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Abstract 

Selective Laser Melting (SLM) additive manufacturing of aluminum alloys is a layer-wise 

manufacturing method which can provide lightweight and complex-in-shape automotive, 

aerospace and medical components with enhanced mechanical properties. In the SLM, the 

mechanical properties will differentiate depending on the cooling rate as the deposition of material 

gradation distance from the build plate as well as the deposition direction, in which it has an effect 

on the microstructure.  

The aim of this project is to assess the correlation between microstructure and small-scale 

characteristics of an additive manufactured AlSi10Mg alloy in the as-printed and heat treated 

conditions. Post heat treatment cycle were conducted at the elevated temperature of 520 ℃ 

solutionizing and then followed by four different cooling rates: water quenching (WQ), air cooling 

(AC), furnace cooling (FC) and artificial ageing (soaking at 170 ℃ for 4 hours).  The post heat 

treatment is utilized to homogenize the microstructure and dissolve the formation of anisotropy in 

the microstructure thus improve the ductility and strengthening the alloy.  

Along with the microstructural assessments through optical and scanning electron microcopies, 

small scale characterizations were performed utilizing a nanoindentation testing approach, a non-

destructive, robust, and reliable testing technique.  

The Findings show a transformation in the microstructure from cellular grains in the as-printed 

materials, with needle like silicon fiber colonies, to fragmented coarsened eutectic silicon particles 

upon the heat treatment. Moreover, coarsened and spheroidized silicon particles, with different 

sizes, were observed upon various heat treatment cycles. Unlike cast AlSi10Mg alloys, upon heat 

treatment in the SLM AlSi10Mg alloy, the hardness is decreased which is mainly caused by silicon 

spheroidization phenomena. Whereas due to the fine microstructure resulted from dual impact of 

rapid melting and directional cooling caused by repeated cycles of heating, the as-print sample 

exhibited the highest hardness value. In this project, a comparison of the various SLM AlSi10Mg 

samples was conducted to understand the correlations between the mechanical properties and 

produced microstructure and to fully understand spheroidization phenomena.  
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1. Introduction  

Aluminum is the most consumed non-ferrous metallic materials. The global consumption 

of aluminum is 24 million tons with 18 million obtained from ores while the remaining is recovered 

from scrap metals, i.e., referred to as secondary aluminum [1]. The aluminum metal possesses a 

very high affinity for oxygen thus it exists as an oxide (alumina) in the nature. In terms of 

metallurgical perspective, the metal is a face-centered cubic (FCC) crystal structure characterized 

by a coordination number of 12 and an atomic packaging factor of 0.74 [2]. The plastic deformation 

in aluminum occurs via the process of crystallographic slip on the lattice in the plane direction 

therefore in an aluminum crystal 12 slip systems are leading to the high ductility of the metal [2]. 

Aluminum melts at 660 oC with a boiling temperature of 2520 oC [3]. The aluminum powder exists 

in a variety of diameters ranging from 0.015 µm to 17000 µm. Additionally, the metal powder can 

be in various forms and shapes, i.e., thin flakes, irregular powder, sphere, etc.  

AlSi10Mg is an alloy of aluminum in which thermal properties and good strength are very 

well combined with flexible post-processing capabilities and low weight. It is due to these reasons 

only that it is widely preferred in automation, aerospace, and automotive [4]. This alloy of 

aluminum-silicon is primarily used in castings as they have low shrinkage comparatively and high 

melt fluidity [5]. When magnesium is alloyed to the alloy of Al-Si, the precipitation of Mg2Si is 

enabled due to which the matrix gets strengthened to a considerable extent without the mechanical 

properties being compromised [4].  

Additive manufacturing is one of the most popular technologies of the recent years as it 

makes it possible to produce complex parts without the limitation of design as was in the case of 

traditional manufacturing methods. Additive manufacturing is different from subtractive or 
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normative manufacturing in the form that it follows the 'bottom-up' manufacturing technique 

where a structure can be built using the approach of layering i.e. 'layer-by-layer' approach.  

Among various classes of the AM, selective laser melting (SLM) process is best suited to 

the production of Al-Si alloys and processing of Al-Si powder in order to get parts having 

functionally gradient material properties and super high strength. The AM-SLM method used to 

fabricate AlSi10Mg alloy leads to pre-alloyed powder solidification or melting resulting in a fine 

eutectic microstructure. The mechanical properties of SLM AlSi10Mg are found to be higher or at 

par to the AlSi10Mg cast material due to very fine distribution and microstructure of the Si phase. 

Thus, additive manufacturing is so much advantageous as for the SLM AlSi10Mg alloy, there is a 

high micro-hardness which surpasses the conventional cast alloy and is comparable to the die-cast 

alloy that has been hardened. There is a significant impact of the microstructure of SLM AlSi10Mg 

on mechanical properties such as elongation, strength, and fatigue behavior. Also, the 

imperfections formed in these parts at the time of post-processing procedures and during the 

process affect the microstructure of these parts [6].  

Heat treatment is a common post process technique used to tailor the mechanical, physical 

and chemical properties of the material and it is used SLM AlSi10Mg to dissolve the formation of 

anisotropy in the microstructure caused by the layering process and improve the ductility of the 

alloy [7].  

