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General Abstract 

Purpose:  Central field loss (CFL) that ensues from macular degeneration can impact many 

activities of daily living, including reading, in both younger (as in Stargardt disease, 

STGD) and older (age-related macular degeneration, AMD) subjects. Subjects with CFL 

typically choose a non-central retinal location, called the preferred retinal locus (PRL) for 

fixation. This dissertation aims to understand and relate functional and structural changes 

within the PRL. 

Methods: Preliminary studies determined the effectiveness of the MP-1 microperimeter 

(a) to compensate for excessively unstable fixational eye movements (FEMs), such as 

occur in subjects with CFL, and (b) to accurately register the retinal test locations on 

baseline and subsequent automated follow-up testing. Subsequently, the following 

functional measures were obtained for 29 subjects with bilateral CFL: (a) reading 

performance using hand-held MNRead charts and LCD-displayed MP1 Read charts, (b) 

contrast-detection thresholds using the Freiburg acuity test, (c) fixation stability on 3-letter 

words, measured as bivariate contour ellipse areas (BCEAs) with the MP-1, (d) sensitivity 

in the central visual field determined with a standard 10-2 threshold grid, and (e) fine-

grained sensitivity within the word-fixation PRL for supra-threshold 13x13 arc min spots. 

Spectral-domain optical coherence tomography (SD-OCT) was used to assess structural 

characteristics of the PRL, specifically, thickness ratios for the retinal pigment epithelium 

- Bruch’s membrane complex (RPE-BM), the photoreceptor and outer nuclear layer (PL), 

and the total retina layers (TRL) between PRL locations where test spots were and were 
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not consistently detected. Finally, 8 younger (< 35 years) and 8 older (>50 years) naive 

subjects with normal vision read high and low contrast sentences presented one word at a 

time at the fovea and 5 and 10° in the inferior field. Random 13x13 arc min blocks 

corresponding to 0-78% of the text area were set to the background luminance to simulate 

retinal micro-scotomas (MSs) and a staircase algorithm estimated the threshold reading 

rate. 

Results: The MP-1 compensated ~90% of the experimentally induced increase in FEMs 

and the average registration error was ~8 arc min. The maximum reading speed of subjects 

with CFL correlated poorly with contrast thresholds, BCEA, PRL eccentricity, median 

sensitivity around the PRL and all retinal thickness ratios. Twenty-two of 29 subjects with 

CFL (AMD: 8/10 subjects; STGD: 10/12 subjects) exhibited one or more MSs, defined as 

local regions of insensitivity for supra-threshold targets within the PRL. Although the 

average percentage of MSs was similar in the cohorts with AMD (25.4%) and STGD 

(20.3%), reading speed was significantly faster in STGD than AMD subjects. Average 

thickness ratios for RPE-BM, PL and TRL were 0.97, 0.84 and 0.86 respectively in the 

AMD cohort and 0.97, 0.77 and 0.89 respectively in the STGD cohort. Only TRL in 

subjects with AMD differed significantly from 1. In normally-sighted subjects, log reading 

rate decreased significantly with decreasing contrast and increasing age, eccentricity, and 

density of element-deletions. For a given eccentricity and contrast, a higher density of 

element-deletions maximally affected the older subjects. 

Conclusion: The compensation of the MP-1 for excessive FEMs and the registration 

between retinal test locations during baseline and follow-up testing are sufficient to assess 



   

ix 

 

functional changes within local retinal regions in subjects with CFL. MSs exist within the 

PRL of a high proportion of subjects with CFL, but are not strongly associated with 

structural changes determined using SD-OCT. Based on a simulation in normally-sighted 

subjects, we expect impact of MSs on reading to be greater for older than younger subjects 

with CFL. 
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1.1 Introduction 

 Humans like other living creatures are largely reliant on their eyesight to perform 

many daily activities. Starting from grooming, cooking, walking or driving to reading, 

writing, working on personal displays, watching or playing a sport, enjoying nature and the 

diversity of flora and fauna, it is a real challenge to perform these tasks without vision. 

Unfortunately, some individuals are either born with impaired vision or develop visual 

impairment as they grow old. Irrespective of the eye condition that causes visual 

impairment, the World Health Organization estimated in 2010 that around 285 million 

people worldwide are visually impaired (Pascolini & Mariotti, 2011; Visual impairment 

and blindness. (2014, August). Retreived from 

http://www.who.int/mediacentre/factsheets/fs282/en/). Given that almost all the causes of 

visual impairment (except refractive error and cataract, the leading causes) are irreversible 

and incurable, the visual rehabilitation and training of affected individuals to optimally use 

their residual vision is pivotal. This dissertation research is intended to provide insight into 

the characteristics of central vision loss and its compensation. 

1.2 Prevalence and the Need 

Central vision loss (CVL) ensues from irreversible damage to the photoreceptors in 

the central macular region of the retina. Some of the common causes include macular 

degeneration (both juvenile as in Stargardt disease (STGD), Best disease and age-related), 

rod and cone dystrophies, macular holes, and myopic macular degeneration. Age-related 

macular degeneration (AMD) is one of the leading causes of CVL and is a leading cause 
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of vision loss in the U.S, next only to diabetic retinopathy and glaucoma. In 2010, the 

National institute of Health estimated that ~2.1% (i.e. around 2.1 million) of all adults over 

age of 50 in the U.S had AMD. This estimate is expected to more than double to ~5.4 

million by 2050 (NEI: Age related macular degeneration, Retreived from 

https://nei.nih.gov/eyedata/amd). Due to its high prevalence, AMD is the most investigated 

of the various diseases that cause CVL. However, genetic conditions like Stargardt disease 

or photoreceptor dystrophies can occur early in the life and hence can be potentially more 

disabling.  

1.3 The New Locus of Fixation 

Like many other neural elements, the photoreceptors in the human retina don’t 

regenerate. Research to regenerate damaged or lost photoreceptors and rewire their 

connections within the retina and to the visual cortex, although ongoing, has a long way to 

go. The results of gene therapy, stem cell therapy, retinal prostheses and very recently even 

a retinal transplant are encouraging but certainly not ready for large-scale implementation. 

As of today, the main mode of arresting the vision loss in patients with macular 

degeneration is by injecting anti-growth factors that inhibit the growth of abnormal new 

blood vessels in the retina and choroid (American Academy of Ophthalmology - 

Retina/Vitreous Panel, 2015). But this treatment is applicable to only a small proportion of 

the individuals with CVL. For many other conditions, the best available management is 

low-vision care and training in the use of a non-foveal (non-central) retinal region to 

perform most visual functions. The preferred retinal locus (PRL), referred to previously as 
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the ‘pseudo-fovea’ or ‘fixation locus’ (Timberlake et al., 1986; Whittaker, Budd, & 

Cummings, 1988), is the non-foveal retinal region that an individual with central vision 

loss uses to perform visual activities. It has been more than 3 decades since Timberlake, 

Mainster, Webb, Hughes, & Trempe (1982) mapped the location of a small number of 

patients’ PRL in their fundus images. In spite of numerous subsequent research studies on 

patients with CVL, understanding of the development, use and function of PRL is far from 

complete. 

1.4 Deficits in CVL  

The PRL is generally located near the edge of the central area of atrophy, especially 

in individuals with AMD (Timberlake et al., 1986; Whittaker et al., 1988). In other 

conditions that produce CVL, like in STGD, the PRL can be located further away from the 

atrophy margins (Rohrschneider et al., 2008; Sunness, Applegate, Haselwood, & Rubin, 

1996). Some reports (Maia-lopes et al., 2008; Sunness et al., 1996) hinted that sub clinical 

pathology can exist adjacent to atrophic regions in CVL, while others pointed to functional 

deficits outside the affected macula (Hogg & Chakravarthy, 2006; Winther & Frisen, 

2015). Some of the deficits that are known to exist in individuals with CVL (like in AMD) 

include sub-normal reading speed, distance and near visual acuities, contrast sensitivity, 

dark adaptation, glare recovery, and flicker sensitivity. (Hogg & Chakravarthy, 2006). 

Given that PRL is the region used for performing day-to-day visual activities and that most 

individuals with CVL learn to consistently use a single PRL for a given task (Crossland, 

Crabb, & Rubin, 2011; Fletcher & Schuchard, 1997), it is crucial to know whether changes 
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in local sensitivity exist in and around the PRL. If areas of reduced sensitivity occur at the 

PRL, they may help to explain the reported deficits in visual performance, especially 

related to reading and slowed visual processing. (Cheong, Legge, Lawrence, Cheung, & 

Ruff, 2007)  

1.5 Aims 

The broad aim of this dissertation research is to probe the PRL region for sensitivity 

deficits, in a bid to offer an explanation for some of the reading deficits experienced by 

individuals with CVL (Legge, Rubin, Pelli, & Schleske, 1985; Rayner & Bertera, 1979; 

Sunness, Applegate, Haselwood, & Rubin, 1996).  Difficulties in reading and recognition 

of faces are some of the most common complaints in individuals with low vision 

(Bullimore, Bailey, & Wacker, 1991; Elliott et al., 1997). We hypothesize that local 

sensitivity changes (which we will designate as micro-scotomas, MSs) can occur outside 

the region of central atrophy in individuals with CVL and, that when the PRL includes such 

MSs, reading performance can be adversely impacted. 

In the past, the terms eccentric fixation and eccentric viewing sometimes have been 

used interchangeably. We prefer to use the term eccentric viewing because the report by 

White & Bedell, (1990) suggested that a complete rereferencing of eye movements to the 

PRL is uncommon and is certainly not the norm. Eccentric viewing (EV) training is 

undertaken by low vision specialists and occupational therapists to help subjects with CVL 

to identify and use a consistent and stable PRL. EV training involves mapping the patient’s 

central scotoma, creating scotoma awareness (Fletcher, Schuchard, & Renninger, 2012) 
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and training either with an easy-to-understand technique like a clock dial or using bio-

feedback training with a micro-perimeter (Vukicevic, Le, & Baglin, 2010). We propose 

that for successful EV training and rehabilitation, both the central scotoma and the PRL 

have to be accurately mapped (e.g., with a micro-perimeter, if available) and the PRL 

region has to be screened for the presence and locations of MSs.  

1.6 Organization of the Dissertation  

In CHAPTER II, we report on the capabilities of a commercially available micro-

perimeter (NIDEK MP-1) to undertake a detailed mapping of the PRL in patients with 

CVL. A micro-perimeter can be an effective tool to assess CVL as it is capable of 

compensating, at least partly, for the increased magnitude of fixational eye movements that 

is commonly associated with AMD/STGD (Kumar & Chung, 2014; Reinhard et al., 2007; 

Whittaker, Budd, & Cummings, 1988). Monitoring the CVL over time requires accurate 

registration of fundus images across successive test sessions, to ensure that the same retinal 

regions are tested at baseline and during automated follow-up testing. The second chapter 

assesses quantitatively the MP-1’s capability to compensate for the increased magnitude 

of fixational eye movements that occur in patients with CVL (Kumar & Chung, 2014; 

Reinhard et al., 2007) and the accuracy of the MP-1 in registering baseline and follow-up 

fundus images. We report on the accuracy of compensation for excessive fixational eye 

movements in cohorts of younger and older subjects with normal vision and on the 

accuracy of fundus-image registration from cohorts of subjects with normal vision and in 

subjects with CVL. The assessment of the MP-1’s performance is pivotal for assessing 
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functional changes at the PRL that are assessed in Chapter 3. Thus, the first chapter lays 

the necessary groundwork for the next chapter. 

CHAPTER III, relates functional and structural changes in the outer retina at the 

PRL region in subjects with CVL (AMD, STGD and others). The functional tests that were 

performed are the following: an assessment of reading speed with MN Read charts, the 

determination of contrast thresholds with the Freiburg visual acuity test (FrACT, Bach, 

1996) and using the micro-perimetry capability of the MP-1, and mapping the retinal 

location and the extent of fixational eye movements with the MP-1. Blue fundus auto-

fluorescence imaging and spectral domain optical coherence tomography (SD-OCT, 

Spectralis) were used to obtain structural images of the outer retinal layers of both the PRL 

and the damaged macular region of patients with CVL. We report that localized regions 

outside the area of central atrophy can exhibit sub-normal sensitivity. After performing 

affine transformation to register the fundus images from the MP-1 and Spectralis 

instruments, locations within the PRL that either had MSs or were free from MSs were 

identified and the retinal layers were segmented. Although several types of structural 

changes were noted, the correlation between structural and functional changes was far from 

perfect. 

In CHAPTER IV, we describe the impact of simulated scotomas on both foveal 

and peripheral reading. Random blocks of pixels (elements) within the words of a sentence 

were deleted to simulate retinal MSs and rapid serial visual presentation (RSVP) reading 

speed was assessed in cohorts of younger and older subjects with normal vision. This 
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experiment illustrates the impact on reading speed of having scattered MSs over an 

extended region in either the central or the peripheral retina. In addition to deleting the 

elements, the impact of contrast loss was explored and a linear mixed-effects model was 

used to predict the subjects’ RSVP reading speed. This chapter also discusses the 

applicability of the results to page-mode reading and in subjects with CVL.  

Taken together the findings of the chapters II – IV provide more insight into the 

characteristics of the PRL, both in subjects with AMD and STGD. We anticipated that 

these 2 groups would behave differently and our results provide limited support for this 

prediction. A final summary in CHAPTER V discusses the applicability and relevance of 

our findings, shortcomings of our approaches and future directions of this line of research. 

Relevant calculations, images and supplementary data are provided as APPENDICES at 

the end of this dissertation. 

All studies and testing reported in this dissertation were performed after the 

Committee for the Protection of Human Subjects at the University of Houston reviewed 

and approved the protocol, “Micro-scotomas around the preferred retinal locus and visual 

performance” (7/9/12 - 5/18/16). 
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registration during follow-up testing by the 
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2.1 Abstract  

Purpose: To investigate the a) accuracy of compensation for excessive fixational eye 

movements (FEMs) and b) registration accuracy of infrared (IR) images during follow-up 

testing with a NIDEK MP-1 microperimeter in cohorts of subjects with normal vision and 

subjects with central field loss (CFL). 

Methods: Sensitivity across vertical and horizontal optic disc margins was tested using 

NIDEK MP-1 in 11 subjects with normal vision while they fixated on a small cross and a 

10-deg circular target. An additive variance model based on cumulative Gaussian fits to 

sensitivity profiles was used to determine percent compensation for the increased fixational 

variability while fixating the larger target. Supra-threshold screening was performed at a 

randomly chosen non-foveal location in another cohort of 11 normally-sighted subjects and 

at the preferred retinal locus of 4 subjects with bilateral CFL. Offset of perimetric test 

points between a baseline and follow-up test on the same day was determined. 

Results: The large circular fixation target successfully generated an increase in normal 

FEMs, ~88 ±18 % and 92 ±9 % of which were compensated on average by MP-1 in the 

vertical and horizontal directions, respectively. Registration accuracy of MP-1 for follow-

up testing had an average registration error <~2 IR-image pixels (8 arc min) in both cohorts. 

Conclusions: The NIDEK MP-1 microperimeter can reliably compensate for the increased 

variability of FEMs such as those seen in patients with CFL and registers IR fundus images 

to ~8 arc min between initial and follow-up testing. These qualities are important for 

employing the MP-1 to assess and follow functional changes in patients with CFL. 
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2.2 Introduction 

Fundus-correlated perimetry or micro-perimetry has been used extensively in the 

past decade for various eye disorders including macular degeneration, (Rohrschneider, 

2007; Rohrschneider et al., 2008) diabetic retinopathy, (Vujosevic et al., 2006) glaucoma 

(Lima et al., 2010) and macular hole (Richter-Mueksch et al., 2007). The Scanning Laser 

Ophthalmoscope (SLO, Rodenstock, Germany), which preceded the current generation of 

micro-perimeters, is no longer commercially available and is gradually becoming obsolete 

primarily due to additional features and algorithms for automated testing that are available 

in modern day micro-perimeters. Although the NIDEK MP-1 microperimeter was one of 

the first commercially available micro-perimeters, Timberlake et al. demonstrated the idea 

of fundus-correlated perimetry roughly 2 decades before the MP-1’s introduction in 2002 

(Timberlake, Mainster, Webb, Hughes, & Trempe, 1982). 

Since their introduction, micro-perimeters have evolved rapidly and the modern 

day instruments also can include high-resolution retinal imaging in the form of Optical 

coherence tomography (e.g.: OPTOS OCT-SLO). The NIDEK MP-1 microperimeter is not 

an SLO and has a built-in liquid crystal display (6.5”, 640 x 480 pixels), on which visual 

stimuli are displayed in optical conjugacy with the IR camera CCD sensor (768 x 576 

pixels) (Midena, Radin, & Convento, 2006). The MP-1 also has a built-in color camera that 

is capable of acquiring high-resolution (1392 x 1038 pixels) flash photographs of the retina, 

which can be registered later with the low-resolution native IR images.  
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The primary advantage of micro-perimeters over an SLO is the automated eye 

tracking that enables rapid online compensation for patients’ fixational eye movements 

(FEMs). Compensation for FEMs is especially important when testing the sensitivity of 

patients with unsteady fixation, such as those with central field loss (CFL), to ensure that 

the perimetric targets are presented at or close to the intended retinal locations. Proper 

alignment of the perimetric targets with respect to a patient’s retina is critical for correlating 

sensitivity losses with observable structural changes in the retina. The MP-1 tracks a region 

of interest (ROI, 128 x 128 pixels) once every 40 ms and evaluates the X and Y shifts, 

relative to a previously acquired baseline frame (Midena et al., 2006; Rohrschneider, 

2007). The only available published information about the accuracy of eye tracking comes 

from Midena et al, (2006) who reported a mean tracking accuracy of 4.9 arc min along 

both vertical and horizontal axes. Unfortunately, these authors reported just the numerical 

results, and details such as the test population and strategy for determining tracking 

accuracy are unknown. 

Automated follow-up testing is another important feature of modern day micro-

perimeters that is not available with an SLO. Repeated testing of the identical retinal 

locations in a given subject is pivotal for tracking disease progression and for assessing the 

efficacy of treatment intervention. To conduct follow-up testing at the same retinal 

locations, the MP-1 registers 2 ROIs each in the baseline and follow-up IR images. 

However, only sparse information exists about the registration accuracy between baseline 

and follow-up testing. Again Midena et al, (2006) provided the only report, where the 

average distance (in 22 subjects, using a 45-stimulus grid) between corresponding points 
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examined in 2 sessions 1 week apart, was 8.9±3.9 arc min. As Midena et al. used color 

fundus images to assess registration, rather than the native IR MP-1 images, the error 

reported presumably includes any mis-registration between the IR and color fundus 

images. 

The motivation for the current study is as follows. The widespread use of micro-

perimeters like the MP-1 warrants better understanding of their primary capabilities, 

namely the accuracy with which fixational eye movements are compensated and the 

accuracy of registration of the IR images between baseline and follow-up testing. As noted 

above, the descriptive literature regarding the above-mentioned capabilities is meager. In 

this study, we used the MP-1 to investigate the accuracy of compensation for excessive 

FEMs, such as those that characterize patients with central field loss, (Timberlake et al., 

1986; White & Bedell, 1990) and the registration accuracy for pairs of IR images acquired 

during baseline and follow up testing. 

2.3 Methods 

All testing was performed in a semi-dark room using the NIDEK MP-1 micro-

perimeter (NIDEK Technologies SRL, Padova, Italy, Reference Software Version 1.6.0). 

Normally-sighted subjects were recruited from among the faculty, staff and students of the 

University of Houston, College of Optometry (UHCO) and subjects with bilateral central 

field loss were recruited from the Center for Sight Enhancement at UHCO. Subjects were 

compensated in part for their time. The study protocol was approved by the committee for 

protection of human subjects at the University of Houston and all subjects provided written 
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informed consent before participating. Before testing, each subject was provided with a 

few minutes to adapt to the dim illumination of the examination room. 

2.3.1 Experiment 1: Compensation for Increased FEMs 

Eleven subjects with self-reports of normal vision (7 younger, < 35 years; 4 older, 

50-70 years) were recruited. One eye was selected at random for testing and the other eye 

was occluded with a black patch. In the 4 older subjects the pupil was dilated with 1% 

Tropicamide to enable better imaging of the fundus. Dilation was deemed unnecessary for 

the younger subjects. In separate testing sessions the subject was instructed to fixate at the 

center of a 1-deg (size of each arm) red cross or at the center of a 10-deg radius red circle 

(Fig. 1), upon which fixation was expected to be substantially less stable. (Sansbury, 

Skavenski, Haddad, & Steinman, 1973; Steinman, 1965; Thaler, Schütz, Goodale, & 

Gegenfurtner, 2013) The cross fixation target, which is the default fixation target in the 

MP-1, was presented first for 9 of the 11 subjects. At the beginning of each test session a 

well-focused IR image of the fundus (768 x 576 pixels) was frozen, and a ROI that was 

rich in features such as blood vessels or a part of the disk margin was chosen for tracking. 

The location of the fixation stimulus was adjusted to place the optic disc within the central 

1/3rd of the MP-1 screen.  

The MP-1 reports a ‘goodness’ index for potential ROIs that ranges from 0 to 10+. 

In this study the goodness index of the ROI always exceeded 3.0. A custom 15x2 grid of 

Goldmann size II spots (nominal diameter = 13 arc min, separation = 6 arc min) was placed 

to straddle either the vertical (superior or inferior) or the horizontal temporal optic disc 
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margin for sensitivity testing (Fig. 1). In all subjects, sensitivity across the temporal disc 

margin was tested first. Detection thresholds were determined for each spot in the grid 

using a 4-2-1 thresholding strategy that varied the test-spot luminance within the range 0-

20 dB (i.e., 127 – 2.54 cd/m2) (NIDEK Technologies, 2010). Test spots were flashed one 

at a time for 200 ms on the 1.27 cd/m2 uniform white background of the micro-perimeter 

LCD screen. The subject indicated when a test spot was visible by pressing the hand-held 

response button. 

 

Figure 2-1 Sensitivity Testing Across Disc Margins 

Color fundus test images from sensitivity testing across the vertical (inferior, black 

arrows) optic disc margin using a 1-deg cross fixation target (left) and a 10-deg circular 

fixation target (right) of representative young normal subject, S3. The 1 standard deviation 

(SD, blue) and 2 SD (light blue) bivariate contour ellipses (BCEs) fit to the fixation data 

are obscured by the cyan fixation samples. The 3 SD ellipses (encompassing 99.6% of the 

fixation samples) are visible (cyan). Based on offline computations, the 1 SD BCE Area 

cross = 0.36 deg2 and BCE Area circle = 2.91 deg2.  
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The overall test duration was contingent on the subject’s fixation stability and 

sensitivity to the test spots. In general, the cross fixation condition was completed in less 

time (~3-6 min) than the circle fixation condition (~7-10 min). The MP-1 provides the 

option of pausing the test and breaks were provided as needed. A high-resolution (1392 x 

1038 pixels) color fundus image was obtained at the end of all testing, and the automated 

inbuilt registration tool of the MP-1 was used to register the color and IR images. The text 

files containing the locations of the fixation target during testing (in degrees X, Y referred 

to top-left corner of the IR image) and perimetric sensitivity data were exported and 

analyzed offline using MS-Excel (2010) and custom MATLAB (R2007b) codes. In this 

study we didn’t employ methods based on kernel density estimation such as ‘equidensity 

line’ as proposed by Castet and Crossland for fixation points that are not normally 

distributed (Castet & Crossland, 2012). Bivariate contour ellipses (BCEs) were fit to the X 

and Y data points during fixation (5000-10,000 test points per condition), after filtering out 

the ±3 SD outliers and the potential losses of tracking during blinks and large saccades. 

The computed bivariate contour ellipse areas (BCEAs) were similar to the BCEA values 

reported by the software of the MP-1 (Figure 2-1) 

 The sensitivity at each pair of adjacent grid locations parallel to the local 

orientation of disc margin was averaged. Up to 15 such sensitivity values arrayed 

perpendicular to the disc margin formed the sensitivity profile. Cumulative Gaussian 

curves were fit by probit analysis to the psychophysical (PSY) sensitivity profiles using 

custom software that returned the slope (inverse SD) and half-maximum (mean) (Figure 

2-2). It is worth noting that the probit regression generally fits the probability, y. However, 
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the data in our case are the normalized maximum sensitivities (and is not proportions). 

Thus, a probit fit is perhaps not appropriate and other sigmoid functions could have been 

employed. But for a first degree of approximation, the probit fits adequately represent the 

data and describe the profile of sensitivity change across the disc margins. 

The SD corresponding to the sensitivity profile during fixation with the circular 

fixation target was assumed to reflect two sources of variance: (1) the gradient of sensitivity 

across the vertical or horizontal disk margin (i.e., smoothing of disc borders, (Bek & Lund-

Andersen, 1989)) during fixation on the cross target and (2) the increase in variability 

produced by failure of the MP-1 to compensate completely for the increased variability of 

fixation in the meridian orthogonal to the disk margin when using the circle compared to 

the cross fixation target. An additive variance model was used to predict the increase in 

fixational variability with the use of the circular fixation target. (Figure 2-3). 

 

Figure 2-2 Cumulative Gaussian Curve Fit 

Cumulative Gaussian curves [CGC (PSY)] fit by probit analysis for fixation on a 
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cross (left) and at the center of a 10-deg circular target (right) for subject S3. The variances 

(square of the SD of the probit fit) are: 0.076 and 0.097 respectively. 

 

Model Predicted Variance (PSY fit for Circle Fixation Target)  

= Variance of PSY fit for Sensitivity Testing with Cross Taget

+  Added Fixation Variance 

Added Fixation Variance = Fixation Variance Circle - Fixation Variance Cross 

The percent compensation by the MP-1 for the increase in fixational eye 

movements when fixating the circle stimulus was calculated as follows: 

Percent Compensation (Increase in FEMs for Fixation on Circle Target)

= 100 ∗   
{ Predicted Δ in PSY SD −  Actual Δ in PSY SD}

Predicted Δ in PSY SD
 

Where, Predicted Δ in PSY SD = Model Predicted PSY SD Circle - PSY SD Cross 

Actual Δ in PSY SD = PSY SD Circle  –  PSY SD Cross 

If the actual Δ in PSY SD is negative, the % Compensation is more than 100, which is not 

plausible and hence such values are set to 100%. 



   

19 

 

 

Figure 2-3 Additive Variance Model 

An illustration to describe the expected consequence of fixational eye movements 

(FEMs) on the slope of the sensitivity profile across the optic disc margin. As the SD of 

FEMs increases, the slope of the resultant sensitivity profile becomes shallower. Note that 

in this illustration the S-shaped sensitivity profile during fixation on the cross target is 

approximated as a ramp function. FEMs are shown to be normally distributed and the 

resultant sensitivity profile is fit with a cumulative Gaussian. 

 

2.3.2 Experiment 2: Registration Accuracy 

Sensitivity at a non-foveal region was assessed using the MP-1 in 11 subjects with 

normal central vision (6 younger, < 35 years; 5 older, >50 years) and 4 subjects with CFL 
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(2 AMD, 2STGD, refer to Appendix 6.2 in page157 and Table 3-1 for more details) 

secondary to macular degeneration. The pupil of the preferred eye was dilated in all 15 

subjects with 1% Tropicamide and subjects fixated with this eye at the center of a 10-deg 

radius circular target. For subjects with normal central vision, a custom square grid (6 x 6, 

1.2 deg) of 36 points was manually placed at an extra-foveal location (eccentricity range: 

5 - 15 deg), usually straddling a blood vessel (Figure 2-4), to assess the sensitivity to 

Goldmann size II spots.  

