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Abstract 

 Raman spectroscopy is a powerful technique for label-free molecular sensing and 

imaging in various fields. High molecular specificity, non-invasive sampling approach 

and the need for little or no sample preparation make Raman spectroscopy uniquely 

advantageous compared to other analytical techniques. However, Raman spectroscopy 

suffers from the intrinsic limitation of weak signal intensity. Therefore, time-sensitive 

studies such as diagnosis and clinical applications require improving the throughput of 

Raman instrumentation. Alternatively, surface-enhanced Raman scattering (SERS) 

improves the sensitivity by 106 to 1014 times, making the weak Raman intensity no longer 

a limitation. Nevertheless, it is still a big challenge to engineer plasmonic substrates with 

high SERS enhancement, good uniformity and reproducibility. 

 This thesis presents advances in: (1) Raman instrumentation towards high-

throughput, environmental, biological and biomedical analysis; (2) SERS substrates with 

high enhancement factor (EF), uniformity and reproducibility; (3) biosensing applications 

including imaging of cell population and detection of biomolecules towards high time 

efficiency and sensitivity. In Raman instrumentation, we have built a high-throughput 

line-scan Raman microscope system and a novel parallel Raman microscope based on 

multiple-point active-illumination and wide-field hyperspectral data collection. Using the 

line-scan Raman microscope, we have performed chemical imaging of intact biological 

cells at the cell population level. We have also demonstrated more flexibility and 

throughput from the active-illumination Raman microscope in rapid chemical 

identification and screening of micro and nanoparticles and bacterial spores. Both Raman 

microscopes have been used to evaluate the large-area SERS uniformity of DC-sputtered 
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gold nanoislands, a low-cost means to fabricate plasmonic substrates. In plasmonic 

engineering, we have introduced patterned nanoporous gold nanoparticles that feature 3-

dimensional mesoporous network with pore size on the order of 10 nm throughput the 

sub-wavelength nanoparticles. We showed that the plasmonic resonance can be tuned by 

geometrical engineering of either the external nanoparticle size and shape or the 

nanoporous network. As an example, we have developed disk-shaped entities, also 

known as nanoporous gold disks (NPGD) with highly uniform and reproducible SERS 

EF exceeding 108. Label-free, multiplexed molecular sensing and imaging has been 

demonstrated on NPGD substrates. Using the line-scan Raman microscope and the 

NPGD substrates, we have successfully developed a label-free DNA hybridization sensor 

at the single-molecule level in microfluidics. We have observed discrete, individual DNA 

hybridization events by in situ monitoring the hybridization process using SERS.  

 The advances and promising results presented in this thesis demonstrate potential 

impact in Raman/SERS imaging and sensing in environmental, biological and biomedical 

applications. 
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Chapter 1 Motivation and Scope 

Raman spectroscopy, as a type of vibrational spectroscopy, has proven to be a 

powerful and versatile tool in various fields, including biotechnology, environmental 

monitoring, food safety, forensic science, medical and clinical chemistry, diagnostics, 

pharmaceutical, material science, surface analysis, etc [1]. A tiny amount of light 

experiences energy transfer to molecules via inelastic scattering, resulting in a frequency 

shift of the scattered light.  The frequency spectrum, known as Raman spectrum, that 

gives a unique fingerprint since the frequency shifts are distinct for each molecule, allows 

simple identification and interpretation of the chemical composition of analytes. Raman 

spectroscopy has been used as quantitative analysis tool since the intensity of Raman 

signal is linear to the concentration of the analyte. Besides, Raman spectroscopy provides 

many advantages over other analytical techniques such as fluorescence, primarily due to 

the label-free and non-invasive sampling approach as well as the capability of in situ 

monitoring. However, Raman scattering is an extremely weak phenomenon, only 1 in 108 

of incident photons is Raman scattered [2]. Thus, Raman spectroscopy suffers from its 

intrinsic limitation of weak Raman signal that prevent the applications in large area 

mapping and time-resolved studies. The discovery of surface-enhanced Raman scattering 

(SERS) can alleviate this significant limitation. With SERS, the Raman intensity can be 

enhanced by 6 to 14 orders of magnitude, which improves the limit of detection (LOD) 

and time efficiency significantly. The enhancement effect requires nanostructured metal 

surface, known as SERS-active substrates. Nevertheless, it is still a big challenge to 

prepare the appropriate SERS-active substrates with high enhancement, good uniformity 

and reproducibility. Besides, SERS is a near field effect [3, 4], only Raman signals from 
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analytes reside within a few nanometers can be enhanced. In contract, Raman 

spectroscopy probes the analytes within a three dimensional focal volume. Thus SERS 

cannot take the place of Raman spectroscopy in some applications such as tissue and cell 

imaging. 

Therefore the work in this thesis develops novel Raman instrumentation for high-

throughput large-area imaging, versatile SERS-active substrates, and applications of 

Raman spectroscopy and SERS in rapid chemical mapping, diagnosis, studying 

biological process, etc. In design of novel Raman instrumentation, parallel and 

hyperspectral collection of multiple Raman spectra by a two-dimensional charge-

coupled-device (CCD) is an efficient means to high throughput Raman imaging. Indeed, 

previous investigations have demonstrated line-scan Raman microscopes with the parallel 

collection approach [5-8]. One goal of this research is the improvement of line-scan 

Raman microscope to achieve higher throughput and evaluation of the performance in 

chemical mapping and biological studies. Since line-scan Raman microscope is not 

efficient in the case of sparse sample, we also aim to develop Raman microscope with 

more flexibility and higher throughput by using active-illumination enabled by spatial 

light modulator (SLM). The parallel Raman microscope is realized by projecting a 

multiple-point, semi-arbitrary laser illumination pattern using a SLM coupled with wide-

field hyperspectral imaging collection. The line-scan and active-illumination Raman 

microscopes have been applied in several research projects, including rapid identification 

of polymer microspheres, large-area chemical mapping, performance and uniformity 

evaluation of SERS substrates, and imaging of biological cells.  
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In SERS substrates development, the goal is to obtain SERS substrates with large 

enhancement factor (EF), good stability, uniformity and reproducibility [9]. Besides, 

cost-effective fabrication process is also desirable. To meet these requirements, we 

focused on nanoporous gold (NPG) produced by dealloying. Our primary contribution is 

to pattern NPG thin films into sub-wavelength units. For example, NPG disks (NPGD), a 

SERS substrates, has been fabricated using nanosphere lithography. The large EF and 

uniformity have been evaluated by the home built line-scan Raman microscope. NPGD 

has been successfully applied in various research projects, including detection of 

biomolecules such as urea and acetaminophen, and in situ monitoring of DNA 

hybridization.  

The thesis is divided into 10 chapters. The motivation and scope of the thesis are 

described in Chapter 1. A general introduction to the background is presented in Chapter 

2, describing the basic principle of Raman spectroscopy and SERS, advancements in 

Raman instrumentation, and current status of SERS substrates. In Chapter 3, the home-

built line-scan Raman microscope and its performance on various applications are 

presented. In Chapter 4, the active-illumination Raman microscope based on multiple-

point illumination patterns and wide-field hyperspectral collection is demonstrated. 

Several applications including identification of polymer microspheres are shown. Further 

characterization and applications are described in Chapter 5. Chapter 6 discusses tissue 

analysis and tumor margin detection using Raman spectroscopy combined with optical 

coherence tomography (OCT). Characterization DC-sputtered gold nanoislands (GNI) in 

terms of EF, uniformity by both line-scan and active-illumination microscopes is 

presented in Chapter 7. Chapter 8 describes the NPGD SERS substrates, including the 
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determination of EF, evaluation of uniformity, and applications in biomolecular sensing. 

In Chapter 9, in situ monitoring of single DNA hybridization is demonstrated using 

NPGD. Chapter 10 briefly summarized the research work described in this thesis and 

outlines the future work. 
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Chapter 2 Introduction 

2.1 Raman Scattering and Raman Spectroscopy 

Raman scattering, an inelastic light scattering phenomenon, was discovered by C. 

V. Raman in 1928. It occurs when photons incident on a molecule and interact with the 

electron cloud of the molecule, resulting an energy transfer between photon and molecule 

and scattered photon with different frequency from the incident photon. The 

interpretation of Raman scattering phenomenon in classical electromagnetic theory is the 

perturbation of the molecule’s electron field by the interaction with the incident photon. 

A dipole moment (P) is induced in the molecule by the oscillating electric field of the 

incident photon. It is linear with the polarizability, α, and the incident electric field, E. 

The induced dipole then radiates scattered light, with or without energy transfer with 

vibrations in the molecule. Raman scattering occurs only when a molecule vibration 

changes the polarizability of the molecule [10]. While in quantum mechanics, the Raman 

effect describes a scattering interaction between light and matter. Figure 2.1 gives a 

schematic diagram of energy level transitions for Raman scattering. When 

monochromatic light of energy  encounters a molecule, most of the scattered photons 

have the same frequency. This is known as Rayleigh scattering. While there is a small 

fraction of the photons (about 1 in 108 photons) undergoing inelastic scattering, of which 

the frequency is different from the incident photons, known as Raman scattering. A 

molecule may begin in the vibrational ground state and proceed via the virtual state to an 

excited vibrational state, called Stokes-Raman scattering. In Stokes-Raman scattering, the 

incident photon loses energy by exciting a vibration within the encountered molecule. In 
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NIR absorption techniques that also probe molecular vibrations, Raman spectroscopy 

provides narrow linewidths and is not sensitive to water content. Furthermore, Raman 

spectroscopy is free of photobleaching and it does not require staining or fluorescence 

labeling. These attractive features of Raman spectroscopy make it a versatile tool in 

biological study and molecular sensing.  

2.2 Surface-enhanced Raman Spectroscopy 

  The Raman scattering from a molecule located within a few nanometers of a 

nanostructured metal surface can be enhanced by 106 to 1014 times. This is known as 

surface-enhanced Raman scattering. SERS is first observed by Martin Fleischmann et al. 

from pyridine adsorbed on electrochemically roughened silver electrode in 1974 [11]. 

Later in 1977, Van Duyne and Creighton noted that the 106 enhancement of Raman 

signal was not because of the increased number of molecules adsorbed on silver electrode 

[12]. Subsequent studies show some distinct features of SERS as described in the 

following. First, SERS is surface sensitive and distance dependent [3, 4, 13-15]. 

Molecules in close proximity to the surface experience the largest enhancement. This 

enhancement decreases rapidly with the increasing distance between molecule and 

substrate. Second, SERS occurs on metal surface with micro- to nano-scale structures. 

Larger enhancements of signals are observed on noble metals, especially on silver and 

gold [16]. Flat and smooth metal surface does not provide effective enhancement. Third, 

SERS spectra are slightly different from normal Raman spectra because the molecular 

symmetry changed when a molecule adsorbs on the metal surface. It is possible that 

forbidden Raman bands in normal Raman scattering appear in SERS spectra [17].  
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electromagnetic field incident on spherical metal nanoparticles, the resulting electric field 

around the nanoparticle (NP) is expressed as 

, , ̂
̂

̂ ,                      (1) 

where x, y and z are Cartesian coordinates; r is the radical distance;	  ,  and ̂ are the 

unit vector in Cartesian coordinates; α is the polarizability of the metal nanoparticle and 

can be expressed as 

                                                   ,                                                       (2) 

where a is the radius of the nanoparticle,  and  are the dielectric constants of the 

metal particle and the surrounding medium, respectively [3, 4]. For metal nanoparticles, 

 is greatly dependent on the incident wavelength. The LSPR effect occurs when 

. The local field intensity enhancement factor (LFIEF) is defined as 

| | | |⁄ . Since both the incident field and scattered field are amplified, the SERS 

enhancement factor (EF) is equal to LFIEF(ωL)× LFIEF(ωS), where ωL and ωS are the 

frequency of incident and scattered photons, respectively. Moreover, the difference 

between ωL and ωS is very small, i.e., ω ω . Therefore the SERS EF can be expressed 

as 

                                            ω
| |4

| 0|4
.                                             (3) 

This implies the Raman scattering intensity scales as E4 due to LSPR. 
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2.3 Raman Instrumentation 

Raman spectroscopy has been a powerful technique for biological study and 

generating chemical images based on the unique Raman spectrum from the molecule. 

The first Raman microscope for imaging was first proposed in 1975 by Delhaye and 

Dhamelincourt [22]. In general, the various Raman imaging approaches may be 

categorized into three types: wide-field, point-scan and line-scan. 

2.3.1 Wide-field Imaging 

In wide-field imaging, the entire sample field of view is illuminated with laser 

light and the Raman scattered light is projected onto a two-dimensional charge-coupled 

device (CCD). A wide-aperture filter is employed before CCD to study discrete 

wavenumbers instead of a full range spectrum [23, 24]. Liquid-crystal tunable filters 

(LCTFs) are electro-optically tunable devices that allow wavelength selection defined by 

users [25]. Other wide-field imaging approaches include Hadamard transform imaging 

[26] and fiber-bundle image compression method [27]. In Hadamard transform imaging, 

an entire Raman image is reconstructed from a series of images recorded with different 

masks. In fiber-bundle image compression method, two spatial dimensions and one 

spectral dimension of data are collected simultaneously from a grid of sample points with 

fiber arrays. Wide-field Raman imaging systems provide diffraction-limited spatial 

resolution. In contrast to point-scan and line-scan approaches, wide-field Raman imaging 

requires serial sectioning and digital deconvolution techniques to achieve same results.  It 

is noted that serial tuning of LCTF band-pass is needed in order to obtain full spectral 

range information, which dramatically impede the overall throughput.  
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2.3.2 Point-scan Mapping 

In point-scan mapping scheme, a tightly focused laser spot is scanned sequentially 

across a sample surface. This is known as raster scan [28]. A Raman spectrum is acquired 

at each spatial location to generate a hyperspectral data cube. Current point-scan Raman 

microscopes employ a confocal configuration to improve the spatial resolution as well as 

the axial resolution. Most commercial Raman microscopes employ the point-scan scheme. 

