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Abstract  

Remote laboratory or online laboratory is the use of the Internet to conduct real 

experiments remotely when the client is geographically away from the real experiments. 

Current remote laboratories such as the remote laboratory in Mechanical Engineering at 

University of Houston require the client to install plug-ins before conducting remote 

experiments. This thesis presents an advanced technology using JavaScript and Socket.IO 

to develop plug-in free remote experiments without firewall issue. A scalable plug-in free 

remote laboratory integrated with two remote experiments has been set up in the 

Mechanical Engineering Department at the Texas A&M University at Qatar (TAMUQ) 

in Qatar under the collaboration from the University of Houston and the Texas Southern 

University in Houston, Texas. The plug-free remote laboratory has been successfully 

tested in Windows PC, Mac OS, iPhone and iPad (iOS). 
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Chapter 1 Introduction    

1.1 Motivation and Objectives 

Since the invention of the Internet in the 1970s, distance learning has become a 

growing trend in the education community. Remote laboratory as a method of distance 

learning for science and engineering has been widely researched since the late 1990s. A 

remote laboratory is characterized by the use of telecommunication technology to 

conduct experiments remotely when the client is geographically away from the physical 

experiments [1], [19].  In the past 15 years, remote laboratories have been used to assist 

teaching in different subjects. Students who had used remote laboratories in their courses 

found that remote laboratories helped them understand course materials better [2], [3], [4].   

Most currently active remote laboratories, such as a remote laboratory in Smart 

Materials and Structures Laboratory (SMSL) in the Department of Mechanical 

Engineering at the University of Houston (UH), require the client to install plug-ins in 

order to conduct the remote experiments. The remote laboratory in SMSL requires the 

user to install National Instrument (NI) Laboratory Virtual Instrument Engineering 

Workbench (LabVIEW) run-time engine in the client’s PC to use the remote panel to 

conduct the experiment and ActiveX to view real-time streaming videos. The requirement 

for plug-ins limits the accessibility and usability of the remote laboratory. For example, 

consider a client who has downloaded and installed two plug-ins, the LabVIEW run-time 

engine, and ActiveX in his first PC; but the client forgot his first PC at home and now 

needs to conduct a remote experiment for his homework assignment. In this case, the 

client must install the plug-ins again in another PC which may belong to his friend or is a 

public library computer (may not allow installation of plug-ins). Although the plug-ins 
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have been installed in the second PC, the remote experiment is not guaranteed to work in 

that PC at the first time. According to the history of the clients in UH using the remote 

laboratory in related courses, each semester several students report that they could not 

conduct the remote experiments even though plug-ins had been installed successfully in 

their PCs, or that the setting in computer took them too much time to conduct the remote 

experiment successfully. Furthermore remote laboratories that require plug-ins may result 

in firewall issues depending on the way the remote laboratories are developed. For 

example, real-time cameras for remote experiments in the SMSL at the UH use port 7000 

and 8000 for video streaming. Using these ports for public access can result in network 

safety issues from hackers. In some universities, the IT department prohibits university 

computers from opening other ports except port 80 to preserve network safety.    

Under the motivation of allowing users to conduct experiments anywhere and 

anytime without installation of plug-ins and running into firewall issue, an advanced 

technology will be developed to solve these problems. This thesis has the following five 

objectives: 

1) Develop plug-in free user interface to conduct remote experiments and view the 

experiments through a real-time camera; 

2) Ensure that remote experiments are safe and secure enough to pass firewalls; 

3) Ensure that remote experiments are compatible with any operating system and any 

devices including smart phones and tablets; 

4) Integrate a remote laboratory with multiple experiments for the users to interact 

with; 
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5) Collaborate with Texas Southern University and Texas A&M University at Qatar 

(TAMUQ) to set up a plug-in free remote laboratory in the Mechanical Engineering 

Department at TAMUQ.  

1.2 Contribution and Significance  

An advanced technology is presented in this thesis to make a plug-in free remote 

laboratory possible. The technology uses pure JavaScript to develop the plug-in free 

remote laboratory. A remote laboratory based on JavaScript passes firewall security 

safely and securely. The advanced technology contains two parts, a part between Internet 

server and local experiments, and the other part between Internet server and web browser. 

This work is a collaboration with the Texas Southern University and the Texas A&M 

University at Qatar.  

The first part of the solution technology between the Internet server and the local 

experiment fulfills objectives one through three. The solution uses a module named 

LabVIEW to Node.js (LtoN) based on JSON Toolkit released by NI for LabVIEW and 

improved by the development team for the use in remote experiments. The server is 

developed using Socket.IO which is a JavaScript library and the server can only read and 

send data in JSON format. The LtoN module in LabVIEW decodes the command sent 

from the server and encodes the data to send from LabVIEW to the server in JSON 

format, which is recognized by the server. 

The solution for the part of the communication between the server and the client’s 

web browser was mainly contributed by Mr. Ning Wang of TSU. This part uses 

Socket.IO technology for the development of a JavaScript based user interface. This part 

of the technology also fulfills objectives one through three.  
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A remote laboratory at TAMUQ with the advanced technology fulfilling objectives 

four and five has been set up. The remote laboratory was integrated with the Shape 

Memory Alloy experiment and the Smart Vibration Platform experiment to help the 

engineering students in Mechanical Engineering Department at TAMUQ learning related 

topics. The plug-in free remote laboratory has been successfully tested in multiple 

operating systems, including Microsoft Windows, Mac OS, and Apple iOS (iPhone and 

iPad).   

1.3 Thesis Organization 

This thesis consists of six chapters. Chapter one discusses the motivation, objectives, 

contribution, and significance of the study. An advanced technology is desired for plug-in 

free remote experiments and remote laboratory. The plug-in free remote laboratory is also 

safe and secure to pass the firewall.  

Chapter two covers a literature review on remote laboratories and nonlinear control of 

Shape Memory Alloys (SMA).  The state of the art of remote laboratories is also covered 

in this chapter. There are brief introductions of several well-developed remote 

laboratories in the world. There is also an introduction to the remote Smart Vibration 

Platform (SVP) experiment which is related to the remote laboratory set up at the 

TAMUQ. 

Chapter three introduces what smart materials are. There are discussions about two 

important class of smart materials, SMA and Magneto-Rheological (MR) fluids, which 

are used by the two remote experiments in the remote laboratory at the TAMUQ.  

Chapter four presents a remote experiment using SMA, called SMA experiment. It 

introduces the experimental setup of the SMA device, the programming for the 
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experimental control in National Instruments (NI) Virtual Instrument Engineering 

Workbench (LabVIEW), and the results of the experiment. It also discusses the 

implementation of Pulse Width Modulation (PWM) method and the sliding mode based 

nonlinear displacement control of SMA in the SMA experiment.  

Chapter five discusses the novel remote laboratory set up at TAMUQ by using the 

advanced technology. The result of conducting SMA experiment using the plug-in free 

remote panel is presented. There is also a comparison between the regular remote panel 

from the Web Publishing tool in the LabVIEW and our novel remote laboratory.  

Chapter six concludes the work presented in this thesis. A remote laboratory has been 

set up at the TAMUQ with two remote experiments ready to use. The future work is also 

discussed in this chapter.  
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Chapter 2 Literature Review   

2.1 Remote Laboratory 

2.1.1 Introduction 

With the development of the Internet, many innovations are invented to directly or 

indirectly benefit the life and the education. In the engineering education community, 

remote laboratory (a.k.a online laboratory or remote workbench) becomes very popular 

among schools and universities in the world.  

Remote laboratory has discovered to have many advantages. Many institutes and 

universities use remote laboratories to save money and share sources with other institutes. 

Due to the time cost by allowing students having access to the lab equipment, the 

deployment of remote laboratories can efficiently solve this problem. The students may 

also access the laboratory anytime and anywhere. In comparison to the traditional 

laboratories, the hours of the building open and the working schedule of the staff in the 

laboratory would become a problem of preventing students to use the lab; however, the 

remote laboratory can solve these issues. Remote laboratories have many more benefits. 

2.1.2 State of the Art about Remote Laboratories  

Remote laboratory is not a new concept nowadays. Since the invention of the Internet 

in 1970s, e-learning becomes a new topic in the education community. Remote laboratory 

as one of e-learning methods helps the students to learn their subject better. The 

development of remote laboratories started in late 1990s. According to [5] there were a 

peak around 2002/2003 and another one around 2006 for the number of publications. 

Based on the recent literature search performed using the database provided by the library 

in University of Houston, the number of publications related to remote laboratory keeps 
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increasing. The keywords used in the search are “remote lab”, “remote experiments*”, 

“online lab*”, and “virtual lab*” where “*” is for wildcards. The results are shown in 

Table 2-1 and plotted in Figure 2-1.  

Table 2-1: Results of literature search about remote laboratory related keywords in 

University of Houston library database 

Year Number of Results 
1998-1999  294,093 

1999-2000  347,355 

2000-2001 375,731 

2001-2002 383,052 

2002-2003 413,826 

2003-2004 472,078 

2004-2005 557,370 

2005-2006 646,490 

2006-2007 724181 

2007-2008 796517 

2008-2009 850,891 

2009-2010 889,134 

2010-2011 972,254 

2011-2012 996,041 

2012-2013 930,228 

 

Figure 2-1: Plot for the results of literature search about remote laboratory related 
keywords in University of Houston library database  

We can see from Table 2-1 and Figure 2-1 that remote laboratory has been developed 

for a quite long time and the peak period was from 2002 to 2011; however, the number of 

publication decreased in recent two to three years. This is an interesting phenomenon. 
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Many remote laboratories have been set up based on various and different technologies 

such as Java, MATLAB/Simulink, LabVIEW, and C/C++. That increase the possibility 

of remote laboratories, but the variety also makes the reusability and cooperation among 

different remote laboratories very difficult. That difficulty could also be a bottleneck and 

challenge for the development of remote laboratory [5].  

The technologies used in the development of remote laboratories are various. In the 

past 15 years of the development of remote laboratories, MATLAB/Simulink and 

LabVIEW are the major software used for the development of experiment environment. 

