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ABSTRACT 

 This thesis studied twelve liquid filled cylindrical storage tanks to determine the static 

buckling loads, as well as the dynamic buckling loads when subjected to earthquake loading. The 

geometries of the cylindrical tanks were investigated with height-to-diameter ratios of 0.5, 0.75, 

1.0, 1.25, 1.5, and 2.0 and with diameter-to-thickness ratios of 520.83 and 1,041.67. Each 

cylindrical tank modeled had a constant thickness of 0.36 inches. ANSYS Workbench was used 

to create a finite element analysis of each cylindrical tank. A transient dynamic bucking analysis 

was performed on each model in order to determine the dynamic buckling load of the cylindrical 

tanks, filled to 90% height with water and subjected to horizontal earthquake excitations. 

Analysis of the results show when either height-to-diameter ratios or diameter-to thickness ratios 

increase, the dynamic buckling loads of the cylindrical tanks decrease.  
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CHAPTER I: INTRODUCTION 

1.1 Introduction 

Above-ground liquid storage tanks can be damaged during earthquakes. Earthquakes 

apply an acceleration to the storage tanks and the liquids inside, which can lead to numerous 

failures, including buckling of the tank wall or possibly collapse. These storage tanks contain 

liquids that range from food products to hazardous materials. When the liquid storage tanks are 

damaged during an earthquake, the fluid inside can leak and cause major damage to the 

surrounding areas. In Turkey, the Kocaeli earthquake caused damage to oil storage tanks and 

created fires that burned for one week. The Kocaeli earthquake also caused the floating roofs of 

the oil storage tanks to sink (Zama 2003).  

 The buckling of cylindrical storage tanks caused by horizontal earthquake acceleration is 

the focus of this study. Finite element analysis was used to investigate the static and dynamic 

buckling behaviors of cylindrical liquid storage tanks subjected to earthquake loads. All finite 

element analysis modeling and analyzing was completed using ANSYS Workbench (ANSYS® 

19.1). Twelve different geometries were chosen for comparison of the cylindrical liquid storage 

tanks, which include height-to-diameter ratios of 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0 with diameter-

to-thickness ratios of 520.83 and 1,041.67. The thickness was set to a constant 0.36 inches for 

each cylindrical tank model. The empty storage tanks were analyzed using eigenvalue buckling 

and nonlinear static buckling. Each cylindrical tank was filled to 90% height with liquid and 

subjected to the El Centro earthquake (University of Berkley 2016) in order to perform a 

nonlinear dynamic buckling analysis.  
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 Chapter 2 discusses the finite element analysis model, geometries and materials, and the 

verification of the ANSYS models using the theoretical values to determine the adequacy of the 

ANSYS models. Chapter 3 shows the static buckling analysis, which includes eigenvalue 

buckling analysis and nonlinear static buckling analysis for each model. Chapter 4 presents 

modal analysis to find the natural frequencies and mode shapes for each finite element analysis 

model. Chapter 5 presents dynamic buckling using the transient buckling analysis. Chapter 6 

discusses the results of this study.  

1.2 Literature Review 

Many researchers have studied the buckling behaviors of cylindrical tanks. Earthquakes 

have exposed the vulnerabilities of cylindrical shell structures when subjected to seismic loading. 

Research has been done on cylindrical shells under axial compression, empty and filled 

cylindrical storage tanks under dynamic loading, and the interactions between cylindrical storage 

tanks and the liquid inside.  

The buckling of thin cylindrical shells under axial compression has been covered by 

multiple researchers. Timoshenko studied thin cylindrical shells with symmetrical and 

asymmetrical loading and presented how to find the bending moments and deformation of the 

shell structures (Timoshenko and Woinowsky 1959). Mandal and Calladine studied the effects of 

self-weight buckling on open-top cylindrical shells using finite element analysis to determine the 

nonlinear buckling load behavior. It was found that there is a post-buckling-plateau load, which 

relates to the experimental buckling loads, due to the static determinacy of the cylindrical shells 

(Mandal and Calladine 2000).  
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The effects of fluid inside a cylindrical tank during seismic loading was studied by 

Housner, who researched dynamic behavior of water-filled tanks. He concluded that the 

cylindrical tanks have two motions when a dynamic load is applied. When a fluid filled 

cylindrical tank is first subjected to a dynamic load, both the tank and the fluid inside act as one 

structure and move together in the same pattern. The motion of the tank walls then begin to 

excite the water and an oscillating force from the water on the tank is exerted (Housner 1963).  

Another study on the hydrodynamic pressures acting on the walls of cylindrical tanks was 

done by Butnaru, Sandru, Furis, and Cretu. The tanks studied were of different geometries, but 

had the same volume. This study compared the tanks using a ratio of the tank radius to the fluid 

depth. From this study, it was found that the fundamental period and the first ten periods of 

oscillation of the fluid can differ and these variances impact the overturning effect of the 

cylindrical tanks (Butnaru et al. 2016).  

Meskouris, Holtschoppen, Butenweg, and Rosin studied the interactions of the tank wall 

and the fluid inside, in order to create easier formulas for the future. The convective pressure 

(sloshing), the rigid impulsive pressure, rigid tank movement with the ground, the flexible 

impulsive pressure, and the combined vibration of flexible cylindrical tanks with the fluid were 

studied (Meskouris et al. 2011). This research has provided information that is able to help create 

easier finite element analysis models. 

