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Abstract

One of the central problems in financial markets analysis is to understand the na-

ture of the underlying stochastic dynamics. Several intraday behaviors are analyzed

to study trading day ensemble averages of both high frequency foreign exchange and

stock markets data. These empirical results indicate that the underlying stochastic

processes have nonstationary increments. The three most liquid foreign exchange

markets and five most actively traded stocks each contains several time intervals

during the day where the mean square fluctuation and variance of increments can

be fit by power law scaling in time. The fluctuations in return within these intervals

follow asymptotic bi-exponential distributions. Based on these empirical results, an

intraday stochastic model with linear variable diffusion coefficient is proposed to ap-

proximate the real dynamics of financial markets to the lowest order, and to test the

effects of time averaging techniques typically used for financial time series analysis.

The proposed model replicates major statistical characteristics of empirical financial

time series and only ensemble averaging techniques deduce the underlying dynam-

ics correctly. The proposed model also provides new insight into the modeling of

financial markets’ dynamics in microscopic time scales.

Also discussed are analytical and computational studies of reacting flows. Many

dynamical features of the flows can be inferred from modal decompositions and

coupling between modes. Both proper orthogonal (POD) and dynamic mode (DMD)

decompositions are conducted on high-frequency, high-resolution empirical data and

their results and strengths are compared and contrasted. In POD the contribution

of each mode to the flow is quantified using the latency only, whereas each DMD

mode can be associated a latency as well as a unique complex growth rate. By
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comparing DMD spectra from multiple nominally identical experiments, it is possible

to identify “reproducible” modes in a flow. A similar differentiation cannot be made

using POD. Time-dependent coefficients of DMD modes are complex. Even in noisy

experimental data, it is found that the phase of these coefficients (but not their

magnitude) exhibits repeatable dynamics. Hence it is suggested that dynamical

characterizations of complex flows are best analyzed through the phase dynamics of

reproducible DMD modes.
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1.1 Motivation and Background

Sir Isaac Newton stated, “I can calculate the motions of the heavenly bodies, but

not the madness of people [1]”; the dynamics of financial markets results from col-

lective behavior of multiple interacting agents, which should be understood as a

complex system. This complexity results in a stochastic dynamics. Understanding

the stochastic processes underlying financial markets has been the central problem

of both quantitative finance and econophysics. Early work proposed several models

to explain financial time series (see, e.g., [2, 3] for a review). For example, the well-

known Black and Scholes option pricing model [4, 5] assumed that the stochastic

dynamics of the underlying asset was a geometric Brownian motion. However, anal-

ysis of high quality data of financial time series which became widely available in the

past two decades made it clear that the assumptions underlying the Black-Scholes

theory were invalid, and researchers conducted empirical analysis on the statistical

properties of the underlying stochastic processes. Important statistical character-

istics of a time series are its volatility as well as the distribution of fluctuation in

returns and the autocorrelation function. It was reported that the empirical distri-

butions contain power law (or fat) tails and scale in time [6, 7, 8, 9, 10, 11]. However,

these studies assumed that the underlying process was stationary (i.e., identical at

all times) and hence the statistical analysis was conducted by mixing increments of

returns at different time (so-called sliding interval methods). However, it is unclear

if financial markets are governed by stationary stochastic processes. For example, it

is possible and reasonable that trading activity changes with time within a trading

day (so-called intraday “seasonality”[7, 12, 13, 14]). Such empirical findings would
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invalidate stationary increments assumption and make sliding interval techniques

inappropriate for assessing financial time series.

In order to avoid spurious stylized facts resulting from applying inappropriate sta-

tistical methods, an alternative approach, i.e., method of ensemble averages over the

set of trading days, has been discussed and proposed [15, 14, 16]. The validity of this

approach has been justified in Ref. [17] by comparing the statistical characteristics

from time and ensemble averages applied to both empirical high-frequency foreign

exchange data and simulated time series. This finding also validates the variable

diffusion model used in simulation, in that it exhibits key statistical properties of the

empirical financial time series (so-called zeroth-order approximation [18]). Similar

efforts have been extended to verify the variable diffusion model and re-emphasize

the importance and validity of ensemble average methods based on empirical stock

markets data [19], which also provides new insight and a macroscopic time scale limit

for various stochastic models in microscopic time scale for financial market dynam-

ics (in analogy to thermodynamic limit of statistical mechanics), for example, order

book modeling [20] as discussed in 3.3.

1.2 Notations and Definitions

Before discussing the details of variable diffusion model, we need to introduce several

key notations and definitions to avoid confusions that frequently appear in financial

literature.

Financial time series are stochastic processes. Their dynamics are described by
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the return Xt = lnPt
P0

, where Pt represents the price of a financial asset or contract,

e.g., the Euro-Dollar exchange rate or stock price of Intel, and P0 is a reference price.

The dynamics of log return Xt are typically modeled as an Itō process

dXt = µdt+ σdBt, (1.1)

where µ and σ can depend on Xt and t in general, either deterministically or

stochastically. They degenerate to constants for geometric Brownian motion such

that Pt = P0e
µt+σBt , and Bt is centered standard Brownian motion with zero mean

E [Bt] = 0 and Var(Bt2−Bt1) = t2−t1. We assess the underlying stochastic dynamics

using increments of the return given by

Xt2;t1 ≡ Xt2 −Xt1 = ln
Pt2
P0

− ln
Pt1
P0

, (1.2)

so that X0;0 = 0. The advantages of this definition are that the return is dimension-

less and additive, and it is in analogy to signal gain measured in decibels.

Scaling, as discussed later, i.e., Xt
d.
= tHX1, where “d.” denotes “in distribution”,

will require X0 = 0 almost surely (i.e., with probability 1), so we usually write Xt;0

as Xt, Bt;0 as Bt, and also σ =
√
D (see explanations in section 1.4).

In empirical analysis we are interested in the increments Xt+τ ;t which is the

growth of X during t to t + τ . We choose τ to be 10 minutes [14] since there

are short-term correlations in financial time series. Note that the increments Xt+τ ;t

may depend on both the time lag τ and time within the day t. The corresponding

distribution of increments is denoted by W (x, t + τ ; t). If the distribution W (x, t +

τ ; t) is independent of time t and only depends on τ , the process is said to have

stationary increments. Consider the well-known example of Geometric Brownian
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Motion (GBM): The distribution of increments only depends on the time difference

τ and is independent of t. The variance of GBM is linear in τ . However, generally

W (x, t+ τ ; t) can depend on t and W (x, t+ τ ; t) can not be estimated by averaging

over t (s liding interval methods).

1.3 Motivations of Variable Diffusion Model

Real financial markets are very hard to beat, if not impossible. Arbitrage possibilities

are hard to find and once known, tend to disappear fast. Ref. [21] suggested that

the efficient market hypothesis (EMH) is simply an attempt to formalize the idea

that the market is very hard to beat. At least, at the level of simple averages and

pair correlations, nothing that happened in an earlier time interval can be used to

predict systematically the returns in a later time interval [22]. That means the pair

correlation of non-overlapping increments will vanish and the underlying stochastic

process has no memory at the lowest order.

Based on these facts, there are 3 possibilities for the underlying stochastic pro-

cess: statistical independence, drift-free Markov process, and more general Mar-

tingales [21], sorted in an order of systematic reduction in restrictions. Statistical

independence is ruled out by “volatility clustering” discussed later. And to distin-

guish between drift-free Markovian and Martingales, higher order correlations are

required. Unfortunately, due to the limited amount of empirical data available, it

is impossible to obtain a reliable higher order correlations. Nevertheless, even if
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such correlations exist and could be traded on, they would be arbitraged away, mak-

ing the market even more effectively Markovian. So drift-free Markovian is a good

zeroth-order approximation of the underlying stochastic process. It is “efficient” in

the strictest sense: it has no memory of any kind to exploit and impossible to beat.

A drift-free Markovian can be expressed by a stochastic differential equation (SDE)

dXt =
√
D(·)dBt [23], where D(·) has no dependence on history of any kind.

Volatility clustering means that autocorrelation of non-overlapping squared and

absolute increments decays slowly. It implies that large fluctuations are likely to

be followed by additional large ones; although the magnitude of fluctuations is pair

correlated, the direction is not. Therefore it should not be confused with a memory

effect on the return. Instead, it is a Markovian effect with a non-trivial variable

diffusion coefficient [21], or more precisely, an |Xt| dependent diffusion coefficient

D(|Xt|, ·) [24, 25]. This phenomenon rules out statistically independent processes

including Lévy processes [25]. It also rules out other models proposed by mathe-

maticians, e.g., stochastic volatility model.

Finally, scaling will require a t-dependent form of diffusion coefficient, as discussed

below.

1.4 Scaling

A stochastic process Xt is said to scale with a Hurst exponent H if

Xt
d.
= tHX1, (1.3)
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where equality is in distribution [26, 27]. Scaling (or more precisely, approximate

scaling) is widely observed in financial market data. It can be used to simplify the

model, but it bears no relation to pair correlation or efficient market hypothesis

(EMH) [28, 23]. By a transformation of random variable, one can see that the

distribution of Xt, or in other words, the probability density W (x, t; 0) scales as

W (x, t; 0) = t−HF (u), (1.4)

where u = Xt
tH

is called scaling variable and F (u) is called scaling function. Note

that scaling also implies Var(Xt) = t2H〈X2
1 〉, where 〈·〉 denotes an ensemble average.

Combining the SDE dXt =
√
D(Xt, ·)dBt by using Itō’s calculus, one can obtain

D(Xt, ·) = t2H−1D(u), (1.5)

which means that diffusion coefficient depends on t explicitly and scales with index

(2H − 1).

Given the scaling form of diffusion coefficient (1.5) and variable diffusion SDE

dXt =
√
D(Xt, t)dBt, (1.6)

one can calculate the variance of increments Xt+τ ;t as

Var(Xt+τ ;t) =

〈(∫ t+τ

t

√
D(Xs, s)dBs

)2
〉

=

∫ t+τ

t

〈D(Xs, s)〉ds

=
〈D(u)〉

2H
[(t+ τ)2H − t2H ]

t�τ−−→ 〈D(u)〉τt2H−1, (1.7)

where in the second equality we used Itō’s isometry E
[(∫ T

0
Xt dBt

)2
]

= E
[∫ T

0
X2
t dt
]
.
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It can be seen that this variance explicitly depends on t, which indicates the incre-

ments are non-stationary (unless H = 1
2
). Therefore, in the empirical analysis, the

use of sliding interval methods is invalid and ensemble average is required.

Notice that by definition (1.3), a scaling process will satisfy X0 = 0 with prob-

ability 1. The distribution of increments from 0 to t, W (x, t; 0), is the same as the

transition density p2(x, t|0, 0) [29], which represents the probability density of Xt

given the condition that X0 = 0, and it will satisfy Fokker-Planck equation

∂

∂t
W (x, t; 0) =

1

2

∂2

∂t2
[D(Xt, t)W (x, t; 0)]. (1.8)

Note that this can be also reasoned by the 1-to-1 correspondence of SDE dXt =√
D(Xt, t)dBt and Fokker-Planck equation (this also explains why we ususally write

σ =
√
D in SDE (1.1))[30, 31]. Given the scaling form of distribution (1.4) and

diffusion coefficient (1.5), one can obtain a relation between scaling function F (u)

and scaled diffusion coefficient D(u) [24, 25]

F (u) =
C

D(u)
exp

(
−2H

∫
udu

D(u)

)
. (1.9)

Now consider an expansion of D(u) in u

D(u) = D0

(
1 + ε1|u|+ ε2u

2 +O(|u|3)
)
. (1.10)

It can be shown [24, 25] that following correspondences between F (u) and D(u)

• D(u) = 1, F (u) = exp
(
−1

2
u2
)

• D(u) = (1 + ε2u
2), F (u) = (1 + ε2u

2)
−
(

1+
(

1
2ε2

))
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• D(u) = D0(1 + ε|u|), F (u) = εααeα

2Γ(α,α)
(1 + ε|u|)α−1e−εα|u|, where α = 2H

D0ε2
, and

Γ(s, x) =
∫∞
x
ts−1etdt

• D(u) = D0(1 + ε1|u|+ ε2u
2),

F (u) = C
D0

(1 + ε1|u|+ ε2u
2)
−1− H

D0ε2 exp

2Hε1 arctan

(
2ε2|u|+ε1√

4ε2−ε21

)
D0ε2

√
4ε2−ε1


Note that in the last case, where D(u) = D0(1 + ε1|u| + ε2u

2), the corresponding

F (u) has a power law tail, because arctan(x) is bounded if x is real, and arctan(x) =

1
2
i (ln(1− ix)− ln(1 + ix)) if x is imaginary. So in order to get a bi-exponential tail

of F (u), we must have

D(u) = D0(1 + ε|u|). (1.11)

The asymptotic bi-exponential distribution of F (u) is reported in empirical stud-

ies [17, 16, 14, 19].

By fixing the form of (1.11) and corresponding

F (u) =
εααeα

2Γ(α, α)
(1 + ε|u|)α−1e−εα|u|, (1.12)

one can calculate the analytical form of 〈D(u)〉 =
∫∞
−∞D(u)F (u)du

=
D2

0ε
2Γ(1+α,α)

2HΓ(α,α)
, where α = 2H

D0ε2
. This also fixes the analytical form of variance of in-

crements Xt+τ ;t according to (1.7), and in the limit of τ � t, it goes to 〈D(u)〉τt2H−1,

which scales with the same exponent as D(Xt, t).

Another quantity that can be obtained analytically is the moments of increments

〈
Xβ
t+τ ;t

〉 1
β ∼ tH−

1
2 , (1.13)
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which can be evaluated [14] by using Itō’s calculus in the condition of scaling form of

(1.5) and variable diffusion SDE (1.6), and taking the limit of τ � t. This quantity

is useful in empirical analysis in that it provides an alternative way to confirm the

validity of scaling (in contrast to multi-scaling [32, 33, 34, 35]) of empirical time

series, as discussed below.

1.5 Empirical Analysis and Parameter Estimation

In order to get an empirical drift-free process, we need to detrend return distributions.

As discussed in [29, 21], detrending of empirical time series can be non-trivial. In

the case of currency markets, the mean is nearly constant during the day. However,

in the stock prices, this is not true (for example, see Figure 3.1). Nevertheless, the

best that can be done empirically is to remove the ensemble mean E[Xt] from the

log return, and thus detrend all increments empirically.

Since the assumption of stationary increments is not valid in general, one has

to calculate almost all statistical quantities by using the ensemble average. The

ensemble consists of the daily variations in the return. For example, to extract the

sample variance of increments from t to t+ τ , one has to calculate

〈X2
t+τ ;t〉 =

1

N

N∑
k=1

X2
t+τ ;t(k), (1.14)

where Xt+τ ;t(k) is the increment from t to t+ τ of the k-th day, and N is the number

of trading days, with τ = 10 minutes.

Empirically, the best evidence for scaling is a data collapse of the form (1.4).
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However, due to the limited amount of empirical data, the collapse cannot be ob-

served definitely for all cases. The next best but weaker evidence is to look for scaling

in a finite number of the moments
〈
Xβ
t;0

〉 1
β

[28], or to avoid the sensitivity in the

beginning of scaling time interval, look for scaling in (1.13) where τ = 10 minutes.

Parameters H, D0, and ε in the linear variable diffusion model (1.6) with (1.11)

are estimated as follows: the Hurst exponent H can be estimated by linear fit of the

power law scale of Var(Xt+τ ;t) ∼ t2H−1. The other two parameters can be estimated

by fit of distribution F (u) (1.12).

Finally, to empirically and numerically explore volatility clustering, one needs

to evaluate the autocorrelation function of absolute and squared increments. The

ensemble-averaged autocorrelation of increments is defined as

AXt+τ ;t(t1, t2; τ) =
〈(Xt1+τ ;t1 − 〈Xt1+τ ;t1〉) (Xt2+τ ;t2 − 〈Xt2+τ ;t2〉)〉

σ(Xt1+τ ;t1)σ(Xt2+τ ;t2)
, (1.15)

where σ is the square root of variance (1.14), and is often called the volatility. By

its definition, ensemble-averaged autocorrelation can depend on both t1 and t2 in

general. The ensemble-averaged autocorrelations of absolute and squared increments

are simply

A|Xt+τ ;t|(t1, t2; τ) =
〈(|Xt1+τ ;t1| − 〈|Xt1+τ ;t1 |〉) (|Xt2+τ ;t2| − 〈|Xt2+τ ;t2|〉)〉

σ(|Xt1+τ ;t1|)σ(|Xt2+τ ;t2)|
(1.16)

and

AX2
t+τ ;t

(t1, t2; τ) =
〈
(
X2
t1+τ ;t1

− 〈X2
t1+τ ;t1

〉
) (
X2
t2+τ ;t2

− 〈X2
t2+τ ;t2

〉
)
〉

σ(X2
t1+τ ;t1)σ(X2

t2+τ ;t2)
. (1.17)

The sliding interval autocorrelation is defined as

AslideXt+τ ;t
(t2 − t1; τ) =

〈(Xt1+τ ;t1 − 〈Xt1+τ ;t1〉t1) (Xt2+τ ;t2 − 〈Xt2+τ ;t2〉t2)〉t1
σ(Xt+τ ;t)2

, (1.18)
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where 〈·〉t denotes the time average over t by the sliding interval method, and the σ

is also calculated by the sliding interval method. This autocorrelation only depends

on the difference t2− t1 by construction, and it relies on the assumption of stationary

increments.
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Chapter 2

Ensemble vs. Time Averages in

Financial Time Series Analysis
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2.1 Introduction

Understanding the stochastic dynamics underlying financial markets has been a focus

of physicists for around half a century. Early work by Osborne [1, 2] paved the path

for Econophysics. Methods derived mainly from statistical physics are applied to

assess the dynamics of financial time series. Important characteristics of a time series

are its volatility as well as the distribution of increments and the autocorrelation.

Several models have been proposed to explain financial time series (see, e.g., [3, 4]

for a review). For example, the prominent Black and Scholes option pricing model

[5, 6] assumed that the stochastic dynamics of the underlying asset was a geometric

Brownian motion. However, later work revealed that the empirical distributions

contain fat tails [7, 8, 9]. Studies also found that the distributions scale with the

length of the time interval analyzed [10, 11, 12]. In addition, financial time series are

characterized by their intraday ”seasonality” [8, 13, 14].

The intraday volatility pattern of foreign exchange rates can be explained by

hours of business in different geographical regions [14, 15, 16, 17]. Volatility (root

mean square fluctuations), rate of transactions, and bid-ask spread, are highest dur-

ing times when the European and North American markets are active. Ref.[18]

analyzed intraday increments of the Euro-Dollar exchange rate and found several

time intervals during the day where the standard deviation of increments exhibits

power law behavior in time. Seemann et al.[17] extended the analysis of intraday

scaling regions in foreign exchange markets and found similar scaling behavior in the

Euro-Dollar, Dollar-Yen, and Sterling-Dollar markets.
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Traditional analytical methods, which are predicated on stochastic processes with

stationary increments, are not appropriate for assessing financial time series, because

intraday volatility varies throughout a typical trading day. In particular, many

statistical analyses of financial time series have been conducted applying sliding

interval methods. An example is the finding that the distribution of returns scales

with the time lag [19, 20, 21, 22]. However, sliding interval approaches implicitly

assume that the underlying stochastic process has stationary increments. Empirical

analysis invalidates this assumption [8, 14, 18].

Although the periodicity of intraday behavior has been noted [8, 13, 14], only

recently have alternative approaches been discussed. Ensemble averages over the set

of trading days have been proposed [23, 18, 17]. Immediately the following questions

arise: How do results between time and ensemble averages differ? Assuming that

the underlying dynamics of a time series are known a priori, which approach better

characterizes the underlying dynamics of the stochastic process?

Since the dynamics underlying empirical financial data are not known, we con-

struct and apply a model to produce time series with similar key characteristic as the

empirical high-frequency foreign exchange data. The empirical data and the model

exhibit intraday seasonality and we analyze differences of time averaging analysis and

ensemble average analysis. The main finding of our work is that ensemble averag-

ing techniques are able to assess the underlying dynamics correctly, whereas sliding

interval approaches fail and moreover lead to spurious conclusions. We also find

that the proposed intraday volatility model exhibits several stylized facts of foreign

exchange time series.
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2.2 Background

2.2.1 Foreign Exchange Data

For empirical analysis we used several years of tick by tick data of major exchange

rates from Gain Capital. Before using the data we scrutinized the consistency and

filtered ticks that were likely to be erroneous by applying a filtering window [24, 25].

We approximate the spot price p by the average of the bid and ask quotes: p =

(pbid + pask)/2. For our analysis we used detrended increments by removing the time

average over all available days. One problem is that a bid/ask pair is not recorded

in every time interval of interest, e.g. both prices are needed in order to calculate

the increment between the price at time t and (t+10) min. When one price is not

available, the missing data are either linearly interpolated, or the last recorded value

is used. Here, we take a strict approach and only analyze increments for which both

trades are recorded, i.e., we omit all returns for which at least one of the prices is not

known. Furthermore, we only considered trading days, i.e., we exclude data from

weekends and holidays.

