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Featured Application: This paper provides guidance for selecting an appropriate method for
calculating the Mueller matrix associated with oceanic particles of arbitrary morphologies and
refractive indices.

Abstract: The complete Stokes vector contains much more information than the radiance of light for
the remote sensing of the ocean. Unlike the conventional radiance-only radiative transfer simulations,
a full Mueller matrix-Stokes vector treatment provides a rigorous and correct approach for solving
the transfer of radiation in a scattering medium, such as the atmosphere-ocean system. In fact,
radiative transfer simulation without considering the polarization state always gives incorrect results
and the extent of the errors induced depends on a particular application being considered. However,
the rigorous approach that fully takes the polarization state into account requires the knowledge of
the complete single-scattering properties of oceanic particles with various sizes, morphologies,
and refractive indices. For most oceanic particles, the comparisons between simulations and
observations have demonstrated that the “equivalent-spherical” approximation is inadequate. We will
therefore briefly summarize the advantages and disadvantages of a number of light scattering
methods for non-spherical particles. Furthermore, examples for canonical cases with specifically
oriented particles and randomly oriented particles will be illustrated.

Keywords: ocean optics; light scattering; Mueller matrix; volume and surface integral methods

1. Introduction

It is well known that the scattering of light by a particle is determined by the detailed
characteristics of the scattering particle, particularly its size, chemical composition (thus, the index of
refraction), the overall shape, and detailed surface texture (e.g., surface roughness). Oceanic particles
vary greatly in size and morphology. While the Lorenz-Mie theory has been used frequently to simulate
the optical properties of oceanic particles (e.g., [1–5]), these particles are predominately nonspherical.
Significant differences exist in the optical properties simulated by using “equivalent” spheres and
non-spherical shapes, such as spheroids (e.g., [6]). In addition, even the simplest biological cell has
a membrane and plasma contained within the membrane. Previous studies have shown that accounting
for the cell structure can better simulate the optical properties of various phytoplankton species,
particularly the scattering at large scattering angles [5,7–11]. Advanced light scattering methods have
been developed to deal with complex shape and structure. Here, we briefly summarize light-scattering
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computational methods for oceanic particles. Light scattering in an absorbing medium has been
extensively discussed [12–14]. For generality, however, only a nonabsorbing medium is discussed
here. Beginning with Maxwell’s equations, in Section 2, we will show exact volume-/surface-integral
equations for mapping the near field to the far field. Furthermore, we introduce both the amplitude
scattering matrix and the scattering phase matrix. In Section 3, several scattering methods will be
introduced. In Section 4, discussions are given that are based on oriented particles and particles in
random orientation.

2. Fundamental Concepts for Mueller Matrix Calculations

2.1. Maxwell’s Equations and the Volume/Surface-Integral Equations

Since all of the rigorous light-scattering computational methods should obey Maxwell’s equations,
we will first give a brief introduction to the role that both the volume/surface methods for mapping the
near field to far field play in the final solutions. We will only consider time-harmonic electromagnetic
waves and dielectric particles. The dielectric particles are assumed to be isotropic and have a linear
response to an applied field. In this case, Maxwell’s equations in the medium while using SI units are
as follows:

∇
.
·E (

→
r ) = 0, ∇× E(

→
r ) = −µ

∂H(
→
r )

∂t
, (1)

∇
.
·H (

→
r ) = 0, ∇×H(

→
r ) = ε

∂E(
→
r )

∂t
, (2)

where E and H are the electric and the magnetic fields, respectively; ε and µ are the permittivity
and permeability of the medium. Using the Fourier transformation, an arbitrary incident field in the
time-domain can be transformed into the summation of the fields in the frequency-domain, or the
time-harmonic fields. Assuming that the time-harmonic field follows exp(−iωt), where ω is the
angular frequency of the electromagnetic wave, Maxwell’s equations in a time-independent form
become:

∇
.
·E (

→
r ) = 0, ∇× E(

→
r ) = iωµH(

→
r ), (3)

∇
.
·H (

→
r ) = 0, ∇×H(

→
r ) = −iωεE(

→
r ). (4)

Using Equations (3) and (4), the vector Helmholtz equations for the electric and magnetic fields are(
∇2 + k2

)
E(
→
r ) = 0, (5)

(
∇2 + k2

)
H(
→
r ) = 0, (6)

where k is the wave number and k2 = ω2µε. For oceanic particles, the surrounding medium and the
scattering particles are assumed to be nonmagnetic, thus µ = µ0, where µ0 is the vacuum permeability.
The light speed c in vacuum is equal to 1/

√
µ0ε0, where ε0 is the permittivity in vacuum. Consequently,

the refractive index m of the medium is m = c/v =
√

ε/ε0, where v is the light speed in the medium.
Since the electric and the magnetic fields are dependent on each other, we will use the electric field to
describe the electromagnetic field.