 

Figure 2-4 Test Grid: Sensitivity Testing – Subject with Normal Vision 
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Test grid (6x6 array, spacing = 0.2˚) placed at a non-foveal location in younger 

subjects with normal vision, NY8 (median registration error, top) and NY10 (largest 

registration error, bottom). Testing was done with the medium IR-illumination level. 

Yellow squares indicate the grid position during baseline testing; red squares indicate the 

position during follow-up testing. In the panels to the right, the test grid is zoomed to show 

the offset details. Note: The magnitude of the registration error with respect to size of a 

single IR-image pixel (~4 arc min). After registration, the grids were replotted on the 

baseline IR image using a custom MATLAB program. 

The MP-1’s IR illuminance can be adjusted between nominal settings of 0 - 160. 

(NIDEK Technologies, 2010) To determine to what extent the registration accuracy 

depends on the IR illuminance we chose a ‘low’ IR setting (<=20) that resulted in weak 

illumination and low contrast of the IR image, a ‘medium’ IR setting (20-30) that evenly 

illuminated the fundus, and a ‘high’ IR setting (>30) that resulted in a visible shimmer due 

to saturation of many pixels in the center of the IR fundus image. (Figure 2-5)  

 

Figure 2-5 Levels of IR Illumination 

Montage of IR images (Subject NY 7) returned by the MP-1. Shown above (from L 
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to R) are the images obtained using three IR illuminance settings ‘Low’, ‘Medium’ and 

‘High’ in this normal subject. 

In subjects with CFL, a custom grid of 40-70 points corresponding to the 2-D extent 

of the 1 or 2 SD BCE, was centered on the word-fixation PRL (Figure 2-6). The latter was 

determined as the median of three BCE’s obtained during fixation on a three-letter word 

set at the critical print size, determined using a printed MN read chart (Mansfield, Legge, 

Luebker, & Cunningham, 1994). Subjects fixated at the center of a red circle that was 

adjusted to be larger than the long axis of the BCE (See Figure 2-6). In both subject 

cohorts, conventional thresholding was replaced by a screening procedure that quickly 

estimated the detectability of an array of supra-threshold stimulus. For the normal cohort, 

a stimulus intensity of either 7 or 10 dB was chosen arbitrarily. For subjects with CFL, the 

median sensitivity of test points around the PRL was calculated from a baseline 10-2 test 

and two luminance levels corresponding to (1) 5 dB above the median sensitivity and (2) 

the brightest level produced by the instrument (0 dB) were used for testing. In the normally-

sighted subjects, a pair of tests (baseline and follow-up) was performed at each IR-

illumination setting using the ‘follow-up’ test option of the MP-1. In the cohort with CFL, 

only one pair of baseline and follow-up tests was performed for each test spot intensity 

using the ‘medium’ IR setting of the MP-1. Follow-up testing was performed in all subjects 

on the same day, immediately after the baseline tests.  

The text file containing the perimetry test data and the bitmap IR fundus images 

were exported from the MP-1. The text file contained: a) Degree to pixel conversion factor, 
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b) Custom grid center coordinates, in deg, referenced to the top-left corner of the IR image 

and c) X and Y stimuli coordinates referenced to the center of the custom grid, all of which 

are required for offline image analysis. A Generalized Dual Bootstrap – Iterative Closest 

Point (GDB-ICP) algorithm, (Yang, Stewart, Sofka, & Tsai, 2007) was used for the offline 

registration of the baseline and follow-up IR images. A 2-D affine transformation was used 

to register the follow-up image with respect to the baseline image. For each pair of tests, 

the registration returned by the GDB-ICP algorithm was confirmed to exhibit minimal 

apparent motion when the pair of (nominally aligned) images was flickered alternately. 

The affine coefficients returned by the GDB-ICP algorithm were then used to transform 

the locations of the perimetric test points during follow-up testing. Both the transformed 

test points (XF, YF) from the follow-up image and the baseline test points (XB, YB) were 

plotted on the baseline IR image and the mean absolute position difference (|XB – XF| and 

|YB - YF|) between corresponding test points was designated the average absolute 

registration offset. 

Average Absolute Offset = Ʃ|𝑋𝐵  −  𝑋𝐹|/𝑁; Ʃ |𝑌𝐵  −  𝑌𝐹|/𝑁 

Where, XB, YB, XF and YF = X and Y coordinates of test points in baseline testing 

and follow-up testing respectively. 

N= Number of test points in the sampling array. 
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2.4 Results 

2.4.1 Experiment 1: Compensation for Increased FEMs 

As anticipated, fixation by the normally-sighted subjects at the center of the 10° 

circle target increased the variability of fixational eye movements. The mean BCEA for 

the 11 subjects increased ~10-fold compared to fixation on the cross target. Specifically, 

the mean (±SD) BCEAs for fixation on the cross and circle targets were 0.39±0.37 and 

3.16±2.28 deg2 and 0.21±0.14 and 2.36±0.91 deg2 for testing across the vertical and 

horizontal disc margins, respectively. The average computed compensation by the MP-1 

was 88.11 ± 18.02% and 91.78 ± 9.12% for the increase in vertical (V) and horizontal (H) 

components of fixation instability, i.e., during testing across the vertical and horizontal disk 

margins, respectively (See Table 2-1 and Table 2-2). 
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Subject 

# 

PSY 

Fit 

SD 

PSY 

Fit 

SD 

Fixn.  

SDY 

Fixn. 

 SDY 

Model 

Pred. 

SD 

Circle 

Actual 

Δ in 

PSY 

SD 

Pred. Δ 

SD 

Final 

%Comp. 

(Δ SD) 

Uncompensated 

FEMs 

Younger 

(<35Yrs.) 
Cross Circle 

Cross 

(deg) 

Circle 

(deg) 
   

Value > 

100 = 

100% 

(arc min) 

S1 0.291 0.340 0.230 1.124 1.138 0.049 0.847 94.215 5.173 

S2 0.252 0.328 0.153 0.542 0.577 0.076 0.326 76.732 9.047 

S3 0.276 0.312 0.203 0.487 0.522 0.036 0.246 85.348 4.163 

S4 0.130 0.244 0.181 0.735 0.724 0.114 0.594 80.806 10.630 

S5 0.283 0.239 0.153 0.387 0.455 -0.044 0.172 100.000 0.000 

S6 0.115 0.236 0.105 0.314 0.317 0.121 0.202 40.164 12.506 

S7 0.197 0.178 0.557 0.419 0.311 -0.019 0.001 100.000 0.000 

Older 

(>60Yrs.) 
         

S8 0.015 0.067 0.068 0.667 0.664 0.052 0.649 91.928 4.837 

S9 0.402 0.389 0.182 0.482 0.601 -0.013 0.199 100.000 0.000 

S10 0.199 0.009 0.246 0.453 0.429 -0.190 0.230 100.000 0.000 

S11 0.214 0.170 0.120 0.815 0.834 -0.044 0.620 100.000 0.000 

       Mean 88.109 4.214 

       SD 18.022 4.726 

       Median 94.215 4.163 

Table 2-1 Precision of FEMs Compensation: Vertical Disc Margins 

Results based on cumulative Gaussian curve (PSY) fits for all subjects, for testing 

across the vertical disc margin. Note that model prediction in column 6 is based on the 

additive variance model described in the text. In column 9, note that >100% compensation 
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is not possible, thus the maximum value of % Compensation was set at 100%.  

 

The fixation stability of the younger normal group for the two fixation targets (in 

deg2, Mean ±SD, Cross: 0.34 ±0.34 and Circle: 2.52 ±2.02) was not significantly different 

from the older normal group (Cross: 0.24 ±0.18 and Circle: 3.19 ±1.11 deg2; 2-tailed t (20) 

= -0.27, p= 0.39 for the cross and t (20) = -0.46, p= 0.33 for the circle fixation target). 

Further, the percent compensation of the younger normal group (Mean ±SD, 86.94 ±15.9) 

was not significantly different from the older normal group (Mean ±SD, 95.7 ±8.38; 2-

tailed t (19) = -1.24 and p= 0.12). For both groups of normally-sighted subjects, the mean 

uncompensated component of the added fixational variability was 4.2 and 3.8 minutes of 

arc, respectively, in the vertical and horizontal directions. 
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Subject # PSY 

Fit 

SD 

PSY 

Fit 

SD 

Fixn. 

SDX 

Fixn. 

SDX 

Model 

Pred. 

SD 

Circle 

Actual 

Δ in 

PSY 

SD 

Pred. Δ 

SD 

Final 

%Comp. 

(Δ SD) 

Uncompensated 

FEMs 

Younger 

(<35Yrs.) Cross Circle 
Cross 

(deg) 

Circle 

(deg) 

   Value > 

100 = 

100% 

(arc min) 

S1 0.381 0.259 0.316 0.769 0.798 -0.122 0.417 100.000 0.000 

S2 0.143 0.215 0.139 0.451 0.452 0.073 0.309 76.526 7.326 

S3 0.146 0.210 0.131 0.695 0.698 0.064 0.552 88.378 6.553 

S4 0.105 0.130 0.204 0.689 0.666 0.025 0.561 95.562 2.152 

S5 0.108 0.132 0.130 0.495 0.489 0.024 0.381 93.786 2.268 

S6 0.213 0.215 0.096 0.508 0.542 0.002 0.329 99.544 0.188 

S7 0.208 0.283 0.227 0.749 0.743 0.074 0.535 86.087 7.253 

Older 

(>60Yrs.) 

         

S8 0.154 0.144 0.146 0.583 0.585 -0.010 0.431 100.000 0.000 

S9 *** *** 0.195 1.150 NA NA NA NA NA 

S10 0.248 0.203 0.287 0.653 0.637 -0.045 0.389 100.000 0.000 

S11 0.018 0.165 0.149 0.700 0.684 0.147 0.666 77.956 12.137 

       Mean 91.784 3.788 

       SD 9.123 4.254 

       Median 94.674 2.210 

Table 2-2 Precision of FEMs Compensation: Horizontal Disc Margins 

Same as Table 2-1, except that the data represent testing across the horizontal optic 

disc margin. [*** Represents insufficient data, as the test grid did not straddle the 

horizontal disc margin.] 
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2.4.2 Experiment 2: Registration Accuracy 

The average (±SD) X and Y offsets in arc min were respectively: 4.43 ±3.29 and 

3.66 ±2.37 for the low IR setting, 2.45 ±2.55 and 3.3 ±2.25 for the medium IR setting, and 

4.23 ±4.22 and 3.9 ±2.85 for the high IR setting. Figure 2-4, shows the registration errors 

for 2 representative normally-sighted subjects, NY8 and NY10, during testing at the 

medium IR setting. Across all of the normally-sighted subjects, the overall average 

Pythagorean registration offsets (√X2+ Y2) were not significantly different (P> 0.05) for 

the low (L), medium (M) and high (H) IR settings (2 tailed paired t-tests: L vs. M: p = 0.12; 

M vs. H: p = 0.3; L vs. H: p = 0.97). 

The average (±SD) registration errors for testing in CFL subjects (tested only at the 

medium IR setting) were 8.14 ±5.19 and 5.21 ±2.9 arc min respectively in the X and Y 

directions. Figure 2-6 shows the test grid and the registration error from a representative 

CFL subject, MD2b. The Pythagorean offsets were not significantly larger (2-tailed t-test, 

t (15) = -1.86 and p=0.082) for the CFL compared to the normally-sighted subjects.  
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Figure 2-6 Test Grid: Sensitivity Testing - CFL Subject 

Test grid of 50 points (0.2˚ apart) centered on the word-fixation PRL (2SD BCE) 

of a representative subject with CFL, MD2b, who exhibited the median registration error.  

In the inset, the test grid is zoomed to show the offset details (Note that the grids in Figure 

2-4 are zoomed to a different scale). The red fixation circle shown here was added and test 

grid was replotted to the IR image. 
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2.5 Discussion 

We assessed the compensation for excessive fixation instability and the registration 

accuracy between baseline and follow-up testing of a commercially available NIDEK MP-

1 microperimeter. Reports suggest that the narrower dynamic range of MP-1, i.e., 2 log 

units vs. 5 log units in a Humphrey Field Analyzer, can limit its use to quantify defects that 

are too severe or too subtle due to floor and ceiling effects (Acton, Smith, Greenberg, & 

Greenstein, 2012; Chen et al., 2009). To partly overcome these limitations, Seiple et al. 

(2012), used a smaller target size (Goldmann Size I) to extend the range of useable stimulus 

intensities. Further, some of the newer micro-perimeters have a wider dynamic range than 

the MP-1, e.g., the MAIA has a range of ~4 log units. Assessing the retinal sensitivity 

thresholds with microperimetry can take significantly longer time than testing with 

standard automated perimetry (Acton, Smith, et al., 2012; Springer, Bültmann, Völcker, & 

Rohrschneider, 2005) or using scanning-laser-ophthalmoscope perimetry (Rohrschneider, 

Springer, Bültmann, & Völcker, 2005). Nevertheless, the merits of precise automated real-

time fundus tracking and image registration outweigh the above limitations.  

2.5.1 Fixation Stability and FEMs  

In older normal adults, measures of visual fixational stability have been shown to 

be similar to those of younger adults (Kosnik, Fikre, & Sekuler, 1986). In our study, the 

fixation stability of older normally-sighted subjects on cross and circular targets was not 

significantly different from that of younger normally-sighted subjects. Bellmann et al., 

(2004) showed that the BCEA during fixation in a cohort of subjects with late-stage AMD 
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was roughly 10 times larger than that of age-matched controls. In particular, the average 

(±SD) BCEA in their cohort of 12 AMD subjects, for the target that fostered the greatest 

stability (1° letter ‘x’) was reported to be 3.35 ±0.071 deg2. The average BCEA in our 

cohort of 11 normally-sighted subjects, when fixating at the center of a 10-deg circular 

target was similar (3.12 ±1.93 deg2). The large difference in standard deviations between 

the two studies is likely to result from an arithmetic error, as the SD value in min arc2 that 

is listed by Bellmann et al (2004) is unrealistically small. The BCEA for fixation on the 

cross targets (vertical margins) was 0.39±0.37 deg2. The fact that the SD is the roughly the 

same size as the mean suggests that our data was significantly skewed (Range SDy  for 

Cross from Col. 4 of Table 2-1 is: 0.068 – 0.557°). 

FEMs and their magnitude have been investigated widely since 19th century 

(Cherici, Kuang, Poletti, & Rucci, 2012; Helmholtz, 1925; Martinez-Conde, Macknik, & 

Hubel, 2004). The flicks (micro-saccades) of normally-sighted subjects are usually in the 

range of 1-20 arc min and drifts are usually up to 6 arc min in amplitude (Ditchburn & 

Ginsborg, 1953). A Goldmann III target, the most commonly used size for perimetric 

testing, has a diameter of 26 min arc and the standard grid of the Humphrey 10-2 pattern 

samples retinal locations every 2 deg. For this target size and sampling density, a retinal 

position error of a few min arc is tolerable and it is therefore not a big problem if normal 

fixational variability is either uncompensated or only partly compensated, because the 

retinal locations of each perimetric test stimuli will be within a few min arc of the intended 

retinal location. Even for a Goldmann II target, which has a nominal diameter of 13 min 

arc, an error in the target’s retinal location equal to the fixation SD (~5-10 arc min) still 
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allows some part of the target to remain at the intended retinal location. On the other hand, 

when testing patients whose BCEAs are 10 times larger than normal (and even larger in 

some patients with CFL), the locations of perimetric test targets can deviate substantially 

more (e.g., a factor of √10) from the intended retinal location if these patients’ FEMs 

remain uncompensated. 

Our simulation of the fixation instability of patients with CFL is based on the results 

of Sansbury et al. (1973) who demonstrated that the fixation stability of normally-sighted 

subjects deteriorates with the size of the fixation target. In their study, the worsening of 

fixation for large targets was associated with an increase in the size of both saccades and 

inter-saccadic drifts. On the other hand, in a cohort of subjects with macular disease, Kumar 

and Chung (2014) concluded that it was the amplitude of micro-saccades that mainly 

contributed to the increased variability of these subjects’ FEMs compared to normally-

sighted subjects. So, although the simulation in our study quantitatively mimics the FEMs 

in CFL, it may not be qualitatively the same. 

The histology and structure of the region around the optic disc margins has received 

much attention in the past few decades primarily due to changes like peri-papillary atrophy 

that can be associated with conditions like glaucoma or myopia (Jonas, Budde, & Panda-

Jonas, 1999). That said, it is worth noting that none of our subjects (both younger and older) 

had any visible atrophic changes near the disc margins. Whereas the temporal and nasal 

disc margins have received much attention, the changes in retinal histology in the superior 

and inferior disc margins are largely unknown (Fantes & Anderson, 1989). This is 
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primarily due to presence of major blood vessels near the vertical margins. The latter also 

made the positioning of test grid difficult in some of our subjects. Fantes and Anderson 

(1989) using histologic sections, classified the peri-papillary anatomic arrangement into 4 

non-mutually exclusive categories. They report that nearly all disc margins have a flange 

of sclera around the entire circumference and this flange separates the choroid from optic 

nerve head tissue. Also, there is a gradual depigmentation of RPE as the disc is approached.  

More recently, Lee et al. (2010) used high resolution in-vivo imaging to document 

the tapering configuration of retinal layers at the edge of the optic disc. They report that 

the photoreceptor layers and the retinal pigment epithelium terminated with-in the area of 

the peri-papillary atrophy. In eyes without the atrophy, the density of the photoreceptor 

layer generally reduced gradually till the disc margins were approached. The regions 

around the disc margins can exhibit a wide array of changes and these changes in retinal 

structure could be very different across subjects. However, these shouldn’t influence our 

results or the interpretation of these results as we report compensation for each subject 

individually. Also by probing a similar (if not exactly the same) region in the 2 fixation 

conditions, we eliminate the influence of the structural changes in retina. We used a 

cumulative Gaussian fit (sigmoid function) with varying slopes to approximate the 

sensitivity profile across the disc margins, and given the evidence of changes in retinal 

layers (specifically RPE and photoreceptors) near the disc margins, the fit describes the 

profile adequately. However, any non-linear fit could be used to describe the sensitivity 

changes. In this study we chose to use the cumulative Gaussian chiefly because we modeled 
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the FEMs to be normally distributed. When the distribution of FEMs is not normal, this 

model may be less applicable. 

2.5.2 Registration Accuracy 

In a cohort of 10 subjects with AMD and 12 normally-sighted subjects, Midena et 

al. (2006) manually identified the same 2 anatomical landmarks in a pair of color fundus 

images during perimetric testing. A 45-stimulus grid (Goldmann Size III) was used to 

assess retinal sensitivity and follow-up testing was done after 1 week, at which time all of 

the stimulus coordinates were re-referenced with respect to the previously identified retinal 

landmarks. Midena et al. then calculated the retinal Pythagorean distance between each of 

the corresponding 45 test stimuli on the initial and follow-up tests. The average (±SD) 

Pythagorean distance was 8.9 ± 3.9 arc min, which is larger than the mean offset value of 

4.4 ±3.0 arc min that we obtained for normally-sighted subjects. In closer agreement with 

the value reported by Midena et al., the Pythagorean offsets for our CFL subjects averaged 

10.1 ± 5.1 arc min. The discrepancy may be attributable to differences in the methods 

employed for aligning the test image pairs, whereas the discrepancy in registration 

accuracy between our normal and CFL subjects may be explained by the ROI goodness 

index that is contingent on the shape and contrast of the retinal features selected. Thus, it 

will be a worthwhile future endeavor to explore the role of the ROI goodness index in 

registration accuracy. 



   

35 

 

2.5.3 Limitations of the Study 

The software version (1.6.0) of MP-1 used in our study, doesn’t allow the use of 2 

different fixation targets during the automated ‘follow-up’ testing. The ‘follow-up test 

option’ of MP-1 registers images from 2 test sessions and ensures the same retinal region 

can be tested, which was desired in our first experiment that assessed sensitivity across disc 

margins. Thus, we could only manually and visually align the test locations between the 2 

fixation conditions. The BCEAs reported here are computed from fixation sampled for the 

entire duration of perimetric testing, corresponding to several minutes, as opposed to the 

widely used approach of sampling fixation for only ~15 - 30 seconds (Amore et al., 2013; 

Bedell et al., 2015; Bellmann et al., 2004). An increase in sampling time would be expected 

to result in larger BCEAs (Longhin et al., 2013). Also, the assumption that fixational eye 

movements are normally distributed, which underlies the construction of BCEs, may not 

be valid in some subjects. More specifically, the distribution of fixational eye movements 

in patients with AMD may differ from the distribution of fixation in normal eyes, even 

when the range of fixational eye movements is scaled appropriately. Therefore, extending 

the current results to the testing of patients with CFL needs caution especially because of 

the small number of CFL subjects in this study. 

Absolute Compensation of FEMs: We investigated only the compensation by the MP-1 for 

an increase from the normal amplitude (cross condition) of FEMs and not the absolute 

(normal + increased fixational instability) percent compensation of FEMs by the MP-1. 

Two likely limiting scenarios are: (1) the MP-1 compensates normal fixational variability 
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in the same percentage as the added fixational variability that is observed when using a 

large circular target, or (2) the MP-1 does not compensate for the normal variability of 

FEMs (i.e., when viewing the cross target) at all. In our study, the average SDs in the 

vertical and horizontal directions during fixation on the cross target were 12.0 and 10.8 arc 

min. Therefore, for the scenario that assumes the same percent compensation for normal 

and excessive FEMs, the absolute uncompensated FEMs would be ~5 arc min both the 

vertical (4.2 + 0.12 x 12 arc min = 5.6 arc min) and horizontal (3.8 + 0.08 x 10.8 arc min 

= 4.7 arc min) directions. On the other hand, if normal fixational variability is not 

compensated at all, then the magnitude of uncompensated FEMs would be (SQRT (4.22 + 

122) = SQRT (162) =) 12.7 arc min vertically and (SQRT (3.82 + 10.82) = SQRT (131) =) 

11.5 arc min horizontally. 

   To assess the registration accuracy, we compared the default semi-automated 

registration of the MP-1 (based on a normalized gray scale correlation of features at the 

chosen ROIs) to a fully automated dual-bootstrapping algorithm. A possible mis-

registration by the MP-1 of test targets with respect to the fundus image has been reported 

previously (Woods, Vera-Diaz, Lichtenstein, & Peli, 2007). It should be noted that the MP-

1 performs image registration and computes test point locations on line in a short span of 

time (usually <5 sec), as opposed to the GDB-ICP algorithm, which requires extensive off-

line computations. We performed the baseline and follow-up testing on the same day and 

on cohorts of subjects with stable CFL or normal vision. Provided that stable, feature-rich 

ROIs can be selected from the fundus images during both the baseline and following-up 
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testing, our expectation is that the registration accuracy should not be affected by the time 

to follow-up or by disease progression. 

2.6 Conclusions 

The study examined the accuracy of the MP-1 microperimeter for compensating 

the increase in fixational eye movements that occurs in patients with CFL and for 

registering the IR fundus images between baseline to follow-up testing. The results indicate 

that the MP-1 compensates for ~90% of the increased in fixational eye movements that is 

expected in patients with CFL and that the image registration is accurate to ~2 pixels (8 arc 

min). Consideration of these values is necessary when the MP-1 is employed to 

characterize and follow various eye conditions longitudinally, including CFL secondary to 

macular degeneration. 
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3.1 Introduction 

Age-related macular degeneration (AMD) is among the most common cause of 

permanent visual impairment in developed countries like the USA, accounting for more 

than 54% of all vision loss in the white population (Smith et al., 2001). Juvenile macular 

degeneration, a term that includes conditions like Stargardt disease (STGD), Best disease, 

and fundus flavimaculatus, is similar in pathophysiology to the dry type of AMD, in that a 

gradual vision loss results from pigment epithelial changes and photo-receptor 

degeneration and/or loss (Facts About Stargardt Disease. (April 2015). Retrieved from 

https://nei.nih.gov/health/stargardt/star_facts). 

Early AMD manifests with a variety of retinal findings including hard and soft 

drusen, localized pigment alterations in the retinal pigment epithelium, and loss of the 

foveal light reflex. The etiology of AMD is multi-factorial. It includes environmental 

(smoking, low dietary intake of anti-oxidants) and genetic (CFH polymorphism) factors 

aside from ageing (de Jong, 2006). Development of a neo-vascular membrane (CNV) 

and/or fluid accumulation are classic findings in the wet type of AMD, as opposed to a 

geographic atrophy (GA) in the dry type. CNV, if left untreated, can progress to legal 

blindness within months, whereas the progression in dry AMD is usually slow, and is 

known to impact retinal regions outside the macula (de Jong, 2006). In fact, the rod 

photoreceptors in the parafovea (1-3mm from fovea) are affected first and are more 

vulnerable than foveal cones to degenerative changes in both the early and late stages of 

age-related maculopathy (Curcio, Owsley, & Jackson, 2000; Owsley et al., 2000). 

https://nei.nih.gov/health/stargardt/star_facts
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Although the central field loss is irreversible, most late stage patients with either the dry or 

the wet type of AMD retain ambulatory vision, due to remaining peripheral visual 

sensitivity (de Jong, 2006). Treatment is usually preventive and includes laser photo-

coagulation, anti–VEGF injections (in wet AMD), anti-oxidant supplements and 

modification of risk factors (Lim, Mitchell, Seddon, Holz, & Wong, 2012). 

STGD (also referred to as Stargardt macular degeneration) is a genetically inherited 

outer retinal disorder that affects about 1 in 8,000 to 10,000 individuals (Stargardt macular 

degeneration. (May, 2016). Retrieved from https://ghr.nlm.nih.gov/condition/stargardt-

macular-degeneration). The most common reason for STGD is a mutation in the ABCA4 

gene (ATP-binding cassette subfamily A member 4) that is responsible for removing the 

photo-transduction metabolite N-retinylidene-PE. The ABCA4 protein is specific to the 

retina and is located in the outer segment discs of the photoreceptors. The defective 

ABCA4 gene prevents the ABCA4 protein from clearing N-retinylidene-PE, the 

accumulation of which results in a buildup of lipofuscin that eventually damages the 

photoreceptors and the surrounding retinal cells. Interestingly, Curcio et al. (2001) reported 

that the site of rod loss in the early AMD is about 1-2 mm from foveal center (not related 

to the site of highest rod density), and was not related to lipofuscin accumulation. Unlike 

STGD, numerous models and theories have been proposed to explain the changes in both 

wet and dry AMD. The consensus as of today lists drusen and hyper-pigmentation of RPE 

as the initial insult in dry AMD, whereas insult to chorio-capillaries could potentially 

trigger the wet form of AMD (Ambati & Fowler, 2012). 

https://ghr.nlm.nih.gov/condition/stargardt-macular-degeneration
https://ghr.nlm.nih.gov/condition/stargardt-macular-degeneration
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3.1.1 Central Field Loss and Fixation Stability 

Visual acuity is considered to be a poor indicator of early AMD, not only because 

it is impacted only after considerable changes have occurred already in the retina, but also 

because acuity does not completely reflect the challenges faced by patients in tasks like 

face recognition, text reading, mobility, and orientation (Legge, Rubin, Pelli, & Schleske, 

1985). In a retrospective study of the patients who sought rehabilitation services in a 

veteran affairs clinic, Schuchard et al. found that ~90% of cases had bilateral central 

scotomas secondary to AMD (Schuchard, Naseer, & De Castro, 1999). Although the 

disease can be asymmetrical, involvement of both eyes makes it difficult to perform many 

visual tasks. Fixation frequently is compromised in patients with AMD, leading to an 

increase in fixational eye movements and excessive variability (Kumar & Chung, 2014; 

Reinhard et al., 2007; Timberlake et al., 1986). Bivariate Contour Ellipse Area (BCEA) is 

one of several metrics that describe fixation stability, taking into account the scatter of 

fixation along both the major and minor ellipse axes and the correlation between the values 

along these two axes (Steinman, 1965; Timberlake et al., 2005). 