2.2.2 Definitions

Financial time series are stochastic processes. Their dynamics are described by the

return log(P (t)/P0), where P (t) represents the price of a financial asset or contract,

e.g., the Euro-Dollar exchange rate, and P0 is a reference price. We assess the
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underlying stochastic dynamics using increments of the return given by

X(τ ; t) ≡ logP (t+ τ)− logP (t), (2.1)

where we choose τ to be 10 min [18], since there are short-term correlations in

financial time series. Note that X(τ ; t) is dimensionless and additive. Also notice

that the increments X(τ ; t) may depend on both the time lag τ and time of the

day t. The distribution of increments is denoted by W (x, τ ; t). If the distribution

W (x, τ ; t) is independent of time t and only depends on τ , the process is said to have

stationary increments. Consider the prominent example of Geometric Brownian

Motion (GBM): The distribution of increments only depends on the time difference

τ and is independent of time t. The variance of GBM is linear in τ .

However, generally W (x, τ ; t) can depend on t and W (x, τ ; t) can not be estimated

by averaging over t (s liding interval methods). Here we apply ensemble averages

over all trading days since the stochastic dynamics of foreign exchanges rates are

approximately the same between trading days [18, 17]. For ensemble average analyses

we remove the mean over all trading days and define the volatility of stochastic

dynamics as the root mean square (rms) fluctuations

σ(τ ; t) ≡
√
〈X(τ ; t)2〉, (2.2)

where 〈X(τ ; t)2〉 is averaged over N trading days:

〈X(τ ; t)2〉 =
1

N

N∑
k=1

X2
k(τ ; t) (2.3)

with τ = 10 min.

We will show that the stochastic dynamics of financial processes are memoryless

as their autocorrelation function decays rapidly. This observation strongly suggests
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that the underlying dynamics are Markovian and that the time evolution of W (x, τ ; t)

is described by the diffusion equation with diffusion coefficient D(x, τ)

∂

∂τ
W (x, τ ; 0) =

1

2

∂

∂x2
[D(x, τ)W (x, τ ; 0)] (2.4)

which is drift-free since X(t; τ) has been detrended.

2.2.3 Scaling

The volatility of stochastic processes underlying financial market fluctuations exhibits

scaling. The three most actively traded currency pairs exhibit three scaling intervals

during the day during which the root mean square fluctuations scale as power laws

[18, 17]:

σ2(t; 0) =

∫ ∞
−∞

x(t; 0)2W (x, t; 0)dx = ct2H , (2.5)

where H is the Hurst exponent.
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Figure 2.1: Intraday volatility behavior defined as the root mean square fluctuations

of increments averaged over the years studied (Eq.2.2). Intraday increments are

nonstationary in all three markets and exhibit similar scaling behavior. The scaling

regions are indicated by horizontal bars. We found similar intraday seasonality in

most actively traded foreign exchange rates.

The Hurst exponent is different for each interval but independent of the cur-

rency pair under study (Fig.2.1). This suggests that the distribution function scales

according to

W (x, τ ; 0) = τ−HF (u) (2.6)

where the scaling variable u is defined by u = x
τH

. Itō’s calculus requires the diffusion

coefficient to scale as well in order to get Eq.2.5 [26, 27]

D(x, τ) = τ 2H−1D(u). (2.7)
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Figure 2.2: The scaling function F (u) for the longest scaling interval from 190 min -

415 min GMT for all three currency pairs studied. The scaling function appears to

be biexponential and identical for the three currency pairs under study. Evaluation

of the other two scaling regions also shows the same scaling behavior for all three

exchange rates. The scaling function F(u) was estimated through histograms with

variable bin size. Each bin has a width of at least 2.5 × 10−5 and contains at least

15 observations.

Using high-frequency foreign exchange data we can extract the empirical scaling

function F . We apply Eq.2.6 for different τ on each scaling region to estimate F ,

which is found to be approximately bi-exponential (Fig.2.2).
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2.2.4 Autocorrelation

We also assess the autocorrelation. The autocorrelation of absolute increments is

defined as

Aabs(t1, t2; τ) =
〈|X(t1, τ)− 〈X(t1, τ)〉| |X(t2, τ)− 〈X(t2, τ)〉|〉

σ(τ ; t1)σ(τ ; t2)
(2.8)

and the autocorrelation of squared increments as

Asq(t1, t2; τ) =
〈(X(t1; τ)− 〈X(t1; τ)〉)2 (X(t2; τ)− 〈X(t2; τ)〉)2〉

σ(τ ; t1)σ(τ ; t2)
. (2.9)

The average is to be understood as an ensemble average over trading days according

to Eq.2.3 and the variance is defined as in Eq.2.2. If the increments are station-

ary, i.e., they are a function of τ only, the ensemble averages can be replaced with

time averages. This yields to the more common definition of the autocorrelation

coefficient [28]. The autocorrelation of absolute or squared increments decays slowly

and studies suggest that the decay follows a power law [29, 28]. It implies that

large fluctuations are more likely to be followed by large fluctuations, and the fact is

coined ”volatility clustering” [7]. Also characteristic is the 24-hour peak in absolute

or squared increments, which is a reflection of the daily repetition of the stochastic

process underlying the markets [13].
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2.3 Intraday Volatility Model

2.3.1 Variable Diffusion Processes

The empirically observed scaling behavior can be modeled using variable diffusion

processes. Using both scaling forms for distribution (Eq.2.6) and for the diffusion

coefficient (Eq.2.7) in the diffusion equation (Eq.2.4) allows us to calculate the scaling

function analytically

F (u) =
C

D(u)
exp

[
−2H

D0

∫ u

0

ũ

1 + ε|ũ|
dũ

]
, (2.10)

where C is the normalization constant. Consider a diffusion process initiated at zero

that scales according to Eq.2.7. Expansion of D(u) in u results in

D(u) = D0

(
1 + ε1|u|+ ε2u

2 +O(|u|3)
)

(2.11)

where we assumed symmetry in u which is justified by the symmetry in the distribu-

tion of returns in financial markets [30, 31]. It can be shown that a linear expression

for the diffusion rate gives rise to a bi-exponential scaling function1. Hence we will

consider

D(x, τ) = D0τ
2H−1(1 + ε|u|). (2.12)

Using this first order term in Eq.2.10 yields after integration and normalization

F (u) =
εααe−α

2Γ(α, α)
(1 + ε|u|)α−1e−εα|u|, (2.13)

where α ≡ 2H
D0ε2

and Γ(s, x) ≡
∫∞
x
ts−1e−t dt is the upper incomplete Gamma func-

tion.
1E.g., if D(u) = 1 we get F (u) = exp(− 1

2u
2) (Gaussian) and D(u) = 1 + ε2u

2 yields F (u) =

(1 + ε2u
2)−(1+ 1

2ε2
)
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Note that in the special case D0 = 2H
ε2

, the scaling function F(u) is bi-exponential

and and has the form F (u) = ε
2
e−ε|u|. The case ε → 0 gives a Gaussian scaling

function as can be seen from Eq.2.10.

2.3.2 Scaling Regions

We use our intraday volatility model to generate a time series generated by repe-

tition of the intraday stochastic process. Each model trading day comprises of six

scaling regions that approximately replicate the activity pattern exhibited in foreign

exchange markets (Fig.2.3). Each scaling regions obeys σ2(t; 0) = ct2H (Eq.2.5). The

volatility at the beginning and at end of the trading day are set equal as required

for the continuity of the characteristics of the stochastic process.

Figure 2.3: Empirical and modeled intraday volatility patterns. Every trading day

exhibits three waves of volatility. After the European markets open, the North-

American markets become active. Lastly the Tokyo markets open. The activity is

highest when European and North-American markets are open.
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2.3.3 Parameter Estimation

The model parameters can be estimated empirically using high-frequency foreign ex-

change data. Each scaling region in our model is simulated using a variable diffusion

process (Eq.2.13). Three parameters need to be estimated for each scaling region:

the Hurst exponent H and the parameters ε and D0. The Hurst exponent H is

given by the empirical scaling of the volatility. The parameters ε and D0 are related

through D0ε
2 = 2H because the empirical scaling function F (u) is bi-exponential,

hence α = 1 (Eq.2.13, Fig.2.2). Within each scaling region ε can be estimated by

the tail exponent of F (u) (Fig.2.2). Table 2.1 summarizes the parameter estimates.

We want to emphasize that our aim is not to fit the intraday seasonality pattern

but to build a continuous intraday volatility model that contains three regions of

high activity (Fig.2.3), which correspond to opening hours in Europe, America, and

Japan. Although we estimated our parameters based on empirical data, the results

presented below do not depend on the particular set of parameters.
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Table 2.1: Model parameters according to Eqs.2.12 and 2.13. The scaling intervals

are described in minutes since the start of the trading day.

Scaling interval α H ε

0-190 1 0.714 21382

190-415 1 0.437 5435

415-660 1 0.579 8750

660-1080 1 0.353 4421

1080-1280 1 0.585 13823

1280-1440 1 0.345 6754

2.4 Results

2.4.1 Scaling

Each trading day in our simulation contains six scaling regions. To assess if and how

the distribution of increments of our model data scales, we determined the scaling

function F (u) for each scaling interval individually. F (u) is calculated using Eq.2.6

with the Hurst exponents given in Table 2.1. We use multiple values of τ , whereas τ

is a multiple of 10 and smaller than the length of the scaling interval. Note that ac-

cording to Eq.2.6 time t is set to zero at the beginning of each scaling region. Results

indicate that for each scaling region the rescaled distributions of increments collapse

into one scaling function (Fig.2.4A). The results indicate consistency between the
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model and empirical data within each scaling region. The scaling function for each

scaling interval agrees with the theoretical calculations according to Eq.2.13 (shown

as dashed lines).

Figure 2.4: Collapse of the distribution function of increments. (A) Analysis of model

data illustrating the correct detection of the underlying dynamics. The scaling func-

tion F (u) is calculated for each scaling interval and compared with the expected

result from Eq. 2.13 (dashed line). The empirical data agree with the model. (B)

Applying time averaging sliding windows on the same time series yields to spurious

results. Although the center of the distribution seems to scale well, the tails indicate

that the distributions do not collapse. Note short time lags result in scaling distribu-

tions with wide tails, whereas bigger time lags result in distributions which appear

to be parabolic. This finding agrees with reports that with increasing time lag the

empirical return distribution converges to Gaussian behavior [9]. The results shown

are from analyzing 108 modeled trading days.

31



Since financial time series analyses is mostly conducted using sliding interval

methods, we also calculate the scaling function using non overlapping sliding intervals

of different length. Sliding interval methods average the return distribution over time

WS(x, τ) ≡ 〈W (x, τ ; t)〉t, (2.14)

where 〈·〉t indicates the time average, and thereby assume stationary increments.

Many studies applying these sliding interval techniques report scaling with a Hurst

exponent of HS ≈ 0.5. That motivated us to assess our model dynamics using sliding

intervals using HS = 0.5 and different interval length. We found that the rescaled

distributions of increment do not collapse in the tails whereas the center of the

distributions might suggest scaling (Fig.2.4B). Note that we simulated 108 trading

days to emphasize differences of the distribution in the tails. Real world data will

provide much smaller samples and hence the differences will not be as significant as

shown here. Although the center of the rescaled distributions of return seem to scale

well with HS = 0.5, our results indicate that time averaging does not allow to deduce

the underlying dynamics correctly. We also observed that the shape of the rescaled

return distribution change qualitatively. Note that for lags bigger than 103 min

(corresponding to lags longer than one trading days) the rescaled distribution shape

becomes parabolic, indicating a scaling function closer to a normal distribution.

2.4.2 Autocorrelation

Similarly to the return distribution, the autocorrelation in most studies is assessed

using sliding intervals. First, we determined our model’s behavior when analyzed
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using a sliding interval technique.

Figure 2.5: Autocorrelation of absolute increments calculated classically using a slid-

ing window. The autocorrelation of absolute increments of the model data reproduces

the characteristic daily peak, which arises from the daily repetition of the stochastic

process underlying financial markets.

Similar to empirical foreign exchange data, our model results in a slowly decaying

autocorrelations of square increments. Time lags below 200 min result in significant

correlations (Fig 2.5). The daily peak is also reproduced. It results from the periodic

intraday behavior. These results suggest that our model reproduces characteristic

behavior of foreign exchange autocorrelations.
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We also assess the model data using an ensemble of trading days because the

assumptions for sliding interval techniques are not met, as discussed above. Hence

assessment of the autocorrelation using ensemble averages according to Eqs.2.8,2.9

are appropriate. However, the scaling intervals are short and do not allow assessing

the long term behavior of the autocorrelation of increments for variable diffusion

processes. Therefore, we also investigate the dynamics of variable diffusion pro-

cesses according to Eq.2.12 individually. The results illustrated in Fig.2.6A show

that variable diffusion processes produce time series with long term autocorrelation

of absolute (not shown here) and squared increments. Using an ensemble average

according to Eq.2.9, we found that the autocorrelation of squared and absolute incre-

ments of variable diffusion processes decays slowly. Earlier studies of similar variable

diffusion processes reported power law decays according to T ε−1[32]. Here we did

not find a linear relationship between the parameters ε and H (Fig.2.6B).
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Figure 2.6: Autocorrelation of squared increments calculated through an ensemble

according to Eq.2.9 (A) The autocorrelation of squared increments of variable diffu-

sion processes is slowly decaying. Shown are the long term correlations for constant

Hurst exponent H and different ε. Because the increments are calculated using a

time lag of 10, a time lag of less than 10 between increments results in overlapping

increments, which results in large correlations. Hence the significant autocorrela-

tion values for squared increments for time lags less than 10. (B) Estimating the

relationship between the parameters of the variable diffusion process and the long

term behavior of the autocorrelation of squared increments, the exponent capturing

the slow decay. For all Hurst exponents we studied (0 < H ≤ 1) the slope in the

log-log plot (Fig.A) is not a linear function of ε, as it was reported for variable dif-

fusion processes with D(u) = 1 + εx
2

t
[32]. Shown here is the non-linear behavior for

H = 0.5.
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2.5 Discussion and Conclusions

Our findings emphasize the need to design analytical techniques for financial time

series that allow for the stochastic process to have non-stationary increments. Here

we explicitly showed that traditional sliding interval methods, which implicitly as-

sume that the increments are stationary, give rise to spurious findings. In particular

we analyzed the scaling function of returns and the autocorrelation of processes with

non-stationary increments using time averaging techniques and were not able to de-

duce the true underlying dynamics. In contrast, ensemble averages over trading days

yielded the underlying model dynamics correctly.

Financial time series exhibit strong intraday seasonality. Our analysis of intra-

day volatility of foreign exchange data, whose characteristic pattern is explained by

opening hours of the global financial centers, is in agreement with earlier findings

[13, 14]. Our work expands earlier findings as we found that the intraday volatility

patterns are similar between different markets and exhibit scaling regions.

The intraday volatility pattern is evidence for non-stationary increments of the

underlying stochastic process, which is in contradiction with the assumption of sta-

tionary increments needed for time averaging techniques. Several approaches have

been suggested to overcome this problem. One set of approaches redefines ”time”

in the stochastic process. Instead of using physical time, other time measures have

been proposed that are based on characteristic financial events [33, 34, 35, 3, 4].

Oomen [34] reports advantages in using transaction time, which increases by one

unit for each reported transaction. Tick time increases time by one unit for each
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price change [35, 3, 4]. Another approach suggested by Dacorogna et al. introduces

ϑ-time which accounts for the seasonal intraday and intra-week aspect of volatility

[13, 25].

Fig.2.7 suggests that using event-based transaction time results in time series with

approximately stationary increments during active markets. The intraday behavior

of the average number of ticks is similar to that of volatility; moreover, they peak at

the same time, leading to an intuitive conclusion that the price fluctuations increase

with a higher trading frequency. Additional evidence for this assertion was made

previously [36, 37, 38], where it was found that in an event-based ε time scale defined

by local extreme values in price, the volatility of price, trading volume, and frequency

of trading (equivalently, the number of ticks per unit time) peak at the same time,

which is the end of an interval during which the price exhibits an increasing or

decreasing trend, corresponding to local extreme values in the price.
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Figure 2.7: Volatility per tick. Dividing the intraday volatility σ(t; 10) (see Fig.2.1)

by the number of ticks ν10 within the same 10min intervals reveals an almost constant

ratio during active trading in the three main financial centers. The aberrant behavior

between 1000 and 1200 minutes coincides with the time interval during the day at

which the three main markets are closed.

However, when applying sliding interval techniques to event-based or rescaled

time, the assumption of stationary increments needs to be verified for the rescaled

time series as well. It is not clear that the rescaled times series result in processes with

stationary increments. For example, Fig.2.7 indicates that event-based transaction

time results in time series with non-stationary increments when the main markets

are closed. Our ensemble averages provides an alternative by averaging over trading
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days; here, the assumption of non-stationary increments is not needed.

Here we introduced a model that decomposes the intraday volatility into the

three main continental markets. Each modeled volatility interval scales in time as

suggested by empirical studies of foreign exchange data. It can be regarded as an

extension of the polynomial volatility model introduced in [13].

The time series of our model was assessed using both time averages and ensemble

averages. As the underlying dynamics of our model are known, we were able to

compare the results of both approaches. We determined the distribution of returns

and its scaling and found that only the ensemble averages correctly determines the

underlying dynamics.

The autocorrelation function of our model exhibits stylized facts reported in

previous empirical studies. Using time averages our model reproduced volatility

clustering, i.e., the autocorrelation of squared and absolute increments decays slowly,

as reported in [29, 28]. Our model also reproduced the characteristic high correlation

between of absolute of squared increments that lag exactly one day [13, 25]. The

peak is caused by repetition of the intraday intraday stochastic process.

We wish to emphasize that our conclusions do not depend on particular param-

eters used. Specifically, we found similar results when we chose a model with only

four instead of six scaling regions. Our choice of parameters here was guided by

empirical data from the most actively traded foreign exchange rates.

We analyzed the intraday volatility of the most actively traded exchange rates

and found repeating behavior of intraday volatility. Although the empirical patterns
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may differ from the particular pattern reported here (Fig.2.1), the presence of non-

stationary increments implies that most foreign exchange rates should be analyzed

using ensemble averages instead of time averages. Empirical studies of stocks have

also reported non-stationary stochastic behavior [39, 40]. These include character-

istic U-shaped patterns within the trading day [39, 40, 41]. We hypothesize that

many, if not most, markets which are actively traded exhibit intraday seasonality

and therefore also have non-stationary increments.

In summary, our work reveals that time average techniques are not appropriate

to analyze time series with non-stationary increment, like foreign exchange data.

Neither the scaling behavior of the returns nor the autocorrelations of an intraday

activity model were identified correctly. However, repeating behavior of intraday

activity/volatility allows to regard each detrended trading day as a repetition of the

same experiment and average over an ensemble over trading days. That approach

allowed us to infer the underlying dynamics correctly. Our results imply that ana-

lyzing financial time series which exhibit repeating behavior of activity via ensemble

averages can be used to derive new insight into the underlying dynamics.

Bibliography

[1] M. F. M. Osborne, Brownian-motion in the stock market, Operations Research

7 (2) (1959) 145–173.

[2] M. F. M. Osborne, The Stock Market and Finance From a Physicist’s Viewpoint,

Crossgar Press, Minneapolis, 1977.

40



[3] A. Chakraborti, I. M. Toke, M. Patriarca, F. Abergel, Econophysics review: I.

empirical facts, Quantitative Finance 11 (7) (2011) 991–1012.

[4] A. Chakraborti, I. M. Toke, M. Patriarca, F. Abergel, Econophysics review: II.

agent-based models, Quantitative Finance 11 (7) (2011) 1013–1041.

[5] F. Black, M. Scholes, Pricing of options and corporate liabilities, Journal of

Political Economy 81 (3) (1973) 637–654.

[6] R. C. Merton, Theory of rational option pricing, Bell Journal of Economics 4 (1)

(1973) 141–183.

[7] B. Mandelbrot, The variation of certain speculative prices, Journal of Business

36 (4) (1963) 394–419.

[8] U. A. Müller, M. M. Dacorogna., R. B. Olsen, O. V. Pictet, M. Schwarz Z,

C. Morgenegg, Statistical study of foreign-exchange rates, empirical-evidence

of a price change scaling law, and intraday analysis, Journal of Banking and

Finance 14 (6) (1990) 1189–1208.

[9] P. Gopikrishnan, V. Plerou, L. A. N. Amaral, M. Meyer, H. E. Stanley, Scaling

of the distribution of fluctuations of financial market indices, Physical Review

E 60 (5) (1999) 5305–5316.

[10] S. Galluccio, G. Caldarelli, M. Marsili, Y. C. Zhang, Scaling in currency ex-

change, Physica A: Statistical Mechanics and its Applications 245 (3-4) (1997)

423–436.

41



[11] N. Vandewalle, M. Ausloos, Multi-affine analysis of typical currency exchange

rates, European Physical Journal B 4 (2) (1998) 257–261.

[12] P. Gopikrishnan, V. Plerou, Y. Liu, L. A. N. Amaral, X. Gabaix, H. E. Stanley,

Scaling and correlation in financial time series, Physica A: Statistical Mechanics

and its Applications 287 (3-4) (2000) 362–373.

[13] M. M. Dacorogna, U. A. Müller, R. J. Nagler, R. B. Olsen, P. O. V., A geograph-

ical model for the daily and weekly seasonal volatility in the foreign-exchange

market, Journal of International Money and Finance 12 (4) (1993) 413–438.