Jerath and Lee researched dynamic buckling loads of cylindrical tanks, using ANSYS 

computer software. The cylindrical tanks chosen were compared by height-to-diameter ratios and 

they found the cylindrical tanks resisted a larger earthquake loading when the height-to-diameter 

ratio was decreased (Jerath and Lee 2015). Roopkumdee and Jerath also studied the effects of 

height-to-diameter and diameter-to-thickness ratios of cylindrical tanks. The height-to-diameter 
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ratio and the diameter-to thickness ratio were both found to affect the cylindrical tanks. When 

either was decreased the cylindrical tanks had a higher buckling tolerance to earthquake loading 

(Roopkumdee and Jerath 2017).    
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CHAPTER II: THEORY 

 A structure is unstable when the structural members can no longer resist the compression 

loadings applied to it. Two limit states exist when designing a new structure. Strength limit states 

consider the maximum load a structure can carry without failure. Serviceability limit state deals 

with the structures ability to perform under normal service conditions. The definitions of stability 

can be categorized into stable equilibrium, unstable equilibrium, and neutral equilibrium. Stable 

equilibrium is when an object is subjected to a force and when the force is removed, the object 

will return to its initial position. The object is in unstable equilibrium if the force is removed and 

the object continues to displace infinitesimally. Neutral equilibrium is when an object is 

subjected to a force and the object attains a new equilibrium position (Chen and Lui 1987). 

Figure 1 explains the concept of stability using a ball on a surface. 

 

Figure 1: States of Equilibrium (Ghosh et al. 2019) 

 Two categories of stability are considered when structures are subjected to compressive 

loads. Bifurcation of equilibrium occurs when a structure under an increasing compressive load 

will deflect in the direction of the load until reaching its critical load, then the deflection will 

change to a new direction. Asymmetric and symmetric bifurcations are determined based on the 

post-buckling behavior path. Stable symmetric bifurcation occurs when the load capacity 
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increases after buckling. If the load capacity decreases after buckling, then the stability is 

described as unstable symmetric bifurcation. The other category of stability with a compressive 

load is limit-load instability. Limit-load instability is when there is only a single mode of 

deflection throughout loading, from start to the limit. The system will reach a limit load and will 

jump from one equilibrium to another nonadjacent equilibrium (Chen and Lui 1987).   

 Stability is analyzed to find the critical conditions using multiple methods: bifurcation 

approach, energy approach, and dynamic approach. Bifurcation approach uses the eigenvalues of 

the system’s stiffness matrix to indicate the critical conditions and the eigenvectors to indicate 

the displaced configurations, only in a geometrically perfect system. The energy approach uses 

the total potential energy of the system to determine the critical conditions, in an elastic system. 

The final method is the dynamic approach, which is used in an elastic system. The critical load, 

using the dynamic approach, is found “as the level of external applied force when the motion 

ceases to be bounded” (Chen and Lui 1987).  
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CHATPER III: MODEL 

3.1 Geometry and Materials 

For this project, twelve different cylindrical tanks were modeled and analyzed in order to 

determine their buckling behaviors. The cylindrical tanks all shared a thickness of 0.36 inches 

and were open on the top. The height-to-diameter (H/D) ratios modeled were 0.5, 0.75, 1.0, 1.25, 

1.5, and 2.0. The diameter-to-thickness ratios were 520.8 and 1041.7. The cylindrical tank 

dimensions are listed in Table 1. A diagram of a cylindrical tank is shown in Figure 2. 

Table 1: Geometry of the Cylindrical Tanks 

  H/D D/t t H D 

Model 1 0.50 520.8 0.36 in (9.14 mm) 93.75 in (2.38 m) 187.5 in (4.76 m) 

Model 2 0.50 1,041.7 0.36 in (9.14 mm) 187.50 in (4.76 m) 375.0 in (9.53 m) 

Model 3 0.75 520.8 0.36 in (9.14 mm) 140.63 in (3.57 m) 187.5 in (4.76 m) 

Model 4 0.75 1,041.7 0.36 in (9.14 mm) 281.25 in (7.14 m) 375.0 in (9.53 m) 

Model 5 1.00 520.8 0.36 in (9.14 mm) 187.50 in (4.76 m) 187.5 in (4.76 m) 

Model 6 1.00 1,041.7 0.36 in (9.14 mm) 375.00 in (9.53 m) 375.0 in (9.53 m) 

Model 7 1.25 520.8 0.36 in (9.14 mm) 234.38 in (5.95 m) 187.5 in (4.76 m) 

Model 8 1.25 1,041.7 0.36 in (9.14 mm) 468.75 in (11.91 m) 375.0 in (9.53 m) 

Model 9 1.50 520.8 0.36 in (9.14 mm) 281.25 in (7.14 m) 187.5 in (4.76 m) 

Model 10 1.50 1,041.7 0.36 in (9.14 mm) 562.50 in (14.29 m) 375.0 in (9.53 m) 

Model 11 2.00 520.8 0.36 in (9.14 mm) 375.00 in (9.53 m) 187.5 in (4.76 m) 

Model 12 2.00 1,041.7 0.36 in (9.14 mm) 750.00 in (19.05 m) 375.0 in (9.53 m) 
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Figure 2: Cylindrical Tank Diagram 

The material used to model the cylindrical tanks was structural steel with a Modulus of 

Elasticity of 29,000,000 psi (200,000 MPa), a mass density of 15.232 slugs/ft3 (7,850 kg/m3), 

and Poisson’s ratio of 0.3. The yield stress of the steel was 50,000 psi (344.74 MPa) and the 

tangent modulus was 2,000,000 psi (13,789.51 MPa). The fluid inside the tank was modeled as 

water and has a mass density of 1.9403 slugs/ft3 (1,000 kg/m3) and a bulk modulus of 300,000 

psi (2,068.43 MPa). 

