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REVIEW Open Access

Role of the tumor microenvironment in PD-
L1/PD-1-mediated tumor immune escape
Xianjie Jiang1,2,3, Jie Wang2, Xiangying Deng2, Fang Xiong2, Junshang Ge1,2, Bo Xiang1,2,3, Xu Wu2,4, Jian Ma1,2,3,
Ming Zhou1,2,3, Xiaoling Li1,2,3, Yong Li2,5, Guiyuan Li1,2,3, Wei Xiong1,2,3, Can Guo1,2,3* and Zhaoyang Zeng1,2,3*

Abstract

Tumor immune escape is an important strategy of tumor survival. There are many mechanisms of tumor immune
escape, including immunosuppression, which has become a research hotspot in recent years. The programmed
death ligand-1/programmed death-1 (PD-L1/PD-1) signaling pathway is an important component of tumor
immunosuppression, which can inhibit the activation of T lymphocytes and enhance the immune tolerance
of tumor cells, thereby achieving tumor immune escape. Therefore, targeting the PD-L1/PD-1 pathway is an
attractive strategy for cancer treatment; however, the therapeutic effectiveness of PD-L1/PD-1 remains poor.
This situation requires gaining a deeper understanding of the complex and varied molecular mechanisms and
factors driving the expression and activation of the PD-L1/PD-1 signaling pathway. In this review, we summarize the
regulation mechanisms of the PD-L1/PD-1 signaling pathway in the tumor microenvironment and their roles
in mediating tumor escape. Overall, the evidence accumulated to date suggests that induction of PD-L1 by
inflammatory factors in the tumor microenvironment may be one of the most important factors affecting the
therapeutic efficiency of PD-L1/PD-1 blocking.

Keywords: Tumor immune escape, PD-L1, PD-1, Tumor microenvironment, Inflammatory factor

Background
Tumor immune escape refers to the phenomenon by
which tumor cells can grow and metastasize by avoiding
recognition and attack by the immune system through
various mechanisms, which is an important strategy for
tumor survival and development [1].The are many indu-
cible factors of tumor immune escape, including the low
immunogenicity of tumor cells, recognition of tumor-
specific antibodies as autoantigens, tumor surface anti-
gen modulation, tumor-induced exemption regions, and
tumor-induced immunosuppression, the latter of which
has been the most extensively studied mechanism to
date. Tumor-induced immunosuppression operates in
two main ways. The first occurs by inducing immuno-
suppressive cells to accumulate around the tumor and
secrete immunosuppressive factors, which inactivate
cytolytic T lymphocytes (CTL) to decrease the immune

tolerance of tumor cells, such as regulatory T cells (Treg
cells) [2, 3], myeloid-derived suppressor cells (MDSCs)
[4], dendritic cells (DCs) [5], and M2 macrophages [6,
7].The second mechanism of immunosuppression in-
volves induction of the expression of immunosuppres-
sive molecules or their receptors, including programmed
death-ligand 1/programmed death-1 (PD-L1/PD-1),
galectin-9/TIM-3, IDO1, LAG-3, and CTLA4, which are
known as the immune checkpoints and can inhibit the
activation of effector T lymphocytes, ultimately leading
to tumor immune escape. Thus, blocking these immune
checkpoints has become an important direction of im-
munotherapy in recent years to eliminate the immune
suppression and restore immune system function.
Among these immune checkpoint blockers, PD-L1/
PD-L1 antagonists account for the largest proportion of
drugs approved by the FDA in recent years and are cur-
rently in clinical trials.
PD-1, also known as cluster of differentiation 279

(CD279), has attracted a substantial amount of attention
in the field of cancer research in recent years. PD-1 was
originally cloned from a drug-treated mouse hybridoma
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and hematopoietic progenitor cell lines in an apoptotic
state by subtractive hybridization in 1992, and was con-
sidered to be mainly involved in the process of cell
apoptosis, from which its name is derived [8]. Human
PD-1 is encoded by the PDCD1 gene, located on
chromosome 2q37, which is a type I transmembrane
protein composed of 288 amino acid residues, belonging
to the immunoglobulin CD28 family. PD-1 is expressed
in a wide range of immune cells, including peripherally
activated T cells, B cells, monocytes, natural killer (NK)
cells, and certain DCs. Weaker PD-1 expression has also
been detected on the surface of immature T cells and B
cells located in the thymus and bone marrow during
specific developmental stages [9, 10]. When binding to
its ligand, PD-1 can activate intracellular signaling path-
ways and inhibit the activation of immune cells, thereby
reducing the secretion of antibodies and cytokines by
immune cells to even exhaust the immune cell and thus
maintain immune system homeostasis. PD-L1 (B7-H1 or
CD274) was the first ligand of PD-1 discovered [11],
which belongs to the B7 family and is located on human
chromosome 9 p24.2. Its amino acid structure is similar
to that of PD-1. PD-L1 is widely expressed. In addition
to lymphocytes, PD-L1 is also widely expressed in
non-blood cells such as in lung, vascular endothelium,
reticular fibroblasts, non-parenchymal liver cells, mesen-
chymal stem cells, islet cells, astrocytes, neuronal cells,
and keratinocytes [9, 12, 13]. In addition, PD-L1 also
shows abnormally high expression in tumor cells, which
is considered the main factor responsible for promoting
the ability of tumor immune escape [14–17].
However, the therapeutic effect of a PD-1/PD-L1 an-

tagonist against solid tumors is currently not satisfac-
tory. In PD-L1-positive metastatic melanoma or lung
cancer, the effective rate of anti-PD-L1 antagonists is
only 40–50%. In colorectal cancer, although the
PD-L1-positive rate is 40–50%, anti-PD-1 or anti-PD-L1
drugs show very low efficacy [18]. This poor treatment
response, in addition to the high variation of genetic
mutations among individuals, may also be related to the
complex microenvironment of tumors. The role of the
tumor microenvironment in tumor growth and metasta-
sis has long been recognized. Recent studies have also
shown that many cytokines and tumor-derived exosomes
in the tumor microenvironment can induce the expres-
sion of PD-L1 and promote tumor immune escape. This
review provides a summary of recent research progress
toward understanding the molecular mechanism of
PD-L1/PD-1 in tumor immune escape, and the regula-
tion of PD-1 and PD-L1 in the tumor microenviron-
ment. This research progress and indication of
remaining questions can help to better understand the
tumor immune escape mechanism toward developing
more effective immunotherapies for cancer patients.