The actual spatial resolution depends on the sampling interval between adjacent laser spot. 

A smaller sampling interval increases the spatial resolution, and on the other hand, it also 

increases the total imaging time [29]. For materials with large Raman scattering cross-

sections, the acquisition time can be as short as 1 msec. However, since most biological 

samples have very small Raman scattering cross-section which is proportional to the 

probability of an incident photon being Raman scattered with a particular Raman shift, 

the total acquisition time of a Raman image may be several hours. Thus, the throughput 

of the Raman microscope needs to be improved in order to perform larger area imaging 

and in situ monitoring of biological processes. 

2.3.3 Line-scan Mapping 

Line-scan Raman mapping is an extension of point-scan scheme. Instead of 

scanning a laser spot, a line-shaped laser beam is projected onto the sample and the 

Raman spectra from the line are simultaneously collected by a two-dimensional CCD. 

The spatial information is registered on the CCD on a line parallel to the laser line and 

the entrance slit of the spectrograph, while the spectral information is dispersed 

perpendicularly. A second spatial dimension is recorded by scanning the line 

perpendicularly to the line focus. By parallel collection of multiple spectra, line-scan 
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Raman mapping can achieve about 100 times larger throughput than point-scan mapping 

[30, 31]. Similar to point-scan, the spatial resolution of line-scan approach is dictated by 

the laser beam width and sampling interval [29], and can be somewhat worse along the 

laser line direction due to non-strict confocality. 

2.3.4 Summary 

The advantages of Raman imaging methodologies are discussed in several 

literatures [29, 32]. For point and line Raman mapping approaches, the required 

acquisition time depends critically on the laser power density and the number of spatial 

positions to be sequentially scanned. Line-scan method provides the fastest imaging 

speed at a reasonable spatial resolution. Further, the spatial resolution in the direction 

parallel to the laser line is nearly diffraction limited as wide-field imaging. In point-scan 

mapping, the throughput is relative low due to the sequential scanning especially for large 

sample areas with perimeter dimensions of hundreds of micrometers. On the other hand, 

high fidelity image quality and depth profiling render it preferable to point-scan approach. 

In contrast, the overall throughput for wide-field imaging depends primarily on the 

number of wavenumber positions recorded. Thus wide-field imaging is preferable for 

chemical heterogeneity study with priori knowledge of the chemicals. For imaging 

unknown chemicals, wide-field imaging may be time consuming due to increases in 

number of wavenumber positions. Therefore, the work in this thesis focuses on further 

improving the throughput of the line-scan mapping approach, and developing novel 

instrumentation that based on parallel collection method borrowed from line-scan 

mapping while taking the advantage of flexible sampling at region of interests instead of 

a line. 
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2.4 SERS Substrates 

As mentioned in previously, SERS can enhance the Raman signal by 106 to 1014 

times, depending on the SERS substrates and applied method. The design and fabrication 

of SERS substrates are essential for application. The enhancement ability of metal 

nanostructures is determined through the frequency-dependent dielectric function. 

Furthermore, the enhancement effect increases with the electric field gradient 

experienced by the adsorbed analytes. Thus, the metal nanostructures should be as sharp 

as possible to achieve larger enhancement, known as the antenna effect [33, 34]. 

Furthermore, the coupling effect between adjacent sharp structures can further increase 

the SERS enhancement [35-37], known as the lightning rod effect. These sites with 

highly localized electric field are known as SERS hot spots. Besides, several essential 

requirements for SERS active substrates are: (1) large EF which is capable to improve the 

sensitivity and detection of limit dramatically, (2) uniformity and reproducibility to 

obtain repeatable outcome, (3) chemical and biological compatibility with the analytes or 

cells, and (4) chemical and temporal stability [9, 38].  

Numerous SERS substrates have been reported since first observation of SERS 

effect. Generally, SERS substrates can be categorized into roughen continuous metal 

surface, colloidal nanoparticles, and periodic SERS arrays.  

2.4.1 Roughened Surface and Metallic Nanoislands 

Electrochemically roughened electrodes [11], the first SERS substrates with EFs 

of 105-106 [12], have been used in potential-dependent SERS measurements. However, 

electrochemically roughened metal electrodes suffer from several intrinsic limitations. 

First, the EF is much lower than colloidal nanoparticles and periodic SERS arrays. 
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Second, the uniformity is poor due to the broad distribution of the surface geometry. 

Furthermore, the quality of the polished polycrystalline electrode surface influences the 

SERS activity significantly. Rough surfaces are attractive because their larger surface 

area may promote analyte adsorption. Metallic nanoislands as SERS substrates have been 

studied as early as in the 80s due to easy and cost-effective fabrication [39-42]. They are 

very attractive because of the simple fabrication. Recently, Klarite, a SERS substrate with 

gold nanoislands film on inverted pyramidal pits in silicon wafers, has become 

commercially available. The EF of Klarite is at least 1 × 106.  Porous materials have 

attracted much attention for label-free sensing due to the large available surface area for 

molecular binding and their intrinsic capability of size-selective filtering [43, 44]. Since 

Raman signals are collected from a three dimension volume, typically 1µm3 by a tightly 

focused laser beam, large SERS-active surface area is preferable from the sampling 

efficiency aspect.  Several groups have reported porous templates coated with metal films 

as SERS-active substrates. Nanoporous gold (NPG) is an emerging cost-effective porous 

material that can be fabricated in a straightforward approach with high reproducibility. 

NPG film SERS-active substrates prepared by dealloying Au:Ag alloy, as shown in Fig. 

2.3, are capable to achieve an average EF of about 105-106 [45]. Patterning NPG films 

can further improve the SERS enhancement factor. Single molecule detection has been 

reported using thermal wrinkled NPG film. However, the winkled NPG film suffers from 

site-to-site EF variation, from 107 to 1011 [46, 47]. Few sites on the wrinkled NPG film 

have an EF of 1011.  Therefore, further exploration on patterning of NPG is of great 

interest. 
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fabrication of SERS substrates. Although high quality SERS arrays can be obtained, EBL 

approach is expensive and slow involving exposure and removal of resist. The scanning 

electron microscope image of a gold nanodiamond array presented in Fig. 2.5 (c) 

demonstrates the high degree of reproducibility of the EBL processes [54]. With different 

fabrication conditions, periodic micro- and nanostructures have been realized, such as 

rectangle structures, nanodisk and nanohole arrays, and metal nanorescents.  

2.4.4 Summary 

 Beside the various SERS substrates mentioned above, there are many plasmonic 

substrates and sampling approaches are of great interest, for example, tip-enhanced 

Raman spectroscopy that employs metal coated AFM tip and affords single-molecule 

sensitivity and a lateral resolution down to 10 nm due to the size of the AFM tip. 

However, most plasmonic substrates cannot meet the requirements in the beginning of 

section 2.4. Roughened surface and metallic films show good uniformity and stability, 

but suffer from low SERS sensitivity. Colloidal nanoparticles provide ultrahigh 

enhancement while present poor uniformity and stability issue. SERS arrays provide 

decent enhancement, excellent uniformity, stability and reproducibility, leading to 

numerous applications in detection of biomolecules and biomarkers. However, most 

SERS arrays suffer from a small SERS-active area. Large SERS-active surface area is 

preferable to provide more analyte molecules to bind and consequently contribute to the 

total SERS intensity. In this thesis, the related work aims to apply nanosphere lithography 

on NPG, which provides a huge surface area compared to other substrates. Since the 

resultant structures are very uniform and reproducible from nanosphere lithography, 

plasmonics with desirable features is expected. 
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Chapter 3 Performance of Line-scan Raman Microscopy (LSRM) for 

High-throughput Chemical Imaging of Cell Population 

3.1 Introduction 

Raman scattering provides molecular “fingerprinting” capability due to the 

inelastic interaction between incident photon and molecular vibration. Using confocal 

Raman microscopy to study biological cells in situ is very attractive because molecular 

information can be obtained without exogenous stains or fluorescence labels [55]. 

Important examples include the studies of Matthaus et al. on the distribution of 

intracellular substances at different stages of cell mitosis [56]; the identification by 

Hartsuiker et al. and Haka et al. of representative constituents in breast cancer [57, 58]; 

time-lapse Raman imaging of a single lymphocyte by Pully et al. with 2 minute temporal 

resolution [59]; the identification of bacterial strains in biofilms by Beier et al. [60]; the 

study of intracellular delivery and degradation of polymeric nanoparticles by Chernenko 

et al. [61]; the compositional analysis of single microalgal cells [62] by Huang et al.; and, 

the mapping, by Weiss et al., of hydrocarbon deposits in microalga Botryococcus braunii 

[63]. The results from these studies show definitively that the mapping of spatiotemporal 

chemical composition by Raman spectroscopy can enable important discoveries in 

biology and biomedicine. However, the small spontaneous Raman scattering cross-

section of biological samples, coupled with severe limits on laser power density (~2 

mW/µm2), leads to long pixel imaging times. In general, at least 100 ms of laser dwelling 

time is needed for a pixel volume of ~1 µm3 (1 fL). This limits field size, resolution, and 

the molecular complexity that can be achieved in spatial chemical maps and the temporal 
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resolution of time-resolved studies. These limitations prevent the acquisition of chemical 

maps from cell population with optimal spatiotemporal resolution. 

A high throughput instrument would enable Raman microscopy to become a 

viable detection and monitoring tool for analysis at cell population level, which could 

eventually lead to high throughput screening techniques. Recent advances in coherent 

anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) techniques 

provide high-speed image acquisition at selected Raman bands, while plasmonics enables 

surface-enhanced Raman scattering when target molecules are adsorbed on Au or Ag 

nanostructures [64-66]. However, CARS is limited by non-resonant background and 

spectroscopic interpretation; SRS is not suitable for full-spectrum acquisition; SERS is a 

technique only sensitive to surface. In addition to techniques that fundamentally address 

the intrinsically small Raman scattering cross-section such as the coherent and SERS 

techniques mentioned above [64-66], an effective solution to the slow mapping speed is 

through approaches that exploit 2-dimensional detector technology to achieve parallel 

data acquisition. The approach has been used to improve throughput in slit-scan 

reflectance confocal microscopes [67] and line-scan fluorescence readers for DNA arrays 

[68]. In Raman spectroscopy domain, a fiber bundle has been employed as a shape-

transforming component to relay a 2D scene onto the 1D slit of a spectrograph [69-73]. 

Free-space approaches have been implemented by Christensen et al. and Hamada et al. [6, 

8]. Recently, we have implemented a parallel Raman microscopy scheme based on 

active-illumination by a spatial light modulator. An excellent study has been performed 

by Schlucker et al. to compare point-scan, line-scan and global illumination (GI) schemes 

[29], among which, the line-scan approach provides the highest throughput when full-
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spectrum Raman images are acquired. Global illumination, in contrast, acquires narrow-

band images within each frame and full-spectrum images are accomplished by scanning a 

bandpass filter. Strictly, speaking, GI is not a high-throughput technique because out-of-

band Raman photons are not collected at each scanning step. GI might have an advantage 

when only a small number of Raman bands are needed. 

In this chapter, we demonstrate that line-scan Raman microscopy (LSRM) can 

enable rapid classification and counting of hundreds of physically similar organic 

microparticles, as well as screening hundreds of bacterial spores within a manageable 

time frame. LSRM also enables the study of living colonial microalgal cells at the 

population and network levels and include the identification of intra and extracellular 

structural constituents, as well as cell metabolites such as protein, lipids, and 

hydrocarbons based on their distinct Raman fingerprints. 

3.2 LSRM System Configuration and Characterization 

To fully explore the throughput advantage of parallel acquisition, we have 

employed the 785 nm output of a continuous-wave (cw) titanium:sapphire laser (Spectra-

Physics 3900S) pumped by a diode-pumped solid state 532 nm laser (Spectra-Physics 

Millennia 10X). As shown in Fig. 3.1 (a), the laser output is transformed by a line-

generating optical system consisting of a Powell lens (L1, fan angle 7˚, Leading-Tech) 

and two cylindrical lenses (L2, 100 mm f.l. & L3, 50 mm f.l., Thorlabs) to form a 

uniform line. This line is relayed to the side-port focal plane of an inverted microscope 

(Olympus IX70). A dichroic mirror (785 nm RazorEdge dichroic, Semrock) is placed on 

the beam path to reflect the laser light. A galvanometric mirror (Thorlabs) is employed to 

scan and de-scan the line in the transverse direction. Epi-Raman is collected by a 
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An essential requirement for high performance LSRM is intensity uniformity of 

the excitation laser light along the projected line as well as across the scanning direction. 