3.1.2 Preferred Retinal Locus 

Most subjects develop an adaptive strategy to compensate for the central field loss 

(CFL), in which they use a non-central, relatively healthy retinal area near the margin of 

the scotoma for fixation. This non central retinal locus or fixation area is called the 

‘Preferred Retinal Locus’ (PRL) (Timberlake et al., 1986). The PRL is chosen such that it 

is away from the central area of obvious retinal damage but it can be surrounded by regions 
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of reduced sensitivity, perhaps due to changes associated with macular degeneration 

(Cideciyan et al., 2005; Maia-lopes et al., 2008; Rogala et al., 2015). The location of the 

PRL varies a lot among subjects and primarily depends on the scotoma size and shape 

(Fletcher & Schuchard, 1997). Shima et al. reported that the location of the PRL in group 

of 15 subjects with AMD didn’t coincide the retinal location of highest sensitivity (Shima, 

Markowitz, & Reyes, 2010). 

Studies have consistently documented that the PRL is located further away from 

the edge of the central-retinal degeneration in eyes with JMD than AMD. For example, 

Rohrschneider et al. documented a clear patch of viable retina between the PRL and the 

central area of degeneration in JMD (Rohrschneider et al., 2008). In AMD the PRL is 

located invariably near the edge of the central scotoma, but can shift more peripherally as 

the degeneration engulfs greater regions of central retina (Fujita & Yuzawa, 2003). Fletcher 

et al., in their study of 825 patients with low vision, found that roughly 1 in 6 patients have 

their PRL surrounded by dense scotomas, constraining the usefulness of the PRL for many 

visual tasks (Fletcher & Schuchard, 1997; Fletcher, Schuchard, & Gale, 1999). Crossland 

et al. concluded that patients who are not aware that they are using a PRL read more quickly 

than those who are conscious of using a non-central retinal locus (Crossland, Culham, 

Kabanarou, & Rubin, 2005). On the other hand, Fletcher et al. (2012) reported that some 

awareness of the central scotoma in subjects with AMD tends to improve the reading 

accuracy. A small proportion of subjects with long standing macular degeneration may 

progress from a strategy of eccentric viewing to develop a locus of eccentric fixation, 
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wherein the oculomotor reference or fixation center shifts from the dysfunctional fovea to 

a healthier eccentric region (Von Noorden & Mackensen, 1962; White & Bedell, 1990).  

3.1.3 Functional Deficits in AMD and STGD 

The ability to discriminate orientation and shape can be impacted very early in the 

course of AMD, and hyperacuity tests have been proposed as a screening test for macular 

disease (Bressler & PHP-Research-Group, 2005; Hogg & Chakravarthy, 2006; Wang, 

Wilson, Locke, & Edwards, 2002).  Visual field testing is one of the frequently-performed 

clinical tests in AMD. Midena et al reported that functional abnormalities are present in 

eyes with macular drusen, although the drusen may not directly cause a reduction in 

sensitivity (Midena et al., 2007). These authors also opined that testing sensitivity in the 

central visual field is a reliable, easy to administer, and relatively quick way to understand 

the disease. Retinal degeneration in patients with AMD is not restricted to the macula but 

is usually more widespread, and it is now known that even normal appearing retinal regions 

can have deficits in various visual functions like dark adaptation, spatial contrast sensitivity 

and flicker sensitivity (Curcio et al., 2000; Hogg & Chakravarthy, 2006; Rogala et al., 

2015). Some types of functional testing like flicker thresholds and photo stress recovery 

(Dimitrov et al., 2011) or dark adaptation (Jackson et al., 2014) have been reported recently 

to have the capability to diagnose some of the earliest changes in AMD. There have been 

conflicting reports about whether visual sensitivity is impaired over retinal regions with 

drusen, although concurrence exists that field losses exist over areas of pigment epithelial 
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atrophy in AMD subjects (Iwama et al., 2010; Midena et al., 2007; Rohrschneider et al., 

2008) 

STGD primarily impacts the macular cones (and secondarily the rod system) and 

subjects can exhibit reduced foveal and extrafoveal focal electroretinograms, reduced 

pigment density, delayed bleaching adaptation and prolongation of rod dark adaptation, 

especially the later segment of rod recovery (Fishman, Farbman, & Alexander, 1991; 

Scullica & Falsini, 2001). Sunness & Steiner (2008), reported that retinal areas that have a 

uniform loss of auto-fluorescence (AF) are very likely to have dense scotomas. They also 

concluded that lesions observed in fundus photography or AF imaging may not directly 

correlate with the size and location of the dense scotoma. More recently, Parodi et al. 

(2015) used near-infrared  AF to image 27 patients with STGD. They reported that eyes 

with foveal hyper-AF had better acuity, better mean sensitivity within the central 2° retinal 

regions, and better preservation of the outer retinal layers as observed with optical 

coherence tomography (OCT) imaging.  

3.1.4 Reading and Contrast Sensitivity 

Reading and contrast deficits in patients with central vision loss will be dealt with 

in greater detail in the fourth chapter and only a brief overview is provided here. Legge and 

his colleagues were one of the first groups to document a subnormal (~5x slower) reading 

speed in subjects with bilateral CFL (Legge et al., 1985). The visual-field deficits in AMD 

and STGD are only compounded by an associated loss in contrast sensitivity (Kleiner, 

Enger, & Fine, 1988; Ortiz, Jiménez, Pérez-ocón, & Castro, 2010). When studying the role 
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of contrast in low-vision subjects, Rubin and Legge (1989) concluded that visually 

impaired subjects act as ‘contrast attenuators’, and if text contrast is appropriately scaled 

for the reduction in contrast sensitivity, the effect of contrast on reading is similar to that 

seen in normally sighted subjects. Chung, Mansfield, & Legge (1998) explored reading 

performance in normal peripheral vision (up to 20 deg) and reported that the reading speed 

varies with eccentricity even after scaling for the print size. They inferred that the print size 

of the words is not the only limitation on reading with peripheral retina. A study that 

assessed word reading in normal peripheral vision using Rapid Serial Visual Presentation 

(RSVP) after scaling for font size, showed that reading rates are consistently better than 

those observed in AMD subjects (Rubin & Turano, 1994) 

Reading difficulties are one of the most common complaints in CFL patients, and 

hence low vision management has been biased to cater to this need (Elliott et al., 1997). In 

evaluating the results of low vision rehabilitation, reading speed is more informative than 

visual acuity, as reading is much more demanding than identifying a small number of letters 

on the acuity chart. Subjects with STGD read consistently better than those with AMD. 

Legge, Ross, Isenberg, & LaMay (1992) assessed reading speed using MNRead sentences 

in a cohort of subjects with AMD, STGD and other types of CFL and found that for a given 

acuity the average reading speed of the STGD subjects was ~2 times better than that of 

AMD subjects.  Fixation instability, a reduction in the number of characters that can be 

recognized in one glance (the visual span), and slower temporal processing are three factors 

proposed to explain the subnormal reading performance in established CFL subjects with 
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stable PRLs (Cheong et al., 2008; Cheong, Legge, Lawrence, Cheung, & Ruff, 2007). 

However, none of these factors provides a complete explanation. 

Legge and Kersten (1987) used contrast increment thresholds to obtain the contrast 

discrimination functions in nasal (up to 10 deg) and temporal retina (up to 20 deg) of 2 

subjects with normal vision. They concluded that when scaled with the local contrast 

sensitivity function the contrast discrimination functions were both qualitatively and 

quantitatively similar in central and peripheral vision. Ortiz et al. (2010) plotted the contrast 

sensitivity function in 25 AMD patients and aside from the expected lowering of the high 

spatial frequency cut-off, a significant difference from subjects with normal vision was 

found for low and mid spatial frequencies ranging from 0.6 - 8.2 cycles per degree. 

Recently, Chung and Legge (2016) compared the contrast sensitivity functions (CSFs) in 

normally-sighted and low-vision subjects. They report that the CSFs in low-vision subjects 

can be approximated by the CSF from normally-sighted subjects that is shifted along both 

the log-spatial frequency and log-contrast sensitivity axes. The shifting accounts for the 

impaired acuity and contrast sensitivity of the low-vision subjects. As a last comment on 

contrast and reading, Seiple, Holopigian, Szlyk, & Greenstein (1995) investigated the 

impact of random element loss on supra-threshold letter identification and reported that at 

higher levels of element dropout reduced luminance and contrast can combine to decrease 

the accuracy of letter identification. Extending these results to subjects with CFL, if the 

PRL has considerable loses in sensitivity (akin to random element loss) along with a co-

existing impairment of contrast sensitivity, letter identification and hence reading would 

be expected to be impacted negatively. Recently Winther & Frisen (2015) reported that 
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rarebit testing using receptive field-size microdots can reveal ‘hidden’ deficits in macular 

disease. Specifically, the subjects with AMD required a higher number of rarebit elements 

per character segment to identify digits that were ~20/200 in size. 

3.1.5 Micro-perimetry 

The problems of testing patients with variable and often non-central fixation are 

minimized by the Nidek MP-1 micro-perimeter, which can compensate largely for 

fixational eye movements and present targets reliably to specific regions of the retina, such 

that retinal sensitivity changes can be followed over the course of the disease and its 

treatment (Midena, Radin, & Convento, 2006).  Micro-perimeters have been used 

increasingly in the recent past to assess a variety of retinal conditions, including AMD. 

Dinc, Yenerel, Gorgun, & Oncel (2008) concluded that micro-perimetry is a safe, non-

invasive diagnostic procedure that is effective in detecting early function loss in the macula 

of subjects with AMD. Because much of the inherent fixation instability of eyes with AMD 

can be compensated by the instrument, the results are expected to be more reliable than 

those of conventional perimetry (Midena et al., 2006). Hartmann et al. (2011) used 

scanning-laser-ophthalmoscope-based microperimetry to assess sensitivity over drusen in 

a cohort of dry AMD subjects. They reported good correlation between drusen volume and 

retinal sensitivity. White-yellowish fish-tail like spots (flecks) are usually noted in STGD 

and Verdina et al. (2012) reported that the hyper-AF flecks are associated with a significant 

reduction of visual sensitivity (in MP-1 testing) and alteration of the photoreceptor layer in 

OCT imaging. Several other groups investigated sensitivity in eyes with AMD in retinal 
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regions with pigmentary changes, drusen, and with demonstrated abnormal AF, but the 

crucial region around PRL has not received sufficient attention (Iwama et al., 2010; 

Edoardo Midena et al., 2007; Rogala et al., 2015; Sulzbacher et al., 2012; Yehoshua & 

Rosenfeld, 2012).  

3.1.6 Structural Imaging of the Retina 

High resolution tomographic imaging of the macula has been shown to provide 

crucial details for diagnosing, monitoring and managing many central retinal disorders 

including macular degeneration. Specifically, Yehoshua & Rosenfeld (2012) emphasized 

the utility of Spectral Domain Optical Coherence Tomography (SD-OCT) in imaging both 

drusen and geographic atrophy, the two classic retinal features of a dry AMD.  The robust 

algorithms included for the analysis of OCT images provide an option for reliably 

quantifying the volume and area of these retinal changes. Morphologic alterations of the 

retinal pigment epithelium (RPE) and other outer retinal layers can be determined by SD-

OCT and several studies in the past decade have documented these alterations (Acton, 

Theodore Smith, Hood, & Greenstein, 2012; Fleckenstein et al., 2008; Schuman et al., 

2009; Sulzbacher et al., 2012). Outer retinal layer changes, like distinct thickening of the 

external limiting membrane and accumulation of reflective deposits in the outer nuclear 

layer (Lee et al., 2014), have also been documented in STGD. In a cohort of subjects with 

retinal degeneration caused by ABCA4 mutation, Huang et al (2014) reported that 

extensive thinning of the photoreceptor layer can be associated with inner retinal changes 

like thickening of the inner nuclear layer, perhaps due to retinal remodeling. 
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Many of the studies cited above employed different segmentation techniques, 

including manual segmentation, to mark the boundaries of desired retinal layers. Some of 

the most commonly reported automated segmentation techniques use the shortest-path 

approach based on graph theory (Chiu et al., 2012; Garvin et al., 2009). Although some 

segmentation algorithms are available for free download and limited use (Human and 

Murine Retinal OCT Analysis and Display. (September 2014). Retrieved from 

https://www.iibi.uiowa.edu/content/iowa-reference-algorithms-human-and-murine-oct-

retinal-layer-analysis-and-display), we chose to segment the retinal layers manually in the 

study described here. This was primarily because of the diverse changes that are seen in 

the retinas of CFL subjects and the greater accuracy that can be achieved by manual 

segmentation in the presence of pathologies. Manual segmentation was feasible because 

the number of OCT scans that was segmented was relatively small (~10-30 scans per 

subject). 

Landa, Su, Garcia, Seiple, & Rosen (2011) showed that the retinal sensitivities 

assessed by microperimetry correlated well with the integrity of the IS-OS junctional layer 

in both dry and wet forms of AMD. Acton et al. (2012) reported significant thinning of the 

photoreceptor layer and thickening of the RPE that was associated with visual field defects 

found during 10-2 testing using a MP-1 in a cohort of subjects with early AMD. However, 

the studies in the literature don’t probe the region of PRL locally. Conventional visual-field 

testing has a sampling density of 2 deg, whereas the region of PRL is often <2deg wide 

(mean = 0.66 deg to 1.24 deg, calculated as the circle diameter from reported BCEA values 

https://www.iibi.uiowa.edu/content/iowa-reference-algorithms-human-and-murine-oct-retinal-layer-analysis-and-display
https://www.iibi.uiowa.edu/content/iowa-reference-algorithms-human-and-murine-oct-retinal-layer-analysis-and-display
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of 0.08 log deg2 for word fixation (Bedell et al., 2015) and 3.09 log arc min2 for fixation 

on faces (Seiple, Rosen, & Garcia, 2013)).  

Although not strictly a structural assessment, many investigators in the past decade 

have documented a wide spectrum of changes in the AF patterns of patients with CFL. 

Bindewald et al. (2005) classified AF changes in AMD subjects into 8 phenotypic patterns 

including focal, reticular and speckled patterns. They also discussed the poor correlation 

of AF changes with visible fundus lesions. Nevertheless, the origin of AF is thought to be 

due to lipofuscin (LF) in the RPE which, when accumulated in excess, can damage both 

the RPE and nearby retinal cells (Dorey, Wu, Ebenstein, Garsd, & Weiter, 1989). In a 

seminal study, Dorey et al. (1989) counted the numbers of RPE and photoreceptor cells 

and measured LF fluorescence (at 470 nm, with excitation at 365nm) at 6 sites in the central 

and peripheral retina. They reported that the number of photoreceptors per RPE cell was 

higher where LF levels were elevated. They supposed that increased LF levels (due to 

factors including environmental and genetic, as in STGD) may increase the risk of 

degeneration of RPE and/or photoreceptor cells. Lastly, Smith et al. (2006) reported that a 

focal increase in AF co-localized with soft drusen and areas of hyper pigmentation in 

subjects with early AMD. On the other hand, in eyes with advanced atrophic AMD, the 

increased AF was dispersed and was noted in areas adjacent to drusen or GA. 

3.1.7 Why Probe the Local Changes at the PRL? 

The visual span is the region around fixation within which characters of given size 

can be resolved (Dockeray, 1910; Legge, Ahn, Klitz, & Luebker, 1997; Legge, Mansfield, 
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& Chung, 2001). Beyond the boundary dictated by the visual span (usually specified as a 

number of letters and dependent on letter size and presentation type) letters are no longer 

recognizable. In the retinal periphery, the visual span is reduced jointly by a decrease in 

visual acuity (so that letters need to be larger to resolvable) and an increase in crowding 

(Legge et al., 2001). The perceptual span, which is usually bigger than the visual span, can 

extend up to 5 deg in the reading direction during a fixation (Trauzettel-Klosinski, 2011). 

Thus, if the PRL is surrounded by areas of micro-scotoma then, not only is the available 

visual field reduced, but the extension of the perceptual span in the direction of reading 

may be reduced or nullified. These considerations provide the rationale for probing visual 

sensitivity specifically in the vicinity of the PRL. It is worth noting that in this study we 

probed only the region of the PRL (~1 - 3°) for sensitivity changes and so have no evidence 

whether the losses in sensitivity are sufficiently widespread to extend beyond the PRL (i.e., 

to include the perceptual span region). Nevertheless, in the next chapter on reading with 

simulated scotomas we demonstrate the impact of random element deletions, for words 

that occupy wider regions in peripheral retina. 

When text is obscured partially by one or more micro-scotomas, an obvious 

reaction is to shift the text to another retinal region. If a patient’s PRL is known to include 

areas of reduced sensitivity (micro-scotomas), then training to use a different PRL, where 

sensitivity is more homogeneous, may be fruitful. In subjects with macular degeneration, 

Cheong et al. (2007) documented longer temporal thresholds for letter recognition than 

age-matched controls at the same retinal eccentricity. They ruled out crowding as a 

contributing factor and suggested that this deficit is secondary to distortions of the sampled 
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image that result from concomitant pathology in the peripheral retina and/or to fixation 

instability. As indicated briefly above, SD-OCT imaging studies have provided crucial 

insights in various forms and stages of AMD and juvenile macular degeneration. The 

current study aims to relate the outer retinal structure to local sensitivity losses and is 

expected to provide better understanding of the characteristics of a critical region of the 

retina - the fixation PRL. 

Documenting and relating SD-OCT changes around the PRL to retinal sensitivity 

as determined perimetrically is pivotal because SD-OCT is a lot quicker to perform than 

microperimetry and could therefore serve as a surrogate indicator for designating an 

appropriate PRL for visual rehabilitation. We propose to detect regions of reduced 

sensitivity (i.e., micro-scotomas - MSs) in the vicinity of the PRL in subjects with bilateral 

central field loss, and relate them to structural abnormalities in the same retinal region, as 

revealed by SD-OCT imaging. Mapping the MSs of subjects with AMD is expected to 

benefit visual rehabilitation, as patients can be trained to use an area of non-central retina 

(Shima et al., 2010) with few or no MSs as the PRL for essential visual tasks like reading 

and facial recognition. 

3.2 Methods 

Twenty-nine subjects (Age range: 17-89 years, Median: 57 years, See Table 3-1) 

with bilateral CFL due to conditions like age-related macular degeneration, Stargardt 

disease, cone dystrophy etc. were recruited from the Center for Sight Enhancement at the 

University Eye Institute, University of Houston. The study protocol was reviewed by the 
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Committee for the Protection of Human Subjects at the University of Houston and all the 

subjects provided written informed consent (or assent along with parental consent) before 

participating. Subjects were compensated in part for their time and participation. Most of 

the testing and all the outcome measures reported in this study are for the eye with better 

corrected distance visual acuity (BCVA) or for the preferred eye (determined as the eye 

that subjects didn’t close when asked to close one eye) if acuity in the two eyes was equal. 

During testing, the non-participating eye was occluded with an eye patch. A NIDEK MP-

1 microperimeter (S/W Version: 1.7, NIDEK Inc., Padova, Italy) was used both to assess 

fixation and for visual-field testing. Except for a reading assessment that was performed 

using MNRead charts (Lighthouse Low Vision Products), all testing on both study visits 

was done after pupillary dilation using 1% Tropicamide and/or 2.5% Phyenylephrine. The 

two study visits were at least a week (Range: 1-27 weeks) apart. Details regarding the 

various test procedures are given below, in the order of testing. 

3.2.1 Reading Assessment 

Hand-held MNRead charts (Charts 1 and 3, Precision Vision, IL) with black text 

printed on a uniform white background were held by an examiner in front of the subject’s 

tested eye at the preferred test distance (the distance at which the chart title was clear to 

the subject with their near prescription, if any; range: 16-40 cm) and viewing angle. Each 

chart has a total of 19 sentences (acuity range: 1.3 to -0.5 logMAR when tested at 40 cm) 

and each sentence comprises 60 characters printed in 3 lines.  The test required 2 

examiners. Examiner 1 had the scoring key to evaluate reading accuracy and a stopwatch 
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to record the time taken (in seconds) to read each sentence. Examiner 2 was responsible 

for holding the chart at the appropriate distance and position. The subjects always read 

from chart 1 first and the sentence to be tested, as well as all smaller sentences, were 

covered with a sheet of blank paper until examiner 1 instructed the other to reveal it. The 

uncovering of each sentence as the subjects read eliminated any preview benefit and 

reduced the possibility of confusion. Subjects were repeatedly encouraged to correct any 

errors and guess the words when necessary. It was stressed that both speed and accuracy 

were important. Testing began after confirming the chart was evenly illuminated (LAvg ≈ 

63 cd/m2) by normal overhead room illumination. Subjects wore their habitual near 

correction, if any, or a +2.50D near addition (stronger additions for closer distances) and 

read the sentences aloud. The reading acuity (RA) in logMAR was determined from the 

number of sentences (‘Sentences’ in the formula below) that could be read without making 

significant errors (MNRead brochure, Light house). When necessary, the RA was corrected 

for reading at a non-standard viewing distance and for missed words. The critical print size 

(CPS, in logMAR) was calculated as the smallest print that could be read at maximum 

speed, also accounting for a non-standard reading distance when applicable. The 

assessment was repeated immediately using a second MNRead chart and the reported RA, 

CPS and maximum reading speed (in words per minute, WPM) are the average of the 2 

recordings. The reading speed and RA were calculated as:  
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𝑅𝑒𝑎𝑑𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 (𝑊𝑃𝑀)

=
60 × (10 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑊𝑜𝑟𝑑𝑠 𝑀𝑖𝑠𝑠𝑒𝑑)

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 (𝑖𝑛  𝑠)
 

𝑅𝑒𝑎𝑑𝑖𝑛𝑔 𝐴𝑐𝑢𝑖𝑡𝑦 (𝑅𝐴)

= 1.4 − (𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 × 0.1) − (𝑒𝑟𝑟𝑜𝑟𝑠 × 0.01) 

 

S. NO Subject 

Code 

Diagnosis Age 

(Years) 

Gender Follow up Time 

(Weeks) 

1 S1 AMD 68 M 20.1 

2 S2 AMD 77 M 1.4 

3 S3 STGD 50 M 2.4 

4 S4 STGD 20 M 2.0 

5 S5 Cone Rod Dystrophy 56 F 6.3 

6 S6 STGD 32 M 7.9 

7 S7 Plaquenil Maculopathy 63 F 4.0 

8 S8 Cone Rod Dystrophy 44 M 1.0 

9 S9 STGD 30 F 1.0 

10 S10 AMD 69 M 7.6 

11 S11 Macular Hole 84 F 2.6 

12 S12 STGD 45 F 10.0 

13 S14 STGD 31 M 1.0 

14 S15 STGD 37 F 7.7 
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15 S16 AMD 85 F 3.3 

16 S18 STGD 42 F 27.7 

17 S19 AMD 73 M 2.3 

18 S20 Plaquenil Maculopathy 62 F 4.7 

19 S22 STGD 57 F 13.6 

20 S23 AMD 89 F 7.1 

21 S25 Myopic Macular Degeneration 57 F 1.0 

22 S26 STGD 50 F 4.1 

23 S27 AMD 88 M 2.0 

24 S28 AMD 78 F 5.3 

25 S29 AMD 80 M 1.0 

26 S30 STGD 58 F 4.7 

27 S31 STGD 17 M 2.3 

28 S32 AMD 76 M 0.9 

29 S33 Cone Dystrophy 39 F 0.1 

      

  Median 57 Min. 0.1 

  Mean 57.1 Max. 27.7 

  SD 20.8   

      

Table 3-1 Demographics of Subjects 

Details and demographics of all 29 (16 females) study subjects. AMD is age-related 

macular degeneration and STGD is Stargardt disease. The age of the subject on the first 

visit is reported here. Four more subjects were able to make it only for the first study visit 
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and hence did not complete the study. None of the findings from those 4 subjects are 

reported. 

 

3.2.2 Freiburg Visual Acuity Testing (FrACT) - Contrast 

“FrACT” is a computer based program that uses a psychometric method (bracketing 

threshold strategy, in this study) combined with anti-aliasing and dithering to provide 

automated, self-paced measurement of visual acuity, contrast sensitivity and Vernier acuity 

(Bach, 1996). The program is available as freeware (Freiburg Vision Test (‘FrACT’), by 

Prof. Michael Bach. (February 2016), Retrieved from   

http://www.michaelbach.de/fract/index.html) and has been widely used in the vision 

science literature (Mcculloch et al., 2011; Plank et al., 2014). FrACT software (Ver. 3.9) 

was installed on a personal laptop (Thinkpad Edge 14”, Intel HD Graphics) and the LCD 

display was gamma corrected using a Minolta LS-100 photometer (See Appendix 6.1 for 

more details). FrACT contrast testing was performed under standard room illumination. 

The subject sat at 50 cm with the test eye aligned (other eye patched) to the center of the 

display. The task was to report the orientation of single Landolt C (sized either 50 or 100 

arc min ≈ 20/200 or 20/400) that appeared at the center of the display with a fixed size but 

a contrast that varied from trial to trial. The default size of the Landolt C was 20/200 (which 

is larger than BCVA for most subjects) and was increased to 20/400 only when the former 

size was not recognizable at high contrast. Subjects were encouraged to adopt their 

preferred eye and head positions and report the orientation of the C within the 30 s duration 

http://www.michaelbach.de/fract/index.html
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of each trial. If the subject did not respond within 30 s, the C disappeared from the screen 

and the program recorded the response as incorrect. The subject’s response was registered 

by the examiner using the keyboard arrow keys and an auditory beep provided immediate 

feedback about the correctness of each response. The values reported in this study are the 

average of the Weber threshold contrasts, obtained on 2 successive sessions of 24 trials 

each. 

3.2.3 Fixation Testing 

The word-fixation PRL for a 3-letter word sized at each subject’s CPS (based on 

the outcome of MN Read testing) was assessed using a Nidek MP-1 microperimeter. 

Subjects were instructed to use their preferred eye and viewing position to a) ensure that 

the whole word was visible and clear and if so b) fixate at the central letter of a 3-letter 

word (See Figure 3-1) presented on the uniform white background of the MP-1’s LCD 

display. These instructions were repeated continuously during the fixation assessment. 

