
University of North Dakota
UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

5-2011

Developing A Remote Sensing Algorithm For
Deriving Soil Moisture From Spectral Reflectance
Santosh Rijal

Follow this and additional works at: https://commons.und.edu/theses
Part of the Earth Sciences Commons

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact
zeineb.yousif@library.und.edu.

Recommended Citation
Rijal, Santosh, "Developing A Remote Sensing Algorithm For Deriving Soil Moisture From Spectral Reflectance" (2011). Theses and
Dissertations. 2516.
https://commons.und.edu/theses/2516

https://commons.und.edu/?utm_source=commons.und.edu%2Ftheses%2F2516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/153?utm_source=commons.und.edu%2Ftheses%2F2516&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2516?utm_source=commons.und.edu%2Ftheses%2F2516&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu


DEVELOPING A REMOTE SENSING ALGORITHM FOR DERIVING SOIL 
MOISTURE FROM SPECTRAL REFLECTANCE 

by 

Santosh Rijal 

Bachelor of Science, Tribhuvan University, 2007 

A Thesis 

Submitted to the Graduate Faculty 

ofthe 

University of North Dakota 

in partial fulfillment of the requirements 

for the degree of 

Master of Science 

Grand Forks, North Dakota 

May 

2011 



'\ 

Copyright 2011 Santosh Rijal 

ii 



This thesis, submitted by Santosh Rijal in partial fulfillment of the requirements 
for the degree of Master of Science from the University of North Dakota, has been J4ead 
by the Faculty Advisory Committee under whom the work has been done and is hereby 
approved. 

This thesis meets the standards for appearance, conforms to the style and format 
requirements of the Graduate School of the University of North Dakota, and is hereby 
approved. 

Gnean of the Graduate School 

l!t4cQ acQ r:9011 
I -
Date 

iii 



Title 

Department 

Degree 

PERMISSION 

Developing a Remote Sensing Algorithm for Deriving Soil 
Moisture from Spectral Reflectance 

Earth System Science and Policy 

Master of Science 

In presenting this thesis in partial fulfillment of the requirements for a graduate 
degree from the University of North Dakota, I agree that the library of this University 
shall make it freely available for inspection. I further agree that permission for extensive 
copying for scholarly purposes may be granted by the professor who supervised my 
thesis work or, in his absence, by the chairperson of the department or the dean of the 
Graduate School. It is understood that any copying or publication or other use of this 
thesis or part thereof for financial gain shall not be allowed without my written 
permission. It is also understood that due recognition shall be given to me and to the;, 

University of North Dakota in any scholarly use which may be made of any material in 
my thesis. 

Date 

iv 



TABLE OF CONTENTS 

LIST OF FIGURES ................................................................................ viii 

LIST OF TABLES ................................................................................... xii 

ACKNOWLEDGEMENTS ....................................................................... xiii 

ABSTRACT ........................................................................................... xv 

CHAPTER 

I INTRODUCTION ..................................................................... 1 

Objectives ......................................................................... 3 

Description of the Study Area ........................................... .4 

Landsat 5 TM ................................................................. 7 

AEROCam ................................................................. .'~ 
V) 

II LITERATURE REVIEW ........................................................ 11 

Remote Sensing of Soil .................................................. 11 

Soil Texture ......................................................... 11 

Organic Matter .................................................... 12 

Soil Structure, Roughness and Agricultural 
Practices ......................................................... 12 

Remote Sensing of Surface Soil Moisture .............................. 14 

Microwave Sensing of Surface Soil Moisture ................ 15 

Passive Microwave Sensing of Surface 
Soil Moisture ........................................... 16 

Active Microwave Sensing of Surface 
Soil Moisture ........................................................ 18 

V 



Optical Sensing of Surface Soil Moisture .................... 21 

III METHODOLOGY ............................................................... 28· 

Laboratory and Outdoor Experiment .................................. .28 

Soil Used ......................................................... 28 

Preparation of Soil Sample and Soil Sample Box ........... 28 

Calibration of Watermark 200 Soil Matric Potential 
Sensor ....................................................................... 28 

Volumetric Soil Moisture Measurement ....................... 31 

Laboratory Experimental Set-up .............................. 31 

Measuring Spectral Reflectance of Soil at Varying 
Moisture Condition ................................................ 32 

First Laboratory Experiment ................................... 33 

Second Laboratory Experiment ............................... 33 

Measuring Spectral Reflectance under Natural Light. ....... 34 

Field Measurement of Soil Moisture in the RRV of the North 
l . 

Basin ........................................................................ 3~,) 

A flowchart for Data Collection ...................................... '. .. .36 

A flowchart of Methodology Used for Landsat 5 TM ................. 37 

Variation of Spectral Reflectance with Moisture in the 
Experiments ............................................................... 3 8 

Problems Encountered with the Reflectance Spectra while 
Continuously Using ASD .............................................. 39 

Model Preparation ........................................................ 42 

IV RESULTS AND DISCUSSION .................................................. .43 

Landsat' and. AEROCam .................................................. .43 

Regression Analysis for Landsat 5 TM ................................ 50 

Regression Analysis for AEROCam ..................................... 52 

vi 



Observations in the Red River Valley .................................. 59 

Observation in the Fairmount Experimental Field .................. 61. 

V CONCLUSION, LIMITATION AND FUTURE 
WORK OF THE STUDY ........................................................ 71 

Conclusion ............................................................ : ...... 71 

Limitation of the Study ...................................................... 72 

Future Work ............................................................. ,. 73 

APPENDICES ...................................................................................... 75 

REFERENCES .......................................................................... : .......... 90 

vii 



LIST OF FIGURES 

Figure Page 

1. Locations of the study areas (a) the RRV and the Fairmount experimental 
field; (b) counties in North Dakota where field experiments of soil moisture 

were carried out ..... ····························································································':.5 

2. Experimental field at Fairmount, Richland County, North Dakota ................... 6 

3. Images of the Fairmount experimental field (a) in the beginning of growing 
season of2010 (b) com midway through the growing season of 2010 ............... 6 

4. Laboratory spectra of four different soils at different volumetric water 
contents (Lobell and Asner, 2002) ....................................................... 13 

5. Part of the electromagnetic spectrum showing Visible with Infrared and 
Microwave wavelengths where studies on soil moisture has been carried 
out, provided by Rossel and McBratney (1998), and modified for the 
purpose of the study ........................................................................ 11 

6. Instruments used for calculating gravimetric soil moisture content: (a) soil 
sample box, (b) porcelain plate and auger, (c), soil oven and (d) a scale 
of precision+ 0.001g .................................................................................... 29 

7. The relationship between gravimetric soil water content and the logarithmic 
soil moisture potential at 15 cm depth .................................................................. .30 

8. Laboratory experimental set up to collect the spectral reflectance of soil in a 
naturally drying moisture condition ..................................................... 32 

9. The soil sample box with different instruments that were used in the outside 
measurement ........................................................................................ 34 

10. A Flowchart showing data collection in lab and field experiment ....................... 36 

viii 



11. A Flowchart showing detailed methodology for developing the model 
for Landsat 5 TM ............................................................ ·············;··37 

12. Measured reflectance spectrum (left y-axis) and its 1st derivative (right 
y-axis) with respect to wavelength (nm). (a) First observed jump at 25 
hours of continuous operation, (b) after 3 5 hours of continuous operation, 
( c) after 40 hours of continuous operation, ( d) after 5 5 hours of continuous 
operation,( e) after 65 hours of continuous operation, and (f) after 70 hours · 
of continuous operation ................................. ; ......................................... 40 

13. The temporal variation of the jump (a) at 97 5 nm and (b) at 1760 nm where 
they increased in a linear fashion at the beginning and remained relatively 
constant after about 100 hours of operation ............................................ .41 

14. Simulated reflectance of soil collected in various moisture levels: (a) first 
lab experiment (b) second lab experiment ( c) outdoor experiment with respect 
to the center wavelength for Landsat 5 TM ........................................... .44 

15. Simulated reflectance of soil collected at various moisture levels: (a) first lab 
experiment (b) second lab experiment ( c) outdoor experiment with respect to 
the center wavelength for AEROCam ................................................... 45 

16. Different band and band combinations for the simulated reflectance value of 
Landsat 5 TM plotted with respect to soil moisture from all three 
experiments ................................................................................. 46 

1 

! 

1 7. Different band and band combination for the simulated reflectance value of 
AEROCam plotted with respect to soil moisture from all three experiments ..... .47 

18. Relationship between volumetric soil moisture and simulated reflectance of 
Landsat band (B5-Bl) collected during all three experiments ....................... .48 

19. Relationship between volumetric soil moisture and simulated reflectance of 
AEROCam band (NIR) collected during all three experiments ..................... .49 

20. Graphical relationships between soil moisture and simulated reflectance of 
selected band combination (B5-Bl) for Landsat 5 TM ............................... 51 

21. Graphical relationship between soil moisture and simulated reflectance of 
selected band (NIR) for AEROCam ..................................................... 53 

22. Variation of surface soil reflectance with changing soil moisture (a) 
for Newtonia silt loam (Bowers and Hanks, 1965) and (b) from first 
laboratory experiment (Roliss-Lindas Hamerly Doran) .............................. 55 

ix 



23. Absorption coefficient of water (Segelstein, 1981) with the ASD 
measured Spectra obtained in first lab experiment. ................................ )" .57 

24. Absorption coefficient of water (Segelstein, 1981) with the simulated 
reflectance of Landsat in first lab experiment .......................................... 58 

25. Absorption coefficient of water (Segelstein, 1981) with the simulated . 
reflectance of AEROCam in first lab experiment ....................................... 59 

26. A comparison of surface soil moisture content measured in different 
experimental fields in RR V with respect to the soil moisture content acquired 
from Landsat 5 TM based model ....................................................... :.60 · 

27. Location of soil moisture sensors (SMS) overlaid in a false color 
AEROCam image of the Fairmount experimental field .................. ··.: ......... 62 

28. The difference in estimated soil moisture on drained and undrained portion of 
the Fairmount experimental field (a) on May 11, 2008 and (b) May 18, 2008 ... 64 

29. The difference in estimated soil moisture on drained and undrained portion of 
the Fairmount experimental field (a) on May 21, 2009 and (b) May 30, 2009 ... 65 

30. The difference in estimated soil moisture on drained and undrained portion of 
the Fairmount experimental field (a) on April 15, 2010 and (b) April 22, 2010 ... 67 

31. The difference in estimated soil moisture on drained and undrained portion of ~,) 
the Fairmount experimental field (a) on May 7, 2010 and (b) May 17, 2010 .... ~68 

32. Comparison of reflectance spectra of soil on drained/undrained portion of 
Fairmount experimental field collected (a) on June 5, 2009 (b) on 
September 10, 2009 ....................................................................... 69 

33. Soil map of North Dakota with the location of field measurement indicated 
by the triangles ............................................................................. 78 

34. The spectral response function for Landsat 5 TM, Band 1 (CEOS, 2010) ......... 79 

35. The spectral response function for Landsat 5 TM, Band 5 (CEOS, 2010) .......... 80 

36. The spectral response function for NIR Band of AEROCam ......................... 81 

37. Fairmount experimental field, Richland County, where field moisture 
measurements were carried out in the locations indicated by triangles ............ 82 

X 



38. Experimental field in Fairmount 'A', Richland County, where field moisture 
measurements were carried out in the locations indicated by triangles ......... 1 ••• 83 

39. Experimental field in Fairmount 'B', Richland County, where field moisture 
measurements were carried out in the locations indicated by triangles ............ 84 

40. Experimental field in Fairmount 'C', Richland County, where field moistur~ 
measurements were carried out in the locations indicated by triangles ............ 85 

41. Experimental field in Mayville, Trail County, where field moisture 
measurements were carried out in the locations indicated by triangles ............. 86 

I 

42. Experimental field in Wahpeton, Richland County where field moisture 
measurements were carried out in the locations indicated by triangles ............ 87 

43. Experimental field in Walcott, Richland County, where field moisture 
measurements were carried out in the locations indicated by triangles ............ 88 

44. Experimental field in Devils Lake, Ramsey County, where field moisture 
measurements were carried out in the locations indicated by triangles ............ ,89 

xi 



LIST OF TABLES 

Table Page 

1. Location of experimental fields and a brief introduction of the soils 
found in those areas (Web Soil Survey, 2010) ........................................ : .8 

2. Summary of physics, advantages and limitation of some remote sensing 
techniques used for surface soil moisture estimation (Moran et al., 2004) ........ .27 

3. Regression analysis for selected band combination (Band 5-Bandl) for 
Landsat 5 TM .............................................................................. 50 

4. Regression analysis for selected band (NIR) for AEROCam ....................... ·t52 

5. Band designation of Landsat 5 TM and the use of these bands ..................... 54 

6. Correlation analysis between estimated soil moisture and soil moisture 
measured in field ........................................................................... 6l . 