Tumor microenvironment
A tumor is not simply a cell mass composed of malignant
cells but is actually composed of a large number of
non-transformed cells recruited by malignant cells, even-
tually forming a complex structure composed of both
malignant cells and non-transformed cells, and their inter-
action forms the tumor microenvironment [19–24]. The
tumor microenvironment consists mainly of vasculature,
extracellular matrix (ECM) [25, 26], and other non-malig-
nant cells surrounding the tumor, as well as a complex
signaling molecule network that sustains the internal con-
nections of the microenvironment, including growth fac-
tors, cytokines, chemokines, and exosomes [27, 28]
(Fig. 1). In recent years, with the development of bio-
logical technology, different types of cells were identified
in the microenvironment, including stromal cells, fibro-
blasts, fat cells, vascular endothelial cells, and immune
cells such as T lymphocytes, B lymphocytes, NK cells,
tumor-associated macrophages, and so on [27]. Most of
these cells can secrete cytokines and play a role in pro-
moting or inhibiting tumors. Among them, mesenchymal
cells and fibroblasts can secrete growth factors such as
hepatocyte growth factor, fibroblast growth factor, vascular
endothelial growth factor (VEGF), metal secretory pro-
teins MMP2 and CXCL12, and chemokines in the tumor
microenvironment. These cytokines not only promote the
growth and survival of malignant tumor cells but also
their invasion and migration [29, 30]. Vascular endothelial
cells produce blood vessels that supply oxygen to tumor
cells and carry away metabolic waste. However, the blood
vessels generated inside the tumor are incomplete and
have weak function; thus, new blood vessels need to be
generated constantly, which further complicates the in-
ternal blood vessel network [31]. The adipose tissue is an
important component of the tumor microenvironment,
which can provide a hypoxic and inflammatory micro-
environment for tumors [32]. In particular, interleukin
(IL)-6, leptin, and adiponectin secreted by fat cells play an
important role in tumor growth [33].
Immune cells are the most important defensive weapon

of the human body. The immune system is composed of
various immune cells to protect against invading or infec-
tious pathogens and to eliminate damaged or cancerous
cells [34, 35]. The immune cells located in the tumor
microenvironment comprise T cells, Tregs, B regulatory
cells (Bregs), NK cells, DCs, MDSCs, and macrophages,
among others. Tumor-infiltrating T lymphocytes are im-
portant effector cells in the immune system and can be di-
vided into CD4+ T cells (helper T cells) and CD8+ T cells
(cytotoxic T cells). These cells can secrete anti-tumor cy-
tokines such as interferon (IFN)-γ, tumor necrosis factor
(TNF)-α, IL-17, and IL-2. Tregs and Bregs are immuno-
suppressive cells in the immune system that secrete IL-10,
IL-35, and transforming growth factor (TGF)-β to
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suppress the immune response of T lymphocytes, and
thus prevent damage from the excessive activation of T
cells. NK cells account for approximately 10% of the per-
ipheral lymphocytes and are widely distributed in the per-
ipheral blood, lymph nodes, spleen, and bone marrow, but
can also migrate to an inflammatory site under the induc-
tion of chemokines. The main role of NK cells is to exert
cytotoxicity. After activation, NK cells can secrete IFN-γ,
TNF-α, and granulocyte macrophage-colony-stimulating
factor (GM-CSF) to exert anti-tumor effects [36]. DCs can
express immune co-stimulatory molecules as well as initial
inflammatory factors to promote Th1 and cytotoxicity, in-
cluding IL-1, IL-12, and IL-23 [37]. MDSCs are also a class
of immunosuppressive cells that can up-regulate the im-
munosuppressive products nitric oxide synthase and react-
ive oxygen species to inhibit the activity of immune
cytotoxic T cells [38]. Neutrophils are mainly abundant in
the peripheral blood, and can produce a large number of
proteases and growth factors such as MMP9 and VEGF,
contributing to promoting the growth and metastasis of
tumor cells [39]. Macrophages can be divided into M1 type
and M2 type macrophages: M1-type macrophages have
anti-tumor characteristics and secrete pro-inflammatory
factors such as IL-6, IL-8, IL-1β, IFN-γ, and TNF-α,
whereas M2-type macrophages have tumor-promoting
properties and secrete anti-inflammatory factors such as
IL-10, IL-4, epithelial growth factor (EGF), TGF-β, and

IL-19, thereby playing an important role in promoting
tumor cell proliferation and migration [40, 41].
The ECM consists of the basement membrane and

intercellular mass, which is an important barrier for
tumor metastasis. The ECM contains a large number of
growth factors, cytokines, and various metalloprotein-
ases secreted by tumor cells and other cells in the
microenvironment, along with various acidic substances
produced by tumor metabolism to maintain the weak
acidic environment of tumors, which could induce the
tumor epithelial-mesenchymal transition (EMT) and fa-
cilitate a low-oxygen environment. Indeed, owing to the
rapid cell growth of tumors and the insufficiency of
tumor angiogenesis, a hypoxic environment is a com-
mon characteristic of the tumor microenvironment. In
addition, exosomes carrying non-coding RNAs are an-
other important component of the tumor microenviron-
ment, which contribute to the growth and migration of
tumor cells [42, 43].
Since the PD-L1/PD-1 signaling pathway is one of the

important pathways of tumor immune escape, regulating
the expression level of PD-L1 could help to manipulate
these components of the tumor microenvironment
through inhibition of the activation of T cells so as to
eliminate the immune surveillance of the tumor micro-
environment and prevent tumors from achieving im-
mune evasion.