Note that in spite of the repeated instructions the subjects could potentially fixate at other 

locations, such as the top (and not center) of the middle letter or on the last letter. 

Unfortunately, there is no way to confirm where the subjects were really looking. However, 

for the accurate estimation of the PRL, it is crucial that subjects were looking at the desired 

portion of the relatively large fixation targets.  

A reference infrared (IR) illuminated image was captured by the built-in IR 

sensitive camera (768 x 576 pixels) of the MP-1 at the start of the fixation testing. The 

examiner then selected a feature-rich region of interest (ROI, 128 x 128 pixels), such as a 
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blood vessel crossing or part of the disc/atrophy margin on the frozen reference image. The 

ROI was tracked at a sampling rate of 25 Hz (40 ms) during the fixation testing. The MP-

1 first referenced the center of the fixation target to the top-left corner of the reference IR-

image and after the start of the live fixation recording, the coordinates of the center of the 

fixation target were computed (once every 40ms) based on the X and Y shifts of the 

selected ROI. Fixation was usually recorded for a duration of approximately 30 seconds 

(Range: 12-55 Seconds). Three assessments of fixation were obtained successively and the 

fixation files were exported to compute the bivariate contour ellipse area (BCEA). The 

latter was calculated, after filtering outliers (±3 SD, to eliminate data points potentially 

collected when MP-1 lost tracking of the ROI or from periods before and after blinking), 

using the following formula (Timberlake 2005): 

BCEA = 𝜋 𝜒2 𝜎𝑥  𝜎𝑦 √(1 − 𝜌2) 

where, 𝜒2 is the value of the chi-square distribution with 2 degrees of freedom for 

a probability of 68, 95 or 99% (corresponding to ±1, ±2 or ±3 SDs), 𝜎𝑥, 𝜎𝑦 are the standard 

deviations of the distribution of fixation positions in the X and Y meridians, and ρ is the 

Pearson correlation coefficient between the set of recorded X and Y values. The MP-1’s 

exported fixation file provides a degrees-to-pixel conversion factor (1° ≈ 15.19 pixels) and 

the X and Y coordinates (in deg, referenced to the top-left corner of the 768 x 576 pixel IR 

image) of the retinal locations at which the center of the fixation target was imaged during 

each fixation sample. BCEA values that were computed offline using a custom MATLAB 
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(R2007a/R2014a - MathWorks, Natick, MA) program agreed well with the values returned 

by the MP-1’s software.  

The datum recorded for each subject’s median BCEA from the three successive 

fixation tests and the retinal region corresponding to this contour ellipse were used to 

perform sensitivity screening on the second study visit. During fixation testing, a 

transparent plastic sheet was placed over the output display of the MP-1 and the locations 

of the word-fixation PRL as well as retinal features like blood vessels and the margins of 

the optic disc and macular scar were marked. This transparency was used during the second 

study visit to help center the test grid at the location of the PRL.  

The repeatability of positioning the test array using the transparency was assessed 

by placing a 9x9 test grid, 6 times at an IR image location designated as the word-fixation 

PRL. Based on the transparencies that had the PRL marking of 4 CVL subjects (S18,19,22 

and 28), the grids were centered on a standard IR image that was captured with lens cap on 

and without positioning any subject in front of eyepiece. The average of the SD's of the X 

and Y locations of the center of the grid was: ~ 1.1 pixel (range: 0.52 - 1.64). 

Eccentricity of the PRL: The distance of the center of the PRL with median BCEA from 

the center of the optic disc was measured using the overlay grid option of the MP-1. The 

MP-1 overlays a circular grid centered on the PRL center, and two experimenters (HEB 

and AKK) marked the mutually agreed location of optic disc center on the MP-1’s 

computer display. A ruler was then placed vertically and horizontally from the marked disc 

center to read the eccentricity of the disc center from the center of the PRL. Using the 
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reported normative values of the foveal center from the center of the optic disc (15.5° 

temporal and 1.5° inferior from the optic disc center, according to Rohrschneider at al., 

2004), and the Pythagorean theorem, the radial eccentricity of the PRL (in degrees) from 

presumed foveal location was calculated. 

3.2.4 Central Visual Field Testing 

After fixation testing, central retinal sensitivity in the better (test) eye of each 

subject was assessed using a standard Humphrey 10-2 grid (68 points, 2° apart, 4-2-1 

thresholding). Goldmann size II spots (square of nominal side 13 arc min) with a luminance 

ranging from 0 to 20 dB (127 to 2.54 cd/m2) were presented on a white background of 1.27 

cd/m2 (4 apostilbs). Subjects were instructed regarding the test procedures, method of 

responding, and the need to maintain stable fixation on the fixation target (1-3° red cross). 

Testing began after the subjects had adapted for at least 15 minutes to the dimly lit 

examination room, as performed in other studies (Longhin et al., 2013; Midena, Vujosevic, 

& Cavarzeran, 2010). After ensuring adequate pupillary dilation, the MP-1 was positioned 

to provide the best focused and uniformly illuminated IR retinal image, after adjusting the 

IR power and internal refractive-error correction (when applicable). A retinal ROI (128 x 

128 pixels) rich in details and with a ROI index of at least 2.5 (range in our subjects: 2.5 – 

8.0) was chosen from an IR image that was frozen during fixation with the previously 

determined PRL. The MP-1 automatically centers the 10-2 test grid based on the subject’s 

fixation locus during the initial few seconds (2-5 sec) of field testing. Consequently, the 
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center of the test grid need not coincide exactly with the word-fixation PRL that was 

documented during fixation testing. 

Field testing usually required 10-30 minutes to complete, including rest breaks. The 

MP-1 provides an option to automatically or manually register the IR-test image with a 

color fundus image (1392 x 1038 pixels) that can be acquired at the end of the field testing 

(See Figure 3-1). This proprietary automatic registration appears to be based on a cross-

correlation technique and requires the selection of 2 feature-rich ROIs in both the IR and 

color fundus images. Automatic image registration was attempted in all subjects; if the 

automatic registration procedure failed then a manual registration (which required manual 

marking of 2 retinal landmarks) was performed. The word-fixation PRL was located in the 

registered color fundus image and the median sensitivity of the 4 – 6 test locations 

surrounding the PRL was used to determine the luminance of the supra-threshold screening 

targets described in the next section. The 10-2 testing confirmed the presence of CFL in 

the test eye of each subject included in the study. 
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Figure 3-1 Fixation and 10-2 Testing with MP-1 

Fixation testing (IR image on the top) to determine the word-fixation PRL and the 

10-2 perimetric testing (color fundus image on the bottom) for the same subject S10.  

Note that in the top image, the word is flipped vertically (in the retinal view, the 

word would be inverted) to illustrate the field view. The word-fixation PRL (enclosed by 

the 3SD cyan BCE in the IR-image), roughly coincides in location with the cross-fixation 

PRL (center of the cloud of cyan dots) during perimetric testing in this subject with AMD.  

It is paradoxical that some subjects in our study (like S10) chose to position the 
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word at a retinal location with a surrounding sensitivity of 0dB. A possible explanation is 

that the large high-contrast words are more visible than the small 0dB test spots due to 

spatial summation. Also, it should be noted that the 0dB in MP-1 is 400 asb (127 cd/m2) 

and is therefore not as bright as targets presented in the Humphrey visual field analyzer 

with 0db = 10,000 asb (3185 cd/m2). 

Aside from the standard 68 test locations that comprise the 10-2 grid, the MP-1 

allows testing of more locations (like 4 locations near the bottom edge of the atrophic 

region) at the end of testing. Greater scatter of the fixation dots in the color fundus image 

than in the IR image is attributed to the substantially longer duration of perimetric testing 

than word fixation (Longhin et al., 2013). 

 

A screening test (6 x 6° grid, 36 locations 1° apart) with 0 dB spots was 

implemented on the second study visit to confirm the presence of CFL in the non-tested 

(worse) eye. This testing revealed that all of our subjects had a region of ‘absolute’ scotoma 

in the non-preferred eye. 

3.2.5 Supra-threshold Sensitivity Screening 

Supra-threshold screening to detect micro-scotomas (MSs) was performed using 

Goldmann size II targets (13 arc min nominal, maximum LSpot =127 cd/m2, LBG = 1.27 

cd/m2) with a center-to-center spacing of either 12 or 18 arc min (0.2 or 0.3 deg) in a grid 

region centered on the word-fixation PRL (See Figure 3-2). We prefer to refer the regions 

within the PRL at which test spots were consistently not detected as a ‘micro-scotomas’ a) 
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as the Goldmann size II spots that we employed are half the diameter of the conventional 

size III (26 arc min) spots and b) because of the high sampling density that was used. A 

custom MATLAB code was used to densely sample sensitivity within the word-fixation 

PRL (number of locations range: 23-94). The sampling density (0.2 or 0.3 deg center-to-

center) and size of the ellipse (1 or 2SD) sampled was chosen so as to minimize the overall 

test duration (usually 10-20 min) and, hence, avoid fatigue. Thus, the supra-threshold 

screening grid used for each subject was unique. The grid was manually positioned to span 

the word-fixation PRL, using the landmarks recorded on the plastic transparency during 

visit 1 as a guide. The grid pattern was designed using the ‘pattern editor’ option of the 

MP-1 and, in separate screening tests, the luminance of the test spots was set to one of 2 

luminance levels. 
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Figure 3-2 Screening the Word-Fixation PRL 

 

S10 
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The supra-threshold screening of the word-fixation PRL in subject S10. The 

customized grid that was centered on the word-fixation PRL (top image) is zoomed to show 

the details (bottom image). In the zoomed image, the blue unfilled squares are from test 1 

(Filled blue squares are the locations of test spots not detected on test 1, shown along with 

8x5 pixel overlap regions - blue dashed lines) and the red unfilled squares are from test 2 

(thick red squares are the locations of test spots not detected on test 2). There were 6 MSs, 

defined as overlapping locations at which a test spot was detected on neither test 1 or test 

2 (labeled 1-6 in the bottom panel) and 15 locations that were labeled nonMSs 

(overlapping locations at which test spots were detected on both test 1 and test 2, labeled 

in yellow) in this subject. 

 

All subjects were screened using the brightest (0 dB) test spots available and 

locations at which these 0 dB targets were not detected were designated ‘absolute 

scotomas.’ ‘Step size’ is an option that the MP-1 provides for ‘semi-automatic’ testing and 

all the testing reported here for supra-threshold screening was done using this option. Step 

size dictates the subsequent stimulus luminance when a test spot of the initial luminance 

value is seen by the subject. For example, if the observer detected a test spot that was 

initially 0 dB and the step size was 5 dB, the luminance of the next stimulus presented to 

the same retinal location would be +5 dB, and so on. If 10-2 central-field testing indicated 

that the median sensitivity (of 4 or 6 locations) around the PRL was ≥8 dB, test spots of a 

second, lower luminance level (5 dB brighter than median sensitivity; maximum luminance 
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= 3 dB; range across subjects: 3-7 dB) was chosen to screen the PRL for ‘relative’ 

scotomas. For example, if 10-2 testing revealed a median sensitivity around the PRL of 12 

dB, then the lower luminance level used to probe for ‘relative’ scotomas was 12 - 5 = 7 dB 

(Also see Appendix 6.18). However, only the retinal locations with ‘absolute’ scotomas 

(0 dB test spot not seen) were included in the analysis to relate functional and structural 

changes within the PRL. This is primarily because the sensitivity measured at the PRL was 

not high enough in all subjects for ‘relative’ scotomas to be assessed. Irrespective of the 

number of luminance levels tested, testing at each test-spot luminance was repeated at each 

grid location once using the ‘follow-up’ test option of MP-1. 

Follow-up testing immediately followed the initial, baseline testing. Before a 

follow-up test begins, the MP-1 requires the examiner to select 2 ROIs in the retinal image 

captured during the second (follow-up) screening test. The MP-1 uses these ROIs to 

register the IR image pairs from the initial and follow-up testing automatically. Unlike the 

registration of the IR and color image pair following 10-2 testing, automatic registration of 

the IR image pairs from the initial and follow-up tests never failed. Following IR-to-IR 

image registration, the MP-1 automatically placed the supra-threshold grid at the same 

retinal location as during the initial test. The registration accuracy of the MP-1 for follow-

up testing was evaluated and reported previously (CHAPTER II) to be within ~2 pixels in 

subjects with CFL when using a medium level of IR intensity to illuminate the fundus. 
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3.2.6 Image Registration: IR-MP-1 Images 

A Generalized Dual Boot strap – Iterative Closest Point (GDB-ICP, Yang et al., 

2007) algorithm was used offline to register IR image pairs, and the retinal locations of the 

first and second supra-threshold screening grids, during baseline and follow-up testing. 

Briefly, the GDB-ICP extracts and matches key points to create a local transformation, 

which expands progressively to include the entire overlap region between images. This 

method of offline registration is different and is more computationally intensive than the 

in-built ROI-based registration of the MP-1. The accuracy of the algorithm-based 

registration was confirmed visually by observing minimum flicker when the two images 

were alternated rapidly. The 2-D affine coefficients returned by the GDB-ICP algorithm 

were used to transform and re-plot the locations of the test points during follow-up testing 

onto the baseline IR image. (See Figure 3-2– zoomed IR images). A rectangular overlap 

region (8 x 5 pixels, determined from the mean ± SD registration error, CHAPTER II (Also 

see Appendix 6.2)), was drawn around each ‘absolute’ scotoma (0 dB test spot not seen) 

that was found during baseline testing. An ‘absolute’ scotoma detected during follow-up 

testing was considered to overlap with a baseline scotoma if the follow-up scotoma fell 

within the rectangular region of overlap. Only those locations that had overlapping 

‘absolute’ MSs (0 dB not seen on both baseline and follow-up tests) and regions that 

demonstrated no MS on both tests were used in the analysis to relate functional sensitivity 

results to structural changes in the outer retina. 



   

71 

 

3.2.7 Reading Assessment within the MP-1 

Calibration of Sentences: A corpus of 40 MNRead like sentences (provided by Drs. 

S. Mansfeld and G. Legge) were constructed in 4 lines each of 14-point Courier font using 

Photoshop (CS6, Adobe Systems Inc. San Jose, CA). Black letters on a white background 

were designed on a 640 x 480-pixel canvas (matching the resolution of LCD display of the 

MP-1), saved as bitmap (.bmp) images, and later uploaded to the MP-1 system.  

To calibrate the letter size of the text presented in the MP-1, a mirror inclined at a 

45° angle was used to present the reflected image of a laptop screen at an optical distance 

of 114 cm to the left eye of 2 subjects with normal vision. The laptop displayed a black 

lowercase ‘x’ rendered in Courier font on a white background, using the MS-Word 

(Microsoft, Redmond, WA) program. Black-on-white MNRead-like sentences were 

viewed simultaneously by the right eye on the LCD screen of the Nidek MP-1. The x-

height of the character viewed by the left eye was then adjusted by changing the font size 

in MS Word until the observer reported equal letter heights. This dichoptic image-size 

matching was done with natural pupils, in a dimly-lit room. This step allowed us to obtain 

a relation between the Courier font sizes in point notation (both in Photoshop and MS 

Word) and the x-height (expressed in logMAR) of the text displayed on the MP-1’s LCD 

display. Using this relation, 5 sets of 8 sentences with font sizes ranging from 1.3 to 0.6 

logMAR (20/400 - 20/80) were designed in Photoshop and imported to the MP-1. 

The accuracy of calibration was confirmed for all 8 sizes of sentences, again using 

dichoptic image size matching by the same 2 subjects. The lower acuity limit (≈20/80) of 
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the sentences that can be displayed within the MP-1 is contingent on the resolution of the 

LCD display. We refer to the calibrated MNRead like sentences that were displayed using 

the MP-1 as MP-1 Read sentences. The primary advantage of using the MP-1 for reading 

assessment is the opportunity to visualize the retinal region used for the reading task. The 

MP-1 provides an option to record the IR image during reading, but we chose not to record 

as our priority was to accurately measure MP-1 Read reading speed. 

MP-1 Read Assessment: Reading assessment using MP-1 Read sentences was done in 26 

of the 29 subjects after supra-threshold screening and after a couple of practice trials to 

demonstrate the reading task. As during MNRead testing, the instructions stressed that 

speed and accuracy were equally important and subjects were encouraged to correct any 

errors and guess at words when unsure. To begin each reading trial, the subject fixated on 

a cross target. After a ready signal from the subject, the fixation cross was replaced by a 

MP-1 Read sentence. Subjects read the sentences orally, with their chin resting on the MP-

1 chinrest and made eye movements as necessary. A stopwatch recorded the time taken (in 

s) to read each sentence. Testing always began with a 20/400 sentence and each time the 

subject successfully read a sentence the font size was decreased. All the reading measures 

reported here are the average of 2 measurements using 2 randomly chosen sets of MP-1 

Read sentences. The CPS and RA were calculated in the same way as during MNRead 

assessment, except that no correction for working distance was necessary and, for RA, 

there was no discounting for missed words. As during MNRead testing, the maximum 

reading speed was the best attainable reading speed. 
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3.2.8 Structural Imaging of the Retina 

The structure of the outer retina was imaged using the high resolution (Axial 

resolution ~7µm optical) imaging capabilities of a Spectral-Domain Optical Coherence 

Tomography (SD-OCT, Spectralis HRA+OCT; Heidelberg Engineering, Heidelberg, 

Germany). Subjects were seated comfortably while chin and forehead rests stabilized the 

head. Subjects fixated (usually with their PRL) on a central bright spot and were 

encouraged to blink normally throughout the testing. A high-density (B-scans ~60µ apart) 

raster scan at the ‘high-resolution’ setting was used to image the central retinal region 

including the PRL and the atrophic macular region. The Automatic Real Time (ART) mode 

was turned on and a B-Scan averaging of 9 frames was used to enhance the signal-to-noise 

ratio of the OCT scans. When time permitted, fundus auto-fluorescence imaging (blue-

FAF, λ = 488 nm) imaging was obtained after OCT imaging was completed. The Spectralis 

instrument provides an option to export ‘.vol’ files containing all the scan details and 

images for further analysis. A custom MATLAB code was used to extract the B-Scans (496 

x 768 or 496 x 1024 pixels), the high resolution confocal scanning laser ophthalmoscope 

(cSLO) image (1536 x 1536 pixels) and relevant scan details like scan start and end 

locations, pixel width and pixel height of both the OCT and the SLO image, and the 

distance between adjacent B-scans (all values in mm). The blue FAF images (1536 x 1536 

pixels) were exported separately as a .png file.  

Relating Function to Structure: The IR image coordinates of overlapping ‘absolute’ MS 

locations determined during baseline and follow-up testing were affine transformed to SLO 
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image coordinates using control-point tool matching in MATLAB. The latter involved 

manually marking 6 pairs of landmarks in each MP1 IR image and Spectralis SLO image. 

The landmarks usually selected were blood vessel crossings, regions of atrophy, and 

sections of the optic disc margin (See Figure 3-3). Like the IR-IR image pair registration 

for follow-up testing with the MP-1, the registration accuracy of the affine transformed 

MP-1 IR-image and the SLO image was always confirmed by alternatively flickering the 

image pairs. In addition, for a random subset of image pairs (4 pairs for IR-SLO and 4 other 

pairs for IR-IR follow-up testing registration) the registration accuracy was quantified 

using a psychophysical method of constant stimuli. A set of 7 known image offsets, ±2, 4, 

6 and 0 pixels were used to introduce a horizontal or vertical shift in one of the registered 

image pairs and the author reported the perceived direction of image shift. Each image shift 

was presented multiple times, in random order. A cumulative Gaussian curve was fit using 

a curve-fitting program (Psych-Fit), which returned the slope and bias for the fit. After 

inspecting the fit, the absolute bias (in pixels) was converted to arc min using the 

appropriate degree-to-pixel conversion factors of 15.19 pixels/deg for MP-1 IR images and 

51.2 pixels/deg for Spectralis SLO images. The variances of the bias for IR-IR and IR-SLO 

registration were respectively: 1.29 and 1.67 arc min2 in the horizontal direction and 4.53 

and 0.85 arc min2 in the vertical direction. The variance from uncompensated fixational 

eye movements, (reported in Chapter 2 on the accuracy of compensation by the MP-1 for 

fixational eye movements in normally-sighted subjects) was 18.06 and 22.37 arc min, 

respectively, in the horizontal and vertical directions. By adding the 2 sources of variance, 

namely, the variability from uncompensated fixational eye movements and from 
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registration error, we calculated the effective target size of a 13 arc min, size II, spot, which 

represents our region of interest, to be approximately 17.4 arc mins (horizontally), or ≈14 

pixels in the OCT image. (See Appendix 6.5) 

 

Figure 3-3 Image Registration Using 'Control point tool' 

Registering the image pairs using MATLAB control point tool in subject S10 with 

AMD. Six corresponding retinal landmarks (like a vessel crossing, atrophy or disc 

margins) were manually marked. Cross marks shown on the IR-MP-1 image (left) and the 

cSLO Spectralis image (right) are enlarged for demonstration. 

 

Manual Segmentation of Retinal Layers: All segmentation of the subjects’ OCT images 

was done by one of the authors (AKK), using a custom MATLAB program originally 
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developed by Dr. Nimesh B. Patel for segmenting the inner retinal layers. Segmentation 

was performed using a personal laptop display (Lenovo Z70, Intel HD Graphics 

5500/NVIDIA GeForce 840M) and an external mouse. A brief summary of the steps 

involved in the manual segmentation is provided here.  

ROIs, 14 pixels wide, in each B-Scan of interest that either corresponded to a 

location with overlapping ‘absolute’ MSs (henceforth, ‘MSlocn’) or no MS on both supra-

threshold screening tests (henceforth, ‘nonMSlocn’) were manually segmented. The steps 

involved in segmentation are listed here: 

 The B-Scan image (496 x 154 pixels) was cropped to only include the 14-pixel ROI 

and a padding zone (5x ROI on each side). The padding zone helped the segmenter to 

get a better understanding of the overall contour of the retinal layers. 

 When executed, the program presented both MSlocn and nonMSlocn scans from a 

given subject and hence they were segmented in the same session on the same day. 

 No information regarding the subject or the origin of the scan (i.e., from a MS or non-

MS location) was available to the segmenter. 

 The segmenter manually traced the boundaries of 4 retinal layers, namely: 

1. The outer margin of the Retinal Pigment Epithelium – Bruch’s Membrane complex 

(RPE – BM) 

2. The inner margin of the RPE 
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3. The inner margin of the Photoreceptor Nuclear layer or the Outer Nuclear layer 

(ONL)  

4. The Internal Limiting Membrane (ILM) 

 To begin marking a layer, the segmenter depressed the left mouse button and moved 

the cursor over the appropriate locations on the image. Tracking continued until the 

segmenter released the mouse button. 

 A continuous line was drawn as the cursor moved over the screen. The segmenter could 

release the cursor at any time during active tracking and click at desired locations on 

the image to revise the marking. 

 The segmentation always started with the junction between the RPE-BM (layer 1) and 

proceeded sequentially until the ILM (layer 4) was reached. 

 When segmentation of all scans from a given subject was complete, the program 

returned three thickness (3x14 matrix) values namely: RPE-BM, PL, and TR (see 

formulas below). 

 The average thickness over the 14-pixel ROI region (from the step above) was 

computed for all 3 layers (3x1 matrix) and for each scan (See Appendix 6.4 and Figure 

3-4). 

 Then for each subject, the 3 layer thicknesses (in pixels) for all the scans corresponding 

to MSlocn and nonMSlocn were separately averaged and the ratios, average MSlocn 

thickness / average nonMSlocn thickness, were calculated. It should be noted that the 
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numbers of MSlocn and nonMSlocn for a given subject were not necessarily similar 

(see Table 3-3). 

𝑅𝑃𝐸 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑅𝑃𝐸 − 𝐵𝑀)

= 𝑅𝑃𝐸 𝑂𝑢𝑡𝑒𝑟 𝑀𝑎𝑟𝑔𝑖𝑛 (𝐿𝑎𝑦𝑒𝑟 1) − 𝑅𝑃𝐸 𝐼𝑛𝑛𝑛𝑒𝑟 𝑀𝑎𝑟𝑔𝑖𝑛 (𝐿𝑎𝑦𝑒𝑟 2) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃ℎ𝑜𝑡𝑜𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 𝐿𝑎𝑦𝑒𝑟 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑃𝐿)

= 𝑅𝑃𝐸 𝐼𝑛𝑛𝑒𝑟 𝑀𝑎𝑟𝑔𝑖𝑛 (𝐿𝑎𝑦𝑒𝑟 2) − 𝑂𝑁𝐿 𝐼𝑛𝑛𝑒𝑟 𝑀𝑎𝑟𝑔𝑖𝑛 (𝐿𝑎𝑦𝑒𝑟 3) 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑡𝑖𝑛𝑎𝑙 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑇𝑅) =   𝑅𝑃𝐸 𝑂𝑢𝑡𝑒𝑟 𝑀𝑎𝑟𝑔𝑖𝑛 (𝐿𝑎𝑦𝑒𝑟 1) − 𝐼𝐿𝑀 (𝐿𝑎𝑦𝑒𝑟 4) 

𝑀𝑆: 𝑁𝑜𝑛𝑀𝑆 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 𝑓𝑜𝑟 𝑬𝒂𝒄𝒉 𝑺𝒖𝒃𝒋𝒆𝒄𝒕 (𝑅𝑃𝐸 − 𝐵𝑀 , 𝑃𝐿 , 𝑇𝑅 )

=
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎 𝐿𝑎𝑦𝑒𝑟 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑴𝑺𝒍𝒐𝒄𝒏 𝑠𝑐𝑎𝑛𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑎 𝐿𝑎𝑦𝑒𝑟 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝒏𝒐𝒏𝑴𝑺𝒍𝒐𝒄𝒏 𝑠𝑐𝑎𝑛𝑠
   

Rules for Segmentation: Initial ground rules for segmenting each layer were set and a 

subset (~5%) of the scans were segmented by the author (AKK). This initial segmentation 

was verified for accuracy by another experienced segmenter (NBP). The final segmentation 

of all ROIs began only after weeks of pilot segmentation. The outer margin of the RPE/BM 

(Layer 1) was always marked to include the BM complex, even at locations that had classic 

sub-RPE drusen or a pigment epithelial detachment (Refer to Appendix 6.6). Similarly, if 

the usually distinct hyper-reflective layer of the photoreceptor inner and outer segments 

was in contact with the RPE and could not be delineated, then marking of the inner margin 

of the RPE included this layer. Any drusen-like hyper reflective clumping/elevation was 

considered as a part of the RPE, as long as it was continuous and was attached to the RPE 

layer. There were instances when marking of the RPE margin was challenging, as when a 
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ROI was within an area of geographic atrophy where the RPE was very thin or non-existent, 

and the increased hyper reflectivity of choroid made the margin identification tricky. The 

segmenter marked any continuous hyper-reflective band of remnant pixels as RPE. The 

marking of the inner margin of the ONL (Layer 3, green trace in Figure 3-4) was toughest 

of all in our subjects and was usually guided by the boundaries of the hypo-reflective space 

of the nuclear layer. There were a wide variety of changes ranging from local thinning, 

indistinct margins, and accumulation of migrated RPE/drusenoid materials to the total 

absence of the ONL. When in doubt, the segmenter followed the contour of the RPE as a 

guide and any migrated RPE material was segmented to be within the PL boundary. 