[14] B. Zhou, High-frequency data and volatility in foreign-exchange rates, Journal

of Business and Economic Statistics 14 (1) (1996) 45–52.

[15] U. A. Müller, M. M. Dacorogna, O. V. Pictet, R. R. Davé, D. M. Guillaume,
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Chapter 3

Variable Diffusion Model for Stock

Markets
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3.1 Stock Markets Data

We obtained our minute data for the 328 most actively traded symbols, including

stocks in the US market from PiTrading.com (http://pitrading.com/intraday_

ascii_data_market_edition.htm). Availability of most stocks data can be traced

back to 1991∼1992; however, due to technical limitations at that time, the quality of

data is not comparable to that of data after 2002. So we restrict ourselves on the most

reliable data, i.e., the most recent 2500 trading days, which approximately correspond

to the recent decade. The data provide open, close, high, and low prices within every

minute, together with trading volume. One problem is that not every minute’s price

is recorded, perhaps due to technical problems or errors (most likely before 2000) or

the fact that price did not change during the interval (most likely after 2000). When

this happened, we substituted the missing data by the last recorded data, and set the

trading volume to 0, because the probability that a stock is traded but the price does

not change is less than the probability that the stock is not traded, given the condition

that the price does not change within one minute. In our analysis, we focused on

five representative stocks, whose trading symbols are INTC, MSFT, IBM, XOM, and

CVX, corresponding to Intel Corp., Microsoft Corp., International Business Machines

Corp., Exxon Mobil Corp., and Chevron Corp., respectively. These five stocks are

among the most actively traded stocks among our data.
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3.2 Results

3.2.1 Intraday Seasonality

Before performing the statistics, we detrended the centered increments process of

log return Xt;0 by subtracting ensemble averaged mean E[Xt;0], where X0;0 = 0 by

construction and E[Xt;0] depends explicitly on time. After this detrending, the in-

crements Xt+τ ;t are detrended automatically, so we can compute their variance by

ensemble average. We also compared them to sum of trading volume from t to t+ τ ,

and the result is shown in Figure 3.1. We found that other stocks exhibit similar

intraday seasonality shown in Figure 3.2. The intraday variance pattern is evidence

for non-stationary increments of the underlying stochastic process, which is in con-

tradiction with the assumption of stationary increments needed for time averaging

techniques. Several approaches have been suggested to overcome this problem. One

set of approaches redefines “time”in the stochastic process. Instead of using physi-

cal time, other time measures have been proposed that are based on characteristic

financial events [1, 2, 3, 4, 5]. Oomen [2] reports advantages in using transaction

time, which increases by one unit for each reported transaction. Tick time increases

time by one unit for each price change [3, 4, 5]. Another approach suggested by

Dacorogna et al. introduces ϑ-time which accounts for the seasonal intraday and

intra-week aspect of volatility [6, 7].
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Figure 3.1: Intraday seasonality of INTC. (left) Ensemble averaged mean of centered

increments of log returns. (middle) Ensemble averaged variance of increments from t

to t+ τ where τ = 10 minutes. This U-shaped pattern has been reported previously

[8, 9, 10]. (right) Sum of trading volume from t to t + τ . The pattern is similar to

the variance of increments.
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Figure 3.2: Variance and volume sum of all 5 stocks. Notice that there are two

anomalous peaks appeared around 2:30PM in the variance of increments and ab-

sented in volume sum.

Because of the similarity between the patterns of variance and trading volume,

we may expect they are strongly correlated and the quotient will approximate a

horizontal line. The empirical result is shown in Figure 3.3. This may suggest

that using event-based transaction time results in time series with approximately

stationary increments during active markets. The intraday behavior of the average

number of ticks (hence the trading volume) is similar to that of volatility (hence the

variance); moreover, they peak at the same time, leading to an intuitive conclusion

that the price fluctuations increase with a higher trading frequency. Additional

evidence for this assertion was made previously [11, 12, 13], where it was found that

in an event-based ε time scale defined by local extreme values in price, the volatility
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of price, trading volume, and frequency of trading (equivalently, the number of ticks

per unit time) peak at the same time, which is the end of an interval during which

the price exhibits an increasing or decreasing trend, corresponding to local extreme

values in the price.

However, when applying sliding interval techniques to event-based or rescaled

time, the assumption of stationary increments needs to be verified for the rescaled

time series as well. It is not clear that the rescaled times series results in processes

with stationary increments. For example, Figure 3.3 may indicate that event-based

transaction time results in time series with non-stationary increments at the begin-

ning of day and also around 2:30PM. Our ensemble averages provides an alternative

by averaging over trading days; here, the assumption of non-stationary increments

is not needed.
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Figure 3.3: Dividing the variance of increments from t to t+ τ by the sum of trading

volume during the same time interval. Notice that although the curve is flat in most

time in day, there are two anomalous peaks appearing around 2:30PM for all 5 stocks.

3.2.2 Scaling

The variance Var(Xt+τ ;t) scales as power law during two intervals within the day.

Power law fits to the data are shown in Figure 3.4, where the horizontal bars indicate

the starts and ends of intervals. Notice that we only fit the data when t� τ , since

according to (1.7), Var(Xt+τ ;t) = 〈D(u)〉
2H

[(t + τ)2H − t2H ]
t�τ−−→ 〈D(u)〉τt2H−1, where t
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is measured from the beginning of interval. Similar scaling behaviors and power law

fits for other stocks are shown in Figure 3.5.
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Figure 3.4: Intraday variance and scaling intervals with power law fit for INTC. Two

scaling intervals where intraday variance of increments Xt+τ ;t v.s. t can be fitted by

power law Var(Xt+τ ;t) ∼ t2H−1
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Figure 3.5: Intraday increments are nonstationary in three stocks and exhibit similar

scaling behavior. The scaling regions are indicated by horizontal bars. We found

similar intraday seasonality in other most actively traded stocks.

The scaling in variance of increments is merely a necessary but not sufficient

condition of scaling. To confirm the validity of scaling, one needs to check whether

there is data collapse of the form (1.4). Unfortunately, the available data are insuf-

ficient to observe this data collapse. Instead, an alternative verification of scaling is

to check whether the moments
〈
Xβ
t;0

〉 1
β

scales as tH for all β (in practical, a finite

number of β) [14], or to avoid the sensitivity in the beginning of scaling time interval,

check whether the moments of increments
〈
Xβ
t+τ ;t

〉 1
β

scales as tH−
1
2 [15], as shown

in Figure 3.6. Notice that the fluctuations in moments of increments are larger in

the second scaling interval, hence the fluctuations in exponent η of tη for different β

are larger.
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Figure 3.6: Moments of increments scale in time for INTC. Log-log plots of〈
Xβ
t+τ ;t

〉 1
β ∼ tH−

1
2 v.s. t, where t is measured from the beginning of scaling in-

terval. Notice that since the fluctuation in variance v.s. time for the second scaling

interval is larger, the difference in exponents for different β’s is larger than the first

scaling interval.

The nearly uniform scaling of moments of increments shown in Figure 3.6 does

confirm scaling, which means that the return distribution itself scales in timeW (x, t; 0) =

t−HF (u). As mentioned above, the available data are insufficient to determine F (u)

accurately using the usual method of collapsing W (x, t; 0) for each value of t. How-

ever, since we have determined H independently from power law fit shown in Figure

3.5, we can use (1.4) for multiple values of t inside the interval to determine F (u).

The result is shown in Figure 3.7, where we used variable bin size to regulate the

behavior in tail, and separated different t by τ = 10 minutes to avoid unnecessary
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correlation [16, 15]. Notice that F (u) is asymptotically bi-exponential in two inter-

vals, which suggests a linear variable diffusion process with D(u) = D0(1 + ε|u|) and

F (u) = εααeα

2Γ(α,α)
(1 + ε|u|)α−1e−εα|u|, where α = 2H

D0ε2
, and Γ(s, x) =

∫∞
x
ts−1etdt, as

discussed in section 1.4. This finally fixes the form of our linear variable diffusion

model.
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Figure 3.7: Scaling function F (u) of five stocks in first and second scaling interval.

The computation was performed by mixing increments Xt;0 of different t = nτ , where

n = 0, 1, 2 . . . until the end of each scaling interval [16, 15]. The scaling function F (u)

was estimated through histograms with variable bin size, which specifies a minimum

bin width and a minimum number of observations within each bin. It can be seen

that F (u)’s are asymptotically bi-exponential in both scaling intervals.
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3.2.3 Autocorrelation

We also calculated the autocorrelation function by using the ensemble average, as de-

fined in 1.5. The result is shown in Figure 3.8. Autocorrelation of linear increments

decays rapidly when t2 − t1 > τ (non-overlapping increments) as expected, which

eliminates stochastic processes with memory as a description for the underlying dy-

namics, such as fractional Brownian motion [17]. Autocorrelation of absolute and

squared increments decays slowly, which indicates “volatility clustering”, and rules

out statistically independent processes including Lévy processes [18]. Unfortunately,

the available data are insufficient to determine the asymptotic behavior of this slow

decay, as discussed in Ref. [19, 20].
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Figure 3.8: Ensemble autocorrelation function (ACF) of INTC in the first scaling

interval, in both linear plot and log-log plot. The autocorrelation of linear increments

drops down to zero for non-overlapping increments as expected. The autocorrelation

of absolute and squared increments decay slowly, which indicates the volatility clus-

tering. However, due to the limited amount of empirical data, there are too many

fluctuations to identify the asymptotic behavior of this decay.

3.2.4 Parameter Estimation

There are three parameters in our linear variable diffusion model, H, D0, and ε. H

has been determined independently from a power law fit of Var(Xt+τ ;t) ∼ t2H−1. D0

and ε can be estimated by the fit of F (u) = εααeα

2Γ(α,α)
(1 + ε|u|)α−1e−εα|u|. One can

perform this fit by naive curve fit of F (u) and setting the normalization constant

εααeα

2Γ(α,α)
as a free parameter, and renormalizes F (u) after the estimations of D0 and ε.
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However, this fit depends on the variable bins used in estimation of F (u). So a more

sophisticated distribution fit is employed by maximum likelihood estimation (MLE)

with the analytical form of F (u) as a priori. The results are shown in Figure 3.9.
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Figure 3.9: Estimation of D0 and ε by curve fit and distribution fit. Notice that the

major difference between curve fit and distribution fit by MLE lies in the tail.

3.2.5 Simulation and Comparison

After estimating all three parameters in our model, we simulated a set (106 trading

days) of independent time series by combining two different scaling intervals with cor-

responding parameters. Unlike the foreign exchange markets where trading happens

24/7, stock markets open and close everyday, so every trading day can be naturally

considered as an independent member of ensemble. We also found that an increase

of number of days simulated (> 106) will not yield different results. The comparison
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of empirical and simulated intraday variance patterns is shown in Figure 3.10.
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Figure 3.10: Empirical and simulated intraday variance of increments. Note that in

simulation, every trading day consists of two scaling interval with different parame-

ters.

We also compared the scaling function F (u) for empirical and simulated time

series in two scaling intervals, as shown in Figure 3.11. The results indicate con-

sistency between the model and empirical data within each scaling interval.The

scaling function for each scaling interval agrees with the analytical form F (u) =

εααeα

2Γ(α,α)
(1 + ε|u|)α−1e−εα|u|.
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Figure 3.11: Comparison of empirical and simulated scaling function F (u) in the

first and second scaling interval.

Statistical analyses of financial markets have often been conducted by using slid-

ing interval methods, which implicitly assume that the underlying stochastic process

has stationary increments. For example, they compute the distribution

WS(x, t) = 〈W (x, t0 + t; t0)〉t0 , (3.1)

where 〈·〉t0 denotes time average over t0. Many of these studies have reported that

WS(x, t) scales as

WS(x, t) =
1

tHS
FS(v), (3.2)

where v =
Xt0+t;t0
tHS

and HS ≈ 1
2
. This HS ≈ 1

2
is merely a spurious result of inap-

propriate using of sliding interval method. Because if we average the variance of

increments Var(Xt+τ,t)
t�τ−−→ 〈D(u)〉τt2H−1 over t by a sliding window, we will get

〈Var(Xt+τ,t)〉t ∼ 〈D(u)〉τ〈t2H−1〉t, (3.3)
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hence 〈Var(Xt+τ,t)〉t grows linearly as τ 2HS , where HS = 1
2

regardless of the value

of H. This motivated us to assess our simulated time series using both ensemble

average and sliding interval with HS = 0.5 and different interval lengths. The results

are shown in Figure 3.12. It can be seen that ensemble average can deduce the

underlying dynamics correctly, since for simulation where we have enough amount

of data, we observed data collapse in W (x, t; 0) = t−HF (u). However, time average

cannot yield correct deduction of the underlying dynamics because our results showed

that distributions WS(x, t) do not scale, and hence that FS is not well defined.
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Figure 3.12: Comparison of ensemble and time averaged F (u) of simulated time

series in the first scaling interval. (left) The collapse of scaling function F (u) is

observed, where F (u) is calculated by ensemble average. (right) Sliding interval

scaling function F (u) does not scale. For different t, when averaging over starting

time t0 = nt where n = 0, 1, 2 . . . until t0 + t reaches the end of scaling interval, the

corresponding F (u) lies on different curve. This indicates that the sliding interval

method is not appropriate for non-stationary increments.

3.3 Discussion and Conclusion

Now with variable diffusion SDE (1.6) in the log return variable Xt = ln Pt
P0

, we can

transform back to an SDE in price variable Pt = P0eXt by using Itō’s lemma [21]

dPt = PtdXt +
1

2
Pt(dXt)

2 =
1

2
PtD(Xt, t)dt+ Pt

√
D(Xt, t)dBt. (3.4)
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The dynamics of Pt = PA+PB

2
is driven by buy and sell orders, where PA and PB are

ask and bid price, respectively. Recent studies [22, 23] have attempted to model order

book dynamics by Poisson processes, and they show that this discrete time process

will converge to a diffusion process under continuous limit. Our variable diffusion

model provides a macroscopic time scale limit (i.e., a continuous time limit) for such

models, as we argue.

Consider a simplest, proof-of-concept agent-based order book model introduced

in [23]:

• The order book starts in a full state: all limits above PA(0) and below PB(0)

are filled with one limit order of unit size q. The spread S ≡ PA−PB initiates

at 1 tick;

• The flow of market orders is modeled by two Poisson processes M+
t (buy orders)

and M−
t (sell orders) with arrival rates (or intensities) λ+ and λ−;

• There is one liquidity provider, who reacts immediately after a market order

arrives so as to maintain the spread always equal to 1 tick. The provider places

a limit order on the same side as the market order (i.e., a buy limit order after

a buy market order and vice versa) with probability u and on the opposite side

with probability 1− u.

Then the price dynamics can be expressed as

dPt = ∆P (dM+
t − dM−

t ) · Z, (3.5)
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where ∆P is the discrete price resolution, or the tick, and Z is a Bernoulli random

variable with

Z =


0 with probability 1− u

1 with probability u

, (3.6)

and M+
t and M−

t are Poisson processes, which represent total number of buy and sell

market orders counted from 0 to t, respectively. Hence dM+
t and dM−

t are number

of events in time interval (t, t+dt] which follow Poisson distribution with parameters

λ+dt and λ−dt 
Pr(dM+

t = k) =
e−λ

+dt(λ+dt)k

k!

Pr(dM−
t = k) =

e−λ
−dt(λ−dt)k

k!

. (3.7)

Since dt is infinitesimal, in analogy to Brownian motion dBt, we keep only the first

order in dt, so that

Pr(dMt = k) =


e−λdt = 1− λdt, k = 0

e−λdtλdt = λdt, k = 1

0, k ≥ 2

. (3.8)

With these equations, one can calculate mean and variance of dPt
E[dPt] = ∆Pu(λ+ − λ−)dt

Var(dPt) = ∆P 2u(λ+ + λ−)dt

, (3.9)

and conditional average of df(Pt), where f(Pt) is a test function introduced in Ref.

[23].

Following the derivation in Ref. [23], one can show that if
u(λ+ − λ−)∆P → µ when ∆P → 0

u(λ+ + λ−)∆P 2 → σ2 when ∆P → 0

, (3.10)
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then

E [df(Pt)|Pt = p]→
(
µ
∂f

∂p
+

1

2
σ2∂

2f

∂p2

)
dt, (3.11)

which is a classical diffusion operator corresponding to a Brownian motion with drift,

because for a classical Itō process dXt = µdt+ σdBt, one must have

E [df(Xt)|Xt = x] = E
[
∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2

]
=

(
µ
∂f

∂x
+

1

2
σ2∂

2f

∂x2

)
dt. (3.12)

By using functional central limit theorem, one can generally show that dPt converges

in distribution to u(λ+ − λ−)∆Pdt+
√
u(λ+ + λ−)∆PdBt in continuous limit.

In order for this microscopic time scale model converging to a lowest order ap-

proximation of real market dynamics in macroscopic time scale, as described by our

variable diffusion model in price variable (3.4), one must have
u(λ+ − λ−)∆P → 1

2
PtD(Xt, t)

u(λ+ + λ−)∆P 2 → P 2
t D(Xt, t)

, (3.13)

or in other words 
uλ+ → 1

2
D(Xt, t)

[(
Pt

∆P

)2

+
1

2

Pt
∆P

]

uλ− → 1

2
D(Xt, t)

[(
Pt

∆P

)2

− 1

2

Pt
∆P

] . (3.14)

So our model provides a macroscopic limit for microscopic model, which is in analogy

with thermodynamic limit of statistical mechanics.

In summary, by comparison of statistical results of empirical and simulated time

series, we can conclude that our variable diffusion model is a good zeroth order

approximation of the real dynamics of stock markets, because the simulated time
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series in terms of our model can replicate the major statistical characteristics of

empirical time series. Meanwhile, we justify again the importance of using ensemble

average method since we observed strong intraday seasonality which contradict the

assumption of stationary increments. Our variable diffusion model also provides

new insight into stochastic models in microscopic time scale for financial market

dynamics.

Finally, we may inquire whether and how we can distinguish between a drift-

free Markovian from a Martingale. A possible direction is to extend the definition

of Joseph exponents to be able to calculate them for non-stationary processes by

using ensemble average. A successful extension of this definition may help us to

detect higher order correlations in stochastic processes, and it will finally clarify

the relationship between Joseph or Hurst exponents and efficient market hypothesis

(EMH). We are currently working towards addressing this issue.
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Part II

Empirical-based Studies on

Reacting Flows
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Chapter 4

Introduction
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4.1 Motivation and Background

Reacting flows are governed by nonlinear PDEs, specifically, the Navier-Stokes equa-

tions and reaction-diffusion equations. The major problems in trying to characterize

the properties of solutions to these equations include unknown parameters, compli-

cated boundary conditions, and the chaotic nature of the fluid flows. These make

the analytical solution to the model system impossible, and numerical simulation

not very helpful. Because the flows are chaotic, any initial tiny inaccuracy will be

blown-up exponentially. In addition, the energy cascading to systematically smaller

and smaller scales will require extremely fine grid to simulate the system.

However, high quality empirical data, such as measurements of temperature fields

through planner laser-induced florescence (PLIF) and of velocity fields through par-

ticle image velocimetry (PIV) are becoming routinely available. The data can be

used to perform modal decompositions and dimensional reductions of the flows to

empirically characterize at least major qualitative properties of the flows.

4.2 Formulation

The typical task of modal decomposition is to empirically find a set of basis functions

such that the observed evolution of a dynamical system can be expressed as a sum of

“modes ” by projecting the original observed time evolution of a secondary field (a

vector evolving in time on a grid) onto the empirical basis. One example is the Fourier

series expansion, where we need an infinite number of basis functions. To be efficient
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for application purposes, we require a small number of basis vectors to capture the

primary information contained in the dynamics, and filter out experimental noise

and non-reproducible features.

Consider a (nonlinear) dynamical system evolving on a manifold M

ż = F(z) (or zt+∆t = S(zt) for discrete time), (4.1)

where zt ∈ M describes the state of dynamical system at time t. A time evolution

operator St evolves, or maps the system initiated at state z0 to state zt = St(z0), so it

can be considered as a map from the state space manifold M to itself St : M →M .

The empirical data are observations or measurements of zt, which are secondary

“fields” in that they are typically parameterized in space; for example, pixels in case

of recorded video. Denote the secondary field by [u(zt)](x), where x is the grid. Since

[u(zt)](x) is a field, u can be understood as a map from M to Rn, where [u(zt)](x) is a

vector and n is the total number of grid points. For three-dimensional observations,

e.g., velocity fields, u will map M to R3n. When z0 evolves to zt = St(z0), the

observed vector [u(z0)](x) evolves to [u(zt)](x) = [u(St(z0))](x). By convention, we

write [u(zt)](x) (or for simplicity, ignore the x and write u(zt)) to emphasize it is

an observation or map of state zt to a vector u(zt) ∈ Rn, whereas we write u(x, t)

to emphasize it is an empirical data matrix where every row corresponds to a grid

point, and every column corresponds to a snapshot.

The task of modal decomposition is to expand the empirical data matrix as a

(finite) sum

u(x, t) =
∑
k

ak(t)ϕk(x) (4.2)
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by projecting every column in u(x, t) (which is an observed vector u(zt) at time

t) onto empirically determined basis {ϕk(x)}, and {ak(t)} are the corresponding

projection coefficients.