\') 

xii 



ACKNOWLEDGEMENTS 

I would like to thank the Department of Earth System Science and Policy, 

University of North Dakota, for providing me this golden opportunity to further my 

academic carrier, hone my knowledge and skill in the field of remote sensing, and for', 

providing important resources and facilities throughout my Masters study. I would like to 

express my deep and sincere gratitude to my advisor Dr. Xiaodong Zhang for his 

continuous guidance, support and encouragement for conducting this research. His 

academic visions and instructions build firmness in my educational career. His ideals and 

concepts have has a remarkable influence on my entire career too. 

I would like to thank my committee members for being the foundation of my 

research. I wish to express my warm and sincere thanks to Dr. Xinhua Jia of North 

Dakota State University for providing me with the research field to conduct my 

experiments and several other resources. I owe my sincere gratitude to Dr. Soizik 

Laguette, Department Chair and my committee member. Her constructive criticism and 

excellent advice for preparing the final thesis helped to make the paper excellent. 

I would also like thank Dr. Michael J. Hill and Dr. Rebecca J. Romsdahl for the 

research ideas they provided me on the class. I would like to thank my classmates Junyu 

Yang, Navin Thapa, Anduin K. Mckelroy and Shawn O'Neil for sharing every moment 

during my study. I warmly thank I>r. Hojin Kim for providing me great knowledge about 

ASD which I used in my experiment. Furthermore, I was able to gain remarkable 

knowledge on GIS, digital imagery, image interpretation, processing and analyzing 

xiii 



satellite images, in the Geospatial Lab under his guidance. I wish to thank Mr. Steve 

Finlay for revising the english of my manuscript. During this work, I have collaboraied 

with many colleagues for whom I have great regard, and I wish to extend my warmest 

thanks to all those who have helped me in my work. 

I would like to thank the two most beautiful ladies of our department, Kathy, 

Ebertowski and Karen Katrinak for being so pleasant, cheerful and rushing everytime to 

help students in the best possible way. Thanks for creating a family in ESSP. I would like 

to thank Ms. Anu Mishra, for her encouragement and moral support. I would also like to· 

thank Ishara Rijal, Qiang Zhou and Hom Jyoti Adhikari for their suggestions in my 

thesis. I missed my loving nephew Pragyan, whole a lot, while my study here in US. 

I owe my loving thanks to my family. My hardworking father, mother and my 

two sisters are in every cell of my body, sacrificing their entire life to me, and expecting 

nothing in return. 

xiv 



To My Family 



ABSTRACT 

Wet weather cycle since 1993 has brought ground water level closer to the surface 

of the soil in many areas in the Red River Valley (RRV) of the North basin. Many 

farmers have to delay spring plantation or autumn harvest due to excessive moisture in', 

their farmland. In such case, it becomes increasingly important to have timely and 

accurate information on the soil moisture conditions. Conventional soil moisture 

measurement techniques are point-based that results in poor spatial representation of soil 

moisture. Remote sensing techniques offer many potential advantages over traditional 

means such as repetitive coverage and areal representation. The objective of this study 

was to develop a remote sensing algorithm to be used by Landsat 5 TM and Aerocam to 

map surface soil moisture during the early stage of growing season in the RRV of the 

North basin. 

Soil samples were collected and hyperspectral reflectances of the soil at various 

moisture levels were recorded under laboratory conditions. The first two experiments 

were carried out with Halogen lamps as the source of light whereas the third experiment 

was performed outdoor. Landsat 5 TM and Aerocam spectral response function were 

applied to the measured hyperspectral values to simulate the multispectral reflectance for 

each sensor. The results from these three experiments were consistent to each other and 

therefore were binned together. By using simple mathematical computations, band or 

band combinations that best estimates the surface soil moisture was found out. For 

validation, soil moisture was measured in different agricultural fields in the RR V during 

xv 



the time of Landsat overpass, and soil moisture was continuously monitored in a farm 

field in Fairmount, Richland County, North Dakota. 

The difference of bands 5 and 1 was shown to correlate best with soil moisture 

concentration while the NIR band itself is the best for Aerocam. The estimated soil 

moisture using Landsat 5 TM agreed with the measurements with an R2= 0.90. The 

model performed well in dry or moderately wet conditions, but slightly underestimated 

by 3-4% for excessively wet conditions of more than 40% soil moisture in the field. The 

evaluation at the Fairmount experimental field also showed that the model performed 

well. Field verification for Aerocam imagery remained incomplete due to lack of 

irradiance value. 
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CHAPTER 1 

INTRODUCTION 

Soil moisture is an important factor influencing a range of environmental 

processes that include the growth of plants, soil biogeochemistry, and land-atmosphere', 

exchange of heat and water (Lobell and Asner, 2002). It controls the partitioning of water 

and energy fluxes at the earth's surface and plays a significant role in continental water 

distribution through the land-surface-atmosphere mechanism (de Rosnay et al., 2006). 

Soil moisture also affects land-use and agricultural planning ( de Rosnay et al., 2006) and 

has significant impacts on the development of regional as well as global weather patterns 

(Nemani et al., 1993). 

Surface soil moisture contributes to the hydrological processes of 

evapotranspiration and runoff generation both affecting the exchange of water and energy 

fluxes at the land surface and atmosphere interface (Wang and Qu, 2009). Moisture on 

the surface of the soil has special significance and has many implications on studies 

related to biological and biogeochemical processes. The role of soil moisture in the top 1 

to 2 m of the Earth's surface has been widely recognized as a key variable in many 

environmental studies including meteorology, hydrology, agriculture and climate change 

(Wang and Qu, 2009). Hence, timely and accurate estimates of spatial and temporal 

variations of soil moisture are important (Lobell and Asner, 2002). 

Conventional measurement techniques such as gravimetric and time domain 

reflectrometry (TDR) are point-based and require on-site operations and tedious post-
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processing (Moran et al., 2000). These point based measurements usually result in poor 

spatial representation of soil moisture because of the variability of soil moisture over a 

land surface with the soil type, land structure, landuse and other ecological features. 

Surface moisture fluctuates at high spatial and temporal frequencies which make precise 

characterization of its variability difficult over large areas (Famiglietti, 1999). To 

adequately represent temporal and spatial distributions of soil moisture, a large number of 

data are required, and the cost of acquiring these data by manual measurements is often 

prohibitive (Lindsey et al., 1992). Furthermore, management requirements for operational· 

use of such data may be such that the time taken between collection, delivery, and 

processing of data, before using them in a model, can make the data obsolete (Lindsey et 

al., 1992). Therefore, techniques for determination of soil moisture, without the necessity 

for extensive and costly manual measurements, would be beneficial in characterizing soil 

moisture within a given region or field (Kaleita et al., 2005). 

A variety of techniques for measuring soil moisture across a wide range of area in 

a continuous manner has been offered by technological advances in remote sensing 

(Wang and Qu, 2009). Compared to other methods for measuring surface soil moisture, 

remote sensing is synoptic, provides for timely coverage with repeat passes, and offers 

efficiencies of scale that cannot be matched by traditional means. Remote sensing 

technology has capabilities for rapid acquisition of spatial-temporal information on soil 

moisture that is vital to agricultural, hydrological and geographical studies (Ruan-Jun, 

2009). Therefore, there is growing interest in developing remote sensing techniques for 

monitoring surface soil moisture over large areas (Bryant et al., 2003). As remote sensors 

do not measure soil moisture content directly, it becomes important to derive 
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mathematical models that can describe the connection between the measured signal and 

soil moisture content (de Troch et al., 1996). There are many remote sensing approaches 

and methods developed using microwave remote sensing for estimating soil moisture 

while a limited number of methods have been developed using multispectral sensors. 

Considering all the advantages of remote sensing and the lack of sufficient study and 

methods for detecting surface soil moisture using multispectral sensors like Landsat 5 

Thematic Mapper (TM), the present study is carried out. 

The wet weather cycle since 1993 has brought ground water level closer to the 

soil surface in many areas in the Red River Valley (RRV) of the North Basin. Many 

farmers have to delay the spring planting or autumn harvest due to excessive moisture in 

soil. It becomes important to have timely information on soil moisture conditions to help 

farmers make decisions regarding their farming schedule or management plan such as 

whether to install sub-surface drainage. Hence, the purpose of this study is to develop an 

algorithm for estimating surface soil moisture from Landsat 5 TM and AEROCam 

imagery for the RR V. 

Objectives 

The overall objective of the study was to develop a remote sensing algorithm 

using Landsat 5 TM and AEROCam data to map surface soil moisture during the early 

growing season in the RRV. To achieve this objective, the following studies have been 

conducted: 

1. hyperspectral reflectance of the surface soil sample was measured at various 

soil moisture content levels under both indoor and outdoor illumination 
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2. a remote sensing algorithm was developed for deriving soil moisture from 

Landsat 5 TM and AEROCam images 

3. the developed algorithm was validated using field observations 

Description of the Study Area 

The RR V of the North Basin has been selected as the study area for this research 

(Fig. 1 ). Soil moisture data has been collected from several fields in the RRV (Fig. 1 b, 

Table 1) and a farm field in Fairmount, Richland County (Figs. 2 and 3). The soil used 

for indoor and outdoor experiments was collected from the Fairmount farm field situated 

over the Fairmount aquifer, 15 km west of the Bois de Sioux River and about 3 km south 

of the town of Fairmount. The Fairmount field has a total area of 44 ha, of which 20 ha 

have sub-surface drainage installed (Jia et al., 2008). In a Landsat 5 TM scene with a 

spatial resolution of 30m, the total number of pixels from east to west is 27 and 19 from 

north to south. In the drained section of the field, drainage pipes are installed at O. 9-1. 5 m , 

depth of the field with a spacing of 18m from west to east toward a pumping station. The 

drainage water is pumped to a county ditch located near the northeast comer of the field. 
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Figure I. Locations of the study areas (a) the RRV and the Fairmount experimental field; (b) 

counties in North Dakota where field experiments of soil moisture were carried out 
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Fairmount Experimental Field, Richland County, ND 

LJ Riehl.and County 

County Boundary of North Da<ota 

340 Meters 

Map Prepared By: Santosh Rijal 
Map Prepared Date: 0511511 O 
Name ofthe Projection: Transverse Mercator 
Data Source: ND GIS Hub 

Figure 2. Experimental field at Fairmount, Richland County, North Dakota 

(a) (b) 

Figure 3. Images of the Fairmount experimental field (a) in the beginning of the growing season of2010 

and (b) corn midway through the growing season of 2010 
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According to Stoner et al. (1993), there are eight major soil associations that 
.., 

occur in the RRV: black, limy, clayey soils in the Drift Prairie, RRV Lake Plain, and 

Lake-Washed Till Plain areas; black, loamy soils in the Drift Prairie in North and South 

Dakota and in the southern Moraine area of Minnesota; rolling, wooded soils in the 

Turtle Mountains and Pembina Escarpment in North Dakota and in the moraine area in 

Minnesota; sandy soils along the western and eastern edge of the RR V Lake Plain and in 

the Lake-Washed Till Plain area in Minnesota; loamy soils in the RR V Lake Plain and 

the moraine areas of Minnesota; clayey soils in the RR V Lake Plain area; black, limy, 
I 

clayey soils in the Drift Prairie, RR V Lake Plain, and Lake-Washed Till Plain areas; 

organic soils in the Lake-Washed Till Plain area in Minnesota (Stoner et al., 1993). 

However, brief information of the soil used in the experiment is shown in Table 1. 