The server majorly uses Apache in Linux and Microsoft IIT in Microsoft Operation 

System. MySQL and Microsoft SQL are the most widely used database since late 1990s. 

Java, HTML, and JavaScript, PHP, and Adobe Flash are all popular choices for the 

development of graphical user interface (GUI). The real-time video uses ActiveX as the 

majority. Figure 2-2 depicts a time line of technology development in remote laboratory 

based on public information and references [5]-[15].  

Most major software and technologies found in recent laboratories were from 2000 

and earlier.  According to literature and public information, there are at least four new 

technologies (the results may not represent all remote laboratories) found in recent 

remote laboratories. In 2004, Easy Java Simulations (EJS) was released. In 2005, a 

remote laboratory presented in [7] used EJS for the development for Graphical User 

Interface (GUI). In 2006, Asynchronous JavaScript and XML (Ajax) was released. In 

2008, iLab by MIT successfully adopted Ajax in the development of GUI [6]. In 2009, 

Adobe Flash was released and adopted for the use in GUI in remote laboratory at the 

same year [7]. Red 5 is an open-source media streaming server whose Version 1.0 was 
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release in December, 2012. Two years later, Red 5 has been found being used for real-

time video in remote laboratory [10].  

Technology Time line 

LabVIEW 
MATLAB/ Simulink

C/C++
Apache

Microsoft IIS

MySQL
Microsoft SQL

Red5

Experiment Environment
Database

Server

HTML
JavaScript

PHP
Java

Adobe FlashGUI

2000 and earlier 2009 2014

GUI

ActiveX
Video

Video

Early 2000s

Ajax

GUI

EJS

GUI

 

Figure 2-2: Time line of technology development in remote laboratory 

The classification of remote laboratories is dependent.  Remote laboratories in the 

world are developed depending on different technologies. We can classify them by four 

aspects in the following. There is no certain law to follow to classify remote laboratories. 

Thus, this way of classification only represents the author’s view based on general review 

about the topic.  

Experiment  

From review of the past remote laboratories, MATLAB/Simulink and LabVIEW 

are the most two major software used in the programming of the experiment. For 

examples, iLab uses LabVIEW to program the experiments [6], a remote laboratory 

set up at Slovak University of Technology uses MATLAB to program the experiment 

and Java to decode the data in the server [7], and more remote laboratories using 
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LabVIEW in [14], [15]. The rest of the experiments use other programming language 

such as C/C++ and Python.   

Web Servers and Database 

Because of limited options, a web server can run Apache, Microsoft IIS or others 

for the Web interface. The database can use MySQL, Microsoft SQL, Oracle or 

others. For examples, a remote laboratory at the University of Texas at San Antonio, 

TX, USA uses Ubuntu Linux system, Apache HTTM for the Web interface, and 

MySQL for the database [10]. As reference to MIT iCampus iLabs Software 

Architecture Workshop by P. Bailey on June 13-15, 2006, the lab server in MIT 

iCampus iLabs built on Windows using .NET Framework (Internet Information 

Services, IIS) and Microsoft SQL for database [11].  

Server/Client 

The server has two types, Client-Server (CS) and Browser-Server (BS), for 

remote laboratories. CS means the server is on the client’s machine and BS means the 

server is on the browser. In CS remote laboratories, clients need to install extra 

software to helps the client connect to the server. For an example, conventional 

remote laboratories such as the remote laboratory at the UH use LabVIEW remote 

panel created by Web Publishing Tool by NI. In order to run the remote panel, the 

client has to install run-time engine to communicate with the server, although the 

remote panel is embedded in an HTML page. BS remote laboratories have no 

requirement about installing additional software to connect with the server, but only 

plug-ins to run the user interface. The new remote laboratory developed at TAMUQ is 

an example of BS remote laboratory. Any devices and any system can conduct the 
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remote laboratory at TAMUQ by only using a browser.  

Graphical User Interface (GUI) 

No matter in CS or BS remote laboratory, they all use various technologies to 

design GUI. Popular interface options are Flash, Java Applets, ActiveX, JavaScript 

and HTML, etc. 

Table 2-2: Dependent ways of classifying remote laboratories 

 Classification 

Experiment  - Visual programming: 
MATLAB/Simulink, LabVIEW 

- Programming Languages: C/C++, 
Python 

Web Servers -Apache  
-Microsoft IIS for Windows NT family 

… 

Database -MySQL 
-Microsoft SQL 

-Oracle 
… 

Server/Client - Client-Server 

- Browser-Server 

Graphical User Interface - Flash 
- Java Applets 
- ActiveX 

- JavaScript 
- HTML 

… 

Many institutes had deployed remote laboratories for the educational purposes such 

as MIT iCampus iLab [6], Labshare using open source SAHARA system [13], and Lila 

Booking System [12]. A general review about these developed remote laboratories is 

helpful to better introduce the state of the art of remote laboratory. 

MIT iCampus iLab 

MIT iCampus iLab is a bundle of remote laboratories around the world. iLab 

project started as the iCampus project (1999 to 2006) between MIT and Microsoft by 
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del Alamo and his collegues. iLab first came out to explore the potential of online 

laboratories to benefit the education of undergrad students. By 2008, iLab had been 

expanded to nine countries and used by 5400 students [6]. From the website of iLab 

MIT, the latest update of their activities was in July 2011. iLab is built on Windows 

using .NET Framework (Internet Information Services, IIS) and Microsoft SQL for 

database [11]. The experiments of iLab use LabVIEW in programming, which makes 

iLab CS a remote laboratory. 

LabShare   

LabShare is a remote laboratory shared by four universities in Australia with a 

mission to build leading remote laboratories (www.labshare.edu.au). The users have 

access to all remote experiments shared by the four universities. In the control of the 

remote laboratory, the users can drag the camera to the position they want to view and 

control the experiment through a web based GUI. According to [13] the GUI is 

developed using Asynchronous JavaScript and XML (AJAX).   

LiLa Booking System 

LiLa (Library of Labs) started by eight universities and three enterprises 

(www.lila-project.org). According to [12] and [23], Lila has been widely contributes 

to Europe by helping students to schedule remote laboratories using the booking 

system. LiLa’s remote experiments are built using LabVIEW. In order to run the 

remote experiments, the users need to install LabVIEW 8.2 run-time engine. The 

client’s web browser (GUI) uses JavaScript, sometimes Java or Flash. The server uses 

Windows system with Microsoft SQL and Visual Studio .NET or NETLab.  

http://www.labshare.edu.au/
http://www.lila-project.org/
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2.1.3 Development of the Framework of the Remote Laboratory at the University of 

Houston and Texas Southern University  

A remote laboratory has already been developed in the Smart Materials and 

Structures Laboratory (SMSL) at the University of Houston (UH) [20]. The remote 

laboratory in SMSL has a scalable framework, which means more remote experiments 

can be added to the remote laboratory. We are also using this scalable framework to 

develop our novel remote laboratory at TAMUQ. The novel remote laboratory at 

TAMUQ will have more advantages like plug-in free, which we will discuss more in later 

chapters.  

The remote laboratory system in SMSL connects several physical experiments with 

clients in the Internet using a Scheduler Web Server (SWS) to manage, authenticate and 

schedule clients and experiments. Fig. 2-3 [20] depicts a simplified framework for a 

scalable remote laboratory. The SWS for the remote laboratory in the Mechanical 

Engineering Department at the UH is using Apache web server in a Linux computer. The 

generation of HTML pages uses PHP and MySQL. The address, http://rsmsl-1.me.uh.edu, 

links to the website of the Remote Smart Materials and Structure Laboratory (RSMSL).  

 

Figure 2-3: Simplified framework for a scalable remote laboratory 

In the aim the client can use desktops and laptops with any web browser and 

operating system to use the remote laboratory; however, it would require lots of work to 

http://rsmsl-1.me.uh.edu/
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develop such a remote laboratory [25]. Therefore, the client can only use the major web 

browsers like Internet Explorer, Mozilla Firefox, Apple Safari, and Google Chrome. The 

major operating system includes Microsoft Windows, Apple OSX, and Linux.  

The physical experiments use National Instrument (NI) LabVIEW for their 

development. The clients need to install LabVIEW run-time engine in their laptop or 

computer in order to conduct the experiments in the remote laboratory. The version of the 

run-time engine is the same as the version of the LabVIEW used in the development of 

the experiment which should be given by the developer. For example, the run-time 

engine 2011 is not compatible to the remote experiment if the development of the 

experiment uses LabVIEW 2012. Besides of the run-time engine, the clients should have 

at least 1Mbit/sec Internet speed to conduct the remote experiments.  

The Internet clients and physical experiment one to physical experiment n are 

connected through the Internet; at the same time, they are managed by the SWS. The 

clients with authorized login information are able to schedule an experiment through the 

scheduler. When the scheduled time comes, buttons in the webpage becomes visible 

which directly link to the scheduled experiment control panel and real-time camera. A 

countdown clock is visible to the clients to notify them the available remaining time to 

conduct the experiment. The maximum time is one hour. If they need more time, the 

clients can schedule another session. It limits the time of using the experiment of the 

clients, but it ensures equal chances to conduct the experiments for every client. 

The SWS allows the experiments in the same sub network of the server or different. It 

allows the remote laboratory to become a farm of remote experiments at different 

locations. The remote laboratory in SMSL has several experiments for educational 
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purposes integrated in the system. It has been found that the in class demonstration helps 

the student’s learning experience [22]. Such remote laboratories has been developed and 

put into use in the teaching of vibration and controls in Dr. Gangbing Song’s classes in 

the UH [21] and engineering technology education in Texas Southern University 

(TSU)[24].   

The SWS system uses authentication technique to allow the remote laboratory to 

work in a managed and secured environment. When the scheduled time comes, the 

experiment becomes available to the client who has scheduled an experiment. The client 

can use the buttons in the webpage to link to the experimental control panel and the real-

time video page. The linking URL is under the protection using the user/experiment 

authorization technique as shown in Fig. 2-4 [20], where the REE is Remote Experiment 

Engine. The REE is the software to perform all the tasks dealing with the client, the 

experiment server and the SWS. To prevent a fake URL and ensure the performance of 

the scheduler system, the REE sends requested user’s ID to the SWS to compare with the 

scheduled user’s ID. If the IDs are the same, the REE sends a valid front panel to the 

client [24]. The client can have up to one hour to conduct the experiment and view the 

experiment through the real-time video.  