3.2 ANSYS Modeling 

 ANSYS Workbench, a computer program, was used for all finite element analysis. 

SHELL181 element was used for the steel cylindrical storage tanks and SOLID186 element was 

used to model the liquid inside the cylindrical tanks. SHELL181 is a four-node element with six 

degrees of freedom at each node. These degrees of freedom are translation in the x, y, and z 

directions and rotation about the x, y, and z axes. SOLID186 is a twenty-node element with three 

degrees of freedom at each node, including translation in the x, y, and z direction. The liquid 

element was modeled to be detached from the tank walls and have coinciding nodes normal to 
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the interface. Each model was created using half-symmetry, which reduces the time needed to 

compute each model. Figure 3 and 4 display the location of the nodes for each element and the 

coordinate system.  

 
Figure 3: SHELL 181 (“SHELL 181” 2015) 

 
Figure 4: SOLID 186 (“SOLID 186” 2015) 

3.3 Verification of the Models 

Finite element models accuracy is checked by comparing the critical eigenvalue buckling 

load stresses to the theoretical values. The equation for theoretical buckling stress of a pin-pin 

ended cylindrical shell is given in Equation 1. 
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𝜎𝑐𝑟 =

𝐸

√3(1 − 𝑣2)
(

𝑡

𝑅
) 

 

(1) 

 

Where:   σcr: theoretical static buckling stress, psi (MPa) 

   E: modulus of elasticity of the structural steel, psi (MPa) 

   𝑣: Poisson’s ratio of the structural steel 

   t: thickness of the cylindrical shell, in. (mm) 

   R: radius of the cylindrical shell, in. (mm) 

 Using ANSYS, a compressive load of 1 lb/in (0.018 kg/mm) was applied to the top of the 

pin-pin ended cylindrical tank, shown in Figure 5.  

 

Figure 5: Finite Element Model of Pin-Pin End Tank with Compressive Load 
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From the ANSYS simulation, the buckling stress can be found using Equation 2.  

 
𝜎𝑐𝑟 (𝐴𝑁𝑆𝑌𝑆) =  

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

𝑡
 

(2) 

 

For example, using Model 1: 

Theoretical buckling stress: 

𝜎𝑐𝑟 =
29,000,000 𝑝𝑠𝑖

√3(1 − (0.3)2)
(

0.36 𝑖𝑛

93.75 𝑖𝑛
) = 67,398.14 𝑝𝑠𝑖 (464.67 𝑀𝑃𝑎) 

Finite element analysis buckling stress: 

𝜎𝑐𝑟 (𝐴𝑁𝑆𝑌𝑆) =  
24,388 𝑙𝑏/𝑖𝑛

0.36 𝑖𝑛
= 67,744.44 𝑝𝑠𝑖 (467.06 𝑀𝑃𝑎) 

Error between theoretical and finite element analysis buckling stress: 

67,744.44 − 67,398.14

67,398.14
𝑥 100% = 0.51% 

The comparison between the theoretical and critical eigenvalue buckling values are 

displayed in Table 2. 
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Table 2: Theoretical and Finite Element Analysis Buckling Stress Comparison 

Model  t Multiplier 

Buckling Stress Error 

(%) Theoretical ANSYS 

1 0.36 24,388 lb/in (4,271,103 N/m) 67,398 psi (465 MPa) 67,744 psi (467 MPa) 0.51 

2 0.36 12,239 lb/in (2,143,433 N/m) 33,699 psi (232 MPa) 33,997 psi (234 MPa) 0.88 

3 0.36 24,501 lb/in (4,290,893 N/m) 67,398 psi (465 MPa) 68,058 psi (469 MPa) 0.98 

4 0.36 12,379 lb/in (2,167,951 N/m) 33,699 psi (232 MPa) 34,386 psi (237 MPa) 2.04 

5 0.36 24,682 lb/in (4,322,592 N/m) 67,398 psi (465 MPa) 68,561 psi (473 MPa) 1.73 

6 0.36 12,581 lb/in (2,203,327 N/m) 33,699 psi (232 MPa) 34,947 psi (241 MPa) 3.70 

7 0.36 24,937 lb/in (4,367,250 N/m) 67,398 psi (465 MPa) 69,269 psi (478 MPa) 2.78 

8 0.36 12,830 lb/in (2,246,935 N/m) 33,699 psi (232 MPa) 35,639 psi (246 MPa) 5.76 

9 0.36 24,954 lb/in (4,370,228 N/m) 67,398 psi (465 MPa) 69,317 psi (478 MPa) 2.85 

10 0.36 12,747 lb/in (2,232,399 N/m) 33,699 psi (232 MPa) 35,408 psi (244 MPa) 5.07 

11 0.36 24,739 lb/in (4,332,574 N/m) 67,398 psi (465 MPa) 68,719 psi (474 MPa) 1.96 

12 0.36 12,608 lb/in (2,208,056 N/m) 33,699 psi (232 MPa) 35,022 psi (241 MPa) 3.93 

 

The error between the theoretical buckling stress and the finite element analysis stress 

was calculated. For these cylindrical tanks, the error was below 6% which means that the models 

are acceptable. 
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CHAPTER IV: STATIC BUCKLING ANALYSIS 

4.1 Eigenvalue Buckling Analysis 

The eigenvalue buckling analysis was assumed as linear elastic buckling behavior. For 

this study, the cylindrical tanks were modeled with half-symmetry. The cylindrical tanks were 

modeled with a fixed support on the bottom of the tank and free at the top of the tank. A unit 

force (1.0 lbf) applied to the top of the tank in the y-direction of the Cartesian coordinate system. 