Fig. 1 Cell growth factors and cytokines secreted in the tumor microenvironment. Abbreviations: CAFS, cancer-associated fibroblasts; Mφ, macrophage;
Breg: B regulatory cell; T cells, T lymphocytes; NK, natural killer cell; DC, dendritic cells; TAN, tumor-associated neutrophil; MDSC, myeloid-derived suppressor
cell; TAAC, tumor-associated adipose cells; VEC, vascular endothelial cell; ECM, extracellular matrix
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Effect of the PD-L1/PD-1 signaling pathway in
immune cells
PD-1 is a specific receptor of PD-L1. After binding,
PD-1 can inhibit the activation of lymphocytes, reduce
the secretion of lymphocyte cytokines, and thus promote
the apoptosis of lymphocytes. PD-1 protein is a type I
transmembrane protein with a molecular weight of 55–
60 kDa, composed of an extracellular IgV-like domain,
hydrophobic transmembrane region, and intracellular re-
gion. The C-terminal and N-terminal amino acid resi-
dues of the intracellular domain of PD-1 have two
independent phosphorylation sites: the immunoreceptor
tyrosine-based inhibitory motif (ITIM) and the immu-
noreceptors tyrosine-based switch motif (ITSM) [44].
The ITSM is an important structural site for PD-1 to
exert its biological function: when PD-1 binds to PD-L1,
the ITSM region will be phosphorylated to activate a
series of intracellular signaling pathways and achieve ef-
ficient immune inhibition. However, the specific mech-
anism of PD-1 activation differs between T and B
lymphocytes.

T cells
The classical model of the T cell-mediated immune re-
sponse during pathogen invasion involves the regulation
of two signals. The first signal is the combination of the
pathogen-derived peptide antigen and the major histo-
compatibility complex on the surface of an
antigen-presenting cell (APC), which transmits signals
to T cells that are identified by antigen-specific recep-
tors. However, the first signal presented by the APC is
not sufficient to activate the T cell immune response,
and a second signal is required so that the immunosti-
mulatory molecule ligand expressed by the APC inter-
acts with the T cell receptor (TCR). Through this
interaction, the signal of activation or inhibition is trans-
mitted to T cells to regulate the immune response.
Therefore, the immune co-stimulating molecule in the
second signal is the key molecule of the T cell immune
response, which plays an important role in T cell activa-
tion, tolerance, and apoptosis [45]. PD-L1/PD-1 can in-
hibit the TCR-mediated activation of T cells. The
specific mechanism is as follows. When the TCR signal
is activated, the ligand-bound PD-1 intracellular tyrosine
is phosphorylated and then activated. PD-1 then recruits
SHP-1 and SHP-2 to the C-terminal ITSM, which can
dephosphorylate the TCR activation signals CD-3ζ and
ZAP70, leading to downstream PI3K/AKT signaling in-
hibition. PI3K/AKT inactivation downregulates the ex-
pression of the cell survival gene Bcl-xl and promotes T
lymphocyte apoptosis, while simultaneously inhibiting
the secretion of cytokines by T lymphocytes [46]. This
mechanism differs from the activation of AKT by
CTLA4, in which PD-1 binds to the p85α subunit and

p110σ subunit of PI3K in the TCR molecular cluster to
activate early T cells, thereby inhibiting the phosphoryl-
ation of PI3K. PD-1 has also been suggested to activate
PTEN, thereby inhibiting TCR-mediated PI3K/AKT acti-
vation [47, 48]. In addition, PD-1 can inhibit activation
of the RAS-ERK1/2 signaling pathway to consequently
inhibit the proliferation of T lymphocytes; alternatively,
PD-1 can inhibit the activation of PKCδ and reduce the
secretion level of IL-2 by T cells [49, 50] (Fig. 2b).

B cells
PD-1 can also inhibit the activation of B cells. To under-
stand the mechanism, researchers constructed a
chimeric molecule composed of the extracellular region
of the IgG Fc IIB receptor and the intracellular region of
PD-1. After expressing this molecule in B lymphocyte
strains, they found that PD-1 prevented B cell receptor
(BCR)-mediated growth inhibition, and also inhibited
the intracellular transport of Ca2+ and the tyrosine phos-
phorylation of some effector molecules [51]. These ef-
fects occurred because when the ligand-bound PD-1 is
linked to BCR, the two tyrosines on the PD-1 ITSM are
phosphorylated so that SHP-2 molecules are recruited to
the C-terminus of PD-1 and phosphorylated. Phosphory-
lated SHP-2 can then dephosphorylate BCR signaling
molecules such as SyK and Igα/β, leading to dephos-
phorylation of the downstream molecules PI3K, PLCγ2,
and ERK, resulting in acute Ca2+ disorder and long-term
growth stagnation. In addition, the expression of PD-1
can weaken the immune response of B lymphocytes to
antigens [52]. Activation of PD-1 also inhibits the secre-
tion of antibodies by B cells in the presence of type 2
antigen stimulation [53, 54] (Fig. 2a).
Therefore, many factors in the tumor microenviron-

ment can induce PD-L1 expression and promote im-
mune escape, which will be discussed in detail in the
following section.

Regulation network of PD-1/PD-L1 in the tumor
microenvironment
Regulation of PD-1
As an immunosuppressive molecule, PD-1 can inhibit
the activation of T lymphocytes and promote T lympho-
cytes apoptosis. PD-1 is also affected by the tumor envir-
onment (Fig. 3). The expression of PD-1 is strictly
regulated in T lymphocytes, with low or even undetect-
able expression in naïve T lymphocytes, but is rapidly in-
duced when the TCR signal is activated [55]. TGF-β
plays an important role in in this process. When TGF-β
is blocked, the TCR activation-induced PD-1 can be
inhibited significantly [56]. Moreover, when stimulated
by an antigen (e.g., anti-CD3), CD4+ T lymphocytes,
CD8+ T cells, NK T cells, and monocytes are all induced
to express PD-1 on the cell membrane [57]. This may be
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related to the body’s own protective mechanism, which
can inhibit the excessive activation of immune cells.
Upon TCR activation, the influx of calcium ions into
cells will activate NFATc1, when then translocates to the
nucleus where it can bind to the 5′-terminal region of
the PD-1 promoter, thereby increasing the transcription
level of the PD-1 gene [58]. In addition, IL-12 and IL-6
can also induce PD-1 upon TCR activation by changing
the chromatin structure of the PD-1 gene and enhancing
the transcription of PD-1 by activating STAT3/STAT4.
However, this effect cannot be achieved by IL-6 or IL-12
alone [59], and requires the proximal cis-element CRC
of the PD-1 promoter, along with the transcription fac-
tors FOXO1 and NF-κB [60]. Other factors in the tumor
microenvironment can also regulate the expression of
PD-1. IL-7, IL-15, and IL-21 can induce PD-1 expression
in peripheral T lymphocytes, although up-regulated
PD-1 does not affect the expansion and survival of T
cells by these cytokines, but rather inhibits the secretion
of cytokines in T lymphocytes [61]. In macrophages,
IFN-α can also regulate the expression of PD-1 by acti-
vating the JAK/STAT signaling pathway, which can form
the P48/STAT1/STAT2 complex that binds to the ISRE