We have evaluated the uniformity in both directions using a polystyrene plate. Figure 3.1 

(b) shows an x-y map (area 100 µm × 100 µm) of the strongest Raman peak, which 

originates from polystyrene ring breathing mode at 1001 cm-1. The standard deviation of 

the intensity values is less than 0.4% of the average intensity. To better evaluate the 

intensity uniformity, Figure 3.1 (c) displays intensity profiles along the scanning and the 

line directions. This confirms that the laser power has been evenly distributed along the 

projected line. The entire laser line was ~ 120 µm in length, from which the top and 

bottom 10 µm were not used. Thus the utilization percentage was ~85%. This map could 

also be used for intensity correction across the field of view. The imaging capability of 

the microscope has been characterized using polystyrene (PS) beads of size from 3 µm to 

500 nm. Figures 3.2 (a) and 3.2 (b) show the maps of 3 µm and 1 µm PS microparticles 

generated using the PS peak at 1001 cm-1, respectively. Figure 3.2 (c) shows the Raman 

map and intensity response in X and Y direction of a single 500 nm PS bead. The lateral 

resolution is estimated to be 600 nm and 800 nm in X and Y direction from the full width 

half maximum (FWHM) of the intensity response, respectively. The spectral resolution is 

better than 5 cm-1 according to manufacturer’s specifications. The total acquisition time is 

2.5 minutes for an area of 100 × 100 µm2 using a 0.5 µm scanning step size and a 0.75 

sec dwell time of the projected laser line. In comparison, it would take ~ 4 hours to 

acquire such a map with similar resolution, step size, and power density using a point-

scan system. Assuming that 100% of the area in Fig. 3.2 (b) is packed by 1 µm PS beads, 

the equivalent imaging throughput is ~100 microparticles/sec with 0.5 s laser dwell time 
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3.6 Analysis of ethyl and methyl centralite vibrational spectra for mapping organic 

gunshot residues 

 Detection of gunshot residues (GSR) is important in forensic science due to its 

potential use in criminal justice to provide evidence of whether a suspect discharged a 

firearm [76-78]. Methyl centralite (MC) and ethyl centralite (EC) are good indicators 

among various compounds in GSR to demonstrate the presence of GSR because they are 

highly specific to smokeless powders with very few significant environmental sources; 

whereas, the stabilizer diphenylamine, in addition to ammunitions, has known industrial 

and agricultural uses. Thus, centralites could become an alternative identifier that is 

presumably exclusive enough to smokeless powders so as to prevent false outcomes [79]. 

EC and MC were first simulated by DFT methods to investigate the molecular 

structures, as well as the vibrational spectra. The details of Density functional theory 

(DFT) calculations are presented in Appendix I. The IR spectra were obtained using a 

Perkin-Elmer Spectrum One spectrometer with an attenuated total reflectance (ATR) 

accessory. The Raman spectra of centralite powders were recorded by LSRM. 

3.6.1 Vibrational Spectra 

 Theoretical Raman and IR frequencies of EC and MC, as well as their intensities, 

were calculated from the B3LYP [80, 81] using the extended 6-311++g(df,pd) basis set. 

Experimental Raman and IR spectra of powers were obtained to better identify the 

frequencies. The frequencies of the CH vibrations above 2500 cm-1 was scaled by a factor 

of 0.960 derived from the reported scaling factor for the valence A-H stretching force 

constants, while the harmonic frequencies below 2000 cm-1 were scaled by a factor of 

0.982 [82]. For comparisons, Figure 3.6 and 3.7 show theoretical/experimental Raman 
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3.7 Conclusion 

In conclusion, we have evaluated the performance of a high throughput line-scan 

Raman microscope for chemical microscopy of cell population. We have presented 

detailed system configuration and performed careful characterization for image 

uniformity and resolution. The overall image acquisition time is significantly reduced by 

~100 times compared to conventional Raman imaging methods but provides comparable 

spatial and spectral resolution. We have demonstrated the rapid imaging capability of this 

instrument in test involving a) the identification and counting of organic microparticles 

that appear identical in brightfield image but differ in their chemical signature; (b) 

chemical imaging of bacterial spores, c) chemical mapping of colonial microalgal cells. 

These results suggest that LSRM can be a highly versatile tool for studying cells at the 

population level without the need for labeling. Moreover, ethyl and methyl centralites are 

characterized using LSRM. The simulated vibrational spectra are in a good agreement 

with the experimental results. The mapping of EC and MC represents the first attempt to 

produce rapid and effective analysis. 

Related publication 

This chapter has been published as: 

 “Performance of line-scan Raman microscopy (LSRM) for high-throughput chemical 

imaging of cell population”, J. Qi and W. -C. Shih, Appl. Opt., 2014, 53, 2881-2885. 

“Analysis of ethyl and methyl centralite vibrational spectra for mapping organic gunshot 

residues”, J. Zeng, J. Qi, F. Bai, J. C.-C. Yu and W.-C. Shih, Analyst, 2014, 

doi: 10.1039/C4AN00657G 
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Chapter 4 Parallel Raman Microspectroscopy Using Programmable 

Multipoint Illumination 

4.1 Introduction 

Raman spectroscopy can provide molecular information via inelastic light 

scattering without physical contact. Coupled with microscopic imaging, Raman 

microspectroscopy is a powerful technique for material analysis, for example, stress and 

temperature measurement in silicon and compositional analysis of polymer 

microparticles [29]. Three methodologies are commonly employed in contemporary 

Raman microspectroscopy, namely, points-can, line-scan and global illumination [29].  

As described in Chapter 2, the point-scan operation involves the collection of 

Raman spectra in a point-by-point fashion. Since Raman scattering is a relatively weak 

phenomenon, the laser spot dwelling time at each point is typically on the order of 

milliseconds to seconds. In addition, the data needs to be read-out after each point 

acquisition, which typically adds another few hundred milliseconds for a standard charge-

coupled device (CCD) detector. As a result, conventional point-scan Raman mapping is a 

time-consuming process and can take as long as a few hours to map a 50 × 50 μm2 region. 

To improve efficiency, parallel acquisition has been implemented based on time-

sharing or power-sharing schemes. In the former, the laser is rapidly scanned over 

multiple points of interest during the time of a single CCD recording frame [85, 86]. In 

the latter, the laser is shaped into an elongated line and the entire line is imaged by a 

single CCD frame [6, 29, 87]. Thus, both schemes can substantially reduce multiple read-

out times. A key difference, however, lies in the temporal power fluctuation within a 

CCD frame: For time-sharing, the total laser power is focused on one spot at any given 
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time but for power-sharing the laser power is distributed on all spots. Therefore, the 

frame-averaged power is identical to the instantaneous power for power-sharing but not 

for time-sharing. Another significant difference is there is no scanning within each frame 

for power-sharing. Recently, the time-sharing approach has been demonstrated to provide 

flexibility for imaging multiple points not aligned on a line, which is particularly 

advantageous for sparse samples such as bacteria or environmental particles [85]. 

In this chapter, we present a novel power-sharing approach that allows the 

simultaneous imaging of multiple points not aligned on a line. This is achieved by 

combining programmable multi-point laser illumination with wide-field Raman imaging. 

Our scheme can significantly improve the sampling flexibility compared to the line 

shaped illumination approach while maintaining the parallel acquisition efficiency, 100% 

laser power duty cycle on all spots, and the non-scanning nature within a single CCD 

frame. Although imaging multiple spots simultaneously using a spatial light modulator 

(SLM) has been developed for multi-photon fluorescence microscopy [88], it has not 

been implemented in Raman microspectroscopy. 

4.2 System Configuration and Characterization 

The system configuration is shown in Fig. 4.1 (a). The 785 nm output of a CW 

Titanium:Sapphire laser (Spectra-Physics 3900 S) is filtered by a laser-line filter 

(Semrock LL01-785-12.5) and expanded to ∼1 cm in diameter before the spatial light 

modulator (SLM) liquid crystal on silicon (LCOS) Hamamatsu. The output from the 

SLM is fed through the back port of an inverted microscope (Olympus IX71) with an 

addition of a tube lens.Adichroic mirror (Semrock LPD01-785RU-25) is placed in the 

microscope turret for epi-Raman acquisition via a microscope objective (Olympus 
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Chapter 5 High-speed Hyperspectral Raman Imaging for Label-free 

Compositional Microanalysis  

5.1 Introduction 

As mentioned previously, conventional laser scanning confocal Raman 

microscope involves long data acquisition time due to its sequential operation, as well as 

the additional latency from the readout time of low noise charge coupled device (CCD) 

detectors. As a result, conventional point-scan Raman mapping speed is about one to a 

few spots per second, or a few Hertz (Hz) [55]. 

To achieve a higher speed, point-scan is employed in more recent commercial 

Raman systems with an electron-multiplied CCD (EMCCD) detector. For strong Raman 

scatterers, an integration time ~ 1 ms per spot is possible, resulting in a speed ~ 300 Hz 

after taking into account the readout time. Although EMCCD can boost signal-to-noise 

ratio (SNR) under Raman photon-starving situation, amplification noise is unavoidable. 

For weaker Raman scatterers commonly seen in biological samples, however, the speed 

of the EMCCD-based system is severely lowered and approaches that of conventional 

non-EMCCD systems because much longer integration time per spot is needed. This 

barrier cannot be overcome simply by increasing laser power because of damaging and 

phototoxicity issues.  

In contrast, parallel acquisition using a line-shaped laser pattern can achieve 

similar throughput without rapid scanning, and provides a means to fully utilize the 

available laser power without introducing phototoxicity. Raman photons originating from 

the entire line, equivalent to many spots, are imaged to the entrance slit of an imaging 

spectrograph. Therefore, the data acquired in one single frame is two-dimensional, i.e., 
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hyperspectral in (x,λ), in the sense that it contains spatially resolved Raman spectra from 

multiple spots. Three-dimensional (x,y,λ) data can be obtained by scanning the laser line 

in the transverse direction [8]. Although effective, the line-scan approach suffers from a 

major limitation: parallelism is only possible for points lying on a line, which is not 

flexible for sparse scenes. 

To overcome this inflexibility, we implemented a scheme to simultaneously 

collect hyperspectral Raman spectra from on average 12 spots per CCD frame using SLM 

generated active illumination patterns and wide-field image collection, as described in 

Chapter 4 [90]. However, high-speed Raman imaging was not demonstrated. In this 

Chapter, we present several key improvements. First, we have optimized the excitation 

optical path to achieve as many as 120 spots per pattern, which results in an 

unprecedented imaging throughput (~ 1 kHz) for strong Raman scatterers. Second, we 

have automated the centroid-finding, random spot pattern selection and hologram 

generation, thus eliminating the need for human intervention and enabling rapid imaging 

from non-uniform polymer microspheres and bacterial spores at unprecedented speed. 

Compared to the point-scan approach using an EMCCD camera, our system not only 

provides significant imaging speed advantage for various types of samples, but also 

permits substantially longer integration time per spot, leading to superior signal-to-noise 

ratio (SNR) data. 

5.2 System Configuration 

We have developed an integrated software and hardware approach as shown in 

Fig. 5.1 (a). Based on the active-illumination system described in Chapter 4, camera 1 

(Dalsa, Pantera 1M30) is added to take bright-field image, which is analyzed to extract 
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the targets where focused laser spots would illuminate. To reduce spatio-spectral mixing 

from multiple points, the centroid image was split into several patterns automatically by 

maximizing the number of spots within one pattern under a constraint on the minimal 

vertical distance between any two spots. This was repeated until all the points were 

covered. Each pattern was represented by multiple spot positions (x,y) with respect to the 

SLM projection field coordinates. The spot positions were input into the hologram 

generation module one pattern at a time. The “generating holograms on SLM” module 

was implemented using Fourier transform-based Gerchburg-Saxton 3D algorithm. 

Typically, the bright-field imaging coordinates and the SLM projection field 

coordinates did not co-register due to imperfect alignment. Thus, the laser spot “aiming” 

precision was not guaranteed. For uniform samples, this resulted in position errors in the 

final image, similar to registration or “stitching” errors commonly seen in point-scan 

imaging; for nonuniform samples, sub-optimal Raman spectra was obtained due to 

misaiming. In addition, mixed Raman spectra would have been obtained if the spot 

illuminates near the boundary of two microparticles of different composition. To address 

this issue, we have developed an automated calibration procedure using a uniform silicon 

wafer. First, an 11 × 11 spot array with 8 μm center-to-center distance was employed to 

form a grid covering the entire field of view. This grid array was then imaged and 

registered on the coordinates of the front port camera. In this way, we established a one-

to-one mapping between the SLM projection field coordinates and the bright-field 

imaging coordinates. The grid array was then shifted in steps of 0.5 μm vertically and 

horizontally to improve the density of the mapping until a finer grid with 0.5 μm spacing 

between adjacent spots were established within the field of view. This calibration 
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procedure resulted in a look-up table for guaranteed precision ~0.5 μm. In our experience, 

precision ~ 0.2 μm can be achieved, which is smaller than the system resolution. 

