the microwave were exposed to each of the chemicals for very 

brief times. For example the total time in glutaraldehyde-containing fixative was 10 

minutes or less, which was less than the time in which distortion was seen to occur in the 

ex vivo experiments. The histological sections produced were, not only, generally free of 

lamellar separations, they showed evidence of satisfactory ultrastructural preservation. 

There was considerable discrepancy between the CCT of the conventionally-fixed 

corneas as compared to the microwave-fixed corneas.  It is compelling to consider the 

microwaved corneas, without the separations, as representing the “truer” CCT. Using a 
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microwave-assisted histological protocol, it is possible to preserve the anatomical 

dimensions and ultrastructure of the mouse cornea and avoid the harsh deformational 

effects (shrinkage or swelling) that accompany routine histologic preparations. The 

microwave protocol, in conjunction with electron microscopy, further extends the 

morphologic detail provided by SD-OCT and light microscopy, and provides a superior 

method for obtaining high resolution corneal images free of fixation-induced distortional 

artifacts. 

 In summary, this study provides, for the first time, a comprehensive growth curve of 

CCT for C57BL/6 mice from birth through adulthood based on in vivo/in situ data 

obtained by SD-OCT and confirmed by histological sections prepared using microwave 

radiation. To our knowledge this is the first reported use of SD-OCT or microwave 

processed histological sections for murine CCT measurements.  This study determined 

the age of stromal maturity which was used as minimum age for mice used in subsequent 

studies. This age, at which the stroma has stabilized, is important for in vivo motility 

characterization in order to minimize the potential for confounding factors when 

comparing various experimental manipulations.  An optimized histology protocol which 

minimized processing artifacts was developed to improve our ability to observe structural 

changes beneath the wound areas that might alter migration speed and or providing clues 

for structural changes induced by integrin-blocking antibodies. 
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3.2 – Characterizing and Quantifying in vivo migration 

3.2.1 Introduction 

In a previous chapter some of the reasons that in vivo studies would be important 

especially for neutrophil migration were described. Because the cornea is transparent and 

requires the migrating neutrophils to traverse the avascular stroma for a considerable 

distance, it is particularly well suited for in vivo studies of interstitial migration of 

inflammatory cells in situ without tissue manipulation. The HRTIII-RCM provides a 

means to accomplish in vivo studies of interstitial migration in the cornea.  

 After transendothelial migration, the activated and transformed neutrophils must 

traverse avascular stromal tissue consisting of a dense matrix of near-orthogonally 

crossed layers of parallel collagen fibrils with interconnected keratocytes interspersed 

between these collagen lamellae. However keratocyte death directly beneath the wound 

begins shortly after an epithelial wound, even when the epithelial basement membrane 

remains intact [42, 43]. Infiltrating neutrophils then must migrate through regions with 

intact keratocytes as well as those with dead keratocytes; two distinctly different 

environments.  In vivo time lapse HRT-RCM sequences provided the means, for the first 

time, to quantify speed and directionality of cellular movement while observing 

neutrophil interaction with stromal keratocytes in the living eye. 

 Following a central corneal epithelial abrasion, previous ultrastructural studies 

showed close contacts exist between neutrophils and keratocytes, suggesting the 

migrating neutrophils were using the keratocytes as a “cellular highway,” a classic 

structure/function relationship [44]. Live imaging of neutrophils migrating along stromal 

keratocytes has never been documented. In vivo confocal microscopy is a novel tool for 
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examining the relative contribution of the keratocyte network to leukocyte migration 

within the corneal stroma.   

  Keratocytes die in the anterior stroma directly beneath the site of epithelial injury 

even though the basement membrane remains intact (Figure 43). Figure 44 compares a 

healthy keratocyte (A) beneath the uninjured epithelium as opposed to one that is beneath 

the wound and undergoing cell death (B) as noted by electron translucency of its 

vesiculated cytoplasm. Neutrophils that enter the region beneath the wound migrate 

without the presumed benefit of an intact keratocyte network. Observation and 

comparison of locomotion parameters in regions with and without viable keratocytes will 

provide additional data on how neutrophil locomotion is affected by the absence of a 

keratocyte network. 

 The purpose of this study was to use in vivo time lapse imaging to characterize 

and quantify neutrophil interstitial migration within regions where there were viable 

keratocytes and regions where keratocytes had died as a result of epithelial abrasion.  

Thus showing that neutrophils preferentially migrate along the keratocyte network and 

that migration is compromised in its absence. 
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Figure 43 – Wound edge 

As described earlier, the basement membrane remains intact after the epithelium has been 

removed. This image shows a dead/dying keratocyte just beneath the basement 

membrane. Keratocyte cell death was also evident with HRT-RCM images such as seen 

in Figure 53. Scale bar = 2µm. 
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Figure 44 – Keratocyte apoptosis 

Viable keratocyte beneath intact epithelium (A). Damaged (dying) keratocyte in anterior 

stroma beneath epithelial abrasion (B). 

 Scale bar 0.5 μm 
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3.2.2 Results  

 

Inflammtory cell imaging 

Obtaining images of the mouse cornea with the HRT-RCM proved to be challenging at 

the onset but with repeated attempts and modifications in the procedure it proved to be 

relatively straight forward. Images of unwounded mice allowed visualization of the 

epithelium with distinct basal layer, somewhat indistinct stromal keratocytes which 

formed a continuous network, and a well defined endothelial layer. The sub-basal nerve 

plexus was easily visualized as were larger nerves within the stroma. Relatively large, 

irregular-shaped, highly reflective cells were frequently seen and presumed to be resident 

tissue macrophages (later confirmed) (Figure 47). Volume scanning with the HRT 

produced a z-stack of images captured every 2 microns and provided a good 

approximation of thickness values. Several time points (2 hours to 48 hours) after 

epithelial wounding were imaged. At times less than 8 hours very few inflammatory cells 

were noted, at 24 hours there were so many cells that it was hard to identify individual 

cells and by 48 hours there were none (Figure 45). Eight hours was chosen for the time 

after wounding for all subsequent experiments as it was a time before the peak influx and 

individual cells could be observed. At the 8 hour time point the cornea was edematous 

(45% swelling) according to the thickness obtained from volume scans (Figure 46, Table 

11). It was also noted that the keratocytes were considerably more distinct and reflective 

as compared to the unwounded. 
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Figure 45 – Neutrophil peak influx 

At 4 hours there were very few neutrophils (arrows) observed in the anterior stroma in 

the parawound area. At  8 hours there were enough to image 12 cells per frame and the 

cells were in the advancing phase of infiltration. At 24 hours masses of neutrophils 

were noted and at 48 hours few remained (large cells are macrophages). 
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Figure 46 – Amount of swelling after wounding 

Swelling begins shortly after an epithelial abrasion. At 8 hours after 

wounding there was substantial overall swelling but significantly more 

beneath the wound. 

 

Table 11 – Swelling after wounding 

          Thick SEM % increase 

Unwounded 57.5 μm ±0.6 
 

Parawound 83.4 μm ±5.9 45.2 ±10.2 

Wound 103.4 μm ±3.5 80.0 ±06.1 
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Figure 47 – Unwounded cornea HRT-RCM 

In the unwounded cornea the basal epithelial layer (A) showed distinct cell borders, the 

keratocytes network was a little indistinct (B). Sub-basal nerves (C) and anterior stromal 

nerves (D) were easily visualized as was the endothelium (E). Resident macrophages  (F) 

were a common finding. All images were in the paracentral region. 
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Time lapse motility characteristics 

In order to determine the characteristics of inflammatory cell movement, for the first time 

within the living cornea, the HRT-RCM was used to capture a series of 100 second 

sequences in wounded corneas. Once a set of 100-second sequences was captured they 

were combined into a single movie file. The captured movie sequences required that they 

be stabilized due to respiratory and extraneous movements before cell motility could be 

analyzed. The longest sequence of images spanned a time of 45 minutes. Time was 

limited by the HRT instrument and/or the duration of anesthesia. In the mouse cornea the 

keratocyte network was readily visible in most instances along with the easily 

distinguishable, highly reflective infiltrating cells, within the 400x400μm area imaged.  