The volume integral and surface integral equations of the electric field can be deduced from
Maxwell’s equations and the vector Green function [15]. In the far-field regime, they can be expressed
in the form

Esca (
→
r )
∣∣∣
r→∞

=
exp(ikr)
−ikr

ik3

4π

∫
V

d3→r
′{
(m2 − 1)

[
r̂× r̂× E(

→
r
′
) exp(−ikr̂·→r

′
)
]}

, (7)
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Esca (
→
r )
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exp(ikr)
−ikr

k2

4π
r̂×

∮
S

d2→r
′{[

n̂s × E(
→
r
′
)
]
− ωµ0

k
r̂×

[
n̂s ×H(

→
r
′
)
]}

, (8)

where the parameters are given in Figure 1; n̂s is the outward normal to the surface. It is evident that
the scattered far field only depends on the scattered directions with an outgoing spherical wave factor
exp(ikr)/kr.
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Figure 1. Parameters used for light scattering by a dielectric particle. The field point
→
r is outside the

scattering particle with wavenumber k, permittivity ε, and permeability µ0 and the point
→
r
′

is inside
the particle with wave number k1, permittivity ε1, and permeability µ0.

2.2. Amplitude Scattering Matrix and Mueller Matrix

Let the incident direction of the incoming wave be along the z-axis of the laboratory frame of
reference. The incident direction and the scattered direction define a scattering plane and the incident
and scattered fields can be expanded into parallel and perpendicular components with respect to the
scattering plane. Consequently, the amplitude scattering matrix S can be given by [16](

Esca
‖

Esca
⊥

)
=

exp(ikr− ikz)
−ikr

S

(
Einc
‖

Einc
⊥

)
, (9)

where E‖ and E⊥ denote the parallel and perpendicular components of the electric field with respect
to the scattering plane and S is a 2 × 2 complex matrix. The Stokes parameters in a non-absorbing
medium are defined based on the measurable quantities, which are normally expressed in terms of
a four-element column vector, the Stokes vector I, as follows:

I =


I
Q
U
V

 =


E‖E

∗
‖ + E⊥E∗⊥

E‖E
∗
‖−E⊥E∗⊥

E‖E
∗
⊥ + E⊥E∗‖

i
(

E‖E
∗
⊥−E⊥E∗‖

)
. (10)

In the above equation, i is the imaginary unit and a constant factor,
√

ε/µ0/2, is neglected since
usually relative quantities are measured. The Mueller matrix (also called the scattering phase matrix
in the literature) is the transformation matrix from the incident to the scattered Stokes parameters,
as follows:

Isca =
1

(kr)2 PIinc, (11)
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where the 4 × 4 Mueller matrix P can be given as quadratic expressions of the amplitude scattering
matrix S, as follows [17,18]:

P = A(S⊗ S∗ )A−1, (12)

where asterisk denotes the complex conjugate and symbol ⊗ denotes the tensor product, and the
constant matrix A is

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

, A−1 =
1
2

A†, (13)

in which the symbol † (sometimes called the dagger) is composed of two operations; namely,
complex conjugating (the * symbol), and then transposing the original matrix and the order of these
operations is unimportant. Note that the Stokes parameters have the units of irradiance [19], and on the
other hand, the corresponding radiance is invariant over distance if no scattering or absorption occurs.

If the incident light is unpolarized, the scattering cross-section can be given in terms of the element
P11 by

Csca =
1
k2

∫
4π

dΩP11(θ, ϕ). (14)

The phase function is defined as:

p =
4π

k2Csca
P11, (15)

and the scattering phase matrix can be defined as:

F =
4π

k2Csca
P. (16)

The symmetry relations of the phase matrix have been extensively discussed in general and also
for forward and backward scattering [20–22]. For an arbitrary particle without mirror symmetry in the
scattering plane, the scattering phase matrix of a particle in random orientation is in the form

F =


a1 b1 b3 b5

b1 a2 b4 b6

−b3 −b4 a3 b2

b5 b6 −b2 a4

, (17)

where there are only 10 independent parameters. For a particle with mirror symmetry in the scattering
plane, the scattering phase matrix of a particle in random orientation is reduced to a block-diagonal
matrix, as follows:

F =


a1 b1 0 0
b1 a2 0 0
0 0 a3 b2

0 0 −b2 a4

, (18)

where there are only six independent parameters. Equations (17) and (18) represent the scattering
phase matrix of a particle in random orientation. For a collection of particles with a size distribution,
the collective scattering phase matrix can also be defined in terms of the distribution and the reader is
referred to the book by Mobley [23].