 

Figure 2-4: User/experiment authorization block diagram 
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The remote laboratory website has a feature of saving data and managing the data 

files saved by the clients to let the clients perform further analysis and work on research 

or homework [20]. The saved data is available for downloading from the website. The 

clients are able to download all the data they have saved in every experiment and they 

can delete the data files in the database if some are no longer useful. The SWS stores the 

data files in one folder and the files are linked to the user ID using a MySQL database 

table [20].  

After the data has been saved in the SWS, Fig. 2-5 [20] depicts how the REE recalls 

the saved data file from the SWS. The REE sends request with the user’s ID to the SWS, 

the SWS starts downloading and links the user’s ID and the experiment ID with the saved 

files in the database. The downloaded files are saved in “.csv” that the client can open the 

file in Microsoft Excel or Notepad. The file name is related to the date and time when the 

data is recorded.   

 

Figure 2-5: Data file saving block diagram  

The database uses MySQL software to manage clients, experiment, and data files. 

MySQL software provides high performance in comparison to other database packages, 

which is necessary in case that the number of clients will increase in the future [20]. The 

database supports the 8-bit uniform transformation format (UTF8) character encoding for 

being compatible to different languages. The database has six tables and uses indexes to 

link the contents for a quick access to the data. The first three tables maintains the user’s 
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accounts including name, email, and authorization level, last logon, and index user ID in 

the first tables; encrypted user’s passwords which is using the message digest algorithm 5 

(MD5) in the second table; and all the course numbers assigned to the users in the third 

table. The fourth table maintains the experiments’ setting including the name, description, 

and experiment link, camera link, and the experiment ID. The sixth table contains the 

time slot schedules. The user ID and experiment ID link every row in the sixth table.  

2.1.4 Remote Smart Vibration Platform (SVP)  

Remote Smart Vibration Platform (SVP) is an experiment developed by the Smart 

Materials and Structures Laboratory (SMSL) at the University of Houston previously [1]. 

This experiment is also one of the experiments we brought to Qatar for the remote 

laboratory at Texas A&M University at Qatar (TAMUQ). Recently people have found 

smart materials are providing new solution for vibration control [18]. The students can 

study vibration, controls, vibration controls, and smart materials by conducting SVP 

experiment which uses smart materials to reduce the vibration of the structure [16], [17].  

The SVP device, as shown in Fig. 2-6, is assembled by using fabricated and 

purchased components. The SVP has a two-story flexible steel frame fixed on top of a 

plexi-glass box. In the plexi-glass box, there are electric circuit boards made to control 

the experiment. It was designed and built by students in the SMSL at the UH. Other than 

the flexible steel frame, the SVP has a motor, Shape Memory Alloy (SMA) wires and a 

purchased magnetic iron clamped on a container of Magneto-Rheological (MR) fluid. 

The motor with a weight is mounted on the top of the frame and connected to driver from 

the box on the bottom. When the user controls the current going through the electrical 

circuit, the speed of the motor can be adjusted. The rotation of the motor leads the 
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flexible frame to vibrate. Two SMA wires are hung across the frame. When current goes 

through the wires, the temperature of SMA will increase. At a certain point of arising 

temperature, SMA will shrink its length to reduce the vibration of the frame. This is 

called an SMA brace. A red steel tongue is placed downwards into the container of MR 

fluid. The magnetic iron clamped on the container can generate magnetic field when it is 

turned on. That increases the viscosity of MR fluid because MR fluid changes from fluid 

state to semi-fluid state under the magnetic field. This is called MR damper. The SVP 

device has a schematic diagram show in Fig. 2-7. 

 

Figure 2-6: SVP device 

 

Figure 2-7: Schematic diagram of SVP device  
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The control of the experiment uses LabVIEW VI running in a workstation. The SVP 

device uses NI data acquisition (DAQ) 6008 USB to sense the feedback from the 

accelerometers to measure the acceleration, vibration of the platform and temperature of 

SMA. There are two accelerometers in the SVP device, one at the top of the device next 

to the motor and the other one under the MR damper. The LabVIEW VI controls the rate 

of the motor, the power output generated on the SMA wires, and the amount of magnetic 

field across the MR damper. Fig. 2-8 depicts the VI’s front panel for the SVP device. 

Users can directly change the amplitude of the motor, the SMA brace, and the MR 

damper in the front panel to control the device. The graph in the front panel plots the two 

waves for the acceleration at two locations on the frame versa time. A temperature 

indicator shows the real temperature change on SMA. Users can turn on a filter with a 

defined cut-off frequency in the front panel to filter away undesired data like noises from 

the devices and the environment in the lab. The data saving feature works by choosing 

the time targets in seconds before clicking on the button of recording. An elapsed time 

block shows the time in seconds after recording.  

  

Figure 2-8: LabVIEW VI of SVP device (front panel) 
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2.2 Control of Shape Memory Alloy 

2.2.1 Introduction  

Smart memory alloy (SMA) had two phases, Martensite and Austenite. By increasing 

the temperature, SMA will change from Martensite to Austenite. An SMA wire is easy to 

be lengthened in the phase of Martensite at the lower temperature and the length will 

return back to the original length in the phase of Austenite at higher temperature. It is 

known as the Shape Memory Effect (SME). The force generated by SMA wire in the 

phase of Austenite is large and the SME is controllable.   

SMA has nonlinear response because the hysteresis of SME [26]-[30]. A model of 

SMA is hard to build [26]. In the theory of nonlinear control, there are several methods 

we can use, like by using multiple accurate linear equations together to simulate the 

nonlinear model[35], Bang-Bang and saturation compensator[31], Fuzzy PID 

controller[30], [34] and sliding mode based robust controller [35], [36],[37]-[40]. Dr. G. 

Song and Dr. R. Mukherjee have studied the sliding mode based control [24] and Dr. G. 

Song has successfully built a sliding mode based nonlinear robust controller for a 

nonlinear system using SMA wire presented in his paper [20]. Our SMA device uses the 

control method presented in Dr. G. Song’s paper.  

2.2.2 Comparison of Conventional Robust Controllers 

In a nonlinear system, the uncertainties of the system are unpredictable or hard to 

predict in linear equations. The uncertainty in the control of SMA is the hysteresis when 

SMA returns to its original length. Like many nonlinear system controls, we design 

nonlinear compensators to control the length change of SMA according to the feedback 

of the length change of SMA. We will review three conventional robust controllers and 
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compensators used in nonlinear control, bang-bang compensator, the saturation 

compensator, and the smooth compensator. In the comparison, we will see the smooth 

compensator provides more accurate feedback control than other two compensators [31], 

[32], [33]. That is also the reason why we use the smooth compensator in the control of 

SMA in our SMA experiment. 

Consider the tracking control of SMA and we use the equation from Dr. Gangbing 

Song’s successful implementation of nonlinear robust control on SMA [26]. It uses a 

smooth compensator to control the displacement of SMA wire. The input is electrical 

current and the output is the length change of SMA wire. Equations 2.1 to 2.3 are the 

mathematical model of the compensator, 

      ,     (2.1) 

   ̇    , and      (2.2) 

                 .     (2.3) 

The aim of the control system is to control the displacement of SMA length. y is the 

feedback of the system which is the real position of the SMA and    is the desired 

position defined by the users. e is the error between the real position and the desired 

position.   ̇ is the derivative of the position error.    is a feedforward term to compensate 

the heat losses and provide a voltage to heat up the SMA [27]. K and r expressed in 

Equation 2.2 are proportional plus derivative (PD) term and           is smooth robust 

compensator [26]. The PD term in the feedback control increases the damping to reach 

the stable state of the system. The smooth robust compensator compensates the hysteresis 

of SMA, uncertainties in the system and disturbances from the environment. u is the 
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electrical current or the voltage applied to SMA to control the length change of it.  ,  , 

and   are constant tuned in the experiment.  

The feedback controller with the bang-bang compensator has expressions shown in 

Equation 2.4, where the feedforward term and the PD term are the same as that in smooth 

compensator; and the difference is the bang-bang robust compensator,          defined 

by Equation 2.5, 

                 and   (2.4) 

        {
            
          

.                           (2.5) 

In the bang-bang compensator, when r is larger than zero, the gain of         is 

positive one; when r is less than zero, the gain of         is negative one. The r term 

defined in Equation 2.2 is dependent on the position error and the derivative of the 

position error.  

The feedback controller with the saturation compensator has expression shown in 

Equation 2.4, where the difference comparing to Equation 2.4 is the saturation term, 

     
 

 
 , defined by Equation 2.5, 

              
 

 
  and     (2.4) 

    
 

 
  {

              
               
 

 
           | |   

.    (2.5) 

In the saturation compensator, r is defined by Equation 2.2, and   is constant defined 

by the user. The saturation compensator has a mathematical expression shown in 

Equation 2.5: when the variable r is larger than the defined constant  , the gain of the 
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saturation is positive one; when the variable r is less than the negative constant   , the 

gain of the saturation is negative one; and when the absolute value of the variable r is less 

than the constant   , the saturation equals to the value of r divided by the constant   , 

which is 
 

 
. 

Figure 2-9 shows the chattering results of imperfect control switch and Figure 2-10 

shows the three compensators. The bang-bang compensator has an instant change in the 

magnitude from negative one to positive one; however, the saturation compensator has a 

linear increase in the magnitude change from negative one to positive one. The smooth 

compensator has more accurate results comparing to the bang-bang compensator and 

saturation compensator. The smooth compensator follows the function,           in the 

change from negative one to positive one. We can design and tune the value of   in 

Equation 2.3 and the value of   in Equation 2.2 to affect the shape of the smooth 

compensator shown in Figure 2-10 (c) till we find a controller with good performance.   