4.3 Proper Orthogonal Decomposition

4.3.1 Formulation

In proper orthogonal decomposition, or principal-components analysis, the basis

{ϕk(x)} consists of normalized eigenvectors of the correlation matrix C given by

Cx,x′ ≡ 〈u(x, t)u(x′, t)〉t, where x and x′ are two grid points and the average 〈·〉t is

over time (from now on, 〈·〉 will denote spatial averages over x, and 〈·〉t will represent

a time average). Since C is real and symmetric, its eigenvectors {ϕk(x)} are real and

orthogonal. It can be always normalized, so we have the orthonormality condition

〈ϕi(x)|ϕj(x)〉 = δij. (4.3)

These {ϕk(x)} are called coherent structures or “topos”. The ak(t) are time-dependent

projection coefficients of u(x, t) on coherent structures ak(t) = 〈ϕk(x)|u(zt)〉. ϕ0(x)

is the time-averaged field. For observed fields in two spatial dimensions, denote the

number of pixels in the two directions by H and W . Then the empirical spatio-

temporal data matrix can be expanded as

u(x, t) =
HW−1∑
k=0

ak(t)ϕk(x). (4.4)
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Fluctuations in u(x, t) can be quantified by “energy”

Eu =
∑
t

∑
x

u(x, t)2 =
∑
k

∑
t

ak(t)
2, (4.5)

where in the second equality, we used the expansion (4.4) and orthonormal condition

(4.3). The “latency”,

λk =
∑
t

ak(t)
2, (4.6)

can be interpreted as the contribution of the kth mode to the dynamics. The expan-

sion is sorted in a non-increasing order of λk. By truncating the expansion (4.4) at

an appropriate order n (< HW ), one can obtain a reduced-order approximation [1]

of the flow un(x, t) ≡
∑n−1

k=0 ak(t)ϕk(x). The “quality” of the approximation is given

by

βn =

∑n−1
k=0 λk
Eu

. (4.7)

Larger values of βn correspond to better approximations of the empirical data matrix.

4.3.2 Properties of POD

The basis of POD are the most efficient ones in the sense that, for a given n, βn

is maximized. In other words, no other decomposition of the form
∑n−1

k=0 ãk(t)ϕ̃k(x)

has a larger value of βn [2, 3, 4, 5].

On the other hand, the problem of POD is that it can not be used to separate

different flow constituents from a single or a set of coherent structures, because every

single coherent structure can be a result of combination of different flow constituents.

The order of coherent structure in expansion (4.4) is sorted solely by latency (4.6)
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and nothing else. Therefore, the POD mode itself does not represent any dynamical

information tied to a specific flow constituent. An example is the von Karman vortex

shedding, which is asymmetric but not anti-symmetric. However, POD modes are

either symmetric or anti-symmetric, and the anti-symmetric modes are combinations

of von Karman vortices and symmetric vortices. So it is not possible to separate

von Karman vortices from anti-symmetric modes, although the presence of anti-

symmetric coherent structures can be considered as an indicator of onset of von

Karman vortices.

The computation of POD modes are performed by calculation of eigenvalues and

eigenvectors of correlation matrix Cx,x′ ≡ 〈u(x, t)u(x′, t)〉t, which thus is a second-

order statistics. It does not contain dynamical information and it is sensitive to

experimental noise. POD can not distinguish non-reproducible patterns from noise

either. If given a large enough truncation order n, we can effectively consider the

rest of the flow u(x, t) − un(x, t) = u(x, t) −
∑n−1

k=0 ak(t)ϕk(x) as noise, but we can-

not determine whether a specific ak(t)ϕk(x) where k < n is non-reproducible or

noise because, as shown in the next section, the latency λk does not provide this

information.

Despite these disadvantages of POD, we successfully identify the onset of von

Karman vortices as a flow constituent [6] by using symmetry broken coherent struc-

tures, combined with Lyapunov exponents and characteristics of unstable periodic

orbits. However, we need to emphasize that this separation of flow constituents de-

pends on the specific symmetry of experimental equipment, hence it is not possible
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to perform this separation for flows in arbitrary domains. Furthermore, the qualita-

tive characteristics of the dynamics indicated by Lyapunov exponents and unstable

periodic orbits are sensitive to the noise in that POD is a second-order statistics.

Dynamic mode decomposition avoids many of these problems.

4.4 Koopman Operator and Dynamic Mode De-

composition

4.4.1 Formulation of Koopman Operator

Consider again the time evolution operator St : M → M and empirical observation

u : M → Rn. Now, define another operator

U t def.
= St

∗
: St

∗
u = u ◦ St, (4.8)

which is the pullback of the time evolution operator St. Hence U tu(z0) = u◦St(z0) =

u(zt), which means that operator U t maps the observation vector u(z0) at time 0 to

observation vector u(zt) at time t. Since u(zt) ∈ Rn, U t is a linear map in Rn. It

can be shown that the spectrum of F in (4.2) is contained in that of U t under very

general conditions [7, 8], even when F and St are nonlinear; hence the stability and

structure of solutions zt of the system F can be inferred through the analysis of the

operator U t, which is called the Koopman operator.

Since U t is a linear map in Rn, it makes sense to consider its eigenvalues and
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eigenvectors

U tφ(z0) = φ(St(z0)) = φ(zt) = eλtφ(z0), (4.9)

where φ(·) are special observables evolving with eλt. Suppose the set of {φk(·)}

is complete or large enough such that all other observables u(·) ∈ span{φk(·)}, or

in other words, u(z0) =
∑

k φk(z0)αk, then u(zt) = U tu(z0) =
∑

k eλktφk(z0)αk.

The evolution of other observables are characterized by αke
λkt, where αk are called

Koopman modes.

4.4.2 Dynamic Mode Decomposition (DMD) and its Algo-

rithm

Dynamic mode decomposition [9, 10, 11] is an efficient algorithm to compute ap-

proximations for the eigenvalues and eigenvectors of U t from secondary fields u(x, t),

namely, experimental snapshots, recorded with uniform time gap ∆t. One can rep-

resent the linear map of the secondary field during the time interval [t, t+ ∆t] as

u(x, t+ ∆t) = Au(x, t),∀t, (4.10)

where A is an n×n matrix (3n×3n in case of three dimensional vector observation).

If AΦk(x) = eλk∆tΦk(x), then AmΦk(x) = eλkm∆tΦk(x)
continuous limit−−−−−−−−−→ U tφk(z0). The

Φk(x) and λk are approximation of eigenvectors and eigenvalues of U t.

Denoting by un the field corresponding to the snapshot taken at time t = n∆t,

Eqn. (4.10) can be re-written as un+1 = Aun. Thus,

Vn+1
1 ≡ [u1, u2, . . . , un+1] = A [u0, u1, u2, . . . , un] ≡ AVn

0 . (4.11)
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Note that for sufficiently large n (certainly for n larger than the number of pixels

in each snapshot), un+1 is linearly dependent on all the previous uk’s; write un+1 =∑n
k=1 ckuk. Thus, we can write Vn+1

1 = Vn
0B, where the companion matrix is [9, 10,

11, 7]

B =



0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2

. . . . . . . . . . . . . . .

0 0 . . . 1 cn


. (4.12)

Since AVn
0 = Vn

0B, the spectrum of B is equal to that of A. Even in cases where

the expansion of un+1 can only be approximated by a linear combination of uk’s,

eigenvalues of B are approximations to those of A [9, 10, 7]. The spectrum of B

can be computed using the (fast) Arnoldi method [12, 9]. Eigenfunctions of A are

referred to as dynamic modes of the flow [9, 10, 11]. Dynamic mode decomposition

provides a subset of the Koopman spectrum λk and the corresponding eigenfunctions

φk(x).

The efficient algorithm introduced by [10] is to project A onto the POD modes,

and then calculate the eigenvalues and eigenvectors of the projected operator. By

setting up a threshold in singular value decomposition (SVD) when calculating the

POD modes, one can automatically filter out some amount of noise. Since AVN−1
1 =

VN
2 , where VN−1

1 as defined in (4.11), now perform an SVD on VN−1
1 = UΣW T , then

AUΣW T = VN
2 , finally UTAU = UTVN

2 WΣ−1 ≡ S. The projected linear operator
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S has eigenvalues and eigenvectors µi and yi

Syi = µiyi, (4.13)

such that UTAUyi = µiyi, or AUyi = µiUyi, which means that Φi(x) ≡ Uyi and

µi are eigenvectors and eigenvalues of A: AΦi(x) = µiΦi(x). Since µk = eλk∆t,

λk = 1
∆t

lnµk.

4.4.3 Properties of DMD

Because of nonlinear coupling between dynamic modes and driving of the system, the

dynamics modes {Φk(x)} are merely an approximation of the Koopman eigenvectors

{φk(x)}, which means that u(zt) =
∑

k eλktφk(z0)αk ≈
∑

k eλktΦk(z0)αk. To get

more accurate time evolution of dynamic modes ak(t)Φk(x), we need to project

the empirical data matrix onto {Φk(x)} directly, in analogy to the case of POD.

However, the matrix A is not symmetric, so λk are complex and Φk(x) are not

orthonormal in general. To extract ak(t), one has to project u(x, t) onto another

basis {Ψk(x)} orthonormal to {Φk(x)}, where 〈Ψi(x)|Φj(x)〉 = δij and Ψk(x) are

normalized eigenvectors of A†, the Hermitian conjugate of A

By constructing the basis {Ψk(x)}, one can extract ai(t) by projection 〈Ψi(x)|u(x, t)〉 =∑
k ak(t)〈Ψi(x)|Φk(x)〉 = ai(t), and decompose the u(x, t) in both {Φk(x)} and

{Ψk(x)}

u(x, t) =
∑
k

ak(t)Φk(x) =
∑
k

bk(t)Ψk(x). (4.14)

In analogy to POD, one can define total energy as Eu =
∑

t

∑
x u(x, t)2, and by using

the decomposition (4.14), one can obtain Eu =
∑

k

∑
t ak(t)b

∗
k(t). Notice that ak(t)
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and b∗k(t) are complex in general, so the latency associated to the kth dynamics mode

defined similarly as
∑

t ak(t)b
∗
k(t) is not positive definite. Although

∑
t ak(t)b

∗
k(t) can

be complex, DMD modes appear in complex conjugation pairs. After a sum of its

complex conjugated modes, only the real parts remain.

Unlike POD which uses second-order statistics, DMD modes are calculated using

first order statistics, which are less sensitive to experimental noise. Unlike POD

which only provides latency of every mode, DMD also provides an eigenvalue λk for

every mode. Interestingly, these eigenvalues can be used to select modes associated

with a specific flow constituent. Specifically, such eigenvalues are found to lie on a

smooth curve in the complex plane [9, 10, 11]. An alternative scheme is as follows:

recall that the primary dynamic mode (i.e., that with the highest latency) has a

single frequency, which is Im(λk). One may expect dynamic modes with harmonics

of this frequency to be associated with the same flow constituent.

The idea of eigenvalues lying on a smooth curve in complex plane can be illus-

trated by an example: flame or fluids flows are mostly drift and diffusion of patterns,

which can be modeled by Fokker-Planck equation. Assume patterns mainly drift in

x direction:

∂ξ(x, t)

∂t
= −a∂xξ +

b

2
(∂2
x + ∂2

y)ξ. (4.15)

Now consider a trial solution ξ0eik·x+λt = ξ0eikxx+ikyy+λt, such that the general so-

lution ξ =
∑

k ξ0ke
ik·x+λkt. Substituting this form of solution into (4.15), one can

obtain λ = −akxi− b
2
(k2
x + k2

y), and Re(λ) = − b
2
(k2
x + k2

y), Im(λ) = −akx. By elim-

inating the common kx, one finally get Re(λ) = − b
2a2

[Im(λ)]2 − b
2
k2
y. When kx goes

from −∞ to +∞, this equation becomes a curve in the complex plain of λ. Now, if
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there are other patterns, or flow constituents governed by the same Fokker-Planck

equation (4.15); however with different drift and diffusion coefficients, there will be

different curves formed in the complex plain, and each curve will correspond to a

specific flow constituent. Figure 4.1 shows one such, where the DMD eigenvalues are

computed for a simulated solution of Fokker-Planck equation drifting to the negative

x direction.
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Figure 4.1: The DMD is performed on a simulated solution of Fokker-Planck equa-
tion, where a Gaussian-like peak is moving to the negative x direction and diffusing.
Since there is only one pattern, or flow constituent, there is only one corresponding
smooth curve.

Another important advantage of DMD is the ability to distinguish reproducible
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modes from non-reproducible ones. DMD modes associated with reproducible fea-

tures of a flow will be “robust”, i.e., they will be found in multiple realizations of

an experiment (for example, the first, middle, and last half of snapshots). In con-

trast, modes representing non-reproducible flow characteristics will change with the

realization. The observation leads to the following conjecture: it is possible to dif-

ferentiate reproducible and non-reproducible aspects of a flow by comparing DMD

spectra from multiple realizations of a set of nominally identical experiments. We

also observed [13] that some non-robust modes have higher latency than several ro-

bust modes, which indicates the failure of POD on this differentiation. Actually,

POD can never achieve this goal in that the statistical averages are almost invariant

with different set of snapshots u(x, t). Finally, we observe that in constructing re-

duced order models, we can discard the non-reproducible features, and only retain

their statistical characteristics; in other words, we only need to consider the primary,

robust flow constituents in reduced order models.

Another observation regarding DMD modes is that although |ai(t)| is highly

irregular due to experimental noise, its “phase” is very regular

θi(t) =
arctan Im(ai(t))

Re(ai(t))

S(i)
, (4.16)

where S(i) is the spatial symmetry of the ith dynamic mode (see examples in Chapter

6). The slope of θi(t) and the Lissajous curves sin θi(t) v.s. sin θj(t) can serve as

an alternative to the harmonics-of-base-frequency identification of modes, whereas

again, this task cannot be done in POD in general.
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Chapter 5

Dynamical Systems Analysis and

Unstable Periodic Orbits in

Reacting Flows Behind Symmetric

Blu Bodies
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5.1 Introduction

High-Reynolds-number fluid flow [1, 2] and high-momentum combustion [3] are com-

plex flows that couple dynamics on multiple spatial and temporal scales. Typically,

large-scale structures are generated by external driving, and small-scale aspects are

initiated by energy cascading [1, 2]. These small-scale features are highly sensitive to

initial conditions and tiny disturbances and exhibit irregular, non-repeatable behav-

ior; in addition, they affect the large-scale structures via feedback, thus complicating

the overall flow as well as its analysis. This sensitive dependence on initial conditions,

coupled with the nonlinearity of the underlying physical systems, makes it extremely

difficult to conduct theoretical or computational analyses of flows [4, 5]. An al-

ternative approach is to conduct a modal decomposition of experimental data and

develop phenomenological models for the flows. The high-resolution, high-frequency

data needed for such analyses are becoming more readily available with advances in

technology [6]. In this paper, we introduce an approach whereby modal decomposi-

tion can be used for phase-space reconstruction and dynamical systems analysis to

study large-scale flow and bifurcations therein as well as to extract characteristics of

noise and irregular facets of the flows.

The application reported here is for flame-shedding dynamics in high-momentum

bluff-body-stabilized flames that are transitioning from near-blow-off to stable and

acoustically coupled conditions [7, 8, 9, 6]. The control parameter in the experi-

ment is the equivalence ratio φ; i.e., the fuel-to-oxidizer ratio and the corresponding

stoichiometric value. The physical systems analyzed are symmetric under reflection
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about a line parallel to the flows, and symmetric vortex shedding [10, 11] is observed

in the entire range of control parameters. As the equivalence ratio is reduced, the

flows develop, in addition, the asymmetric von Karman vortices [6]. The approach

outlined here, an extension of the principal-components analysis of Ref. [6], is geared

toward the determination of the onset and characterization of the growth of von

Karman vortices.

Acoustic instabilities can occur in a combustion environment when heat release

and pressure fluctuations become coupled and exceed the system damping [3]. We

employ bifurcation diagrams [12] and Lyapunov exponents [13] to quantify the shed-

ding transitions for different flame holders. The information can be used to select

flame holders that yield stable flow patterns under modifications in the upstream

conditions. Such analyses may be valuable for bluff-body applications where a gross

change in behavior is undesirable.

We also compute recurrent (or periodic) orbits embedded in the (state-space)

neighborhood of the flows. It has been asserted, and demonstrated through examples,

that chaotic motions are dense with unstable recurrent orbits [14, 15, 16, 17] and

that dynamical invariants of the chaotic motion can be derived from the eigenvalues

of these cycles [14, 18, 19, 20, 21]. The chaotic motion approaches a cycle, follows

it closely for some time before moving away, returns close to another cycle, and the

process is repeated. In this sense, irregular flows are organized around a “skeleton”

of unstable cycles. Methods to extract periodic orbits from chaotic signals and

spatio-temporally chaotic flows have been introduced [15, 22] and used to analyze

experimental time series [23, 24, 25].
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The experiment is described briefly in Section 5.2. In particular, we discuss pos-

sible sources of irregularity in the flow and highlight the presence of rapidly evolving

small-scale structures. The analysis is presented in detail for flow across a bluff

body in the shape of a v-gutter, and results for the remaining shapes are outlined

in Section 5.7. The first step in the analysis, given in Section 5.3, is a preliminary

temporal/spatial filtering of the flow. In Section 5.4 principal-components analy-

sis [26, 27, 28, 29, 30, 31, 32, 33] and symmetry are used to eliminate some irregular

facets and establish the modes associated with the flow. In Section 5.5 we propose

a method to quantify the magnitude of the von Karman modes and present the

bifurcation diagram in terms of φ. We also discuss the dynamics in a reduced phase-

space and qualitative changes that accompany the onset of von Karman vortices.

Section 5.6 presents the computation of periodic orbits embedded in the flow and

their use in characterizing the noise and small-scale irregular facets of the flow. The

implications of our analysis are discussed in the concluding section.

5.2 Experiment

Flame studies were conducted within an optically accessible, atmospheric-pressure

combustion test section that contains a bluff-body flame holder for flame stabiliza-

tion. Air is delivered into a 152-mm × 127-mm rectangular test section at a constant

rate of 0.32 kg/s. While the air rate is maintained constant, propane fuel is added

and mixed upstream of the flame holder to provide equivalence ratios that vary be-

tween φ = 0.6 and 1.1. The flame holder is a v-gutter with a width of 38.1 mm
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and an angle of 35o, which is capable of holding the flame to a blow-off equivalence

ratio of φ = 0.55. Additional facility details and detailed flame-holder dimensions

are provided in Ref. [6].

Flame-shedding behavior within the test section was studied using high-speed

chemiluminescence imaging. Imaging was performed to capture the axial plane of

the flames in such a way that the reaction fronts, recirculation zone, and reactant

regions could be viewed simultaneously. The imaging setup is shown in Figure 5.1.

A Phantom v7.1 camera is used to collect the chemiluminescence emitted from the

test section by viewing the axial plane through an angled mirror. This stainless

steel mirror with MgF2 coating provides maximum reflection of emission from 300

to 900 nm and is required for imaging because of space limitations. The camera is

equipped with a monochrome CMOS detector set to capture images with a resolution

of 496×344 pixels at a rate of 10 kHz. The detector is sensitive only to light ranging

from 400 to 900 nm. Therefore OH∗ chemiluminescence is not collected, while CH∗

and black-body radiation from soot are captured. An 85-mm Nikkor lens with an

f -stop of 1.4 is coupled to the camera, resulting in a field of view of 165 mm × 102

mm within the test section.
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Figure 5.1: Side view of imaging setup with Phantom v7.1 high-speed camera and

mirror.

For the present study, imaging of the chemiluminescence from the flame fronts is

assumed to be an adequate representation of the flame-shedding mechanism. How-

ever, we should point out two drawbacks associated with this technique. First, when

imaging flames at reduced equivalence ratios, signals decrease as emission from soot

and CH∗ is reduced. Although higher camera sensitivity at short wavelengths and

enhanced signal could be achieved by increasing the exposure time, the camera has

an inherent 95 microsecond frame rate. Since image intensifiers often compromise

spatial resolution, we refrain from using them in an attempt to retain as much flame-

shedding structure as possible. Signal-to-noise ratios along the reaction front varied

from ∼ 10 to ∼ 20 when the equivalence ratio was changed from φ = 0.6 to 1.1.

The second drawback of chemiluminescence imaging is that signals are collected

over a line-of-sight and cannot typically be extended to three dimensions. The current

experiment aimed to minimize these effects by establishing, as far as possible, inlet
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conditions that were uniform along the depth axis; thus the flame flow would be

nearly two dimensional. However, any non-uniformity in the fuel ratio/velocity field

or symmetry breaking in the depth direction will result in slight asymmetries in

the large structures of the flame. It should be noted that since turbulent flows are

inherently three-dimensional, extremely small-scale structures along the shear layers

will be captured in our two-dimensional images. Their collection along the line-of-

sight of our imaging system will, therefore, contribute to measured flow irregularity

and set a lower limit on the structural scales that can be analyzed.