All of the scattering quantities have been presented and we are now faced with the problem of
obtaining the near fields or directly the far fields satisfying Maxwell’s equations.
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3. General Scattering Method for Suspended Particles

The governing principle for light scattering by particles is Maxwell’s equations. The scattering
solution is called Rayleigh scattering if x « 1 and |mx|« 1 [16,20], where the size parameter x is
defined as 2πrv/λ with rv being the radius of a sphere or volume-equivalent sphere and λ the incident
wavelength in the surrounding medium. The analytical solutions to Maxwell’s equations are only
effectively available for spheres [16,20]. For a prolate or oblate spheroid, the analytical solution is
given in a series of the spheroidal wave functions by Asano and Yamamoto [24] and Asano and
Sato [25]. However, the analytical solutions for a spheroid are only computationally effective for
small particles due to numerical instability in computing the spheroidal wave functions for large
particles. For an infinite circular cylinder, the analytical solution can be easily computed [16]. However,
the infinite morphology does not exist in nature. For a particle with spherical symmetry, such as
a homogeneous sphere or a multi-layered sphere, the analytical solution can be obtained by using the
Lorenz-Mie theory for any size [16,20]. The advantage of using the spherical model is the computational
efficiency, while the disadvantage is the appearance of spherical artifacts, such as the rainbow or
glory, which have seldom been observed for ocean water (e.g., [26]). For a non-spherical particle,
the solution of Maxwell’s equations consists of two categories: rigorous and approximate solutions.
The rigorous solutions can be further divided into numerically exact solutions and semi-analytical
T-matrix solutions.

3.1. Numerically Exact Methods

As the name implies, numerically exact solutions use numerical methods to directly solve
Maxwell’s equations or the volume or surface integral equations derived from Maxwell’s equations.
The computational precision depends on the numerical resolution.

The finite difference time-domain method (FDTD) is based on the discretization of Maxwell’s
equation Equations (1) and (2) both in time and space [27]. The FDTD method uses the Yee grid to
discretize the space, which was developed by Yee [28] and reviewed by Taflove [27], and Yang and
Liou [29,30]. Since the computational space has to be confined to a finite region, a perfectly matched
layer is used to absorb all of the electromagnetic waves in the computational boundary and avoid any
artificially reflected electromagnetic waves back into the computational region [31]. The computational
region usually with cuboid shape has to encompass the scattering particle so the computational region
is always larger than the scattering particle in the FDTD application. The electromagnetic fields on the
grids are updated with the advance of time so the FDTD is an initial value problem.

For a time-harmonic field or a field in the frequency domain, Maxwell’s equations become the
vector Helmholtz equations that are given in Equations (5) and (6). The vector Helmholtz Equations (5)
and (6) can be discretized in space while using the finite-element method (FEM) [32]. The boundary
condition on the particle surface and the continuity condition on the neighboring grid give a series
of linear equations. The FEM is a boundary value problem. A major challenge for applying the FEM
to light scattering is choosing the finite region covering the scattering particle so that the field in the
computational region satisfies the radiation condition in the far field [33]. Like the FDTD method,
the computational region for the FEM is also larger than the region that is occupied by the scattering
particle, which can constrain the application regime of the FEM.

Using the vector Green function, the differential equations become the volume-integral or the
surface-integral equations given by Equations (7) and (8). Even though the volume-integral and
the surface-integral methods are equivalent, the volume-integral method is numerically more stable
than the surface-integral method because the volume-integral equation in Equation (7) is a Fredholm
integral equation of the second kind whose matrix equation is usually diagonally dominant [34].