 

Figure 2-9: Chattering as a result of imperfect control switching 
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(a)                   (b)                           (c) 

Figure 2-10: Comparison of three compensators: (a) the bang-bang compensator, (b) the 
saturation compensator, and (c) the smooth compensator 

In the comparison of three compensators in Figure 2-10, the smooth compensator in 

Figure 2-10 (c) provides more accurate control. Thus, we use the smooth compensator in 

our SMA actuator in SMA device.  
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Chapter 3 Shape Memory Alloys and Magneto-Rheological (MR) Fluids 

3.1 Introduction 

Smart materials also called intelligent materials or adaptive materials designed to 

transform one type of energy into another type to benefit the purposes [41]. For examples, 

Shape Memory Alloys (SMA) will convert thermal energy into mechanical energy by the 

length change and shape change of SMA. Piezoceramics materials can convert electric 

field into mechanical force. They can serve as both actuators and sensors depending on 

the needs of the users.  

3.2 Shape Memory Alloys   

SMA is a smart material with the ability to return to its original shape. The shape is 

fabricated during the process of passing the transition temperature band. SMA is durable, 

electrical conductive, and corrosion resistant.  

SMA has a wide application in mechanical engineering, civil structure and medical 

fields. In the recent study [43] in 2011, factors affecting SMA in retrofit of Islamic 

minarets has been researched. Application of SMA in civil is not a new topic. In the [44], 

the results of the application of SMA prestressing devices tested in an aqueduct built on a 

mountain in 1747 had been presented in 2008. According to the results, the mountain has 

been protected during earthquake by using the SMA prestressing devices. There are other 

applications of SMA in our daily life too. For an example, in 2013 Chevrolet C7 Corvette 

model, SMA has been used to close the pressure vents in the rear hatch of the car, which 

was advertised as the first application of SMA in the automotive by Chevrolet. For 

another example, rice cooker must be a device familiar to most people. Actually a rice 
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cooker uses a SMA spring in combination with another bias spring to control the steam 

valve. When the temperature is low, the bias spring pulls down the SMA and locks the 

steam valve. When the temperature is high, the SMA shrinks and pulls up the bias spring 

to open the valve to let the steam to exit. In the following, we will have a general review 

on the important properties of SMA. 

3.2.1 Shape Memory Effects  

A typical SMA wire has low yield strength when the temperature of SMA is below 

the transformation temperature of it. As a result, the SMA wire can have deformations 

like elongation and twists by applying little force to it. Because of the property of SMA, 

when the temperature of SMA is increased to be higher than its transition temperature, 

the SMA wire can return to its original shape and a large force is produced during the 

process of shape recovery. This is called shape memory effects (SME) that the alloy 

remembers its original shape.  

SME is caused by the atomic change in crystal structure of the material. SMA has two 

phases Austenite at high temperature and Martensite at cool temperature. When the 

temperature is high, the crystal structure of the alloy is at austenite phase where the 

orientation of atoms is cubic and the structure is very strong. After cooling SMA, the 

temperature decreases below transformation temperature. The atomic crystal structure of 

the alloy at Martensite becomes twinned monoclinic before any deformation. When the 

alloy at Martensite is being deformed by applied force, the atomic crystal structure 

becomes detwinned. This is called one-way SME as shown in Figure 3-1 [42]. There is 

another type called two-way SME. The alloy of two-way SME will return to one of its 

original shapes like one-way SME at heating process. What make two-way SME two-
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way is that the alloy with two-way SME has two shapes memorized. At cooling process, 

it will recover to a low temperature shape. Additionally, the recovery at cooling 

temperature could only generate a little force which is just large enough to recover the 

shape. It would affect nothing on the external mechanical parts.  

 
Figure 3-1: Microstructural change of the shape memory effect  

3.2.2 Hysteresis of Shape Memory Alloys  

In the phase transformation of SMA, the property of hysteresis of SMA is observed. It 

means that the loop of heating and cooling does not overlap. For example, an SMA wire 

is elongated by a constant force. When the temperature of the SMA wire is being 

increased by the heat, the SMA wire shrinks back to its original length even though the 

force is still there. When the heating source is gone, the temperature of SMA is starting to 

decrease. The phase of SMA changes from Austenite at higher temperature to Martensite 

at lower temperature. The SMA wire at Martensite is elongated by the force again. The 
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phase change of Martensite and Austenite has different starting temperatures and 

finishing temperatures. The temperature of Austenite is always higher than the 

temperature of Martensitre. The finishing temperature of Austenite is larger than the 

starting temperature of Austenite. The starting temperature of Martensite is always larger 

than the finishing temperature of Martensite. The phase transformation for the SMA wire 

actuator is shown in the diagram displayed in Figure 3-2 [41]. The gap between 

Martensite line and Austenite line is the transformation hysteresis.  

 

Figure 3-2: Hysteresis of phase transformation  

3.3 General Review of Magneto-Rheological Fluids  

Magneto-Rheological (MR) is field-dependent materials. MR is suspensions of 

micron-sized and magnetizable particles in oil. MR fluids have viscosity change in 

response to magnetic fields. The application of them is most likely shock absorbers used 

in various dampers in cars, buildings and airplanes etc.  

MR fluid changes its viscosity under the presence of magnetic fields. Under regular 

condition without the presence of magnetic fields, it is in fluid state and free to flow; 

however, with the presence of magnetic fields, it transforms to semi solid state and the 
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viscosity increase. The atoms arrangement of MR fluid aligns in the direction of the 

magnetic field. The change happens in milliseconds and it is reversible.  

As the increase of the magnetic flux across the MR fluid, the strength of the 

resistance to the movement in MR fluid increases. In other words, the viscosity and the 

strength are controllable by controlling the magnitude of the magnetic field. Many 

applications like dampers use such property to design semi-smart dampers to control the 

damping of the system based on the change of the external environment by adjusting the 

magnitude of the magnetic field across MR fluid. The increase of viscosity decreases the 

damping of the system.  

MR fluids have several advantages comparing to ER fluids according to the class note 

in Intelligent Structural System, 2013[41].  ER fluids are like MR fluids, but the 

difference is that ER fluids use electrical field to activate the transformation of the fluids 

unlike the MR fluids use magnetic field. Firstly, MR fluid has higher max yield. 

Secondly, the running power of two fluids is both from 2 to 50 watts; however, the 

working voltage of ER fluids is from 2 to 5 kV which is much larger than the working 

voltage of MR fluids from 2 to 25 V. Low working voltage provides many advantages 

such as safe and convenient to use at regular power supplies. Thirdly, MR fluids are very 

stable and unaffected by most impurities unlike ER fluids cannot tolerate impurities.  

MR fluids follow the models show in Figure 3-3 [41]. The graph has strain rate as the 

x-axis and shear rate as the y-axis. The straight linear line is the Newtonian fluid behavior 

line. MR fluids follow Newtonian line in the absence of magnetic field. Usually 

controllable fluids follow the Bingham model in the absence of applied field [45]. The 

Bingham model has three parts: an increasing linear line with negative magnitude when 
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the strain rate is less than zero; an instant increase of the shear stress when the strain rate 

is zero; and another increasing linear line with positive magnitude when the strain rate is 

larger than zero.  

 

Figure 3-3: Bingham model of controllable MR fluids  

Equation 3.1 presents the Bingham Model and Equation 3.2 presents the behavior of 

Newtonian fluids, 

           ̇ and     (3.1) 

    .              (3.2) 

In Equation 3.1,   is the fluid stress,    is the field dependent yield stress,   is the 

plastic viscosity (i.e., at H=0), and  ̇ is the strain rate. It describes the fluid stress   larger 

the field dependent yield stress   . In Equation 3.2,   is the fluid stress, G is the complex 

material modulus, and   is the strain. It describes the fluid stress   less than the field 

dependent yield stress   . The complex material modulus G is also field dependent [46], 

[47].  

In the real MR fluids, their behavior has difference comparing to the prediction made 

by Bingham model. Non-Newtonian behavior of MR fluids in the absence of magnetic 

field is most likely the cause of the difference in the real MR fluids [48]; however, 

Bingham model is still good to use in many designs.  
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The shear stress of MR fluids is depending on the strength of the applied magnetic 

field. MR fluids have larger shear stress when the strength of the applied magnetic field is 

larger. The increase of shear strain rate increases the magnitude of shear stress, but not a 

significant change. Figure 3-4      depicts the shear stress change with the shear strain 

rate change at different magnetic field in regular MR fluids at the temperature of     .  

 

Figure 3-4: Shear stress change with the shear strain rate change in different applied 

magnetic field across MR fluids at      

Magnetic induction, B, describes the magnetic flux density in MR fluids at    . 

Figure 3-5      depicts the magnetic induction change vs. the magnetic field change. As 

we can see in Figure 3-5, the red line shows that the magnetic induction in MR fluids 

increases at a high rate, but the increase rate slows down after, because MR fluids have 

upper/lower limit to magnetic flux density which may be achieved.  

 

Figure 3-5: “B – H” curve of regular MR fluids at     
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3.4 Summary 

Smart materials are intelligent materials or adaptive materials designed to transform 

one type of energy into another type to benefit particular purposes. They have four 

classes, field-dependent materials, shape-memory materials, smart glasses and others. 

SMA is shape memory materials. It has SME which enables SMA to return to its original 

shape after deformation by heating SMA up. MR fluids are field dependent materials. In 

the presence of magnetic field, MR fluids change from liquid state to semi solid state 

with the increase of viscosity, which follows Bingham model. In our remote laboratory 

with two remote experiments using SVP device and SMA device, we use these two smart 

materials SMA and MR fluids to allow the students to study the vibration and vibration 

control, and the hysteresis of SMA.
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Chapter 4 Shape Memory Alloys Experiment 

4.1 Introduction 

The Shape Memory Alloy (SMA) experiment is developed to demonstrate and 

analyze the characteristics of SMA. It is used to study the hysteresis behavior of the wire 

actuator (SMA) and how the driving frequency changes the hysteresis loop. The 

experiment can apply sinusoidal driving signals (AC) of 16.4 Volts in magnitude and 

respectively from 1/30Hz to 1/50Hz in frequency to the SMA actuator. Students can 

observe the wire movement through the webcam in the remote laboratory. They can 

record a number of cycles such as five for each test. Saved data are applied voltage, 

displacements of the wire actuator, and time in seconds. The data will be used for future 

analysis. 