 The infiltrating cells, neutrophils as they are later confirmed to be, were observed to 

have a polarized morphology with a leading edge that probed the environment by briefly 

extending then retracting pseudopodia. Locomotion occurred as the extended 

pseudopodia gained a “foot hold” and the cell contracted to pull the trailing end of the 

cell forward (Figure 48). Typically the cells would follow a somewhat circuitous path but 

showed definite directional preference. However, in some instances the cell path would 

make a complete loop or re-trace portions of its path. Most cells showed persistence of 

motion though some occasionally paused momentarily. Although there was variability in 

how fast the cells were moving, there did not appear to be a sub-set of non-motile cells. 
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Figure 48 – Amoeboid shape changes 

In the span of 7½ minutes the same cell has undergone significant shape changes as is 

typical of amoeboid cell locomotion. The white arrows indicate the direction of 

movement. 
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Neutrophil localization on keratocytes 

Observation of cell movement showed a motility pattern that followed the keratocyte 

network. There were numerous instances where cells moved in single file across a narrow 

“bridge” between neighboring keratocytes (Figure 49). At times the migrating cells were 

seen stopping at a point where the network bifurcated and extending dual leading edges 

along the two competing paths until one leading edge collapsed and the cell was drawn 

along the “winning” path (Figure 50). It was quite rare (< 1% of the time) for a migrating 

cell not to be localized on the keratocyte network. 

 In order to quantify the preferential localization of the (neutrophils) on the keratocyte 

network, the percent of neutrophils localized on the keratocyte network was compared to 

randomly placed dots. After repeated counts, there was a significant difference (p< 0.05) 

in the number of neutrophils that coincided with the keratocyte network as compared to 

the random dots (99% vs. 75%). The keratocyte network covered about 75% of the image 

areas which corresponds with the random dot percentage of coincidence (Figure 51). 

Figure 52 cell tracking shows neutrophils following paths that coincide with the 

keratocyte network. 
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Figure 49 – Migration across keratocyte bridge 

In (A) the light grey represents the keratocyte network and the darker grey the gaps in 

the network. This is a diagrammatic representation of the actual movie frames shown  

in the bottom panel (B).  Frames are spaced 150 sec apart and clearly show the 

migrating cell following the keratocyte network in the parawound area. 
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Figure 50 – Bi-directional decision 

Cell in the center of the images goes from nearly round to a thin “V” shape (6 min) as it 

encounters a bifurcation in the network. If the neutrophil was not utilizing the network it 

would surely not have to make a “descision” and would simply continue moving 

randomly. 
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Figure 51 – Random dot placement 

Neutrophils are marked with yellow dots. Red dots were randomly placed. More than 

99% of the time yellow dots were determined to be on the keratocyte network, whereas 

only 75% of the red dots. The keratocyte network covers about 75% of the image area. 
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Figure 52 – Cell tracking 

The left side image shows the actual cell tracks (white lines) over-laid on the HRT-RCM 

image of the keratocyte network. On the right side is a polar plot of the cell paths placed 

with a common point of origin. 
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Parawound vs. wound motility 

At the 8 hour time after wounding used for all experiments, the epithelial wound was still 

incompletely healed with a gap of approximately 300 µm. Figure 53 shows a montage  of 

images captured with the HRT-RCM where the wound is clearly visible after 8 hours and 

there is evidence of keratocyte death beneath the wound. Areas delineated with the 

yellow dotted lines represent the wound area and parawound area used for motility 

comparison.  There was an obvious difference in cell motility with gross observation 

when comparing the areas beneath intact epithelium (parawound) to the area beneath the 

wound. Beneath the wound the neutrophils appeared to be restricted in their movement. 

Often they were seen to move back-and-forth along the same path and generally more 

random. Beneath the wound the keratocyte network was noticeably disrupted in the 

anterior half of the stroma, but normal in the posterior.  Table 11 shows there was 

significantly more swelling within the wound as compared to the parawound area. 

 A semi-automated cell tracking MatLab program was developed to quantify 

individual cell motility using parameters described in the methods. The centroid of each 

of the randomly selected 12 cells was marked manually every 20
th

 frame (1 frame per 

second) for the duration of the 10 minute sequences. Speed, velocity, and confinement 

ratio were compared between the parawound and wound areas and all three parameters 

were found to be significantly lower within the wound area (34.5%, 59.1%, and 41.7%, 

respectively) as shown in Figure 54 and Table 12.  
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Figure 53 – HRT-RCM montage with wound 

A montage created with images of the keratocyte network just beneath the epithelium (a 

patch of epithelium is seen to the left of the wound). The yellow dotted-lines represent 

the size of the area imaged with the HRT-RCM. The keratocyte network beneath the 

wound (between red lines) is indistinct compared to the parawound area. This example is 

displaced somewhat inferior to the cornea center and the bottom of the area between the 

red dotted lines is outside the wound.  
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Figure 54 – Wound vs. parawound parameters 

All three parameters were significantly reduced beneath the wound as compared to 

the parawound area. Cell velocity was reduced even more than speed, resulting in 

reduced confinement ratio and indicating cells were moving in a less straight path. 

Table 12 – Wound vs. parawound parameters 

Parameter Parawound Wound % difference 

Cell Speed 5.70±0.41 µm/min 3.73±0.25 * -31.05±5.23 

Cell Velocity 3.07±0.33 µm/min 1.26±0.33 * -59.09±6.28 

Confinement 0.51±0.03 µm/min 0.30±0.03 * -40.08±5.82 
(* = p<0.05) 
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3.2.3 Discussion 

The HRT-RCM was developed as a clinical instrument, providing in vivo imaging of the 

cornea, but over the past few years has been used for numerous animal and human 

research studies. This instrument utilizes a 670nm scanning diode laser to obtain confocal 

images with an acquisition time of 0.024 seconds and transversal optical resolution of 

approximately 1μm/pixel (Heidelberg Engineering). The objective lens used in the 

corneal module was the x60 immersion lens (0.90 N.A) which produced images 384 x 

384 pixels covering an area of 400 x 400μm (Olympus, Hamburg, Germany). It has 

previously been shown with the HRT-RCM rabbit and human keratocyte nuclei are easily 

visualized whereas their cytoplasm is not [45, 46]. By contrast, in rats and mice, the 

keratocytes are seen as hyperreflective stellate structures without visible nuclei [45]. It 

has been shown that in chronic stromal edema (in humans) the keratocytes become 

hyperreflective with well-defined cell bodies and processes but without visible nuclei 

[47]. While some authors have described keratocytes with hyperreflective cell bodies as 

“activated”, there is no evidence showing phenotypic transformation and most likely the 

hyperreflectivity is due to a difference in the  ECM surrounding the keratocyte such as 

occurs with edema. Consistent with these previous descriptions, our results allowed 

visualization of the keratocyte cell bodies and their interconnecting processes however, 

they were considerably more distinct and reflective 8 hours after wounding (with edema) 

as compared to the unwounded corneas. Figure 55 illustrates the effect of applying a 

hypotonic solution (nano-pure water) to the cornea and noting the change in appearance 

of the keratocyte network. 
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Figure 55 – Change in keratocyte network with water 

Upper half of the image is an unwounded cornea in its normal state and lower half is the 

same cornea approximately 10 minutes after topical application of purified water. The 

keratocyte cell bodies are more easily visualized after the addition of water. 
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 Neutrophil locomotion has been described as amoeboid where the leading edge 

extends one or more pseudopods while frictional forces or chemical adhesion holds the 

leading edge in place as the cell body contracts and pulls the rear of the cell forward [48, 

49].  Neutrophil motility as noted with in vivo HRT-RCM time-lapse imaging was 

consistent with this type of locomotion.  