The discrete-dipole approximation (DDA) method is a typical volume-integral method. The DDA
was first proposed by Purcell and Pennypacker [35] and it was reviewed by Draine [36,37] and by
Yurkin and Hoekstra [38]. In the DDA method, the particle volume is discretized into usually cubic
cells, as shown in Figure 2. Each cubic cell is represented while using an electric dipole and the excited
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field at that cell is composed of the original incident field and the field from all other cells but excluding
the cell itself. The dipoles generate a series of linear equations and the fields with respect to all dipoles
can be obtained by solving the corresponding linear equations. Once the total field with respect to
each cell is obtained, the amplitude scattering matrix and Mueller matrix can straightforwardly be
computed. It is evident from Equation (7) that the computational region is equal to the volume of
a scattering particle. That makes the DDA method computationally efficient when compared to other
numerically exact methods.
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Two numerical implementations of the DDA are a FORTRAN implementation referred to as
DDSCAT by Draine and Flatau [39] and a C implementation referred to as ADDA by Yurkin and
Hoekstra [40]. The DDSCAT is parallelized for scattering only in different orientations so the
memory requirement might restrict the computational capability for large particles. The ADDA
is parallelized by distributing grids (dipoles) into different CPUs so the ADDA can handle particles of
large sizes. The DDA method has been extensively used to simulate light scattering of oceanic particles.
For instance, the light scattering of Emiliania huxleyi coccolithophore was simulated while using the
DDSCAT by Gordon et al. [41] and using the ADDA by Zhai et al. [42]. Another example of the use of
ADDA is the light scattering of dinoflagellates by Liu and Kattawar [43], where the chiral structure
of the chromosomes is implemented by using discrete dipoles. This chiral structure leads to optical
activity for certain dinoflagellates and another reason for measuring the complete single scattering
Mueller matrix, which should be a fruitful area of research in remote sensing of the oceans.

The typical feature of a numerically exact method is that the error asymptotically approaches zero
if the corresponding numerical grid that is associated with the method asymptotically reaches zero.
Another feature for oceanic particles is that the convergence rate is much faster than the convergence
rate of atmospheric particles because the relative refractive indices with respect to oceanic particles are
close to unity. Moreover, the composition of a particle using the numerically exact methods can be
arbitrary, homogeneous or inhomogeneous, or even different grid by grid.

For all of the numerically exact methods, the Mueller matrix is given in terms of the amplitude
scattering matrix and they both depend on the incident direction. Consequently, the light scattering
computation of a particle in random orientation while using these methods can usually be given by
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numerically summing the light scattering for different orientations. The convergence in the random
orientation computation becomes significantly more difficult with increasing particle size so the
computation will become time-consuming.

3.2. Semi-Analytical T-Matrix Method

The T-matrix method was originally proposed by Waterman [44,45]. The incident and scattered
fields are expanded in a series of the vector spherical wave functions. The T-matrix connects the incident
and scattered expansion coefficients because of the linearity of Maxwell’s equations. The T-matrix
of a particle only depends on the intrinsic properties of the particle, such as the refractive index,
morphology, and the orientation of the particle frame of reference and its origin location, but not
on the incident state. Corresponding to Equations (7) and (8), the T-matrix can be obtained using
the surface-integral and volume-integral methods. The computational method of the T-matrix based
on the surface integral is called the extended boundary condition method (EBCM) or the null field
method, and it was reviewed by Tsang et al. [46], Mishchenko et al. [47,48], Mishchenko and Travis [49],
and Doicu et al. [50]. The T-matrix method based on the volume integral equation is called the
invariant-imbedding T-matrix method (IITM) and it was originally proposed by Johnson [51]. The IITM
was reviewed and developed by Bi et al. [52]. For a particle with axial symmetry, the T-matrix is
decoupled into a block-diagonal form, so the computation is significantly simplified. The applications
of the EBCM on spheroids, cylinders, and Chebyshev shapes are exceptionally effective [49]. However,
when a particle has a large size or an aspect ratio far from unity or one that is asymmetric, the matrices
in the T-matrix computation are often ill-conditioned. The T-matrix method that is based on the volume
integral is much more stable than the EBCM because the volume integral equation in Equation (7) is
a Fredholm integral equation of the second kind, which is often less ill-conditioned [34]. The extreme
stability of the IITM has been validated by applying the IITM to particles with large sizes, extreme aspect
ratios, or asymmetric particles [52,53]. For instance, the IITM were used to compute the light scattering
of oceanic particles, such as Emiliania huxleyi coccoliths and coccolithophores by Bi and Yang [54],
and diatoms by Sun et al. [11].