Landsat 5 TM 

Landsat TM sensors have been orbiting the globe since 1982, providing near- 1' 

J 

' ' 

continuous multispectral coverage of the United States every 16 days. The Landsat 5 TM 'rJ 
satellite was developed and launched on March, 1984 by the National Aeronautics and 

Space Administration (NASA) and continues to acquire quality TM images (Chander et 

al., 2004). Landsat 5 TM has 6 spectral bands in the visible, near-infrared and short-wave 

infrared with 30 m spatial resolution and one thermal band with 120 m resolution. The 

U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science 

(EROS) took the lead in operating it since 2001 as well as archiving and processing all of 

the data acquired by the sensor (Barsi et al., 2007). Landsat data record has proved to be 

very important for terrestrial remote--sensing and global change research because of its 

relatively fine spatial 
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Table 1: Location of experimental fields and a brief introduction of the soils found in those areas (Web Soil Survey, 20 I 0) 

Experimental field Geographic Name of the soil Sub- % Elevation Mean annual Landforms Drainage Parent material 
Location Category sloee ~fti erecieitation~inchi class 

Fairmount 46.0089°N, Roliss-Lindas-
experimental field; 96.6036°W; Hamerly-Doran 
Fairmount Field 46.327°N, 
'C'; 96.3228°W; 
Wahpeton 46.1508°N, Roliss 0-1 750-1250 19-24 Swales Poorly Fine loamy till 
field 96.6512°W drained 

Lindas 0-2 750-1250 19-24 Flats Poorly Fine loamy till 
drained 

Hamerly 0-3 750-2000 19-24 Flats Somewhat Fine loamy till 
poorly drained 

Doran 0-2 1000-2050 16-20 Flats Somewhat Glaciolacustrine 
poorly drained deposit 

Fairmount Field 'A',· 46.0533°N, Glyndon 0-1 750-1250 19-24 Flats Somewhat Coarse silty 
'B' 96.7256°W; poorly drained g laciolacustrine 

co 46.0493°N, 
96.6952°W 

Mayville Field 47.4933°N, Perella-Colvin-
97.089°W Bearden 

Perella 0-1 750-1250 19-24 Flats Poorly Fine silty 
drained glaciofluvial 

Colvin 0-1 750-1250 19-24 Depressions Poorly Fine silty 
drained glaciolacustrine 

Bearden 0-2 750-1250 19-24 Flats Somewhat Fine silty 
poorly drained glaciolacustrine 

Walcott Field 46.5171°N, Fargo 0-3 750-1250 19-24 Flats Poorly Clayey 
96.8385°W drained glaciolacustrine 

Devil's Lake Field 48.0485°N, Vallers-Svea-
98.6228°W Hamerly-Buse-

Barnes 
Vallers 0-1 1000-2490 16-20 Flats Poorly Fine loamy till 

drained 
Svea 0-3 750-1250 19-24 Moraines Moderately Fine loamy till 

well drained 
Hamerly 0-3 750-2490 19-24 Flats Somewhat Fine loamy till 

poorly drained 
Buse 3-9 750-1250 19-24 Knolls Well drained Fine loamy till 
Barnes 3-6 750-1250 19-24 Rises Well drained Fine loamy till 
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resolution, extensive terrestrial coverage and temporal baseline over a period when 

significant anthropogenic terrestrial change has occurred. Landsat 5 TM has the abilit~ to · 

detect and quantify changes in the earth's environment and its global energy balance by 

providing calibrated and consistent measurement of earth's surface features (Chander and, 

Markham, 2003). After launching, Landsat 5 TM marked a significant advance in remote 

sensing through the addition of a more sophisticated sensor system and an increased data 

acquisition and transmission capability (Chander et al., 2004). 

AEROCam 

Airborne images acquired from aircraft-based sensors, as compared to satellite

based sensors, have a unique role in seasonal monitoring of variable soil conditions, and 

in time-specific and time-critical crop management (Moran et al., 1997). They are, 

therefore, useful in a variety of agricultural purposes such as monitoring crop condition 

and delineating management zones (Zhang et al., 2010a). They have the advantage of 1' 

t 
? ' 

offering a finer spatial resolution ( --- 1-5 m) than many other satellite observations (15 - 'rJ 
60 m for e.g. SPOT,. Landsat or ASTER). Nevertheless, they also have some 

disadvantages, such as higher cost due to the use of aircraft and crew time. Therefore, · 

despite its potential in precision agriculture, airborne imagery is seldom routinely used by 

farmers or ranchers (Zhang et al., 2010b). The University of North Dakota's Airborne 

Environmental Research Observational Camera (AEROCam) serves a major solution by 

freely distributing AEROCam images for research purposes within the Northern Great 

Plain (NGP) region of the USA. Upper Midwest Aerospace Consortium (UMAC) 

developed and has been flying the AEROCam, providing high resolution aerial images 

for research and non-commercial applications in the NGP region of the USA. AEROCam 
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images are typically acquired during the growing season of the UMAC area and are 
. 

distributed to the users through the Digital Northern Great Plains system (Zhang et al., 

2010b). 

AEROCam is an airborne multispectral digital imaging system capable of 

acquiring data in visible ( 400-720nm) and near infrared bands (720-840nm) (UMAC, 

2010). AEROCam was developed by the department of Earth System Science and Policy 

in partnership with several UND departments, the School of Engineering & Mines, and 

the flight operations at the John D. Odegard School of Aerospace Sciences (UMAC, 

2010). The imaging system comprises of a Red lake MS4100 area-scan multi-spectral 

digital camera that features a 1920 x 1080 CCD array (7.4-micron pixels), with 8-bit 

quantization. With four spectral bands at blue, green, red and near-infrared, the camera, 

can record images in true color and in standard false color format (Zhang et al., 2010a). 

When operated at 1828.8 m above ground level, images have a pixel size of one meter , ' 
I 

/ . 

with a horizontal field of just over one mile. Pixel size of 0.25 to 2 meters can also be ; 

accommodated dependent on the users' requirements and mean elevation of the site 

(UMAC, 2010). 
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CHAPTER II 

LITERATURE REVIEW 

Remote Sensing of Soil 

Soil is the upper weathered organic and mineral debris of the Earth's solid surface 

modified over time by weather and climate. It is a complex material extremely variable in 

its physical and chemical composition due to the mixture of primary and secondary 

minerals along with organic matter, water, air, and living organisms (Ben-Dor et al., 

2009). The upper soil surface is characterized by factors, such as, soil moisture, soil 

degradation processes, salinity, organic matter, surface runoff, and infiltration capacity of 

the soil and is, therefore, very important in study related to soil. Preparation of accurate 

maps of soil distribution and monitoring of temporal variation of soil status, for effective ;' 

monitoring and management of soil, is crucial (Campbell, 2009). Remote sensing 

technology is an essential tool for acquiring data providing information on soil 

distribution and recording both spatial and temporal variation of soil properties. Soil 

specific properties that play important role, while remotely sensing soil, needs to be 

identified. Soil properties of significance to remote sensing are: 

Soil Texture 

Soil texture characterizes the particle size distribution of the mineral component 

of the soil with less than 2 mm oiameter. Huge variation of soil texture in nature gives 

distinctive spectral characteristics. According to Naz and Bowling (2008),the amount of 
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moisture retained by the soil surface layer is primarily a function of soil texture. A finer 

soil texture tends to retain more moisture, resulting in less incident energy reflectanc; 

from the soil surface, thus appearing darker than coarse-textured soils in imagery. Optical 

characteristics of varied soil textures is so closely interrelated to so many other soil 

properties that it is difficult to isolate its role from other influences (Campbell, 2009). 

Organic Matter 

The debris, remains of plants, animals and insects decompose to form organic 

component of soil. Soil organic matter forms an important dimension of soil fertility, 

moisture holding capacity, soil color and is, therefore, an important variable for many 

application of remote sensing of soil (Campbell, 2009). Like most other soil properties, 

its spectral characteristics are closely connected to other properties. Proportion of organic 

matter in the soil affects the soil's brightness giving distinctive spectral characteristics. 

Soil Structure, Roughness and Agricultural Practices 

The clumps or the binding of soil are significant in remote sensing as they have 

impact on the soil spectral characteristics. The thin upper layer of soil that is eventually 

sensed by remote sensors is affected by many factors such as plowing, particle size 

distribution, vegetation coverage and physical crusts. Roughness has special impact in 

decreasing the spectral reflectance of soil because of an increase of multiple scattering 

and shadowing (Rondeaux, 1996). According to Engman and Chauhan (1995), soil 

roughness may not be a serious limitation for passive sensors for most natural surfaces 

but are major factors for radar due to their impact on backscattering. Long term use of the 

land for intensive agriculture practices changes the properties of soil. Such change in 
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surface soil properties can be studied through temporal observation using remote sensing 

technology. 

I 

Over the past few decades, it has been shown that soil spectra across the visible 

(VIS) ( 400 nm-700 nm), near infra-red (NIR) (700 nm- 1100 nm) and short wave infra

red (SWIR) (1100 nm-2500 nm) spectral region are characterized by significant spectral 

signals that enable recognizing soils qualitatively and quantitatively (Rossel et al., 2006). 

Fig. 4 shows laboratory spectra of four different soils from 350 nm to 2500 nm at various 

moisture contents (Lobell and Asner, 2002). We can notice distinctive spectral 

characteristics of all the soils. Water absorption bands around 1400 nm and 1900 nm can 

be clearly seen in the curve. 
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Figure 4. Laboratory spectra of four different soils at different volumetric water contents (Lobell and 

Asner, 2002) 
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Remote Sensing of Surface Soil Moisture 

Soil moisture can be measured by a variety of techniques using all regions of ihe 

electromagnetic spectrum (Engman and Chauhan, 1995). Many different regions' of the 

spectrum have been used to estimate soil moisture (Fig. 5), including thermal infrared 

(Price, 1982), passive and active microwave and visible (VIS) and near-infrared (NIR) 

(Kaleita et al., 2005). 
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Figure 5: Part of electromagnetic spectrum showing Visible with Infrared and Microwave wavelengths 

where studies on soil moisture has been carried out, provided by Rossel and McBratney (1998), and 

modified for the purpose of the study 

Many studies have shown that near surface soil moisture can be measured by 

optical and thermal infrared remote sensing, as well as passive and active microwave 

remote sensing techniques in which_the basic difference are the wavelength region of the 

electromagnetic spectrum used, the source of the electromagnetic energy, the response 

measured by the sensor, and the physical relation between the response and the soil 
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moisture content (Wang and Qu, 2009). We will briefly discuss the techniques used, 
..... 

advantages and drawbacks, and sensors in orbit under each of these techniques. 

Microwave Sensing of Surface Soil Moisture 

Microwave remote sensing can provide a direct measurement of the surf ace soil 

moisture in a wide range of cover conditions and within a limited error bound (Jackson et 

al., 1996). They have the benefit of being largely unaffected by solar illumination and 

cloud cover. The ability of the microwave sensors to penetrate non raining clouds makes 

them very attractive for use as soil moisture sensors (Schmugge, 1978). Furthermore, 

they have the advantage of being able to penetrate into the soil to a wavelength dependent 

depth and through vegetation cover (Kaleita et al., 2005). They can maintain their 

sensitivity to soil moisture variation in the presence of canopy as well (Schmugge, 1978). 

Hence numerous researches have been conducted for estimating surface soil in the 

microwave region of the electromagnetic spectrum (Fig. 5). However, accurate soil 
I 

l ' 

moisture estimates are limited to the regions that have either bare soil or low to moderate yJ 

vegetation cover (Njoku and Entekhabi, 1996). 

The microwave region of the electromagnetic spectrum consists of wavelengths 

between 1 and 100 cm which is further subdivided into bands which are often referred to 

by a lettering system. Some of the relevant bands that are used are: X (-0.8 cm), K (-3 

cm), C (-5 cm), S (-10 cm), L (-20 cm), and P (-50 cm). Moreover, within these bands, 

there are small ranges that are protected for applications such as radioastronomy (Jackson 

et al., 1996). 

A number of scientific experiments using microwave sensors on aircraft and 

satellites have shown that for bare soil surface, the moisture within a thin layer, of the 
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order of 0-5 cm, can be correctly determined using microwave (Haider et al., 2004 ). 

Hence, many research projects for estimating surface soil moisture have been focused on · 

the microwave part of the spectrum, based on the facts that moisture strongly affects soil 

dielectric properties, and longer wavelengths can make a relatively deep penetration into 

the ground (Bryant et al., 2003). 

The amount of water present in a soil affects its dielectric properties, the 

theoretical basis of which is based on the large contrast between the dielectric properties 

of liquid water and of dry soil (Engman and Chauhan, 1995). The dielectric properties, 

along with several other physical characteristics, determine the microwave measurement 

(Jackson et al., 1996). In addition, the significance of the dielectric properties depends 

upon the sensor design, especially the wavelength. Instruments operating at longer 

wavelengths(> 5 cm) have fewer problems with the atmosphere and vegetation, penetrate 

a deeper soil layer and maximize soil moisture sensitivity. Another instrument concern is i, · 

whether to us~ an active or passive microwave approach. Active approaches, especially ~ 

Synthetic Aperture Radar (SAR), can provide extremely good ground resolution ( <1 OOm) 

from space. Passive methods currently provide much coarser resolution data(> 10 km); 

(Jackson et al., 1996) 

Passive Microwave Sensing of Surface Soil Moisture 

Passive microwave remote sensing measures the intensity of microwave 

emissions from the soil at wavelength 1-30cm which is related to its moisture content due 

to significant differences in the dielectric constant of dry soil (-3.5) and water (-80) 

(Moran et al., 2004). The intensity of emission from the soil surface is proportional to the 

product of the surface temperature and surface emissivity (Schmugge, 1978). This 
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temperature is commonly referred to as the microwave brightness temperature (Tb) 

(Engman and Chauhan, 1995) and can be expressed as: 

Tb = t(H) X [Tsky + (1 - r)T50n] + Tatm Eq. 1 

where t(H) is the atmospheric transmissivity for a radiometer at height H above the soil, r 

is the smooth surface reflectivity, Tsoiiis the soil temperature, Tatm is the average 

atmospheric temperature and T sky is the contribution from the reflected sky brightness. 

According to Schmugge (1978), qualitative observations of the passive 

microwave sensitivity have been made from satellite platforms at wavelength 21cm and ·. 

1.55 cm and found the possibility to monitor the moisture status of the surface soil 

measuring the thermal emissivity. The spatial resolutions of passive microwave sensors 

currently conceived for space operation are in the range of 10-20 km in which the most 

useful frequency range for soil moisture sensing is from 1-5 GHz (Njoku and Entekhabi, 

1996). 