5.3 Time Filtering

Figure 5.2: Power spectrum of time series for (chemiluminescence) intensities at a

point x for flow at φ = 0.7. Spectrum beyond 400 Hz does not appear to have a

structure. Time filtering of the signal is implemented using the filter function given

in Eq. (5.1).
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First, we perform a preliminary temporal filtering intended to reduce the small-scale

structures in regions of large flow gradients. We assume, and the experiment verifies,

that the onset and dynamics of these rapidly evolving structures are irregular and

may be attributed to line-of-sight imaging effects from the experiment. To filter

them, we consider the time sequence fx(t) ≡ U(x, t) at a fixed location x. Figure 5.2

displays the power spectrum of such a signal over 1 second of the flow (10,000 frames).

The spectral components beyond 400 Hz appear to be irregular. Thus, we filter the

signal using the filter function

Θ(f) =


1 if f ≤ 400 Hz

1
2

[
1 + cos π f−400

200

]
if 400 Hz < f ≤ 600 Hz

0 if 600 Hz < f

, (5.1)

which retains all spectral components below 400 Hz and smoothly reduces the fraction

of spectral components until 600 Hz. The signal is then inverse Fourier transformed

to obtain the filtered dynamics at x, and the time-filtered flow is constructed by

combining the dynamics at all sites. Snapshots of the original and time-filtered flow

at the 500th panel (0.05 s into the video), Figure 5.3, show that some of the rapidly

evolving, small-scale features of the flow have been eliminated.

Results of the analyses described below are robust against changes in the filter

function. For example, none of the conclusions change if we shift the filter function

by (say) 200 Hz. As Θ(f) is shifted more, it becomes progressively more difficult to

compute periodic orbits of the flow.
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Figure 5.3: 500th panel of original and time-filtered flow, illustrating that the rapidly

evolving small-scale motions have been filtered. The size of the images is approxi-

mately 100 mm × 66 mm.

We also implemented spatial filtering as follows: each snapshot was Fourier trans-

formed, and the high wave-vector components filtered. The spatio-temporal dynam-

ics are a composite of these spatially filtered images. The results from the analysis,

including the coherent structures, bifurcation diagram, and periodic orbits are similar
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under temporal and spatial filtering. We also filtered the spatio-temporal dynamics

both spatially and temporally and found comparable results.

5.4 Principal-Components Analysis

5.4.1 Preliminaries

For establishing the large-scale modes of the flow, it is necessary to reduce (or, if pos-

sible, eliminate) irregular small-scale features. We employed principal-components

analysis (PCA) for this task [26, 27, 28, 29, 30, 31, 32, 33]; its use is facilitated

by the presence of a reflection symmetry in the system. Other approaches such as

dynamic-mode decomposition [34, 35] may be required for modal decomposition in

systems with no such symmetry. The “data” consist of a video recording of the

chemiluminescence of N = 10, 000 successive snapshots of the flow taken at 10 kHz.

The analysis is conducted within a region defined by a height H (300 pixels; 100 mm)

and a width W (200 pixels; 66 mm) behind the bluff body. We found that oscilla-

tions of the mean and standard deviation of the intensity in a frame were (nearly)

commensurate with vortex shedding and that the results from the PCA improved

when the frame intensities were normalized (to zero mean and unit variance). PCA

was implemented on the normalized matrix U(x, t) of N rows and H ×W columns,

where x = (x, y) and t is time. Here x represents the span-wise direction, and y = 0

is the central axis about which the system is reflection symmetric. In PCA this field
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is decomposed as

U(x, t) =
HW−1∑
k=0

ak(t)Φk(x) (5.2)

where Φk(x) (k = 0, 1, . . . , HW − 1) are referred to as the principal components

or coherent structures and ak(t) are their time-dependent coefficients. Φ0(x) is the

time-averaged field. The coherent structures are normalized and form an orthonormal

basis for expansion of the data. The terms in Eq. (5.2) are ordered such that their

latencies (also referred to as “energies”) Ln = 〈a2
n(t)〉 are in non-increasing order. A

reduced-order model [36] for the flow can be derived by truncating the series (5.2)

at an appropriate order N to obtain an approximation UN(x, t) ≡
∑N−1

k=0 ak(t)Φk(x).

The“quality” of the approximation is given by

βN =

∑N−1
k=0 Lk∑HW−1
k=0 Lk

. (5.3)

Larger values of βN correspond to better approximations of the data.

Two modes of flame shedding are well established in these reacting flows behind

bluff bodies. In our experiments the more intense is that where a pair of vortices is

simultaneously released from the sides of a symmetric bluff body [6]. The symmetry

of the flow can be expressed in terms of the reflection operator R : (x, y)→ (x,−y)

as

U(Rx, t) = U(x, t). (5.4)

Now, the uniqueness of the principal-components expansion shows that for a sym-

metric flow field, Φn(Rx) = Φn(x) and, hence, that every coherent structure of the

expansion is symmetric about the central axis [30, 31].

The second mode of flame shedding is known as von Karman vortex shedding,
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where two vortices are shed asymmetrically; specifically, a vortex shed from one side

of the bluff body is followed by one shed from the opposite side. The flow field V (x, t)

associated with von Karman shedding satisfies

V (Rx, t+ T ) = V (x, t), (5.5)

where T is the time interval between successive shedding. If the vortices are shed

periodically, T is constant. Because of the time delay T , the coherent structures

for the flow are neither symmetric nor anti-symmetric. However, in any (suitably

filtered) flow comprises (only) symmetric and von Karman vortex shedding, non-

symmetric coherent structures are due to von Karman shedding. We assume that

the intensity of the anti-symmetric components is a measure of the strength of the

latter.
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5.4.2 PCA for Flow at φ = 1.1

Figure 5.4: First nine coherent structures for flow at φ = 1.1, all of which are

nearly symmetric about the horizontal mid-line. Our analysis is predicated on the

assumption that asymmetric components of these modes are due to slight experimen-

tal non-uniformities and dynamics of the small-scale irregular structures. The scale

of individual images, and images in subsequent figures, is approximately 100-mm

× 66-mm.
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Figure 5.5: (a) Latency and (b) fractional latency of the symmetric (red) and anti-

symmetric (blue) components of the first 15 coherent structures. Observe that laten-

cies of the anti-symmetric components are small (by a factor of ∼100) compared to

those of the corresponding symmetric components. Furthermore, they remain nearly

unchanged as the mode number n increases, supporting our assertion that the anti-

symmetric components are caused by experimental noise, irregular motions, and/or

line-of-sight detection. The fractional latencies of the two components approach

each other as n increases, indicating that for large n, the symmetric components are

corrupted as well.
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Visually, the flow appears to involve only symmetric vortex shedding. The first nine

coherent structures, all of which are nearly symmetric about the y-axis, are shown

in Figure 5.4. We posit that the small asymmetry in these modes is not due to the

large-scale flow, but to experimental noise, irregularities from slight non-uniformities

in the upstream inlet conditions, and/or deficiencies in the line-of-sight imaging. We

introduce a symmetry-based method to filter some of these aspects.

The symmetric and anti-symmetric components of the nth coherent structure

Φn(x, y) are

Φn,S(x) =
1

2
[Φn(x) + Φn(Rx)] ,

and Φn,A(x) =
1

2
[Φn(x)− Φn(Rx)] , (5.6)

respectively. If our assumption is valid that the small asymmetry in the coher-

ent structures is not due to large-scale flow, then the anti-symmetric component

〈|Φn,A(x)|2〉, (1) would be small, and (2) would be nearly unchanged between coher-

ent structures. As is evident from Figure 5.5, these expectations were indeed realized.

The latency 〈|Φn,S(x)|2〉 of the symmetric components of the coherent structure de-

creases significantly with the mode number n, while that of 〈|Φn,A(x)|2〉 remains

nearly unchanged. Furthermore, the fractional latency of 〈|Φn,S(x)|2〉 is larger by

about a factor of 100 for the first few coherent structures. The difference decreases

as n increases, signaling the enhanced role of noise (due to reductions in the latency

of the coherent structures). Beyond n ∼ 15, the latencies of the symmetric and

anti-symmetric components are similar, and the symmetric components are proba-

bly corrupted as well.
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Note that we eliminate the anti-symmetric components of the flow entirely in our

analysis. Furthermore, we identify the cutoff in the PCA expansion by comparing the

intensities of the symmetric and anti-symmetric components. As discussed later in

this paper, these modifications to the analysis of Ref. [6] provide a clear identification

of the onset of von Karman vortex shedding.
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5.4.3 PCA for Flow at φ = 0.8

Figure 5.6: First nine coherent structures for flow at φ = 0.8. Modes 5 and 6 (as

well as 9 and 12, not pictured) appear to be primarily anti-symmetric.

Although the asymmetry in the flow is not easily observable, PCA selects modes

that contain dominant anti-symmetric components (see Figure 5.6). The presence

of the asymmetry implies that the motion contains structures outside of symmetric

vortex shedding. The analyses of Section 5.4.2 show that the fractional latency of
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the anti-symmetric components of Modes 5, 6, 9 and 12 is higher than those of the

corresponding symmetric components (see Figure 5.7). Again, we assume that the

non-dominant components are noise/irregular-motion-generated and remove them

from consideration.

Figure 5.7: (a) Latency, and (b) fractional latency of symmetric and anti-symmetric

components of Coherent Structures 0-14 for the flow at φ = 0.8. Note that the

dominant components of Modes 5, 6, 9, and 12 are anti-symmetric, suggesting the

presence of von Karman vortex shedding.
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5.5 Onset of von Karman Vortices: Bifurcation

Diagram and Phase Portraits

5.5.1 Bifurcation Diagram

As discussed previously, in the absence of stochastic/irregular effects, the coherent

structures of a flow that consists only of symmetric vortex shedding will be symmetric

under the reflection R. The anti-symmetric modes are assumed to arise from von

Karman vortex shedding. In addition, as in Ref. [6], we assume that the strength

of the von Karman vortices can be quantified by the fractional latency of the anti-

symmetric coherent structures. The bifurcation diagram, Figure 5.8, shows that anti-

symmetric modes appear as φ is reduced below 1.0 and that the latencies contained in

the anti-symmetric modes increase as φ is reduced further. The smooth bifurcation

diagram, as compared to the results in Ref. [6], may be attributed to the filtering

scheme used in this study.
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Figure 5.8: Bifurcation diagram for onset of von Karman vortex shedding.

5.5.2 Phase Portraits

The onset of von Karman shedding is accompanied by a re-organization in the con-

figuration space defined by an(t), n = 0, 1, . . . , 14. The periodicity, quasi-periodicity,

or aperiodicity of an orbit is reflected in the configuration space [4]. In Figure 5.9

we use the projection (a0(t), a2(t)) for visualization. Orbits prior to the onset

(φ = 1.1, 1.04, 1.0) appear to be noisy recurrent orbits, while those following the

onset (φ = 0.9, 0.8, 0.7) are more irregular (perhaps noisy quasi-periodic orbits).

The width of the configuration-space orbits is a measure of the strength of irregular

motions. The relatively narrow widths of the orbits at high equivalence ratios are

attributed to the flame becoming more uniform across the cross-sectional plane of

the rig as a result of acoustic coupling with the oscillating pressure field within the

rig.
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Figure 5.9: Changes in phase portrait [here the projection to (a0(t), a2(t))] as φ

changes from 1.1 to 0.7. Transition to the onset of von Karman vortices is accompa-

nied by the change of the phase portrait from an inverted-U structure to a filled-loop

structure. Similar changes are observed in other projections as well.

5.5.3 Lyapunov Exponents

One of the defining characteristics of chaotic or irregular flows is the divergence of

nearby points in configuration space of the flow [4]. Typically the largest deviations

are along the direction of the flow. Lyapunov exponents [13, 4], which quantify the

mean expansion of the dynamics along and across the flow, can be used as a measure

of the “irregularity” of the flow. Lyapunov exponents and their dependence on the
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equivalence ratio are computed using techniques introduced in Ref. [37]. We limit

consideration to projections to the (a0(t), a2(t)) plane. (Variations of the exponent

with the equivalence ratio do not depend on this choice.) We choose a small patch

of the plane and identify points xi of the orbit within it. The point xi evolves to a

point yi (in a different patch) during the next time step (0.0001 s). We assume that

the evolution of xi → yi can be approximated by a (locally) linear transformation L,

which is estimated by minimizing the least-square difference of (yi−yj) and L(xi−

xj), for all pairs of points xi and xj in the original patch. Now, we follow an orbit,

constructing patches at each time step and computing the associated linearizations.

The Lyapunov exponent is the logarithm of the largest eigenvalue of the product

(per step) as the orbit length increases.

Figure 5.10 shows the variation in the Lyapunov exponent for the flow as the

equivalence ratio is changed. The onset of von Karman vortex shedding is accompa-

nied by an increase in the Lyapunov exponent, i.e., neighboring points on the phase

diagram diverge faster following the transition.
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Figure 5.10: Lyapunov exponent of the flow in the range of equivalence ratios studied.

Note that the exponent increases with the onset of von Karman vortex shedding.

Fractal properties [38] of an attractor can be used to characterize chaotic motions.

However, the correlation dimension [39, 40] of all attractors shown in Figure 5.9 are

found to be close to 2. Thus, due to experimental noise and irregular small-scale

facets, it is not possible to derive fractal characterizations of our flow.

5.6 Periodic Orbits in the Flow

The computation of (unstable) periodic orbits will be illustrated in the context of

bluff-body stabilized flames. As shown below, we find only one periodic orbit prior to

the onset of von Karman vortex shedding and two following the transition. Interest-

ingly, the period of the cycle prior to the transition is ∼ 8 ms, which is representative

of the 125-Hz acoustically coupled flame frequency. The presence of such rapid flow
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components highlights the critical need for high-frequency imaging.

5.6.1 Preliminaries

Periodic orbits within the flow are most easily identified using a Poincaré section.

Qualitative analysis of a dynamical system can be simplified by limiting consideration

to intersections of the state-space orbit with a lower dimensional subspace (Poincaré

section) that intersects it transversly; i.e., the section is not tangent to the orbit. The

map from one such intersection (passing from a given side of the Poincaré section to

the other) to the next is referred to as a Poincaré map [41, 4] (see Figure 5.11). The

Poincaré map is discrete and has one less dimension than the flow.
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Figure 5.11: Schematic examples of Poincaré maps for flows. (a) Periodic orbit of

the flow intersects a single point P0 on the Poincaré section repeatedly; P0 is a

fixed point of the Poincaré map. (b) Quasi-periodic orbits of the flow intersects the

Poincaré section on a curve. Two successive crossings P0 and P1 are shown. The

Poincaré map P0 → P1 is quasi-periodic.

In Figure 5.11 we provide two schematic examples. Figure 5.11(a) presents a

two-dimensional periodic flow and a Poincaré section y = 0. The flow intersects

the section at the same point P0 repeatedly; P0 is a fixed point of the Poincaré

map. The one-dimensional flow has been reduced to a zero-dimensional map. The

second example, illustrated in Figure 5.11(b), is a quasi-periodic flow on a torus.

Its intersections with the Poincaré section lie on a circle, and the Poincaré map

is quasi-periodic on the circle (i.e., similar to an irrational rotation). Here, the
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two-dimensional, quasi-periodic flow has been reduced to a one-dimensional, quasi-

periodic Poincaré map. Similarly, a chaotic flow will be reduced to a chaotic map of

one less dimension on the Poincaré section, and the (closure of the) intersection will

be a strange attractor [4].

Being unstable, periodic orbits are not directly observable; their presence and

location must be inferred from the flow. To perform this task, we first note that

nearby points in chaotic or irregular flows will diverge (the “butterfly effect”). The

divergence is large along one direction, the mean growth rate being the (first) Lya-

punov exponent [13]; typically, the divergence of the flow normal to the chaotic

attractor (or the second Lyapunov exponent) is smaller. Consequently, an orbit that

approaches close to a fixed point on the Poincaré section will maintain proximity

to the corresponding periodic orbit of the flow for a finite time interval. Hence, a

point sufficiently close to a fixed point of a Poincaré map is likely to make a close re-

turn [14, 23]. We search for all such close returns on the Poincaré section. Typically,

such points cluster into a few groups, each of which is assumed to be associated with

a fixed point of the Poincaré map; the fixed point is estimated to be the centroid of

the cluster [23].

5.6.2 Periodic Orbits for φ = 1.1

We select the Poincaré section a1(t) = 0 for our analysis and search for crossings

from a1 < 0 to a1 > 0. The data (which are available only on a discrete set of time

points, i.e., the frames) are interpolated using a third-order spline to estimate the
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crossing time tc. The value of each remaining coefficient an(tc) (n = 0, 2, . . . , 14) at

the crossing is also computed using a spline fit.

(a) (a) (b) (b)

Figure 5.12: (a) Intersections of the flow at φ = 1.1 with the Poincaré section a1 = 0.

First crossings for close returns, defined by ε = 0.01, are shown by red closed circles,

while returns to the section are shown by green closed triangles. Dashed lines join

pairs of first crossings and returns; i.e., represent the Poincaré map. Open circles

are the remaining crossings of the orbit with the Poincaré section, whose returns

are farther than ε from the first crossing. (b) Dynamics of a1(t) between the first

crossing and return for the seven close returns identified in (a). All seven appear to

be organized around a single periodic orbit. The cycle, marked by red triangles, is

estimated to be the mean of the seven close returns.

Our analysis was conducted on the reduced-order flow defined by using the first 15

coherent structures. Close returns on the Poincaré section are defined as orbits that
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return to within a pre-specified distance ε = 0.01 from the first crossing. (Identical

periodic orbits are found for a range of ε values.) Figure 5.12(a) shows the inter-

sections of the periodic (or quasi-periodic) orbit of the flow (at φ = 1.1) with the

Poincaré section. When there is a close return, we mark the first crossing with a red

circle and its iterate with a green triangle. Each such pair is connected by a dashed

line. The blue open circles denote crossings whose iterates (i.e., next crossings) do

not fall within ε. We find seven close returns of the Poincaré map. Notice that all

seven first crossings (red circles) are clustered in one neighborhood; we assume that

the proximity of their returns is due to the presence of a fixed point on the Poincaré

section, and its location is estimated by the mean of the seven first crossings.

Next, we discuss an inference that can be made on the basis of the presence

of only one periodic orbit in the flow. If the flow were chaotic, one would expect

multiple periodic orbits to be embedded in the attractor and the orbit to follow

distinct cycles in the course of the flow [15, 18, 14]. In this scenario, several periodic

orbits would have been extracted by our algorithm. Our inability to find more than

one orbit is the first indication that the large-scale flow, in the absence of noise and

other irregular facets, is periodic and not chaotic; it also confirms that our flame

oscillations are indeed acoustically coupled to the experimental rig.

Next, we consider the flows emanating from each of the seven first crossings

[red circles in Figure 5.12(a)] and compute their dynamics at regular time intervals

(using spline-fits as necessary). The dynamics of a1(t) for the seven orbits are shown

in Figure 5.12(b). The proximity of the seven orbits justifies our assumption that

the close returns are caused by a single neighboring periodic orbit. The location of

114



the periodic orbit a
(P )
1 (t) at time t is assigned as the centroid of the seven orbits

at t. (Note that the periods of the seven close returns, although similar, are not

identical. To compute the cycle, we linearly scale the period of each orbit so that all

orbits have a common period.) The estimated periodic orbit is shown by red circles

in Figure 5.12(b). Figure 5.13 displays two projections of the recurrent orbit.

Figure 5.13: Projections of the periodic orbit of the flow at φ = 1.1 to the (a1, a2)

and (a1, a3) planes.

Analysis of the remaining flows prior to the onset of von Karman vortices (i.e.,

at φ = 1.04 and φ = 1.0) yields qualitatively similar results. Specifically, we find

only one cycle in each case, and as can be seen from Figure 5.14 for φ = 1.04, the

periodic orbits for the three cases are qualitatively similar.
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Figure 5.14: Projections of the periodic orbit of the flow at φ = 1.04 to the (a1, a2)

and (a1, a3) planes. Note that the projections are qualitatively similar to those for

the flow at φ = 1.1 (see Figure 5.13).

5.6.3 Periodic Orbits for φ = 0.8

Poincaré sections for each flow beyond the onset of von Karman vortices (i.e., φ <

1.0) show two clusters of close returns. A periodic orbit is associated with each

cluster. Furthermore, the pairs of orbits for all equivalance ratios beyond the onset

are qualitatively similar. Figure 5.15 shows the same pair of projections for each

cycle for the flow at φ = 0.8.

Beyond the onset of von Karman vortices, the flow is organized around two

periodic orbits. Figures 5.15(a) and (b) show two projections of the first cycle and

Figures 5.15(c) and (d) those of the other. Notice that the orbits do not close precisely

because the centroid of the locations of the first crossings of the close returns are,
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although nearby, not identical to those of the images.

Figure 5.15: Projections of two periodic orbits of the flow at φ = 0.8 to the (a1, a2)

and (a1, a3) planes. (a) and (b) show projections of one cycle and (c) and (d) those

of the other.

5.6.4 Unstable Periodic Orbits for the Flow

Thus far, we have the computed periodic orbits of the reduced model defined from

the dynamics of the coefficients a
(P )
n (t) of the first fifteen coherent structures. An
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approximation to the corresponding flow itself can be derived using Eq. (5.2), i.e.,

UP (x, t) ≈
15∑
n=0

a(P )
n (t)Φ(x). (5.7)

Figure 5.16 provides snapshots (at the same time) to compare the original flow

and the periodic (or recurrent) flow (i.e., the flow computed from the recurrent

orbit). Note that the original flow contains small-scale structures and other irregular

features, while the recurrent flow exhibits neither. In fact, a video of the same

recurrent flow, provided in Supplementary Materials, shows an extremely clean flow

that returns to its initial state following the shedding of a symmetric pair of vortices.
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Figure 5.16: Simultaneous snapshots of (a) the original flow at equivalence ratio

φ = 1.1, and (b) recurrent flow. Note that the former contains noise and other

irregular small-scale structures. The size of the images is approximately 100-mm

× 66-mm.