The SMA experiment includes two parts, experimental hardware equipment setup and 

experimental software development in workstation. The experiment consists of an SMA 

wire actuator connected to the electronic circuitry that controls the current going through 

SMA wire to heat it up. Once the SMA actuator is heated up to transition temperature, the 

length will start to decrease due to shape memory effects (SME). A linear sensor is 

attached to the SMA actuator to sense the displacement change. The displacement change 

caused by the temperature change in SMA will be recorded through the sensing device 

National Instruments (NI) DAQ 6008 which is connected to a workstation. NI Laboratory 

Virtual Instrument Engineering Workbench (LabVIEW) is installed in the workstation 

and programmed Virtual Instrument (VI) is running to control the experiment.  
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4.2 Experimental Setup 

The experiment consists of a web camera, a workstation, and NI Data Acquisition 

(DAQ) 6008 USB, a DC power supply, and the SMA device, as shown in Figure 4-2. A 

PC workstation, as shown in Figure 4-1, runs LabVIEW to control the voltage applied on 

the SMA wire actuator. NI DAQ 6008 USB is a hardware device talking to the 

experiment and the PC. It generates voltage output based on the signal from LabVIEW 

and senses the voltage changes in the experiment to control the amount of voltage on 

SMA wire. The DC power supply, generates constant voltage applied on SMA. Pulse-

width Modulation (PWM) is the method we used to control the voltage from the DC 

power supply with the implementation of a Solid State Relay (SSR). SSR can switch the 

circuitry connected to the DC power supply in series on and off swiftly to achieve an 

effect that a constant value of voltage is applied on the SMA wire. To have a real-time 

experiment, the camera is used to view the experiment remotely. By applying voltage on 

SMA wire, the temperature of SMA will increase and the length of the wire will decrease.  

The SMA device is assembled by using both fabricated and off-the-shelf components. 

The main frame uses L shape aluminum bar fixed by screws. There are plexi-glass sheets 

fixed on several sides of the SMA to protect and decorate the experiment. On the bottom, 

blue LED lights are used to light up the experiment. In the middle of SMA device, a red 

painted block is lifted by SMA wire actuator and pulled down by two springs at the same 

time. When the force generated by the SMA is larger than the force generated by two 

springs, the direction of the force in summation is pointing towards up and the block will 

be lifted up by SMA. A linear powered sensor is used to measure the displacement of the 

block. Output data in voltage from the displacement sensor is collected by DAQ 6008 
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and converted into displacement by programmed algorithm in the VI loaded in the 

workstation.   

 

Figure 4-1: SMA device, workstations, and DC power supply 

             

Figure 4-2: SMA device 
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Figure 4-3: DAQ 6008, displacement sensor, and Solid State Relay (SSR) 

          

Figure 4-4: Schematic diagram of SMA device   

4.3 Control of the Shape Memory Alloy Experiment 

In the experiment, there are two parameters need to be controlled, one is the 

displacement of the block and the other one is the desired value of voltage applied on 
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SMA wire. The voltage applied on SMA is controlled using Pulse Width Modulation 

(PWM) and the displacement of the block can be controlled using a sliding mode based 

controller [26]. PWM has benefits of generating signals with ease to change its frequency, 

voltage magnitudes and forms [50]. It compares with a carrier signals and the desired 

signals to switch the circuitry connected with the DC power supply in series on and off to 

achieve the same effects as the desired signals in an efficient and flexible way. In the 

displacement control of SMA, we are facing one difficulty that the response of SMA is 

nonlinear due to the hysteresis of SMA [28]. Based on the successful research done 

before, a sliding mode based controller is well competitive with other nonlinear 

controllers, like bang-bang control for our purpose [26], [49]. The algorithm of PWM and 

a sliding mode based controller are programmed and implemented in LabVIEW VI. The 

data of the real displacement of SMA is collected by NI DAQ 6008. The programmed VI 

reads the real displacement and then the controller module in VI computes desired 

voltages before the PWM module in VI. Controlled signals are then output from the VI 

through DAQ 6008 to the connected circuitry to achieve the displacement control of 

SMA.   

4.3.1 A Sliding Mode Based Controller for Displacement Control 

In the task of controlling the displacement, the system was nonlinear due to the 

hysteresis of SMA [28]. As we discussed in Chapter 2, a sliding mode based controller 

was designed based on the successful controller of an SMA wire actuated flap presented 

in paper [26]. Based on Equation 2.1 to 2.3, the controller is shown in the following, 

                 .     (4.1) 

After tuning in the experiment, Eqn. 2.2 and Eqn. 4.1 become, 
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   ̇      and           (4.2) 

                   ,    (4.3) 

where   is the output voltage. 

4.3.2 Pulse Width Modulation  

PWM has benefits of generating signals with ease to change its frequency, voltage 

magnitudes and forms to control the output applied on the experiment [51], [52], [53]. By 

comparing a carrier signal, c (t), to a reference signal, r (t) as shown in Figure 4-5, it 

generates a constant-frequency (CF) PWM signal. In CF PWM, there are three types of 

carrier signals commonly used, sawtooth carrier (Figure 4-5b), inverted sawtooth carrier 

(Figure 4-5c), and triangle carrier (Figure 4-5d). In our experiment, we will use CF PWM 

because we are using signals of constant frequency for the voltage output applied on the 

SMA actuator.  

 

Figure 4-5: Constant frequency PWM implemented by a comparator with different 

carrier signals  

The reference signals have leading edge and trailing edge. In sawtooth carrier, the 

leading edge is rising instantly and the trailing edge (falling) is modulated as the 
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reference signal level changes, which is referred as constant-frequency trailing-edge 

modulation. In inverted sawtooth carrier, the trailing is falling instantly and the leading 

edge (rising) is modulated as the reference signal level changes, which is referred as 

constant-frequency leading-edge modulation. In triangle carrier, the leading edge and the 

trailing edge are both modulated. Two edges are symmetric to ensure the pulse is place in 

the middle of a carrier cycle when the reference signal is a constant. It is referred as 

constant-frequency double-edge modulation.  

Trailing-edge modulation is used most like in DC-DC conversions and double-edge 

modulation is commonly used in AD-DC and DC-AC conversions, because double-edge 

modulation can reduce the effects from some harmonics in sinusoidal signals [50]. There 

are two sets of PWM signals generated separately with either of the reference signals of 

trailing-edge modulation and double-edge modulation, as depicted in Figure 4-6 and 

Figure 4-7 [50]. As we can see from two figures, the reference signals, r (t), is comparing 

with the carrier signal, c (t). When the amplitude of the reference signal is larger than the 

amplitude of the carrier signal at time t, the PWM signal,     , has a step value at the 

same time instant. Similarly, when the amplitude of the reference signal is smaller than 

the carrier signal, the PWM signal has a value of zero.  

 

Figure 4-6: Trailing-edge modulation  
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Figure 4-7: Double-edge modulation  

In the experiment, we used double-edge modulation instead of trailing-edge 

modulation. The carrier signal in the SMA experiment is a sinusoidal wave with 

frequencies from 1/30Hz to 1/50Hz. The frequency of the carrier signal is adjustable by 

the client. The parameters of the reference signal of SMA experiment are tuned in the real 

experiment to ensure the best outcome of the performance.  

4.4 LabVIEW Algorithm 

The SMA experiment is implemented and run by programed VI of LabVIEW in the 

workstation. The VI has several parts as we have mentioned in previous chapters, such as 

sliding mode control codes, and PWM codes. In this section, we will discuss more about 

the implementations of sliding mode based controller and PWM in LabVIEW.  

4.4.1 Implementation of Sliding Mode Based Controller in LabVIEW 

The displacement control in the SMA experiment is using a sliding mode based 

controller. As shown in Figure 4-5, the control has two parts, measurement of the 

displacement and computation of the real-time control. The measurement of the 

displacement is performed by an electrically powered linear sensor. The sensor generates 

voltage output as response to the displacement of the SMA wire in a mathematically 

linear relation. The conversion from the voltage measurement to the displacement 
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measurement is implemented using LabVIEW. In the Figure 4-9, we have the LabVIEW 

code of showing how the conversion from the measured displacement in voltage to the 

displacement in inch is implemented in the real experiment. The relation can also be 

expressed in the following equation, 

      
              

             
  ,    (1) 

where 2.048 is a tuned constant for the real experiment, 4.63 is the driving voltage of the 

linear sensor, and 0.039318 is a constant predetermined by the manufacturer of the linear 

sensor used for the conversion from voltage measurement to displacement measurement.  

 

Figure 4-8: Displacement measurement code in LabVIEW 

The sliding mode based controller expressed in Equation 2.1, 2.2, and 4.3 are 

implemented in LabVIEW as shown in Figure 4-10. The parameters of the sliding mode 

based controller are tuned in the experiment. New form of the equation is expressed in 

the following, 

                 .     (4.1) 

After tuning in the experiment, Eqn. 2.2 and Eqn. 4.1 become, 

   ̇      and            (4.2) 

                   ,    (4.3) 

where   is the output voltage in Equation 4.1 and Equation 4.3.  

In LabVIEW, the error in Equation 2.1 can be calculated by letting the desired value 

of displacement subtract the value of the measured displacement. The control variable of 
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r is expressed in the terms of the variable of error and the variable of the derivative of 

error. The derivative of error is calculated by dividing the error of displacement by the 

time difference between each data measurement. The function of       is provided in 

LabVIEW that we can directly use it. The feedforward constant    is tuned to be 10 volts 

to compensate the heat loss in the environment. Other constant of the controller are tuned 

based on the performance of the SMA experiment. It has a disadvantage that if any big 

the environmental change or external change occurred to the SMA experiment, the 

parameters in the controller would need slight modifications to achieve the best 

performance in the SMA experiment.  