 Observations of neutrophil motility along with the quantification of neutrophil 

localization on the keratocyte network convincingly show that neutrophils preferentially 

migrate along the keratocyte network.  Additionally, when neutrophils were tracked 

beneath the wound they showed reduced speed and less directed locomotion.  These 

findings are consistent with previous studies showing CD18 and ICAM-1dependent 

surface contacts between neutrophils and keratocytes [9, 44]. However, there are other 

plausible explanations besides just loss of potential contact with keratocytes. As noted in 

Figure 46, there is significantly more edema beneath the wound compared to the 

parawound.  Numerous authors have reported from in vitro 3-D migration experiments 

that the physical environment has a profound effect on neutrophil motility [50, 51].  It has 

been shown that there is an optimum spacing between matrix elements for efficient 

motility. Beyond that spacing distance, motility very likely switches from relying 

predominantly on physical/frictional forces to adhesion molecule binding [52, 53]. 

Therefore the amount of edema present in the wounded area may force the migrating 

cells to rely on other mechanisms of locomotion. An additional factor affecting 

neutrophil motility is the fact that keratocytes die beneath the wound and neutrophils are 

involved in clearing the area of debris. This may explain why they not only moved slower 

but also followed a less direct path. Chemokines that have likely diffused through the 
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stroma after injury would establish a gradient that guides neutrophils to the wound site. 

Once neutrophils have reached the source of chemokines (wound) there would be no 

more gradient to guide their migration. 

 Previous neutrophil motility studies have typically used in vitro methods or in vivo 

tissues other than the cornea with experimentally applied chemoattractants. Obviously 

there are many differences in the physical and molecular environment comparing these 

conditions to an in vivo model of inflammation induced by epithelial abrasion. However 

previously described motility parameters are useful for in vivo analysis in the cornea. Cell 

speed is the most commonly reported parameter. However, some studies fail to 

distinguish between speed and velocity. Speed is the total distance an object travels per 

interval of time, regardless of how many times it changes direction during the interval. 

Velocity, on the other hand, is the vector value representing the straight line displacement 

that occurred during the time interval. In this study cell speed (CS) was recorded as well 

as cell velocity (CV). Other studies have described the ratio of CS and CV using various 

names, such as chemotactic index, directionality, McCutcheon index, and confinement 

ratio (CR). 

 These parameters are reported as average values for individual cells. However, when 

looking at the migration characteristics of a population of cells, other parameters are 

more descriptive. One such parameter frequently reported is the mean squared 

displacement, or alternatively the mean displacement plot (MDP). These plots have been 

used to characterize cell motility, even implicating methods of locomotion such as 

random, guided, or confined movement.  
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3.3 – Role of integrins in neutrophil migration 

 

3.3.1 Introduction 

An epithelial abrasion compromises the anterior tight junctional barrier, releases 

cytokines, and induces keratocyte death.  It is important for the cornea to be repaired as 

quickly as possible to maintain or restore sight and, as a result, insult to the cornea 

invokes rapid and extensive inflammation with neutrophils providing the major cellular 

response.  Neutrophils are well known for their ability to destroy and remove invading 

pathogens. However, it is well known that they also play an important role in wound 

healing even in the absence of pathogens. As neutrophils are the major cellular element 

of the inflammatory response, they have been the focus of considerable research relating 

to corneal wound healing. While the sequence of rolling (selectin dependent), firm 

adhesion to the vascular endothelium (integrin dependent), and diapedesis of neutrophils 

(PECAM-1-dependent) has been extensively researched and described, relatively little is 

known about extravascular interstitial migration through densely packed collagen within 

the corneal stroma. Much of what we do know has come from in vitro 2-D or 3-D matrix 

models which are limited by their ability to duplicate the nuances of the physiological or 

physical native environment. Another consideration in in vitro studies that is often not 

taken into consideration is the activation state of the neutrophils. Circulating neutrophils 

and transmigrated neutrophils are significantly different in their expression of surface 

molecules as well as other cellular processes [54]. 

 Considered to be primarily adhesion molecules for cell-cell or cell-ECM binding, 

integrins are also important for cellular functions such as cell migration and signaling 
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[55-58].  Neutrophil migration within the corneal stroma involves contact with 

extracellular matrix and resident stromal keratocytes, and cell surface integrin receptors 

have been implicated in these interactions [55]. It has recently been shown that 

neutrophils make close contact with keratocytes during the process of interstitial 

migration and these contacts are mediated by the leukocyte unique β2 (CD18) integrins 

(Figure 56) and ICAM-1, a β2 integrin ligand [9, 44].While members of β2 (CD18), and 

additionally,  β1 (CD29) and β3 (CD61) integrin families are expressed on extravascular 

migrating neutrophils [55, 59, 60] it has been concluded from in vitro studies that 

locomotion of activated neutrophils is dependent on integrin binding on 2-D surfaces but 

is independent of integrin binding in 3-D matrixes [53, 57, 59, 61-64].  However, the role 

of integrin binding during in vivo corneal stroma migration has yet to be clearly defined. 
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(images courtesy of D. Gagen)  

Figure 56 – Loss of close contact 

Electron micrographs (A, B) from wild type and (C, D) from CD18
-/- 

mice. The ‘N’s” 

identify neutrophils, the white arrow heads show interface between neutrophils and 

keratocytes, black arrow heads the interface between neutrophils and collagen. The 

enlarged view (D) of (C) shows gaps between the neutrophil and keratocyte. Scale bars  

2µm (A),0.5 µm (B), 5 µm (C), 1 µm (D). 
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The purpose of this study was to determine the relative contribution of β1 (CD29), β2 

(CD18) and β3 (CD61) integrins to neutrophil locomotion in the inflamed murine cornea 

by investigating in vivo effects of blocking antibodies against the indicated integrins.  In 

vivo data obtained using Heidelberg Retinal Tomographer III with Rostock Corneal 

Module (HRT-RCM) time lapse sequences provided the means, for the first time, to 

quantify speed and directionality of cellular movement while observing neutrophil 

interaction with stromal keratocytes in the living eye.  

3.3.2 Results 

 

Identification of inflammatory cells 

The Algerbrush provided an efficient means to remove the corneal epithelium in a 

vertical stripe that was approximately 0.5mm in width. Representative corneas previously 

examined by electron microscopy verified that the basement membrane remained intact 

(data not shown).  At the time of imaging, eight hours after wounding, the wound 

remained open and the stromal thickness was increased compared to the unwounded as 

seen with the HRT through-focus. As others have reported, scanning with the HRT-RCM 

reveals a well defined keratocyte network  in the mouse and rat cornea which was easily 

visualized in the regions of interest in our imaging [45]. Associated with this network, in 

the anterior stroma, we observed numerous, highly reflective bodies, ranging in shape 

from round to stretched-out oval with a typical size of approximately 3-4µm by 8-10µm. 

These bodies were not seen in uninjured corneas and were presumed to be infiltrating 

inflammatory cells.  
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 In order to demonstrate the identity of these cells, harvested corneas were 

immuno-stained for Ly-6G, a specific neutrophil marker. A cornea whole-mount showing 

neutrophils labeled with Ly-6G is shown in Figure 57. At 8 hours after the epithelial 

injury there are still many neutrophils which have not reached the central wound area.  