The flame flow following the onset of von Karman vortices (i.e., for φ < 1) can be

de-convoluted in the same manner. Figures 5.17(a) and (b) show a snapshot of the

flow at φ = 0.8 and the corresponding snapshot of the recurrent flow. Observe that
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the periodic flow does not have up/down symmetry. Figures 5.17(c) and (d) show

the symmetric and anti-symmetric components of the latter.

Figure 5.17: Simultaneous snapshots of (a) the flow at equivalence ration φ = 0.8

and (b) recurrent flow. Symmetric and anti-symmetric components of the latter are

given in (c) and (d) respectively.

The reconstruction of the periodic flow allows us to characterize the noise and
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some other irregular features of the flow (an alternative to looking at PCA recon-

struction in Ref. [6]). Specifically, the irregular facets can be defined as the difference

between the original flow and the recurrent flow within the duration of the cycle. Fig-

ure 5.18 contains snapshots of the difference for four close returns used in computing

the periodic flow at φ = 1.1. Specifically, we consider four close returns and select

a pre-specified point in state space (see Figure 5.13). We identify the corresponding

snapshot of the flow and subtract the image of the recurrent flow from it. Two obser-

vations are in order: (1) The irregular motion is concentrated near the flow locations

of large velocity gradients. This is to be expected since small-scale structures are

generated by energy cascading, which is concentrated at locations with high veloc-

ity gradients, and (2) the precise deviations from the periodic flow depend on the

specific close return analyzed. This justifies our nomenclature –irregular motion– for

these small-scale facets of the flow. However, all four images appear to have similar

qualitative features.

121



Figure 5.18: Differences in images from equivalent time points of four close returns

and corresponding snapshots of periodic flow at φ = 1.1. Images represent noise and

other irregular facets of the flow. Note that the images have “similar” statistical

features, but the precise structures depend on the close return.

One of the remaining tasks is to provide a comprehensive (and quantitative)

statistical characterization of these irregular structures and their dynamics. We

have conducted a pair of standard tests. First, the spectrum for the noise decays as

a power-law in frequency, suggesting that the small-scale structures are not governed
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by low-dimensional chaos [42]. Second, PCA of the corresponding spatio-temporal

dynamics shows a slow decay of the latencies. Thus, a large number of coherent

structures is needed to provide a good approximation to the noise. This pair of

results indicates that the small-scale irregular flows are either stochastic or governed

by high-dimensional dynamics.

123



5.7 Flow behind Other Symmetric Bluff Bodies

Figure 5.19: Bifurcation diagrams for onset and growth of von Karman vortex shed-

ding with decreasing φ for bluff bodies of several shapes. In each case the bifurcation

appears between equivalence ratios φ = 0.9 and φ = 1.0.

We highlight a collection of results derived from the analysis of reacting flows behind

bluff bodies of other (symmetric) shapes. The analyses are identical to that described
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in Sections 5.3–5.6. Flow characteristics remain unchanged, but the strength of the

irregularities differs, being smallest for the v-gutter bluff body.

Figure 5.19 displays the bifurcation diagrams for the flow behind (a) cylindrical,

(b) flat, (c) square, and (d) v-gutter bluff bodies. In each case, the estimated onset

of von Karman vortices occurs at an equivalence ratio between φ = 1.0 and φ =

0.9. However, the growth of the anti-symmetric component following the onset (i.e.,

smaller φ) is smallest for the v-gutter and largest for the square flame holder. This

may suggest that the bluff body in the shape of the v-gutter perturbs the flame flow

minimally as the equivalence ratio is reduced below the onset of von Karman vortex

shedding. Another factor that may be contributing to the shapes of the curves in

Figure 5.19 is the acoustic coupling. It appears that, for square and cylindrical flame

holders, the transition to acoustically coupled flames does not begin for φ < 0.7 and

φ < 0.8, respectively. Differences in the downstream pressure field may prevent the

coupling of the flames at these low equivalence ratios. However, once the equivalence

ratio is increased, the transition to acoustically coupled conditions appears to be

more abrupt. This sensitivity to equivalence ratio may prove to be problematic for

active control systems that may not have sufficient time to alter upstream conditions

to reduce or prevent the coupling. The frequency bandwidth of the pressure and heat-

release fluctuations may be used in the future to understand how the differences in

coupling could be caused by the overlap.
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Figure 5.20: Projections to a subspace defined by two eigenvectors illustrate changes

of the phase portrait prior to and following the onset of von Karman vortex shedding

for four bluff bodies. Images suggest that the flow behind the v-gutter contains the

least noise/irregularities.

Figure 5.20 shows projection to the (a0, a2) and (a0, a3) planes of the phase por-

trait prior to (i.e., larger φ) and following (i.e., smaller φ) the onset of von Karman

vortex shedding for the four bluff bodies. Once again, it appears that the symmetric

flow behind the v-gutter contains the lowest level of noise. The low noise in the

v-gutter is in agreement with the fact that the symmetric energy for the v-gutter is

highest in Figure 5.21 (see below). This suggests that heat-release fluctuations and

shedding behind the v-gutter couple best with the pressure fluctuations in the rig.

The remaining bluff-body shapes with more irregular shedding (symbolized by phase

portraits with more irregularity) probably inherently provide additional damping of

the acoustics [43].
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Figure 5.21: Growth of Lyapunov exponents for flow behind four bluff bodies as the

equivalence ratio is reduced. Expansion rates for flow behind cylindrical, square, and

v-gutter bluff bodies are similar. Flow behind the flat plate shows different behavior.

The flows behind all symmetric bluff bodies exhibit similar qualitative behavior

both prior to and subsequent to the onset of von Karman vortex shedding, as can be

observed from the phase portraits (Figure 5.20), Lyapunov exponents (Figure 5.21),

and periodic orbits (Figure 5.22), although the second set of cycles for the flow

behind the cylinder appear different. However, the flow behind the v-gutter exhibits
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the least irregularity, confirming a more efficient coupling of the flame heat release

with the acoustic field in the rig.

Figure 5.22: Periodic orbits prior to and subsequent to the onset of von Karman

vortex shedding for the flow behind the four bluff bodies.

We find a larger number of close returns for the flow behind the v-gutter, which

once again suggests that this flow is the most regular. In addition, periodic orbits

for the flow behind other bluff bodies fail to make (sufficiently) close returns. For
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example, for φ = 1.1, we find five, four, and four close returns for the flow behind

the cylindrical, flat, and square bluff bodies, respectively. We find only two periodic

orbits for each flow following the onset, and they are similar for the flat plate, the

square flame holder, and the v-gutter. The orbits for the lower equivalence ratio in

Figure 5.22 also suggest that the cylindrical flame holder provides the least amount

of acoustic coupling since the returns are farthest away there. However, we find the

same number of periodic orbits (one prior to the onset -large φ- and two following

the onset -small φ-) for the flow behind each bluff body.

5.8 Discussion and Conclusions

Enhancing the performance of combustion systems such as engines requires designs to

minimize or delay flow instabilities. Unfortunately, higher efficiencies occur in leaner

fuel/air mixtures –the very regime where flow instabilities are initiated. Theoreti-

cal approaches to addressing these issues encounter serious obstacles. Fundamental

equations of fluid dynamics and chemical kinetics are nonlinear, and flow character-

istics depend sensitively on their precise form and the values of control parameters

and boundary conditions. Perturbation approaches also fail to yield reliable results

in intensely driven nonlinear systems. In contrast, experimental techniques, particu-

larly methods for extracting ultra-high-frequency, high-resolution flow patterns, have

undergone rapid advances in recent years. Thus, the need is critical for data-based

reduced-order models to analyze and control flow instabilities.
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In this study, we introduced a modal decomposition of bluff-body-stabilized com-

bustion flows. The energy in these flows is introduced through large-scale external

actions, acoustic instabilities, or vortex shedding. In addition, the flow contains irreg-

ular, small-scale motions created through viscous-mediated energy cascading. These

small-scale motions feed back and impose irregularities on the large-scale flows as

well. Some of the questions that motivated our study were: 1) Are large-scale flows

regular in the absence of feedback from the small scales? 2) If so, can transitions in

these flows be identified and characterized? 3) What are the statistical descriptions

appropriate to the small-scale flows?

We focused on high-momentum combustion behind bluff bodies under conditions

that include symmetric vortex shedding. As the equivalence ratio of the mixture is

reduced, the flow undergoes a transition beyond which the flow sheds von Karman

vortices as well [6]. Since von Karman modes are observed at small equivalence ratios

and will only increase with the upstream temperatures [44], their onset may signal

the limits in optimizing the efficiency of engines, and designs that delay their onset

may prove useful in enhancing engine efficiency.

The methods outlined in this paper are extensions of the proper orthogonal de-

composition introduced in Ref. [6]. All experimental systems we analyzed had a

reflection symmetry about an axis along the flow direction. Symmetric vortex shed-

ding retains this symmetry, while von Karman shedding breaks it. Our deconvolution

of the flow relied on this observation: First, when the vortex shedding is symmetric,

all coherent structures in the expansion are necessarily symmetric under reflection;
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hence, any asymmetry in the computed coherent structures is due to noise and irreg-

ular feedback from the small-scale motions. This observation provides a measure of

the irregular motions and an algorithm for filtering them. Second, when the flow con-

tains von Karman shedding as well, the strength of these vortices can be quantified

by the anti-symmetric components of the coherent structures.

These assertions were used to identify the onset and growth of von Karman

vortex shedding. The onset is illustrated with bifurcation diagrams and qualitative

changes in the phase-space orbits. The growth of von Karman modes is characterized

using bifurcation diagrams and Lyapunov exponents. We further characterized the

transition by computing the (unstable) periodic orbits embedded in the flow. We

found only one such orbit prior to the onset of von Karman vortices and a pair of

orbits following the transition.

The presence of only one or two periodic orbits in the flow has an important

consequence. If the flows were chaotic, one would expect multiple periodic orbits

to be embedded in the attractor [15, 18, 14], and our algorithm would have yielded

several periodic orbits. Our inability to find more than one orbit prior to the transi-

tion suggests that the large-scale flow is periodic (not chaotic) and that the irregular

facets of the flow probably result from feedback from the small scales. The vanishing

of the Lyapunov exponent for φ ≥ 1 provides additional evidence for the periodicity

of the large-scale flow. These results are consistent with estimates made from flow

characteristics. The cross-sectional area (approximately 150 mm × 125 mm) and

the velocity (approximately 14 m/s) provide an estimate of the Reynolds number of

3× 105, which is below the transition to turbulent flow for a cylindrical barrier [45],
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once again suggesting that the primary flame flow is not irregular.

We conducted the analysis for bluff-body-stabilized flow behind flame holders of

four (symmetric) shapes. The qualitative features for the flows are similar in each

case, although the level of irregularity depends on the specific shape of the flame

holder. We found that the onset of von Karman shedding occurs at (nearly) the

same equivalence ratio. However, the flow behind a v-gutter is least irregular and

that behind the cylindrical bluff body is most irregular. This observation may assist

in optimizing engine design.

Knowledge of the relevant coherent structures and their symmetries can be used

to infer the normal-form equations for the underlying spatio-temporal dynamics [12,

46, 4]. These normal forms can be used to predict secondary bifurcations in the

system [47, 46]. Such analyses have been conducted for many fluid systems, including

cellular flame patterns [48, 49].

Periodic orbits within an irregular flow are especially useful in controlling a

chaotic flow [50, 51]. The crucial observation is that since the cycle is embedded

in the irregular orbit, it requires only a small perturbation to guide a chaotic system

toward the periodic orbit [52, 53]. Furthermore, since the requisite perturbations are

small, one may assume that superposition applies; once responses of the system to a

collection of perturbations are established, they can be superposed in an appropriate

way to obtain a pre-specified response of the system. The method has been success-

fully applied to control systems as diverse as reaction–diffusion systems [54], flame

fronts [54], lasers [55], magnetoelastic ribbons [56], cardiac rhythms [57, 58, 59, 60],

and brain signals [61]. One of our future goals is to validate that periodic orbits

132



within the flow can be used to reduce or eliminate irregular facets of bluff-body-

stabilized flames.

The motivation for our work was to de-convolute the complex flame flow into its

constituents. In our studies we explicitly used differences in the symmetries between

symmetric and von Karman vortex shedding to identify flow patterns associated with

each mode. Such partitioning is required because individual structures consists of a

combination of coherent structures, rather than a single structure. Unfortunately,

this approach cannot differentiate two or more modes with the same symmetry and

cannot be used to analyze physical systems (e.g., jet engines) with no symmetry. One

option is to use the frequency content of the dynamics to identify coherent structures

to be combined into each flow component. Another possibility is to use dynamical

mode decomposition [34, 35].
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6.1 Introduction

Combustion instabilities can inflict severe damage in industrial systems and limit

their performance [1, 2]. These instabilities are typically generated when a system

is driven toward high performance or high efficiency and take the form of uncharac-

teristically hot or cold spots [2, 3, 4]. Hot spots can cause extensive and irreparable

damage in large chemical reactors [4]. Cold patches can extinguish combustion in

reactors or jet engines [5]. An important design goal is to prevent or control the

onset and growth of combustion instabilities.

A major difficulty of such a design is the lack of a sufficiently accurate and ana-

lytically or computationally solvable model system. Reacting flows can, in principle,

be modeled using an appropriate system of reaction-diffusion equations [6, 7, 8, 9]

supplemented by the Navier-Stokes equations [10, 11]. However, there are several

difficulties. First, the precise details of the underlying chemical reactions and values

for diffusion rates for products are rarely known. Second, typical flows contain and

are effected by long-range pressure and heat release fluctuations. In particular, the

zero-Mach number (i.e., fluid speed � sound speed) assumption used in most ana-

lytical studies is not expected to be valid even in simple configurations [12]. Thirdly,

boundary conditions for most technologically relevant examples are non-trivial, and

consequently special function expansions cannot be used to reduce the analyses.

Computational analyses of reacting flows contain difficulties as well. Nonlinearity of

the underlying equations cause energy to be recursively cascaded from large scales

to small scales; flow components on the resulting vastly different scales are coupled.
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Consequently, an accurate simulation of a combustion flow requires an extremely fine

grid on which the computations are to be performed.

On the other hand, high-frequency, high-resolution imaging, such as measure-

ments of temperature fields through planner laser-induced florescence (PLIF) and of

velocity fields through particle image velocimetry (PIV) are becoming available [13,

14]. The data can be used to perform modal decompositions and dimensional re-

ductions of the flows. However, turbulent combustion contains reproducible and

non-reproducible components. Random experimental and observational noise can

only be quantified statistically. The small scale “eddy-like” structures consequent

to energy cascading, while not “random,” are not reproducible; they depend sen-

sitively on the initial conditions from which they emerged. Only the reproducible

constituents can be used for flow characterization or control. Thus, successful post-

processing of turbulent combustion should include techniques to de-convolute the

flow into reproducible and non-reproducible constituents.

Nonlinear control methods that rely only on experimental data have been pro-

posed [15, 16] and validated in contexts ranging from cardiac rhythms [17, 18] and

laser systems [19] to neural signals [20, 21] and spatio-temporal fluid flows [22].

Specifically, the goal is to drive an irregular system toward a (low-order) unstable

periodic orbit [23, 15]. These periodic orbits are contained in the attractor, and

hence the feedback necessary to implement control is small. Importantly, the peri-

odic orbits and feedback can be computed from modal decomposition of data [24, 22];

no model of the underlying dynamical system is required.
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Typically modal decomposition is implemented using a pre-specified basis ex-

pansion, such as Fourier transforms or wavelets, or in the case of linear systems,

through global eigenmodes [25, 26]. However, these approaches are not efficient in

de-convoluting nonlinear flows contained in irregular domains for two reasons: (a)

expansion of flow constituents like eddies or vortices requires a very large number

of modes [27], and (b) it is difficult to assign expansion modes to a specific flow

constituent, such as the von Karman vortices [13, 28]. Proper Orthogonal Decom-

position (POD) addresses issue (a) [29, 30, 31, 32]. First, there is no preconceived

selection of the expansion modes; rather, the proper orthogonal modes (or coherent

structures) are computed from data through a correlation matrix. Next, features of

turbulent flows can be captured by ∼25 POD modes [13, 28]. The remainder may

represent noise and non-reproducible features of the flow. However, in general, it is

not possible to use POD to resolve issue (b). (If the system is symmetric, it may

be possible to associate symmetry-broken POD modes with symmetry-broken flow

constituents [28].) It should be noted that POD is optimal in the sense that, at a

given truncation, it provides the closest description of the original flow [32].

In this paper, we analyze reacting flows using POD and an alternative decompo-

sition based on Koopman eigenfunctions [33, 26, 34]. The latter are eigenfunctions

of the time evolution of a secondary field, such as the experimentally measurable

temperature or flow velocity fields. They are a generalization of normal modes [34]

and each represents a global collective motion of the secondary field. The spectrum

of the underlying dynamics (e.g., reaction-dffusion and Navier-Stokes equations) is

contained in the spectrum of the Koopman operator [26, 34]. Schmid [33] proposed
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a fast algorithm, referred to as dynamic mode decomposition (DMD), to compute

approximately (a subset of) the Koopman spectrum from spatio-temporal dynamics

of the secondary field.

We study two problems. The first involves spatio-temporal dynamics of a cellular

state formed on a flat circular flame front [5]. The state we analyze consists of two

“rings” of cells that co-rotate at different rates. We compare and contrast proper

orthogonal and dynamic mode decompositions. Both can be used to differentiate

dynamics associated with the two rings. However, there are multiple dynamic modes

that have the same spatial structure but different growth rates. They combine to form

a single proper orthogonal mode. Thus, POD is the more parsimonious or efficient

expansion while DMD provides more refined dynamical details of the modes.

The second problem involves reacting flows behind a symmetric bluff-body. The

flow contains two types of eddies: periodic shedding of symmetric pairs of vortices

and von Karman shedding, where vortices are shed alternately from opposite sides

of the bluff body. We show how POD and DMD can be used to differentiate between

the two types of vortex shedding.

In these studies, we identify two facets of DMD that are extremely useful in

de-convoluting the flow. Unlike proper orthogonal modes, each dynamic mode is as-

sociated with a unique complex growth rate. Comparing DMD spectra from multiple

nominally identical experiments (or from different segments of the same experiment)

helps us identify “reproducible” modes in a flow. Spatio-temporal dynamics repre-

sented by the remaining modes may reflect noise and features sensitive to the precise

initial conditions. In POD, a corresponding differentiation is attempted using the
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latencies (see below) of modes. However, our analyses show that high latency modes

of the flow are typically, but not always, reproducible. Thus, it is not possible to dif-

ferentiate between reproducible and non-reproducible modes using only their latency.

The second issue involves the use of DMD to identify multiple modes contained in

a single flow facet. The time-dependent coefficients of the dynamic modes are com-

plex functions. Even in noisy experimental data, we find that the phase of these

coefficients (but not their magnitude) exhibits repeatable dynamics. The phase rep-

resents the angular position of a rotating ring of cells and quantifies the downstream

displacement of the vortices in reacting flows. Whether two dynamic modes should

be assigned to a single flow constituent can be determined using Lassojous figures.

A flow constituent can be reconstructed when all modes all DMD modes associated

with it are identified.

We outline proper orthogonal and dynamic mode decompositions in Section 6.2.

Section 6.3 introduces a state of two co-rotating rings of cells on a combustion front

and reports on results from POD and DMD. We find that either decomposition can

be used to partition the dynamics to those of the outer and inner rings of cells.

POD and DMD are compared and contrasted using this example. We also introduce

the algorithm to capture noise and other non-reproducible facets of the flow. In

Section 6.4 these ideas are used to analyze vortex shedding behind a symmetric bluff

body. We consider two types of flows. In the first, symmetric vortex pairs are shed

periodically from either side of the bluff body. The second includes von Karman

vortices as well. We conduct POD and DMD on both classes of flows. In particular,

DMD is used to differentiate between major flow components from noise and other
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non-reproducible aspects of turbulent combustion. It is also used to select modes

with similar phase dynamics. Finally, in Section 6.5 we discuss the implications of

our results. The Appendix section 6.6 shows conditions under which combinations

of dynamic modes can be proper orthogonal modes.

6.2 Dynamic Mode and Proper Orthogonal De-

compositions

We briefly outline dynamic mode and proper orthogonal decompositions and the

associated computations from a spatio-temporal field. They are included for com-

pleteness and follow Refs. [29, 30, 31, 32, 26, 34, 33]. Suppose the state of a system

is z and its dynamics is given by

ż = F(z), (6.1)

with an appropriate set of boundary conditions. The dynamics evolves the initial

state z0 of the system to St(z0) at time t. In the case of reacting flows, F con-

sists of the relevant reaction-diffusion and Navier-Stokes equations with, perhaps,

no slip boundary conditions. For reacting flows, these equations, the associated

model parameters, and boundary conditions are not known with sufficient accuracy

to make reliable predictions. On the other hand, one has available, high-frequency,

high-resolution data on various secondary fields associated with the flow; e.g., the

temperature field through planar laser-induced florescence (PLIF) or velocity field

through particle image velocimetry (PIV). Let us represent one such (observable)
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secondary field (associated with z) by u[z](x), where x are the grid points on which

the observations are made. As the state of the system evolves from z0 at time t = 0

to St(z0) at time t, the secondary field evolves from u[z0](x) to u [St(z0)] (x). When

the context is clear, we will simplify the notation by writing u(x, t) for u[z](x).