 
Figure 4-9: Implementation of sliding mode based controller in LabVIEW 

4.4.2 Implementation of Pulse Width Modulation in LabVIEW 

In the implementation of PWM, we have two signals, carrier signal and reference 

signal, to be compared. We use an express VI from LabVIEW to simulate a triangle 

signal as our reference signal. The configuration of the reference signal for the SMA 

experiment is 12.5Hz in frequency, 3.5 in amplitude, and 8 for offset. There are 50 

samples per second and five samples are generated per loop. In other words, every 

triangle in the reference signal needs 100miliseconds to be generated. The carrier signal 

is generated by using the same express VI as used for the reference signal with the signal 

type to be DC rather than triangle. The configuration of the DC signal is eight for offset, 
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and the simulate acquisition rate is 50 samples per second and 5 samples per loop, which 

is the same as the simulate acquisition rate for the triangle signal. The same simulate 

acquisition rate between the reference signal and the carrier signal makes two signals 

comparable in calculation. In the comparison of two signals, once the amplitude of the 

carrier signal is larger than the amplitude of the reference signal, the value of pulse is 

positive. In the implementation of such a comparison in LabVIEW, we subtract the 

reference signal from the carrier signal and compare the value after subtraction to zero. If 

the value is negative or less than zero, the Boolean VI of less and equal to zero returns 

true to the case structure, otherwise, it returns false to the case structure. The return from 

the case structure is zero when it is true and one when it is false. The value is amplified 

by five and returns to the VI of data output. Repeating of the algorithm will create the 

PWM signal.  

 

Figure 4-10: Implementation of PWM in LabVIEW 

4.5 Shape Memory Alloy Experiment Results  

The purpose of the SMA experiment is to study the hysteresis of SMA affected by the 

driving frequency and the feedback control of SMA. The SMA is driven at various 

frequencies to demonstrate the hysteresis change. The feedback control of the 

displacement is demonstrated by using square wave and sinusoidal wave with different 

amplitudes. 
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4.5.1 Hysteresis of Shape Memory Alloy in Experiment 

We conducted the SMA experiment at three different frequencies, 1/20Hz, 1/30Hz, 

and 1/50Hz. The driving signal type was sinusoidal signal for all three signals. The 

amplitude of the voltage applied on the SMA actuator was 16.7 volts which was 

consistent in the experiment. The displacement of the SMA at three frequencies vs. time 

in second is plotted in Figure 4-11. A driving signal with smaller frequency provided 

more time to heat the SMA wire. It provided the SMA more time and higher temperature 

to contract more in length at higher frequencies. That is the reason why we observe that 

the response at 1/50Hz has larger displacement and longer time per cycle than those of 

the response at 1/30Hz and the response at 1/30Hz has larger displacement and longer 

time per cycle than those of the response at 1/30Hz. The displacement was measure by 

the linear displacement sensor and processed by the VI in LabVIEW. The data of the 

displacement and the time can be saved to the directory by the saving feature in the VI.  

 
Figure 4-11: The displacement vs. time at three frequencies of 1/20Hz, 1/30Hz, and 

1/50Hz 
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Hysteresis was a significant behavior of SMA. SMA wire could dissipate energy 

through hysteresis. As the temperature increased in the SMA wire, the wire basically 

changed its phase from Martensite to Austenite. It tended to shrink to its original shape. 

The change of position of the weight divided by the original length of SMA wire 45’’ 

was the strain. We also observed that the increase of voltage increased the strain of SMA 

in Figure 4-12, Figure 4-13, and Figure 4-14, because the increase of voltage would 

eventually increase the temperature in the SMA wire.  

Three figures are also showing the hysteresis of SMA at 1/20Hz, 1/30Hz, and 1/50Hz. 

The hysteresis loop at higher frequency has larger strain than that at the lower frequency. 

We can see that the shape of hysteresis loop is also affected by the change of frequency 

of the driving force. The shape change is more obvious if we compare the Figure 4-14 to 

Figure 4-12/Figure 4-13, because 1/50Hz is much slower than 1/20Hz and 1/30Hz.  

 

Figure 4-12: The hysteresis loop at 1/20Hz 
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Figure 4-13: The hysteresis loop at 1/30Hz 

 

Figure 4-14: The hysteresis loop at 1/50Hz 

4.5.2 Application of Feedback Control of Shape Memory Alloy 

In the task of displacement control for the block, we used a sliding mode based 

controller programmed in LabVIEW. Users were allowed to set the block to move to any 

position requested. In the following, there are demonstrations of tracking performance 

using square waveform signals and sinusoid signals programmed in LabVIEW. 
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We conducted four trials of feedback control of the displacement for the SMA 

experiment. We used two tracking signals, square wave signal and sinusoidal signal, as 

our reference (desired displacement) in the control. The results of the control and the 

error are plotted in Figure 4-15.  

The tracking of the displacement is good in general. Including the effect of the 

hysteresis of SMA wire, the tracking errors are listed in the following. The mean error is 

0.65in for square waveform signal with magnitude of 3 and 0.36in for the one with 

magnitude of two. The mean error is 0.051in for the sinusoid signal at 1/40Hz and 

0.063in for the one at 1/30Hz. The hysteresis of SMA wire is the major reason causing 

the large tracking error in square waveform signal because these signals have sudden 

drops and rises, however, once the signal is following the sinusoidal signal in a slow 

frequency, the tracking is smooth and accurate. We can conclude that this feedback 

control is working well under a slow frequency and a continuous move because SMA 

wire needs time to react, but it will have a delay in response if the desired displacement 

has a change in sudden.   

           
(a)               (b) 
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      (c)             (d)                           

 
   (e)                                   (f)               

  
           (g)                                       (h)      

Figure 4-15: Tracking performance and performance error 
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Figure 4-15: (a) tracking performance of square waveform signal of magnitude of 

three  (b) tracking performance of square waveform signal of magnitude of two  (c) 

tracking error of square waveform signal of magnitude of three  (d) tracking error of 

square waveform signal of magnitude of two  (e) tracking performance of sinusoid signal 

at 1/30Hz  (f) tracking performance of sinusoid signal at 1/40Hz  (g) tracking error of 

sinusoid signal at 1/30Hz  (h) tracking error of sinusoid signal at 1/40Hz. 

4.6 Summary 

The SMA device has been built by students from UH and TAMUQ. The aim of the 

SMA device is to study the hysteresis of SMA and how the driving frequency changes 

the hysteresis loop. From the experiment results, we have observed the hysteresis of 

SMA and the effects of the driving frequency on the hysteresis loop. The SMA device 

uses NI LabVIEW VI for the control of the experiment. SMA is nonlinear in 

displacement control due to the hysteresis. Thus, the displacement control of SMA uses 

sliding mode based controller and smooth robust compensator. We use PWM method to 

control the applied voltage on SMA by using an SSR to swiftly switch the electric 

circuitry on/off. We integrate the SMA experiment into the novel remote laboratory at 

TAMUQ (Chapter 5) for the students to study the experiment remotely.  
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Chapter 5 Novel Remote Laboratory 

5.1 Introduction 

Remote laboratory is the use of telecommunications technology to allow remote 

control physically set up experiments from anywhere in the world. A novel remote 

laboratory at TAMUQ has been developed through the collaborative effort of Texas 

A&M University at Qatar (TAMUQ), the UH, and the TSU. The novel remote laboratory 

with the advantage technology has two parts, the server/experiment part, and server/client 

part (done by Mr. Ning Wang [56]). The advanced technology uses the LabVIEW to 

Node.js (LtoN) in the server/experiment part to build a quick, reliable and plug-in free 

remote laboratory. The experiments are controlled by coded Virtual Instrumentation (VI) 

in LabVIEW. The client web application (done by Mr. Ning Wang [56]) uses the Web 

2.0 Technology including HyperText Markup Language (HTML), Cascading Style 

Sheets (CSS), and JQuery/JQuery-Mobile JavaScript libraries. The server application is 

built on MySQL Database, Apache web server engine and Node.js web server engine. 

Real-time communication among server, web, and experiment uses JSON and Socket.IO 

communication module.  

5.2 Remote Laboratory at Texas A&M University at Qatar 

We have already developed a remote experiment laboratory at TAMUQ with an 

isolated experiment network containing all experimental equipment. All the 

communications between the Internet enabled devices are delivered through a central 

server. Figure 5-1 depicts the new isolated experiment network architecture. It consists of 
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three parts, the client from the Internet, the internal experiment network containing local 

devices, and a central server. 

 

Figure 5-1: New isolated experiment network architecture 

A central server for remote experiments has been installed and configured at TAMUQ. 

The remote laboratory website is hosted on the server. The link for the website is 

http://remotelab.qatar.tamu.edu/. Figure 5-2 shows the main page of the TAMUQ Remote 

Laboratory website. 

 

Figure 5-2: The main page of the TAMUQ remote laboratory website 

http://remotelab.qatar.tamu.edu/
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We have integrated two experiments into the Remote Laboratory at TAMUQ. As 

shown in Figure 2-5 and Figure 4-2, the two experiments are Smart Vibration Platform 

(SVP) experiment and Shape Memory Alloy (SMA) experiment. Figure 5-3 shows the 

local devices in the remote laboratory at TAMUQ. 

 

Figure 5-3: Local devices in the remote laboratory at TAMUQ 

For a real experience in conducting the remote experiments, the users are able to view 

the experiment through two real-time cameras. One camera for SVP device is placed in 

front of the device fixed on a camera tripod and the other one for SMA experiment is 

installed on the back side of SMA device. The modal of two cameras are Axis M1114 for 

SVP device (Figure 5-4) and Axis M3005V for SMA device (Figure 4-2). 

There are two workstations hosting two experiments one by one, as shown in Figure 

5-3. Both workstations are installed with LabVIEW 2012 (32-bit). Three DAQ 6008 USB 

connect to two workstations where two for SVP device and one for SMA device. 

Programmed VI in LabVIEW running in the workstations controls the experiments. The 

workstations connect to the central server in a local network. LtoN module in LabVIEW 

exchanges the experimental data and commands with the server.  
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Only the server (Figure 5-3) communicates with the Internet. All other devices 

connect to the server in a local network through a Power over Ethernet (PoE) switch. 