The dotted rectangle in this figure is the area covered by the HRT-RCM montage in 

Figure 58. The distribution and density of cells appears comparable. In the close-up 

views in Figure 59 it is even more apparent that cell density was similar for the 

comparable areas imaged by HRT-RCM as compared to whole-mount Ly-6G labeled 

cells. This information, along with the size, speed of locomotion (as seen with time lapse 

imaging), and time of appearance in the stroma [65], positively identified the cells as 

neutrophils. The pattern of infiltrating neutrophils showed the greatest density in the 

paralimbus and gradually tapered off toward the center of the cornea. If the wound was 

slightly off center, there were considerably more neutrophils on the side with the least 

distance between the wound and the limbus, either nasal or temporal. Thus suggesting a 

stronger inflammatory stimulus is received at the limbus closest to the wound. Likewise, 

within the wound there were clusters of neutrophils at the top and bottom, which were 

obviously close to the limbus, but the rate of migration toward the center was apparently 

reduced, as seen by the distribution pattern (Figure 57). In a previous section it was 

shown with time-lapse imaging that the speed of neutrophil locomotion is reduced 

beneath the wound as compared to the parawound. 
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Figure 57 – Ly-6G immune montage 

A montage of 10x images of the entire mouse cornea whole-mount showing the pattern 

of infiltrating neutrophils (light spots) 8 hours after epithelial injury. Neutrophils were 

labeled with a primary antibody against Ly-6G conjugated with FITC. The epithelial 

wound is oriented vertically in the center of the image with relatively higher density of 

neutrophils at both ends. The dotted rectangle (600 µm horizontally) represents the area 

shown in Figure 58.  
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Figure 58 – HRT montage of same eye as Figure 57 

This HRT-RCM montage covers approximately the same area marked on Figure 57 at the upper 

end of the wound. In this image the dotted lines mark the edges of the wound at 8 hours after 

injury. The density and distribution of highly reflective bodies corresponds with the labeled 

neutrophils from Figure 57. 
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Figure 59 – Ly-6G compared to HRT 

The image on the left is a close-up from Figure 57 (Ly-6G labeled) and the image on the 

right a close-up from Figure 58 (HRT). Although not a perfect match the distribution of 

cells is quite similar strongly suggesting they represent the same population. 
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Diffusion of blocking antibodies 

Blocking antibodies against the β1 (CD29), β2 (CD18) and β3 (CD61) integrin families 

were topically applied at the time of wounding and imaged 8 hours later with HRT-RCM 

in order assess the relative contribution of each to neutrophil locomotion. Penetration and 

diffusion of the blocking antibody within the stroma was assessed by 

immunofluorescence microscopy after incubating the excised corneas in fluorophore-

conjugated secondary antibodies. With the removal of the epithelial barrier in the wound 

and the small molecular size of the unconjugated blocking antibodies, diffusion of the 

antibody was evidenced by the labeling of neutrophils in all regions of the cornea (Figure 

60). 
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Figure 60 – Immuno-labeling to show antibody diffusion 

In each case FITC (green) conjugated secondary antibodies labeled neutrophils throughout 

the cornea showing that the primary blocking antibodies had diffused through the stroma 

from the wound to the limbus. Each of the four images was obtained mid-way between the 

wound and the limbus. Lower right corner of  control image shows some green background 

labeling. Scale bars = 10 µm. 
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Motility parameters 

The effect of integrin blocking was assessed by the average cell speed (CS) and cell 

velocity (CV). The ratio of CV to CS confinement ratio (CR) served as an indicator of 

how closely a cell track followed a straight path. Table 13 shows the values for CS, CV 

and CR for each of the experimental conditions.  There was no significant difference in 

CS (p=0.73) or CV (p=0.89) when the same observer analyzed the same corneas on two 

separate occasions.  

 The average CS in the IgG control eyes was 7.56±0.20 (SE) µm/minute with a CR of 

0.58±0.02 (Figures 61 and 62). No significant difference in either parameter was found 

with blocking β2, or β3. However, β1 blockade produced significant reduction in CS and 

CR (31 %, 33% respectively). The reduction in speed indicates that β1 integrin binding 

facilitates neutrophil migration while the reduction in CR indicates the cells followed a 

less direct path and binding may help to steer the movement.  In order to determine if 

blockade of one integrin was compensated by increased dependence on one of the others, 

the three blocking antibodies were combined into a single cocktail with results not 

different from β1 blockade alone (data not shown). 

 Figure 63 (A-D) shows representative mean displacement plots (MDP) for each of the 

experimental conditions. The mean displacement plot is a factor of velocity and the 

persistence of directional motion, or directedness. The slope for β1 blockade was 

significantly less than the control group which corresponds with the lower CV as well as 

the lower CR noted in Figure 62. The other experimental groups were not significantly 

different than the control group. 
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Figure 61 – Integrin blocking CS and CV 

Both cell speed (CS) and cell velocity (CV) were significantly less with CD29 (β1) 

blockade.  
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Figure 62 – Integrin blocking confinement ratio 

The confinement ration (CR) was significantly less after blocking CD29, indicating the 

neutrophils were migrating in a less straight path. 
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Mean Displacement Plots (mean displacement in microns vs. sqrt of time) 
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Figure 63 – Integrin blocking mean displacement plot 

Mean displacement plots from 3 representative corneas in each experimental group show 

a significantly flatter slope with the CD29 cells. 
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Figure 64 – Integrin blocking tactic index 

The tactic index was not significantly different for any experimental group. Indicating 

that integrin blocking had no effect on the group migration directionality. 
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Table 13 – Motility summary 

 Control  CD18  CD29  CD61  

CS  7.56±0.20  7.62±0.23  5.18±0.17*  7.41±0.23  

CV  4.47±0.21  4.41±0.22  2.18±0.18*  4.43±0.25  

CR  0.58±0.02  0.55±0.02  0.39±0.03*  0.58±0.02  

TI  0.41±0.06  0.47±0.04  0.48±0.04  0.38±0.08  

n  12x12 11x12 7x12 7x12 

 

  

Speed and velocity μm/min ± standard error of the mean. The number of samples, n = 

number of corneas x number of cells per cornea (* = p<0.05) 
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 The TI was not significantly different between the experimental groups (Figure 64), 

indicating that none of the blocking antibodies affected the guidance of the cell group. 

That is, migration of the population of cells in a specific direction was not affected, only 

the velocity. Out of 29 corneas imaged, 19 showed a population migration direction 

moving toward the wound, 7 were parallel, and 3 away from the wound. There was no 

trend for the different experimental conditions that would indicate an effect on direction 

of migration toward or away from the wound. The average TI for the groups was not 

significantly different and ranged from 0.37±0.07 to 0.48±0.08 which indicates that 

whatever guides cell migration is only about 40% effective in guiding the groups of cells 

in a particular direction, which in a few cases was away from the wound. The TI was not 

significantly different among the experimental groups, suggesting that none of the 

experimental conditions affected the group tendencies to move in a particular direction. 

 The migration angle which describes the average direction of displacement for a 

group of cells was determined to be positive (toward the wound) 59% of the time, neutral 

26%, and negative 15% of the time (Figure 65). 
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Figure 65 – Group migration angle 

A group of cells was considered to be moving toward the wound (+) if the migration 

angle was within ±75
o
 of perpendicular (angle θ) to the orientation of the wound, neutral 

movement if ±15
o
 of parallel (angle φ), or (-) otherwise (A). The vector average for 12 

tracked cells (B) defines the migration angle.  
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Stromal thickness and structure 

In addition to recording image sequences with the HRT-RCM, volume scans were also 

obtained which provided a measure of stromal thickness.  In comparing average thickness 

between the experimental groups, there was no significant difference. All of the 

experimental groups were significantly thicker (approximately 35%) than the uninjured 

average thickness (Figure 66). 