A particular advantage of passive microwave sensors is the dominant effect of soil 

moisture on the received signal in the absence of significant vegetation cover (Schmugge, 

1978). However, a problem with passive microwave methods is the spatial resolution. For 

a given antenna size, the footprint size increases as wavelength and altitude increase. For 

realistic satellite designs at L band, this might result in a footprint as large as 100 km. 

Recent research has focused on the use of synthetic aperture thinned array radiometers 

which could decrease the footprint size to 10 km (Jackson et al., 1996). 

Examples of passive mictow:~ve system for aircraft platform includes the L band 

(-21cm) radiometers called the pushbroom microwave radiometer (PMBR) operated 

since 1983 and the electronically scanned thinned array radiometer (ESTAR) which is 
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supported by NASA. Both of these radiometers have supported soil moisture research 

significantly for a large area by collecting footprints simultaneously along a flightlin; 

utilizing conventional antenna technology (Jackson et al., 1996). For the satellite platform 

system, all passive microwave sensors operate at very short wavelengths ( < 1.5 cm). It 

includes the SSM/1 package on the defense meteorological satellites. The advanced 

microwave scanning radiometer (AMSR-E) is developed by the National Space 

Development Agency of Japan (NASDA) and was launched in 2002 which provides a 

potentially improved soil moisture sensing capability over previous spacebome 

radiometers due to its combination of low frequency and higher spatial resolution of 

approximately 60 km at 6.9 GHz (Njoku et al., 2003). 

Active Microwave Sensing of Surface Soil Moisture 

An active microwave sensor sends and receives a microwave pulse. The power of 

the received signal is compared to that which is sent back to determine the backscattering i • , 
; 

I 

! ' 
coefficient and finally the coefficient is related to the characteristics of the target yJ 

(Jackson et al., 1996). Active radar transmits an electromagnetic pulse that is 

directionally scattered and reflected off rough surfaces. Multiple frequency and 

polarization observations are required to simultaneously obtain small-scale roughness and 

dielectric properties which clearly manifest soil moisture (Scott et al., 2003). 

Currently, satellites that can meet the spatial resolution and coverage required for 

watershed management are active microwave sensors among which SAR is the most 

common imaging active microwave configuration. SAR transmits a series of pulses as the 

radar antenna traverses the scene. The pulses are then processed together to simulate a 

very long aperture capable of high surface resolution (Moran et al., 2004 ). The 
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backscatter coefficient, a0
, obtained from SAR sensors, is related to the topographic 

conditions of the locality, surface roughness and dielectric constant of the soil. The 

difference in dielectric constant between water and dry soil and its variation is an 

indicator of the concentration of soil moisture (Haider et al., 2004 ). The coefficient a0 is 

composed of backscatter from vegetation, av, and from soil, as, and the attenuation 

caused by the vegetation canopy, L which can be expressed as: 

Eq. 2 

The parameter as has a direct association with volumetric soil moisture, Mv, given by 

Eq. 3 

where Rs and Sare surface roughness and soil moisture sensitivity terms, respectively 

(Haider et al., 2004) 

Some of the SAR satellite systems with frequencies suitable for soil moisture are 

ESA ERS-1/2 C-band SAR, ESA ENVISAT C-band ASAR, the Canadian C-band 
J 

! ' 

RADARSAT-1/2, the Japanese L-band ALOS-PALSAR (Advanced Land Observing y} 

Satellite-Phased Array type L-band SAR (JERS-2) and the German X-band Terra SAT 

(Wang and Qu, 2009). These SAR systems can provide resolutions from 10 to 100 m 

over a swath width of 50-500 km, thus meeting most spatial requirements for the 

application at watershed scale (Moran et al., 2004 ). It is possible to make use of the 

coherent nature of the signal in active microwave systems such as SAR to obtain better 

resolutions but the strong effects of the incidence angle and surface roughness makes the 

unambiguous determination of soil moisture difficult with this type of sensor (Schmugge, 

1978). A major difficulty in the development of soil moisture retrieval algorithms from 

active microwave sensors like SAR is due to the confounding influences of surface 
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roughness conditions, which significantly affect the relationships between radar 

backscatter and soil moisture (Davidson et al., 2000). Past studies have resulted in a 

multitude of methods, algorithms and models that relate satellite-based images of SAR 

backscatter to surface soil moisture, but no operational algorithm exists using SAR data 

acquired by the existing spacebome sensors (Moran et al., 2004). 

Examples of active microwave system for aircraft platform includes the AIRSAR 

which is operated by NASA's Jet Propulsion Lab (Dubois et al., 1995) and another, a 

multipolarization X and C band SAR developed by the Canadian Center for remote 

sensing (Jackson et al., 1996). For the satellite platform system, there are four radar 

satellites that include the ERS-1 and ERS-2, launched by European Space Agency, JERS-

1 launched by the Japanese and the Canadian RADARSAT. Yet every of these satellite 

systems have some limitations such as a single polarization and temporal resolution of 35 

days for the ERS-1 and JERS-1, whereas the RADARSA T have only potential of more 

frequent coverage only in some of its operating modes (Jackson et al., 1996). The 20-30 'yJ 

m spatial resolution of active microwave sensors in the form of radars aboard the 

European remote sensing (ERS) satellite, Japan Earth resources (JERS) satellite, 

RadarSat, and EnviSat is very good to retrieve the information about soil moisture but 

this solution requires expensive aircraft operation and at the same time the ERS and JERS 

satellites are no longer operational (Scott et al., 2003 ). 

Active microwave sensors have the capability to provide high spatial resolution 

data but their sensitivity to soil moisture may be confused more by the surface roughness, 

---
topographic features and vegetation than the passive systems (Engman and Chauhan, 

1995). In contrast, passive microwave systems are less sensitive to target features but can 
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only provide spatial resolutions on the order of tens of kilometers. Therefore, many~ 

considerations should be made on how the data will be used and these sensors have the 

limited use if one is interested in more detailed hydrological process and partial area 

hydrology (Engman and Chauhan, 1995). Practically achievable resolution with 

microwave sensors is not as fine as that with comparable optical sensors because as 

wavelength increases, the footprint size also increases (Kaleita et al., 2005). Thermal 

remote sensing systems are uncommon and generally provide very low spatial resolution 

for soil moisture monitoring (Bryant et al., 2003). Due to the limited applications of 

microwave imagery for soil related studies such as infrequent repeat coverage (Moran et 

al., 2004), and the currently relatively high cost of acquiring microwave data, microwave 

sensors are not as practical for the use in estimating soil moisture and agricultural related 

activities from an economic standpoint as sensors in VIS (0.4 nm -0.7 nm) to NIR 

wavelengths (Kaleita et al., 2005). 

Optical Sensing of Surface Soil Moisture 

Despite the multitude of optical sensors that are currently in orbit, only a limited 

body of literatures exists on the use of VIS (0.4 µm -0.7 µm), NIR (0.7 µm-1.1 µm) and 

shortwave infrared (SWIR) (1.1 µm-2.5 µm) and hyperspectral sensors for the estimation 

of soil moisture (Muller and Decamps, 2000). Optical remote sensing has the limitation 

of measuring the reflectance or emittance from the top few millimeters of the surface and, 

unlike the longer microwave wavelengths, it has limited ability to penetrate clouds and 

vegetation canopy, and is highly attenuated by the earth's atmosphere (Moran et al., 

2004). 

21 



Most approaches to estimating surface soil moisture from spectral reflectance are 

r 
based on the fact that increasing soil moisture up to a certain level leads to a decrease in 

reflectance values over the VIS-NIR to SWIR part of the spectrum (Haubrock et al., 

2008). Weidong et al. (2002) conducted a study to investigate the change in spectral 

reflectance with soil surface moisture varying from very low to very high moisture 

contents for different wavelengths for a range of soil types. Their results show that for 

low soil moisture levels, reflectance decreases when soil moisture increases whereas for 

the higher soil moisture levels, reflectance increases when soil moisture increases. This 

particular point of higher soil moisture when reflectance begins to increase varies with 

soil properties and field condition. In a fully saturated condition when water film covers 

all the soil particles, or the water moisture is at the field holding capacity, reflectance of 

soil increases as compared to the reflectance at its minimum in a wet condition (W eidong 

et al., 2002). Spectral reflectance measured by Bowers and Hanks (1965), over a range of 1 · 

soils confirmed a decrease in reflectance with increasing moisture content. 

Moisture has.great influence on the reflection of shortwave radiation from soil: 

surfaces in the VIS-NIR and SWIR regions of the electromagnetic spectrum (Bowers and 

Hanks, 1965). Therefore these regions of the electromagnetic spectrum can be used to 

estimate surface soil moisture. Ben-Dor et al. (2002) conducted a field study in which 

they mapped multiple soil properties including soil moisture using DAIS-7915 

hyperspectral scanner data. They concluded that visible, NIR and SWIR spectral regions 

allow soil moisture estimation based on their well-known spectral absorption features of 

water. Similarly, Lobell and Asner (2002) conducted a study to establish quantitative 

relationships between soil moisture and reflectance that minimized the differences 
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between soil types for use in operational soil moisture retrieval algorithms and canopy 
. 

radiative transfer models. Their modeling results indicated that the SWIR region offers 

significant potential for relating moisture and reflectance. Hence all these studies showed 

the potential ofNIR and SWIR region of the electromagnetic spectrum to estimate 

surface soil moisture. 

The rate of decrease in reflectance as soil moisture increases holds for the range 

from 350 to 2500 nm, although some part of the spectrum show significant differences in 

absorption quantities than other part (Haubrock et al., 2008). According to Profeti and 

Macintosh ( 1997), in the visible and infrared spectrum, soil water absorption causes a 

decrease of soil reflectivity in several wavelength intervals, the main two being located in 

the mid-infrared and centered at 1.45 and 1.95 µm. The review of the physical processes 

linking soil moisture to its reflectance clearly shows that the spectral variation due to 

water absorption at different region of the electromagnetic spectrum could be used to get , , , 
) 

an estimation of soil water content (Weidong et al., 2003). Further research has shown / 

that the shape of the reflectance spectra was modified because of the occurrence of th~ 

well-defined water absorption bands in the short wave infrared domain (Weidong et aL, 

2002). 

According to Weidong et al. (2003 ), the overtone and combination absorption 

bands of molecular water around 900 nm, 1400 nm, 1900 nm and the fundamental 

absorption band around 2800 nm are sensitive regions that show increased variability. 

Bowers and Smith (1972) observed a linear relationship between the absorption in a 

-
water absorption band (970-980 nm, 1200 nm, 1450 nm) and soil water content (Wang 

and Qu, 2009). To estimate surface soil moisture, Weidong et al. (2002), conducted a 
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laboratory experiment to study a single band reflectance approach in which they analyzed 

18 different soil types to determine the relativity, i.e., the ratio between measured 

reflectance and the reflectance of the corresponding reference sample under dry 

conditions and found that best results can be achieved in the major absorption band 

around 1944 nm. 

Although soil texture and soil composition have a great influence on the 

reflectance, it is expected that by using selective wave bands, the dependence of moisture 

detection on soil composition can be reduced. By using the spectral reflectance signature 

of a surface, one can estimate moisture content of the soil surface (Heusinkveld et al., 

2008). Bowers and Hanks (1965), d.emonstrated this by measuring the light reflection 

from a soil sample in the 0.5-2.6 mm range of an equilibrated moist soil sample placed 

under a spectrometer. The water absorption bands in the reflected spectra were evident 

around 1.45 µm and 1.93 µm, however in satellite remote sensing these wavebands 

' cannot be used since the solar radiant energy at these wave bands is absorbed in the yl 

atmosphere. 

Weidong et al. (2003) conducted an experiment in which the first derivative is· 

calculated as the difference in reflectance between two consecutive bands. As a 

generalization of this, they also created the reflectance difference between two arbitrary 

bands for all wavelength combinations and established a linear regression between these 

differences and the soil moisture values. This relationship finally generated better 

correlations as compared to the relative reflectance and reflectance derivatives applied in 

their studies. Bogrekci and Lee (2004) used a combination of the wavelengths 340nm, 

1450nm, and 1940nm to estimate soil moisture. The main advantage of multi-band 
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spectral features in studying soil moisture is that their best results are not necessarily 

1 

limited in the water absorption bands and hence in the context of developing an outdoor 

methodology that may be applied from airborne and space-borne sensors, this advantage 

is crucial (Haubrock et al., 2008). 

Normalized multiband drought index (NMDI) for remotely sensing soil and 

vegetation water· content has been designed, which is based on the soil and vegetation 

spectral signatures (Wang and Qu, 2009). Similar to the Normalized Difference Water 

Index (NDWI), NMDI uses the 860 nm channel as the reference; instead of using a single 

liquid water absorption channel centered at 1240 nm in NDWI, it uses the difference 

between two liquid water absorption channels centered at 1640 nm and 213 0 nm as the 

soil and vegetation moisture sensitive band. Strong differences between these two water 

absorption bands in response to soil and leaf water content change gives this combination 

potential to estimate the water content for both soil and vegetations (Wang and Qu, 
J 

' . 