Marking the ILM (Layer 4, purple trace) was straight forward. When an epi-retinal 

membrane was present, it was excluded as a part of the retina. (See Appendix 6.6 for few 

representative examples of segmentation) 
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Figure 3-4 Manual Segmentation of OCT Scan 

The segmentation of the outer retinal layers by manually tracing the boundary 

margins, in a representative subject (S10) with AMD. Four boundaries that were marked 

in all the scan from MS location (top image) and nonMS location (bottom image) are shown 

in different colors. Note that the segmentation was performed on a region (496 x 154 

pixels) wider than that of the ROI (the red vertical line in each image passes through the 

center of the ROI that was ~14 pixels wide). Note that for the MS/nonMS ratios, the overall 

photoreceptor layer thickness (receptor + nuclear layer, green arrow) was used and the 

RPE boundaries included the Bruch’s membrane complex (yellow arrow). 
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Post-Segmentation Analysis: MS / NonMS thickness ratios using the formula listed above 

were computed for the RPE, the whole photoreceptor layer, and for the total retina. The 

details of the retinal layers were very poor in one subject (S16) due to bad image quality 

and were excluded from the OCT analysis. For the 7 subjects (2 AMD, 2 Stargardt, 3 other 

forms of CFL) who didn’t exhibit any MSs within the PRL only the nonMSlocn scans were 

analyzed. MS / NonMS ratios could not be computed in this subset of subjects. The 6 

subjects (2 AMD, 3 STGD, and 1 other CFL) who had MSs within the PRL but no 

nonMSlocns were matched by diagnosis and eccentricity of the PRL to another subject 

who exhibited a non-zero number of nonMSlocns and ratios (average MSlocn layer 

thickness / average nonMSlocn layer thickness) were computed based on this match. 

Finally, the 28 subjects were classified into two groups namely: 1) CFL due to AMD or 

Stargardt disease and 2) other forms of CFL. Thickness ratios were analyzed separately for 

the 2 groups. In group 1, a sub-analysis between the subjects with AMD and Stargardt 

disease also was done. 

Qualitative Grading of the Region of Interest: All the MS and nonMS location scans, 

especially the 14-pixel region ROI was graded for the presence of outer retinal changes 

like: Druse(n), RPE atrophy (with or without choroidal hypertrophy), 

discontinuous/absent/abnormal IS-OS junction line (2nd hyper reflective band above the 

RPE band), absent/abnormal external limiting membrane (ELM, third hyper reflective thin 

band above IS-OS). The author (AKK) did all the grading, and was masked to the origin 

of the scans (MS/nonMS location). When the presence of abnormality was inconclusive, 

the author always classified the scans as normal. For a given subject the sum of total 
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number of abnormalities in both MS and NonMS locations were calculated and a sign test 

was used to test for significant differences. 

Analysis of Blue-FAF Images: Blue-FAF imaging was performed in only 22 of the 29 

subjects. After excluding one image due to poor quality, the remaining 21 images were 

analyzed. The coordinates of each subject’s MP1 IR image (obtained during fixation testing 

and representing the median BCEA) were affine transformed to blue FAF-SLO image 

coordinates using the control point tool in MATLAB (See the section, “Relating Structure 

to Function,” above). Each subject’s 3 SD fixation ellipse was also transformed and plotted 

on the SLO image (See Figure 3-5). Two graders (AKK and NBP) independently graded 

the region inside this ellipse as either abnormal (Hyper/hypo fluorescent) or having normal 

fluorescence. When a heterogeneous fixation ellipse could not be assigned to a single 

category, it was assigned to 2 categories that best represented the fluorescence within sub-

regions of the ellipse (e.g., Hypo-Normal, Hypo-Hyper, etc.).  

Quantitative Analysis: The blue-FAF SLO images sometimes had speckle noise at the 

edges and always included a default white scale bar. To eliminate these artifacts (See 

Figure 3-5), a 50-pixel thick border was removed from all the 4 sides of the SLO image 

and only the central 1436 x 1436 pixels was used for the quantitative analysis. The 

maximum (Max I) and minimum (Min I) intensity within this central region was very 

different across the 21 images analyzed. Across subjects, the Max I and Min I ranged, 

respectively, from 129 - 255 and from 1 – 35. Although this wide range of luminance values 
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could result partly from the diversity in the subjects’ auto-fluorescent changes, differences 

in retinal illumination across subjects also had to be considered.  

 

 

Figure 3-5 Blue FAF imaging with Fixation Ellipses 

S

10 
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The blue FAF image obtained using CSLO of Spectralis in subject S10 with AMD. 

The 3 SD BCE at the word fixation PRL was plotted on this image after manual image 

registration using the MATLAB control point tool. The autofluorescence over the 3 SD 

BCE region (enclosed by the red ellipse) was quantified after normalizing the intensity. 

Note the white scale bar (bottom left, 200µm) and speckle noise on the image borders, both 

of which were excluded from the analysis. 

The wide range across subjects of blue-FAF image intensities was also observed 

within the 3 SD BCE region. The average intensity values of all pixels (range: ~2000 - 

72,000) within the 3 SD ellipse region ranged from ~29 - 178. To account for these across-

subject differences in pixel intensities, the average intensity with in the 3SD BCE was 

normalized to range from 0 (New Min I) to 255 (New Max I). This normalization was 

based on the Max I and Min I of the larger 1436 x 1436 image region for each subject, and 

was calculated as: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝐼𝑁)

= (𝐼𝐴𝑣𝑔 − 𝑀𝑖𝑛 𝐼)  ×
𝑁𝑒𝑤 𝑀𝑎𝑥 𝐼 − 𝑁𝑒𝑤 𝑀𝑖𝑛 𝐼

𝑀𝑎𝑥 𝐼 − 𝑀𝑖𝑛 𝐼
+ 𝑁𝑒𝑤 𝑀𝑖𝑛 𝐼 

Where,  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑎𝑤 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ( 𝐼𝐴𝑣𝑔)

= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 3𝑆𝐷 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 𝑟𝑒𝑔𝑖𝑜𝑛  

𝐼𝑁 < 𝑄1  → 𝐻𝑦𝑝𝑜 𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑡; 𝐼𝑁 > 𝑄3   → 𝐻𝑦𝑝𝑒𝑟 𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑡 
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The normalized intensity (IN) values of the different subjects ranged from ~14 – 

178. Based on whether or not they fell below the first quartile (Q1), above the third quartile 

(Q3), or between the first and third quartiles, the values of IN were categorized as hypo-

fluorescent, hyper-fluorescent or normal, as shown above. For values of IN that ranged 

potentially from 0 – 255, the first and third quartiles were: 63.75 (Q1) and 191.25(Q3).  

Because the qualitative grading of the 2 graders was not always concordant, only 

the normalized intensity values of FAF intensity within the PRL, determined using the 

quantitative analysis described in this section, were compared to the subjects’ functional 

measures of reading and contrast sensitivity. 

3.3 Results 

 As in the Methods section, the results are presented here in the order of testing. 

The reading assessment measures between the MP1 Read and MNRead testing correlated 

well (See Figure 3-6; r= +0.847 for maximum reading speed and r = +0.772 for reading 

acuity). The CPS and the reading acuity estimated from the MN-Read assessment had a 

good correlation (r = +0.83, See Appendix 6.12). However, the correlation between the 

FrACT contrast thresholds and the reading measures (MNRead) was poor (r = -0.126 for 

maximum reading speed and r = +0.027 for reading acuity). Table 3-2 summarizes the 

results from the reading and contrast sensitivity assessments. 

Three fixation assessments were done successively in each subject and the median 

bivariate contour ellipse area (BCEA, refer to Appendix 6.8 for the BCEA determined for 

each individual test) correlated poorly with the radial eccentricity of the word-fixation PRL 
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(r=+0.231, see Figure 3-7). Appendix 6.8 also lists the CPS used during the fixation 

assessments for each subject. Across subjects, the average (±SD) sensitivity of the 4-6 test 

locations around the word-fixation PRL from 10-2 testing using the MP-1 was 4.93 ± 4.73 

dB.  

On average 51 locations (Range: 23-94, see Table 3-3) around the word-fixation 

PRL were screened for MSs. The number of locations that had MSs (number of MS 

locations, Table 3-3) and the number of nonMS locations varied widely across our subjects 

(Refer to Appendix 6.4, for MS plots for all of the subjects). Except for few subjects who 

had roughly similar numbers of MS and nonMS locations (e.g.: S3, S12), the majority of 

our subjects had a biased distribution of MS and nonMS locations. It was surprising to note 

that the prevalence of MSs within the PRL was similar for the subjects with AMD (8/10 

subjects) and STGD (10/12 subjects) and that average %MSs was similar across the 3 CFL 

groups (AMD: 25.4%, STGD: 20.3% and Misc. CFL: 27.1%). 

Although the OCT imaging was performed on all 29 study subjects, structure-

function comparisons were possible only in 21 subjects (7 subjects with 0 overlapping MSs 

in the PRL and 1 subject with poor OCT scan quality were excluded). In each of these 21 

subjects, B-scans corresponding to all the MS and nonMS locations (ROI ≈ 14 pixels) were 

segmented separately and the average MS/nonMS thickness ratios of the three layers of 

interest (RPE-BM, overall photoreceptor layer (PL) and the total retinal thickness) are 

listed in Table 3-4. (Refer to Appendix 6.7 for SDs and a complete listing of the layer 

thicknesses and ratios for each layer in all 21 subjects). Blue fundus auto-fluorescence 
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imaging could be completed only in 22 of the 29 subjects. The results of the quantitative 

AF grading are provided in last column of Table 3-4 (also see Table 3-5). The qualitative 

grading of blue AF images by the 2 examiners disagreed for 11 of the 21 subjects and hence 

we interpret the AF results using only the quantitative scores.  

Reading performance assessed using the MNRead charts didn’t correlate well with 

the MS/nonMS ratios determined for any of the 3 retinal layers (See Figure 3-8). The 

maximum reading speed didn’t correlate well with functional measures like PRL 

eccentricity (r= -0.232) or BCEA (r= -0.197, Refer to Appendix 6.9 and 6.10 for plots). 

The MNRead reading acuity had a significant positive correlation (r = +0.383) with the 

eccentricity of the word-fixation PRL (Refer to Appendix 6.11 for the plot). 

 The qualitative grading of the ROI for presence of outer retinal changes was 

performed in 17 subjects with AMD or STGD (and who had MSs in the PRL). In the ROI 

corresponding to a MSlocn, ≈ 8, 49, 93 and 87% of the 237 locations had drusen, RPE 

thinning, abnormal IS-OS junction and abnormal ELM respectively. The corresponding 

numbers for the nonMSlocn were: 12, 1, 51 and 43% of 181 locations graded. Sign tests 

comparing the MS and nonMSlocn for each of these 4 OCT changes, were not significant 

(p>0.05) due to presence of numerous comparisons that were tied. 

A theme that has been investigated widely in the past that we set out to explore is 

the difference between the age-related and juvenile forms of macular degeneration. We 

divided our subjects into the three cohorts based on their diagnosis (AMD, STGD and 

miscellaneous CFL) and compared the structural and functional measures (see Table 3-6). 
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The STGD group (n=12) had the best maximum MNRead reading speed. Maximum 

reading speed was significantly faster in STGD than the AMD group (p=0.012) and 

marginally faster than in the miscellaneous CFL group (p=0.056, also see Table 3-6). None 

of the other differences between the groups achieved statistical significance (see Table 

3-7).  

The relationships between functional measures and the maximum reading speed for 

all the CFL subjects (n=22 for FrACT contrast testing and n=29 for retinal sensitivity) are 

shown in Figure 3-9 and Figure 3-10. Neither the FrACT contrast thresholds (see Figure 

3-11) nor the median sensitivity around the PRL (see Figure 3-12) correlated significantly 

with the maximum reading speed achieved during MNRead testing, either in the CFL 

subjects as a group or in any diagnostic subgroup. We also related the median retinal 

sensitivity measured using the MP-1 around the PRL and FrACT contrast thresholds in 28 

subjects (S4, outlier removed for all FrACT-related analyses) and found a weak non-

significant negative correlation (r=-0.204, p = 0.362; see Figure 3-13). As a last analysis, 

we explored the relation between the maximum reading speed and subject’s age. As 

anticipated the reading performance declined with age, but the effect didn’t reach statistical 

significance. (See Figure 3-14). 

   Reading Measures FrACT 

Threshold 

Subject 

Code 

Diagnosis MN Read 

Max. 

Reading 

Speed 

MP1 Read 

Max. 

Reading 

Speed 

Reading 

Acuity 

MN Read 

Reading 

Acuity 

MP1 

Read 

Weber 

Contrast 
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  wpm wpm (logMAR) (logMAR) % (-ve) 

       

S1 AMD 111.1 125.11 0.3 0.6 9.219 

S2 AMD 126.45 115.39 0.65 0.7 16.815 

S3 STGD 72.2 82.52 0.96 0.9 11.359 

S4 STGD 144.6 149.46 0.805 0.7 70.226 

S5 Cone-Rod 80 130.21 1.01 0.8 25.773 

S6 STGD 169.75 109.61 0.72 0.7 21.679 

S7 Plaq. Mac 64.2 – 1.055 – – 

S8 Cone-Rod 43.8 70.24 0.585 0.6 33.208 

S9 STGD 45.75 45.25 1.01 1 15.039 

S10 AMD 91.1 66.63 0.805 0.8 10.956 

S11 Mac. Hole 144.75 120 0.69 0.7 9.017 

S12 STGD 27.75 53.95 1.1 1 16.655 

S14 STGD 182.4 154.25 0.88 0.7 6.205 

S15 STGD 181.1 139.44 0.82 0.9 – 

S16 AMD 17.6 20.29 1.3 1.2 – 

S18 STGD 185.72 – 0.82 – 5.398 

S19 AMD 53.8 62.32 0.7 0.8 – 

S20 Plaq. Mac 65.34 40.21 0.8 0.9 – 

S22 STGD 99.73 – 1.035 – 6.430 

S23 AMD 90.71 85.35 0.515 0.7 10.902 

S25 Myopic  83.87 21.13 0.76 0.7 6.029 

S26 STGD 132.24 80.38 0.76 0.7 25.847 

S27 AMD 54.74 34.6 0.925 0.8 10.921 
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S28 AMD 75.01 31.52 0.74 0.75 16.359 

S29 AMD 70.22 35.25 0.59 0.9 13.875 

S30 STGD 174.6 131.79 0.93 0.8 28.3 

S31 STGD 237.28 215.56 0.65 0.7 12.879 

S32 AMD 93.002 43.4 0.78 0.7 12.792 

S33 Cone Dys 142.52 93.71 0.68 0.75 – 

Table 3-2 Results: Reading and Contrast Assessment 

FrACT contrast thresholds and MP1 Read assessment couldn’t be completed in all 

subjects, whereas all subjects completed the MNRead reading assessment. All of the values 

reported here are the average of 2 estimates. 

y = 0.95x + 22.02
R² = 0.717, r = +0.847 
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Figure 3-6 MP1 Read vs MN Read 

Relation between the reading measures obtained using the MNRead and MP1 Read 

testing. The two measures of reading speed (r=+0.847, t (24) = 7.80, p=5x10-8) and the 

two measures of reading acuity (r=+0.772, t (24) = 5.957, p=3.8x10-6) were significantly 

correlated. 
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Figure 3-7 BCEA vs PRL Eccentricity 

Scatter plot of the 1 SD bivariate contour ellipse area (BCEA, median of 3 fixation 

tests; refer to Appendix 6.8), determined during word fixation in the MP-1, as a function 

of the radial eccentricity of the PRL.  The PRL eccentricity was measured as the 

Pythagorean distance from the estimated location of the residual fovea, determined using 

the standard values from 104 normally-sighted subjects reported by Rohrschnieder et al. 

(2004). Refer to Appendix 6.16 for the list of PRL meridians and polar angle. The 

correlation between BCEA and PRL is low (+0.231) and became worse (+0.141) when the 

outlier (S20, filled black circle) was removed (t (26) = 1.21, p = 0.24, without the outlier). 
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Subject 

Code 

Diagnosis Median 

Sensitivity 

Total 

Locations 

Number of 

MS 

Locations 

Number 

of 

nonMS 

locations 

% MS 

  (around 

PRL from 

10-2 testing, 

in dB) 

(Tested in 

Screening) 

(0 dB 

missed on 

both tests) 

  

S1 AMD 0 28 0 6 0.00 

S2 AMD 2.5 67 6 36 8.96 

S10 AMD 0 55 6 15 10.91 

S16 AMD 0 33 25 0 75.76 

S19 AMD 6.5 67 0 23 0.00 

S23 AMD 5.5 77 6 2 7.79 

S27 AMD 2 39 13 0 33.33 

S28 AMD 0 62 29 1 46.77 

S29 AMD 0 73 49 0 67.12 

S32 AMD 4 62 2 29 3.23 

 N 10     

 Mean 2.05 56.30 13.60 11.20 25.39 

 SD 2.51 17.15 15.98 13.65 28.61 

 Median 1 62 6 4 9.93 

       

S3 STGD 12.5 73 7 10 9.59 

S4 STGD 8 50 3 11 6.00 

S6 STGD 8 33 1 15 3.03 

S9 STGD 0 37 22 0 59.46 
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S12 STGD 10 36 5 5 13.89 

S14 STGD 14.5 23 0 23 0.00 

S15 STGD 13 41 2 21 4.88 

S18 STGD 8.5 57 1 16 1.75 

S22 STGD 0 57 44 0 77.19 

S26 STGD 0 62 39 0 62.90 

S30 STGD 3 31 0 31 0.00 

S31 STGD 2.5 44 2 20 4.55 

 N 12     

 Mean 6.67 45.33 10.50 12.67 20.27 

 SD 5.37 14.68 15.70 10.15 28.44 

 Median 8 43 3 13 5.44 

       

S5 Cone Rod Dys. 10 67 0 61 0.00 

S7 Plaq.Maculopathy 5 37 0 37 0.00 

S8 Cone Rod Dys. 0 41 25 1 60.98 

S11 Macular Hole 8.5 29 12 0 41.38 

S20 Plaq.Maculopathy 8 94 34 15 36.17 

S25 Myopic Mac Deg 0 37 19 1 51.35 

S33 Cone Dys. 11 56 0 50 0.00 

 N 7     

 Mean 6.07 51.57 12.86 23.57 27.13 

 SD 4.55 22.74 13.72 25.59 26.54 

 Median 8 41 12 15 36.17 

Table 3-3 Results: Supra-threshold Screening 
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Results from the functional sensitivity testing using the NIDEK MP-1 are listed 

here. The third column reports the median sensitivity of the 4 to 6 test points located around 

the word-fixation PRL, from 10-2 testing (with nominal Goldmann size II spots and a 4-2-

1 thresholding strategy). Note that the numbers of MS and NonMS locations were identified 

manually using a MATLAB program, after defining an overlap region (8x5 pixels) around 

the MS locations identified on test -1.  

Note that the mean % of MSs is approximately the same in the 3 diagnostic groups 

(20 - 27% MSs). Also refer to Appendix 6.14 for a scatter-plot on %MSs vs Age. The % of 

subjects with AMD and STGD who exhibit MSs in the PRL is about the same (8/10 vs. 

10/12). The subject codes for seven subjects (2AMD, 2STGD, 3 other CFL) who were found 

to have no MSs and 1 subject with poor OCT imaging (S16) are shown in bold and are 

underlined. Interestingly, subject S1 whose median sensitivity around PRL was 0, had no 

MSs in the screening. This is because the number of missed targets in test #1 was 0. 

Although S1 failed to detect 6 targets in test # 2, the number of overlapping missed targets 

was 0. Also see Appendix 6.3 that lists the number of targets missed in each test session 

for all subjects and Appendix 6.15 for a scatter-plot on BCEA vs % MSs. 

 MS : NonMS Ratios Blue FAF Grading 

Subject 

Code 

RPE-

BM 

Overall 

Photoreceptor 

(PL) 

Total 

Retinal 

(Quantitative) 

S2 1.060 1.379 0.813 – 

S3 0.885 0.891 0.983 Normal 

S4 1.106 0.992 1.002 – 
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S6 0.810 0.881 0.987 Abnormal 

S9
*
 1.205 0.540 0.905 Normal 

S10 0.458 0.592 0.904 Normal 

S12 0.753 0.563 0.911 Normal 

S15 1.397 1.277 1.078 Abnormal 

S18 0.987 1.331 1.014 Normal 

S22
*
 0.490 0.287 0.765 Normal 

S23 1.092 1.019 0.854 Normal 

S26
*
 0.958 0.433 0.445 – 

S27
*
 0.883 0.927 0.681 – 

S28 1.628 0.318 0.967 Abnormal 

S29
*
 0.384 0.651 0.820 Normal 

S31 1.073 0.525 0.840 Normal 

S32 1.279 0.969 1.009 Abnormal 

     

S8 1.144 0.685 1.257 – 

S11
*
 0.898 0.306 0.899 Abnormal 

S20 1.080 0.387 0.891 Normal 

S25 0.442 1.858 0.818 Normal 

Table 3-4 Thickness Ratios from OCT Imaging 

Average retinal layer thickness ratios in ROIs corresponding to MS and NonMS 

locations in 21 (of the total 29) subjects who had MSs. The top portion of the table reports 
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the findings from subjects diagnosed with either AMD or STGD. The 4 subjects in the 

bottom portion of the table had other diagnoses. Note that subjects who had 0 nonMS 

location from Table 3-3 are marked with an asterisk (*) and thickness ratios were 

computed using the data of a subject with CFL matched for diagnosis, PRL eccentricity 

and age. (Also refer to Appendix 6.7 that provides the individual layer thicknesses and the 

SDs of the thickness ratios for all subjects) 

Five subjects whose total thickness ratios are >1 are underlined. The last column 

lists the grades based on the quantitative assessment of normalized intensity values at the 

PRL from blue fundus autofluorescence images. Subjects for whom autofluorescence 

grades could not be assigned are marked with a ‘– ‘.  

Subject 

Code 

Qualitative 

Score 

Quantitative  

Score 

Agreem

ent 

 Qualitative 

Score 

Quantitative  

Score 

Agreem

ent 

  

NBP 

(from 

normalized 

intensity) 

 

1= YES 

0 = NO 

  

AKK 

(from 

normalized 

intensity) 

 

1= YES 

0 = NO 

        

S1 Abnormal Abnormal 1  Abnormal Abnormal 1 

S3 N N 1  N N 1 

S6 N Abnormal 0  Abnormal Abnormal 1 

S9 N N 1  Abnormal N 0 

S10 Abnormal N 0  N N 1 

S11 Abnormal Abnormal 1  Abnormal Abnormal 1 

S12 Abnormal N 0  N N 1 

S14 N N 1  N N 1 
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S16 Abnormal Abnormal 1  Abnormal Abnormal 1 

S18 Abnormal N 0  N N 1 

S19 Abnormal Abnormal 1  Abnormal Abnormal 1 

S20 Abnormal N 0  Abnormal N 0 

S22 Abnormal N 0  Abnormal N 0 

S25 Abnormal N 0  Abnormal N 0 

S28 Abnormal Abnormal 1  Abnormal Abnormal 1 

S29 Abnormal N 0  N N 1 

S30 Abnormal N 0  N N 1 

S31 Abnormal N 0  Abnormal N 0 

S32 N Abnormal 0  N Abnormal 0 

S33 N N 1  N N 1 

S15 Abnormal Abnormal 1  N Abnormal 0 

S23 – N –  – N – 

        

Total N Count 

Abnormal 

Count 

Abnormal 

Total 

Agreem

ent 

 Count 

Abnormal 

Count 

Abnormal 

Total 

Agreem

ent 

22 15 9 10  11 9 14 

Table 3-5 Results: Blue FAF Imaging 

The results of qualitative grading of blue fundus autofluorescence images in the 

region of the PRL. The grades determined independently by 2 examiners (NBP, AKK) are 

listed here. Note that the number of abnormal regions based on qualitative grading was 

more than that based on quantitative grading (column 3 and also in Table 3-4). Because 
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of the lack of consensus between the graders, only the results from quantitative grading 

are used to interpret the autofluorescence findings. Neither grader could provide grades 

for S23 because of poor image quality. 
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Figure 3-8 Reading vs Thickness Ratios of Layers 

Scatter plots of maximum reading speed (left column) and reading acuity (right 

column) from the MNRead assessment, as a function of average MS / nonMS thickness 
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ratios (RPE-BM, top row; overall photoreceptor layer (PL), middle row, and total retinal 

thickness, bottom row). The correlations were poor and non-significant. 

 

Subject 

Code 

Diagnosis 1 SD 

BCEA 

MNRead 

Max. 

Reading 

Speed 

Reading 

Acuity 

MS/nonMS 

Thickness Ratios 

Blue FAF 

Grading 

  (deg-

sq.) 

(wpm) (logMAR) RPE-

BM 

PL Total 

Retina 

(Quantitative) 

         

S1 AMD 0.20 111.1 0.30 – – – – 

S2 AMD 2.31 126.5 0.65 1.06 1.38 0.81 – 

S10 AMD 0.66 91.1 0.81 0.46 0.59 0.90 Normal 

S16 AMD 1.12 17.6 1.30 – – – – 

S19 AMD 2.58 53.8 0.70 – – – – 

S23 AMD 1.05 90.7 0.52 1.09 1.02 0.85 Normal 

S27 AMD 0.45 54.7 0.93 0.88 0.93 0.68 – 

S28 AMD 0.76 75.0 0.74 1.63 0.32 0.97 Abnormal 

S29 AMD 0.98 70.2 0.59 0.38 0.65 0.82 Normal 

S32 AMD 1.96 93.0 0.78 1.28 0.97 1.01 Abnormal 

Total N Mean 1.21 78.4 0.73 0.97 0.84 0.86 Abnormal: 

Normal 

10 SD 0.81 31.3 0.26 0.44 0.35 0.11 2:3 

         

S3 STGD 1.31 72.2 0.96 0.88 0.89 0.98 Normal 

S4 STGD 0.57 144.6 0.81 1.11 0.99 1.00 – 
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S6 STGD 0.34 169.8 0.72 0.81 0.88 0.99 Abnormal 

S9 STGD 1.16 45.8 1.01 1.20 0.54 0.90 Normal 

S12 STGD 1.10 27.8 1.10 0.75 0.56 0.91 Normal 

S14 STGD 0.30 182.4 0.88 – – – – 

S15 STGD 0.46 181.1 0.82 1.40 1.28 1.08 Abnormal 

S18 STGD 1.97 185.7 0.82 0.99 1.33 1.01 Normal 

S22 STGD 2.07 99.7 1.04 0.49 0.29 0.76 Normal 

S26 STGD 0.89 132.2 0.76 0.96 0.43 0.44 – 

S30 STGD 0.97 174.6 0.93 – – – – 

S31 STGD 0.48 237.3 0.65 1.07 0.52 0.84 Normal 

Total N Mean 0.97 137.8 0.87 0.97 0.77 0.89 Abnormal: 

Normal 

12 SD 0.60 63.9 0.14 0.25 0.36 0.18 2:6 

         

S5 CRD 0.85 80.0 1.01 – – – – 

S7 Plaq. Mac 1.01 64.2 1.06 – – – – 

S8 CRD 0.25 43.8 0.59 1.14 0.69 1.26 – 

S11 Mac Hole 0.82 144.8 0.69 0.90 0.31 0.90 Abnormal 

S20 Plaq. Mac 4.40 65.3 0.80 1.08 0.39 0.89 Normal 

S25 Myopic 

Mac 

0.41 83.9 0.76 0.44 1.86 0.82 Normal 

S33 Cone  Dys 1.86 142.5 0.68 – – – – 

Total N Mean 1.37 89.2 0.80 0.89 0.81 0.97 Abnormal: 

Normal 

7 SD 1.43 39.4 0.17 0.32 0.72 0.20 1:2 

Table 3-6 Reading vs OCT Measures 



   

103 

 

Structural and functional measures are grouped according to diagnosis for 

comparison. Except for reading speed none of the differences are significant. The between-

group difference in reading speed is highlighted in Table 3-7. It is interesting that a higher 

proportion of STGD subjects than AMD subjects exhibit normal AF at the PRL. 