binding site on the PD-1 promoter, thereby enhancing
PD-1 transcription [62]. In addition, in mouse T lym-
phocytes, IFN-α can also act synergistically with TCR
signals to regulate the expression of PD-1, and generates
strong inhibition feedback signals for T lymphocyte-
mediated immune responses [63]. In addition, the in-
flammatory factors TNF-α and IL-6 can also neutralize
the growth inhibition of PD-1 on T lymphocytes in
osteoarthritis, which is mainly achieved by inducing the
secretion of soluble PD-1 to interfere with the inter-
action of PD-1 and PD-L1 [64]. To date, few studies
have focused on the regulation of PD-1, and thus the de-
tailed regulation mechanism is not very clear. With the
development and deepening of immunotherapy, it is be-
lieved that more extensive and in-depth research will be
conducted on the regulation mechanism of PD-1 in the
future.

Regulation of PD-L1
In addition to being widely expressed on the surface of
T lymphocytes, B lymphocytes, DCs, and macrophages,
high expression of PD-L1 is also found on the surface of
many tumor cells, causing T cell exhaustion and

Fig. 2 PD-1 signaling in B cells and T cells. a In B cells, upon PD-1 activation, SHP-2 is recruited to the C-terminal of PD-1 and dephosphorylates
downstream members of the BCR pathway (e.g., SyK, Igα/β), thereby disrupting the normal BCR response as well as inhibiting PLCγ2, ERK, and
PI3K signaling. This PD-1 activation consequently reduces the stability of the immunological synapse as well as B cell cycle arrest and causes
disorder of Ca2+ mobilization. b In T cells, when PD-1 combines with PD-L1, SHP-1/2 are recruited to the C-terminal of PD-1 immediately and
dephosphorylate key signal transducers, including the ZAP70, CD3δ, and PI3K pathways, thus suppressing TCR-mediated cell proliferation and
cytokine production
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immune tolerance, leading to immune escape [65]. As
summarized above, a variety of cytokines and exo-
somes in the tumor microenvironment [66–68] can
induce the expression of PD-L1, enhance the PD-L1/
PD-1 signal to inhibit CTL activation in the tumor
microenvironment, and thereby promote tumor es-
cape. The mechanism of induction of PD-L1 by these
cytokines and exosomes is schematically summarized
in Figs. 4 and 5. Here, we focus on some of the key
players of PD-L1 regulation: IFN-γ, TNF-a, cell
growth factors, hypoxia, and exosomes.

IFN-γ
IFN is a bioactive glycoprotein that is secreted by cells
when they are infected by viruses, with antiviral, antibac-
terial, antitumor, and immune regulation functions [69].
IFN-γ belongs to the type II IFN family, which is mainly
secreted by CD8+ T lymphocytes, NK cells, and macro-
phages. When two IFN-γ molecules interact with
IFNGR1/IFNGR2, a biologically active tetrameric complex

can be formed, which plays an important role in both in-
nate and adaptive immunity [70]. IFN-γ has long been
considered an anti-inflammatory cytokine that plays an
important role in antiviral and bacterial infections as well
as anti-tumor adjuvant therapy [71]. However, in recent
years, accumulating evidence has indicated that IFN-γ
does not show complete anti-tumor efficacy, and in some
cases, can also actually promote tumor growth and resist
tumor immunological monitoring [72]. For example, adju-
vant treatment of IFN-γ to melanoma patients had to be
terminated prematurely because these patients had a
worse outcome than those who did not receive the treat-
ment [73]. In another trial, the total survival time of pa-
tients with advanced ovarian cancer that received a
combined regimen with IFN-γ and carboplatin/paclitaxel
was significantly shorter than that of patients treated with
carboplatin/paclitaxel alone [74]. These results demon-
strated that IFN-γ therapy not only is ineffective at inhibit-
ing the tumor but also promotes the growth of the tumor
in certain conditions. The poorer prognosis of patients

Fig. 3 The regulation network of PD-1 in the tumor microenvironment
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Fig. 4 Epigenetic modification of PD-L1 by the tumor microenvironment. a IFN-γ can regulate the translation of PD-L1 mRNA via upregulating
miR-155 or downregulating miR-513, and EGF can enhance the mRNA stability via the RAS-ERK1/2-TPP pathway. b EGF can reduce PD-L1
degradation via upregulating B3NT3 or downregulating GSK3β; alternatively, EGF can enhance PD-L1 protein stability via the PTEN/PI3K/mTOR
/S6K1 pathway

Fig. 5 Transcription regulation network of PD-L1 in the tumor microenvironment
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under IFN-γ regimens suggests that IFN-γ may have a
positive regulating effect on certain tumor-promoting fac-
tors. With increased research focus on immune check-
points in recent years, IFN-γ was shown to induce the
expression of PD-L1 and thus promote the escape of
tumor cells from the body’s immune surveillance by pro-
tecting tumor cells from specific T lymphocytes, and ul-
timately promoting tumor progression [75]. When IFN-γ
binds to its receptor, the dimer formed changes the con-
formation of the receptor, and the allosteric complex nar-
rows the distance between JAK1/JAK2 and IFNGR1/2,
prompting the autophosphorylation and activation of
JAK2 [76].
IFN-γ has multiple ways of inducing the expression of