2009). Analysis revealed that by combining information from multiple near infrared, and yJ 

short wave infrared channels, NMDI has enhanced the sensitivity to drought severity, and 

is well suited to estimate both soil and vegetation moisture. 

Several indirect approaches have also been used for the estimation of soil surface 

moisture. According to Moran et al. (2004 ), surface soil moisture estimation using 

remotely sensed thermal wavebands is related to the use of radiative temperature (TR) 

measurements, either singularly or in combination with vegetation indexes derived from 

visible and NIR wavelengths. Friedl and Davis (1994) found that variation in TR is highly 

--
correlated with the variations in surface soil moisture. They derived these results with the 

study of the relationship between TR and Normalized Difference Vegetation Index 
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(NDVI) over a tall grass prairie in northeastern Kansas. Chebouni et al. (2001) with their 

study on semi arid grassland site with static vegetation conditions found that 

multidirectional TR data from field infrared thermometers could be used to estimate 

surface soil moisture. According to Kustas et al. (2003), the advanced application of the 

dual use of thermal imagery and spectral vegetation indices has been used in the 

estimation of surface soil moisture through the estimation of surface evapotranspiration 

rates. Many approaches such as temperature-vegetation contextual approach (TVX), 

surface temperature-vegetation index (TsfNDVI) and temperature-vegetation dryness 

index (TVDI) have the potential to estimate soil moisture indirectly through the study of 

transpiration from vegetation (Moran et al., 2004). Hence approaches based on the 

directional TR or the complimentary TR vegetation indexes are powerful to estimate soil 

moisture but have the common limitation as like the optical techniques. 

Table 2 shows physics applied for estimating surface soil moisture in three 

different remote sensing techniques, some major advantages associated with them and 

their limitations (Moran et al., 2004 ). 
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Table 2. Summary of physics, advantages and limitation of some remote sensing techniques used for surface soil moisture estimation (Moran et al., 2004) 

Physics 
~ZIMM. 1 

•• ' . . . • ..• I ti ; *1Sdflffl~ <•7-~ gmwa•.8•n <,.·:\:i~.~ liP'9l} 

IJlllll! 

Measures emission of thermal microwave radiation from soil 
Difference in dielectric constant of water (80) and soil (3.5) provides 
the main basis 

Emissivity of soil varies from 0.6 (wet) to 0.9 (dry) 

For a soil at temperature 300K, the variation in emissivity corresponds to the 
microwave brightness temperature of 90 K (40%-5% moisture) 
Microwave brightness temperatures are influenced by vegetation cover 
and atmospheric ~ttenuation 
Increase in surface soil moisture generally increase in microwave 
brightness temperature 

Am~MicmwAt\r•i!ffl•tng ~~OA;R) 
Sends and receives a microwave pulse, radar antenna traverses the scene 
The backscatter coefficient is related to the topographic conditions of the 
locality, surface roughness and dielectric constant of the soil 

Magnitude of backscatter coefficient is related to surface soil moisture through 
the contrast of dielectric constant of soil and water 

Increase in surface soil moisture generally increase in backscatter coefficient 

O.ptfiaf .. lfflll~s·:,:}·. 
Spectral information in VIS, NIR and SWIR regions can be helpful to study soil 
properties and moisture characteristics 

Decrease in soil moisture leads to increase in soil reflectance 
Water absorption bands that are present in the spectrum are helpful for studying 
soil moisture content 

Numerous Indirect approach available- (NMDI), Directional TR,'Complementary 

TR Vegetation Index .. ~· -.:. . _. 

Advantages Limitations 

Wide spatial coverage 
Insensitive to clouds and earth's atmosphere 

Satellite and aircraft sensors available 

In the absence of significant vegetation cover soil 
moisture is the dominant effect on the received signal 
Good surface penetration 

High spatial resolution 
Many satellite sensors are operational 

Insensitive to clouds and earth's atmosphere 

High surface penetration 

Wide spatial coverage 

High spatial resolution 
Multispectral sensors available 

Numerous satellite sensors operationa.1 

Coarse resolution 
Influenced by surface 
roughness and vegetation 
biomass 

Costly 

Infrequent repeat coverage 
Influenced by surface 
roughness and vegetation 
biomass 

Costly 

Low surface penetration 

Influenced by vegetation 
Low ability to penetrate 
clouds, attenuated by earth's 
atmosphere 
Infrequent repeat coverage 



CHAPTER III 

METHODOLOGY 

Laboratory and Outdoor Experiment 

Soil Used 

Laboratory and outdoor experiments were carried out with the soils from the 

Fairmount experimental field. In the Fairmount experimental field, there are four 

different soil series present. The eastern half consists of Antler silty clay loam (1396A) 

and Antler-Mustinka silty clay loam (1397A) which are both fine loamy soils and typic 

calciaquolls. The western half of the field consists of Doran clay loam (typic argiborolls, 

1243A) and Clearwater-Reis silty clays (vertic haplaquolls, 1236A) (Jia et al., 2008). 

Preparation of Soil Sample and Soil Sample Box 

After collecting the soil from the Fairmount experimental field, soil was air dried 

for about a week and passed through a 6 mm sieve. It was kept in a soil sample box ( 4 7 

cm x 47 cm x 20 cm (lxwxh) which was lined with thin black polythene to prevent water 

being absorbed by the wood. Three Watermark 200 Soil Matric Potential Sensors 

(Campbell Sci, Logan UT) that measures the soilMatric potential (Kpa) were placed in 

the soil at the depths of 5 cm, 10 cm and 15 cm respectively (Figure 6a). 

Calibration of Watermark 200 Soil Matric Potential Sensor 

Water was slowly poured in-along the edge of the soil box (Fig. 6a) until the soil 

was fully saturated. After free water on the soil surface evaporated, the readings by the 

Soil Matric Potential Sensors at three different depths were recorded every 5 minutes. In 
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the mean time, samples of the soil were collected using an auger (Fig. 6b) in different 

interval of time to calibrate the Watermark 200 Soil Matric Potential Sensor. 

The weight of wet soil was measured first (Fig. 6d) with approximately same 

volume for all the samples. Then the wet soil was placed in the soil oven for 24 hours at a 

temperature of 105 degree Celsius (Fig. 6c ). This oven-dried soil was again weighed and 

the difference between the wet and dry weights was calculated to estimate gravimetric 

soil moisture content. 

Gravimetric Moisture Content = (Weight of wet soil-Weight of dry soil)/Weight of 

dry soil 

Figure 6. Instruments used for calculating gravimetric soil moisture content: (a) soil sample box, 

(b) porcelain plate and auger, (c) soil oven and (d) a scale of precision ± 0.001g 
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A total of 12 soil samples were collected. The correlation between calculated 

gravimetric soil moisture concentrations with the readings by the Watermark 200 Sofl 

Matric Potential Sensors can be seen in Fig. 7. The relationship was fitted with a 3rd order 

polynomial regression: 

y = -1.4469(x3
) + 0.4361(x2

) - 0.0216(x) + 0.3254 Eq. 5 

where y is the gravimetric soil moisture, xis the logarithmic of soil water potential (Kpa) 

readings measured by the sensor. 

0.4 

0.35 

0.3 

y = -1.4469xs + 0.4361x2 - 0.0216x 0.3254 
R2 = 0.9294 

Q) 
0.25 ... 1 ' 

~ -0 0.2 ::E 
0 0.15 (I) 

1Q 
·.: ,; 0.1 
E 
~> 0.05 1!11 ... 
(!) 

0 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 

Soil Moisture Potential (Log Scale) 

Figure 7. The relationship between gravimetric soil water content and the logarithmic soil moisture 

potential at 15 cm depth 

The gravimetric soil moisture was later converted to volumetric soil moisture by 

factoring in soil bulk density (1.2 grams per cubic cm). 
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Volumetric Soil Moisture Measurement 

1 
With the arrival of ProCheck PC-1 soil moisture sensors (Decagon Devices, Inc.), 

the volumetric soil moisture concentration can be read directly. The ProCheck is a hand

held readout device used to interface with analog and digital soil moisture sensors and 

obtain instantaneous results. It can take digital reading of soil moisture in less than a 

minute. 

Laboratory Experimental Set-up 

The laboratory experiments were carried out in the wet lab of the ESSP 

department. Wires of the soil moisture sensors were routed from one end of the box to the 

soil moisture interface. Power for the Watermark 200 Soil Matric Potential Sensors 

interface was supplied constantly with a 12 volt battery. Two halogen lamps illuminated 

the soil box at 45 degree angle on either side of the soil sample box (Fig. 8). The 

Analytical Spectral Devices (ASD), that quantitatively measures the radiance, irradiance 1 

and reflectance from 350-2500nm range of the electromagnetic spectrum, was 

programmed to measure the spectral reflectance of the soil once per hour. The sensor pf 

the ASD was placed about 15 cm above the soil, looking down at the soil surface with an 

eight degree field-of-view. The sensor was mounted on a tripod. To ensure the accuracy 

of the measurements, the ambient light that could interfere with the experiment was 

blocked. All equipment was carefully configured to avoid casting shadows into the field 

view of the ASD sensor. To minimize the effect due to variations in output from the 

halogen lights, gain and offset settings for the ASD were fixed during the measurements. 
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Figure 8. Laboratory experimental set up to collect the spectral reflectance of soil in a naturally 

drying moisture condition. 

Measuring Spectral Reflectance of Soil at Varying Moisture Condition 

Spectral mea~urements were performed in the laboratory to control irradiance _. 

conditions and isolate them from other interfering external conditions. Spectral 

reflectance data was acquired over the 350-2500 nm wavelength range using an ASD. 

The lamps were connected to a voltage regulation device to avoid possible variation of 

electrical power supply. A calibrated white spectralon panel (12 cmx 12 cm) was used to 

get an absolute reflectance reference. During the natural drying process, spectral 

reflectance was measured hourly and the corresponding soil moisture was concurrently 

measured. At times during the experiment, an electric fan was used to expedite 

evaporation. 
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First Laboratory Experiment 

The first laboratory experiment was carried out using Watermark 200 Soil M~tric 

Potential Sensors to track soil moisture in the soil sample box. Two 500 W lamps 

illuminated the soil sample box at 45 degree angle from either side of the soil sample 

box. With ASD continuously taking the reflectance spectra, we observed only subtle 

increase in the reflectance spectra in the beginning of the experiment. However, it 

gradually began to increase significantly as the soil in the box got drier. We observed a' 

continuous increase in the spectra over time. The reflectance spectra remained almost 

stable when the surface of the soil in the box got completely dry, which was indicated by 

the cracks present in the soil. We observed that the soil moisture reading at the end of the 

experiment when the soil was dry was about 20 percent. A large number of reflectance 

spectra were collected over the course of the experiment. However, for the final 

calculation, only 14 different spectra were selected ignoring spectra that indicate only 

very subtle soil moisture differences. Some spectra were averaged when soil moisture 

readings were almost the same. Finally, the spectra obtained from the experiment werf · 

used in the calculation of simulated band reflectance using Eq. 6, the objective of which 

was to examine the correct band combination for detecting soil moisture. 

Second Laboratory Experiment 

The second laboratory experiment was carried out using a ProCheck soil moisture 

sensor. Two 300 W lamps illuminated the soil sample box at 45 degree angle from either 

side of the soil sample box. Because soil moisture readings could be made in real time, 

the ProCheck soil moisture sensor liel ped to collect the spectra in a more organized and 

systematic way. Soil from the first laboratory experiment was dumped and fresh soil was 

again collected from the field, air dried, sieved and kept in the soil sample box. After the 
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full saturation, spectra measurements began. The spectra showed similar behavior as the 

first experiment. A total of 11 different spectra were used for the analysis of the secohd 

laboratory experiment. 

Measuring Spectral Reflectance under Natural Light 

On clear sunny days, the soil sample box was taken outside the Clifford building 

and measurements were taken following the same process as the laboratory experiment 

(Fig. 9). Soil moisture at the depths of 5 cm, 10 cm, and 15 cm were measured with 

ProCheck soil sensor. 

Figure 9. The soil sample box with different instruments that were used in the outside measurement 

To validate the laboratory experiments which used halogen lights as light source, 

and to determine whether natural sunlight might yield different results than halogen 

lights, outdoor experiment was conducted using natural sunlight as the light source. We 

observed significant disturbance in the spectra around three wavelengths, i.e. around 
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1400 nm, 1900 nm and 2400 nm due to water absorption in the atmosphere. Since these 

1 
regions of the wavelengths are not included in all the bands of the Landsat 5 TM, we 

simply avoid these wavelengths during our study. 