 Random corneas from each of the experimental groups were processed as histological 

sections using the biomicrowave and examined with the DeltaVision microscope. There 

were no observable differences among the corneas with particular attention given to the 

location and degree of interlamellar separations. 

 Our results then show that the blocking antibodies diffused throughout the stroma and 

β1 blockade alone reduced cell speed and velocity, and increased the deviation from a 

straight path without obvious physical differences in the stroma. However, none of the 

blocking antibodies prevented the migration of neutrophils or affected the group tactic 

response.  
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Figure 66 – Integrin blocking stromal swelling 

Stromal thickness was determined by HRT-RCM through focus. Eight hours after 

epithelial wounding there was approximately 35% swelling as compared to the 

uninjured. The blocking antibodies had no significant effect on the amount of swelling 

as compared to the IgG control. 
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3.3.3 Discussion 

The purpose of the current study was to investigate the potential role of three integrin 

families in the interstitial migration of neutrophils in the inflamed murine cornea. In vivo 

imaging with the HRT-RCM provided evidence that neutrophil locomotion within the 

inflamed corneal stroma is largely integrin-independent. 

 Histological sections can only provide information about a single instance in time 

and, as previously pointed out, they introduce the possibility of artifacts. In spite of these 

shortcomings, they have given us invaluable details about the physical environment, 

morphology of cells, and, with immunohistochemistry, they have shown expression and 

localization of molecules involved in cellular activities. Live cell in vitro studies have 

provided additional information about the dynamics of these cellular activities, but even 

the most robust 3-D matrixes fall short in terms of incorporating all the nuances of the in 

vivo environment. In vivo studies have been limited due to the lack of methods for 

observing cells in their unperturbed environment. Imaging technology is constantly 

advancing and developing tools for increasing our understanding of many of the cellular 

activities previously only speculated.  

 Although some aspects of motility research may require in vitro studies, where 

extraneous variables can be eliminated or accounted for, characterizing migration of 

neutrophils within the context of their native environment has to be considered in order to 

have a complete understanding of the mechanisms involved and the controlling factors. 

As described in chapter 1, the corneal stroma has a highly structured and compressed 

collagen fibril arrangement undergoing force applied by the intraocular pressure, as well 
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as osmotic forces. The physical structuring of the collagen fibrils into criss-crossed 

lamellae, in addition to the keratocyte network, interspersed between them, contribute to 

producing a unique physical environment and one that undoubtedly has significant 

impact on neutrophil migration through this area. Besides the physical challenges of 

migration in the stroma, there are interactions between neutrophils and their surrounding 

cells and ECM that potentially modulate neutrophil trafficking. There are numerous 

cytokines and chemokines present within the stroma that are temporally variable. The 

only way to observe neutrophils with all these variables in play is via in vivo microscopy. 

 The optical principal of a confocal microscope, simply stated, is a microscope that 

allows only in-focus light rays from a single focal plane to pass through the oculars or the 

image capturing device. The term confocal refers to the fact that the point in the image 

plane is coincident with or confocal with the point source [66]. The use of confocal 

microscopy for in vivo imaging has been particularly useful for the cornea. There have 

been several in vivo confocal microscopes developed for clinical use of the human cornea 

(see Patel, et al., 2007 for a complete review) [67]. It is also becoming common for 

corneal research, as well [45]. The HRT, such as used for the experiments in this 

dissertation, has provided the opportunity to image dynamic processes such as leukocyte 

rolling along the vascular endothelium in response to inflammation [68]. 

 The cornea, being an externally visible transparent structure that requires leukocytes 

to travel a considerable distance from the point of extravasation to the remote central 

cornea, lends itself to in vivo studies of leukocyte interstitial migration in the cornea. In 

vivo confocal microscopy using such instruments as the Heidelberg Retinal Tomographer 

(HRT) with the Rostock Corneal Module (RCM) provides such a means to record in vivo 
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imaging of inflammatory cells without surgical exposure of the tissue being examined. 

The HRT-RCM was designed for clinical use but requires no modification for imaging 

murine corneas and provides high resolution images [45, 46]. However, to the best of our 

knowledge, this is the first time it has been reported for time lapse migration studies of 

leukocytes in the murine cornea. The HRT-RCM provides a means for assessing in vivo 

dynamics that are not seen in vitro thus opening up the possibility of directly observing 

many tissue and cell processes. 

 Corneal insult results in pro-inflammatory signaling that engages the innate immune 

system and follows a well characterized cascade of events that initially involves 

extravasation of large numbers of leukocytes (primarily neutrophils) from systemic 

circulation within 1-2 hours. This process of neutrophil extravasation which has been 

thoroughly studied and well characterized, requires adhesion molecules. Selectins 

provide a means of slowing the passage of neutrophils, causing them to roll along the 

vascular endothelium and potentially become firmly adherent via integrins after which 

they transmigrate into the extravascular tissue, becoming activated in the process. The 

activated and transformed neutrophils must then provide intrinsic locomotion through 

avascular tissue consisting of a dense matrix of near-orthogonally crossed layers of 

parallel collagen fibrils with inter-connected keratocytes interspersed between these 

collagen lamellae. Keratocyte death directly beneath the wound begins shortly after an 

epithelial wound [42, 43, 69, 70] thus infiltrating neutrophils must migrate through 

regions with intact keratocytes as well as those with dead keratocytes; two distinctly 

different environments. 
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 Neutrophils are among the fastest moving cells in mammals [62]. Studies have 

reported that neutrophils locomote in amoeboid fashion at average speeds of as low as 

7um/min to possibly as high 30 µm /min [48, 51, 64, 71] Not surprisingly, our average 

cell speed in the parawound areas of control eyes (7.56±0.20 µm/minute) is somewhat 

slower than documented speeds for neutrophils in many other tissues (Table 14) likely 

due to the compact nature of the corneal stroma. 

 

 

 

 

 

 

Leukocyte motility has been previously studied primarily on two-dimensional surfaces 

and in three-dimensional culture media. The pattern of cell movement in 2D in vitro 

models has been described as random walk and is integrin dependent [48, 51, 64, 72] 

From 3-D in vitro experiments it has been reported that neutrophils may be integrin 

independent and operate by contact guidance, following paths of least resistance and 

using mechanical force to squeeze through the matrix [48, 53, 57, 59, 61].  These 2-D and 

3-D experiments have provided much information however, neutrophils in vivo are in a 

complex, dynamic environment that can only partially be replicated in vitro and this 

environmental difference may have profound effects on how the migrating cells perform. 

For example, in vivo the stroma is composed of well organized compacted collagen 

Table 14 - Neutrophil speed in other tissue 

Tissue Chemoattractant Speed (um/min) 

Cremaster PAF 13.8±2.6 

Cremaster KC 10.9±1.8 

Mesentery PAF 14.7±1.4 

Iris Multiple endotoxin 7.6±4.7 

(Planck, et al. 2008) [5] 
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fibrils, which limits neutrophil migration to the potential spaces between lamellae. By 

contrast, 3-D collagen gel matrices are composed of randomly oriented collagen, which 

do not restrict migration to specific regions within the gel. Moreover, the phenotype of 

the extravasated neutrophil is known to be very different from that of the circulating 

neutrophil.  

 Since in vitro studies routinely use freshly isolated peripheral blood neutrophils, the 

behavior of these cells in 3-D matrices may differ markedly from that of neutrophils that 

have undergone diapedesis. In fact diapedesis likely prepares neutrophils for engagement 

with the ECM [54]. The corneal stroma has an organized architecture, contains cells and 

an assortment of proteoglycans, all of which may interact with migrating leukocytes. For 

example, Behzad et al. (1996) presented evidence that interstitial fibroblasts play a 

crucial role in providing directional information to migrating neutrophils [50]. Even 

though it has been shown that neutrophils migrate through 3-D matrices without integrin 

binding, the question of whether or not integrin binding affects neutrophil migration in 

vivo has not been definitively answered.  