Unfortunately, the numbers are too small to make a statistical comparison. The 

significance of the differences between the cohorts is shown in Table 3-7. 

 

Comparison MN Read 

Max 

Reading 

Speed 

Reading 

Acuity 

1 SD 

BCEA 

 % 

MS 

MS/nonMS Thickness 

Ratios 

(2 tailed t-test, p 

values) 

    RPE-

BM 

PL Total 

Retina 

AMD vs STGD 0.012 0.144 0.449 0.680 0.989 0.715 0.690 

AMD vs Misc. CFL 0.557 0.541 0.791 0.899 0.742 0.947 0.392 

STGD vs Misc. CFL 0.056 0.339 0.501 0.606 0.689 0.926 0.548 

Table 3-7 Significance Testing: Reading vs Thickness Ratios 

Probability values (p) of the observed differences between the subject cohorts for 

various comparisons. Note that of all comparisons only 2 of them are significant 

(highlighted in bold and underlined). There is no correction for multiple comparisons. 
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Figure 3-9 Reading vs Contrast Testing 

Scatterplot of maximum reading speed during MNRead chart testing vs. the FrACT 

contrast threshold for all CFL subjects (N=22, as FrACT testing could not be completed 

for 6 CFL subjects; in addition, data for S4 omitted). The correlation was negative but 

non-significant (r= - 0.126; t (20) = 0.5703, p = 0.575). 
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Figure 3-10 Reading vs Central Retinal Sensitivity 

Scatterplot showing the relationship between the median sensitivity around the 

word-fixation PRL from 10-2 testing (Goldmann size II spots) and MNRead maximum 

reading speed in all 29 CFL subjects. The low correlation approached significance (t (27) 

= 1.798, p = 0.083). Note that many subjects (n=10) had a median sensitivity around the 

PRL equal to zero, suggesting that the PRL was surrounded by region of very poor 

sensitivity. 
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Figure 3-11 Reading vs Contrast Testing (AMD-STGD) 

Scatterplot of maximum reading speed in MNRead chart testing vs. FrACT contrast 

thresholds for the AMD cohort (n= 8, blue circles) and for the STGD cohort (n=10, black 

asterisks). Reading speed is expected to decrease as the FrACT threshold increases. 

Neither the correlation (r=+0.134) in the AMD group or the STGD cohort is significant. 

An outlying data point from subject S4 (STGD, see Table 3-2) was not included in the plot. 
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Figure 3-12 Reading vs Central Retinal Sensitivity (AMD-STGD) 

Scatterplot showing the relationship between median sensitivity around the word-

fixation PRL from 10-2 testing (Goldmann size II spots) and MNRead maximum reading 

speed. Symbols designating subjects with AMD and STGD are as in Figure 4. Correlations 

were very low and not significant in both the cohorts (AMD: t (8) = 0.155, p = 0.881 and 

STGD: t (10) = 0.318, p = 0.757). 
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Figure 3-13 Central Retinal Sensitivity vs Contrast Testing 

Scatterplot relating FrACT contrast thresholds and the median retinal sensitivity 

around the PRL (from 10-2 testing) for all 28 CFL subjects (data for S4 excluded, as an 

outlier). Although the relationship is negative as expected, the FrACT contrast threshold 

explains only ~4% of the variance in median sensitivity and the low correlation was not 

significant (r= - 0.204; t (20) = 0.933, p = 0.362). 
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Figure 3-14 Reading vs Age (AMD-STGD) 

Scatterplot relating MN Read maximum reading speed and the age of CFL subjects. 

Note that the age explains ~13 and 21% of variance in reading speed in subjects with 

STGD and AMD, respectively. It was interesting to find that the slope of the fitted lines was 

similar across subject groups. The correlation between reading speed and age was 

negative, but not significant in either group. (AMD: t (8) = 1.44, p = 0.188 and STGD: t 

(10) = 1.23, p = 0.248). Also refer to Appendix 6.13 for a scatterplot with all 29 subjects 

pooled. 
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3.4 Discussion 

Reading performance in CFL subjects has been assessed in the past using various 

methods including unrelated words, paragraphs, MNRead charts, RSVP sentences, etc. In 

this study, we assessed the reading speed with MP1 Read sentences that are similar to 

MNRead charts but constructed in 4 lines. The MP1 Read sentences, though similar to 

MNRead sentences in terms of word content and text difficulty, were presented on a 

uniform white background (127 cd/m2) on the LCD display of the NIDEK MP-1 

microperimeter. Fixation testing using various micro-perimeters including MP-1 has been 

reported widely. However, this study is perhaps the first to report the use of the MP-1 in 

assessing the reading speed and reading acuities. Reading sentences on a display with a 

limited field of view, during head restraint and with pupillary dilatation can be very 

different from the regular assessment using the hand-held externally illuminated MNRead 

charts.  

However, the correlation between these two dissimilar testing modalities was good 

(>0.7) for both reading acuity and reading speed. The advantage of using the MP-1 (which 

is at least 100 times costlier than other standard methods) instead of or in addition to the 

MNRead assessment is the availability of a retinal view to allow monitoring of the retinal 

locus used for reading. The MP-1 allows the examiner to freeze an image and therefore 

plot the locus of fixation points to know the reading PRL and the trajectory of eye 

movements (subject to a temporal sampling limitation). However, when we projected 

sentences in the MP-1 to record the reading speed, it was not feasible to achieve proper 
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subject alignment and focus, freeze the IR fundus image and choose a ROI for image 

tracking, and only then start the timer for reading assessment. For this reason, we chose 

not to track the fundus during reading with the MP-1. Nevertheless, we confirmed in all of 

our study subjects that the retinal region used to sequentially position each word of the 

MP1 Read sentence was roughly similar to the word-fixation PRL. 

Contrast sensitivity thresholds were assessed using the FrACT program, which 

displayed ‘C’ optotypes of different contrast in 4 orientations to estimate Weber contrast 

thresholds. The test is different from chart-based testing (like Pelli-Robson or Regan, (Pelli 

& Robson, 1988; Regan & Neima, 1983)) that employs letters or sentences of varying 

contrast. FrACT testing is relatively quick (as a run can be completed in about 10 minutes 

including training), has been reported widely in the literature, and is available for use 

anywhere after proper calibration of the display. It is worth noting that although the retinal 

location that was used for identifying the low-contrast ‘Cs’ in the FrACT test is unknown, 

we presume the locus was the same as the word-fixation PRL. The poor correlation 

between the FrACT contrast thresholds and the reading measures perhaps demonstrates 

that reading is influenced by many factors in addition to contrast sensitivity. Fixation 

stability assessed using BCEA had a poor and insignificant correlation with the eccentricity 

of the PRL. This surprising finding is perhaps due to the diverse nature of subjects, with 

varying duration of CFL in our study. Several studies report a significant correlation 

between the PRL eccentricity and the fixation stability (Nguyen-Tri et al., 2016, Bedell et 

al., 2015, Reinhard et al., 2007, Timberlake et al., 2005).  The range of BCEA values 

reported here is similar to other studies of patients with CFL (Bedell et al., 2015; Longhin 
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et al., 2013; Macedo, Crossland, & Rubin, 2011; Seiple et al., 2013). As speculated 

previously by others, it is plausible that the duration and stability of CFL has a bearing on 

the fixational stability (Crossland et al., 2005; White & Bedell, 1990). 

Most of the subjects in our study had a clear dominance/preference to one eye due 

to considerable inter-ocular differences in acuity and/or extent of macular degeneration. 

Recall that the CFL in the worse eye was confirmed by screening the central 6° of the 

visual field. All of our assessments were monocular and so may not reflect the real-world 

situation, which is almost always binocular. Many eye-trackers don’t offer the option of 

binocular evaluation but recently, an optical attachment that attaches to an SLO was 

demonstrated (Timberlake & Ward, 2013) to be effective in imaging the both the eyes 

simultaneously. The location of the PRL, which can be different across tasks, can 

potentially vary between monocular and binocular viewing especially when the central 

visual loss is symmetrical. Wiecek et al. (2015) reported a binocular micro-perimetry 

system employing eye tracking and stereo shutter glasses that reliably mapped the location 

of simulated scotomas in normally-sighted subjects. Thus with these new technologies, it 

will be interesting to explore the binocular development of the PRL especially in 

individuals with progressive and symmetric CFL. 

The novel finding that micro-scotomas occur frequently within the PRL of subjects 

with CFL can perhaps explain some aspects of the reading deficits in these subjects. In our 

cohort of 28 subjects (1 excluded for poor OCT image quality), 7 subjects didn’t exhibit 

any MSs, whereas the remaining 21 subjects were determined to have MSs at an average 
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of ~25% of the sampled PRL locations. The peripheral retinal locations of a cohort of 8 

subjects with normal vision (Appendix 6.17) was screened for MSs using a high density 

grid and 0 dB test spots. The screening confirmed that local defects don’t exist in normal 

peripheral retina. This lends more credence to the finding of MSs in the PRL of CFL 

subjects. 

The distribution of %MSs was very similar across our subject cohorts. Because of 

the various reports (Crossland et al., 2005; Timberlake et al., 1986, 2005) that suggested 

that the PRL in AMD is usually located at the atrophy margin, we anticipated that the AMD 

cohort would have a higher % of MSs than, for example subjects with STGD. 

Unfortunately, we didn’t demarcate the edges of atrophy in our subjects and in fact such 

demarcation can be difficult in non-AMD subjects where the atrophy margins are not very 

conspicuous. But using the absolute scotomas in 10-2 testing as the guide for the margins 

of atrophy, 9 of the 10 AMD subjects had the PRL at the edge of the atrophic area, whereas 

only 4 of the 12 STGD subjects located their PRL adjacent to the atrophic margin.  

One explanation for the apparently similar mean %MSs in the three cohorts is that 

our region-of-overlap criterion for undetected target locations on tests 1 and 2 was perhaps 

excessively large, and so some of the MSs classified on the basis of overlapping missed 

test spots were not necessarily overlapping. In seven subjects (3 AMD, 3 STGD, 1 with 

macular hole) there were no locations within the PRL that did not exhibit MSs. On the 

other hand, two of the subjects with AMD, two of the subjects with STGD and two subjects 

with other etiologies of CFL had no MS locations within the PRL. Despite the fact that 
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most subjects with STGD adopt a PRL that is remote from the visible margin of the atrophic 

macula, the high prevalence of MSs in these subjects leads us to speculate that in the 

majority of subjects with STGD retinal function at the PRL is abnormal. 

Despite similar proportions of MSs, subjects with STGD had significantly faster 

reading speeds than subjects with AMD. This difference in reading speed has been reported 

previously (e.g., Legge et al., 1992).  One possible contribution to this difference is the age 

difference between the AMD and STGD subjects in our cohorts (mean ages: 39 vs. 78 

years), as the maximum reading speed is known to decrease with age ( Legge et al., 1992). 

In the next chapter, we assess reading of sequentially flashed words in the presence of 

varying percentages of simulated MSs, and show that the influence of these simulated MSs 

is more profound in older compared to younger subjects with normal vision. However, in 

our cohorts of subjects with CFL, the presence of MSs didn’t seem to influence reading 

performance as anticipated. 

The prevalence of structural retinal changes was not significantly different between 

MS and nonMS locations in our subjects with CFL. This outcome has several possible 

explanations, like difficulty in accurately segmenting the OCT scans with alterations in 

outer retinal layers such as drusen or RPE loss (which would increase the variability of 

measured layer thicknesses), errors in image registration and hence in the definition of MS 

and nonMS ROIs and, lastly, that changes in function might precede observable structural 

changes in the retina. We believe that the chief reason for the discordance between the 

functional and structural estimates could be the noise associated with the process of manual 
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segmentation. Although the segmenter (AKK) did consult and confirm the results of 

segmentation with an experienced segmenter (NBP), the skill of manual segmentation has 

a potential to improve as more scans with pathology are segmented.  

AF imaging indicated that 9 of the 22 PRLs assessed exhibited abnormal levels of 

fluorescence. Although agreement between quantitative and qualitative grading of the AF 

images was weak, this relatively new imaging modality provides supplemental evidence 

for localized retinal changes within the PRL. Together with the high prevalence of MSs 

within the PRL, there appears to be adequate evidence that the PRL can include local areas 

with both functional and structural abnormalities. However, the significance of these 

abnormalities and their possible extent beyond the region of PRL need to be explored. The 

changes that we observed within the PRL are only a small piece of the puzzle called 

reading. 

3.5 Conclusions 

The word-fixation PRL in subjects with macular degeneration (AMD, STGD and 

other subjects with CFL) can include local regions of sensitivity loss, or micro-scotomas. 

These micro-scotomas correlate poorly with changes in retinal structure detected by SD-

OCT and with auto-fluorescence, suggesting that functional deficits at the PRL may often 

precede the structural changes. Probing the PRL and the region surrounding the PRL, 

including the margin of the central atrophic region, has the potential to improve the 

selection and training of patients’ eccentric viewing loci. 
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4.1 Abstract 

Subjects with central field loss typically fixate with a non-foveal preferred retinal 

locus, which can include areas of localized sensitivity loss, or micro-scotomas. In this 

study, we introduced randomly located element deletions to simulate micro-scotomas at 

the fovea and in the peripheral retina to assess their impact on rapid-serial-visual-

presentation (RSVP) reading speed. Eight younger (< 35 years old) and 8 older (> 50 years 

old) naïve subjects with normal vision monocularly read high and low contrast words, 

presented at or above the critical print size at the fovea and at 5 and 10 deg in the inferior 

visual field. MNRead sentences and sentences taken from novels were presented in RSVP 

format. Randomly distributed 13 x 13 arc min blocks corresponding to 0-78% of the text 

area were set to the background luminance to simulate micro-scotomas. A staircase 

algorithm estimated maximum reading speed from the threshold exposure duration for each 

combination of retinal eccentricity, contrast and element-deletion density in both age 

groups. Log10RSVP reading rate decreased significantly with element-deletion density and 

eccentricity. Across conditions, reading speed was slower with low contrast text and faster 

in younger subjects with normal vision. For a given eccentricity and contrast, a higher 

density of random element losses maximally affected older subjects with normal vision. 

These outcomes may explain some of the reading deficits observed in older subjects with 

central field loss. 
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4.2 Introduction 

Reading is one of the many day-to-day activities that is both visual and cognitive. 

Vision and its role in reading have been investigated for more than a century (e.g., Huey, 

1900). Seminal works by researchers such as Dockeray (1910), Taylor (1965), and Rayner 

(1975)) were instrumental in formulating the concept of the perceptual/visual span, i.e., the 

12 – 15-character area from which a reader acquires information during a single fixation 

during page reading. Bouma (1973) was one of the first to report that the initial and final 

letters contribute more substantially than interior letters to word recognition. His studies 

confirmed a right field advantage for peripheral word recognition and showed that the 

extent of ‘visual interference’ or crowding, is more or less a constant fraction (~0.5) of 

target eccentricity. Today, we know that crowding represents a bottleneck for object 

recognition in the peripheral retina, although with reference to lexical processing, central 

and peripheral vision are qualitatively similar (Pelli et al., 2007). In the past few decades, 

the task of reading in altered visual conditions, as in subjects with real (McMahon, Hansen, 

& Viana, 1991) or simulated (Fine & Rubin, 1999) vision loss or with involuntary 

nystagmus eye movements (Thomas et al., 2011; Woo & Bedell, 2006), has received 

increased attention. 

Legge and his colleagues (Legge, Rubin, Pelli, & Schleske, 1985) were one of the 

first groups to demonstrate a subnormal (~5x slower) reading speed in subjects with 

bilateral central vision loss (CVL). Conditions like age-related macular degeneration 

(AMD) and Stargardt disease are common causes of CVL and visual impairment, which is 
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only compounded by an associated loss in contrast sensitivity (Kleiner, Enger, & Fine, 

1988; Ortiz, Jiménez, Pérez-ocón, & Castro, 2010). By studying the role of contrast in low-

vision subjects, Rubin & Legge (1989) concluded that visually impaired subjects act as 

‘contrast attenuators’, and if text contrast is appropriately scaled for the reduction in 

contrast sensitivity, the effect of contrast on reading is similar to that seen in subjects with 

normal vision. Many subjects with CVL compensate for their loss of central vision by 

choosing an eccentric viewing locus or, sometimes, multiple eccentric loci for performing 

day-to-day activities including reading and facial recognition (Macedo et al., 2011; 

Sullivan, Jovancevic-misic, Hayhoe, & Sterns, 2008; Timberlake et al., 1986). Reading 

with CVL has been investigated extensively but the non-central viewing locus itself has 

not received much attention. Recently, the non-central viewing locus was shown in many 

subjects with CVL to include regions of localized retinal-sensitivity loss, i.e., micro-

scotomas (MSs) (Krishnan & Bedell, 2014; Winther & Frisen, 2015). 

4.2.1 The RSVP Paradigm 

Altered programming and execution of saccadic eye movements (Frost, 1976), 

fixation instability (Falkenberg et al., 2007; Whittaker et al., 1988a) and extensive 

crowding (Levi, 2008) are some of the factors that impact performance when individuals 

are required to read text using a peripheral (non-foveal) retinal location. Rapid Serial 

Visual Presentation (RSVP) is a paradigm that sequentially presents either the individual 

letters of a word or the words of a sentence, one at a time, at a given location to minimize 

the need for saccadic eye movements. This paradigm has been used in several studies of 
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reading (some in subjects with central field loss, e.g., Rubin & Turano, 1994) for more than 

half a century (Sperling, 1960). Forster (1970) used sentences of varying complexity, with 

and without scrambling the word order and identified factors such as word length, visual 

storage and information loss during transfer to short term memory that impact the speed 

and accuracy of RSVP reading. Juola, Ward, & Mcnamara (1982) reported that 

comprehension was similar in conventional page (paragraph) reading and RSVP reading 

over a range of text difficulties. Rubin & Turano (1994) showed a clear benefit of the RSVP 

paradigm (~4 times) in terms of reading speed compared to conventional page reading, and 

concluded that saccadic eye movements impose an upper limit on conventional reading 

speed. The same authors also investigated RSVP reading in 14 subjects with dense CVL. 

Although the RSVP paradigm was successful in minimizing the need for saccades, the 

CVL subjects still required longer word durations to read than non-CVL subjects. Rubin 

and Turano suggested that the peripheral retina includes a severe bottleneck that limits the 

ability to decode patterns, such as those required in reading. More recently, Yu, Cheung, 

Legge, & Chung (2007) reported that in subjects with normal vision the magnitude of 

improvement with RSVP reading was only about 1.4x faster than normal (flashcard) 

reading for various conditions of print size and letter spacing. 

4.2.2 Simulated Scotomas and Visual Performance 

In a study that investigated the impact of simulated scotomas on letter 

identification, Seiple, Holopigian, Szlyk, & Greenstein (1995) blanked randomly selected 

pixels to mimic the sampling-element loss that can happen in retinal diseases like retinitis 
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pigmentosa. Pixels were blanked throughout a rectangular area (20x27 arc min), and the 

letters were mapped to the center of this area. The luminance of the blanked pixels was set 

equal to the surround and, interestingly, even high levels (~80%) of pixel blanking didn’t 

affect performance. Geller, Paul, & Green (1992) reported a similar finding when subjects 

were asked to identify the orientation of high contrast square-wave gratings at or below the 

Nyquist frequency limit with different levels of stimulus degradation, produced by 

removing various percentages of the array elements. However, the above-mentioned 

studies assessed the impact of stimulus degradation only on foveal performance for letter 

or grating identification.  

Levi, Sharma, & Klein (1997) investigated the number of stimulus samples needed 

for pattern identification. Of the 17 Gabor features that formed an E shape, about 40-50% 

were required at the fovea to achieve a threshold level of correct performance; however, 

the number of samples required to reach the identification threshold at 5 and 10 deg in the 

inferior field was ~70%. Winther & Frisen (2015) used segmented digits (acuity equivalent 

of 20/200) that were formed by tiny ‘rarebits’ (0.5 arc min diameter) to assess macular 

deficits in subjects with CVL secondary to AMD. The median number of rarebits per 

character stroke required to read the briefly presented (150 ms) digits was 3, 5 and 30 in 

normal, dry AMD and wet AMD groups respectively. These results indirectly support the 

idea that subjects with CVL can have MSs that necessitate a greater number of rarebits per 

stroke to construct legible test digits. 
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To understand the adaptation of oculomotor system to simulated CVL, Kwon, 

Nandy, & Tjan (2013) simulated a 10-deg circular disc-like scotoma with distinct edges in 

a cohort of 6 younger subjects with normal vision. The authors reported rapid development 

of a preferred retinal locus with re-referencing of saccades to a non-foveal location and 

interpreted their findings to suggest a flexible and adaptive oculomotor system. Unlike the 

sharp-edged scotoma employed by Kwon et al., Walsh & Liu (2014) assessed the impact 

of both sharp- and gradual-edged scotomas on a visual search task. The sharp-edged 

scotoma resulted in a more consistent use of a single peripheral location (called the 

preferred retinal locus, PRL) than the gradual-edged scotoma. These results suggest that 

scotoma awareness, which is reduced for a gradual-edged scotoma, plays an important role 

in adaptation to CVL (Goodrich, 1977). Lastly, Liu & White (2010) used random local 

degradation of texture patterns to assess the impact of this manipulation on texture 

discrimination in young and elderly subjects with normal vision and in patients with early 

AMD. They reported a reduction in performance and reduced tolerance to stimulus 

degradation with early AMD.  

We hypothesize that scattered MSs in the region of the PRL will degrade visual 

stimuli, such as the words in a sentence and, potentially, exert a negative impact on reading 

performance. Although high densities of simulated MSs are required to degrade foveal 

letter recognition or orientation discrimination (Geller et al., 1992; W Seiple et al., 1995), 

an outcome measure such as reading speed might disrupted more readily by MSs, 

especially for text presented in the retinal periphery. Because of their small size, MSs at 
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the PRL are likely to remain imperceptible and, hence it might be difficult for patients with 

CVL to adapt to their presence. 

4.2.3 Motivation and Predictions 

The demonstration that MSs occur within the PRL of many subjects with CVL 

(Krishnan & Bedell, 2014) leads to the question of the impact of these MSs on visual 

performance. In particular, the influence of pixel deletion(s) for words presented in the 

retinal periphery has not received much attention in the vision science literature. To address 

this issue, in the current study we evaluated the impact of simulated MSs on foveal and 

non-foveal reading rates. By simulating MSs with and without a simulated contrast 

sensitivity loss while assessing RSVP reading speed in both younger and older subjects, 

we sought to better anticipate and explain the functional reading loss in patients with CVL. 

Because the areas of missing information produced by random element deletion are tiny 

and scattered across a region of the visual field we expected their influence to be more akin 

to a gradual- than a sharp-edged scotoma. For this reason, and because we varied the 

locations of the MSs from trial to trial, we would not expect subjects with normal vision to 

adapt to this manipulation during the course of the experiment. Further, as the simulated 

MSs should be less perceptible for words of low compared to high contrast, we anticipated 

that the impact of random-element deletion would be more severe when subjects attempted 

to read low compared to high contrast text.  
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4.3 Methods 

Sixteen naive subjects with normal vision (8 younger, <35 years; 8 older, >50 

years) were recruited from among the faculty, staff and students of the University of 

Houston, College of Optometry. The study protocol was approved by the committee for 

the protection of human subjects at the University of Houston and all subjects provided 

written informed consent before participating. Subjects were compensated in part for their 

time and participation. Each observer’s preferred eye (determined as the eye that subjects 

didn’t close when asked to close one eye) was chosen for testing and the other eye was 

occluded with a black opaque patch. Six of the 8 older subjects wore their habitual 

correction (progressive lenses or trifocal contact lenses), which was appropriate for the two 

testing distances of 35 and 57 cm used for reading in this study. The other 2 older subjects 

read with a near correction that was appropriate for 35 cm and rejected a reduced reading 

addition for 57 cm. Testing was done under normal room illumination with natural 

undilated pupils. A chin and a forehead rest were used to stabilize the observer’s head. The 

reading material used in this study included 60-character MNRead (Mansfield et al., 1994) 

sentences (provided by Drs. Steve Mansfield and Gordon Legge) and 53 ± 8 character 

sentences, taken from novels (provided by Dr. Susana Chung, c.f., Chung, Mansfield, & 

Legge, 1998). Words were presented in lower case, except for the first letter of the word 

that began each sentence and the first letter of proper nouns. 

 A 21” flat Sony Trinitron (model GDM-F520, resolution of 1600 x 1200 pixels) 

CRT was used to display the test stimuli at a refresh rate of 85 Hz. The test stimuli were 
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designed using the Psychophysics Toolbox -3 (Brainard, 1997; Kleiner et al., 2007)) that 

interfaces between MATLAB R2014a (MathWorks, Natick, MA, USA) and the computer 

hardware used. The test area comprised 1280 x 1024 pixels and subtended 36° x 29° at the 

57 cm viewing distance (1 pixel subtended ~1.7 arc min). The luminance of the dark 

Courier font letters and the uniform white background (LBG ≈ 113 cd/m2) was assessed 

using a Minolta LS-100 luminance meter. Testing using letters with high (> -90%) and low 

Weber contrast (≈ -10%) was performed in 2 different sessions. During the study, the 

examiner sat next to the subject and monitored his or her fixation visually. Trials that were 

observed to include a vertical saccade were discarded and re-run immediately. 

4.3.1 Pilot Testing for Reading Acuity 

In a pilot study involving 5 young naïve subjects with normal vision (ages: 23-31 

years), the word reading acuity was estimated at the fovea (E0) and at 5 and 10 deg (E5 

and E10) in the inferior visual field. Subjects fixated on a 1-deg cross (turned off during 

foveal testing) and randomly selected words of 5-10 letters sampled from the sentence pool 

described above were displayed at various sizes (acuity range: 20/800 - 20/20 in 0.1 

logMAR steps) to determine the reading acuity, defined as the smallest letter size at which 

words could be read correctly. Testing was repeated thrice for each subject, using both high 

and low contrast words at eccentricities E0, E5, and E10. The critical print size (CPS) was 

specified as 4 lines larger than the reading acuity, i.e., CPS = mean logMAR reading acuity 

+ 0.4 (Cacho, Dickinson, Smith, & Harper, 2010; Chung et al., 1998). In the main 

experiment, the x-height (height of the lowercase x, c.f., Mansfield et al., 1994) of the 
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presented text at each eccentricity was equal to the average CPS as determined in the pilot 

study, with the exception of high-contrast testing at the fovea where the x-height was set 

larger (x-height = logMAR reading acuity + 0.7). Larger letters were used in the high 

contrast foveal condition to prevent the individual 13 x 13 arc min element-deletions (see 

below) from obscuring entire letters.  