Four Ethernet cables connect four local devices with the PoE switch and one Ethernet 

cable connects PoE with the server.  

 

       Figure 5-4: SVP experiment and camera 

5.3 New Unified Framework Development 

The new unified framework includes three parts: new protocol (LtoN) used in 

experiment control application to exchange the data and control commands between the 

experiment workstation and the central server; the Web 2.0 technology for the client 

application and the server-based Mashup technology for the determination and generation 

of the user interface (solved by Mr. Ning Wang [56]); and a novel assembled server 

engine scheme for the server application (Solved by Mr. Ning Wang [56]). The new 

unified framework was developed and set up under the cooperation among TAMUQ, 

RSMSL lab at UH and team from TSU.  
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5.3.1 Experiment Control Application  

The experiment control application uses Web Service technology to exchange data 

and commands between the experiment and the central server. LabVIEW to Node.js 

(LtoN) module is a new real-time protocol using Socket.IO and JSON for the real-time 

communication between the experiment workstation and central server. Socket.IO is a 

JavaScript library running in client-side and server-side (Node.js). In order to let the 

LabVIEW and the server to work together, either LabVIEW has to decode JSON sent 

from the server (Node.js) or the server has to decode the information from LabVIEW. By 

taking the advantage of a JSON Tool kit released by NI for LabVIEW, the LtoN module 

can be developed. By using LtoN, LabVIEW can encode the experimental data in JSON 

format and send that to the server (with Node.js) as shown in Figure 5-5; decode the 

commands coming from the server in JSON format and control the experiment according 

to the commands as show in Figure 5-6. Thus, the real-time exchange of experimental 

data and commands becomes possible. Figure 5-7 shows the LtoN connection setting in 

LabvIEW. Table 5-1 depicts the protocol and technology used in the experiment control 

application.



Figure 5-5: Data encoder to encode the data into JSON format and send to the server 
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Figure 5-6: Control commands decoder to decode JSON from the server 

 

Figure 5-7: Socket.IO connection setting module (LtoN) in LabVIEW 

Table 5-1: Technology/protocol/software list for the experiment control application  

Name Technology/Protocol/Software Remark 

Experiment equipment 
control 

LabView (Version 8.6)   

Real-Time experiment 

data communication 
Module 

LabVIEW to Node.js (LtoN) A new experiment data 

transmission protocol based 
on Socket.IO 

5.3.2 Client Application and User Interfaces 

Client application and user interfaces part is solved by Mr. Ning Wang [56]. In order 

to manage the remote experiments, we developed a new scalable experiment scheduler 

system and a new user management system. We used PHP language to implement the 
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systems, and used MySQL 5.5 database management system to manage the experimental 

data, user information and other system information. Figure 5-5 shows the screenshots of 

the scheduler, the experiment conflict control and the experiment management page. The 

users can use the new interface with all functions without firewall issue.  

 

(a) Scheduler                     (b) Experiment conflict control 

 

(c) Experiment management  

Figure 5-8: Screenshots of scheduler, experiment conflict control and experiment 

management page 

The Web 2.0 technology and the server-based Mashup technology are used for the 

client application. The Web 2.0 technology, which includes HyperText Markup 

Language (HTML), Cascading Style Sheets (CSS), and JQuery/Jquery-Mobile JavaScript 

libraries, are used to implement the client web application. Table 5-2 lists the technology, 

protocol and software used in the client web application. The server-based Maship 

technology is used to generate the user interface. It analyzes and formats the data on a 

remote server, and transmits the data in a final form to the user’s browser. Figure 5-6 
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depicts three examples of the client application in the remote control of the SMA 

experiment. This technology allows the users to conduct the experiments in any device, 

including desktop, smart phones, and other portable devices. Figure 5-7 depicts the novel 

experiment user interface of controlling the SVP experiment in desktop, iPhone, and iPad.  

Table 5-2: Technology/protocol/software list for the client web application 

Name Technology/Protocol/Software Remark 

Development Language HTML , CSS, JavaScript Using HTML5 

Real-Time communication  Protocol Socket.IO   Part of Node.js 

Integration technology  Mashup technology  

Widgets  JQuery/ JQuery-Mobile  

 

(a) User control interface                 (b) Experiment management interface 

 
(c) Data recording 

Figure 5-9: Screenshots of SMA experiment user interface 
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(a) User control interface in desktop            (b) User interface in iPhone 

  
(c) User interface in iPad 

Figure 5-10: The novel experiment user interface of controlling the SVP experiment in   

desktop, iPhone, and, iPad  

The architecture of the Mashup scheme used for the integration of user interface has 

three layers. Firstly, presentations and user interaction in the user interface of Mashup use 

HTML, CSS, JAVAScript, and Asynchronous JavaScript. Secondly, in the web services, 

the system functionality can be accessed by the API services. We use JSON-RPC, REST 

and SOAP in our novel design. Thirdly, the data is handled in three ways, sending, 

storing, and receiving. We use JSON and Socket.IO for data transmission.  

5.3.3 Server Integration  

Server integration part is solved by Mr. Ning Wang [56]. The server application is 

directly built on the top of a novel assembled server engine scheme. It includes two 

server engines, Apache HTTP server engine and Node.js server engine [54]. Based on the 

server-based Mashup technology used in the novel framework, the Apache HTTP server 
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application integrates the user interface widgets with web content and the real-time 

experiment video, and Node.js server application handles the real-time experiment data 

transmission. Table 5-3 depicts the technology, protocol and software used in the server 

application implementation. [55] 

Table 5-3: Technology/protocol/software list for the server applications  

 Technology/Protocol/Software Remark 

Server Engine Apache 2.4.6 , Node.js 0.10.21 Using the 

newest stable 
version 

Real-Time 

experiment data 
Protocol 

Socket.IO   Part of Node.js 

Database MySQL 5.5  

HTTP Proxy Node-HTTP-Proxy Part of Node.js 

Real-Time video 

transmission  

Http Live Streaming Protocol /FFMPEG 

/Segmenter software package 

 

We implemented the experiment scheduler system and user management system on 

the server-side. For the data management, we use the MySQL 5.5 Database management 

system. 

5.3 Conducting Shape Memory Alloy Experiment Remotely 

The SMA experiment can perform arbitrary displacement control as introduced in 

Chapter four. The function of SMA experiment has been tested remotely by using the 

novel plug-in free remote laboratory at TAMUQ. The test performed two randomly 

chosen arbitrary values, 0.932in and 0.646in, as the reference in displacement control. 

The reference switched between the arbitrary value and zero which was manually control 

in the GUI. The data containing the real displacement were recorded and were directly 

downloaded from the GUI. In each test, the GUI was recording the data for 30seconds. 

Downloading of the data was available in the same GUI. The downloaded data for the 

real displacement and the displacement reference in each test was plotted in the same 
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figure by using MATLAB. Figure 5-11 and Figure 5-12 depict the results of the 

displacement change of SMA in two tests from plug-in free remote laboratory.   

 

Figure 5-11: Arbitrary displacement control (with amplitude of 0.932in) in remote SMA 

experiment 

 
Figure 5-12: Arbitrary displacement control (with amplitude of 0.646in) in remote SMA 

experiment 

From Figure 5-13 to Figure 5-15, DC voltage of 6 volts in square waveform with 

frequencies, 0.01Hz, 0.015Hz, and 0.02Hz, are applied on SMA wire and the 



  

61 

displacement change of SMA are plotted in these figures. At lower frequencies the SMA 

wire has more time to heat up, the displacement change is larger at lower frequencies.  

 
Figure 5-13: DC voltage of 6 volts in square waveform applied on SMA wire with 

frequency of 0.01Hz 

 
Figure 5-14: DC voltage of 6 volts in square waveform applied on SMA wire with 

frequency of 0.015Hz 
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Figure 5-15: DC voltage of 6 volts in square waveform applied on SMA wire with 

frequency of 0.02Hz 

The hysteresis of SMA is affected by the frequencies of driving voltage. More 

demonstrations are performed using AC voltage applied on SMA wire. From Figure 5-16 

to Figure 5-33, the displacement change of SMA wire are plotted in both time series and 

voltage series. Three voltages, 6 volts, 14 volts, and 17 volts, in sinusoidal waveform at 

frequencies, 0.025Hz, 0.033Hz, and 0.05Hz, are applied on SMA wire. Similar to the 

results in DC voltage trials, AC voltage at lower frequencies produces more displacement 

change on SMA wire when the amplitude of voltage keeps the same.  
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Figure 5-16: AC voltage of 6 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.025Hz (displacement change in time series) 

 
Figure 5-17: AC voltage of 6 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.025Hz (displacement change in voltage series) 
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Figure 5-18: AC voltage of 6 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.033Hz (displacement change in time series) 

 
 

Figure 5-19: AC voltage of 6 volts in sinusoidal waveform applied on SMA wire with 
frequency of 0.033Hz (displacement change in voltage series) 
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Figure 5-20: AC voltage of 6 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.05Hz (displacement change in time series) 

 
Figure 5-21: AC voltage of 6 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.05Hz (displacement change in voltage series) 
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Figure 5-22: AC voltage of 14 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.025Hz (displacement change in time series) 

 

Figure 5-23: AC voltage of 14 volts in sinusoidal waveform applied on SMA wire with 
frequency of 0.025Hz (displacement change in voltage series) 
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Figure 5-24: AC voltage of 14 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.033Hz (displacement change in time series) 

 
Figure 5-25: AC voltage of 14 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.033Hz (displacement change in voltage series) 
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Figure 5-26: AC voltage of 14 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.05Hz (displacement change in time series) 

 
Figure 5-27: AC voltage of 14 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.05Hz (displacement change in voltage series) 
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Figure 5-28: AC voltage of 17 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.025Hz (displacement change in time series) 

 
Figure 5-29: AC voltage of 17 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.025Hz (displacement change in voltage series) 
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Figure 5-30: AC voltage of 17 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.033Hz (displacement change in time series) 

 
Figure 5-31: AC voltage of 17 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.033Hz (displacement change in voltage series) 
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Figure 5-32: AC voltage of 17 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.05Hz (displacement change in time series) 

 
Figure 5-33: AC voltage of 17 volts in sinusoidal waveform applied on SMA wire with 

frequency of 0.05Hz (displacement change in voltage series) 
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The data collected from the plug-in free remote laboratory has no big difference to the 

data recorded locally using LabVIEW except for the amplitude of the reference. The 

amplitude can be different because they are defined by the users. The data recorded from 

the plug-in free GUI has fewer samples per second comparing to that in local SMA 

experiment. The data transmission in the GUI is limited to 140 samples per second to 

minimize the memory and increase the connection speed. In local SMA experiment, the 

sampling rate is 1000 samples per second; however, by comparing from Figure 5-11 to 

Figure 5-33 with the experimental results presented in Chapter 4, the hysteresis of SMA 

has been successfully demonstrated by the data recorded in the plug-in free remote 

experiment which matches the original results collected locally.  