 Integrins have been shown to be vital for cell migration in many situations however 

there are other locomotion mechanisms that may be employed. The role of integrins in 

neutrophil migration through the corneal stroma still remains unresolved.  Results from 

our experiments indicate that neutrophil CS and CR were significantly decreased when 

blocking CD29 (β1) whereas, CD18 (β2) and CD61 (β3) integrin blockade had no effect. 

Suggesting at least a small role for CD29 (β1) integrins in neutrophil migration within the 

cornea interstitium.  
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 β1 (CD29) integrin has been shown to be important in corneal development and in 

fact β1 (CD29) knockout mice die before birth [78].  However, conditional knockout of 

β1 (CD29) later in corneal maturation produced no structural differences compared to 

control corneas [79]. Dermal fibroblasts maintain the compactness of a collagen fiber 

network in vitro and control the tendency for the dermis to swell in vivo via CD29 (β1) 

mediated binding between fibroblasts and collagen [73]. Following this line of reasoning, 

it might have been expected that CD29 (β1) blocking would cause the keratocytes to 

release their binding to collagen fibrils resulting in increased swelling. If this were true, it 

might help to explain the decrease in motility parameters noted with CD29 (β1) blocking. 

However, our results showed this not to be the case as none of the blocking antibodies 

had a significant effect on the amount of stromal swelling after wounding. 

 β1 (CD29) integrins, also known as VLA (very late antigen) have several alpha units, 

are expressed in numerous cell types, and show high affinity interactions with proteins of 

the ECM [59]. Neutrophils have been shown to express α4β1, α5β1, α9β1 integrins which 

play a role in their adhesion and migration [55, 56, 74].  In addition, α2β1, α4β1, α5β1, 

α6β1 have been identified in stromal keratocytes. Their main ligands are laminin, 

fibronectin, and collagen [75, 76].  Our results showing that blocking β1 (CD29)  reduced 

the speed of locomotion suggests that neutrophils use integrin(s) from this family to form 

“foot holds” (adhesive traction forces) that facilitate movement but the fact that speed 

was only reduced 28% shows that other mechanisms for movement co-exist. Werr, et al. 

[77] found more than 70% decrease in neutrophil speed in rat mesentery in vivo using β1 

(CD29) blocking antibody while Friedl, et al. [63] reported that simultaneous blocking of 

β1 (CD29) , β2 (CD18) , β3 (CD61) , and αV integrins had no effect on T cell speed. 
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 Our in vivo imaging showed neutrophils migrating preferentially along the keratocyte 

network in regions of the cornea where keratocytes were still intact. This is consistent 

with findings of Petrescu and colleagues who showed an extravascular role for neutrophil 

β2 (CD18) integrin in mediating close surface contacts with corneal keratocytes [44].  In 

addition Gagen, et al. showed that ICAM-1 (CD54), a ligand for β2 (CD18) integrin 

which is constitutively expressed on keratocytes and up-regulated during inflammation, is 

also required to maintain close contacts between neutrophils and keratocytes [9].  These 

findings raised the possibility of functional necessity of these adhesion molecules in the 

cornea.  Burns and colleagues previously demonstrated a novel extravascular role for β2 

(CD18) integrin in mediating PMN motility on cultured lung fibroblasts [80].  Indeed a 

recent study has shown that neutrophils and keratocytes make β2 (CD18) -dependent 

close contacts during corneal stroma migration and that the keratocytes act as a contact 

guidance mechanism, or “cellular highway” for neutrophil migration [44].  However our 

results support the notion that β2 (CD18) -dependent close contacts between neutrophils 

and keratocytes serves a purpose other than facilitating neutrophil migration. In 

agreement with our findings, previously it was shown that extravascular neutrophil 

accumulation at the limbus consisted of two waves, the first of which was β2 (CD18) 

dependent and the second was not. β2 (CD18) -/- integrin mice showed an absence of the 

first limbal wave, and were delayed at 24 hours in their accumulation at the limbus. After 

24 hours they moved unhindered to the site of wound [65].  Thus showing that β2 (CD18) 

-independent mechanisms alone are adequate for neutrophil migration.  

 Even though several investigations have indicated a role for β2 (CD18) integrins in 

leukocyte chemotaxis, in our in vivo wound model, β2 (CD18) integrins did not appear to 
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have a significant role in extravascular neutrophil migration.  The role of β2 (CD18) 

integrins is therefore likely to be through signaling, modulating activity of other integrins 

and/or cytoplasmic proteins rather than cell adhesion [59, 60, 81].  According to 

Saltzman, et al., 1999, neutrophil migration through collagen gels is CD18-dependent but 

only under conditions of high hydration, suggesting adhesion is only important when 

fiber density is relatively low [82]. As mentioned in chapter 1, the cornea stroma is 

maintained in a relatively deturgescent state and can undergo significant swelling if 

homeostasis is disrupted such as after an epithelial injury. Thus suggesting that stromal 

edema may have a bearing on the mechanism of neutrophil locomotion. Neutrophils, 

however, migrate between collagen lamellae rather than between individual collagen 

fibrils so in vivo studies are needed to confirm this possibility. 

 The third family of integrins investigated in this study, β3 (CD61) is essentially 

represented by only one member, αVβ3 found on both neutrophils and stromal 

keratocytes [75, 83]. Its ligands include fibronectin, vitronectin, fibrinogen, and tenascin-

C which have been found to be present in inflamed corneal stroma [60]. Our results 

indicate that β3 (CD61) serves a purpose other than facilitating neutrophil migration.  

 The lack of effect when blocking β2 (CD29) or β3 (CD61) could have been due to a 

compensatory shift to dependence on one of the other integrins. However, when the three 

integrin blocking antibodies were combined the results were not different from what was 

seen with β1 (CD29) alone.  

What are most informative for migration of a group of cells into the cornea are 

parameters which describe the group movement. In this study the vector average was 

used to represent the movement of a group of cells. This vector average gives a velocity 
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(migration velocity, MV) and a direction (migration angle, MA). The vector average 

takes into consideration the direction of displacement: to the right and up are positive, 

and to the left and down are negative. The MV and MA quantify the group movement as 

a single cell representing the group. A parameter not previously used but included in our 

analysis is the ratio of the average CV to the resultant MV.  We chose to call this 

parameter the “tactic index” (TI). It indicates how closely the cells within the group 

follow a single direction of displacement. In our experiment the MA was compared to the 

location of the wound as a means to illustrate whether the infiltrating cells were being 

accurately guided to the site of inflammation. 

 The average TI (Tactic Index) for the groups was not significantly different from one 

another and ranged from 0.37±0.07 to 0.48±0.08, indicating that migration guidance is 

only about 40% effective in guiding the groups of cells in a particular direction. This 

would suggest a certain amount of randomness as well as lack of a strong or non-

ambiguous directional guidance stimulus. Our in vivo model finds the neutrophils in a 

very complex environment with varying physical constraints as well as multiple 

competing local transient chemoattractant gradients. In a few cases the MA (Migration 

Angle) was away from the wound. Heit, et al. observed a similar behavior when they 

reported that a small percentage moved against gradient, even with fMLP stimulation 

[84].  

 In summary, the HRT-RCM provided the means to observe and quantify neutrophil 

migration in vivo and assess the effect of blocking each of three integrin families, β1 

(CD29), β2 (CD18) and β3 (CD61), known to be expressed on extravascular neutrophils. 