4.3.2 RSVP Testing for Reading Speed 

Simulation of Micro-scotomas and Fixational Jitter 

At each eccentricity tested (E0, E5 and E10) the words of a randomly selected 

sentence from the sentence pool were presented sequentially, one at a time. As noted above, 

when the text was presented at E5 and E10, the experimenter monitored the subjects to 

ensure that fixation on the fixation cross was maintained. The unaided eye can usually 

detect an eye movement that is larger than 1° (Yarbus, 1967). 

 Each presented word was centered both horizontally and vertically within a 

rectangular RSVP window (Figure 4-1, right), which itself was at the center of the Sony 

CRT screen. In different conditions, randomly distributed 13 x 13 arc min blocks (chosen 

to match the size of the stimuli used previously to map MSs in patients with CVL by 

Krishnan & Bedell, 2014) corresponding to 0, 13, 26,…,78% of the RSVP window were 

set to the background luminance (gray scale = 255) to simulate the influence of localized 

MSs (Figure 4-2).  The step size of 13% was chosen to ensure adequate sampling of range 

of the MS densities from 0 to 75% and is not related to the block size of 13 arc min. To 

simulate the influence of fixational eye movements, the location of all of the element-
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deletions was jittered (SDx, SDy = 0.3 deg) in tandem during the presentation of the 

successive words in each sentence. Both the locations of the element-deletions within the 

RSVP window and the jitter to simulate the effect of fixational eye movements varied from 

sentence to sentence. 

RSVP Window 

The RSVP window, excluding a surrounding padding area, was 13 letter characters 

wide and 2 characters high. The surrounding padding area (±0.9 deg) was included to 

accommodate the word-to-word jitter that was introduced in the location of the MSs. The 

RSVP window size was contingent on the text x-height (window height = 2*(x-height)) 

and so was different for the 3 eccentricities tested. A fixation cross was present throughout 

testing, except for testing at E0. Vertical markers (Figure 4-1, right), which helped the 

subjects to direct their attention to the appropriate location on the CRT screen for words at 

eccentricities, E5 and E10 stayed on the screen only during the presentation. The attention 

markers appeared with onset of the first word and disappeared simultaneously with offset 

of last word in each sentence. The height of the attention markers was set equal to one x-

height and the vertical center-to-center distance between each word and surrounding 

markers was set to 3 times the x-height. These values were so chosen to avoid any undue 

interference between the attention markers and the margins of the RSVP window. 
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Figure 4-1 Illustration of RSVP Testing 

On the left, a representation of the sequence of words of a sentence during the 

assessment of RSVP reading speed using high-contrast text, for an eccentricity of 5 deg in 

the inferior visual field (E5). The red fixation cross and the vertical attention markers 

stayed on the screen throughout each trial. On the right, the orientation screen is enlarged 

to show details. Note that the margin of the RSVP window was not visible during testing 

(See Figure 4-2). The padding area (empty white space inside the RSVP window) that 

surrounds the word in both the horizontal and vertical directions allows for simulated 

fixational jitter of the element-deletion locations. 
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Reading Speed Assessment 

After about 15 minutes of demonstration, training and practice with the RSVP 

reading task, assessment began either at E5 or E10, chosen randomly across subjects. The 

chosen condition was always followed by testing at the fovea and then at the third, 

remaining eccentricity. For the subjects who participated in testing using both high and low 

contrast text, the high contrast condition was always done first. An auditory beep signaled 

the start and the end of each trial and the subjects either read the words as they appeared 

sequentially on the screen or read the whole sentence after all the words had appeared 

(Figure 4-1 left). There was no time limit to respond and subjects were encouraged 

frequently to guess and to make corrections if deemed necessary.  

Individual sentences were shown just once to each observer. Following the 

observer’s response on each trial, the whole sentence was displayed on the screen to 

provide immediate feedback. Presenting the entire sentence on the CRT also helped the 

examiner to score the subject’s response to each sentence as either correct (read all of the 

words correctly; the addition of extra words aside from the words that constituted the 

sentence was not penalized) or incorrect (missed one or more words). The examiner 

recorded the score using either the ‘up’ or ‘down’ arrow key, which increased or decreased 

the exposure duration of each word on the following trial. The different levels of element 

deletion were tested in ascending order, starting from 0% to 39%, and to 52% (shown in 

Figure 4-2), 65% and 78%, if reading was still possible. We didn’t randomize the order of 

element deletion and chose to test in the ascending order to eventually prepare subjects for 
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the most severe condition with maximum element deletion. In testing that is already 

demanding for several reasons including the brief presentation durations, eccentric 

viewing, and the requirement to recall words in order, the ascending order of testing helped 

motivate the subjects, but might have inflated the reading speeds at higher element-deletion 

densities. 

A staircase algorithm estimated the threshold exposure duration for each 

combination of retinal eccentricity, letter contrast and element deletion. The exposure 

duration of each word changed in gross steps of 50% until the occurrence of the first 

staircase reversal, after which a step size of 25% was used to define 3 more reversals. For 

each condition tested, the reading speed in words per minute (wpm) was determined for 

each subject from the threshold exposure duration, as shown below. 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑠)  

=  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 ×  
1000 

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒(𝐻𝑧)
 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑠)

=  𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑀𝑒𝑎𝑛 𝑜𝑓 𝑙𝑎𝑠𝑡 3 𝑆𝑡𝑎𝑖𝑟𝑐𝑎𝑠𝑒 𝑅𝑒𝑣𝑒𝑟𝑠𝑎𝑙𝑠 

𝑅𝑆𝑉𝑃 𝑅𝑒𝑎𝑑𝑖𝑛𝑔 𝑆𝑝𝑒𝑒𝑑 (𝑤𝑝𝑚)  

=  
60,000

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝑚𝑠)
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Figure 4-2 Screenshot of Simulated Micro-scotomas 

A cropped image showing the central portion of the screen during RSVP testing. 

The example shows high-contrast words at E5 (x-height = 1.2 logMAR) and at an element-

deletion density of 52%. The red fixation cross in Figure 4-1 turned green during testing 

and along with the vertical attention markers, stayed on the screen throughout each trial. 

Note how the same element-deletion density can have a different impact on legibility 

depending on number of letters in the word and the locations of the deleted elements in the 

window. As seen here, the RSVP window margins were not visible during testing. 

4.3.3 Data Analysis 

A linear mixed modeling approach (Bagiella, Sloan, & Heitjan, 2000) was used to 

assess the effect of simulated % element-deletion on the log10RSVP reading speed. Reading 

rate is expressed throughout as base log10 wpm to approximately equalize variances across 

conditions. The effect of element-deletion density was modeled in the presence of 
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interacting independent variables of age group, contrast and eccentricity. The mixed effects 

model allows analysis of an imbalanced repeated-measures data set like ours (as all subjects 

could not successfully read text at all levels of simulated element-deletion density) and 

makes the best use of the available data. We deemed this analysis preferable to ANOVA, 

in which missing data points from one or more subjects require the data of all subjects in 

the specified treatment condition to be discarded.  

To examine the relationship between element-deletion density and the log10RSVP 

reading speed we ran a mixed effects linear regression analysis using PROC MIXED in 

SAS 9.2 (SAS Institute, Cary, NC) to control for the within-subjects nature of the study 

design while handling missing data.  A random effect for subject with a variance 

component structure was specified and the residual correlation was modeled specifying an 

unstructured covariance structure.  We were also interested in the effects of contrast, 

eccentricity, and age on mean reading speed and how these factors affected the relationship 

between element-deletion density and log RSVP reading speed. Therefore, fixed effects 

included within-subject variables element-deletion density as a continuous variable, 

repeated factors contrast (2 levels: high, low) and eccentricity (3 levels: 0, 5, 10) and 

between-individual factor age (2 levels: younger, older) in addition to interaction terms.  

We checked the interaction terms, beginning with the full model including the highest order 

terms, and removed non-significant interaction terms to simplify the model, while also 

aiming for a reduced Akaike information criteria (AIC).  A residual analysis was used to 

evaluate the fit of the final model.  The parameter estimates for the main effects and 
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interaction terms included in the final model are presented in Table 4-1 along with p-values 

based on the t statistic.     

4.4 Results 

In the preliminary experiment, the average CPSs for E0, E5 and E10 were 0.4, 1.2 

and 1.7 logMAR respectively, for high contrast words and 0.7, 1.2 and 1.7 logMAR for 

low contrast words. For RSVP testing with high contrast words and no random element-

deletions (0% MS), the average (±SD) reading speeds in log10 wpm (wpm given in 

parenthesis) at the fovea were: 2.87±0.12 (743.2) and 2.77±0.16 (584.1) for the younger 

and older subjects, respectively. The corresponding values for testing with low contrast 

words were: 2.69±0.08 (492.4) and 2.49±0.13 (310.8). 
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Figure 4-3 Reading vs Element-Deletion Density 

Log RSVP reading speeds (in wpm) as a function of % element-deletion density for 

high (top row) and low contrast text (bottom row) in younger (left column) and older (right 

column) subjects. Note that testing for >39% simulated element-deletion density for low 

and >52% for high contrast words was possible only at an eccentricity of 10 deg (E10).  

Not all subjects could be tested for the highest element-deletion density and hence 

the reading speed for the highest element-deletion density at E5 (HC-Older) and E0 (LC-

Older) were more variable and less reliable. The median standard error (SE, across 

element-deletion densities) is provided as an inset in each panel for each eccentricity. 

As shown in Figure 4-3, log RSVP reading rate decreases significantly with the 

simulated element-deletion density (b = -0.025, p<0.0001, also see Table 4-1) and 

eccentricity (E5: b = -0.43, p<0.0001, E10: b = -0.402, p<0.0001). The expected reading 

speed was lower (100.305 ≈ 2x) for the low contrast text and was higher (100.259 ≈ 1.8x) in 

the younger subjects with normal vision. The intercept value of 2.742 (102.74 ≈ 552 wpm) 

represents the model-predicted mean log RSVP reading speed for the foveal testing of older 

subjects, with high contrast words (Reference condition, see Table 4-1) at 0% element-

deletion density. 

The slopes (across both the contrast and age groups) of the linear fit were 

significantly different between the eccentricities E0 vs. E10 (t (89.4) = 8.3, p<0.0001) and 

E5 vs. E10 (t (74.4) = 6.8, p<0.001). However, the fitted slopes for E0 vs. E5 were not 

significantly different (t (55.25) = 1.19, p=0.24, Also refer to Figure 4-4). The 2-way 
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interactions that were significant (p<0.05) are %Element-deletion x eccentricity, 

%Element-deletion x contrast, and contrast x eccentricity (from type 3 tests of fixed effects, 

not shown here). The relationship between element-deletion density and reading speed is 

significantly modified by eccentricity (E10 vs. E0, b=0.014, P<0.0001), age (younger vs. 

older b=0.004, p=0.0274), and contrast (low vs. high, -0.005, p=0.0059, also see Table 

4-1).  

Effect Estimate (SE) Pr >|t| 

Fixed Effects   

Intercept 2.742     (0.07)  <.0001 

Contrast: Low -0.305    (0.06)  <.0001 

Age: Younger 0.259     (0.09) 0.0107 

MS Density -0.0247   (0.001)  <.0001 

Eccentricity: E5 -0.43     (0.06)  <.0001 

Eccentricity: E10 -0.402    (0.06)  <.0001 

Interactions   

MS Density * Eccentricity (E5) 0.002   (0.002) 0.2708 

MS Density * Eccentricity (E10) 0.014   (0.002)  <.0001 

MS Density * Age (Younger) 0.004   (0.002) 0.0274 

MS Density * Contrast (Low) -0.005   (0.002) 0.0059 

Contrast (Low) * Eccentricity (E5) 0.327    (0.069)  <.0001 

Contrast (Low) * Eccentricity (E10) 0.325   (0.06)  <.0001 

 

Table 4-1 Maximum Likelihood Parameter Estimates from the Model 
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Maximum likelihood parameter estimates of log RSVP reading speed (wpm) for the 

linear mixed effects model. The second column lists the estimate and standard error (SE) 

of the fixed-effect parameters. The parameter estimates are for comparison with the 

arbitrarily chosen reference condition of: high contrast, older age group and E0 (fovea).  

 

4.5 Discussion 

Our study demonstrates that simulated MSs impact RSVP reading performance 

both in the central and peripheral retina. Although this is not surprising, it is worth noting 

that the impact was persistent even after scaling the word size to be equal to the CPS at 

each eccentricity. When compare to the study by Seiple et al (1995) on letter identification 

our plots don’t show a plateau region and a steep decline. This was true for both contrast 

levels and age groups, and it is likely due to the unlimited viewing time that was available 

to subjects in letter identification study. In our study, our subject’s task was to read both as 

accurately and as fast as possible and hence even a small percentage of element deletions 

can have an impact on reading speed. Recall that the element size was 13 arc min here vs 

0.5 arc min in the study by Seiple et al (1995). With an increase in element size, even a 

small % of element deletion can impact performance. 

In a retrospective study of 82 subjects with central scotoma who were referred for 

low vision rehabilitation, Fletcher et al. (1999) reported an average CPS of 1.20 logMAR 

(0.6 (10th percentile) – 1.8 (90th percentile). Cacho et al. (2010) from a study on 243 

subjects with AMD, report an average CPS of 1.43 logMAR (Range: 0.54-2.20). Thus, the 
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x-height of the words used in our study at 5 and 10 deg in the inferior visual field is either 

at or above the average CPS for CVL subjects.  

The choice of CPS at each eccentricity might explain the similar reading speeds 

(Figure 4-3) for E5 and E10 for 0% element deletion condition. Chung et al. (1998) 

investigated the effect of print size on reading speed in normal peripheral vision. The two-

line fits for the plots of reading speed (wpm) as a function of print size (deg), have an 

ascending limb with a slope that varies across subjects and a plateau region (Refer to 

Figure. 3 in Chung et al. 1998). In our testing, the CPS used for E5 might be lower than 

the plateau for some subjects, so that the CPS used perhaps fell on the ascending limb 

region of the 2-line model fit by Chung et al.  

We report that the average reading speed for testing at E10 was always higher than 

testing at E5. Though counter-intuitive, this can be explained by the larger size of words 

for testing at E10. The larger the CPS, the bigger the words and the RSVP window and, 

hence, lower the impact of % element deletion. Recall that for simulating MSs by element 

deletion, we set the luminance of a specific percentage of the whole RSVP window to 

background luminance. This percentage was not a fraction of the character height but rather 

the whole window. The foveal reading speed for high and low contrast words were not 

very different in both younger and older normal cohorts. This is perhaps because the Weber 

contrast of the low contrast words (10%) was either close or above the critical contrast for 

foveal reading. The latter is defined as the lowest text contrast that could still support 

maximum reading speed (Chung & Tjan, 2010; Legge, Rubin, & Luebker, 1987).  



   

139 

 

Impaired reading performance for low contrast words is not novel (Legge & 

Kersten, 1987), but it may help to explain the interaction of scattered sensitivity losses 

(from MSs) with impaired contrast sensitivity, such as those seen in some individuals with 

CVL secondary to macular degeneration (Rubin & Legge, 1989). Taken together, our 

findings shed light on the reading deficits in individuals with CVL. The greater the 

eccentricity of the PRL, the greater the number of MSs, and the more contrast sensitivity 

is impaired, the slower should be the reading speed. Because the RSVP mode of text 

presentation minimizes the need for reading eye movements, the impact of MSs on real-

world page reading by subjects with CVL can potentially be more detrimental than shown 

by our results.  

Of the several interactions noted, two of them stand out and warrant comment. In 

addition to an overall slower reading rate in the older- compared to the younger-subject 

group (Table 4-1, p < 0.0107), the reading speed of the older subjects dropped slightly but 

significantly faster as the density of random element-deletions increased (Table 4-1, b= 

0.004, p=0.0274). Both the slower overall reading speed as well as the more deleterious 

impact of random localized sensitivity losses in the older compared to younger subjects 

might result from altered high-level visual processing (such as visual memory) in the older 

age cohort. Along a similar line, the significant interaction between element-deletion 

density and contrast is interesting. With other factors being the same, reading speed fell 

more quickly with the density of random element-deletion (b= -0.005, p=0.0059) for low 

than high contrast text. One way to interpret this interaction is that, by setting small regions 

of the text to the background luminance, the introduction of random element-deletions can 
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effectively reduce the local contrast. Rubin & Legge (1989) reported a rapid reduction in 

reading speed for contrasts below the critical contrast, defined as the lowest text contrast 

that could still support maximum reading speed. Because the contrast “reserve” is smaller 

for low- compared to high-contrast text, a reduction of the effective contrast that results 

from random element-deletions would be expected to exert a greater influence on reading 

speed for low-contrast words.  

Although we simulated an influence of fixational eye movements on successively 

presented words by jittering the locations of the random element-deletions en bloc both 

horizontally and vertically, the fixational eye movements made by subjects with CVL may 

differ quantitatively from this simulation. For example, Kumar & Chung (2014) reported 

that the median amplitude of slow fixational drifts in 16 subjects with macular disease 

(mean age ~75 years) was ~14 arc min, almost twice that of older subjects with normal 

vision. The authors also reported that the median amplitude of micro-saccade was ~53 arc 

min in subjects with macular disease, approximately 3.5 times larger than age-matched 

subjects with normal vision. 
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Figure 4-4 Interaction of Various Factors 

The linear fits from the mixed-effects model, with random element-deletion density 

(Shown in figure as micro-scotoma- MS density) on the X-axis and the predicted log10 

reading speed on the Y-axis. The shaded region represents the 95% confidence limits. 

Plots, in the order as they are listed, A) Plots illustrating the interaction of age group and 

element-deletion density on log10 reading speed. B) Illustrates the interaction of contrast 

and element-deletion density on log10 reading speed and C) illustrates the interaction of 

eccentricity and element-deletion density on log reading speed. Note that C) is the model 

fit to the plot of raw data in Figure 4-3 

Scherlen, Bernard, Calabrese, & Castet (2008) assessed page-mode reading in 7 

subjects with normal vision in the presence of a simulated artificial scotoma (6 or 10 deg 

in diameter) that was filled with upper-case X characters and concluded that the number of 

saccades and the mean fixation duration are the primary factors that influence reading 

speed. The authors suggested that when the visual encoding of text becomes more difficult, 

more saccades are required within a given region of text in order for word identification to 

occur. This interpretation is consistent with work by Deubel, Schneider, & Bridgeman 

(2002), who reported that when visual encoding is degraded the efficiency of trans-saccadic 

integration of information is reduced.  

Both fixation duration and number of fixations can influence the reading speed. 

Calabrese et al. (2014) investigated the eye movements in subjects with macular 

degeneration, while reading sequentially presented meaningful sentences. They report that 
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the total number of fixations (and not fixation duration) fully mediated the effect of reduced 

reading speed with the mean number of letters traversed per forward saccade. However, 

Loftus et al. (1992) reported that the degradation of visual input (like for instance, by 

decreasing contrast) potentially necessitates an increase in fixation duration thereby 

slowing the reading speed. In our study, the RSVP paradigm minimizes the need for 

saccades across words of a sentence and the need for encoding the relative spatial locations 

of text across eye movements. However, the degradation of the text that is produced by 

random element-deletions may interfere with the integration of information at low, and 

perhaps also at high levels of visual processing.  

 Rayner, Pollatsek, & Schotter (2012) compared template and feature models of 

word recognition during reading. In template models, visual input is compared to the 

memory representations of various objects (templates) and the best matching template is 

perceived as the object. On the other hand, feature models posit that recognition occurs 

based on the individual elements that constitute the object (like the combination of strokes 

that form a letter and/or the letters that comprise a word). Irrespective of which type of 

model is correct, the degradation produced by random element-deletions can impact 

recognition and reading performance, either because missing areas of the stimulus make 

template matching difficult or because the individual features that comprise letters and 

words are distorted or degraded.  

McMahon, Hansen & Viana (1991) described reading as a complex process 

requiring visual resolution, stable images, accurate saccades, word encoding, lexical 
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assessment, and short and long term memory. The last aspect of this process perhaps needs 

mention, as in our study the subjects verbalized words as they appeared on the computer 

monitor, following the end of trial, or a mixture of both. The degraded visual stimuli that 

we used in our study could either have less or more impact during page-mode reading. The 

argument in favor of less impact is that during page reading, one may have a preview 

benefit from text that does not suffer from element deletions and perhaps a reduced need 

to store the visual input in memory. On the other hand, the text degraded by random 

element-deletions can potentially have an adverse impact on eye movements and the fact 

that page mode reading requires efficient eye movements, argues for a greater impact of 

element-deletion on page mode reading. 

The random element-deletions that we employed in this study assume random 

sensitivity losses, spanning a considerable portion of the central or the peripheral retina. It 

may be that such random losses don’t occur in subjects with CVL, whose sensitivity losses 

(even outside the large clinically documented central scotoma) may be more clustered and 

restricted only to specific regions in the vicinity of the PRL. As a logical extension of the 

current study, it would be interesting to use maps of the MSs determined over an extended 

retinal region surrounding the PRL in subjects with CVL to simulate vision loss and assess 

reading speed in subjects with normal vision. 

4.6 Conclusions 

RSVP reading rate in both the central and peripheral retina is influenced by the 

density of random element losses, age, word eccentricity, and contrast. For a given 
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eccentricity and contrast, higher densities of random element loss maximally affected older 

subjects with normal vision. This may partly explain the subnormal reading performance 

in older subjects with bilateral CVL, when they use a retinal location that can include local 

areas with sub-clinical local sensitivity losses. The results presented here indicate that 

scattered sensitivity losses, in conjunction with co-existing changes in contrast sensitivity 

in areas outside the region of central field loss, should exert a negative impact on reading 

speed. 
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5. CHAPTER V: Overall Summary 
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5.1 Summary 

The primary aim of this dissertation study is to understand central field loss (CFL) 

and the associated deficits in reading performance. To assess the functional changes that 

happen in CFL, we needed to make sure that the commercial MP-1 micro-perimeter is 

capable of correcting for subjects’ eye movements and does testing at known retinal 

locations as claimed. The results from the study discussed in CHAPTER II (Page 1) 

confirmed that the NIDEK MP-1 micro-perimeter compensates for ~90% of the increase 

in fixational eye movements that is expected in patients with CFL and that image 

registration on repeated testing is accurate to ~2 pixels (8 arc min). Both these capabilities 

are crucial for following-up subjects with CFL. With this information, we screened the 

word-fixation preferred retinal locus (PRL) for local sensitivity loses in CHAPTER III 

(Page 38). The results indicate that the PRL in subjects with macular degeneration often 

includes local regions of sensitivity loss, or micro-scotomas. These micro-scotomas 

correlate poorly with changes in retinal structure detected by SD-OCT and with increases 

or reductions in retinal auto-fluorescence. The local defects found within PRL can be 

detected by a functional screening, but it remains to be seen if these local defects have 

significant consequences for reading, or other day-to-day activities, in patients with CFL. 

To understand the impact of local sensitivity defects we simulated micro-scotomas in 

subjects with normal vision in CHAPTER IV (Page 116). We report that the reading speed 

for sequentially presented words of a sentence is influenced by the density of random 

element losses (micro-scotomas), age, word eccentricity, and contrast. For a given 



   

150 

 

eccentricity and contrast, higher densities of random-element loss maximally affected older 

subjects with normal vision. Combining the studies, we now know that MP-1 can detect 

local sensitivity changes within PRL in subjects with CFL but that these local changes 

poorly explain the deficits in reading performance seen in subjects with CFL. 

Local sensitivity changes within PRL have not been explored in the past. Many 

previous researchers explored the margins of geographic atrophy and local changes in both 

structure and function at the sites of drusen or RPE atrophy (Fleckenstein et al., 2008; 

Iwama et al., 2010; Sulzbacher et al., 2012; Janet S Sunness & Steiner, 2008). Although 

the PRL in many subjects with CFL appears relatively normal, our results indicate that it 

typically is not. It remains to be seen if the extent of the sensitivity losses evolves over the 

course of time. 

5.2 Limitations of the Study and Scope 

Several limitations have been listed in the individual chapters but some of the key 

potential shortcomings of this work are reiterated here. The region of word-fixation PRL 

is usually small (~ 1-3 deg in extent). Although reading involves sequential placement of 

words at the PRL, regions outside the PRL can also contribute to reading. For instance, a 

preview benefit (akin to the perceptual span) exists in patients with CFL (Legge et al., 

2001; Trauzettel-Klosinski, 2011) and is likely to be sub served by regions outside the 

PRL. Having mirco-scotomas at the PRL could degrade textual information locally and 

thereby slow the reading speed by necessitating an increase in fixation duration, or the 

impact of localized micro-scotomas on reading might be mitigated by top-down influences 
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on the recognition of words (Rayner et al., 2012). In our simulation study we assumed that 

local sensitivity losses at the PRL occur also in wider regions of the peripheral retina in 

subjects with CFL. However, this supposition may not be entirely true.  

When assessing the accuracy of eye movement compensation by MP-1 we used a 

large circular target, which led to an increase in the fixational eye movements (FEMs) of 

subjects with normal vision. Although compensation by the MP-1 was good, we aren’t sure 

if the simulation using normally-sighted subjects best represents the FEMs in subjects with 

CFL. It is possible that the MP-1 performs more poorly than indicated by our simulations 

in patients with real CFL and, if so, the sensitivity estimates that we obtained in Chapter 

III need to be interpreted with caution. Less complete compensation of FEMs in subjects 

with CFL could explain the imperfect overlap of the local defects detected on successive 

supra-threshold screening tests (CHAPTER III). Although we used screening to quickly 

detect locations with reduced sensitivity (and minimize subject fatigue), one might use a 

thresholding paradigm to get a more reliable measure of sensitivity changes. Thresholds 

could be extended to regions beyond the PRL, including the estimated extent of the 

perceptual span (~5 deg or 15 letters to the right of fixation (Legge et al., 1997; Trauzettel-

Klosinski, 2011)). The dense sampling that we employed may represent overkill, and a grid 

that samples the PRL at 0.5 deg intervals in conjunction with a thresholding algorithm may 

provide more useful and reliable functional information. To compare local sensitivity 

changes at the PRL to reading speed, we assumed that the word-fixation PRL is the same 

as the reading PRL, which need not always be true (Crossland, Crabb, & Rubin, 2011; 
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Sullivan et al., 2008). Also, the reading PRL may not always be described adequately as a 

single retinal location. 

The NIDEK MP-1 microperimeter used in this study, was one of the first 

commercially available micro-perimeter to perform a fundus correlated perimetry. Since 

its introduction in the last decade, many micro-perimeters have become available (e.g., 

OPTOS OCT/SLO, MAIA). Some of the recent micro-perimeters use a scanning laser 

ophthalmoscope to scan and image the retina and by its very nature of image acquisition, 

the image resolution is far superior than that of IR-video camera based system like MP-1. 