The ANSYS model with the load and fixed support is shown in Figure 6. ANSYS computed a 

multiplier for the lateral linear buckling load. Due to half-symmetry, in order to obtain the 

eigenvalue buckling load, the multiplier obtained was multiplied by two. The eigenvalue 

buckling loads that were found for the cylindrical tanks are shown in Table 3. 

 

Figure 6: Finite Element Model with Lateral Load 
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Table 3: Eigenvalue Buckling Loads 

Model H/D D/t Multiplier  Eigenvalue Buckling Load  

1 0.5 520.83 98,644 lb (438,966 N) 197,288 lb (877,932 N) 

2 0.5 1,041.67 67,044 lb (298,346 N) 134,088 lb (596,692 N) 

3 0.75 520.83 96,189 lb (428,041 N) 192,378 lb (856,082 N) 

4 0.75 1,041.67 65,905 lb (293,277 N) 131,810 lb (586,555 N) 

5 1.0 520.83 95,268 lb (423,943 N) 190,536 lb (847,885 N) 

6 1.0 1,041.67 65,475 lb (291,364 N) 130,950 lb (582,728 N) 

7 1.25 520.83 94,849 lb (422,078 N) 189,698 lb (844,156 N) 

8 1.25 1,041.67 65,291 lb (290,545 N) 130,582 lb (581,090 N) 

9 1.5 520.83 94,648 lb (421,184 N) 189,296 lb (842,367 N) 

10 1.5 1,041.67 65,222 lb (290,238 N) 130,444 lb (580,476 N) 

11 2.0 520.83 94,542 lb (420,712 N) 189,084 lb (841,424 N) 

12 2.0 1,041.67 65,254 lb (290,380 N) 130,508 lb (580,761 N) 

 

The eigenvalues found using ANSYS were used to indicate the upper limit for the 

nonlinear static buckling analysis. Figures 7 and 8 show the buckling mode shape for the 

maximum and minimum eigenvalue buckling loads. The highest buckling load was in Model 1 

and the lowest buckling load was in Model 10.  
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Figure 7: Eigenvalue Buckling Shape for Model 1 

 
Figure 8: Eigenvalue Buckling Shape for Model 10  
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4.2 Nonlinear Static Buckling Analysis 

Nonlinear buckling analysis was done in order to find a more exact value for the static 

buckling load of the cylindrical tanks. The eigenvalue buckling load values found in the previous 

section were used to determine the upper limit of the nonlinear static buckling analysis.  

 The twelve cylindrical tanks were modeled in ANSYS with half symmetry, a fixed 

support on the bottom, and free at the top. Large deflection was applied to the models, allowing 

the program to increase the load continuously until the tank is no longer stable. A lateral load of 

90% of the eigenvalue buckling load was applied to the top of the cylindrical tank. If the model 

would not converge, the lateral load value was decreased until it would converge. A load 

deflection curve was then created using the node with the maximum load displacement. Table 4 

shows the difference between the eigenvalue and nonlinear buckling loads. The data from Table 

4 shows that the nonlinear buckling was within 85% and 90% of the eigenvalue buckling load, as 

expected. 

Table 4: Results from Eigenvalue and Nonlinear Buckling Analyses 

Model H/D D/t Eigenvalue Buckling  Nonlinear Buckling % Difference 

1 0.5 520.83 197,288 lb (877,932 N) 172,506 lb (767,652 ,N) 14.37 

2 0.5 1,041.67 134,088 lb (596,692 N) 115,002 lb (511,759 N) 16.60 

3 0.75 520.83 192,378 lb (856,082 N) 174,004 lb (774,318 N) 10.56 

4 0.75 1,041.67 131,810 lb (586,555 N) 112,008 lb (498,436 N) 17.68 

5 1.0 520.83 190,536 lb (847,885 N) 170,008 lb (756,536 N) 12.07 

6 1.0 1,041.67 130,950 lb (582,728 N) 115,000 lb (511,750 N) 13.87 

7 1.25 520.83 189,698 lb (844,156 N) 166,754 lb (742,055 N) 13.76 

8 1.25 1,041.67 130,582 lb (581,090 N) 117,000 lb (516,236 N) 11.61 

9 1.5 520.83 189,296 lb (842,367 N) 166,754 lb (742,055 N) 13.52 

10 1.5 1,041.67 130,444 lb (580,476 N) 115,000 lb (511,750 N) 13.43 

11 2.0 520.83 189,084 lb (841,424 N) 165,000 lb (734,250 N) 14.60 

12 2.0 1,041.67 130,508 lb (580,761 N) 115,800 lb (515,310 N) 12.70 
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Model 1 

 

Figure 9: Load-Deflection Curve of Maximum Deflection Node for Model 1 

  
Figure 10: Post-Buckling Deflected Shape of Model 1
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Model 2 

 

Figure 11: Load-Deflection Curve of Maximum Deflection Node for Model 2 

 
Figure 12: Post-Buckling Deflected Shape of Model 2   
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Model 3  

 