5.4 Experimental Results 

5.4.1 Performance on Silicon Substrates 

Since the Raman scattering cross-section of silicon is orders of magnitude larger 

than common materials, it represents a good model for us to test the ultimate speed of our 

system. In this experiment, 19 random patterns, each with 121 spots, were employed with 

15 ms integration time per CCD frame, resulting in 2299 spots in 2.3 seconds, or 

equivalently ~ 1 kHz. We note that the minimum integration time was limited by the 

mechanical shutter which requires ~ 10 ms to open and close. Figure 5.2 (a) shows the 

overall image using silicon’s Raman peak at 520 cm−1 after background removal. 

5.4.2 Wavenumber Calibration 

To examine the dependence of Raman shifts on the lateral (x) position of laser 

spot, we have performed experiments using acetaminophen powder and silicon wafer 

samples. A single laser spot was scanned across the entire field of view (100 μm) at 5 μm 

step size. The results shown in Fig. 5.2 (b) suggest that the motion of the peak positions is 

highly linear with respect to the laser spot motion, as expected. These curves have been 

employed in previous results to calibrate the Raman shifts for each laser excitation spot 

and as the fitting result indicates, the calibration error is far less than one pixel. 

5.4.3 Signal-to-noise Ratio Comparison between Different CCD Detectors 

A distinct advantage of our system is that significantly longer integration time can 

be used compared to rapid point-scan systems using EMCCD, where an integration time 

on the order of milliseconds are necessarily for high throughput. As shown in Fig. 5.2 (c) 
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and 5.2 (d), the signal-to-noise ratio (SNR) of silicon obtained by the EMCCD was 1.9 

and 4 for 1 ms and 10 ms CCD integration time, respectively. In contrast, as shown in Fig. 

5.2 (e), the SNR obtained by the low-noise CCD is 27 for 25 ms integration time. We 

note that a similar SNR was obtained in our previous silicon data at nearly 1 kHz. 

Therefore, our system not only is 3 times faster than the point-scan-EMCCD approach, 

but also provides superior SNR in the acquired images. 

5.4.4 Chemical Classification of Polymer Microparticles 

Next, we demonstrate the system performance using a mixture of 1679 2 μm 

polystyrene (PS) and melamine resin (MR) microspheres, which appeared identically in 

the bright-field image shown in Fig. 5.3 (a). Figure 5.3 (b) shows the identified centroids, 

among which ~15% were randomly selected and split into 4 sub-groups under the 

condition that >2 μm vertical separation between any two centroids in the same sub-

group, preventing substantial spatiospectral mixing. Nevertheless, as long as two spots 

did not completely aligned horizontally, pure spectra from either bead can always be 

obtained from the edges of the beads for identification purpose under the assumption that 

these are homogeneous beads (discussed later). Figure 5.3 (c) shows the 4 color-coded 

sub-groups with the corresponding 4 holograms in Fig. 5.4 (a) – 5.4 (d), using which 

Raman images were collected in Fig. 5.4 (e) – 5.4 (h). As summarized in Fig. 5.5 (a), a 

total of 245 microspheres were sampled, among which 129 were PS (blue) and 116 were 

MR (red) based on their distinct Raman spectra shown in Fig. 5.5 (b). The data 

acquisition duration was 1.5 sec, or 163 Hz. 
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Chapter 6 Analysis of Biological tissue and Tumor Margin Detection 

Using Raman Spectroscopy and Optical Coherence Tomography 

6.1 Introduction 

The ability of detect disease rapidly has manifold advantages, including simpler 

and more effective treatment at early stage, monitor the progression of therapy and 

significant reduction in morbidity [92]. It is known that some of the clinical tests are 

prolonged and unreliable [93-96]. Thus, improving the accuracy in the early diagnosis 

and quantitative identification of severity are of great interest.  Besides, current technique 

for tumor resection involves biopsy and histological confirmation, which is time 

consuming and requires sacrifices of healthy tissue, motivating the development of novel 

techniques to enable real-time and accurate margin detection. Raman spectroscopy which 

provides molecular specificity and optical coherence tomography (OCT) that is capable 

to perform real-time cross sectional imaging with micrometer-scale resolution, has been 

employed to early diagnosis and identify intraoperative margin [58]. In this Chapter, we 

present the first application of combining information from line-scan Raman microscopy 

(LSRM) and optical coherence tomography (OCT) imaging for tissue analysis and the 

assessment of diseased/normal boundary. 

6.2 Resection Margins 

Accurate and real-time intraoperative tumor margin assessment is of utmost 

importance in tissue-preserving surgical procedures such as partial mastectomy for breast 

cancer [97, 98], prostate [99] and brain tumor excision [100], organ-sparing surgery for 

liposarcoma [101], and many others. In these surgical procedures, complete excision of 

the primary tumor is the major determinant of the rate of local cancer recurrence. 
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Minimizing the removal of normal tissue is the main factor in preserving proper organ 

functions as well as cosmetic appearance. Thus, in successful procedures, complete 

resection of the cancer must be balanced with tissue conservation. To ensure that all 

malignant tissue is removed, a small margin of normal tissue surrounding the lesion is 

excised to ensure that the surgeon removed the entire malignant lesion. Margin status is 

gauged by pathologic examination of the border of the excised lesion – a two-step 

process. The first step is intraoperative gross (macroscopic) examination by a surgeon 

with a naked eye; the second step is postoperative histologic (microscopic) examination 

using frozen sections stained with hematoxylin and eosin to evaluate a representative area 

of concern. Achieving negative resection margins, typically defined as the absence of 

malignant tumor cells, provides lower associated rates of future local recurrence [102]. 

Positive or unknown histological margins usually prompt re-excision surgery because of 

the elevated risk for local recurrence even when chemo/radiation therapy is administered 

[103]. In the case of breast cancer, for example, as many as 20% to 55% of patients 

undergoing partial mastectomy require a second surgical procedure due to positive 

margins indicative of incomplete cancer resection that were missed on intraoperative 

margin assessment [58].  

Currently, a variety of optical imaging and spectroscopic techniques are being 

explored to improve disease diagnosis, such as diffuse reflectance spectroscopy and 

fluorescence spectroscopy. However, the application of these methods for intraoperative 

surgical margin assessment is very limited. Preliminary in vivo results have shown the 

efficacy of diffuse reflectance spectroscopy in the diagnosis of breast lesions, as well as 

in the assessment of tumor margins [104]. This technique has shown great promise in the 
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assessment of large-volume tumors, but cannot provide localized information regarding 

tumor margins due to low resolution. OCT, in contrast, can provide high resolution 

images in three dimensions. OCT has been employed in various real-time applications, 

for example, monitoring blood flow in vivo and anterior segment imaging, based on 

detection of optical attenuation and elastic properties. However, OCT cannot provide 

efficient accuracy to identify tissues with similar optical and structural properties, such as 

small intestine and kidney.  Raman spectroscopy, on the other hand, has been employed 

to identify intraoperative margin based on tissue variations at the molecular level. In 

recent literatures, a dual-mode system has been developed to collect point-wise Raman 

spectra and OCT images from biological tissue [105-107].  

6.3 Material and Methods 

6.3.1 OCT Systems 

 Two OCT imaging systems are involved in this work, a time domain system and a 

spectral domain system. Measurements are performed in vivo for mouse tissue analysis 

using time domain OCT and ex vivo for cancer diagnosis and margin detection using 

spectral domain OCT. 

The time domain system [108] applies a low-coherence light source with a central 

wavelength of 1310 nm, and a bandwidth of ~ 30 nm. The axial resolution of the system 

is ~ 25 m in air. Light in the sample arm of the interferometer is directed into the tissues 

through a miniature scanning endoscopic probe with the diameter of ~ 3 mm (Imalux 

Corporation, Cleveland, Ohio). The in-depth (z axis) information of the sample is 

achieved by the piezoelectric modulation of the optical path in the reference arm. Two-

dimensional images of samples were obtained with the size of 450 pixels  450 pixels 
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and the dimension of 2.2 mm (axial)  2.4 mm (transversal). The B-mode imaging rate 

was ~0.25 Hz and the operation of the OCT system was fully controlled by PC. 

The spectral domain system comprises of a broadband superluminescent laser 

diode (broadlighter S840, Superlum, Russia, 840±25 nm wavelength range, 20 mW 

output power) at the source end, Michelson interferometer with 50/50 split ratio to the 

sample and reference arms and a spectrometer at the detector end. The spectrometer 

comprises of a diffraction grating (Wasatch Photonics, 1200 grooves/mm) and a CCD 

line scan camera (Basler L104K, 2048 pixel resolution, 29.3 kHz line rate). The 

interference signal from the sample and the reference arms of the Michelson 

interferometer is detected by the spectrometer and digitized by an image acquisition card 

(NI-IMAQ PCI-1428). Depth profile (A-line) is obtained by converting the interference 

signal detected by the IMAQ into linear k-space and then performing fast Fourier 

transform (FFT) algorithm on it. 3D imaging is performed by scanning the laser beam 

across the surface of the sample, at the sample arm, using galvanometer mounted mirrors. 

The SDOCT system has an axial (at 3 dB drop) and transverse resolution of 8 μm and an 

imaging depth of 4.5 mm (in air). 

6.3.2 Line-scan Raman Microscope (LSRM) 

 The LSRM system used in this study is described in Chapter 3. Measurements are 

performed ex vivo in the same organ as with the OCT experiment. Tissue samples were 

placed on fused silica coverslips and fixed at the sample holder of microscope. The laser 

line projected at the sample was 133 µm long. 133 spectra were collected simultaneously 

with a total acquisition time of 60 s at a power density of 1 mW/μm2 to obtain decent 

SNR. The spectra were based line corrected using adaptive iterative reweighted penalized 
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least squares algorithm (airPLS) [109] and the 133 corrected spectra were averaged as 

one spectrum representing one position. 

6.3.3 Animal Manipulation 

 All the animal manipulation procedure described below has been approved by the 

Institutional Animal Care Committee (IACUC) of University of Houston. Six mice were 

housed under specific pathogen-free conditions in the animal facility. In OCT 

experiments, three mice were utilized and these mice were deeply anesthetized through 

the use of isoflurane gas mixed with oxygen for the in vivo experiments. Another three 

mice were used for the RS experiments with ex vivo tissue conditions. For RS 

experiments, the animals were euthanized and organs such as kidney, small intestine, and 

liver were harvested. The RS study followed immediately after extracting the organs 

from the mice. The total process of organ extraction was within 20 minutes. 

6.3.4 Cancer Tissue Preparation 

 Tissue samples were obtained after surgical resection at The University of Texas, 

M.D Anderson Cancer center (UTMDACC) hospital under an IRB approved protocol 

with patient consent, stored in sterile phosphate buffered saline (PBS) and imaged using 

SDOCT system on the same day. A small part of the sample was dissected to be imaged 

by the LSRM. The rest of sample was fixed in formalin and prepared for histological 

analysis. Tissue samples to be imaged by LSRM were placed onto No.1 coverslips and 

fixed at the sample holder of microscope. The total acquisition time for each spectrum is 

60 sec at a power density of 1 mW/ µm2. The Protocols for tissue processing were 

approved by the University of Houston Biosafety committee.  
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6.3.5 Classification by Support Vector Machines 

 Multi-support vector machine is a common machine-learning tool used to classify 

new unknown data (testing data) based on experiences from a data set of known data 

(training data) among multiple classes. We selected one-versus-all (OVA) method [110] 

with a radial basis function (RBF) kernel. The OVA method is one of the methods to 

decompose a multiclass problem into two-class problems. The aim of OVA is to classify 

the data into the class that has the highest decision value compared with the remaining 

classes. The 5-fold cross validation is applied to verify this model. An example of this 

method is shown in Fig. 6.2 (c). First, all the data points on the Fig.6.2 (c) are split 

randomly into five groups and the classification model (RBF kernel) is trained with four 

groups. The fifth group is considered as the testing sample for predicting the accuracy. 

This is repeated for 5 times. During each time, classifiers are internally constructed with 

M times if there are M classes of the training data. In the prediction stage, the classifiers 

follow the “winner takes all” principle that the testing sample is classified into the class 

with highest decision value. In addition, the classifiers with different cost and gamma 

parameters indeed influence the prediction accuracy, thus, we search the best cost and 

gamma parameters by a grid search method. Also, 5-fold cross validation is utilized to 

optimize best parameters. 