Our results show that β2 (CD18) and β3 (CD61) blockade had no significant effect on 
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migration while β1 (CD29) blockade produced a significant, but not total, reduction in 

CS (Cell Speed), CV (Cell Velocity), and CR (Confinement Ratio), thus indicating that 

neutrophil locomotion within the corneal stroma does not require integrin binding, though 

β1 (CD29) binding facilitates the process, the details of which remain to be determined. 

Our experimental results are from an epithelial wound model in the murine cornea and it 

may be quite likely, as others have reported, that dependence on integrin binding for 

migration is specific to the site and stimulus of inflammation and may change over time 

as the inflammatory response evolves [51, 53, 56, 61, 63, 65, 84]. 
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CHAPTER 4 - DISCUSSION 

 

4.1 - General summary  

In general terms, inflammation is an organism’s response to injury which defends against 

invading pathogens that may accompany the injury, as well as being an initial step in the 

healing process. Thus inflammation is critical to survival. Neutrophils are key 

constituents of inflammation and their migration to the site of injury is necessary for them 

to participate.  

The purpose of this dissertation was to provide insights into the mechanisms of 

neutrophil migration through the corneal stroma, specifically addressing the influence of 

the keratocyte network on migrating neutrophils and the relative contribution of β1 

(CD29), β2 (CD18) and β3 (CD61) integrins to neutrophil locomotion in the inflamed 

murine cornea. Even though the emphasis was on migration and the role of integrins in 

the process, it must be kept in mind that integrins do more than simply provide a physical 

adhesion point, and that migration involves more than simple locomotion. While 

neutrophils are moving through the interstitium they are interacting with the extracellular 

matrix and the cells which it contains. These interactions likely trigger important events 

in the inflammatory cascade. Thus, interstitial migration is a critical step but only a single 

step in the complex process of inflammation.  

 The significance of this dissertation is highlighted by the fact that experiments were 

performed in vivo. Migrating cells were therefore interacting with their “normal” corneal 

environment, which cannot be duplicated in vitro nor with tissues other than the cornea. 

The benefits of in vivo studies are only present when the animal being studied is 

maintained at a stable, homeostatic state. Therefore every effort was made to keep the 
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animal physiologically normal during the imaging process to be sure that all the subtleties 

of the interstitium were in-play.  

  In order for in vivo experiments to be representative, the animals used must be at an 

age of maturity that provides a relatively stable environment. As described in chapter 1, 

in the early postnatal period the mouse cornea undergoes major structural and 

physiological changes that would undoubtedly have an effect on neutrophil migration. In 

order to avoid confounding variables that could have a significant impact on in vivo 

neutrophil migration, it was necessary to determine the age at which the corneal stroma 

reaches maturity. This was the rationale for expending considerable time and effort in 

establishing a minimum age for the animals used in these experiments as part of Aim 1.  

Additionally from Aim 1, accurate histological representation was necessary to be able to 

compare the stroma beneath the wound to the parawound, and potentially reveal evidence 

of gross structural changes that may have occurred with the addition of blocking 

antibodies.  

 Chapter 1 described the complex nature of the corneal stroma. The cornea has been a 

scientific curiosity for centuries due to its unique qualities. In spite of enormous research 

efforts over the years, there is still more to be learned. Electron microscopy, X-ray 

diffraction, and other methods have given us a concept of its structure, while other 

methodologies have given us information about its biomechanical properties. However, 

the question of how neutrophils (leukocytes) are able to migrate through the stroma is 

still somewhat of an enigma. The stroma is tightly compacted with keratocytes squeezed 

in between the lamellae. Many forces combine to hold the stroma together. Yet, 

somehow, neutrophils are able to rapidly migrate through the stroma without apparent 
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alterations in their wake. Aim 2 showed that neutrophils preferentially (exclusively?) 

migrate along the network of keratocytes, between lamellae.  The question then arose 

whether neutrophils use integrin-dependent binding to move along the keratocytes or 

whether the keratocyte network is a “path of least resistance”. This question was 

addressed in aim 3. 

 Aim 3 investigated the role of integrins in neutrophil migration by blocking three 

separate integrin families known to be expressed by activated neutrophils and/or 

keratocytes.  In vivo studies such as this are particularly important for determining the 

role of integrins during neutrophil migration since there is still debate whether they are 

required or not, based on 3-D in vitro studies. If integrin binding were responsible for the 

preferential migration of neutrophils along the keratocyte network, it would have been 

expected that motility decrease with blockade of β2 (CD18) integrins (on neutrophils) 

since keratocytes upregulate surface expression of ICAM-1, a ligand for β2 (CD18) 

integrins. However, this was not the case. β1 (CD29) integrins, which are found on 

keratocytes and neutrophils, bind with elements of the ECM but one study showed them 

to make homophilic cell-cell binding [1].  Although, this is not a widely reported finding, 

it does raise the possibility that β1 (CD29) integrin homophilic binding could potentially 

be involved in neutrophil-keratocyte adhesion. Indeed, when β1 (CD29) integrins were 

functionally blocked, the neutrophils migrated significantly slower and followed a more 

random path.  However, their preferential migration along the keratocyte network was not 

affected. αVβ3 integrin is also present on both neutrophils and keratocytes but it has not 

been shown to have homophilic interactions and showed no effect on neutrophil motility 

when it was blocked. It was therefore shown that, of the three integrin families tested, 
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only β1 is involved in facilitating neutrophil locomotion in the corneal stroma, but even if 

it is blocked migration continues at a somewhat slower rate. The conclusion is that 

neutrophil migration through the murine cornea stroma following a non-infective 

epithelial abrasion is partially dependent on β1 binding. Whether this effect is due to loss 

of homophilic interaction between neutrophils and keratocytes, loss of heterophilic 

interaction between neutrophils and components of the ECM, or alterations in the 

extracellular environment remains to be determined.  

 

 

Significance of research 

Acute inflammation is an initial phase of the innate immune response and is of critical 

importance for an individual’s survival. Not only is it a defense against invading 

microbes but is also an integral component of wound healing. Neutrophils are key players 

in acute inflammation and have multiple roles including pro-inflammatory signaling, 

killing pathogens, aiding in the resolution of inflammation, and releasing cytokines and 

growth factors to promote healing. It is important for neutrophils to reach the site of 

injury as quickly as possible to prevent the spread of invading microbes introduced 

through the wound. Anything that slows the process puts the tissue at risk for infection. 

The whole cascade of events is complex and our understanding of it is only partial. Every 

event is interrelated with others and therefore research aimed at one event may have 

implications for others as well. While understanding the mechanism of neutrophil 

locomotion is important for a number of reasons, the process of migration is more than 

locomotion. The migrating cells interact with other cells and their extracellular 
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environment, initiating signal transduction which in turn initiates or modulates other 

events. Therefore research designed to elucidate migration mechanisms, the molecules or 

events that are involved or not involved, provides details to aid in the overall 

understanding of inflammation.  

 Normally inflammation is a necessary and well controlled process. However, for 

many reasons, the inflammatory response may be exaggerated or depressed and may not 

resolve properly leading to chronicity. Modulation of inflammation, when appropriate, 

without interrupting or interfering with the overall process is the desired outcome. By and 

large treatment for inflammation has been aimed at suppressing pro-inflammatory 

factors. However, these same treatments ironically also suppress some of the naturally 

occurring anti-inflammatory agents. They also make one more susceptible to infection 

and slower to heal. Perhaps medical treatment needs to be more concentrated on 

promoting the anti-inflammatory processes to encourage the individual’s own defenses to 

resolve inflammation.  The goal should be “bringing closure” rather than interrupting the 

process. Having a thorough understanding of the intricate cascade of events is 

prerequisite to successful management of inflammation. 