PD-L1, which is related to the type of tumor. In gastric
cancer, IFN-γ induces PD-L1 expression via the JAK2/
STAT1/IFR-1 signaling pathway [77, 78]. However, in lung
cancer, IFN-γ induces PD-L1 expression through the JAK/
STAT3 and PI3K-AKT signaling pathways, leading to im-
mune escape [79]. Similar results have been obtained in
dermal fibroblasts. In addition, the phosphorylation of
MAPK and PI3K in dermal fibroblasts was found to result
in the release of NF-κB, which enters the nucleus and dir-
ectly binds to the PD-L1 promoter to activate its tran-
scription [80]. However, in myeloma cells, the expression
of PD-L1 induced by IFN-γ was shown to mainly occur
through the MEK/ERK signaling pathway, with only a
weak effect of the JAK-STAT signaling pathway and no in-
fluence of the PI3K/AKT and NF-κB signaling pathways.
In addition, the inducible expression of PD-L1 by IFN-γ
also relies on Toll-like receptor (TLR) signaling, as inhibit-
ing the expression of MyD88 and TRAF6 will directly
block the expression of PD-L1 induced by IFN-γ [81]. Fur-
thermore, IFN-γ can modulate the expression of PD-L1
via microRNA (miRNA) regulation. PD-L1 is the target
gene of miRNA-155 and miRNA-513, and IFN-γ can
inhibit the expression of miRNA-513 to relieve the trans-
lation inhibition of PD-L1, thereby enhancing the expres-
sion of PD-L1 protein [82]. However, IFN-γ can also
increase the expression level of miRNA-155, which may
contribute to a feedback inhibition loop of PD-L1 expres-
sion induced by IFN-γ [83].
Overall, these findings demonstrate that the effect of

IFN-γ on a tumor is complex. However, further study of
the regulation mechanism of PD-L1 expression by IFN-γ
will be helpful to understand the promotion of tumori-
genesis by IFN-γ, and to find a new method to reduce
the side effects (i.e., tumor-promoting effects) in the
treatment of tumors with IFN-γ therapy.

TNF-α
TNF was originally identified as a direct contributor to
tumor hemorrhagic necrosis. However, subsequent stud-
ies indicated that TNF-α is an important inflammatory

factor in addition to its effects of killing tumor cells.
TNF-α is produced by kinase-activated macrophages,
which bind to the receptor of specific homologous tri-
mers on the cell membrane. By activating the caspase
protease, JNK, and transcription factor NF-κB signaling
pathways, TNF-α can induce inflammation, and promote
cell growth, differentiation, and apoptosis. Recent studies
have found that TNF-α also induces the expression of
PD-L1. In a mouse model, the expression of PD-L1 in-
creased during the maturation of monocytes to macro-
phages, and reached its peak when monocytes
differentiated into macrophages. Moreover, these effects
were found to be independent of IFN-γ expression. Al-
though an abundance of IFN-γ and TNF-α will be pro-
duced during the differentiation of monocytes into
macrophages, in vitro experiments confirmed that cer-
tain cytokines would be produced when tumor cells are
co-cultured with monocytes, which could promote the
secretion of TNF-α by monocytes along with the expres-
sion of PD-L1 on the surface of monocytes [84]. The ex-
pression of PD-L1 is deficient in the monocytes of
patients with systemic lupus erythematosus, but can be
reconstituted by the exogenous addition of TNF-α [85].
In addition, HIV infection often leads to increased ex-
pression of the co-immunosuppressive molecule PD-L1,
mainly due to the role of Tat protein. In DCs, induction
of Tat protein on PD-L1 was found to be closely related
to TNF-α [86]. TNF-α can up-regulate the mRNA and
protein levels of PD-L1, which is mainly completed by
activating the NF-κB and ERK1/2 signaling pathways
[87]. In addition, TNF-α can also modulate the expres-
sion of PD-L1 through miRNA-155 [83]. As an inflam-
matory cytokine, TNF-α plays an important role in
activating inflammatory cells, killing pathogens, partici-
pating in tissue repair, and inducing angiogenesis and
connective tissue formation. However, recent studies
have shown that TNF-α can also induce the expression
of the immunosuppressive molecule PD-L1 to promote
immune escape. Therefore, the role of TNF-α in tumors
is still unclear and needs further study.

ILs
ILs are types of cytokines produced by various cells that
play an important role in the maturation, activation, pro-
liferation, and immunomodulation of immune cells. In
addition, ILs are involved in various physiological and
pathological responses. For example, IL-27 is a key im-
munosuppressive cytokine that can induce the expression
of PD-L1 in initial T cells, which is a STAT1-dependent
event. In vivo experiments showed that T cells expressing
a TCR transgene and IL-27-induced PD-L1 could inhibit
the differentiation of Th17 cells and avoid the develop-
ment of severe autoimmune encephalomyelitis [88]. Other
than T cells, induced expression of PD-L1 by IL-27 can be
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found in ovarian cancer cells, prostate cancer cells, and
non-small cell lung cancer cells [89]. As pro-inflammatory
cytokines, IL-6 and IL-17 also mediate the expression of
PD-L1 in the tumor microenvironment. Epithelial growth
factor receptor (EGFR) regulates the expression of PD-L1
and cell proliferation through the IL6/JAK/STAT3 signal-
ing pathway [90]. Moreover, high expression of PD-L1 and
low expression of NKG2D can enhance the radiotherapy
tolerance of non-small cell lung cells, which is mainly
achieved through the IL-6/MEK/ERK signaling pathway
[91]. Further, inhibition of the IL-6 signal pathway can re-
duce the expression level of PD-L1 and enhance the sensi-
tivity of cancer cells to the cytotoxicity of NK cells [92].
Although IL-10 itself does not directly induce the expres-
sion of PD-L1, after inhibiting the expression of IL-10 in
the environment, the expression level of PD-L1 also de-
creases. This suggests that IL-10 can induce the expres-
sion of PD-L1 via certain factors present in cells [93].
IL-12 is best known for its important role in the activation
of NK cells and T lymphocytes but has also been shown
to induce PD-L1 expression. This inducing effect depends
on activation of the NF-κB signal, which may be related to
the direct induction of IFN-γ by IL-12 [94]. Similar to
TNF-α, IL-17 can also induce the expression of PD-L1
through the synergistic effect of the NF-κB and ERK1/2
signaling pathways [87]. In human pluripotent interstitial
cells, IL-25 can inhibit the immune response of Th17 cells
via the IL-25/STAT3/PD-L1 complex [95].