Figure 13: Load-Deflection Curve of Maximum Deflection Node for Model 3 

 
Figure 14: Post-Buckling Deflected Shape of Model 3  
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Model 4 

 

Figure 15: Load-Deflection Curve of Maximum Deflection Node for Model 4 

 
Figure 16: Post-Buckling Deflected Shape of Model 4
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Model 5 

 

Figure 17: Load-Deflection Curve of Maximum Deflection Node for Model 5 

 
Figure 18: Post-Buckling Deflected Shape of Model 5
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Model 6 

 

Figure 19: Load-Deflection Curve of Maximum Deflection Node for Model 6 

 
Figure 20: Post-Buckling Deflected Shape of Model 6
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Model 7 

 

Figure 21: Load-Deflection Curve of Maximum Deflection Node for Model 7 

 
Figure 22: Post-Buckling Deflected Shape of Model 7  
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Model 8 

 

Figure 23: Load-Deflection Curve of Maximum Deflection Node for Model 8 

 
Figure 24: Post-Buckling Deflected Shape of Model 8  
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Model 9 

 

Figure 25: Load-Deflection Curve of Maximum Deflection Node for Model 9 

 
Figure 26: Post-Buckling Deflected Shape of Model 9  
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Model 10 

 

Figure 27: Load-Deflection Curve of Maximum Deflection Node for Model 10 

 
Figure 28: Post-Buckling Deflected Shape of Model 10  
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Model 11 

 

Figure 29: Load-Deflection Curve of Maximum Deflection Node for Model 11 

 
Figure 30: Post-Buckling Deflected Shape of Model 11  
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Model 12 

 

Figure 31: Load-Deflection Curve of Maximum Deflection Node for Model 12 

 
Figure 32: Post-Buckling Deflected Shape of Model 12  
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CHAPTER V: MODAL ANALYSIS 

Modal analysis on ANSYS is used to determine the vibration characteristics, by calculating the 

natural frequencies and mode shapes of the models created. Modal analysis was used in order to 

determine the mass coefficients for the Rayleigh damping method. External forces and damping are not 

considered in modal analysis, due to the structure being in free vibration.   

Equation 3 is the equation of motion for an undamped system, expressed in matrix notation. 

 [𝑀]{�̈�} + [𝐾]{𝑢} = {0} (3) 

Where:  [𝑀]: structural mass matrix 

   [𝐾]: structural stiffness matrix 

   {�̈�}: nodal acceleration vector 

   {𝑢}: nodal displacement vector 

For a linear system, free vibrations will be harmonic of the form in Equation 4: 

 {𝑢} = {∅𝑖} cos 𝜔𝑖𝑡 (4) 

Where:   {∅𝑖}: eigenvector representing the mode shape of the ith natural frequency 

   𝜔𝑖: i
th natural angular frequency, rad/s  

   t: time, seconds 

For a free vibration analysis, Equation 5 is created by substituting Equation 4 into Equation 3. 

 (−𝜔2[𝑀] + [𝐾]){∅𝑖} = {0} (5) 

If (−𝜔2[𝑀] + [𝐾]) or {∅𝑖} is equal to zero, then Equation 6 is satisfied. Since {∅𝑖}= 0 is trivial, 

the mode shapes and natural frequency are determined only by [M] and [K] shown in Equation 6. 

 |[𝐾] − 𝜔2[𝑀]| = 0 (6) 
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In this case, ten values for natural frequencies were computed by ANSYS and the mode shapes 

were extracted for each cylindrical tank model. The natural frequencies computed in ANSYS must be 

converted to natural angular frequencies, for later use. This is done using Equation 7. 

 𝑓 =
𝜔

2𝜋
 (7) 

Where:  ƒ: natural frequency, Hz 

   ω: natural angular frequency, rad/s 

 Table 5 displays the first natural frequency calculated by ANSYS for each of the twelve 

cylindrical tanks filled 90% with water. It was found that the natural frequencies decrease as D/t 

increases. 

Table 5: First Natural Frequencies for 90% Filled Tanks 

Model  H/D D/t First Natural Frequencies (Hz) 

1 0.5 520.83 3.8775 

2 0.5 1041.67 1.9381 

3 0.75 520.83 3.0405 

4 0.75 1041.67 1.5198 

5 1 520.83 2.5882 

6 1 1041.67 1.2926 

7 1.25 520.83 2.3921 

8 1.25 1041.67 1.1955 

9 1.5 520.83 2.3147 

10 1.5 1041.67 1.1583 

11 2 520.83 2.0997 

12 2 1041.67 1.0878 
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Model 1 

Table 6: Model 1 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 3.8775 

2 4.9601 

3 5.0021 

4 5.6304 

5 5.7165 

6 5.8131 

7 6.5292 

8 6.5668 

9 6.7083 

10 7.1548 

 

 

Figure 33: Model 1 First Mode 90% Filled (Scale 50:1)  
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Model 2 

Table 7: Model 2 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 1.9381 

2 2.4782 

3 2.5036 

4 2.8211 

5 2.8594 

6 2.9084 

7 3.2183 

8 3.2837 

9 3.4136 

10 3.6063 

 

 

Figure 34: Model 2 First Mode 90% Filled (Scale 300:1)  
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Model 3 

Table 8: Model 3 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 3.0405 

2 3.8712 

3 4.0707 

4 4.4875 

5 4.8952 

6 5.0435 

7 5.1735 

8 5.8343 

9 6.1937 

10 6.2192 

 

 

Figure 35: Model 3 First Mode 90% Filled (Scale 50:1)  
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Model 4 