6.2.1 Proper Orthogonal Decomposition

In POD, u(x, t) is decomposed in a basis {Ψk(x)} whose members are the normalized

eigenvectors of the correlation matrix C given by Cx,x′ ≡ 〈u(x, t)u(x′, t)〉t, where x

and x′ are two spatial locations and the average is over time. Since C is real and

symmetric, coherent structures {Ψk(x)} are real and orthogonal; we will assume

that they have been normalized. Ψ0(x) is the time-averaged field. For fields in two

spatial dimension, denote the number of pixels in the two directions by H and W .

The spatio-temporal field can be expanded as

u(x, t) =
HW−1∑
k=0

bk(t)Ψk(x), (6.2)

where bk(t) are the time-dependent coefficients.

Variations in u(x, t) can be quantified using V ≡ E [(u(x, t))2], where the expec-

tation is over the spatial points and snapshots. Using the expansion of u(x, t) and

the orthonormality of Ψk(x)’s, it is seen that V =
∑
〈|bk(t)|2〉t. Lk ≡ 〈|bk(t)|2〉t can

be interpreted as the contribution of the kth mode to the dynamics; it is referred to

as the latency (or “energy”). The expansion is assumed to be in a non-increasing

order of Lk. Generally, it is assumed that high latency modes are robust and the

remainder represents noise and other irregular facets of the flow. A reduced-order
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approximation [35] for the flow can be derived by truncating the series (6.2) at an

appropriate order n (< HW ) to obtain un(x, t) ≡
∑n−1

k=0 bk(t)Ψk(x). The“quality”

of the approximation is given by

βn =

∑n−1
k=0 Lk∑HW−1

k=0 Lk
. (6.3)

Larger values of βn correspond to better approximations of the data. Coherent struc-

tures are the most efficient basis in the sense that, for given n no other decomposition

of the form
∑n−1

k=0 b̃k(t)Ψ̃k(x) has a larger value of βn [29, 30, 31, 32].

6.2.2 Dynamic Mode Decomposition

For a fixed time t, the Koopman operator is the linear operator U t defined as [26, 34]

U t (u(x, t = 0)) = u (x, t) . (6.4)

Thus, U t describes how the secondary field at time t = 0 transforms to that at time t.

It is assumed to depend on F and the time interval, but not on the initial time. Unlike

F , which can be a nonlinear system, U t is a HW -dimensional linear operator [34].

Interestingly, under very general conditions, the spectrum of F is contained in the

spectrum of U t [26, 34]; hence the stability and structure of solutions z(t) of the

system F can be inferred through the analysis of the Koopman operator.

Dynamic mode decomposition [36, 33, 25] is an efficient algorithm to compute ap-

proximations for the eigenvalues and eigenvectors of U t from experimental snapshots

collected at uniform time intervals δt. Since U δt is independent of the state u(x, t),

one can represent the transformation of the field during the time interval [t, t + δt]
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as

u (x, t+ δt) = Au (x, t) , (6.5)

where A = A(δt) is a matrix of size HW × HW . Denoting by un the field cor-

responding to the snapshot taken at time t = nδt, Eqn. (6.5) can be re-written as

un+1 = Aun. Thus,

U1 ≡ [u1, u2, . . . , un+1] = A [u0, u1, u2, . . . , un] ≡ AU0. (6.6)

Finally, we note that for sufficiently large n (certainly for n larger than the number

of pixels in each snapshot), un+1 is linearly dependent on all the previous uk’s; write

un+1 =
∑n

k=1 ckuk. Thus, we can write U1 = U0B, where the companion matrix

is [36, 33, 25, 26]

B =



0 0 . . . 0 c0

1 0 . . . 0 c1

0 1 . . . 0 c2

. . . . . . . . . . . . . . .

0 0 . . . 1 cn


. (6.7)

Since AU0 = U0B, the spectra of A and B are identical. Even in cases where the

expansion of un+1 can only be approximated by a linear combination of uk’s, eigen-

values of B are approximations to those of A [36, 33, 26]. The spectrum of B can be

computed using the (fast) Arnoldi method [37, 36]. Eigenfunctions of A are referred

to as dynamic modes of the flow [36, 33, 25]. Dynamic mode decomposition provides

a subset of the Koopman spectrum Λn and the corresponding eigenfunctions Φn(x).

Koopman eigenfunctions evolve as exp(Λnt) under F ; they are the generalization of

normal modes.
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It should be noted that, since A is not symmetric, the eigenvalues Λn and the

eigenfunctions Φn(x) are, in general, complex valued. Furthermore, the eigenfunc-

tions are not orthonormal. Eigenvalues of the Hermitian conjugate A† of A are

Λ∗nt. The corresponding eigenfunctions Φ̃n(x) are orthogonal to Φn(x)’s; specifically,

with an appropriate normalization
∫
dx Φ̃m(x)Φn(x) = δmn. Note that unlike POD,

which uses second order statistics, dynamic modes are computed using first-order

statistics. Hence one may expect consequences of noise and other irregular features

to be less significant in DMD.

The spatio-temporal field u(x, t) can be expanded as

u(x, t) =
∑
DMD

an(t)Φn(x), (6.8)

where,
∑

DMD represents the sum over the DMD modes. By the orthonormality

introduced above, an(t) =
∫
dx Φ̃n(x)u(x, t). If necessary, the field can also be

expanded in the basis {Φ̃(x)} as u(x, t) =
∑
ãn(t)Φ̃n(x). Now the variations in the

spatio-temporal dynamics reduces to V =
∑
anãn and we can interpret the quantity

Ln = anãn as the latency associated with the nth mode. (Note however that Ln is

not positive definite; hence, in defining βn –Eqn. (6.3) – we need to take the sum of

absolute values.)

Unlike proper orthogonal decomposition, dynamic modes are associated with

unique eigenvalues Λn. We can use this observation to address an important issue.

A flow constituent (e.g., von Karman vortices) is not captured by a single coherent

structure or dynamic mode; rather several such modes are required to reconstruct a

typical constituent [28]. In POD, there is no method to identify and assign modes
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associated with a specific flow constituent. In contrast, analysis of simulated and ex-

perimental data suggests that the dynamic modes associated with a flow constituent

can be identified. Specifically, such eigenvalues are found to lie on a smooth curve in

the complex plane [36, 33, 25]. An alternative scheme is as follows: recall that the

primary dynamic mode (i.e., that with the highest latency) has a single frequency,

the imaginary part of the corresponding Λ. One may expect dynamic modes with

harmonics of this frequency to be associated with the same flow constituent. In the

next Section, these ideas are used to decompose real flows.

DMD modes associated with reproducible features of a flow will be “robust;” i.e.,

they will be found in multiple realizations of an experiment. In contrast, modes

representing non-reproducible flow characteristics will change with the realization.

The observation leads to the following conjecture: it is possible to differentiate re-

producible and non-reproducible aspects of a flow by comparing DMD spectra from

multiple realizations of a set of nominally identical experiments. As argued in the

examples below, a similar differentiation of reproducible and non-reproducible modes

cannot be made using POD. Finally, we observe that in constructing reduced order

models, we can discard the non-reproducible features, and only retain their statisti-

cal characteristics; in other words, we only need to consider the primary, robust flow

constituents in reduced order models.
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6.3 Cellular Flame Patterns

6.3.1 The Experiment

The experiment was conducted in the laboratory of our late colleague, Professor

Michael Gorman [5, 38, 27]. Cellular flame patterns were generated on a circular

porous-plug burner mounted in a combustion chamber maintained at a pressure

0.3-0.5 atm. A mixture of methane and air enters a porous medium and following

passage through it forms a flat flame front. It is a luminous disk 5.62 cm in diameter

and approximately 0.5 mm thick. The ambient pressure, fuel/oxidizer ratio, and the

flow rate are controlled to within 1%. A dage-MTI charge-coupled device camera is

mounted vertically on top of the combustion chamber to record the spatio-temporal

patterns.

As the flow rate is increased, the circular flame front experiences local curvature,

resulting in symmetry-broken cellular structures. The cellular pattern consists of

brighter (hotter) cells demarked by darker (cooler) cusps that extend further away

from the porous plug. The motion is video-recorded at 30 Hz. The spatio-temporal

dynamics was captured by N = 123 equally spaced snapshots with a resolution of

W = 216 pixels along the length and H = 190 pixels along the height of a snapshot.

Both POD and DMD were implemented on a matrix of W × H columns (spatial

points in a snapshot) and N rows (number of snapshots).
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6.3.2 The Double Rotating State

We analyze a cellular flame pattern of two co-rotating rings of cells, several consecu-

tive snapshots of which are shown in Figure 6.1. The inner ring of two cells and the

outer ring of six cells rotate clockwise, although at different rates. States where the

rings rotate in opposite directions and those with rings containing different numbers

of cells were also observed [5]. The analysis outlined below has been applied to these

patterns as well.

Figure 6.1: Several consecutive snapshots from the cellular flame state of two co-

rotating rings of cells. Note that the angular speeds of the two rings are different.
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6.3.3 Proper Orthogonal Decomposition
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Figure 6.2: Latencies of the first 16 proper orthogonal modes of the double co-rotating

state.

Figure 6.2 shows the latencies of the first sixteen proper orthogonal modes of the co-

rotating cellular state, and Figures 6.3 and 6.4 show the first four proper orthogonal

modes and the power spectra of (the real part of) their time-dependent coefficients.

The first two modes have a six-fold symmetry and represent the outer ring while

the next two modes have a two-fold symmetry and located near the inner ring. The

next two modes (not shown), once again, are located near the outer ring and have

a twelve-fold symmetry. The fourth pair is located in the region of the inner ring

and has a four-fold symmetry. In fact, the motion of a ring of k cells require the

presence of modes of k and 2k-fold symmetries as discussed in Refs. [39, 40]. As seen
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from panels (c) and (d) of Figures 6.3 and 6.4, the dynamics, bn(t), for these modes

contain a narrow range of spectral components.
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Figure 6.3: Coherent structures (a) Ψ1(x) and (b) Ψ2(x) and the power spectra (of

the real part) of their time-dependent coefficients (c) b1(t) and (d) b2(t). Observe

that the modes are located close to the outer ring of cells. Power spectra in (c) and

(d) have several significant Fourier components.
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Figure 6.4: Coherent structures (a) Ψ3(x) and (b) Ψ4(x) and the power spectra (of

the real part) of their time-dependent coefficients (c) b3(t) and (d) b4(t). Modes

are located near the inner ring of cells. Power spectra in (c) and (d) have several

significant Fourier components.

As seen from Figure 6.2, the first 8 modes (in addition to Φ0(x)) capture a sig-

nificant fraction of the total latency of the spatio-temporal dynamics. The latencies

of the remaining modes decay very slowly, and one may suspect that they represent
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noise and non-reproducible facets of the flame dynamics. The spatio-temporal dy-

namics of the reproduction (i.e., the reduced-order dynamics) using the first n = 9

coherent structures is

u9(x, t) =
8∑

k=0

bk(t)Ψk(x). (6.9)

Figure 6.5 shows several snapshots of the approximation, and should be compared

with Figure 6.1. The differences between the two sets of snapshots is small. The

spatio-temporal dynamics of the inner and outer rings can be extracted using repro-

ductions that include modes {1, 2, 5, 6} and {3, 4, 7, 8} respectively, as also shown in

Figure 6.5.
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Figure 6.5: Reproductions of the snapshots corresponding to those shown in Fig-

ure 6.1 are shown in the top row. The second and third rows show the reproductions

of the outer and inner rings of cells.

Although the spatio-temporal dynamics u9(x, t) is close to u(x, t), we cannot

determine the roles played by the remaining coherent structures (noise, finer features

of the flow, etc.). Notice also that our selection of coherent structures 1, 2, 5, and 6

as belonging to a single dynamical constituent was based only on their symmetries.

It is not clear how a flow constituent can be recreated in more general configurations.
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6.3.4 Dynamic Mode Decomposition

Figure 6.6(a) shows the (complex) eigenvalues of the dynamic modes for the double

co-rotating state with the highest 70 latencies. They appear in complex conjugate

pairs and we only show those with non-negative imaginary parts. Next, we subdivide

the series of snapshots into several subgroups, for example the first half, the second

half, the middle half, etc. We recompute DMD spectra for each of these subgroups

and search for the modes that are “robust”; i.e., those that are common to all

subgroups. These robust modes, along with the mode numbers ordered in non-

decreasing order of their latencies, are shown in Figure 6.6(b). The latencies of the

modes are color coded (online version) according to the color bar shown to the right.
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Figure 6.6: (a) Koopman eigenmodes of the double co-rotating state with the 70

largest latencies. They arise in complex conjugate pairs and only those with pos-

itive real parts are shown. (b) Robust modes which remain unchanged -or nearly

unchanged- between several sub-intervals of the dynamics. They are assumed to

represent the reproducible features of the flow.

Figure 6.7 shows the latencies of the dominant modes. We observe that, although

most robust modes have high latencies, it is not possible to partition robust and

non-robust modes using latency alone. Our conjecture is that those robust modes

represent reproducible facets of the combustion flow; conversely, modes that are not

robust are associated with the non-reproducible features including noise.
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Figure 6.7: Latencies of the 35 dynamic modes with the largest latencies. The robust

modes are shown in black.

Figure 6.8 shows the real and imaginary parts of the (complex) DMD mode

Φ1(x) with the highest latency; its eigenvalue is Λ1 = −1.75 + 39.96i. The frequency

associated with this mode is Ω1 = Im(Λ1)/2π ≈ 6.4(frame rate). The mode is

located on the outer ring of cells and has the same six-fold symmetry. Although

this Koopman mode has a frequency Ω1, nonlinear coupling to other modes impose

additional frequency content to â1(ω).
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Figure 6.8: (a) Real and (b) imaginary parts of the dynamic mode of the double

co-rotation state with the highest latency. The dynamics of the (c) real and (d)

imaginary parts of a1(t) are dominated by the frequency Ω1.
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Figure 6.9: (a) The points a1(t) in the complex plane are broadly dis-

tributed. However, the behavior of the phase angle, defined as θ1(t) =

tan−1 (Im(a1(t)/Re(a1(t)) /s(1), where s(1) is the symmetry of the mode, evolves

smoothly. The slope ω1(t) of the curve is the angular velocity of the ring.

The scattered plot of the real and imaginary parts of a1(t) is shown in Fig-

ure 6.9(a). The fluctuations may reflect experimental noise or irregularities in the

flow. Interestingly, we find that the angular changes of the phase space orbit are

highly regular and the irregularities are restricted to the radial component. In order

to illustrate this point we define

θ1(t) = tan−1 (Im(a1(t)/Re(a1(t)) /s(1), (6.10)

where s(1) denotes the spatial symmetry of Φ1(x); specifically Φ1(x) belongs to

the dihedral group D(s(1)). Thus, s(1) = 2 for the inner ring and s(1) = 6 for

the outer ring. The role of s(1) in the definition is justified from the following
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observation: when a ring of cells rotates by 2π/s(1), the pattern is repeated, and

tan−1 (Im(a1(t)/Re(a1(t)) has changed by 2π.

As seen from Figure 6.9(b), the evolution of θ1(t) is highly regular; its slope

ω1 ≡ ∂θ1/∂t is the angular velocity of the ring of cells. We will henceforth use θ(t)

and ω(t) to characterize the evolution of each dynamic mode. We also note that,

since the POD modes are real, no such angular behavior can be defined in general.

(Angular behavior of pairs of POD modes can be computed in special cases, see

Ref. [27].)

Figure 6.10 shows the real and imaginary parts of the dynamic mode with the

next highest latency, Φ3(x), the power spectrum of a3(t), and the phase dynamics

θ3(t). (Note that Φ2(x) = Φ∗1(x) has the same latency as Φ1(x). Similarly Φ3(x) and

Φ4(x) have the same latency.) Φ3(x) represents the inner ring and ω3(t) its angular

velocity. Once again, we note that the power spectrum has a smaller spectral range

than that of the corresponding POD modes Ψ3(x) and Ψ4(x) and that the angular

velocity of the inner ring is highly regular.
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Figure 6.10: (a) Real and (b) imaginary parts of the dynamic mode of the double

co-rotation state with the second highest latency. The dynamics of the (c) real part

of a3(t) are dominated by one frequency. (d) The phase of a3(t) evolves smoothly.

The spectrum of the dynamics of the DMD mode Φ1(x) is different from those of

the dynamics of the corresponding POD modes Ψ1(x) and Ψ2(x). Let us explain this

observation. Φ9(x) has a spatial structure that is a rotation of Φ1(x); it is located

in the outer ring and has the same 6-fold symmetry. However, the eigenvalues Λ1

and Λ9 and the primary spectral components of â1(ω) and â9(ω) are different. In

general, there can be multiple DMD modes with identical or symmetry-related spatial
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structure but with different eigenvalues. In POD such modes are combined into a

single mode or a pair of modes, such as Ψ1(x) and Ψ2(x). b̂1(ω) is the sum of

the â(ω)’s for the associated dynamic modes. This is the sense in which the POD

expansion is more efficient while DMD provides more refined dynamical details of a

mode. For example, if the two modes Φ1(x) and Φ9(x) belonged to different flow

constituents, POD will fail to make the proper assignments of modes.

Finally, the relationships between different dynamic modes can be illustrated

using a Lassajous figures, such as those shown in Figure 6.11. It is a helpful presen-

tation of mode dynamics that may aid in identifying strongly coupled modes. For

example, the dynamics of a3(t) appears to be uncorrelated with the dynamics of a1(t)

and strongly correlated with that of a15(t). The information is helpful in developing

a low-order model for the flow.
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Figure 6.11: (a) Plot of θ1(t) vs. θ3 shows modes Φ1(x) and Φ3(x) likely exhibit in-

dependent dynamics. (b) In contrast, modes Φ3(x) and Φ15(x) appear to be strongly

coupled, suggesting that they belong to a single flow constituent.

We highlight two significant advantages of dynamic mode decomposition. First,

the DMD spectrum from multiple, nominally identical experiments can be used to

differentiate between robust and non-robust aspects of a flow. Since a corresponding

partition cannot be based on latency alone, POD cannot be used for the purpose.

Second, the dynamics of the phase defined in Eqn. (6.10), unlike the corresponding

magnitude, exhibits very little noise. Hence their phase dynamics, through Lassajous

figures, can be used to search for modes that belong to the same flow constituent.

An analogous phase cannot be defined in POD. These aspects of DMD are critical

in developing effective low order models of the flow.
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6.4 Reacting Flows behind a Bluff Body

In this Section, we use proper orthogonal and dynamic mode decompositions to

analyze reacting flows behind symmetric bluff bodies. There are two classes of vortex

shedding. The first involves periodic shedding of symmetric pairs of vortices from

either side of the bluff body. The second is von Karman shedding, where a single

vortex shed from one side of the bluff body is followed by a another shed from

the opposite side [10, 11]. The von Karman shedding is periodic as well. Study

of the onset and growth of vortex shedding behind bluff bodies is partly motivated

by the changes in vortex dynamics as the equivalence ratio is changed from rich

to lean conditions [13]. Their development needs to be constrained for controlling

combustion instabilities related to various bluff body combustors [6, 41].

6.4.1 The Experiment

Experiments on reacting flows were conducted within an optically accessible, atmospheric-

pressure combustion test section that contains a bluff-body flame holder for flame

stabilization. Air is delivered into a 152-mm × 127-mm rectangular test section at

a constant rate of 0.32 kg/s. While the air rate is maintained constant, propane

fuel is added and mixed upstream of the flame holder to provide equivalence ratios

(i.e., the fuel-to-oxidizer ratio and the corresponding stoichiometric value) that vary

between φ = 0.6 and 1.1. The flame holder is a v-gutter with a width of 38.1 mm

and an angle of 35o, which is capable of holding the flame to a blow-off equivalence

ratio of φ = 0.55. Additional facility details and detailed flame-holder dimensions
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are provided in Ref. [13].

The bluff-body is symmetric under reflection about a line parallel to the flow,

and symmetric vortex shedding [42, 43] is observed in the entire range of control

parameters. As the equivalence ratio is reduced, the flows develop, in addition, the

asymmetric von Karman vortices [13].

Two-dimensional images of hydroxyl (OH) behind the bluff-body V-gutter were

acquired utilizing planar laser-induced fluorescence (PLIF) technique. The detailed

description of the experimental setup could be found elsewhere [44]. Briefly, PLIF of

OH was performed using a 10-kHz diode-pumped solid-state Nd:YAG and a tun-

able dye lasers. The 532 nm output of the Edgewave laser was used to pump

the dye laser for obtaining tunable laser output at ∼586 nm. This wavelength is

then frequency doubled at ∼283 nm to excite the Q1(9) rovibrational transition in

the A2Σ+ → X2Π (1, 0) band of OH. The Q1(9) transition has a low Boltzmann

fraction sensitivity between temperatures of 1000-2400K minimizing the need for a

temperature correction on Boltzmann concentrations when extracting flame fronts.