Cell growth factors
EGF is a small-molecule active polypeptide that is widely
distributed in the human body, consisting of 53 amino
acids. EGF can combine with its receptor EGFR and ac-
tivate EGFR signaling pathways to promote cell growth.
Moreover, the EGFR signaling pathway plays an import-
ant role in tumor cell migration and proliferation, and
mutations of EGFR can be found in many types of
tumor cells. The mutated EGFR no longer needs to be
combined with EGF to have a continuous activation ef-
fect, leading to malignant proliferation and metastasis of
the tumor. Recent studies have shown that EGFR signals
can not only regulate the growth and invasion of tumors
but also play an important role in their immune escape.
In various cancers such as lung cancer, breast cancer,
head and neck cancer, esophageal cancer, and salivary
adenoid cystic carcinoma, EGF was found to up-regulate
the expression of PD-L1. However, the specific mechan-
ism by which EGF induces PD-L1 differs according to
the cancer type [96–100]. In lung cancer and head and
neck cancer, EGFR can increase the expression of PD-L1
via activating the JAK/STAT1 signaling pathway [98,
101]. In addition, PI3K/AKT and MEK/ERK are also im-
portant pathways for inducing the expression of PD-L1
in lung cancer cells with EGFR mutation [102]. MYC is

an important transcription factor in tumors and is also
involved in the regulation of PD-L1 by EGFR. In the
EGFR-derived PD-L1 signaling pathway, inhibiting the
expression of MYC can significantly reduce the expres-
sion of PD-L1 [100, 103]. In T-ALL cells, we found that
MYC can be directly combined with the PD-L1 pro-
moter to upregulate the expression of PD-L1 [104], sug-
gesting that the EGFR pathway could up-regulate the
expression of the MYC transcription factor and promote
its nuclear translocation to ultimately up-regulate the
expression of PD-L1. EGF not only induces the tran-
scription of PD-L1 but also affects its protein stability
and biological function. EGFR-RAS is a classical intra-
cellular signal pathway, and RAS has been shown to
regulate the mRNA stability of PD-L1. In lung cancer
and colorectal cancer, RAS can enhance the stability of
PD-L1 mRNA via the phosphorylation of TPP by MEK
signaling, as TPP can negatively regulate the stability of
PD-L1 mRNA. EGFR-RAS can also increase the protein
level of PD-L1 and enhance the immune tolerance of the
tumor [105]. In tumor cells, a decrease in the PTEN
copy number is often accompanied by an increase in the
EGFR copy number [106], and the decreased PTEN
leads to activation of the PI3K/AKT signaling pathway.
The activated PI3K/AKT signal can in turn stabilize the
protein level of PD-L1 through mTOR/S6K1 and pro-
mote immune escape of the tumor [107]. In addition,
EGF can inhibit the protein level of GSK3β in cells,
while GSK3β can phosphorylate PD-L1, making it more
susceptible to ubiquitination and degradation to ultim-
ately increase the stability of PD-L1 protein. The glyco-
sylation level of the PD-L1 protein itself also directly
affects the degradation of GSK3β [97]. B3GNT3 is one
of the proteins that glycosylate PD-L1. EGF can upregu-
late the expression of B3GNT3 to promote the glycosyl-
ation of PD-L1, which will also enhance the stability of
PD-L1 protein and promote its biological function [108].
Therefore, blocking the EGFR signaling pathway, in
addition to inhibiting tumor growth, can also inhibit
tumor immune escape, which is undoubtedly a benefit
for EGFR blockage therapy.
The TGF-β family of polypeptide signaling molecules

plays an important role in regulating cell growth and dif-
ferentiation. Similar to its dual role in both promoting
and inhibiting cancer, TGF-β is a double-edged sword
with respect to tumor immune escape. In hepatocellular
carcinoma and lung cancer, TGF-β can induce the ex-
pression of PD-L1 on the surface of DCs, which depends
on the activation of STAT3 [109, 110]. However, in sys-
temic lupus erythematosus, TNF-α can induce the ex-
pression of PD-L1 in mononuclear cells, while TGF-β
has the opposite effect. This is consistent with a previous
report showing that TGF-β could inhibit the expression
of proximal epithelial cell PD-L1 in renal tubules,
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although the exact mechanism is unclear [111]. TGF-β
signaling pathways mainly comprise the classic TGF-β/
Smads signaling pathways and the non-classical TGF-β/
EGFR signaling pathways, and recent studies have shown
that the influence of TGF-β on PD-L1 is almost always
dependent on the latter, while the role of the former
pathway in regulating the expression of PD-L1 has not
been reported to date.
In addition, GM-CSF can also activate the expression of

PD-L1 in neutrophils, which promotes the inhibition of
their T cell immune activation and achieves immunosup-
pression via the JAK2/STAT3 signal pathway [112, 113].

Hypoxia
During the occurrence and development of tumors, es-
pecially solid tumors, it is impossible to rapidly establish
new blood vessels in the tumor microenvironment to
match the rapid proliferation rate of tumor cells. Fur-
thermore, the newly established endovascularization re-
sults in abnormalities in structure and function.
Ultimately, the metabolism of tumor cells results in a
tumor microenvironment characterized by a decrease of
oxygen content, lack of nutrients, and accumulation of a
large number of acidic substances, and these conditions
are extremely detrimental to the growth of tumor cells
[114–118]. However, in an anoxic microenvironment,
tumor cells can change their metabolic mode to conduct
metabolic reprogramming via changing the expression
of glycolytic-related proteins such as GLUT1, GLUT3,
PKM2, and LDHA to ultimately increase the uptake of
glucose and the production of energy [119–122]. More-
over, the invasion and metastasis of tumor cells are pro-
moted by altering the expression of E-cadherin,
N-cadherin, Snail, and vimentin, which are all EMT
markers [123, 124]. Tumor immune escape is also an
important strategy for tumor cells to survive in this hyp-
oxic microenvironment.
Hypoxia-inducible factors (HIFs) are the most import-

ant proteins for cell-induced expression in hypoxic envi-
ronments. Under the action of normal oxygen, proline
residues in the conserved region of HIF subunits are hy-
droxylated by proline hydroxylase, and hydroxylated HIF
is identified and ubiquitinated by the VHL E3 ubiquiti-
nation ligase so that the ubiquitinated HIFs are rapidly
degraded by the proteasome [125]. However, under hyp-
oxic conditions, the prolinyl hydroxylase of HIF protein
is inhibited, which stabilizes the protein level of HIFα,
resulting in induction of the expression of its target
genes to induce tumor immune escape [126]. HIF in-
duces tumor immune escape mainly by inducing the ex-
pression of PD-L1. Under hypoxia, the expression of
PD-L1 has been shown to be elevated in T lymphocytes,
DCs, MDSCs, and macrophages, as well as in prostate
cancer cells, breast cancer cells, and colorectal cancer