Table 9: Model 4 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 1.5198 

2 1.9638 

3 2.0513 

4 2.2546 

5 2.5163 

6 2.5835 

7 2.6715 

8 2.9623 

9 3.0918 

10 3.0954 

 

 

Figure 36: Model 4 First Mode 90% Filled (Scale 400:1)  
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Model 5 

Table 10: Model 5 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 2.5882 

2 3.2532 

3 3.7246 

4 4.2662 

5 4.3029 

6 4.7736 

7 5.0344 

8 5.3303 

9 5.6095 

10 5.6207 

 

 

Figure 37: Model 5 First Mode 90% Filled (Scale 125:1)  
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Model 6 

Table 11: Model 6 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 1.2926 

2 1.6271 

3 1.8937 

4 2.1346 

5 2.1994 

6 2.4155 

7 2.5141 

8 2.6695 

9 2.8101 

10 2.8185 

 

 

Figure 38: Model 6 First Mode 90% Filled (Scale 500:1)  
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Model 7 

Table 12: Model 7 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 2.3921 

2 2.856 

3 3.4503 

4 4.0451 

5 4.0559 

6 4.644 

7 4.7362 

8 4.8532 

9 4.9925 

10 5.0564 

 

 

Figure 39: Model 7 First Mode 90% Filled (Scale 125:1)  
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Model 8 

Table 13: Model 8 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 1.1955 

2 1.3985 

3 1.7386 

4 2.0203 

5 2.0267 

6 2.3204 

7 2.3822 

8 2.4272 

9 2.4977 

10 2.5332 

 

 

Figure 40: Model 8 First Mode 90% Filled (Scale 700:1)  
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Model 9 

Table 14: Model 9 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 2.3147 

2 2.6177 

3 3.3332 

4 3.7394 

5 3.9735 

6 4.1712 

7 4.469 

8 4.7275 

9 4.7366 

10 4.9811 

 

 

Figure 41: Model 9 First Mode 90% Filled (Scale 150:1)  
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Model 10 

Table 15: Model 10 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 1.1583 

2 1.3308 

3 1.7353 

4 1.8959 

5 1.9941 

6 2.0854 

7 2.2385 

8 2.37 

9 2.3929 

10 2.4899 

 

 

Figure 42: Model 10 First Mode 90% Filled (Scale 700:1)  
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Model 11 

Table 16: Model 11 Natural Frequencies at 90% Filled 

Mode Natural Frequency (Hz) 

1 2.0997 

2 2.291 

3 3.0599 

4 3.1714 

5 3.5519 

6 3.9237 

7 4.1659 

8 4.4235 

9 4.5614 

10 4.7469 

 

 

Figure 43: Model 11 First Mode 90% Filled (Scale 300:1)  
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Model 12 

Table 17: Model 12 Natural Frequencies at 90% Filled 

Mode 

Natural Frequency 

(Hz) 

1 1.0878 

2 1.1504 

3 1.5442 

4 1.6388 

5 1.7774 

6 1.9578 

7 2.0817 

8 2.2121 

9 2.2792 

10 2.3897 

 

 

Figure 44: Model 12 First Mode 90% Filled (Scale 1500:1)  
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CHAPTER VI: TRANSIENT DYNAMIC BUCKLING ANALYSIS 

6.1 Definition and Method 

 Transient dynamic analysis is a method that considers inertia and damping effects and 

determines the dynamic response of a structure subjected to a time-dependent loading. The basic 

equation of motion, which is solved by a transient dynamic analysis is given in Equation 8. 

 [𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑢} = {𝐹(𝑡)} (8) 

  Where:  [M]: mass matrix 

    [C]: damping matrix 

    [K]: stiffness matrix 

    {�̈�}: nodal acceleration vector 

    {�̇�}: nodal velocity vector 

    {u}: nodal displacement vector 

    {F(t)}: load vector 

 Transient dynamic analysis was used to determine the dynamic buckling loads for the 

cylindrical tanks. The twelve cylindrical tanks were modeled with half symmetry and fixed-free 

support. Each tank was filled to 90% of the height, in order to determine the buckling loads for 

the fluid-filled cylindrical tank located in a region subjected to earthquakes. The cylindrical tanks 

were subjected to the acceleration of the El Centro earthquake. Large deformations and 

elastoplastic stress-strain properties were assumed for each model and the bilinear isotropic 

hardening was included with a yield stress of 50,000 psi (344.74 MPa) and a tangent modulus of 

2,000,000 psi (13,789.51 MPa). Budiansky and Roth criterion, which states that the dynamic 
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buckling occurs when a small increase in the loading will cause a large increase in displacement, 

was used to find the buckling loads for the twelve cylindrical tanks.  

 The damping method that is used in the computer program ANSYS is the Rayleigh 

damping method. For this analysis, the damping is assumed as Rayleigh mass proportional 

damping given in Equation 9 (Djermane et al. 2014). 

 [𝐶] = 𝑎0[𝑀] (9) 

Where:  𝑎0: damping coefficient, using the mode’s natural frequency 

 The damping coefficient is calculated using Equation 10. 

 𝑎0 = 2𝜔𝑛𝜁𝑛 (10) 

Where:  ωn: natural angular frequencies, rad/s 

𝜁𝑛: critical damping ratio, generally between 2% and 3% 

 For this project, the critical damping ratio was set to 2%. The damping coefficients were 

calculated and were input into the ANSYS transient analysis models, indicating the damping 

coefficient for each cylindrical tank.  