5.4 Comparison with the Remote Laboratory Based on LabVIEW Remote 

Panel 

5.4.1 Remote Laboratory Based on LabVIEW Remote Panel 

Several versions of LabVIEW have furthered the ability to develop distributed 

applications: TCP/IP, Internet Toolkit, VI Server, Front Panel Web Publishing, Remote 

Data Acquisition (RDA), DataSocket, and so on [55]. In addition, several third party 

toolkits have enabled internet-based VI control: LabVNC and AppletVIEW. Then, of 

course, there has always been PC Anywhere and other similar applications that provide 

general remote control of a PC. With enough effort, you can create distributed 

applications using these tools. However, each one presents unique challenges, often 

requiring advanced programming techniques and development of custom data handling 

mechanisms. It provides users to LabVIEW remote panels. One of the first things in 

LabVIEW application development is that VI consists of front panels, diagrams, and 
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behind the scenes, compiled executable code. Furthermore, these components are always 

bound together for a VI that is executing. The front panel and compiled code have both 

been required for operating a front panel. 

The SMA experiment based on LabVIEW has its own remote panel, as shown in 

Figure 5-34. This is a similar SMA experiment previously developed by RSMSL at UH. 

The remote panel in LabVIEW can be easily created in the VI application. Once the 

programming in LabVIEW is done, users can use Web Publishing Tool to create a 

website for remote control. In order to run the remote panel to control the real VI 

application, users need to install LabVIEW run-time engine in their computer. The 

following Figure depicts a LabVIEW remote panel used in traditional version of remote 

lab at UH. This remote panel is displayed in a web browser and the users can use it as 

they are using LabVIEW. In this remote lab, users are able to perform voltage control, 

position control and temperature control through the web remotely on the real experiment. 

The data, in terms of temperature, voltage and displacement, are displayed in this panel 

too. The same data in addition to time and temperature can be saved remotely to the 

server by the data saving feature in LabVIEW. Those data are available for downloading 

from the RSMSL Remote Laboratory website.  

 

Figure 5-34: SMA experiment LabVIEW Remote Panel 
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Table 5-4 compares the differences between the remote control of VI in LabVIEW 

remote panel and the local control of VI in LabVIEW. The front panel of VI can be 

controlled in two ways, remotely through the remote panel or directly in LabVIEW in the 

workstation. LabVIEW remote panel is a powerful tool which will enable many 

programmers to create distributed applications easily. 

Table 5-4: Comparison between the remote control using the LabVIEW remote panel   
and the local control of VI in LabVIEW   

5.4.2 Comparison between the LabVIEW Based Remote Laboratory and the Novel 

Remote Laboratory as Presented  

With the remote panel in LabVIEW, users can operate the front panel on a machine 

that is separate from where the VI resides and executes. Furthermore, they can embed the 

front panel into a web page and operate it within that page. The client machine needs a 

browser and the LabVIEW runtime engine and other browser plug-ins. Because the 

 LabVIEW Remote Panel LabVIEW VI Control 

Run the VI Only the LabVIEW run-time Engine and 
browser plug-in are required on the client 
machine. The LabVIEW development 

environment is not requirement  

The LabVIEW 
environment (or a 
LabVIEW executable with 

a menu option to run 
remote panels) and 

LabVIEW run-time are 
required. A web browser is 
not required. 

Connection The browser allows connecting to the local 

program on the same machine as the 
server.(http://localhost/name of (the VI.html)) 

Connecting to the remote 

panel from LabVIEW on 
the same machine as the 

server is not permitted. 

Control Only the “operate” menu is available in 
browser’s remote panel. 

Regular LabVIEW menu 
options are available with 
certain items disabled. 

HTML File An HTML file must be created to control 
remote panel in the web browser. Once the 
HTML page is created, any changes to the 

front panel are automatically reflected in the 
remote panel viewed in the web browser. 

An HTML page is not 
required. 
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installation of runtime engine and other plug-ins have limitations, our novel plug-in free 

remote laboratory is desired. The novel remote laboratory can be used in any portable 

devices and any workstations with browser and the Internet.  

The novel remote panel has three advantages plug-in free, no firewall issue and 

compatible to any system and any devices. The users can use a web browser without any 

firewall issue to operate the experiment through their devices including smart phones and 

tablets. The user interface is plug-in free because JavaScript used in the development of 

GUI is a common and widely used programming language.  Regular web browsers are 

good to use all the features of the novel remote panel without any issue including the 

real-time video.   

5.5 Summary 

The novel remote laboratory with the new unified framework has been developed at 

TAMUQ. There are two remote experiments, SMA experiment and SVP experiment, 

integrated into the novel remote laboratory. The new remote laboratory has several 

advantages comparing to the regular LabVIEW-based remote laboratory. The novel 

remote laboratory is plug-in free and compatible to any system, browsers, and devices 

including tablets and smart phones. Real-time videos are available for the users to view 

the experiments at the same time of conducting the experiments. The development of the 

novel remote laboratory will benefit the engineering education in TAMUQ at Qatar. In 

the future, we are able to add more remote experiments to the novel remote laboratory 

and link three remote laboratories at UH, TSU, and TAMUQ into one farm of remote 

laboratories.  
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Chapter 6 Conclusion and Future Work  

In the last two decades, the engineering education community has carried out 

numerous initiatives to develop and implement remote laboratory for engineering 

education. Smart materials have many applications and implementation in research and 

industries. We successfully developed a remote laboratory with the Novel Unified 

Framework and integrated two remote experiments of using smart materials SMA and 

MR fluids into the remote laboratory in TAMUQ at Qatar. The remote laboratory with 

the Novel Unified Framework is plug-in free, without firewall issue and compatible to 

any devices and smartphones.  

In Chapter 2, we had a general review on the state of the art about remote laboratory 

and also the remote laboratory set up at the University of Houston. In addition, we 

reviewed the SVP device used in the remote laboratory at TAMUQ, which was 

developed and built by other students at UH and TAMUQ. We also covered the nonlinear 

feedback control method of SMA and compared three conventional robust controllers, 

bang-bang compensator, saturation compensator, and smooth compensator, for the 

feedback control of SMA.  

In Chapter 3, we had a general review on smart materials and discussed SMA and 

MR fluids in detail. SMA is shape-memory materiel and MR fluid is field-dependent 

material. SMA can return to its original shape by heating it up to let SMA to change from 

Martensite phase to Austenite phase. Atomic arrangement changes in the phase change 

recovered the original shape of SMA. SMA has hysteresis in the phase transformation 

which makes SMA nonlinear in the feedback control. SMA is a popular material to use as 

actuators for various purposes. We also had a general review of MR fluids. MR fluids 
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change from liquid state to semi solid state in the presence of magnetic field. It has many 

advantages comparing to other field-dependent materials like ER fluids. MR fluids 

roughly follow Bingham model in the presence of magnetic field and become Newtonian 

fluids in the absence of magnetic field. The shear stress of MR fluids is dependent on the 

applied magnetic field. Many applications like shock absorbers, brakes, and dampers use 

MR fluids.   

In Chapter 4, we introduced the SMA device for the remote SMA experiment. SMA 

experiment helps the student to learn the hysteresis of SMA and the effects from the 

frequency change in driving voltage on the hysteresis loop. The remote SMA experiment 

uses programmed NI LabVIEW VI to control the experiment and also the data exchange 

between the workstation and the web central server. The experiment has application of 

sliding mode based feedback control and smooth robust compensator to control the 

displacement of SMA. The implementations of displacement control and voltage applied 

on SMA use PWM method and SSR. PWM method controls the experiment by switching 

the electric circuit on/off based on the feedback of SMA. SSR is a hardware providing 

possible swift on/off switches in the electric circuit. Finally, the SMA experiment 

successfully demonstrates the hysteresis of SMA and the hysteresis change affected by 

the frequency change of driving voltage as shown in the results of the experiment.    

In Chapter 5, we covered the novel remote laboratory with the Novel Remote 

Framework. A remote laboratory with the new unified framework has been set up at 

TAMUQ. There are two remote experiments, SVP experiments and SMA experiments, 

integrated into the remote laboratory. The remote laboratory has a website, 

http://remotelab.qatar.tamu.edu, for the users to schedule experiments and conduct the 

http://remotelab.qatar.tamu.edu/
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experiments remotely. The experiments use LabVIEW VI in their control and the data 

communication between the experiments and the server uses LabVIEW to Node.js (LtoN) 

module. We also compared the remote laboratory with the novel remote laboratory to the 

regular LabVIEW-based remote laboratory. The novel remote laboratory is plug-in free 

and real-time videos are available for the users to view the experiments without firewall 

issue. The users can control the remote experiments in any system and any devices 

including tablets and smartphones by using the novel remote laboratory.  

The novel remote laboratory with new unified framework is scalable. We are able to 

add more remote experiments to the remote laboratory using the same technologies. The 

development of the remote laboratory at TAMUQ is aim to benefit the engineering 

education for the students at TAMUQ. In the future, three remote laboratories at UH, 

TSU, and TAMUQ are able to combine into one by integrating all the remote 

experiments to the novel remote laboratory with new unified framework. By doing so, we 

can share all the sources and save the efforts and cost of managing three remote 

laboratories separately.   
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