6.4 Results and Discussion 

6.4.1 Classification of Mouse Tissue using OCT and LSRM 

 In this study, we present a combined analysis of OCT/RS with the proof-of-

principle experiments performed on mouse abdominal organs, including intestine, kidney 

and liver. Typical OCT images of the small intestine, kidney and liver are shown in Fig. 
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Table 6.2 Tentative band assignments for small intestine, kidney and liver. 
Band Assignment 

Liver Kidney Small Intestine  
1132 1132 1134 C-N stretching [114] 
1169 1169 1166 Tyrosine [114] 
1207  1213 Amid III [115] 
1281 1276 1281 Collagen [115] 
1307 1306 1306 CH2 bending, 

Collagen [112] 
1395   Hemoglobin [112] 
1450 1456 1455 CH3/CH2 bending 

[116, 117] 
1549 1549  C-N stretching/Amid 

II [118] 
1601   Phenylalanine [115] 

 1617 1614 Tyrosine [113, 115] 
1659 1662 1660 Amid I [113, 115] 
 

The data of Raman spectra were analyzed using principle component analysis 

(PCA) to extract the principal components and their associated scores.  In Fig. 6.3 (b), the 

spectral variances of PC1 and PC2 were computed as 66.8% and 15.3% respectively. The 

principal component loadings suggest that liver can be clearly differentiated by PC1 at 

the peaks 1169, 1207, 1460, 1601, 1665 cm-1 as well as kidney at the peaks 1142, 1169, 

1222, 1281, 1395, 1460, 1549, 1616, 1653 by PC2. The score plot of PC1 versus PC2 is 

shown in Fig. 6.4 (a). Compared with the scores of PC1, the scores of PC2 are more 

confident to identify intestine and kidney. By calculating the two-sample unequal-

variance t-test, all the P values of PC2 among intestine, kidney and liver show significant 

differences (< 0.001), demonstrating that the PC2 values can successfully detect small 

intestine, kidney and liver. The computed result of multi-SVM shows that PC2 combined 

with PC1 has 100% prediction accuracy for classifying these three types of organs. From 

Fig.6.4, the scores of PC2 are suitable to improve the inability of OCT images for 

differentiating small intestine, kidney.  Besides, the scores of PC1 can be utilized to 
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and myxoid liposarcoma is shown by the white arrow in Fig. 6.6 (d). There is a clear 

difference in the OCT structural images between normal fat and myxoid liposarcoma. 

This obvious difference in structures will be very helpful to the surgeon to determine the 

tumor margin while performing resection surgery. We also studied capability of LSRM to 

differentiate between normal tissue and tumor regions.  A bright field microscopic image 

of the surface of the sample was captured by a CMOS camera which is shown in Fig. 6.7 

(a). The black dashed curve on Fig. 6.7 (a) indicates the boundary between myxoid 

liposarcoma (Region 1) and normal fat (Region 2). The laser line projection on the 

sample, imaged by the LSRM, is indicated by the solid red line in Fig. 6.7 (a). We 

emphasize that spatially resolved Raman spectra from this entire line (133 µm long) were 

captured in one CCD image of Raman shift (x-axis) and spatial coordinates (y-axis) (Fig. 

6.7 (b)). The spectra from the abnormal region have lower Raman intensity compared to 

the normal spectra, possibly due to the lack of cellular structures and thus less elastic 

back scattering, agreeing with the OCT measurements.  Figure 6.7 (c) compares the 

spectra, averaged over 21 spectra from cancerous region (A) and the normal region (B) 

respectively, These spectra are post-processed by first subtracting a glass coverslip 

fluorescence background followed by an automated background subtraction method 

[121]. Comparing the normal and the abnormal spectra, the intensity ratio of lipid bands 

at 1448 cm-1 (CH2 bending) and 1655cm-1 (C=C stretching) changes from 2:1 in the 

normal to 1:1 in the abnormal region, agreeing with previous studies [122]. 

Biochemically, this agrees with the decrease in the ratio of monounsaturated lipids to 

polyunsaturated fatty acyl chains of lipids in liposarcoma compared to normal tissue. We 

also observe the broadening of the 1655 cm-1 peak in the abnormal region. A Raman 
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6.5 Conclusions 

 We have presented a tissue analysis and classification method using both the 

slope of OCT intensity signal versus depth and the principle components from the Raman 

spectrum as the indicators for tissue characterization. Compared to using OCT alone, the 

prediction accuracy has been improved from 84 % to 100 % by combination of two 

techniques on classification of mouse tissue. Therefore, the combined OCT/LSRM 

method is potentially useful as a noninvasive optical biopsy technique for rapid and 

automatic tissue characterization during surgery. 

Combination of OCT and LSRM has also been demonstrated in cancer diagnosis 

and margin detection. OCT is preferable for real-time screening. In cases where OCT 

images are indistinguishable, for example, in normal fat and well differentiated 

liposarcoma (WDLS) or gastrointestinal sarcoma tumor (GIST) and Myxoma, distinct 

Raman spectra have been obtained. The results suggest LSRM can effectively 

complement OCT to tumor boundary demarcation with high specificity. In this study, the 

tissue samples were imaged on separate SDOCT and LSRM systems, but our future 

studies will focus on combining OCT and LSRM system into a single probe based system 

that can be used for real-time application during tumor resection surgeries.  
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Chapter 7 Morphological, Plasmonic, and SERS Characterization of 

DC-sputtered Gold Nanoislands  

7.1 Introduction 

 Rapid chemical analysis of molecular adsorbates on plasmonic nanostructures is a 

powerful technique in molecular sensing and in the study of surface chemistry and 

plasmon-matter interactions. Due to either surface plasmon resonance (SPR) or localized 

surface plasmon resonance (LSPR), optical energy can be coupled into either propagating 

or non-propagating electron oscillation, respectively. Therefore, both SPR and LSPR can 

be conveniently investigated by extinction spectroscopy in the transmission configuration 

[125]. Besides optical extinction, plasmonic resonance also produces highly localized 

electromagnetic field enhancement near the surface of metallic nanostructures, which 

subsequently enhances fluorescence and Raman scattering of nearby surface adsorbates 

[41, 126].  Raman spectroscopy is a versatile technique for compositional analysis via 

inelastic light scattering due to molecular vibrations. It is particularly suitable for the 

study of thin surface adsorbates on plasmonic nanostructures via surface-enhanced 

Raman scattering (SERS) for its high sensitivity, specificity, and non-photobleaching 

property [127, 128].  

Among various plasmonic nanostructures, metallic nanoislands have been studied 

as early as in the ‘80s [39-42]. Since 1997, the interest was shifted to Au for its 

potentially better structural and environmental stability. The SERS activity of gold 

nanoisland (GNI) fabricated by a slow deposition process was first observed by Maya 

[129]. Subsequently Rubinstein et al. carried out a series of studies on plasmonic 

properties of evaporated GNI which were shown to be “metastable” even at room 
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temperature [130-132]. Merlen et al. carried out a series of studies [133, 134] on 

sputtered GNI with significantly higher deposition rate compared to the work by Maya. 

They further employed GNI to analyze compounds such as dye molecules which exhibit 

resonance or pre-resonance effects near the absorption wavelength. More recently, GNI 

structures were employed in plasmon-enhanced catalysis for decomposition of methyl 

orange and splitting of water [135, 136]. It appears that sputtered GNI provides much 

better structural and environmental stability for practical applications. Therefore, we are 

interested in further characterizing its plasmonic properties for SERS applications. 

In this Chapter, we provide multimodal characterization of GNI with respect to 

different deposition time. We correlate GNI morphological evolution imaged by scanning 

electron microscopy (SEM), LSPR spectra by extinction spectroscopy, and SERS spectra 

by hyperspectral Raman microscopy. We report systematic determination of the 

magnitude and spatial uniformity of SERS activity on GNI substrates. We also report, for 

the first time, a rigorous determination of the SERS enhancement factor (EF) for 

benzenethiol self-assembled monolayers, a commonly used marker for performance 

evaluation across various SERS substrates. Further, we demonstrate a parsimonious 

sampling scheme for large-area SERS mapping enabled by active-illumination Raman 

microscope described in Chapter 4 and Chapter 5. Finally, we compare image statistics 

obtained from parsimonious sampling to those from full-coverage sampling (LSRM). 

7.2 Material and Methods 

7.2.1 DC-sputtered GNI 

 GNIs were deposited on glass coverslip in a 2 inch DC-diode sputtering system 

(Anatech/Technics “Hummer”) with a gold foil target of 99.99% purity. Sputtering 
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conditions were as follows: a) 10 mA current, 100 mTorr Ar pressure, and 25 mm target-

to-substrate distance.  

No. 1 coverslips (VWR Scientific Products) were first immersed in piranha 

solution (3:1 mixture of 98% H2SO4 and H2O2) for 30 minutes to remove any organic 

residue. The cleaned coverslips were then rinsed in DI water and blow-dried with 

nitrogen before sputtering. 

7.2.2 Hyperspectral Raman Imaging Systems 

 We have employed two parallel, hyperspectral imaging systems, line-scan and 

active-illumination described in Chapter 3 and Chapter 4, respectively, to characterize the 

SERS EF and uniformity of GNI substrates.  

7.2.3 UV-Vis Extinction Spectroscopy 

A Cray 50 Scan UV-Visible spectrometer (Varian Inc.) was used to measure the 

UV-Vis spectra from 250 to 1100 nm. A spectrum from a clean coverslip was acquired as 

the reference and subtracted from raw data. The UV-Vis spectra presented below were 

averaged from five measurements. 

7.2.4 Benzenethiol Self-assembled Monolayer 

 Benzenethiol (BT) was employed as the SERS marker for its ability to form a 

self-assembled monolayer (SAM) on gold. Briefly, we incubated the GNI substrates in 5 

mM benzenethiol (99.9%, Sigma-Aldrich) dissolved in ethanol for 30 minutes, followed 

by rinse in pure ethanol for 1 minute and nitrogen dry [137]. Using benzenethiol SAM for 

the quantitative determination of SERS enhancement factor (EF) is advantageous because 

its surface density on gold is well known, thus enabling an accurate quantification of 

number of molecules. The choice of the laser wavelength (785 nm) avoids any resonant 
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or pre-resonant effect due to the weak absorption by BT molecules. SERS EF was 

estimated by comparing to normal Raman signals obtained from neat BT solutions. SERS 

EF was alternatively estimated by comparing to a commercial substrate (Klarite, 

Renishaw Diagnostics Ltd.) with a specification of 1million EF for BT.  

7.3 Results and Discussion 

7.3.1 Morphology Study of DC-sputtered GNI 

 The deposition rate of the sputtering machine was first calibrated by coating a 

gold layer on silicon for 300 sec. An SEM image of the cross-section showed that the 

thickness of the film was ~ 27 nm. Thus, the average deposition rate was determined to 

be 0.09 nm/sec. Since the GNIs are isolated units, it is not suitable to estimate thickness 

simply by multiplying the average rate with deposition time. Instead, we use the 

deposition time to distinguish our samples.  

Figure 7.1 (a-e) show the SEM images of GNI substrates prepared by 52, 104, 

156, 208, and 260 sec of deposition, respectively. We analyzed the size of the islands 

from the SEM images via ImageJ (NIH) by first trimming the SEM images to the same 

size and smoothed the image twice using a 3 × 3 moving average filter. We then 

binarized the images and performed watershed process to separate the connected objects 

to isolated particles. The processed images are shown in the inset of each image in Fig. 

7.1 (a-e). Average radii of GNI measured in these images are shown in Fig. 7.1 (f) with 

each data set fitted by Gaussian distribution with μ = 3.36, 4.20, 4.95, 6.06 and 6.00, and 

σ = 0.90, 0.94, 1.20, 1.71, and 1.78, respectively. We observed an increase of GNI radius 

from 52 to 208 sec substrates. However, the growth of nanoisland size stopped after the 

208 sec sample when additional fine structures began to form on existing nanoislands. 
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7.3.4 Characterization of SERS Uniformity Using Hyperspectral Raman Imaging 

 Confocal Raman microscope has been used to characterize the uniformity of 

plasmonic substrates [140, 141]. An alternative strategy to improve imaging speed is to 

employ parallel acquisition to obtain hyperspectral data, i.e., images consisting of both a 

spatial and a spectral dimension, e.g., (x, y, λ) in each camera shot. In Raman microscopy, 

parallelism has been implemented by global illumination [29, 142], line-scan [6, 7, 30], 

and active-illumination [90, 121, 143]. Global illumination uses tunable narrow-band 

filters and wide-field image collection to acquire a Raman map by sequentially scanning 

through multiple wavelengths. This is very time-consuming because out-of-band Raman 

photons are blocked by the filter in each scanning step. Moreover, global illumination 

does not allow the acquisition of hyperspectral data in a single camera shot, rather, it is 

limited to a “narrow band” image. In contrast, line-scan and active-illumination are truly 

parallel, hyperspectral acquisition schemes with substantial throughput advantages. In a 

typical line-scan system, the laser is shaped into a long line and focused onto the sample 

while the entire line is imaged to the spectrograph entrance slit. Thus, spatially-resolved 

spectra along the entire line can be recorded in a single camera snapshot. An active-

illumination system, however, splits the laser into a semi-arbitrary pattern of micro-spots 

at the sample and collects the Raman spectra from all spots simultaneously in a single 

camera snapshot. An important advantage of active illumination over the line-scan 

approach is that semi-random parsimonious sampling in a two-dimentional plane can be 

employed to construct unbiased, representative statistics efficiently. 

Here we have employed the active-illumination system to characterize SERS 

uniformity on the 208 sec GNI substrate. Each illumination pattern contained 62 laser 
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6.72%, 8.41 × 104 ± 4.11%, 8.11 × 104 ± 6.62%, 8.46 × 104 ± 7.75% and 7.82 × 104 ± 

6.12%. 