Sample calculation for the damping coefficients, using Model 1: 

𝜔 = 2𝜋 ∗ 3.8775 𝐻𝑧 = 24.36 𝑟𝑎𝑑/𝑠 

𝑎0 = 2 ∗ 24.36
𝑟𝑎𝑑

𝑠
∗ 0.02 = 0.97452  

 The values computed for the mass coefficient of each cylindrical tank are displayed in 

Table 18. 
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Table 18: First Natural Frequencies and Mass Coefficients 

Model  First Natural Frequencies (Hz) Mass Coefficients (a0) 

1 3.8775 0.97452 

2 1.9381 0.48710 

3 3.0405 0.76416 

4 1.5198 0.38197 

5 2.5882 0.65049 

6 1.2926 0.32487 

7 2.3921 0.60120 

8 1.1955 0.30046 

9 2.3147 0.58175 

10 1.1583 0.29111 

11 2.0997 0.52771 

12 1.0878 0.27339 

 

6.2 Earthquake Data 

 The earthquake data used for this study was the El Centro earthquake that occurred on 

May 18, 1940 in California. The earthquake data was found from the University of Berkley’s 

National Information Service for Earthquake Engineering (University of Berkley 2016). Figure 

45 is the first eight seconds of the accelerogram from the El Centro earthquake. That time 

interval was chosen, since the maximum amplitude for the earthquake occurred within the first 

eight seconds.  
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Figure 45: Accelerogram of the First Eight Seconds of the El Centro Earthquake  

The effective earthquake force replaced the ground motion in this study, due to 

limitations within ANSYS Workbench. The El Centro earthquake acceleration, which had a peak 

ground acceleration (PGA) of 0.319g, was applied to every node of each of the cylindrical tank 

models.  

 

Figure 46: Effective Earthquake Force (Chopra 2012) 

6.3 Results 

Twelve cylindrical tanks were modeled and the El Centro earthquake was applied. Each 

model was filled with water at 90% of the height. The maximum displacements were plotted 

against the PGA level. The curves created from these simulations are pseudo equilibrium paths, 

which can determine the dynamic buckling capacity based on the transient displacements. Table 
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19 displays the results of the 90% filled cylindrical storage tanks subjected to the El Centro 

earthquake.  

At the dynamic buckling loads, the von-Mises stresses were analyzed for each cylindrical 

tank model. Elastic buckling occurs if the models von-Mises stress is less than the yield stress 

and plastic buckling occurs when the von-Mises stress exceeds the yield stress. Model 8, Model 

10, and Model 12 had a higher von-Mises stress than the yield stress of 50,000 psi (344.74 MPa). 

Model 8 had a von-Mises stress of 50,674 psi (349.38 MPa), Model 10 was 50,783 psi (350.14 

MPa), and Model 12 was 51,889 psi (357.76 MPa).  

 

Table 19: Dynamic Buckling of the 90% Filled Cylindrical Tanks 

H/D 

PGA (g) 

D/t=520.83 D/t=1,041.67 

0.5 4.25 1.75 

0.75 2.98 1.71 

1.0 2.70 1.22 

1.25 2.22 1.2 

1.5 2.04 0.84 

2.0 1.99 0.8 
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Figure 47: Dynamic Buckling Capacities from the Transient Analysis 
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Model 1 

 

 
Figure 48: Pseudo Equilibrium Paths for the Critical Node of Model 1 

 

Figure 49: Shell Deformation of Model 1  
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Model 2 

 

 
Figure 50: Pseudo Equilibrium Paths for the Critical Node of Model 2 

 

Figure 51: Shell Deformation of Model 2  
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Model 3 

 

 
Figure 52: Pseudo Equilibrium Paths for the Critical Node of Model 3 

 

Figure 53: Shell Deformation of Model 3  
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Model 4 

 

 
Figure 54: Pseudo Equilibrium Paths for the Critical Node of Model 4 

 

Figure 55: Shell Deformation of Model 4  
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Model 5 

 

 
Figure 56: Pseudo Equilibrium Paths for the Critical Node of Model 5 

 

Figure 57: Shell Deformation of Model 5  
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Model 6 

 

 

Figure 58: Pseudo Equilibrium Paths for the Critical Node of Model 6 

 

Figure 59: Shell Deformation of Model 6  
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Model 7 

 

 
Figure 60: Pseudo Equilibrium Paths for the Critical Node of Model 7 

 

Figure 61: Shell Deformation of Model 7  
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Model 8 

 

 

Figure 62: Pseudo Equilibrium Paths for the Critical Node of Model 8 

 

Figure 63: Shell Deformation of Model 8  
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Model 9 

 

 
Figure 64: Pseudo Equilibrium Paths for the Critical Node of Model 9 

 

Figure 65: Shell Deformation of Model 9  
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Model 10 

 

 
Figure 66: Pseudo Equilibrium Paths for the Critical Node of Model 10 

 

Figure 67: Shell Deformation of Model 10  
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Model 11 

 

 
Figure 68: Pseudo Equilibrium Paths for the Critical Node of Model 11 

 

Figure 69: Shell Deformation of Model 11  
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Model 12 

 

 

Figure 70: Pseudo Equilibrium Paths for the Critical Node of Model 12 

 

Figure 71: Shell Deformation of Model 12  
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CHAPTER VII: CONCLUSION 

 During this research, twelve liquid cylindrical storage tanks were studied to determine the 

static and dynamic buckling loads. The geometries of the cylindrical tanks were analyzed with 

height-to-diameter ratios of 0.5, 0.75, 1.0, 1.25, 1.5, and 2.0, diameter-to-thickness ratios of 

520.83 and 1,041.67, and a constant thickness of 0.36 inches. The finite element analysis of each 

tank was created in ANSYS Workbench, a computer program. 