cells [127, 128]. Hypoxia can increase the expression of
PD-L1 and suppress the killing effect of CTL on tumor
cells. The induced expression of PD-L1 by hypoxia
mainly occurs at the transcriptional level. The
hypoxia-induced expression of PD-L1 is achieved
through HIF-1α rather than HIF-2α in breast cancer and
prostate cancer [128], and similar results were obtained
in MDSCs. Immunoprecipitation and luciferase reporter
gene experiments confirmed that HIF-1α could activate
the transcription of PD-L1 via binding to the HRE site
on the PD-L1 promoter [127]. However, in clear cell
renal cell carcinoma, the induced expression of PD-L1
mainly occurs through HIF-2α rather than HIF-1α [129].
This difference may be related to the cell types, because
over 90% of patients with clear cell renal cell carcinoma
will present with pure homozygous inactivation of VHL
protein, which is the E3 ubiquitination ligase of the HIF
ligase subunit. This inactivation leads to high levels of
HIF protein accumulation in cells [130]. In addition,
other studies have suggested indirect regulation of
PD-L1 by the host HIF, because the expression levels of
GLUT1 and PD-L1 show a strong correlation in a hyp-
oxic state. However, the specific mechanism of action re-
mains to be elucidated [131].

Exosomes
Almost all cells release exosomes, which are extracellular
vesicles with a diameter of 40–150 nm. The outer part of
exosomes is a lipid bilayer structure, along with proteins,
DNA, and RNA from exosome-derived cells [42]. Exo-
somes were previously considered to represent a form of
cell waste; however, recent studies have shown that exo-
somes can be transmitted as signal molecules to other
cells to alter their function. Exosomes have also been
shown to play important roles in tumor cell growth, mi-
gration, and angiogenesis [43]. More recent studies have
also shown that exosomes play an important role in im-
munosuppression. In chronic lymphocytic leukemia,
tumor-derived exosomes can induce the tumor immuno-
suppressive reaction in monocytes. Monocyte activation
mainly occurs through the non-coding small RNA Yh4
in exosomes through the TLR7 signaling pathway in
monocytes, which promotes the secretion of cytokines
by monocytes and ultimately induces the expression of
PD-L1 [132]. Tumor-derived exosomes can also promote
the polarization of monocytes to M2 macrophages and
the expression of PD-L1 in M2-polarized macrophages
through STAT3 phosphorylation, further enhancing the
immunosuppressive effects [133]; however, it is not yet
clear whether exosomes also activate STAT3 through
TLR7 in this case. In addition, the same study showed
that tumor-derived exosomes containing PD-L1 protein
have strong immunosuppressive effects [134]. Since re-
search on exosomes is still in a preliminary stage, new
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functions of exosomes are expected to be discovered in
the future.

Non-coding RNA
The expression of PD-L1 in tumor cells is not only af-
fected by the various cytokines and exosomes in the
tumor microenvironment but also by various intracellu-
lar regulatory signals, including those derived from
non-coding RNA (ncRNAs) [135], which transfer be-
tween cancer cells and the tumor microenvironment via
exosomes and gap junctions [136]. Indeed, ncRNAs have
been demonstrated to play an important role in tumor
growth, metabolism, and migration, as well as in regulat-
ing the expression of PD-L1 and mediating immune es-
cape (Fig. 6). Long non-coding RNA (lncRNA) is an
endogenous RNA molecule with a length greater than
200 nt and does not encode proteins [137–142].
LncRNAs represent the majority of the sequences tran-
scribed in the human genome, and are more abundant
than protein-coding genes and small-molecule RNAs
(such as miRNA), and also show more diverse and ex-
tensive patterns in regulating gene expression [143–
147]. The lncRNA NKX2–1-AS1 shares some overlap-
ping regions with NKX2–1, but there expression levels
are not correlated. Instead, NKX2–1-AS1 can interact
with NKX2–1 protein and interfere with its binding to
the PD-L1 promoter, thereby negatively regulating the
expression of PD-L1 [148]. However, there have been
few studies on PD-L1 regulation by lncRNAs, and it is
believed that there will be more reports on the role of
lncRNAs in immune escape in the near future. MiRNAs
are single-stranded small RNA molecules with a size of

about 22 nt. They are generated by Dicer enzyme pro-
cessing single-stranded RNA precursors with a hairpin
structure of about 70–90 nt, and approximately 30–50%
protein-coding genes are currently known to be regu-
lated by miRNAs [149–151]. Mature miRNAs regulate
genes in two ways: one is to bind to the target gene
mRNA and promote its degradation, and the other is to
inhibit the translation of target mRNA [152]. In recent
years, a role of miRNAs in the regulation of PD-L1 has
also been discovered. The regulatory effect of miRNA on
PD-L1 occurs not only by directly binding to the PD-L1
mRNA, but also by indirectly regulating the expression
of PD-L1. As the earliest miRNA identified to regulate
PD-L1, miR-513 plays an important role in the
IFN-induced expression of PD-L1. In cholangiocarci-
noma cells, it can directly target the 3′-untranslated re-
gion (UTR) of PD-L1 and inhibit the translation of
PD-L1. Overexpression of miR-513 in the induction en-
vironment can block the induction effect of IFN-γ on
PD-L1 [82, 153]. In human dermal lymphoid endothelial
cells and dermal fibroblasts, miR-155 induced by IFN-γ
and TNF-α can also target the 3′-UTR of PD-L1 and in-
hibit the translation level of PD-L1 [83]. Therefore,
miR-513 and miR-155 can be considered an
IFNγ-induced feedback regulation loop of PD-L1. In
non-small-cell lung cancer, miR-34a/b/c induced by
wild-type P53 can bind to the 3′-UTR of PD-L1, pro-
mote the degradation of PD-L1 mRNA, and thereby in-
hibit the immune escape of non-small-cell lung cancer.
In mouse models, tail intravenous injection of miR-34a
contained in liposomes effectively inhibited tumor
growth [154]. In addition, miR-200 can also target