Field Measurement of Soil Moisture in the RRV of the North Basin 

To verify the model built from the laboratory and outdoor experiments, field 

measurements of soil moisture were carried out in different parts of the RRV (Appendix 

D, Fig. 37-44) during the growing season of 2010. Several agricultural fields that were 

tilled but not planted (i.e. bare soil) were selected. As soil moisture can vary within a 

given area over a short interval of time, soil moisture measurements were conducted 

during the same day and time (noon) when the Landsat was passing over. Fields were 

selected with varying moisture conditio~ in order to test the applicability of the model in 

a much diverse moisture condition. Several measurements were taken in each of these 

fields at different dates while some fields were only used once. Altogether, 65 different 
,l 

measurements were taken. Four different agricultural fields near Fairmount experimental .t') 

field were used more than twice in order to take the measurements on a continuous basis 

and for the sake of convenience. Shapefiles were created based on the GPS location 

within each field where measurements were taken to correspond the location in the 

image. All the fields where measurements were carried out were subsetted from the 

Landsat image and were run according to our model. 

Fig. 10 shows a detailed flowchart of the data collection procedure and the use of 

these data in the preparation an~ validation of the model, and Fig. 11 shows a detailed 

methodology used for Landsat 5 TM. 
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A Flow Chart for Data Collection 

I Data Collection I 

Lab Measurements 

H 

~Used 
ASD 

Soil Sample Box 
Soil Matric Potential Sensors 

ProCheck Soil Moisture Sensors 
Halogen Lamps 
Soil Samplers 

Oven 

Collection of reflectance 
spectra of soil at different 
moisture conditions in Lab and 
Outdoor experiments 

,, 
Spectral response functions 
for Landsat 5 TM and NIR 
band for AEROCam 

Collected data used in the 
development of model f~r 
Landsat 5 TM 

I 

Field Measurements 

~u• 
ASD 

Hydroprobe Soil Sen~ors 
CS6 l 6 Soil Moisture Sensor 

ProCheck Soil Moisture Sensors 

GPS Unit 

Collection of soil moisture 
measurements in the RR V and 
in the Fairmount experimental 
field 

Collection of the reflectance 
spectra of soil on drained and 
undrained portion of Fairmount 
experimental field 

Collected data used in the 
verification of the model for 
Landsat 5 TM 

Figure 10. A Flowchart showing data collection in Lab and-Field Experiment 
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A Flow Chart of Methodology Used for Landsat 5 TM 

Landsat 5 TM Image 

Observation on Fairmount 
Experimental field 

2008, 2009, 2010 Images 

Atmospheric Correction/ 
Subsetting the Landsat Image 
(Path 29/30 and row 28) to the 
experimental field 

Images were run through the 
model prepared from lab 
experiments for estimating soil 

moisture 

Images were classified into 
several classes based on the soil 
moisture estimated from the 

model 

Soil moisture values from the 

images are compared to -
corresponding readings on fields 
and were analyzed 

I 

Observation on the RRV 

2010 Images 

Atmospheric Correction/ 
Subsetting the Landsat Image 
of the region to different fields 
used for the study 

Images were run through the 
model prepared from lab 
experiments for estimating soil 

moisture 

Shape files of measured 
locations within experimental 
field in RR V were created based 

on their GPS location 

Soil moisture values from the 
images and corresponding field 
measured readings were compared 
and the final verification of the 
model was done 

Figure 11. A Flowchart showing detailed methodology for developing the model for Landsat 5 TM 
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Variation of Spectral Reflectance with Moisture in the Experiments 

Lab experiments were targeted to measure the spectral reflectance of soil und~r 

varying moisture condition at three different depths i.e. 5 cm, 10 cm and 15 cm. To begin 

with the experiment, the soil sample box was fully saturated. After obtaining the full 

saturation point by observation, measurement of both soil moisture and spectral 

reflectance began. Over the experimental time of about a week, we observed a distinct 

variation in the measurement of soil moisture at different depths. In a fully saturated 

condition and at 5 cm depth, soil moisture changed rapidly within a few hour of the 

beginning of the experiment. It remained almost constant with a subtle decrease in the 

midway through the experiment and slowly dropped and eventually remained constant in 

the final part of the experiment. Because of the nonlinear decrease in soil moisture, we 

did not select the spectral reflectance of soil based on soil moisture at 5cm depth. 

However, at 10 cm depth, we observed that soil moisture dropped slowly with an initial 1 , 

J 
) ' 

drop of 5 to 7 percent before stabilizing and remaining relatively constant until the end o~) 

the experiment. Since the spectral reflectance changed gradually throughout the 

experiment, the constant soil moisture reading at 10 cm depths were inappropriate to be 

used. This phenomenon is due to the movement of water from the 15 cm depth to the 

upper surface in the process of evaporation. At 15 cm depth, the soil moisture remained 

constant for a few hours in the beginning of the experiment and began to drop in a 

constant manner until the end of the experiment. As spectral reflectance also remained 

almost constant at the beginning of the experiment and started declining gradually, soil 

moisture reading at 15 cm depth and the corresponding spectral reflectance were chosen 

to derive the model for all the experiments. 
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Problems Encountered with the Reflectance Spectra while 
Continuously Using ASD 

While using ASD to take the continuous reflectance spectra of soil in varying 

moisture condition, we encountered some problem in the spectral curve. We observed 

discontinuity in the reflectance spectra after about 25 hours of continuous operation ·of 

ASD. 

The initial reflectance spectra appeared normal but as the experiment continued, 

the measured reflectance started to show noticeable discontinuity at two wavelengths of 

975 nm and 1760 nm (Fig. 12), which correspond to the switch of detectors. First order 

derivative analysis were done to the measured spectra and we found that the normal 

spectra that do not exhibit noticeable jumps typically have changes of the reflectance per 

unit wavelength with absolute values less than 0.002 nm-I. The jumps at the two 

wavelengths are significantly greater and the magnitudes increase with time almost 

linearly until at about 100 hours of continuous operation. After this time the jump are 

relatively stable. For example, the jump at 975 nm increased from 0.004 nm-I at hour 25 

to 0.029 nm-I at hour 100 and remains almost stable after this time period. At 1760 ~' 

, the jump increased from -0.010 at hour 25 to -0.026 at hour 100 to its maximum and 

remains relatively stable until the end of the experiment (Fig. 13 ). 

The following figure shows the discontinuity at two wavelength and their first 

order derivatives: 
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Figure 12. Measured reflectance spectrum (left y-axis) and its I st derivative (right y-axis) with respect to 

wavelength (nm). (a) First observed jump at 25 hours of continuous operation, (b) after 35 hours of 

continuous operation, (c) after 40 hours of continuous operation, (d) after 55 hours of continuous 

operation, (e) after 65 hours of continuous operation and (t) after 70 hours of continuous operation 
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A poster was prepared to discuss the problem of the spectral jumps at the ASD 

International Symposium which was held from Feb 24 to 26, 2010, in Boulder, Colo~ado. 

We found out that this problem is associated with the constant reading of the sensor at a 

fixed point in the soil box during the long period of the experiment. As there are three 

different detectors in the ASD sensor, these detectors are looking at three different points 

in the surface of the soil box when the sensors are fixed. This eventually will affect the 

spectral signature of the soil as surface moisture decreases randomly over the period of 

the experiment. The most promising solution to this problem is the use of the conveyor 

belt or the tum table (Goetz et al., 2009) over which the soil sample can be placed and 

accurate measurements can be obtained. However, due to the financial cost and time lag 

to get the tum table in my research, we performed this experiment by holding the sensor 

with hand everytime we took measurements. The shaking of the hand averaged the 

reading of the detectors and minimized the jump to a larger extent. 

Model Preparation 

To simulate. the reflectance Landsat 5 TM and AEROCam would read, the 

following equation was used: 

where, 

! 

,.) 

Eq. 6 

Ri is the simulated reflectance for the Landsat band i; j is the wavelength varying between 

Ai and Bi for the ith band; rj isJhe spectral reflectance at the wavelength j; and 

WiJ represents the spectral response for band i. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

The spectra measured in all the experiment showed similar behavior. As soil 

moisture decreased, reflectance spectra increased distinctly. There was a subtle increase 

in the spectra at the beginning of the experiment, a significant increase in the middle of 

the experiment, and then they remained almost constant once the surface of the· soil box. 

had become completely dry. 

Landsat and AEROCam 

We can observe the widest dispersion of simulated reflectance values for band 5 

(1550 nm-1750 nm) (Fig.14) among all the bands of Landsat 5 TM, which suggests the 

possibility of estimating surface soil moisture using this band. We can also observe that J 
this dispersion gets wider as the wavelength increases. Both band 5 and band 7 (2080 nm-

2350 nm) look better when choosing the right band for estimating surface soil moisture. 

However, further analysis was done to find out the optimal band or band combination. 

Similarly, among all bands of AEROCam, NIR band, with widest dispersion (Fig. 15), 

suggests the possibility of estimating soil moisture. All three experiment results were put 

together to find the best band or band combinations that can be used in our model. For 

this purpose, simple mathematical computation ( addition, subtraction and division) 

among different bands for both Landsat 5 TM and AEROCam were done. An exponential 

regression line was used to best fit the data. Among many such combinations, a total of 

15 different kinds are shown in Fig. 16 for Landsat 5 TM and in Fig. 1 7 for AEROCam. 
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Figure 14. Simulated reflectance of soil collected at various moisture levels: (a) first lab experiment (b) 

second lab experiment (c) outdoor experiment with respect to the center wavelength for Landsat 5 TM 
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Figure 15: Simulated reflectance of soil collected at various moisture levels: (a) first lab experiment (b) 
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Figure 17. Different band and band combinations for the simulated reflectance value of AEROCam 

plotted with respect to soil moisture from all three experiments 
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With the results from the above mentioned combinations and judging from the 
, 

correlation coefficient, subtracting band 1 ( 450 nm- 520 nm) from band 5 (1550 nm-1750 

nm) (Fig. 16) gave the best results for Landsat 5 TM. For AEROCam, NIR band itself 

gave the best result (Fig. 17). 

Volumetric soil moisture values were plotted with respect to the chosen band 

combinations (Band5-Bandl) for Landsat 5 TM (Fig. 18) that was acquired during all the 

experiments and an exponential relationship was used. Repeatedly the results show that 

this band combination is the best with relatively higher R2 values. R2 values from the 

first, second and third experiments were 0.97, 0.97 and 0.90 respectively. Hence, this 

band combination was used for preparing the final model. 
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Figure 18. Relationship between volumetric soil moisture and simulated reflectance of Landsat band (B5-

B 1) collected during all three experiments 
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Volumetric soil moisture values were plotted with respect to the NIR band for 

AEROCam (Fig. 19). Repeatedly the result showed that NIR band is the best band with 

relatively higher R2 values. The R2 values for the first, second and third experiment~ were 

0.93, 0.95 and 0.84 respectively. Hence, this band was used for preparing the final model. 

With a trend in change in soil moisture values similar to the simulated reflectance 

value and their consistency in all the experiments (Fig. 18; Fig. 19), we finally decided to 

combine the results from all the experiment to get a single equation that could best 

represent the model. 
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Figure 19. Relationship between volumetric soil moisture and simulated reflectance of AEROCam band 

(NIR) collected during all three experiments 
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Regression Analysis for Landsat 5 TM 

1 
Regression analysis was done for the selected band combination using Statistical 

Package for Social Sciences (SPSS). Table 3 shows an exponential regression results. 

Based on the table, soil moisture and the selected band difference (B5-Bl) have a 

negative relationship which is indicated by the negative coefficient on the band 

combination. 

Hence, the dependent variable, i.e. soil moisture, can be calculated by using the followfng 

formula: 

y = 0_4842e-2.641x(B5-B1) 

where y is the volumetric soil moisture content and (B5-B1) is the selected band 

combination for Landsat 5 TM. 

Table 3. Regression analysis for selected band combination (Band5-Bandl) for Landsat 5 TM. 

Dependent Variable: Soil Moisture 

Variables Coefficient (Standard Error) 

Intercept 0.4842 0.02030 

(B5-Bl) -2.641 0.21342 

Number of Observations = 3 8 

R2= 0.84 

Root Mean Squared Error (RMSE) = 0.02495 

Confidence Interval= 95% -

so 

Significant(P) < 

0.0001 

0.0001 

Eq. 7 

1' 

J 
J ' 
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The black solid line in Fig. 20 is the fitted values from the regression drawn from 

the relationship between the selected band combination and soil moisture. There wer6 a 

total of 38 observations including two lab experiments and one outdoor experiment. 

R2 = 0.84 

0.4 
0 

0.35 

0.3 

~ 
QI 0.25 ... 
:I ... 
u, 

'i5 
~ 0.2 
·o 
I.I) 

0.15 

0.1 

0.05 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Simulated Reflectance for Landsat 5 (BS-Bl)(%) 

Figure 20. Graphical relationships between soil moisture and simulated reflectance of selected band 

combination (B5-B I) for Landsat 5 TM 

51 

1 '· 

I 
'/ . 
. ) 



Regression Analysis for AEROCam 

' 
Table 4 shows the exponential regression results. Based on the table, soil moi~ture 

and the selected band for AEROCam have a negative relationship, indicated by the 

negative coefficient on the NIR Band (Table 2). 