 In order to determine if the ANSYS Workbench models were accurate, the theoretical 

buckling stresses were compared with the critical eigenvalue buckling stress found in ANSYS. 

The error between the theoretical buckling stresses and the finite element analysis models were 

found to be between 0.51% and 5.76%. These values meant that the models were accurate for the 

static and dynamic buckling analysis. 

 The static buckling analysis started with applying lateral loads to the cylindrical tanks, in 

order to find the eigenvalue buckling loads. The nonlinear buckling analysis was performed 

using a lateral load of approximately 90% of the eigenvalue buckling load. The eigenvalue 

buckling loads for each tank were then compared to the nonlinear buckling loads. The nonlinear 

buckling loads were found to be between 85% and 90% of the eigenvalue buckling loads.  

 Water was then added to the cylindrical tanks to 90% of the height of each tank. A modal 

analysis was conducted to find the mode shapes and the natural frequencies of each cylindrical 

tank. The first natural frequency for each tank was used to find the damping coefficients and 

input into ANSYS to create a transient dynamic buckling analysis for each model. The 

cylindrical tanks were subjected to the earthquake accelerations of the El Centro earthquake.  
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 The dynamic buckling analysis for each cylindrical tank was completed to determine and 

compare the buckling behaviors of each tank. Analysis of the results show when either the 

height-to-diameter ratios or the diameter-to thickness ratios increase, the dynamic buckling loads 

of the cylindrical tanks decrease. 

  



63 
 

REFERENCES 

ANSYS® Academic Research Mechanical, Release 19.1 

Butnaru, Bogdan Alexandru, et al. “The Comparative Analysis of Hydrodynamic Pressures in 

Cylindrical Tanks.” Mathematical Modelling in Civil Engineering, vol. 12, no. 3, 2016, pp. 

1–12., doi:10.1515/mmce-2016-0009. 

Chen, W.F., and E.M. M. Lui. Structural Stability: Theory and Implementation. PTR Prentice 

Hall, 1987. 

Chopra, Anil K. Dynamics of Structures: Theory and Applications to Earthquake Engineering. 

4th ed., Pearson/Prentice Hall, 2012. 

Djermane, M., et al. “Dynamic Buckling of Steel Tanks under Seismic Excitation: Numerical 

Evaluation of Code Provisions.” Engineering Structures, vol. 70, 2014, pp. 181–196., 

doi:10.1016/j.engstruct.2014.03.037. 

Ghosh, A. K., et al. “Aircraft Performance, Stability, and Control with Experiments in Flight.” 

Stability and Control - Discussion on Equilibrium, Static and Dynamic Stability. 2019, 

nptel.ac.in/courses/101104007/11. 

Housner, George. (1963). The Dynamic Behavior of Water Tanks. Bulletin of the Seismological 

Society of America. 53. 

Jerath, Sukhvarsh, and Mark Lee. “Stability Analysis of Cylindrical Tanks under Static and 

Earthquake Loading.” Journal of Civil Engineering and Architecture, vol. 9, no. 1, 2015, 

doi:10.17265/1934-7359/2015.01.009. 

Mandal, P, and C.R Calladine. “Buckling of Thin Cylindrical Shells under Axial Compression.” 

International Journal of Solids and Structures, vol. 37, no. 33, 2000, pp. 4509–4525., 

doi:10.1016/s0020-7683(99)00160-2. 

Meskouris, Konstantin, et al. “Seismic Analysis of Liquid Storage Tanks.” Bouwen Met Staal, 

2011, tc.bouwenmetstaal.nl/publicaties_serve.lasso?id=1581. 

Roopkumdee, Wiriyachai, and Sukhvarsh Jerath. “Buckling of Liquid-Filled Steel Storage Tanks 

under Earthquake Loading.” University of North Dakota, ProQuest, 2017, pp. 1–119. 

“SHELL 181.” SharcNet, 29 June 2015, www.sharcnet.ca/Software/Ansys/16.2.3/en-

us/help/ans_elem/Hlp_E_SHELL181.html. 



64 
 

“SOLID 186.” SharcNet, 29 June 2015, www.sharcnet.ca/Software/Ansys/16.2.3/en-

us/help/ans_elem/Hlp_E_SOLID186.html. 

 

Timoshenko, Stephen, and S. Woinowsky-Krieger. Theory of Plates and Shells. McGraw-Hill, 

1959. 

University of Berkley. “The Earthquake Engineering Online Archive.” Library | Pacific 

Earthquake Engineering Research Center, Regents of the University of California, 2016, 

peer.berkeley.edu/library 

Zama, Shinsaku. “Damage and Failure of Oil Storage Tanks Due to the 1999 Kocaeli Earthquake 

in Turkey and Chi-Chi Earthquake in Taiwan.” Journal of High Pressure Institute of 

Japan, vol. 41, no. 2, 2003, pp. 79–86., doi:10.11181/hpi.41.79. 

. 

 


	University of North Dakota
	UND Scholarly Commons
	January 2019

	Earthquake Loading Effects On The Buckling Of Liquid Filled Cylindrical Storage Tanks
	Hailey Johnson
	Recommended Citation


	tmp.1560375010.pdf.WAfU0