About 2-3 micro-saccades per s (median: 2.48/s, with increased amplitude in macular 

disease) are observed in individuals with macular disease (Kumar & Chung, 2014). 

Assuming a micro-saccade amplitude of 1°, we know from the human main-sequence plot 

that the time duration for such a FEM will be ~20 ms. The time required for the MP-1 to 

detect and correct for an eye movement should be at least one frame (or 40 ms, 25 Hz). If 

so, then the likelihood that a micro-saccade occurs and is not corrected is approximately 

equal to the duration of 1 frame (40 ms) divided by the average interval between micro-

saccades (1000/2.48 = ~400 ms). Hence, the probability of an uncorrected micro-saccade 

is roughly 40/400 = 10%. The likelihood that micro-saccades will be uncorrected during 

both of the presentations of a screening target at (nominally) the same retinal location on 

the baseline and follow-up tests is 0.1 * 0.1 = 1%.  

On a different note, no information is available regarding the system time lag 

between the computation of ROI shift and the final adjustment of the stimulus. This is 
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pivotal given that the computations of cross-correlation over ROI can be intensive and the 

eventual adjustment of the projection system to offset the eye movement can potentially be 

delayed. Aside from this, there also could be delay associated with the update rate of the 

MP-1’s LCD display. We assume that the overall error/lag due to these factors are minimal, 

especially the errors produced in falsely detecting or not detecting targets at the same test 

location on both the baseline and follow-up tests are minimal. 

Although manual segmentation works best for retinal images that include 

pathologies like drusen or RPE thinning, the inconsistencies in criteria used by a segmenter 

could influence the thickness results. Compared to the affine approach used here, a 

quadratic transformation might better register the pairs of fundus images from two different 

imaging devices, especially when probing changes over a local region of the retina. We 

began this study with an aim of having 15 subjects with AMD and 15 with STGD, but in 

the end we recruited 29 subjects including several with CFL due to causes other than AMD 

or STGD. Even in these 29 subjects, the distribution of micro-scotomas (MSs) was not 

uniform within subject groups. To make better comparisons based on locations that had 

MS vs. nonMS locations as well as between them, it would be worthwhile to obtain 

measurements on larger numbers of subjects, specifically with diagnoses of AMD and 

STGD, to better describe the distribution of MSs. 

5.3 Clinical Implications 

First and foremost, screening the PRL for local sensitivity changes can provide a 

better understanding of the extent of the retinal changes produced by disease. When the 
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PRL is not yet established fully, screening the candidate retinal regions should help patients 

to make a better selection of their PRL location. We propose that a microperimeter-based 

fixation assessment and PRL screening when coupled with conventional eccentric viewing 

training (that demonstrates the subject with CFL his or her visual potential) could permit 

better rehabilitation of subjects with CFL. The presence of MSs in the PRL may represent 

a sign of an impending spread of atrophic changes or disease progression. For clinics that 

have access to micro-perimeter, then aside from fixation and sensitivity assessment, 

performing a reading assessment using material similar to our MP Read sentences can 

supplement traditional reading. 
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6. APPENDICES 
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6.1 Gamma Correction for Contrast Testing 

CHAPTER III refers to contrast sensitivity assessment using FrACT testing. For 

contrast testing to be accurate the display has to be corrected for any non-linearity in output 

intensity. We displayed a square patch (designed in Microsoft PowerPoint) set at various 

RGB values (0-255), which occupied more than 75% of the Lenovo ThinkPad Display 

(Intel HD Graphics). The luminance of this patch was measured in a totally dark room 

(illuminated only by the light from the display that was being calibrated) using a Minolta 

LS-100 photometer, held steady by a tripod at ~1m distance from the center of the display. 

The average values from at least 2 readings are displayed in the plot below. A gamma value 

of 2.8 made the relationship between the RGB value and Luminance nearly linear (Fit 

Slope of 0.82 and Fit R-Sq = 0.99). During the FrACT assessment reported in this study, 

the Gamma was set to this value. 

Gamma = 

1 
L1 L2 L3 

Average 

L 

Gamma= 

2.8 
L1 L2 

Average 

L 

(Default 

Setting) 
   (cd/m2) 

(Graphics 

Settings) 
  (cd/m2) 

RGB 

Value 
        

0 0.41 0.39 0.39 0.39  0.26 0.25 0.25 

32 3.05 3.00 2.99 3.01  28.80 28.82 28.81 

64 9.18 9.15 9.08 9.14  51.93 51.99 51.96 

128 37.97 37.91 37.77 37.88  97.46 97.49 97.48 

196 100.70 100.60 100.50 100.60  151.90 151.90 151.90 

255 213.80 213.90 214.00 213.90  214.10 214.10 214.10 
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L = Luminance of a square patch of set RGB value. The listed values are for a 

Gamma of 1 (default) and Gamma of 2.8. The value of 2.8 is not arbitrary and was obtained 

after trial and error. The plot below shows the non-linear output intensity for the default 

setting and the nearly linear output after the Gamma correction by setting the Gamma slider 

in the Intel graphics settings panel to 2.8. 

 

6.2 IR-MP1: Overlap Region Computation  

As discussed in CHAPTER II, the 2 IR-MP1 images from the follow-up testing 

(supra-threshold screening) are registered using the dual bootstrapping algorithm (and 
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affine transformation). The test grid from the follow-up test (test # 2) is replotted on the 

baseline IR-image using MATLAB and based on the affine coefficients. The average 

absolute offset was computed in a cohort of 4 CFL subjects (6 follow-up test image pairs) 

using the formula described below. The 4 CFL subjects (MD 1 - 4 are part of CFL cohort 

S1-S33, listed in Table 3-1 of Chapter III). 

Average Absolute Offset (in X and Y) = ∑|XB - XF|/N; ∑|YB - YF|/N 

Where, XB, YB   = X and Y coordinates of test point in baseline testing.  

XF, YF   = X and Y coordinates of test point in follow-up testing.  

N= Number of test points in the sampling array. 

Subject Code Avg. Abs. X Offset Avg. Abs. Y Offset 

 (arc min) (arc min) 

MD1a / S3 13.11 7.82 

MD1b / S3 3.05 6.47 

MD2a / S4 1.46 2.60 

MD2b / S4 6.90 4.03 

MD3 / S2 13.84 8.73 

MD4 / S1 10.49 1.59 

   
Mean (n=6) 8.14 5.21 

S.D 5.19 2.90 

Median 8.69 5.25 

Using the deg-to-pixel conversion factor of 15.19 provided by MP-1. 

1 IR image pixel ≈ 3.95 arc min. Overlap region: Mean ± 2SD (Offset) 
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Thus, the overlap region extends ~18.5 and 11 arc min horizontally and vertically 

on each side of the test spot. Thus the overlap region is: ~37x22 arc min or ≈ 8x5 IR 

image pixels. 

6.3 Supra-threshold Screening: Targets Missed 

Subject 

Code 

Total 

Locations 

Screened 

Targets missed on 
Screening 

  Test # 1 Test # 2 

S1 28 0 6 

S2 67 8 11 

S3 73 7 12 

S4 50 4 5 

S5 67 0 0 

S6 33 3 2 

S7 37 0 0 

S8 41 25 30 

S9 37 26 25 

S10 55 6 24 

S11 29 13 25 

S12 36 7 5 

S14 23 0 0 

S15 41 2 3 

S16 33 25 31 
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S18 57 7 1 

S19 67 4 2 

S20 94 41 59 

S22 57 45 46 

S23 77 6 38 

S25 37 19 29 

S26 62 39 32 

S27 39 13 21 

S28 62 31 40 

S29 73 50 56 

S30 31 0 0 

S31 44 5 2 

S32 62 3 3 

S33 56 0 0 

 

6.4 MS-nonMS locations – All Subjects 

Images are listed below in order of subject codes for all the 22 CFL subjects with 

either AMD/STGD first and then the 7 CFL subjects with miscellaneous diagnoses. Note 

that subjects who showed zero MS or zero nonMS locations are also listed. The full-sized 

IR images are from baseline (Test #1, exported from NIDEK MP-1) of the supra-threshold 

screening at the PRL. The inset on top left corner in each image is the zoomed test grid, 

where the identification and labeling of MS and nonMS locations on the replotted test grid 
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was done using MATLAB after registering the IR image pairs using a dual bootstrapping 

algorithm, GDB-ICP. (Also, See methods CHAPTER III) 

Note: In some of the images below, there is a tendency for the subject to fixate 

towards the fovea (the center of cloud of cyan fixation dots seems to drift from the word-

PRL towards the fovea). This is perhaps due to the fact that the PRL for large targets (like 

the circular fixation target used during the screening of the word-fixation PRL) can be 

shifted toward the vestigial fovea, perhaps as the result of filling-in (Pratt, Ohara, Woo, & 

Bedell, 2014). Another potential explanation is that the tendency to drift towards foveal 

fixation is perhaps contingent on the duration of CFL and longstanding cases of CFL may 

be less likely exhibit this behavior. 

 

Legend for all images: Blue Squares: Test locations from Test #1 

Blue Filled Squares: Undetected target locations from Test # 1 (Dotted square: Overlap 

region) 

Red Squares: Test locations from Test #2 

Red Thicker Outline Squares: Undetected target locations from Test # 2. 

Labeling of MS and nonMS (yellow) locations is also shown. 
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6.5 Computation of ROI in OCT scan image 

The region of interest corresponds to the locations in the OCT scan image that either 

had overlapping locations where the observer failed to detect the test spot during baseline 

and follow-up screening (MS locations) or where the test spot was detected on both 

screening tests (nonMS locations). Locations were classified as MS/nonMS from a pair of 

supra-threshold screening tests using a Goldmann Size II (nominally 13 arc min) test spot 

presented in a NIDEK MP1. As discussed in CHAPTER III methods, an affine 

transformation was used to map the locations from IR-MP1 image coordinates to those of 

the IR-SLO-Spectralis image coordinates. The registration was assessed by a 

psychophysical method of constant stimuli. 

 

Subject 

Code 

Diagnosis Offset 

Direction 

Slope Slope 

SE 

Bias Absolute 

Bias 

Bias SE 

        

S4 STGD Vertical 3.935 2.266 0.272 0.272 2.988 

S26 STGD Vertical 2.529 0.014 -1.869 1.869 1.057 

S16 AMD Vertical 3.987 2.266 -0.201 0.201 2.988 

S29 AMD Vertical 1.975 0.005 0.456 0.456 0.994 

     Mean 0.700  

     SD 0.787  

S4 STGD Horizontal 1.816 0.005 0.874 0.874 1.992 

S26 STGD Horizontal 5.382 3.321 0.060 0.060 3.066 
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S16 AMD Horizontal 5.402 3.321 -0.001 0.001 3.125 

S29 AMD Horizontal 4.593 2.641 -2.371 2.371 2.991 

     Mean 0.826  

     SD 1.104  

The table lists (all values in pixels) the slope and the bias of the cumulative 

Gaussian fit to the psychometric function plotted for the examiner’s evaluation for the 

direction of the image offset. The variance (in arc min) was computed from the SD of the 

absolute bias using the conversion factor of 51.2 pixels/deg. The variances from the 

registration error are: 0.85 and 1.67 arc min sq. (See Col. 2 in table below) respectively in 

vertical and horizontal direction.  

 

Direction 

IR-SLO 

Registration 

Error – Variance 

Uncompensated 

FEMs Variance 

Sqrt (Sum of 

Variances) 

Test Target 

Size 
Sum 

 (arc min Sq.) (arc min Sq.) (arc mins) (arc mins) (arc mins) 

V 0.850 22.373 4.819 13 17.819 

H 1.674 18.063 4.443 13 17.443 

Given that a 15 deg scan in the OCT spans 768 OCT image pixels and a 20 deg 

scan spans 1024 image pixels, we know that each OCT image pixel is 1.172 arc min. From 

this pixel-to-visual-angle conversion we derive that 17.82 and 17.44 arc min correspond to 

14.8 and 15.2 OCT image pixels in the vertical and horizontal directions. Thus, the ROI 

corresponding to a size II test spot after accounting for 2 sources of variance, was ~14 OCT 

image pixels. 
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6.6 OCT Image Segmentation – Special Cases 
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OCT scan descriptions from top: 

Scan 1: S2 (AMD). Note how RPE-BM includes the sub-foveal drusen (yellow trace). The 

hyper reflective material (suspected to be migrated RPE) was included within PL 

boundaries (green) 

Scan 2: S28 (AMD). RPE shows pigment epithelium detachment (right end of the 

segmented region). The outer margin of RPE-BM complex was still marked (blue) at the 
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base of the presumed BM location and the inner margin (yellow) was marked around the 

elevated RPE borders. Also note the PL margin wraps around the circular shadow regions. 

Scan 3: S22 (STGD). Note the apparent total thinning of the photoreceptor layer and how 

the PL margin (green) almost hugs the RPE inner margin (yellow). The RPE thinning also 

causes enhancement of the signal in the underlying choroid region. 

Scan 4: S32 (AMD). Note how the hyper-reflective band above the inner margins of the 

RPE (yellow) is either absent or merges with RPE layer. In the latter case, it was included 

as part of the RPE layer. Also note how the contour of the PL margin (green) is similar to 

that of ILM. The contour of other layers served as the guide when the margin of layer being 

marked was unclear, especially for PL marking. 
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6.7 Thickness Ratios and SDs for all Layers 

Legend for tables below: 

Rows 2-3: For scans from MS locations. 

Rows 5-6: For scans from nonMS locations. 

Column 3: Average thickness for the RPE-BM layer 

Column 4: Average thickness for the Photo-receptor and Outer nuclear layer (PL) 

Column 5: Average thickness for the total retinal layers (TRL) 

 

 

S2 RPE-BM PL TRL

MS AVG 18.95 28.25 66.45

N=6 SD 2.58 3.31 5.19

NonMS AVG 17.88 20.48 81.72

N=36 SD 4.66 6.47 5.33

Ratio 1.06 1.38 0.81
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S3 RPE-BM PL TRL

MS AVG 10.51 19.02 70.02

N=7 SD 1.08 2.47 0.95

NonMS AVG 11.88 21.36 71.22

N=10 SD 2.66 4.14 1.17

Ratio 0.88 0.89 0.98

S4 RPE-BM PL TRL

MS AVG 10.15 18.46 77.11

N=3 SD 0.55 0.78 0.32

NonMS AVG 9.18 18.61 76.97

N=11 SD 0.66 1.41 1.14

Ratio 1.11 0.99 1.00

S6 RPE-BM PL TRL

MS AVG 6.71 8.65 71.68

N=1 SD N N N

NonMS AVG 8.29 9.82 72.64

N=15 SD 1.90 2.49 1.10

Ratio 0.81 0.88 0.99
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S10 RPE-BM PL TRL

MS AVG 5.02 11.32 66.86

N=6 SD 0.77 2.73 1.42

NonMS AVG 10.96 19.14 73.93

N=15 SD 1.66 2.45 0.87

Ratio 0.46 0.59 0.90

S12 RPE-BM PL TRL

MS AVG 6.08 11.66 62.90

N=5 SD 1.36 7.78 5.61

NonMS AVG 8.08 20.71 69.04

N=5 SD 0.37 1.78 1.95

Ratio 0.75 0.56 0.91

S15 RPE-BM PL TRL

MS AVG 11.97 19.00 70.69

N=2 SD 4.53 0.19 1.22

NonMS AVG 8.57 14.87 65.55

N=21 SD 0.96 3.42 2.09

Ratio 1.40 1.28 1.08
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S18 RPE-BM PL TRL

MS AVG 9.66 24.23 73.65

N=1 SD N N N

NonMS AVG 9.78 18.21 72.65

N=16 SD 0.68 2.56 1.11

Ratio 0.99 1.33 1.01

S23 RPE-BM PL TRL

MS AVG 17.12 24.48 66.21

N=6 SD 2.41 4.12 8.01

NonMS AVG 15.68 24.03 77.50

N=2 SD 0.87 0.72 1.43

Ratio 1.09 1.02 0.85

S28 RPE-BM PL TRL

MS AVG 14.03 9.92 57.80

N=29 SD 5.55 9.11 6.58

NonMS AVG 8.62 31.23 59.79

N=1 SD N N N

Ratio 1.63 0.32 0.97
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S31 RPE-BM PL TRL

MS AVG 10.23 8.07 56.08

N=2 SD 0.44 2.45 2.11

NonMS AVG 9.54 15.38 66.78

N=22 SD 0.74 2.01 4.08

Ratio 1.07 0.52 0.84

S32 RPE-BM PL TRL

MS AVG 12.01 37.18 96.10

N=2 SD 2.15 1.34 4.37

NonMS AVG 9.39 38.35 95.23

N=29 SD 1.67 2.74 4.14

Ratio 1.28 0.97 1.01

S8 RPE-BM PL TRL

MS AVG 8.78 5.84 36.20

N=25 SD 0.85 1.84 3.72

NonMS AVG 7.68 8.53 28.79

N=1 SD N N N

Ratio 1.14 0.69 1.26
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Note that S8, S20 and S25 had miscellaneous diagnoses that lead to CFL. 

 

Subjects with zero nonMS location and who were matched with other CFL subjects: 

Subjects with zero nonMS location are: S9, S11, S22, S26, S27 and S29, who were matched 

with S4, S2, S3, S18, S2, S2, respectively, for computing the MS/nonMS thickness ratios. 

 

S20 RPE-BM PL TRL

MS AVG 11.07 9.30 81.64

N=34 SD 5.61 8.95 5.04

NonMS AVG 10.25 24.02 91.60

N=15 SD 5.86 9.15 5.23

Ratio 1.08 0.39 0.89

S25 RPE-BM PL TRL

MS AVG 29.15 32.85 80.35

N=19 SD 18.08 8.75 14.13

NonMS AVG 65.98 17.68 98.22

N=1 SD N N N

Ratio 0.44 1.86 0.82
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S9 RPE-BM PL TRL

MS AVG 11.06 10.04 69.64

N=22 SD 2.12 4.26 1.38

S4

NonMS AVG 9.18 18.61 76.97

N=11 SD 0.66 1.41 1.14

Ratio 1.20 0.54 0.90

S11 RPE-BM PL TRL

MS AVG 16.04 6.27 73.45

N=12 SD 4.51 5.32 1.85

S2

NonMS AVG 17.88 20.48 81.72

N=36 SD 4.66 6.47 5.33

Ratio 0.90 0.31 0.90

S22 RPE-BM PL TRL

MS AVG 5.82 6.14 54.46

N=44 SD 1.87 5.87 7.18

S3

NonMS AVG 11.88 21.36 71.22

N=10 SD 2.66 4.14 1.17

Ratio 0.49 0.29 0.76
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S26 RPE-BM PL TRL

MS AVG 9.37 7.89 32.31

N=39 SD 1.87 2.70 3.20

S18

NonMS AVG 9.78 18.21 72.65

N=16 SD 0.68 2.56 1.11

Ratio 0.96 0.43 0.44

S27 RPE-BM PL TRL

MS AVG 15.79 18.99 55.62

N=13 SD 2.83 4.37 9.20

S2

NonMS AVG 17.88 20.48 81.72

N=36 SD 4.66 6.47 5.33

Ratio 0.88 0.93 0.68

S29 RPE-BM PL TRL

MS AVG 6.86 13.34 67.00

N=49 SD 2.25 7.11 8.46

S2

NonMS AVG 17.88 20.48 81.72

N=36 SD 4.66 6.47 5.33

Ratio 0.38 0.65 0.82
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6.8 CPS (MN Read) and BCEA: All Subjects 

Subject 

Code 

CPS (MN Read) 1 SD BCEA (deg2) 

 (logMAR) Test 1 Test 2 Test 3 

S1 0.7 0.2 0.26 0.16 

S2 0.8 0.48 15.18 2.31 

S3 1.3 1.12 1.69 1.31 

S4 1 0.57 0.51 0.63 

S5 1.15 0.69 0.88 0.85 

S6 0.95 0.39 0.34 0.32 

S7 1.2 0.84 2.94 1.01 

S8 0.8 0.04 0.25 0.53 

S9 1.1 1.89 1.16 1.12 

S10 1.15 0.36 0.66 0.71 

S11 1.22 0.82 0.61 1.9 

S12 1.25 2.55 1.1 0.59 

S14 1.1 0.25 0.3 0.51 

S15 1.27 0.46 0.45 -- 

S16 1.4 1.12 2.61 0.62 

S18 1.07 3.53 1.51 1.97 

S19 1.1 1.55 2.59 2.58 

S20 1 7.78 4.4 17.02 

S22 1.3 2.21 1.39 2.07 

S23 0.8 1.05 1.22 0.41 
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S25 1.2 0.29 0.41 0.47 

S26 1.07 0.54 0.89 1.24 

S27 1.15 0.26 0.52 0.45 

S28 1.175 0.8 0.76 0.42 

S29 0.85 0.98 0.65 4.61 

S30 1.2 1.22 0.77 0.97 

S31 0.875 0.48 0.66 0.47 

S32 1.175 1.96 1.61 2.34 

S33 0.95 1.21 1.86 3.5 

     

Average 1.08 1.23 1.54 1.37 

Median 1.10 0.82 0.80 0.91 

SD 0.18 1.49 2.72 1.21 

Note that S2 sometimes uses two preferred word fixation loci, which accounts for 

the very large BCEA on fixation test 2. Multiple PRLs account also for the large BCEA 

for S20 on fixation test 3. 
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6.9 Scatter plot: Max RS (MN Read) vs BCEA 

The relationship was NOT significant either with or without the outlier (r = -0.140, 

t (27) = 0.733, p = 0.47 and r = -0.197, t (26) = 1.026, p = 0.314). 
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6.10  Scatter plot: Max. RS (MN Read) vs Eccentricity 

The relationship was NOT significant (r = -0.232, t (27) = 1.238, p = 0.227). 
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6.11 Scatter plot: Reading Acuity (MN Read) vs Eccentricity 

The relationship was significant (r = +0.383, t (27) = 2.157, p = 0.040). 
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6.12 Scatter plot: CPS vs Reading Acuity (MN Read) 

The relationship was significant (r = +0.826, t (27) = 7.618, p = 3 x 10 -8). 
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6.13  Scatter plot: Max. RS (MN Read) vs Age 

The relationship was significant (r= -0.508, t (27) = 3.067, p = 0.0049). 
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6.14 Scatter plot: % MS vs Age 

The relationship was NOT significant (r= +0.237, t (27) = 1.269, p = 0.215). 
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6.15 Scatter plot: BCEA vs % MS 

The relationship was NOT significant (r= -0.066, t (26) = 0.339, p = 0.737). 
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6.16 PRL Meridian and Polar Angle 

Subject 

Code 

Test 

Eye 
Diagnosis 

PRL Meridian 

(Retinal) 

Radial 

Eccentricity 

(°) 

Polar 

Angle  (°) 

S1 OS AMD Nasal 0.30 181.07 

S2 OD AMD Infero-Nasal 2.98 322.55 

S3 OD STGD Superior 3.73 97.70 

S4 OD STGD Superior 5.50 91.60 

S5 OS CRD Superior 5.52 95.19 

S6 OD STGD Superior 5.07 77.47 

S7 OD Plaq. Mac Superior 10.15 84.23 

S8 OD CRD Temporal 0.94 119.52 

S9 OD STGD Superior 7.06 91.96 

S10 OS AMD Supero-Nasal 7.85 110.51 

S11 OD Mac Hole Superior 1.76 75.18 

S12 OS STGD Superior 8.93 104.29 

S14 OD STGD Superior 5.60 74.47 

S15 OD STGD Superior 3.53 74.40 

S16 OS AMD Infero-Nasal 0.65 307.98 

S18 OD STGD Superior 2.06 75.96 

S19 OD AMD Superior 8.38 72.65 

S20 OD Plaq. Mac. Supero-Temporal 6.71 116.57 

S22 OD STGD Superior 4.00 90.00 

S23 OS AMD Inferior 3.00 270.00 
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S25 OD MMD/Toxo Infero-Temporal 5.59 206.57 

S26 OS STGD Inferior 2.00 270.00 

S27 OD AMD Supero-Nasal 1.12 63.43 

S28 OS AMD Supero-Temporal 1.12 63.43 

S29 OD AMD Nasal 2.50 0.00 

S30 OD STGD Superior 4.03 82.87 

S31 OD STGD Superior 2.06 75.96 

S32 OS AMD Nasal 4.12 165.96 

S33 OD Cone Dys Inferior 1.58 251.57 

   Minimum 0.30  

   Maximum 10.15  

   Median 3.73  

   Mean 4.06  

Note that the retinal eccentricity and the meridian of the PRL were calculated from the 

results of each examination by assuming a foveal location that is 15.5° temporal and 1.5° 

below the center of each patient’s optic disc (Rohrschneider, 2004). 

For computing the polar angle, a PRL to the right of the estimated foveal location (i.e., 

nasal retina in the right eye and temporal retina in the left eye) was designated as having a 

meridian of zero. Superior and inferior on the retina were designated as the 90° and 270° 

meridians, respectively. 
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6.17 Supra-threshold Screening: Normally-sighted Subjects 

Age Eye Radial 

Ecc. 

(°) 

Retinal 

Meridian 

Roughly 

Matches 

With 

Total 

Locations 

Screened 

Sampling 

Density(°) 

Not 

Seen  

Not 

Seen 

% 

MSs 

       Test 

#1 

Test 

#2 

 

68 OS 6 Infero-

Nasal 

S25 36 0.2 1 0 0 

71 OS 2 Supero-

Temporal 

S11 30 0.2 2 0 0 

27 OS 6 Superior S5 68 0.2 0 0 0 

29 OD 4 Supero-

Temporal 

S3 75 0.2 1 1 0 

61 OS 4 Nasal S32 65 0.2 1 0 0 

69 OD 7 Supero-

Temporal 

S20 95 0.3 4 1 1.05 

56 OD 3 Infero-

Nasal 

S2 68 0.4 0 0 0 

31 OS 8 Superior S10 55 0.2 0 1 0 

          

    Total 492  9 3  

 Note that of the 8 subjects screened only one of them had an overlapping MS (in 1 location 

out of 95 locations screened, ~1.05%). 
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6.18 Supra-threshold Screening: Relative Scotomas 

Code Diagnosis Screening 

Luminance 

Total 

Locations  

Not Seen 

#1 

Not Seen 

#2 

  (dB) Screened   

S3 STGD 4 73 2 2 

S4 STGD 6 50 10 17 

S5 Cone-rod Dys 5 67 0 1 

S6 STGD 5 33 1 1 

S7 Plaq. Mac 5 37 1 0 

S11 Macular Hole 4 29 15 28 

S12 STGD 5 36 10 9 

S14 STGD 7 23 0 0 

S15 STGD 7 41 5 9 

S18 STGD 5 57 6 10 

S19 AMD 3 67 4 2 

S31 STGD 5 44 15 15 

S32 AMD 5 62 19 15 

The screening for relative scotomas with a luminance level that is +5 dB brighter than 

median sensitivity around PRL was done in 13 of the 29 subjects with CFL. This was asides 

the screening with the brightest test spots (0 dB screening), and the luminance of the test 

spots used for this screening is listed in column 3. 
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