PLIF signal of OH was collected employing a LaVision dual-stage high-speed UV

intensifier (IRO) coupled to a Photron SA-5 CMOS camera. The collected light

was filtered using a Brightline Semrock filter with approximately 90% transmission

between 300-340nm. The combination of spectral filtering and time-gating the in-

tensifier allowed for maximum fluorescence collection while minimizing interference

from flame emission and laser scatter.

Fluctuations in the recorded PLIF intensity contains a uniform gradient in the

y-direction, as was verified by averaging several sets of snapshots. The effect can be
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observed in the snapshots shown in Figure 6.12 and in the POD and DMD modes,

which fail to be symmetric quantitatively.

6.4.2 Symmetric Vortex Shedding

In this Section we present the results from proper orthogonal and dynamic mode

decompositions of reacting flows behind the v-gutter bluff body that exhibit only

periodic shedding of symmetric pairs of vortices. The flow is observed for equivalence

ratios between φ = 0.9 and φ = 1.1. Figure 6.12 shows several snapshots of the vortex

shedding at φ = 1.1 displaying a period of approximately 8 ms (80 frames). POD

and DMD analyses were conducted on the last 4,000 of the 8,000 snapshots.

Figure 6.12: Four snapshots of the reacting flow at φ = 1.1 exhibiting symmetric

vortex shedding of approximate period 80 frames. Although the flow is expected to

be symmetric, the PLIF images of these modes are not quantitatively symmetric due

to a uniform gradient in the y-direction of the PLIF measurement.
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6.4.2.1 Proper Orthogonal Decomposition

Figure 6.13 shows the first two proper orthogonal modes and the Fourier transforms

of (the real part of) their coefficients. The modes contain a single high intensity

patch (yellow/red) along the x-direction. These as well as all other relevant modes

are (qualitatively) symmetric about a horizontal axis. However, as mentioned earlier,

the PLIF intensity displays a uniform gradient in the y-direction, which is reflected

in the quantitative asymmetry of the proper orthogonal modes. The time dependent

coefficients of these modes exhibit a unique frequency 125 Hz.

The pair of POD modes with the next highest latencies are harmonics; specifically,

they contain two sets of high intensity regions along the x-direction (compared to

one in Figure 6.13) and the dominant spectral component of b̂3(ω) and b̂4(ω) are at

a frequency 250 Hz. Modes that represent higher harmonics of Ψ1(x) and Ψ2(x) are

found as well.
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Figure 6.13: First (a) and the second (b) coherent structures for the reacting flow at

equivalence ratio φ = 1.1 where symmetric pairs of vortices are shed from the sides

of the symmetric bluff body periodically. All primary coherent structures are nearly

symmetric for this flow. The Fourier spectra of the time-dependent coefficients of

these modes, shown in (c) and (d), exhibit a dominant frequency of 125 Hz.
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6.4.2.2 Dynamic Mode Decomposition

Figure 6.14(a) shows the Koopman eigenvalues and Figure 6.14(b) the robust modes,

which are identified using 2000-frame sections of the video. The mode numbers in

Figure 6.14(b) are ordered according to their latencies shown in Figure 6.15. Once

again we find that most, though not all, of the high latency modes are reproducible.

This is another example to illustrate that latency does not partition robust and non-

robust modes. (It should be noted that the figure shows only modes with positive

imaginary parts, and not their complex conjugates with negative imaginary parts.)

Figure 6.14: (a) The DMD spectrum for the reacting flow at equivalence ratio φ =

1.1. (b) Koopman eigenvalues that are unchanged between subsections of the flow.

The mode numbering is assigned according to the (non-increasing order of) latencies.
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Figure 6.15: Latencies of the first 20 dynamic modes of the reacting flow at equiv-

alence ratio φ = 1.1. Robust modes are shown in black. Note that mode 7 is not

reproducible.

Figures 6.16(a) and (b) show the real and imaginary parts of the dynamic mode

Φ1(x). Apart from the y-gradient in the PLIF field, the mode is symmetric about

the x-axis. The coefficient of Φ1(x), a1(t), has a dominant frequency of 125 Hz

as seen from Figure 6.16(c). Furthermore, we notice that Φ1(x) contains a single

high intensity (yellow/red) region along the x-direction (in contrast to Φ2(x), see

below); we can define s(1) = 1, analogous to the symmetry of dynamic modes of

the double rotating state. However, here the definition pertains to the number of

“structures” in the flow direction. As in the last Section, we can define a “phase”

associated with the mode by θ1(t) = tan−1 (Im(a1(t)/Re(a1(t)) /s(1). It represents

the displacement of the structure along the x-direction, rather than a spatial rotation
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in the previous example. One can also define the rate of phase advancement by

ω1(t) = ∂θ1(t)/∂t. This will be the flow velocity of the corresponding constituent.

Figure 6.16(d) shows that the evolution of θ1(t) is highly regular in contrast to

the noisy radial component |a1(t)|. Thus even though there is a significant level of

variation between successive vortices, the fluctuations are in the magnitude of the

coefficient (similar to Figure 6.9(a)); the downstream flow velocity is highly regular.
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Figure 6.16: (a) Real and (b) imaginary parts of Φ1(x) for the reacting flow at

equivalence ratio φ = 1.1. (c) The spectrum of a1(t) exhibits a dominant frequency

at 125 Hz. (d) The phase advancement θ1(t) exhibits a very regular growth.
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Figure 6.17 shows the real and imaginary parts of Φ4(x), one of the two dynamic

modes with the next highest latency and the Fourier transform of the real part of

a4(t). Φ4(x) contains two distinct high intensity regions along the x-direction (those

shown in yellow/red) and thus s(4) = 2. The phase has characteristics of a spatial

harmonic of Φ1(x) and the dominant frequency of a4(t) is 250 Hz. The dynamics of

the phase θ4(t), shown in Figure 6.17(d) is regular. The rate of phase advancement

is identical to that of θ1(t).
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Figure 6.17: (a) Real and (b) imaginary parts of Φ4(x) for the reacting flow at

equivalence ratio φ = 1.1. (c) â4(ω) peaks at 250 Hz. (d) θ4(t) exhibits regular

behavior and the rate of its growth is identical to that of θ1(t).
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Figure 6.18: The rates of phase advancement of all robust modes for the reacting

flow at φ = 1.1 are nearly identical. Successive curves are shifted for clarity. (b) The

Lassajous figure for the last 500 snapshots shows that Modes 1 and 3 are correlated,

although some random drift between the phases is present.

Interestingly, the rate of phase advancements of all robust modes of the reacting

flow at φ = 1.1 are identical, as seen from Figure 6.18. (The Figure only shows

one each from the four complex conjugate pairs of robust dynamic modes.) This

observation suggests that the reacting flow at equivalence ration φ = 1.1 contains

one reproducible flow constituent which can be reconstructed using the 8 robust

modes and the time average Φ0(x). Figure 6.19 shows several snapshots of this

reconstruction; it should be compared with the corresponding images of the original

flow shown in Figure 6.12.
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Figure 6.19: Several snapshots of the reconstruction of the reproducible flow using

the robust modes. These snapshots should be compared with the corresponding

snapshots of the original flow given in Figure 6.12.

6.4.3 Von Karman Vortex Shedding

The reacting flow at equivalence ratio φ = 0.8 contains symmetric vortex shedding

as well as von Karman shedding. Here noise and non-reproducible facets of the flow

are significantly higher than at φ = 1.1. Part of this irregularity may be consequent

to the nonlinear coupling between symmetric and von Karman vortex shedding.

6.4.3.1 Proper Orthogonal Decomposition

The reacting flow at φ = 0.8 has both symmetric and asymmetric coherent struc-

tures [13, 28], the leading modes being symmetric. As discussed in Ref. [28], the

asymmetric modes need to be associated with von Karman vortex shedding. Fig-

ure 6.20 shows the symmetric and asymmetric modes with the highest latencies.
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Figure 6.20: (a) Symmetric and (b) asymmetric modes with largest latencies for

the reacting flow at φ = 0.8. The asymmetric modes represent von Karman vortex

shedding [13, 28].

6.4.3.2 Dynamic Mode Decomposition

Figure 6.21(a) shows the Koopman eigenvalues of the flow at φ = 0.8 and Fig-

ure 6.21(b) presents the robust modes that were identified using 2000-frame sections

of the flow.
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Figure 6.21: (a) The DMD spectrum for the reacting flow at equivalence ratio φ =

0.8. The flow exhibits symmetric vortex shedding as well as von Karman shedding

at this equivalence ratio. (b) Modes 2 and 4 are robust, and modes 18, 19, and 25

are asymmetric modes with the largest latency. Eigenvalues of the last three differ

slightly between different subsections of the flow.

Modes 2 and 4 are robust and symmetric about the x-axis. Asymmetric modes

with the largest latencies are 18, 19 and 25; however, they are not robust, differing

slightly between different subsections of the video. Figure 6.22 shows the real and

imaginary parts of Φ2(x), the spectrum â2(ω) of the real part of a2(t), and the phase

advancement. The corresponding results for the asymmetric mode with the highest

latency, Φ18(x), is in Figure 6.23. As for the earlier cases, the phase advancement

of a2(t) and a18(t) is significantly more regular (and noise-free) than the overall

dynamics. This behavior reiterates the underlying regularity in the phase of vortex

shedding. We also find that the rate of phase advancement of all major dynamic
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modes are identical. Figure 6.24 shows several snapshots of the reacting flow along

with the symmetric (modes 0, 2, and 4) and asymmetric (modes 18, 19, and 25) flow

constituents.
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Figure 6.22: (a) Real and (b) imaginary parts of Φ2(x) for the reacting flow at

equivalence ratio φ = 0.8. This mode has the largest latency among the symmetric

dynamic modes. (c) â2(ω) is significantly noisier than the corresponding spectra at

φ = 1.1; it contains a peak at 125 Hz. (d) phase advancement of a2(t) is regular.

183



Re(Φ18(x))

Im(Φ18(x))

−12

−10

−8

−6

−4

−2

0

2

4

6

8

x 10
−3

0 500 1000
0

2000

4000

6000

8000

Frequency (Hz)

P
ow

er
(a
rb
.
u
n
it
) Re(a18(t))

0 2000 4000
0

10

20

30

40

Time (Frames)

θ
1
8
(t
)

2π

(a) (c)

(d)(b)

Figure 6.23: (a) Real and (b) imaginary parts of Φ18(x) for the reacting flow at

equivalence ratio φ = 0.8. This mode has the largest latency among the asymmetric

dynamic modes. (c) â18(ω) is significantly noisier than the corresponding spectra at

φ = 1.1; it contains a peak at 250 Hz. (d) phase advancement of a18(t) is regular.
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Figure 6.24: Several snapshots of reacting flow at φ = 0.8 (top row) and reconstruc-

tions of the symmetric (second row) and asymmetric (bottom row) flow constituents.

6.5 Discussion

Combustion instabilities pose serious challenges to the design of lean, premixed,

clean-burning combustors; they can severely limit combustor efficiency and cause

catastrophic damage [1, 2, 3, 4]. A comprehensive analysis of combustion instabil-

ities and how to prevent their onset can prove extremely useful in reactor design.

Unfortunately, nonlinearity and long-range pressure variations complicate the anal-

ysis of combustion instabilities and limit the use of analytical and computational

185



approaches to efficient design.

Recent advances in high-frequency, high-resolution imaging provide an alterna-

tive strategy to analyze complex flows [26, 34]. The goal is to identify distinct flow

constituents and determine the coupling between them. However, experimental flows

contain noise and, especially in the case of turbulent convection, facets that are not

reproducible; i.e., features, such as small scale eddies, that depend on the precise

initial conditions and differ between multiple realizations of an experiment. Only

their statistical properties are relevant. Thus, it is important to be able to differenti-

ate reproducible features of the flow from noise and non-reporducible aspects. Once

reproducible flow constituents are identified, it is possible to introduce a low-order

model of the flow.

The first step in the analysis is a modal decomposition of the flow. Since most

real combustors do not have symmetric regular shapes, the use of pre-specified bases,

such as Fourier or wavelet bases, for post-processing is inefficient. Specifically, a large

number of such modes are required to approximate nonlinear constituents like eddies.

Approaches like proper orthogonal decomposition, which extract the optimal basis

functions from data, can be expected to be more effective. Indeed, the structure and

dynamics of eddies in turbulent combustion can be captured with a (relatively) small

number of proper orthogonal modes [13, 28]. However, it is not possible to identify

the set of coherent structures to be associated with a specific flow constituent, such

as a periodically shed collection of von Karman vortices.

In this paper, we proposed the use of Koopman modes to de-convolute combustion

flows. Koopman eigenvalues and eigenfunctions can be computed from a series of
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equally spaced snapshots of the flow field. All spectral components of the dynamics

underlying the flow are contained in the Koopman spectrum [33, 26, 34]. Each

Koopman mode is associated with a single complex growth rate Λ. As in POD,

the relative importance of a mode towards the reconstruction of the spatio-temporal

dynamics can be estimated using an appropriately defined latency.

We analyzed two reacting flows using proper orthogonal and dynamic mode de-

compositions. The first was a non-trivial cellular state observed in a uniform circular

flame front. A symmetry breaking bifurcation of a uniform circular flame front gener-

ates a variety of stationary and non-stationary cellular states of the flame [5, 38, 27].

The state we studied contained two rotating rings of cells which co-rotated with dif-

ferent angular speeds. The second set of flows analyzed were reacting flow behind

symmetric bluff-bodies [42, 43, 13]. In one example, the flow contained only periodic

shedding of symmetric pairs of vortices from the ends of the bluff body. In the second

example, the flow contained symmetric and von Karman vortex shedding. Our goal

in both studies was to de-convolute the flow into its constituents and to differentiate

them from noise and other irregular features.

Both POD and DMD can be used to separate the two rings of cells of the co-

rotating cellular state. The constituents exhibited the anticipateted symmetries and

contained harmonics, required for the rotation of rings [39, 40]. POD was the more

efficient decomposition in the sense that the spatio-temporal dynamics was approxi-

mated with the smaller number of coherent structures. In contrast, there were several

dynamic modes with the same spatial structure but different growth rates. Thus,

DMD presented more detailed dynamical descriptions of the modes.
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We introduced a method to differentiate robust flow constituents from noise and

non-reproducible facets of the co-rotating cellular state. It is based on the dynamic

mode decomposition of several subsections of the flow, and identifying common eigen-

values. We conjectured that these robust modes capture the reproducible features

of the dynamics and conversely that non-reproducible modes represent non-robust

facets of the flow. It should be noted that proper orthogonal decomposition cannot

be used for the purpose. First, as we discussed in Section 6.3.4, the POD modes are

a combination of DMD modes, and the contribution of the individual components

(some of which may be reproducible and others not) cannot be established. Second,

the partition cannot be made using latency since some non-reproducible modes have

high latency. The ability to differentiate between robust and non-robust modes is a

significant advantage that DMD has over POD in post-processing experimental data.

We discovered that, although the phase space orbits were noisy, the angular

motion (defined via the coefficient of DMD modes) associated with the state evolved

with highly regular dynamics. The result suggests that the phase angle be used

to describe the underlying dynamics and to associate strongly correlated dynamic

modes using Lassajous figures. The rate of change of the phase angle was equal to

the angular velocity of the corresponding ring of cells. Finally, a correlated group of

dynamic modes can be used to reconstruct a flow constituent. We also note that, in

general, it is not possible to define the an angular motion using proper orthogonal

modes. This is a second advantage of DMD over POD as a means for post-processing

data.

The conclusions made for the double rotating state applied to reacting flows as
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well. Once again the flow can be approximated with a smaller number of POD

modes. However, dynamic mode decomposition of multiple nominally identical sets

of snapshots helped differentiate between robust and non-robust dynamic modes, and

hence reproducible and non-reproducible flow characteristics. As in the co-rotating

state, we defined a “phase” of the dynamic modes using their (time-dependent)

coefficients. In bluff-body flows, it represents, not an angular position, but rather

the downstream displacement of the associated vortex. The phase dynamics was

found to be highly regular compared to the (erratic) changes in the magnitude of

the coefficients. Using phase dynamics and Lassajous figures, we identified strongly

correlated modes that were associated with a single flow constituent. Thus, we were

able to reconstruct symmetric and asymmetric vortex shedding.

The ability to identify reproducible flow constituents and select dynamic modes

associated with a flow constituent is helpful in constructing reduced-order models

for the combustion flows. Construction of these models is based on the dynamics,

symmetries and topological features of the reproducible flow constituents. They have

to be supplemented by the statistical features of noise and other non-reproducible

aspects of the flow.

6.6 Dynamic Modes and Coherent Structures

This Appendix section outlines a set of conditions under which a combination of

dynamic modes with the same spatial structure is a coherent structure of the spatio-

temporal dynamics. Consider first a spatio-temporal dynamics containing only a
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single dynamic mode Φ(x) with an eigenvalue λ. Although λ may have a non-

zero real part, external driving –and interactions between other modes– means that

effectively Re(λ) = 0 for post-transcient dynamics; denote λ = iµ, where µ ∈ R.

Thus, the (real) spatio-temporal field is

u(x, t) = eiµtΦ(x) + e−iµtΦ∗(x). (6.11)

Noting that the time average 〈eiµt〉t ∼ δµ0, the correlation matrix is

Cx,x′ = 〈u(x, t)u(x′, t)〉t = Φ(x)Φ∗(x′) + Φ∗(x)Φ(x′), (6.12)

where x and x′ are two spatial locations. Consequently

∑
x′

Cx,x′Φ(x′) = NαΦ(x) +NβΦ∗(x), (6.13)

where α = 〈Φ∗(x′)Φ(x′)〉x′ ∈ R, β = 〈Φ(x′)Φ(x′)〉x′ ∈ C, and N is the total number

of spatial points.

Consider a “phase-advanced” (or in the case of the cellular state, rotated) pattern

eiθΦ(x) whose real part is ΦR(x) ≡ eiθΦ(x) + e−iθΦ∗(x). Using Eqn. (6.13) and its

complex conjugate

∑
x′

Cx,x′ΦR(x′) = N
[
αeiθ + β∗e−iθ

]
Φ(x) +N

[
αe−iθ + βeiθ

]
Φ∗(x), (6.14)

With θ = (i/4) ln(β/β∗),
∑

x′ Cx,x′ΦR(x′) ∼ ΦR(x), and hence ΦR(x) is an eigen-

function of Cx,x′ ; i.e., the phase-advanced dynamic mode is a coherent structure.

Next we extend the result to a field formed by a linear combination of a set of

dynamic modes with the same spatial structure with perhaps phase-advances. As

before, the effective real part of the corresponding eigenvalues are zero due to the fact
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that the spatio-temporal state is post-transcient. The corresponding spatio-temporal

pattern can be written as

u(x, t) =

(∑
k

cke
iµkt+iθk

)
Φ(x) +

(∑
k

c∗ke
−iµkt−iθk

)
Φ∗(x), (6.15)

where ck is the coefficient and θk’s is the pause advance of the kth DMD mode and

eiµkt is its eigenvalue. Since the µ’s are distinct, the corresponding correlation matrix

is

Cx,x′ =

(∑
k

|ck|2
)

[Φ(x)Φ∗(x′) + Φ∗(x)Φ(x′)] . (6.16)

It follows that a phase-advanced dynamic mode is a coherent structure for the spatio-

temporal dynamics.

Finally, we outline how the result generalizes to a spatio-temporal field with two

dynamic modes. The generalization to multiple modes is trivial. Denote the two

dynamic modes by Φ1(x) and Φ2(x). The spatio-temporal field can be expressed as

u(x, t) = c1e
iµ1tΦ1(x) + c2e

iµ2tΦ2(x) + c.c., (6.17)

where c1 and c2 are the coefficients of the dynamic modes and c.c. represents the

complex coefficient. The correlation matrix for the state is

Cx,x′ = |c1|2Φ1(x)Φ∗1(x′) + |c1|2Φ∗1(x)Φ1(x′) + |c2|2Φ2(x)Φ∗2(x′) + |c2|2Φ∗2(x)Φ2(x′).

(6.18)

Defining α1 = 〈Φ1(x′)Φ∗1(x′)〉x′ ∈ R, β1 = 〈Φ1(x′)Φ1(x′)〉x′ ∈ C, γ1 = 〈Φ1(x′)Φ∗2(x′)〉x′ ∈

C and γ2 = 〈Φ1(x′)Φ2(x′)〉x′ ∈ C, it can be seen that

∑
x′

Cx,x′Φ1(x′) = Nα1Φ1(x) +Nβ1Φ∗1(x) +Nγ1Φ2(x) +Nγ2Φ∗2(x). (6.19)
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If the domains of Φ1(x) and Φ2(x) do not overlap (as is the case for the first two

dynamic modes for the double rotating state –see Figures (6.8) and (6.10)), then

γ1 = 0 = γ2. Then, Eqn. (6.19) reduces to Eqn. (6.13). Consequently, a phase-

advanced dynamic mode is a principal component, as was noted in Section 6.3.
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of Hénon-type strange attractors, Physical Review A 38 (1988) 1503–1520.
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