7.4 Conclusion 

 In summary, we have demonstrated DC-sputtered gold nanoislands provide a low-

cost, uniform SERS substrate with an enhancement factor comparable to commercial 

substrates. By correlating SEM, extinction spectroscopy, and SERS microscopy, GNI’s 

plasmonic behavior has been investigated with respect to morphological changes as 

deposition time increased, as well as ambient environmental changes. The UV-VIS 

extinction spectra showed a stronger extinction for GNI samples prepared by longer 

deposition time. SERS performance has been characterized using benzenethiol self-

assembled monolayer as the marker. The enhancement factor of GNIs increased with 

deposition time and the value for 260 sec was ~ 5.2 × 106. Large-area SERS uniformity 

has been evaluated by two hyperspectral Raman imaging systems, active-illumination 

and line-scan, over randomly selected locations. The overall SERS intensity statistics 

were 8.08 × 104 ± 6.26% and 7.86 × 104 ± 5.92% using the active-illumination and the 

line-scan systems, respectively. The results suggest our parsimonious sampling scheme 

using active-illumination can obtain representative, unbiased statistics even when the 

total sampling area is only 2.7% of the entire field of view. 

Related Publication 

“Morphological, plasmonic, and SERS characterization of DC-sputtered gold 

nanoislands”, J. Qi, S. –T. Lin, P. Motwani, J. Zeng, J. C. Wolfe and W. C. Shih, 2014 

(submitted). 
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Chapter 8 Surface-enhanced Raman Spectroscopy with Monolithic 

Nanoporous Gold Disk Substrates 

8.1 Introduction 

In Chapter 3 - 5, effort has been made to improve the throughput of the Raman 

instrumentation significantly. However, the intrinsic limitation of Raman scattering has 

not been broken through. Consequently, SERS is employed in order to achieve more 

throughput and sensitivity. As mentioned in Chapter 2, although SERS provides 106 to 

1014 signal enhancement, challenges on SERS substrates hinder further application of this 

technique. Plasmonic substrates with high EFs, uniformity, reproducibility and stability 

are desired. 

SERS has been widely applied to molecular detection and identification [145-147]. 

The technique derives its sensitivity from electrical field amplification by localized 

surface plasmon resonance (LSPR), strongest at SERS hot-spots associated with 

nanoscale gaps, and protrusions [148]. These observations have sparked intense interest 

in nanoporous gold (NPG) as SERS substrates, where porosities and pore diameters in 

ranges of 35-50 % and 5-10 nm, respectively, have been reported [149-152]. An 

additional potential benefit is that internally adsorbed molecules and those that may be 

traversing the nanoporous network can also participate in Raman scattering [148]. 

Another potential advantage of NPG over non-monolithic SERS substrates, such as 

immobilized or aggregated nanoparticles, is the simplicity by which it can be integrated 

with sensor chip technology. It has been shown that the LSPR peak of NPG thin films 

exhibits a pore-size dependent red-shift [153, 154]. Although SERS activity has been 

documented, wide variations in SERS enhancement factors (EFs) have been reported 
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[149, 150, 152]; possibly reflecting differences in material composition and morphology, 

fabrication technique, SERS marker, and/or excitation wavelength. Several groups have 

explored the increase in EF due to further processing of the NPG films; Zhang et al.  

observed a ~ 100-fold increase in EF caused by wrinkling the substrate of an NPG film, 

an approach that suffers from very wide site-to-site EF variation [47]. Jiao et al. also 

achieved a ~ 100-fold EF increase in mechanically stamped NPG gratings, which they 

attributed to the combined effect of improved light-coupling by the grating structure and 

mechanical densification [155]. Wi et al.  reported a five-fold increase in the SERS signal 

from NPG disk substrates compared to solid gold disks [156], which are known to 

produce a SERS EF of 1000 - 10000 [157, 158].  In their work, NPGDs were formed by 

dealloying co-sputtered gold and copper targets and patterned using electron-beam 

lithography. The disks were ~ 200 nm in diameter and 80 nm in thickness. 

In this Chapter, we explore further the effect of patterning on the SERS EF of 

NPG using disk-shaped structures (NPGD). Our approach features hybrid fabrication by 

combining top-down planar large-area sputter etching and bottom-up atomic self-

assembly during dealloying. The resulted structure is thus hierarchical with the external 

disk shape and the internal porous network. We have selected 785 nm as the laser 

excitation wavelength and benzenethiol (BT) molecules as the SERS marker since the 

absence of a BT absorption peak near 785 nm minimizes the ambiguity presented by 

resonant Raman scattering, while the ability of BT to form self-assembled monolayers 

(SAMs) enables the number of molecules on individual NPG disks to be quantified. 

Additionally, the SERS activity at 785 nm laser excitation has critical significance for 

deep tissue penetration in any potential biomedical applications. 
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electron microscopy to be ~30 nm/min. The etching step produces completely isolated 

alloy disks sitting on ~65 nm thick solid gold bases with a remaining underlying gold 

film ~235 nm thick (Fig. 8.2 (a)). The PS spheres are then removed by solvent and 

sonication. Finally, NPG is formed selective dissolution of the silver using a 1 sec dip in 

70% nitric acid followed by deionized water rinse and nitrogen dry. 

Figure 8.2 (a) shows the scanning electron micrograph (SEM) of the PS bead 

residues covering an etched alloy and gold film stack to confirm the thickness and the 

effectiveness of PS beads as the etch mask. The boundary between the alloy and gold 

base is visible in the high magnification image of Fig. 8.2 (b). The top surface of NPGD 

is revealed after the removal of the PS beads and nitric acid corrosion as shown in Fig. 

8.2 (c). The NPGDs are ringed by a gold film which is redeposited during sputter etching 

of the base layer after the alloy discs are defined.  These rings are not affected by HNO3 

etch.  The ultra-fine nanoporous network inside the disk is similar to that obtained in 

unpatterned NPG thin films (Fig. 8.2 (d)) fabricated by the same dealloying procedure. 

The cracks caused by shrinkage during Ag dissolution are quite similar as well [159]. 

8.3 Determination EF of NPGD 

Benzenethiol SAMs were deposited on unpatterned NPG, NPGD, and Klarite 

(SERS EF at least 106 for benzenethiol, Renishaw) substrates following the procedure 

described in Chapter 7, section 7.2.4. SERS measurements were carried out with 785 nm 

excitation using the home-built line-scan Raman microscopy system (LSRM) enabling 

SERS mapping over 133 × 133 µm2 regions with ~ 1 µm2 resolution (full width at half 

maximum, FWHM) at a spectral resolution ~ 8 cm-1. 
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number of BT molecules attached to a disk and how many of those are close enough to 

the surface to contribute to the measured photons. 

The number of adsorbed BT molecules in and on an NPG disk is the product of 

the area of the disk, the roughness R of NPG (the ratio of the chemically active surface 

area to the geometrical surface area), and the BT surface density.  Seker et al. developed 

a procedure for estimating the roughness of an NPG film from SEM images of the 

surface, assuming uniform nanostructure through the film [160]. In Ref. 160, equation 3 

implies that roughness is given by 3hβ/r, where h, β, and r are the thickness, two-

dimensional porosity, and mean pore radius, respectively. An analysis of Fig. 8.2, using 

ImageJ (http://rsbweb.nih.gov/ij/), gives β = 34 % and r = 3.5 nm, implying that the 

roughness is 22. Scanlon et al. reported electrochemically-measured roughness values in 

this range for 100 nm thick films with similar nanostructure [161]. The roughness of 

Klarite is about 1.6 because of the increased surface area of the anisotropically etched 

pits. 

The contribution of adsorbed molecules to the total SERS signals decreases with 

depth because of the decreasing laser power density and increased absorption of the 

Raman-scattered light. The contribution  of an NPG layer of thickness  at depth h 

to Raman scattering is characterized by a roughness / exp	 2 / . 

Integration gives the effective roughness of the NPG taking into account the round-trip 

absorption; ′ /2 1 exp	 2 / where /  is the 

skin-depth of NPG, αNPG is the skin depth of gold (~ 12.6 nm [162]), and  is the mole 

fraction of Au in the Au/Ag alloy. We find that ′ 6.3 and 45 nm. Following 

Ref. 155, we have 	 ⁄ / ′ / , 
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Alternatively, SERS enhancement factor can be obtained by comparing the SERS 

measurement to that from a neat benzenethiol sample, where the EF value is calculated 

by comparing the 1575 cm-1 peak in the SERS spectrum to the 1584 cm-1 peak in neat 

Raman spectrum [163]. When the SERS and normal Raman spectra are measured by the 

same instrument, the SERS EF is given by ⁄ ⁄ , where 

 and  represent the normalized count rates of the SERS spectra from a single 

disk and normal Raman signal from a neat solution, respectively. NSERS and Nneat are the 

number of molecules contributing to the SERS and neat Raman spectra, respectively. As 

discussed before, the surface area of NPGD is 6.3 times larger than its geometrical area. 

Assuming a packing density of 6.8 × 1018 molecules/m2, approximately 8.4 × 106 

molecules are adsorbed on a single disk. Therefore, the normalized count rate of the 1575 

cm-1 peak from five NPG disks (which have a total area of ~ 1 µm2) is 6.5 × 105 

photons·s-1mW-1 ( ; See Fig. 8.2), and is contributed by 5 × 8.4 × 106 = 4.2 × 107 

molecules ( ).  

To obtain  and , we performed two experiments with different ways to 

determine the optical probing depth. The optical probing volume was then calculated 

using the Gaussian beam with a 1.2 μm beam waist. In method 1, the depth of focus of 

our Raman instrument was experimentally characterized to be ~ 4.5 μm [164], and then 

used as the probing depth. In method 2, a sparse monolayer of 3 μm polystyrene beads 

were sandwiched between two glass coverslips, squeezed and fixed. A drop of 2 μL neat 

benzenethiol was then dispensed and drawn into the gap between the 25 mm × 25 mm 

coverslips by capillary force. Based on the spreading area of the solution, the average 

thickness of benzenethiol was calculated to be ~ 3 μm. Table 8.2 lists the optical probing 
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depth, probing volume, number of benzenethiol molecules (Nneat), normalized count rate 

of the 1584 cm-1 peak in the normal Raman spectra (Ineat, See Fig. 8.3), and enhancement 

factor (EF) from each method. The lowest EF value is slightly larger than the result 

obtained previously by assuming that Klarite has an enhancement factor of 1 million. We 

note again that Klarite is specified as at least 1 million.  

Since there is no modification to the nanoporous network from our patterning 

technique, the EF increase is entirely due to the disk formation. A heuristic explanation to 

the substantial EF increase is a red shift of the plasmonic resonance peak toward the laser 

excitation wavelength (785 nm) by patterning into sub-micron disk [157, 158]. This is 

supported by known red-shifted plasmonic resonance peak in solid gold disks. Thus, it is 

plausible that plasmonic coupling between the external disk shape and the internal 

nanoporous network has contributed the high EF. Nevertheless, future work is needed to 

further unravel the interplay between the external shape and the internal network, as well 

as the identification of potential effects due to hot spot formation. 

Table 8.1 SERS EF estimation using Klarite at 785 nm excitation. 

 
Klarite NPGD NPG film 

EF of 1076 cm-1 1×106 1.05×108 2.03×105 

EF of 1575 cm-1 1×106 1.43×108 2.47×105 

 

Table 8.2 SERS EF estimation using neat solutions at 785 nm excitation. 

 

Probing 
Depth   
(μm) 

Probing 
Volume 

(μm
3
) 

N
neat

 
(molecules)

I
neat

 

(photons·s
-

1
mW

-1
) 

EF 

Method 1 4.5 1025.3 6.0×10
12 310.8 2.9×10

8 
Method 2 3 585.1 3.4×10

12 97.7 5.2×10
8 
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and uncertainty, competitive adsorption among different molecules, and contamination 

issues, causing irreproducible results and erroneous or biased interpretations. More 

importantly, if the spatial distribution of molecules on the surface prior to the transfer 

step is of importance, such information is completely lost. Practically, solution-phase 

processes are relatively more labor and time-consuming and require a “wet” laboratory. 

Furthermore, SERS measurements are always restricted to molecules adsorbed on metals 

such as Ag, Au, and Cu. 

 Consequently, we have developed a dry physical approach with decent sensitivity 

and SERS uniformity using a polydimethylsiloxane (PDMS) thin film and NPGD as the 

molecular carrier and plasmonic substrate, respectively. After stamping the SERS 

substrate onto the PDMS film, SERS measurements can be directly taken from the 

“sandwiched” target molecules. A potential advantage of this approach lies in that the 

SERS enhancement depends solely on distance, rather than surface affinity. Further 

benefits include cost-effectiveness, ease of fabrication, mechanical flexibility, 

biocompatibility, relatively few Raman peaks in the fingerprint spectral region, and low 

auto-fluorescence from PDMS.  

8.6.2 Detection of Rhodamine 6G 

 Figure 8.10 illustrate the stamping SERS (S-SERS) approach with corresponding 

visual images to detect Rhodamine 6G (R6G). First, 4 L of the prepared solution 

containing target molecules was dropped on the PDMS (Sylgard 184, Dow Corning) thin 

film having a thickness of ~ 125 m and a dimension of ~ 1 × 1 cm2 (Fig. 8.10 (a) and 

8.10 (d)), which was prepared following standard protocols. The droplet was then dried 

on the PDMS substrate, forming an ultra-thin film of target molecules on the PDMS 
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100 M were used to simulate urine tests. The same sample preparation and 

measurement procedures aforementioned were applied. As shown in Fig. 8.11 (b), 

excellent intensity enhancement can be seen after stamping, with the primary Raman 

peak near 1001 cm-1 corresponding to the symmetrical C-N stretching vibration mode 

clearly observed. We note that the detection limit in the nanoMolar range is significantly 

lower than most SERS results reported in the literature in the milliMolar range [166], 

although direct comparison is not suggested because our technique employed dried 

samples as opposed to continuous-flow measurements in microfluidic configurations. 