Hence, dependent variable, i. e. soil moisture, can be calculated by using the following 

formula: 

y = 0.5004e-6.Sx(NIR Band) Eq. 8 

Where y is the volumetric soil moisture and NIR Band is the chosen band for AEROCam. 

Table 4. Regression analysis for selected band (NIR) for AEROCam 

Dependent Variable: Soil Moisture 

Variables Coefficient (Standard Error) 

Intercept 

NIRBand 

0.5004 

-6.5 

0.023099 

0.534572 

Number of Observations = 38 

R2= 0.86 

Root Mean Squared Error (RMSE) = 0.02384 

Confidence Interval= 95% 

Significant (P) < 

0.0001 

0.0001 

The black solid line in Fig. 21 is the fitted values from the exponential regression 

drawn from the relationship between the selected band and soil moisture. There were a 

total of 38 observations including two laboratory experiments and one outside 

experiment. 
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Figure 21. Graphical relationship between soil moisture and simulated reflectance of selected 

band (NIR) for AEROCam 

From the results of the laboratory experiments, we can clearly observe that reflectance of 

soil increases as soil moisture decreases in a non-linear pattern (Fig. 22b). We observed 

that soil moisture, decreasing from high soil moisture percentage ( approx. 3 8% ), makes a 

subtle increase in the reflectance while it makes a bigger increase between 30 %-20 %. 

Again, this reflectance remains approximately constant when the soil becomes dry 

( approx. 20% ). Therefore an exponential model best describes this relationship. Lobell 

and Asner (2002) studied the effect of moisture on soil reflectance over four different soil 

types of Mexico. They found that reflectance decreased with increasing moisture for all 

soils exhibiting a clearly nonlinear response that was well described by the exponential 

model. Kaleita et al. (2005), on their study to build a relationship between surface soil 
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moisture and spectral reflectance in the visible and near-infrared regions, found that an · 

' exponential model was appropriate to describe soil moisture from spectral reflectance 

data. 

The use of Landsat 5 TM, band 5 for the study of surface soil moisture has been 

mentioned in the USGS web site (USGS, 2010). Table 3 shows the band designation for 

Landsat 5 TM and the scope of each of these bands in the study of different subjects. 

From table 3, we can see that Landsat band 5, reflected infrared, can be useful in 

discriminating moisture content of soil and vegetation (USGS, 2010). 

Table 5. Band designation of Landsat 5 TM and the use of these bands 

Band Spectral 
Designation Bands Use 

blue- Useful for bathymetric mapping and distinguishing soil from vegetation and 
green deciduous from coniferous vegetation. 

2 green Emphasizes peak vegetation, which is useful for assessing plant vigor. 

3 red Discriminates vegetation slopes. 

Reflected 
4 IR Emphasizes biomass content and shorelines. 

Reflected 
5 IR Discriminates moisture content of soil and vegetation; penetrates thin clouds. 

Thermal 
6 IR Useful for thermal mapping and estimated soil moisture. 

Reflected Useful for mapping hydrothermally altered rocks associated with mineral 
7 IR deEosits. 

Remote sensing techniques using the mid-infrared band to estimate soil surface 

moisture have been the focus of ongoing research (Shih and Jordan, 1992; Everitt et al., 

1989). Landsat MIR data can provide useful information for monitoring regional surface 

soil moisture conditions (Shih and Jordan, 1992). With the use of Landsat TM to assess 
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regional soil moisture condition over the Lee and Collier County in Florida, Shih and 

' Jordan (1992) found that high-resolution assessment of regional soil moisture conditions 

can be accomplished with Landsat TM, MIR imagery. On the basis of their qualitative 

ground observations, they also concluded that MIR reflectance is inversely related to the 

surface soil moisture conditions. 

Fig. 22a illustrates the variation of soil-surface MIR reflectance at different 

wavelengths with changing soil moisture (Bowers and Hanks, 1965). As in Fig. 22a, we 

also observed the variation in soil-surface reflectance at MIR band with changing soil 

moisture in all of our experiments. (Fig.22b) is an example of spectral reflectance 

obtained under the first laboratory experiment. 
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Figure 22. Variation of surface soil reflectance with changing soil moisture (a) for Newtonia Silt Loam 

(Bowers and Hanks, 1965) and (b) from first laboratory experiment (Roliss-Lindas Hamerly Doran) 

In order to develop methods to estimate soil moisture from TM images, numerous 

authors have investigated the factors influencing the spectral reflectance curves of soils 

especially in the visible and infrared bands (Peterson et al. , 1979; Stoner et al., 1979). 

According to Profeti and Macintosh (1997), the best regions for mapping water content of 
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soil are those adjacent to 1.50-1. 73 µm and 2.08-2.32 µm, corresponding respectively to 

1 
band 5 and band 7 of Landsat TM. In these bands, the spectral reflectance of the surface 

is strongly influenced by water content. Frazier and Page (2000) conducted a study to 

quantify the classification accuracy of single band density slicing of Landsat 5 TM data 

to delineate water bodies of the Murrum-bidgee River near the city of Wagga Wagga, 

Australia, and found that mid-infrared (band 5) can be very helpful in detecting water 

bodies with highest accuracy. They also conclude that band 4 (760 nm-900 nm) and band 

7 (2080 nm-2350 nm) of Landsat 5 TM are also useful for locating water bodies, 

however, band 5 proved to be the best among all of these bands. Frazier et al. (2003) used 

Landsat TM band 5 for inundation analysis over the same area for relating wetland 

inundation to river flow. 

According to Miller and Y ool (2002), in a study conducted for mapping forest 

post fire canopy consumption, MIR bands of Landsat 5 TM, (band 5 and band 7) are , · 
J 

) ' 

sensitive to moisture content of soil and vegetation and these bands further contribute ,;) 

new information for classifying bum severity. Hall and Ormsby (1987) conducted a 

research on characterizing snow and ice reflectance zones on Glaciers using Landsat TM 

data and found that the ratio of TM band 4 (0.76-.90 µm) to TM band 5 (1.55-1.75 µm) 

was useful for enhancing reflectivity differences on the glaciers. 

To observe the relation of the reflectance spectra of soil with the water absorption 

coefficient in respective wavelengths, water absorption coefficients in the VIS-NIR

SWIR (400 nm-2500 nm) region of the electromagnetic spectrum was plotted with the 

ASD measured spectra taken during the first laboratory experiment (Fig. 23). One can 
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notice water absorption coefficient peaks in the water absorption bands around 73 5 run, 

840 nm of the NIR region and around 1400 nm and 1900 nm in the SWIR region. 
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Figure. 23 Absorption coefficient of water (Segelstein, 1981) with the ASD measured spectra obtained in 

first lab experiment 
· ) 

Simulated reflectance band of Landsat 5 TM is plotted with the average water _,. 

absorption coefficient at corresponding wavelengths (Fig. 24). Higher absorption 

coefficient of water in certain wavelength suggests that more light (irradiance) is 

observed, as soil moisture increases, and consequently reflectance would decrease. Based 

on this statement, water content has higher impact in band 5 of Landsat. Water absorption 

coefficient in band 1 is very low suggesting that change in soil moisture does not 

significantly change soil reflectance at this band, however, this region is influenced by 

other soil properties such as soil color. Hence, the combination of band 5 and band 1 of 

Landsat 5 TM can provide strong basis for the estimation of soil moisture. Simulated 
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reflectance band of AEROCam is plotted with average absorption coefficient of water at 

. 
corresponding wavelengths (Fig. 25). Higher absorption coefficient of water in the NIR 

suggests that this band can be useful to estimate soil moisture. Spectral reflectance of 

plant canopy in the NIR provides important information of health of plant which can be 

related to the contribution of properties of soil including soil moisture. According to 

Rondeaux ( 1996), the spectral reflectance of plant canopy in the NIR region is the 

combination of spectral reflectance of plant and soil components governed by the optical 

properties of these elements. 
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Figure 24. Absorption coefficient of water (Segelstein, 1981) with the simulated reflectance 

of Landsat in first lab experiment 
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Figure 25. Absorption coefficient of water (Segelstein, 1981) with the simulated reflectance of 

AEROCam in first lab experiment 

Observations in the Red River Valley 

The model was tested over eight agricultural fields (Appendix D, Fig 37-44) in 

the RR V. Soil moisture values in the images showed a very close correlation with soil 

moisture values measured in every location in each of these fields (Fig. 26). 
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Figure 26. A comparison of surface soil moisture content measured in different experimental fields in the 

RRV compared to the soil moisture content estimated from Landsat 5 TM based model 1 ' 

l ., ' 

Pearson correlation coefficient was calculated using Statistical Package for Social t ) 

Sciences (SPSS) to see how closely estimated soil moisture from the image and measured 

soil moisture in field are related. The result shows a significant positive correlation 

between estimated soil moisture and field observations (Table 6, P<0.0001 ). However, 

there is more variation in observations for field soil moisture than for estimated soil 

moisture, which is normally expected and this result could be attributed to experimental 

uncertainty in the field. 

60 



Table 6. Correlation analysis between estimated soil moisture and soil moisture measured in field 

Variables 
(P)< 

Pearson Correlation df Standard Error Significant 

· Estimated Soil Moisture vs. Field 

Number of Observation = 65 

R2 = 0.90 

Confidence Interval = 95% 

Mean Estimated Soil Moisture= 0.286 

Mean Field Soil Moisture = 0.294 

0.949 1 0.0205 

Standard deviation= 0.049 

Standard deviation= 0.646 

0.001 

Fitted regression line showed relatively higher R2 (R2=0.90). These results 

showed that the model is very good and can reliably be used to estimate surface soil 

moisture in the RR V area. The model works well in dry and average soil moisture 
J 

·J ' 

conditions. But it underestimates the soil moisture value by about 3 to 4 percent when '-r:) 

surface soil moisture is greater than 40 percent. 

Observation in the Fairmount Experimental Field 

Soil moisture readings in the Fairmount experimental field were taken in three 

different years, 2008, 2009 and 2010. Different soil moisture measuring instruments such 

as a CS616 Soil Moisture Sensor probe and a Hydroprobe were used to collect soil 

moisture readings at a depth of 15 cm. Soil moisture readings acquired from these sensors 

were matched with estimated soil moisture readings as an important step for the analysis 

and the validation of the model. Fig. 27 shows the location of the sensors that were 
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installed in three different years and the approximate division of the drained and 

undrained portion in the field. 

Location of soil moisture sensors in Fairmount experimental field, ND 

N 

A 

0 35 70 140 210 280 -=-==i--====---Meters A Soi l Moisture Sensor 

Figure 27. Location of soil moisture sensors (SMS) overlaid in a false color AEROCam image of the 

Fairmount experimental field 

Observation of soil moisture at the Fairmount experimental field was made from 

April to May. The results demonstrated two major trends: Soil moisture varies 

significantly from year to year, and regardless of overall moisture levels, the drained 

portions of the field consistently have lower moisture level than the undrained portion. 

Soil moisture estimated from images acquired over the Fairmount experimental 

field in all three years were separated in different classes, with 2% soil moisture 

--
increment, for the ease of observation and analysis. In 2008, we see slight differences in 

soil moisture between the drained and undrained portion of the field, as is evident in the 
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images acquired on 11th of May. Soil moisture content range from 28.1 to 34 percent in 

r 
the entire field (Fig. 28a), with soil moisture being significantly higher in the undrained 

portion of the field compared to the drained portion. The mean soil moisture in the 

undrained portion remained about 31 percent while in the drained field it remained about 

30 percent. After seven days of sunny weather and no rainfall, surface soil moisture in the 

field dropped, as shown in classification of May 18th image (Fig. 28b ). However, surface 

soil moisture values on the undrained portion remained slightly higher, with mean 20 

percent, than those on the drained portion of the field with mean of 19 percent. Soil 

moisture content on May 21st, 2009, image ranges from 36.1 to 40 percent (Fig. 29a) 

suggesting much wetter conditions than in 2008. Mean soil moisture in the drained field 

remains about 3 7 percent for both the drained and undrained field. Soil moisture content 

dropped down to about 20 percent on the image of 30th of May (Fig. 29b) due to 

continuous sunshine. However, we see that soil moisture in the undrained portion remains· 
J 

I , 

higher with a mean of 22 percent than that of the drained portion of the field with a mean :; 

of 20 percent, regardless of overall moisture levels. 
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Figure 28. The difference in estimated soil moisture on drained and undrained portion of the 

Fairmount experimental field (a) on May 11, 2008 and (b) May 18, 2008 
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Figure 29. The difference in estimated soil moisture on drained and undrained portion of the 

Fairmount experimental field (a) on May 21 , 2009 and (b) May 30, 2009 
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For the April 2010 images, we see the same trend regarding the soil moisture 

difference between the drained and undrained portions of the field. The estimated soil 

moisture content on 15th April 2009, image ranges from 20.1 to 30 percent (Fig. 30a). 