When compared to the numerically exact methods, the significant advantage of the T-matrix
solution is the analytical realization for a particle with a random orientation. The computational time
of T-matrix methods is usually shorter than the numerically exact methods because T-matrix methods
use matrix inversion instead of iterations. Moreover, in contrast to the relatively large refractive indices
of atmospheric particles, such as ice crystals (m ~1.33) and aerosols (roughly m > 1.5), the relative
refractive indices of oceanic particles are usually smaller than 1.2. For this reason, using the T-matrix
method for oceanic particles normally yields faster convergence and higher computational efficiency
than for atmospheric particles. However, the computational time and memory requirements of the
T-matrix are strongly related to the radius of the circumscribed sphere of a particle and its morphology.
For instance, for a needle particle with small volume but large circumscribed radius or a complex
morphology, such as a porous particle, T-matrix methods are not as efficient as the numerically
exact methods.

The numerically exact solutions can provide results for particle size parameters x ~100 or less;
for the T-matrix solutions EBCM can reach x ~180, and the IITM can yield accurate results for x ~300.
For even larger oceanic particles, approximate solutions must be used.

3.3. Physical-Geometric Optics Method

When the particle size is much larger than the incident wavelength, Maxwell’s equations can
be approximated by the eikonal equation [55]. The eikonal equation is the theoretical foundation
of the geometric optics method. The key process for the geometric optics method is ray-tracing.
The ray-tracing process of the geometric optics method consists of two parts: one is the diffracted rays
and another is the transmitted rays, including external reflection, refraction without internal reflection,
refraction with one internal reflection, and so on. The conventional geometric optics method (CGOM)
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considers the diffracted and the transmitted rays separately and it assumes equal contributions from
the diffracted and transmitted rays under the assumption that the extinction efficiency is 2. Moreover,
the CGOM does not consider the ray spreading effect from the near field to the far field, that is, there is
no mapping process for the CGOM. The CGOM is applied to compute the light scattering of large
particles with a large refractive index, such as ice particles (e.g., [56,57]). The CGOM can be improved
by considering the ray spreading effect for a particle in random orientation. The improved geometric
optics method (IGOM) can be used to compute light scattering of an intermediate particle or even
a small particle [58,59].

For oceanic particles, the diffracted and transmitted rays have strong destructive interference
so they cannot be separately handled. The physical-geometric optics method (PGOM) considers not
only the interference between the diffracted and transmitted rays, but also the ray spreading effect in
the far field [60]. Equations (7) and (8) are fundamental to the PGOM, which substantially extend the
applicability of the principles of geometric optics in conjunction with physical optics to from large
to moderate particles. For faceted particles, the ray-tracing process can be analytically accomplished
since the phase change on a facet is linear [61–63]. The PGOM can be effectively used to compute the
light scattering properties of oceanic particles.

4. Computational Results and Discussion

4.1. Dinoflagellate Simulation Using ADDA

Phytoplankton are one of two main categories of oceanic organisms and a significant component
of the marine ecosystem that travel along the ocean currents. Many phytoplankton are positioned
with preferred orientations due to the ocean flow [64]. Most phytoplankton are single-celled, such as
dinoflagellates, diatoms, and coccolithophores. The bloomed phytoplankton can cause huge economic
losses and influence environmental health, such as the red tide bloom of dinoflagellates in Florida [65].
Optical properties of an individual or bulked phytoplankton are essential to study phytoplankton
populations (e.g., [66]). As mentioned in Section 3, dinoflagellates, diatoms, and coccolithophores have
been simulated using the DDA and IITM [11,41–43,54]. Dinoflagellates have a large group of species
so we take them as an example to describe the application of a scattering method.

Laboratory observation using transmission electron microscopy showed that the nucleus of
dinoflagellates contains cylindrical chromosomes [67–69] and the chromosomes are arranged by
ordered helical structures [69,70]. The helical structures are responsible for the strong circularly
polarized effect that was observed in dinoflagellates [43,71,72]. The Mueller matrix element P14 reflects
the circular polarization of a scattering particle and can be used as an index to indicate the strong
circularly polarized effect [16,20]. Liu and Kattawar employed the ADDA code to fully simulate a single
cell of a dinoflagellate and compute the 16 Mueller matrix elements [43], where the chromosomes
are constructed using the plywood model [73]. For computational efficiency, only the nucleus with
dozens of randomly positioned chromosomes is simulated. A chromosome is modeled as a cylindrical
capsule with many layers, where every layer with fixed diameter contains parallel fibrils and the
helical structure is described by making two adjacent layers with a constant rotation angle between
them. The height with one period of rotation for the parallel fibrils is called the pitch. The chromosome
simulation in the DDA method was performed by constructing fibrils in terms of dipoles and these
fibrils were then arranged in layers and each layer was twisted a certain amount to make a helical
shaped capsule to represent the chromosome. The diameter, the constant rotation angle, the number of
helical periodicities, the pitch, the incident wavelength, and the incident directions can be changed to
examine the circularly polarized effect of the helical structure. The important conclusions while using
the ADDA code are given by Liu and Kattawar, as follows [43]:

• Strong back scattering signals from Mueller matrix element S14 are indeed from the helical
structures of the chromosomes.
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• Strong S14 back scattering signals are observed when the incident wavelength in the ocean is
matched with the pitch of the helical structure, even if the chromosomes are under the random
orientation condition.

• Strong S14 back scattering signals are observed when the incident direction is close to the main
axis of the helical structure.

• The helical structure with constant rotation angle has stronger S14 back scattering signals than the
helical structure with random rotation angle.

These conclusions suggest potential applications on the detection of the dinoflagellate and also
the appropriate incident wavelength to match the pitch of helical structure.

4.2. Oceanic Particle Simulation Using ADDA, IITM, and PGOM

Section 4.1 describes an example of dinoflagellates while using the ADDA to compute the 16
Mueller matrix elements that were given by Liu and Kattawar [43], where the chromosome of the
dinoflagellate has complex helical structure and is simulated mostly in fixed orientations. Generally,
a simple nonspherical shape in random orientation is used to simulate the optical properties of oceanic
particles. A hexahedron particle here is used as an example of an oceanic particle to show how Mueller
matrix elements can be calculated by three typical methods: the ADDA, the IITM, and the PGOM.
The relative refractive index of the particle is set to be 1.12 + i0.0005 and the incident wavelength is
0.658 µm. Only the Mueller matrix of the particle under the random orientation condition is given.

Figure 3 shows the comparisons of the non-zero Mueller matrix elements calculated by the
IITM and the ADDA. The volume equivalent radius is 1 µm. The element P11 is normalized to
give the normalized phase function while other elements are normalized by the element P11. The
simulation results calculated by the IITM and the ADDA are perfectly matched since they both are
the exact solutions of Maxwell’s equations. However, the computation using the IITM is much more
efficient than the computation using the ADDA since the random orientation process is realized by
ADDA through considering a large number of orientations. On the other hand, the ADDA for a fixed
orientation in this case is more efficient than the IITM since the IITM has to compute the T-matrix of the
particle, regardless of whether it is in a fixed orientation or under the random orientation condition.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 14 
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Figure 4 shows the comparisons of the Mueller matrix elements calculated by the IITM and the
PGOM. The volume equivalent sphere radius is 8 µm. The PGOM results agree quite well with the
IITM results, especially for the forward and backward scattering directions. Even though the PGOM is
an approximate solution of Maxwell’s equation, the process of including the interference between the
diffracted and transmitted rays and mapping the near field to the far field significantly enhances its
accuracy. The advantage of the PGOM is that it is computationally much more efficient than the IITM.
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5. Conclusions

A general introduction for calculating the Mueller matrix of suspended particles in the ocean
is given. The surface and volume integral equations of the electromagnetic field can be given from
Maxwell’s equations. Also, the amplitude scattering matrix and the Mueller matrix with respect to
light scattering can be defined to describe the polarization state of a suspended particle. To calculate
the amplitude scattering matrix and Mueller matrix, the scattering methods are introduced based on
the following categories: numerically exact methods, semi-analytical T-matrix methods, and geometric
optics methods. For clarity, three typical methods: the DDA method, the IITM, and the PGOM,
are briefly presented. Moreover, the Mueller matrix of an arbitrarily generated hexahedron particle
under the random orientation condition is computed while using the ADDA and the IITM when the
volume equivalent sphere radius is 1 µm and using the PGOM and the IITM for a volume equivalent
sphere with a radius of 8 µm, while the incident wavelength is 0.658 µm. Perfect agreement between the
ADDA and the IITM are given since both methods are considered to be the exact solutions. The IITM
is more computationally efficient than the ADDA when the particle is under the random orientation
condition. Excellent agreement between the PGOM and the IITM are obtained especially for the
forward and the backward scattering directions. The PGOM is more computationally efficient than
the IITM because of the ray-tracing process. Consequently, the Mueller matrix of suspended particles
can be computed by using numerically exact methods, T-matrix methods, and the physical-geometric
optics method to cover a complete size range.
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