8.6.4 S-SERS Imaging of R6G 

 Conventional SERS measurements by transferring molecules of interest to SERS-

active substrates can result in the unavoidable loss of spatial distribution of molecules on 

the original surface. To further demonstrate that the S-SERS technique has the capability 

to obtain spatio-chemical information from the PDMS surface, we have recorded a 3-

dimensional (x,y,) SERS map from dried 100 M R6G samples. The SERS map 

generated by peak intensity at 1366 cm-1 (Fig. 8.12 (b), marked by an asterisk) showed an 

identical yet clearer boundary of dried R6G droplet compared with the bright-field image 

(Fig. 8.12 (a)). Five different points inside the droplet were randomly chosen, and the 

corresponding spectra were shown in Fig. 8.12 (c). 

8.6.5 Multiplexed S-SERS Imaging 

 To demonstrate multiplexed sensing and imaging capabilities, we have recorded a 

3-dimensional (x,y,) SERS map from dried mixture samples of 100 M urea and 1 mM 

acetaminophen (APAP). These concentrations are relevant for successful detection in 

urine. After stamping, we could not find the dry mark using bright-field microscopy 
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Ref. 157 and 158. The detection limit of benzenethiol self-assembled monolayer on a 

single NPGD is estimated to be 114 zeptomoles at SNR = 3. Our studies suggest that 

NPGDs may provide the basis for SERS substrates with very high sensitivity, uniformity, 

and capacity for monolithic sensor chip technology.  

A novel label-free technique, stamping SERS (S-SERS) using NPGD as SERS 

substrates and PDMS as molecule carrier, has been demonstrated. R6G and urea 

detection with concentrations ranging from 10 nM to 100 M can be detected using S-

SERS. Moreover, the multiplexing capability has been demonstrated by large-area, high-

resolution SERS mapping of mixture of urea and acetaminophen. By coupling with high-

throughput Raman imaging systems based on line-scan or active-illumination, this 

technique can become a powerful tool for forensics analysis. The capabilities of detecting 

and imaging physiological concentrations of urea and APAP mixtures could lead to new 

point-of-care applications. 
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Chapter 9 Label-free, In Situ SERS Monitoring of Individual DNA 

Hybridization in Microfluidics 

9.1 Introduction 

Nanoporous disk has been characterized to be an attractive SERS substrate with 

ultrahigh EF, good uniformity and excellent reproducibility. To demonstrate the 

significant improvement of sensitivity in biomolecular sensing, in situ monitoring of 

DNA hybridization processes using NPGD are presented in this Chapter.  

DNA hybridization, where two single-stranded DNA (ssDNA) molecules form 

duplex through non-covalent, sequence-specific interactions, is a fundamental process in 

biology [167]. Developing a better understanding of the kinetics and dynamic aspects of 

hybridization will help reveal molecular mechanisms involved in numerous biomolecular 

processes. To this end, sequence-specific detection of hybridization at the single-

molecule level has been instrumental and gradually become a ubiquitous tool in a wide 

variety of biological and biomedical applications such as clinical diagnostics, biosensors, 

and drug development [168]. Label-free and amplification-free schemes are of particular 

interest because they could potentially provide in situ monitoring of individual 

hybridization events, which may lead to techniques for discriminating subtle variations 

due to single-base modification without stringency control or repetitive thermal cycling. 

To further increase experimental robustness and productivity and reduce complexity, 

single-step assays are highly desirable. For example, “sandwich” assay that involves 

multiple hybridization steps could generate highly convoluted results.  

Currently, intermolecular diffusion of DNA molecules is commonly studied by 

fluorescence correlation spectroscopy (FCS) with an observation time limited to the 
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diffusion time of molecules through the observation volume [169]. Single-molecule 

fluorescence resonance energy transfer (smFRET) and other fluorescence techniques 

have also been employed to study conformational changes [170-175]. Unlike most 

fluorescence techniques, molecular beacons (MB) provide label-free detection. However 

like most other fluorescence techniques, MB also suffers from rapid photobleaching 

which prevents prolonged observation for slow processes [173, 176]. Recently, MB 

probes have been immobilized on plasmonic nanoparticles to harness metal-enhanced 

fluorescence and achieved a limit of detection (LOD) ~500 pM [177].  

In addition to fluorescence techniques, label-free techniques for hybridization 

detection and biosensing include the use of localized surface plasmon resonance (LSPR) 

[178-180], extraordinary optical transmission [181, 182], electrochemistry [183, 184], 

circular dichroism spectroscopy [185] and mass measurements [186], but most of these 

techniques cannot provide the sensitivity for single-molecule detection. Recently, carbon 

nanotube field-effect transistor has been demonstrated to provide label-free, single-

molecule detection at relatively high target concentrations (100 nM to 1 M) [187].  

We have explored the use of surface-enhanced Raman scattering (SERS) as a 

reporting mechanism for molecular sensing in Chapter 8. SERS is an attractive approach 

for label-free multiplexed DNA/RNA detection because of its single-molecule sensitivity 

[48, 146], molecular specificity [145, 188, 189], and freedom from quenching and 

photobleaching [190]. These distinct advantages have led to the development of a number 

of SERS sensing platforms for single DNA hybridization detection, including the 

crescent moon structures by Lu et al. [191], nanodumbbells by Lim et al. [192], and Au 

particle-on-wire sensors by Kang et al. [193]. These SERS sensing platforms were able to 
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achieve extremely high enhancement of local electromagnetic fields from “hot spots” by 

careful control of nanostructural assemblies.  

In this Chapter, we present a SERS-based label-free approach capable of in situ 

monitoring of the same immobilized ssDNA molecules and their individual hybridization 

events over more than an hour. To achieve such performance, we have successfully 

implemented molecular sentinel (MS) [194-196] immobilized on nanoporous gold (NPG) 

disks [197] inside microfluidics. The microfluidic environment prevents sample drying, 

allows small sample volume, and permits agile fluid manipulation. MS involves the 

design of the complementary sequence of a target ssDNA into a stem-loop “hairpin”. As 

shown in Fig. 9.1 (a), the hairpin probe has a thiol group at the 5’ end for robust 

immobilization on gold nanostructures, and a fluorophore such as cyanine 3 (Cy3) at the 

3’ end for SERS detection. Cy3 yields a strongly enhanced SERS signal when the probe 

is in the hairpin configuration; this signal decreases when the probe is hybridized with the 

target and moves away from the surface. MS is label-free, requires only a single 

hybridization step, and can be multiplexed. MS has been employed to detect breast 

cancer marker genes ERBB2 and RSAD2 at concentrations of 1-500 nM using colloidal 

silver nanoparticles [195, 196]. Detection of Ki-67 at ~1 μM has been demonstrated using 

a triangular-shaped nanowire substrate, resembling a “biochip” approach [194], which is 

particular attractive for point-of-care applications where minimal sample preparation is 

desired. 

We first demonstrate that the patterned NPG disk substrates provide enough 

SERS enhancement to enable single-molecule observation of immobilized MS probes. 

Second, we demonstrate that MS probes on NPG disks can be employed to perform time-
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lapse in situ monitoring of hybridization. We then show that individual DNA 

hybridization events can be observed and quantified as early as ~10 min after introducing 

20 pM complementary target ssDNA molecules. 

9.2 Material and Methods 

9.2.1 Molecular Sentinel Probes and ssDNA Molecules 

We selected the ERBB2 gene, a critical biomarker of breast cancer, as the ssDNA 

target molecules. The hairpin probe consists of a complementary sequence of ERBB2 as 

shown in Table 9.1 (“ERBB2-sentinel”). Table 1 also shows the sequences of the ssDNA 

target (“ERBB-target”) and non-complementary ssDNA (“Non-complementary control”). 

The underlined portion indicates the complementary stem sequences of the MS probe, 

and the bolded portion represents the target sequences complementary to the loop region 

of the MS hairpin probe. All ssDNA molecules were purchased from Integrated DNA 

Technologies (IDT, Coralville, IA). 

Table 9.1 MS probe, target and non-complementary ssDNA. 
ssDNA Sequence 

ERBB2-sentinel 
5’-SH-CGCCAT CCACCCCCAAGACCACGACCAGC 
AGAATATGGCG-Cy3-3’ 

ERBB2-target 
5’-GTTGGCATTCTGCTGGTCGTGGTCTTGGGG 
GTGGTCTTTG-3’ 

Non-
complementary 
control 

5’-GCCAGCGTCGAGTTGGTTTGCAGCTCCTGA-3’ 

 

9.2.2 NPG Disks 

NPG disks, 500 nm in diameter, 75 nm in thickness and 5 nm in pore size, were 

fabricated by a process described previously in Chapter 8. [66] [66]  A SERS 

enhancement factor of ~5×108 was obtained using benzenethiol self-assembled 

monolayer with 785 nm laser excitation. 
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were collected, equivalent to 133 “point-spectra”, each from a 1-μm2 spot. A “line-

spectrum” was obtained by averaging the 133 point-spectra in one CCD frame. 

9.3 SERS Detection of Immobilized MS Probes on NPGD 

Figure 9.2 shows SERS line-spectra from different concentrations of ERBB2-

sentinel probes on NPG disk substrates by incubation (500 pM–5 nM) and drop cast (100 

pM), respectively. Each line-spectrum is an average of 133 point-spectra from a single 

CCD frame (133 (spatial) x 1340 (λ)). The baselines were approximated by a 5th order 

polynomial and removed. The major peaks at 1197 cm-1, 1393 cm-1, 1468 cm-1 and 1590 

cm-1 were assigned to Cy3 [188]. The presence of these major peaks indicates that the 

probe molecules were in their hairpin configuration, with the 3’-Cy3 near the gold 

surface. The Raman band at 1078 cm-1 (marked with an asterisk) is assigned to MCH. In 

the following experiments, we use the Cy3 peak height at 1197 cm-1 as the SERS 

intensity indicator. The immobilized probe density of drop cast onto NPG disk substrates 

was estimated from the number of probe molecules pipetted onto the NPG disk surface. 

Drop cast of 5 μL 100 pM probe solution resulted in about 2 probe molecules/μm2 after 

the rinse-MCH-rinse protocol described previously. 

9.4 Probe Density Estimation 

To quantify and calibrate the surface density of the immobilized MS probes, we 

also developed an alternative technique for probe immobilization by drop casting 5 μL of 

probe solution directly onto the NPG disk substrate. After drying, the substrate was 

processed by the same rinse-MCH-rinse procedure described in the incubation approach. 

Thus, with known area of dried droplet, the concentration of the probe solution and SERS 

intensity of Cy3, the number of probe molecules on the surface can be estimated. For 
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We also studied the probe density distribution over the entire dried spot. Four 

SERS measurements were performed at the center, halfway and circumference of the 

dried spot, respectively. Figure 9.3 (b) shows the Cy3 intensities at different positions just 

after the final rinse. The 12 red dots and the red circle schematically in the lower right 

corner represent measurement positions with respect to the dried spot. Cy3 intensities 

were lower at the center and higher at the edge. This again suggests our probe density 

estimate likely represents an upper bound. The probe density on NPG disk substrates 

using the incubation method was estimated by comparing the SERS intensity with the 

drop cast method. As shown in Fig. 9.3 (b), the average SERS intensity from substrates 

incubated in 1 nM probe solution was similar to substrates using drop cast.  Thus we 

concluded that the probe density was ~ 2 molecules/μm2 for NPG disk substrates 

incubated in 1 nM probe solution. Similarly, the probe density for NPG disk substrates 

incubated in 5 nM probe solution was estimated to be ~ 10 molecules/μm2.  

9.5 In Situ Monitoring of DNA Hybridization with Varying Target ssDNA 

Concentrations Using Incubation for Probe Immobilization 

In the first series of experiments, we employed the incubation technique to 

immobilize 5 nM sentinel probe solutions, along with target concentrations from 5 to 20 

nM. SERS monitoring began after the substrate was mounted into the microscope 

microfluidic chamber with 10 – 15 min acquisition intervals. Figure 9.4 shows the Cy3 

intensities at 1197 cm-1 from the line-spectra after introducing the target ssDNA 

molecules. Three representative line-spectra from the hybridization and the plateau 

phases of this experiment are shown in the upper-right corner. 
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indicated that there was no photobleaching during experiments and the probe 

immobilization was robust. We thus attributed any signal decrease after adding target 

ssDNA molecules to hybridization. To explore the detection limit in terms of number of 

target DNA molecules for our sensor, we reduced the concentration of the sentinel probe 

to 1 nM for immobilization by incubation, resulting in a probe density of about 2 

molecules/μm2. The Cy3 SERS intensity time trace after adding a 200 pM target solution 

is displayed as squares in Fig. 9.5. The Cy3 intensity decreased significantly within the 

first 13 min after the introduction of target and reached a plateau phase 90 min later. 

About 80% overall intensity decrease was observed.  

Instead of the overall time trace extracted from the line-spectra as shown in Fig. 