The mean moisture level in the undrained portion remains about 25 percent while it 

remains at 22 percent in the drained portion. For 22nd April 2010 image (Fig. 30b), the 

estimated mean moisture level in the undrained portion remains about 26 percent while it 

remains about 24 percent in the drained portion of the field. Field-measured data were 

also available for the first time provided by Dr. Xinhua Jia (NDSU) for the month of 

May, 2010. We can see that soil moisture content is significantly lower in the April 22, 

2010 image. Soil moisture rises for the gth May 2010 image. This increase in the moisture 

level is due to rainfall in the days prior to the image acquisition (Fig. 31 a) (Weather 

Underground, 2010). The soil moisture value at the Fairmount experimental field for the 

date of May 17, 2010, is even higher due to continuous rainfall for about 4 days prior to 
I 

J . 

the date of image acquisition (Fig. 31 b ). In both these images, we see that the undrained ~ 

portion of the field has higher soil moisture content compared to the drained portion oJ 

the field. The close correlation between weather, moist soil conditions immediately after 

snowmelt, validation from field measured moisture data, and the corresponding moisture 

estimated in all the images run by the model, provides evidence that soil moisture 

readings generated by our model gives the best estimation. 
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Figure 30. The difference in estimated soil moisture on drained and undrained portion of the 

Fairmount experimental field (a) on April 15, 2010 and (b) April 22, 2010 
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Figure 31. The difference in estimated soil moisture on drained and undrained portion of the Fairmount 

experimental field (a) on May 7, 2010 and (b) May 17, 2010 
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Drained and undrained fields exhibit variation in spectral reflectance as the 

surface of the soil is highly influenced by the drainage system, which eventually will 

expedite the loss of moisture from the surface area above drainage systems. In the spring, 

differences in soil moisture and temperature between drained and undrained field affect 

the spectral reflectance of the soil surface (Verma et al. , 1996; Choi and Jacobs, 2007). 

Soil surface immediately above drainage systems tend to dry faster than surrounding 

areas after (Verma et al., 1996). Therefore, field measurements of the spectral reflectance 

of surface soil were taken at the Fairmount experimental field to observe differences in 

reflectance spectrum between the drained and undrained portion of the field, and 

consequently, to provide a basis for the validation of the model. Systematic random 

sampling method was used to collect the spectral reflectance of soil at different locations. 

Results showed that surface soil over the drained portion of the field have higher 

reflectance compared to the undrained portion (Fig. 32) 

0 .45 -------------------·--~------------ ---··· ·--··-··-
0.45 - ·-········--····-··---······--······················-········-··-···············-····· 
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Figure 32. Comparison ofreflectance ~pectra of soil on drained/undrained portion of Fairmount 

experimental field collected (a) on June 5,-2009 (b) on September 10, 2009 
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Deriving soil moisture from remote sensing data remains rather difficult, as the 

reflectance of a soil is not just a function of moisture but is also influenced by soil

specific chemical and physical properties like presence of organic matter, mineralogy, 

crusts or grain size and color of soil elements (Goldshleger et al., 2001; Goldshleger et 

al., 2004). As such, in the context ofremote sensing applications these natural conditions 

are present and therefore are being investigated. Recent tillage changes soil surface 

moisture, roughness, and the amount of residue left after cultivation. These factors can 

affect the soil reflectance differently at different wavelengths and thus can lead to large 

spatial variation in surface reflectance patterns (Naz and Bowling, 2008). There are 

several other factors that play an important role in the surface reflectance of soil that can 

be significant in calculating surface soil moisture from remote sensing. Surface soil color 

is a very significant parameter for determining the spectral reflectance pattern. 

Developing relationships for surface soil color in terms of reflectance would help to 1 • 

J 

' . 
identify and quickly estimate physical and hydraulic properties of soils using remotely ,:A 

sensed information (Mattikalli, 1997). Soil surface reflectance is also determined by the 

inherent scattering and absorption properties of its components and by the way they are 

arranged within the soil. Therefore, soil moisture has greater influence on reflectance 

followed by several other characteristics such as observation conditions like illumination 

and observation directions (Weidong et al., 2002). 
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CHAPTER V: 

CONCLUSION, LIMITATIONS AND FUTURE WORK OF THE STUDY 

Conclusion 

Laboratory and outdoor experiments were successfully carried out as a first step·, 

to develop a model to estimate the surface soil moisture of the RRV. Test applications of 

the model were done at different locations of the RR V for Landsat 5 TM imagery. 

Results showed that the model reliably estimates surface soil moisture in many 

regions of the RR V. These results were based on field measurements that were carried 

out in several agricultural fields ranging from the Devil's lake area to Wahpeton and 

Fairmount, all conducted on days of Landsat overpass. Soil moisture estimated from 

images and soil moisture collected from field based measurements were compared, ' 
~ 

demonstrating a significantly high correlation (R2=0.90). Results also showed that the 

model works best at lower or medium soil moisture condition. However, when the field is 

excessively wet, the model slightly underestimates soil moisture readings, by about 3 to 4 

percent. This underestimation of soil moisture value in the image was observed in the 

'Walcott experimental field' and 'Fairmount Field A' image on 13th of September, 2010. 

The model was run using Landsat images of the Fairmount experimental field 

acquired before the growing season. Results showed that there is comparatively higher 

soil moisture in the undrained portion than the drained portion of the experimental field 

irrespective of the overall moisture condition. The resultant higher moisture level in the 

undrained portion compared to the drained portion, over the period of growing season, 
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has been verified by continuous soil moisture measurement made in the Fairmount 

experimental field. Along with this, the overall weather condition in the field and the 

results in the image suggest that the model works perfectly. 

From both of the lab and outdoor experiments, we can conclude that soil spectral 

reflectance changes very narrowly at higher soil moisture levels, but between 30 and 20 

percent volumetric water content, we can see a wide dispersion in the spectral reflectance 

pattern. The spectral reflectance curve remains almost stable when it reached about 20% 

volumetric soil moisture content. 

Limitation of the Study 

Remote sensing of soil moisture is limited by errors introduced by the type of soil, 

roughness of the landscape and vegetation cover, and the inadequate ground coverage 

both in space and time (Houser et al., 1998). Besides, regular acquisition of clear images 

over the same field from multispectral sensors like Landsat 5 TM in the limited duration , , . 
i 

) 

of the study of soil moisture is often very hard. While planning for field measurements, it-,! 

was very important t.o find a clear day of Landsat overpass within the RRV. Furthermore, 

field without vegetation and without crop residues was hard to find in the middle of 

growing season. There were numerous circumstances that limited the validation of the 

model in some images of the Fairmount experimental field, such as, soil moisture sensors 

were installed in a late hour as a precaution to the possible damage to the sensors due to 

ploughing the field. After the beginning of the growing season, vegetation began to 

appear in the field, which restricted the study on the field. For AEROCam imagery, test 

--
application could not be done due to lack of irradiance value for AEROCam. 

I 
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The limitation of the study primarily includes types of soils used in the 

t 

experiments and their properties. In nature, we find diverse type of soil inherent to its' 

parent material and modified over the course of time. This large variety of soil in various 

regions of the world has distinct properties and is often changing. Even within a small 

region, soil color and properties can vary in which case the model may not be applicable. 

The texture of the soil used for the experiment is another limitation of the study. The 

model is prepared from the soil of Fairmount experimental field that has specific texture 

and may not be applicable to soils of different texture. Another limitation is the structure 

of the soil. The individual soil granules used to take the spectra in the laboratory 

experiment varies with the soil granules found in the field which can have impact in the 

spectra. Other limitation of the study includes the surface roughness. For multispectral 

sensors like Landsat 5, the impact of soil roughness on reflectivity cannot be neglected. 

Future Work 1'· 

I 
) ' 

The remote sensing algorithm has been developed primarily to detect surface soil yJ 

moisture in the RRV. Therefore, two laboratory experiments under different illumination 

including the outside experiment have been carried out using soil of this region which has 

specific properties. Consequently, this model is only applicable to the RRV or any other 

region with similar soil properties. Due to the presence of a large variety of soil types in 

nature, it becomes important to look at the spectral reflectance patterns of these different 

types of soil under different moisture conditions. By combining this spectral reflectance 

pattern with the spectral response function of Landsat 5 TM, one can easily develop a 

Landsat 5 TM algorithm for detecting soil moisture that can be applicable to regions 

having similar soil properties. 
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Further researchers in similar topics are encouraged to be able to prepare a model 

or verify the existing model for detecting the surface soil moisture in the RR V using ihe 

AEROCam Imagery. Using the lab experiment and calculating through the band response 

function, I found that NIR band is helpful to detect the surface soil moisture for 

AEROCam. Nevertheless, lack of irradiance value for the AEROCam, I was unable to 

validate the model as an important part ofmy research. However, in a certain period of 

the day, irradiance value can be calculated which can finally be used to develop or test 

the existing model. 
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AEROCam 

AIRSAR 

AMSR-E 

ASAR 

ENVISAT 

EROS 

ERS 

ESTAR 

IFOV 

JERS 

NASA 

NASDA 

NIR 

nm 

PMBR 

RADARSAT 

RRV 

SAR 

APPENDIX A 

LIST OF ACRONYMS AND SYMBOLS 

Airborne Environmental Research Observational Camera 

Airborne Synthetic Aperture Radar 

Advanced Microwave Scanning Radiometer 

Advance Synthetic Aperture Radar 

Environmental Satellite 

Earth Resource Observation and Science 

European Remote Sensing 

Electronically Scanned Thin Array Radiometer 

Instantaneous Field of view 

Japanese Earth Resource Satellite 

National Aeronautics and Space Administration 

National Space Development Agency 

Near-infrared 

Nanometer 

Pushbroom Microwave Radiometer 

Radar Satellite 

Red River Valley of the North Basin 

Synthetic Aperture Radar 
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SSM/I 

SWIR 

TM 

UMAC 

USGS 

VIS 

µm 

LIST OF SYMBOLS 

J 

L 

r 

r· J 

T(H) 

Tatm 

Tsoil 

ao 

Ov 

Special Sensor Microwave/Imager 

Shortwave Infrared 

Thematic Mapper 

Upper Midwest Aerospace Consortium 

United States Geological Survey 

Visible region of electromagnetic spectrum 

Micrometer 

The wavelength varying between Ai and Bi for the ith band 

Attenuation caused by vegetation canopy 

Volumetric soil moisture 

Smooth surface reflectivity 

The simulated reflectance for the Landsat band i 

The spectral reflectance at the wavelength j and 

Surface roughness 

Atmospheric transmissivity for a radiometer at height H 

Average thermometer Aperture 

Thermometric temperature of the soil 

The spectral response for band i 

Radar backscatter coefficient 

Backscatter from vegetation 

Backscatter from soil 
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APPENDIXB 

TYPE OF SOIL USED IN THE EXPERIMENT 

Type of soil used in the study, North Dakota 

Soil Types 
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Roi iss-Li nd aa s-H a me rly-Dora n 

..&. Perella Colvin-Bearden 

Glyndon 

0 15 30 60 90 120 
M M Kilometers 

N 

A 

Figure 33. Soil map of North Dakota with the location of field measurement indicated by the triangles 
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APPENDIXC 

SPECTRAL RESPONSES 

Spectral response function for Landsat 5 TM: Band 1 
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Figure 34. The spectral response function for Landsat 5 TM, Band 1 (CEOS, 2010) 
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Spectral response function for Landsat 5 TM: Band 5 
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Figure 35. The spectral response function for Landsat 5 TM, Band 5 (CEOS, 2010) 
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Figure 36. The spectral response function for NIR Band of AEROCam 
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APPENDIXD 

FIELDS USED IN THE STUDY 

Fairmount Experimental Field 
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c::::J Undrained Field 
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Figure 37. Fairmount experimental field, Richland County, where field moisture measurements were 

carried out in the locations indicated by triangles 
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A Field in Fairmount 'A' 
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Figure 3 8. Experimental field in Fairmount 'A', Richland County, where field moisture 
J . 

measurements were carried out in the locations indicated by triangles . ) 
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A Field in Fairmount 'B' 
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Figure 39. Experimental field in Fairmount 'B', Richland County, where field moisture 

measurements were carried out in the locations indicated by triangles 
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A Field in Fairmount 'C' 
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Figure 40. Experiment'al field in Fairmount 'C', Richland County, where field moisture 

measurements were carried out in the locations indicated by triangles 
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A Field in Mayville: 091310 
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Figure 41. Experimental field in Mayville, Trail County, where field moisture measurements 

were carried out in the locations indicated by triangles 
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A Field in Wahpeton, North Dakota: 091310 
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Figure 42. Experimental field in Wahpeton, Richland County, where field moisture measurements 

were carried out in the locations indicated by triangles 
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A Field in Walcott, North Dakota: 091310 
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Figure 43. Experimental field in Walcott, Richland County, where field moisture measurements 

were carried out in the locations indicated by triangles 
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A field in Devil's Lake Area: 090310 
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Figure 44. Experimental field in Devils Lake, Ramsey County, where field moisture , ) 

measurements were carried out in the locations indicated by triangles 
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