 Neutrophils were shown to preferentially migrate along the keratocyte network and 

predominantly in the anterior stroma. We have no solid evidence for why they prefer the 

anterior stroma but it is likely that it may be due to structural differences between anterior 

and posterior stroma. Refractive corneal procedures target the anterior stroma and it 

therefore seems plausible that this type of stromal alteration may have an effect on the 

ability of neutrophils to migrate. Collagen cross-linking has been used for treatment of 

keratoconus. Whether keratoconic corneas are treated with collagen cross-linking or not, 
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in either case their stromal architecture is abnormal and undoubtedly has ramifications for 

neutrophil migration. Even though cross-linking may have benefits for preventing the 

progression of corneal ectasia, it could possibly have a deleterious effect on neutrophil 

migration.  There are many situations where the stromal architecture and/or keratocyte 

network are altered. Perhaps in these situations neutrophils must switch their means of 

locomotion from mechanical squeezing (“chimneying”) to integrin-dependent binding to 

components of the ECM. 

 It is clearly evident that much additional research is needed in order to fully 

understand the intricate processes involved in neutrophil interstitial migration and 

through this understanding will emerge improved treatment and management of corneal 

wounding. 

 

Limitations of this research: 

1. These studies only looked at a single time point in the inflammatory process. It is 

possible that blocking antibodies would have other effects not seen at 8 hours 

which is early in the infiltration wave. 

2. The mouse cornea is different in many ways. It is possible that integrins play 

more or less of a role in human corneal neutrophil migration. 

3. A single strain of mouse was used and they were all female. The experiments 

could be repeated with and males and females compared, as well as comparison 

with other strains. 
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4. These studies used a non-infectious wound model. In the presence of other 

molecules produced by infectious agents there is likely to be a stronger 

chemoattractant which may alter the mechanism of neutrophil motility. 

5. Cells were tracked for 10 minutes. Longer tracking times may provide additional 

clues to changes in motility resulting from integrin blocking. 

6. These studies were in the cornea only. Neutrophil migration in other tissues is 

very likely different. The surrounding extracellular matrix undoubtedly has a 

significant effect and the cornea structure is unique in many ways. 

7. There are possibly other adhesion molecules involved. Other potential adhesion 

molecules present could be identified with Western blotting and each blocked 

with the appropriate antibody. 
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4.2 - Future Directions 

 Using the HRT-RCM for in vivo time-lapse imaging of neutrophils many other 

research questions can be investigated in mice, as well as in other animals, including 

humans. There are numerous corneal diseases, surgical and medical treatments that may 

alter the normal stromal environment and subsequently have an impact on the 

inflammatory process. A common example would be the effects noted with contact lens 

wear. Minimizing the pro-inflammatory effects from contact lenses and their associated 

solutions is of significant concern to product developers. In many instances the HRT-

RCM may provide valuable in vivo insights for product development and for 

management of product-related complications. 

 Before considering altered corneas, more investigation of the normal corneal response 

to inflammation is needed. In this dissertation the role integrins play in neutrophil 

migration was addressed. It was shown that neutrophils are capable of migrating through 

the stroma without the aid of β1 (CD29), β2 (CD18), or β3 (CD61) integrin binding. The 

presumed alternative mechanism of migration would be mechanical squeezing through 

the confined space between collagen lamellae. This remains to be shown, but in vivo 

imaging can help in this regard. It might be that if the space between lamellae were 

expanded beyond a certain point, the neutrophils would be unable to use frictional forces 

for squeezing and would then revert to integrin binding.  In order to test this hypothesis, 

corneas could be made hyper-edematous and neutrophil migration parameters compared 

to baseline. With the wounding that is applied to the corneas, there is some amount of 

edema.  However this may not be enough to produce the change in migration method. 
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Additional edema can be induced by applying hypotonic solutions to the anterior surface 

and blocking the action of the endothelial cell pump. 

 Another question remains to be addressed. What is the relationship between 

neutrophil migration and keratocytes? The present study indicates that integrin binding 

between neutrophils and keratocytes is not necessary for the neutrophils to follow the 

keratocyte network. If keratocytes were induced to undergo apoptosis and then wounded, 

would neutrophils be able to migrate through an area void of keratocytes? This may also 

be like a secondary wound where more neutrophils are recruited before keratocyte 

numbers are back to baseline. In chapter 3 it was shown that neutrophils moved 

significantly slower beneath the wound where keratocytes were lost. As mentioned, there 

are several reasons why this may occur. If the experiments were repeated and a potent 

neutrophil chemoattractant applied to one side of the cornea it might be shown that the 

neutrophils deviated from the keratocyte network as a result.  

 There have been several suggestions for the attractants which guide infiltrating 

neutrophils toward the wound site.  Chemokines released from the damaged epitheium or 

those from the tears that found their way into the stroma once the epithelial barrier was 

breeched have been implicated. Another possibility that has not been explored in the 

cornea is the contribution of necrotaxis. It has been shown that dead cells release formyl-

Methionyl-Leucyl-Phenylalanine (fMLP) and neutrophils have fMLP receptors [2]. 

Neutrophil fMLP signaling could be blocked with fMLP receptor antagonists in order to 

determine the relative contribution of this potential attractant to neutrophil migration in 

the corneal stroma. 
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 Macrophages are also reported to be intimately involved with neutrophil migration, 

but in vivo dynamics of their involvement have yet to be shown. Macrophages are readily 

visualized with the HRT-RCM and their densities determined and followed over the 

wound healing period in the same mouse. It might be possible to determine whether 

macrophages proliferate in the cornea or are recruited from the limbus [3]. The timing of 

the neutrophil peak and clearance as compared to macrophage peak and return to baseline 

may provide insight into their interaction dynamics. When they do return to baseline what 

happens to the lost macrophages? There is some evidence they may transform into other 

cell types [4, 5] . 

 Along the same lines, it has been reported by numerous researchers that neutrophils 

die once they reach the site of inflammation and are then cleared by macrophages. In vivo 

imaging may provide evidence supporting this or may show that some neutrophils go 

beyond the site and possibly return to the limbus, and possibly intravasate as recently 

described to occur in zebra fish [6].  

 Once some of the normal dynamics are explored, the same dynamics can be explored 

in abnormal corneas. An area of interest is the effects of obesity induced insulin 

resistance and diabetes on the cornea and in particular how the inflammatory dynamics 

are altered. It has been shown that the corneal stroma is altered in diabetes, thus 

potentially affecting the ability of neutrophils to migrate efficiently. Obesity induced 

insulin resistance, a precursor to diabetes, has been shown to cause a shift in macrophage 

polarity from the non-inflammatory to the pro-inflammatory phenotype [7]. Thus these 

individuals are in a sense in a state of chronic inflammation.  
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 The global prevalence of diabetes in the year 2000 was estimated to be 2.8% (171 

million) and is projected to be 4.4% (366 million) by 2030. Among those who are 

diabetic many have corneal complications ranging from mild dry eye symptoms to 

vascularization, severe stromal scarring and ulceration.  Diabetic keratopathy is under-

diagnosed largely because there has not been a practical means for diagnosing early/mild 

forms of the disease. Even with minor or no obvious keratopathy, diabetics have 

abnormal corneal wound repair. Histologically they have thickened epithelial basement 

membrane, hemidesmosomes with poor penetration of anchoring fibrils into the stroma, 

collagen irregularities, and degeneration of keratocytes and endothelial cells. A greater 

understanding of the effects of diabetes on leukocyte motility may provide clues to why 

wound healing is abnormal in these individuals. 

 Visualizing the dynamics of neutrophil migration in the living eye using instruments 

such as the HRT-RCM has countless possibilities for experimental application. 

Undoubtedly the area of intravital microscopy/imaging will continue to evolve and, as it 

does, elucidate many details surrounding neutrophil migration. 
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