9.4 and Fig. 9.5, we next study individual time traces from point-spectra by taking 

advantage of the spatial resolution of the line-scan Raman system. Ideally, there were 133 

time traces using the point-spectrum, each from a 1-μm2 spot. Since the probe density 

was estimated to be about 2 molecules/μm2 for substrates incubated in 1 nM MS probe 

solutions, and we observed an average SERS intensities of 200 CCD counts, we interpret 

each 100 CCD counts as a single MS probe. Equivalently, each intensity decrease of 100 

CCD counts during hybridization is attributed to a single hybridization event. We 

consequently use an interval of 100 CCD counts between centers of bins in the following 

statistical analyses.  

Figure 9.6 displays the histograms of immobilized probe count and hybridization 

event count by studying individual time traces. The point-spectra showing extremely high 

SERS intensities at different peak locations different from Cy3, likely from impurities in 

the solution, were excluded from the statistical study. The number of time traces involved 
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9.6 In Situ Monitoring of DNA Hybridization with 20 pM Target ssDNA 

Concentration Using Drop Cast for Probe Immobilization 

In this series of experiments, we employed drop cast as an alternative approach 

for probe immobilization. As mentioned in section 9.4, the probe surface density by drop 

cast of 100 pM probe solutions is equivalent to that from incubating in 1 nM solutions, 

with both methods resulting in about 2 probe molecules/μm2 before hybridization. A 

protocol identical to the previous experiment was followed except that a 20 pM target 

solution was used. As shown in Fig. 9.7 (a), the line-spectra SERS intensity decreased 

substantially after the 20 pM target was introduced with the earliest detection at 10 min. 

Figure 9.7 (b), (c) and (d) show the full-frame SERS images just before adding the target, 

during hybridization and at the last measurements (time points 1, 2 and 3 in Fig. 9.7 (a)), 

respectively. The major peaks from Cy3 clearly visible in Fig. 9.7 (b) diminished 

significantly in Fig. 9.7 (d). The overall Cy3 intensity decrease was ~80% at 90 min after 

introducing the target. As shown in Fig. 9.8 (a), the histogram (blue bars) of the 

immobilized probe count agrees well with Poisson distribution with an average of 2. A 

similar distribution is observed in the histogram of hybridization event count as discussed 

later. Analyzing the point-spectra from 64 spots, four representative intensity patterns are 

observed and shown in Fig. 9.8 (b). Trace 1 (red), Trace 2 (blue) and Trace 4 (black) 

exhibit a single-step intensity drop of 100, 200, and 400 CCD counts, respectively. Trace 

3 (magenta) exhibits a two-step intensity drop with 200 CCD counts in the first step and 

then 100 in the second. The observation of quantized intensity decreases in individual 

time traces provide further support that individual hybridization events were observed. In 

the experiment using incubation in 1 nM probe solution, we also observed similar 
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Using the representative intensity patterns shown in Fig. 9.8 (b), we have 

performed a statistical analysis of 64 individual hybridization time traces with results 

shown in Fig. 9.8 (a). As mentioned earlier, the blue bars represent the statistics of 

immobilized MS probes. The red bars represent total hybridization events during the 

hybridization phase over individual 1-μm2 spots. Both histograms can be better fit with a 

Poisson distribution of λ = 2 (diamond in Fig. 9.8 (a)) than with a Gaussian distribution. 

Although there has been debate on whether to expect a Poisson distribution of SERS 

intensities at ultra-low concentrations [148, 198, 199], here it is only employed to provide 

additional insight into our results, not to justify the claim of single-molecule detection. In 

addition, the enhancements of SERS signals from the NPG disk substrates were uniform 

across a large area (at least 100 ×100 µm2) [197]. Therefore, our measurements of SERS 

intensities are reliable, and not affected by the factors [198] that could potentially 

invalidate interpreting Poisson statistics as single-molecule events.  

Next we discuss the implications of our results within the context of microfluidic 

sensors, where the static or laminar flow nature poses significant challenges for achieving 

low LOD. Unlike sensors implemented in un-restricted fluidic environments, e.g., beaker, 

where active mixing is readily available, the transport of target molecules to the sensing 

surface largely depends on diffusion in microchannels. Compared with several recently 

published label-free microfluidic sensors, our demonstrated LOD (20 pM) is respectable 

even without any attempt of optimization [177, 200-202]. After all, the technique does 

have sensitivity approaching single-molecule. So a future challenge appears to be 

implementing efficient means for bringing target molecules to the MS probes for 
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hybridization. For example, it is quite possible to lower the LOD with the help of active 

concentrating mechanisms such as dielectrophoresis [203].  

9.7 Conclusion 

We have developed a label-free technique to in situ monitor DNA hybridization 

using molecular sentinel probes immobilized on patterned nanoporous gold disk SERS 

substrates by taking advantage of the ultrahigh SERS sensitivity of these novel substrates. 

In addition, we were able to detect the onset of hybridization events within ~10 min after 

introducing 20 pM target ssDNA molecules. Given sensitivity approaching the single-

molecule limit, robust SERS signals, and simple detection system, this approach could 

find potential applications in time-lapsed monitoring of DNA interactions and point-of-

care applications. 

Related publication 

This chapter has been published as “Label-free, in situ SERS monitoring of 

individual DNA hybridization in microfluidics”, J. Qi, J. Zeng, F. Zhao, S. H. Lin, B. 

Raja, U. Strych, R. C. Willson and W.-C. Shih, Nanoscale, 2014 DOI: 

10.1039/C4NR01951B. 
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Chapter 10 Conclusions and Future Directions 

The work presented in this thesis mainly aims at: (1) improving the throughput 

line-scan Raman microscope and evaluating the performance on chemical mapping of 

cell population; (2) developing parallel Raman microscope based on multiple-point 

illumination and the application of rapid hyperspectral Raman imaging for label-free 

compositional microanalysis; (3) cancer diagnosis and margin detection using LSRM 

combined with OCT; (4) characterization of GNI as a SERS substrate using LSRM and 

active-illumination Raman microscope; (5) developing and characterizing NPGD as a 

SERS substrates and the applications in biomolecular sensing; and (6) in situ monitoring 

of individual DNA hybridization event using NPGD.  

10.1 Summary 

10.1.1 Improving the Line-scan Raman Microscope 

The line-scan Raman microscope (LSRM) achieves significant throughput 

advantage over conventional point-scan Raman microscopy by projecting a laser line 

onto the sample and imaging the Raman scattered light from the entire line using a 

grating spectrograph and a charge-coupled device (CCD) camera. The resolution in the x- 

and y-direction has been characterized to be ~600-800 nm for 785 nm laser excitation. 

The line-scan Raman microscope enables rapid classification of microparticles with 

similar shape, size and refractive index based on their chemical composition. Several 

applications such as identification and counting of organic microparticles, chemical 

imaging of spore and microalgae have been demonstrated. The overall image acquisition 

time is significantly reduced by ~100 times compared to conventional Raman imaging 

methods but provides comparable spatial and spectral resolution. 
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10.1.2 Development of Novel Active-Illumination Raman Microscope 

The novel active-illumination Raman microscope developed in Chapter 4 

provides the flexibility to simultaneously image multiple points that are not aligned along 

a line in contrast to line-scan Raman microscope presented in Chapter 3. The spatial (x-y-

z) resolution has been characterized to be 0.9, 0.9 and 4.5 µm, respectively. As many as 

about 1,000 micro-sized laser spots semi-randomly distributed among 100 × 100 µm2 

field of view has been achieved. In addition, rapid imaging capability of parallel Raman 

microscope has been demonstrated by several applications, for example, chemical 

imaging 245 mixed polystyrene and PMMA microspheres within 1.5 sec and 

identification of about 100 bacterial spores within 40 sec. The new capabilities of the 

parallel Raman microscope could have significant impact in Raman imaging in biological 

and biomedical applications. 

10.1.3 Cancer Diagnosis and Margin Detection 

 Classification of mouse tissues including small intestine, kidney and liver, margin 

detection in well differentiated liposarcoma as well as identification of gastrointestinal 

sarcoma tumor and Myxoma have been demonstrated using LSRM. In contract, structural 

images from optical coherence tomography (OCT) are indistinguishable in these 

applications. However, Raman spectroscopy is lack of real-time imaging capability due 

to the weak signal intensity. Therefore, combing the two techniques provides the 

potential for tissue analysis and margin detection as a quantitative and qualitative 

approach. 
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10.1.4 Characterization of DC-sputtered GNI 

 DC-sputtered GNI substrates have attracted significant attention recently due to 

its excellent plasmonic enhancement, structural stability, and simple fabrication. Chapter 

6 provides multimodal characterization of GNI morphological evolution by correlating 

data obtained from SEM, LSPR extinction spectroscopy, and SERS microscopy. A 

rigorous determination of the SERS enhancement factor for benzenethiol SAMs on 

evolving GNI substrates is presented. Rapid statistical analysis shows excellent large-area 

SERS uniformity by hyperspectral Raman imaging systems based on active-illumination 

which enables parsimonious sampling of only 2.7% of the total sampled area by LSRM.  

10.1.5 NPGD as a SERS Substrate 

NPGD has a SERS enhancement factor of about 108, 450 times larger than that of 

unpatterned NPG thin films of the same thickness. The effective surface area of NPGD is 

estimated to be about 6.3times of its projected area, and can provide more attachment 

sites for target analyte adsorbates within a 3-dimensional volume. A single NPGD 

decorated with attomole level benzenethiol molecules can be detected within 20 seconds 

by an uncooled detector or within 25 milliseconds by a cooled detector. The proposed 

NPGD can be fabricated with controlled size and provide highly reproducible SERS 

measurements, demonstrated by large-area mapping of benezenthiol SAM. 

10.1.4 In Situ Monitoring of Individual DNA Hybridization 

A label-free, PCR-free DNA sensor based on implementing molecular sentinels 

on NPGD. Taking the advantage of the ultrahigh SERS sensitivity of the substrates, 

which enables detection of individual Cy3-labeled DNA probes molecule, single DNA 

hybridization events have been observed by in situ monitoring the hybridization process. 
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The entire process takes about 90 min, while hybridization events can be detected within 

10 min after adding 20 pM target oligonucleotides. Given the high sensitivity, rapid assay, 

robust SERS substrate, and simple detection system, this approach could find potential 

applications in point-of-care disease diagnosis and low-cost biological detection. 

10.2 Future Directions 

To advance Raman spectroscopy as a versatile and reliable technique in biological 

and biomedical applications, future development should focus on further improvement of 

the throughput. In line-scan Raman microscope, the performance is limited primarily on 

the hardware, for example, dimension of CCD detector and the back aperture of the 

objective. However in parallel Raman microscope system, several parameters can be 

optimized to improve the performance, such as replace current tube lens with a custom 

one that has a matched focal length with the microscope objective. Besides, possible 

approaches to improve the throughput include combing compressive sensing into pattern 

generation process. When the regions of interest are very sparse, relatively few 

incoherent observations are necessary to reconstruct the most significant non-zero regions. 

Thus it requires less laser spots, i.e., illumination patterns to image the sample, which 

may improve the throughput a lot. Another approach of interest is applying Hadamard 

transform algorithm to the parallel Raman microscope system.  

 To further improve the NPGD SERS substrates, several optimizations can be 

performed. Since the extinction peak shifts with the ratio of disk diameter and height, 

NPG disks with different diameter should be made to determine to an optimized 

dimension in order to achieve maximum enhancement. 
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 In detection of DNA sequences by applying molecular sentinel on NPGD, lower 

target oligonucleotides should be used in order to determine the LOD. Currently in 

molecular sentinel method, a signal decrease due to hybridization is detected. This is 

known as “signal-off” scheme. In contrast, “signal-on” schemes detect signal increases 

due to hybridization processes and are able to achieve enormous signal gain as 

background observed in the absence of target is pushed toward to zero, thus a lower LOD 

can be achieved. It is possible to apply “signal-on” schemes on NPGD substrates by 

various designs of the DNA probe. Besides, since surface-enhance resonance Raman 

scattering (SERRS) is able to improve the sensitivity by 103-105 compared to SERS, 

further study on SERS label selection is preferred. 

Mutations in DNA are the cause of a wide range of genetic diseases, including cystic 

fibrosis. Typically, mutations in DNA sequences are identified through differential 

denaturation, in which differences in structural stability are identified by thermally 

melting a sequence of interest and determining the melting temperature. Differential 

denaturation experiments also form a key aspect of forensic assays, where short tandem 

repeats (STRs) are used in DNA fingerprinting, and in the emerging field of 

pharmacogenetics, where patients who have a genetically pre-disposed risk of adverse 

side effects to certain medications can be identified. Since DNA mutations can be 

detected by thermal or electrochemical dehybridization, detection of the dehybridization 

process of dsDNA is expected using the NPGD substrate. A possible protocol using the 

same DNA sequences in Chapter 7 may be: (1) immobilization of dsDNA on NPGD and 

followed by MCH treatment, no SERS signal from Cy3 can be detected since the 

fluorophore is about 10 nm away from NPGD surface; (2) after applying voltage or 
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thermal heating, dehybridization results in formation of the loop-shaped probes, thus 

inducing strong SERS signal from Cy3. By determining different melting temperatures 

from the relation of Cy3 intensity and temperature, mutations can be identified.  
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