Fig. 6 Role of non-coding RNAs in regulating PD-L1
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PD-L1 and regulate the expression of PD-L1 in
non-small-cell lung cancer [155]. Several miRNAs have
been shown to directly regulate the expression of PD-L1,
including miR-142-5p, miR-93, and miR106b in pancre-
atic cancer [156, 157]; miR-138-5p in colorectal cancer
[158]; miR-217 in laryngeal cancer [159]; miR-17-5p in
melanoma [160]; miR-200b, miR-152, and miR-570 in
gastric cancer [161, 162]; miR-15a, miR-193a, and
miR-16 in malignant pleural mesothelioma [163];
miR-497-5p in clear cell renal cell carcinoma [164]; and
miR-140, miR-142, miR-340, and miR-383 in cervical
cancer [165]. Another way to regulate PD-L1 is through
other members of the PD-L1 signaling pathway. In colo-
rectal cancer, miR-20, miR-21, and miR130b can inhibit
the expression level of PTEN, which is an upstream in-
hibitor of PD-L1. Therefore, these miRNAs can indir-
ectly promote the expression of PD-L1 by inhibiting
PTEN [166]. Moreover, miR-18a has similar functions.
In cervical cancer, miR-18a can target PTEN, WNK2,
and SOX6, leading to activation of the PI3K/AKT, MEK/
ERK, and Wnt/β-catenin signaling pathways, which can
promote the expression of PD-L1 [165]. In non-small
cell lung cancer, miR-197 can also regulate PD-L1 by
targeting CKS1B/STAT3 signaling [167].
Furthermore, recent studies have shown that circulat-

ing RNAs (circRNAs) can also regulate the expression of
PD-L1. CircRNAs are a special class of non-coding RNA
molecules with a closed loop structure, which is not af-
fected by RNA exonuclease, making them more stable
and less prone to degradation than other RNAs [168–
171]. CircRNA molecules are rich in miRNA-binding
sites, and can thus act as an miRNA sponge in cells to
relieve the inhibition of miRNA on the target gene and
increase its expression level. In colorectal cancer, the cir-
cRNA molecule Hsa_circ_0020397 was shown to inhibit
the activity of miR-138 via an RNA sponge effect, thus
promoting the expression of PD-L1 [172]. This was the
first report that a circRNA can regulate the expression
of PD-L1, suggesting that circRNAs might also play an
important role in tumor immune escape.

Conclusions and prospects
Immune escape mediated by the PD-L1/PD-1 signaling
pathway has emerged as a hot topic in anti-tumor re-
search and in the field of cancer translational medicine.
However, targeted PD-L1/PD-1 immunotherapy has not
achieved the desired effects in the treatment of various
types of cancers, especially for solid tumors, with a low
response rate overall. One reason for this inconsistent
and poor response may be related to individual differ-
ences among patients as well as tumor heterogeneity
within a single patient, given that the expression of
PD-L1 varies in different tumors. In general, antagonistic
drugs designed to block PD-L1/PD-1 show good effects

for patients with high expression of PD-L1 or PD-1,
whereas the therapeutic efficacy is poor for patients with
low PD-L1/PD-1 expression, and the treatment could
bring about serious side effects. Some patients that were
treated with PD-L1/PD-1 antagonistic drugs actually
showed rapid growth of the tumor [173]. A follow-up in-
vestigation into 131 patients that were treated with PD-1
antagonists found that 12 patients (9%) experienced de-
terioration, and those aged 65 and older had a higher
rate of deterioration [174]. At present, there is no uni-
form standard for the preoperative detection of PD-L1/
PD-1, making it difficult to achieve individualized treat-
ment for a given patient with respect to the most suit-
able drug and dosage. In addition, the mechanism of
tumor formation is very complex, and the tumor micro-
environment plays an important role in the regulation of
PD-L1. A variety of cytokines secreted in the tumor
microenvironment can cause immunosuppression by in-
ducing PD-L1 expression. This review summarized the
main regulation mechanisms of PD-1 and PD-L1 by cy-
tokines, exosomes, and ncRNAs in the tumor micro-
environment, demonstrating the wide variation of
co-molecules and pathways involved. Specifically, IFNγ
can induce the expression of PD-L1 through the JAK/
STAT and PI3K-AKT signaling pathways to promote
tumor immune escape [79]. TNF-α can directly in-
crease the mRNA and protein levels of PD-L1, thus
promoting immune escape. IL-6 and IL-17 can also
regulate PD-L1 expression by means of the JAK/STAT3
and NF-κB signaling pathways, respectively. Some
growth factors such as EGF, TGF-β, and GM-CSF can
also induce the expression of PD-L1 and promote the
occurrence of immunosuppression. Interestingly, most
of these cytokines with PD-L1-inducing abilities are in-
flammatory factors.
Although the effects of inflammation on tumor growth

and metastasis have long been recognized, recent re-
search has revealed that inflammatory factors can also
promote the immune escape of tumors. This review fur-
ther points to the potential importance of the inflamma-
tory microenvironment for tumor immune escape. Thus,
inhibiting the occurrence of inflammation in the tumor
microenvironment, or inhibiting the secretion of certain
inflammatory factors, may have a desirable effect for
tumor treatment [175]. A study with a melanoma mouse
model showed that treatment with both PD-1 inhibitors
and TNF-α inhibitors had a better therapeutic effect
than treatment with PD-1 inhibitors alone [176]. This
indicated that the high expression of inflammatory fac-
tors in the tumor microenvironment may be one of the
important factors for the poor efficacy of immunother-
apy. Thus, a combination of anti-inflammatory drugs
and PD-L1/PD-1 inhibitors might lead to a better treat-
ment outcome for cancer patients.
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At present, most of the drugs developed to inhibit
PD-L1/PD-1 signaling pathways are antibodies; however,
the latest research shows that metformin may also be ef-
fective for suppressing PD-L1/PD-1 signaling pathways.
Metformin can activate AMPK [177], which can directly
phosphorylate PD-L1, thus inhibiting the PD-L1 glycosyla-
tion level, resulting in PD-L1 degradation and inhibiting
immune escape [178]. However, there is still much to dis-
cover about the tumor microenvironment, and the regula-
tion network of PD-L1 by cytokines remains to be
uncovered in detail. Therefore, further study of the tumor
microenvironment, especially the role of inflammatory cy-
tokines, may provide new ideas for immunotherapy and a
new development direction for the effective use of PD-L1/
PD-1 inhibitors in cancer treatment.
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