1.1 Objective 

The primary objective of this project is to analyze the impact of various cooling rates and 

heat treatment cycles on the microstructure and mechanical properties of the SLM AlSi10Mg 

alloys. The mechanical properties (hardness) and the microstructure analyses of various samples 

of SLM AlSi10Mg were observed through a small scale characterization (Vickers and 
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Nanoindentation testing) along with microstructural assessments (optical microscopy and 

scanning electron microscopy). Performing novel heat treatment processes on the SLM AlSi10Mg 

samples, the hardness values and evaluations on the microstructure were obtained. These were 

used to compare as-printed and heat treated (WQ, AC, FC and, artificially aged) samples.   

The results upon heat treatment show that the microstructure from cellular grains, with 

coral-like silicon fiber colonies, to fragmented “spheroidized” eutectic silicon particles. In contrast 

to cast AlSi10Mg alloys, the SLM AlSi10Mg alloy, hardness is decreased; whereas-print presented 

a high value compared to the Furnace cooling with lowest out of the 5 samples, and that is mainly 

contributed to stress relief, elimination of solid solution strengthening, and silicon spheroidization 

phenomena.  

The thesis is separated into five chapters as follows:  

• The first chapter provides a short introduction to the topic and states and objectives of 

the project.  

• Chapter two is a literature review introduces concept of additive manufacturing, 

Aluminum and AlSi10Mg alloy; its physical and mechanical properties, and heat 

treatment process.  

• Chapter three provides the experimental procedure conducted in this project.  

• Chapter four provides the observed results of the mechanical properties and 

microstructural features of as-print AlSi10Mg and various heat treated samples. The 

results were determined using Vickers hardness testing, nanoindentation testing, optical 

microscopy and scanning electron microscopy. Also it consists of discussion on the results 

obtained AlSi10Mg samples and further analysis on the relationship between microstructures 

and mechanical properties for each sample examined.  
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• Chapter 5 concludes the project with highlighting the main results and introducing future 

work to further understand the effect of heat treatment cycles on the AlSi10Mg alloy.  
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2. Literature review 

2.1. Additive Manufacturing 

One of the most popular and disruptive technologies of recent years is additive manufacturing 

(AM) technology or 3D printing. The AM is based on the principle of ‘layer by layer' 

manufacturing, which makes 'objects' by depositing separate layers of constituent materials [1]. 

The process is carried out by the means of digitally operated and controlled material setting tools. 

There are four main components that are essentially included in additive manufacturing broader 

definition; these include:  

• The object's digital model;  

• Materials that are integrated in the smallest form such as powder, wire, or liquid droplets; 

• A tool for setting the materials;  

• The tool's digital control system for building the object's shape by layering the material [2]. 

Additive manufacturing is different from the subtractive or normative manufacturing in the form 

that it follows the 'bottom-up' manufacturing technique where a structure can be built using the 

approach of layering, i.e. 'layer-by-layer' approach [3].  

The 3D-printed objects are created using many different materials such as ceramics, polymers, and 

metals. There are seven broad categories into which AM processes have been classified by the 

International Organization for Standardization/ American Society for Testing and Materials which 

are Material Extrusion (ME), Directed Energy Deposition (DED), Binder Jetting (BJ), Powder Bed 

Fusion (PBF), Material Jetting (MJ), Sheet Lamination (SL), and Vat Photopolymerization (VP) 

[2].  
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2.2. Metal Additive Manufacturing (MAM) 

Direct methods such as electron beam melting, and selective laser melting, and indirect methods 

such as selective laser sintering, and binder jet processes are common methods used for metal 

additive manufacturing (MAM). Post-processing such as hot isostatic pressing (HIP) is required 

in indirect methods to produce parts that have more than 90% density [5]. On the other hand, parts 

with a density more than 90% are produced directly by direct methods by the means of optimized 

process parameters. MAM makes it possible to produce complex parts without the limitation of 

design as in the case of traditional manufacturing methods. 

There are two major groups into which the AM processes of metals can be classified broadly; 

directed energy deposition (DED) based technologies and powder bed fusion (PBF) based 

technologies [6]. Depending on the type of the source of energy that is being used, both 

technologies can further be employed. The regions of powder bed are selectively fused by the 

thermal energy in PBF based technologies. The main processes of this technology are well 

represented by Electron Beam Melting (EBM), and Selective Laser Melting/Sintering (SLM/SLS).  

In directed energy deposition technologies, fusing of materials is carried out by focused thermal 

energy as it melts the metal while their deposition. Arc-based AM, Electron Beam Free Form 

Fabrication (EBFFF), Direct Metal Deposition (DMD), and Laser Engineered Net Shaping 

(LENS) are the main technologies based on DED [6].  

2.2.1. Powder Bed Fusion (PBF)  

In this technology, the molten metal is shielded by putting the powder bed in a partial vacuum or 

inert atmosphere. Each layer of the metal powder that is already spread over there is scanned by 

an energy source (electron or laser beam) so that the material is melted selectively. The melting of 

the material takes place according to the part of the cross-section that is provided by the digital 
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part model. As shown in Fig. 2.1, upon completion the scanning of one layer, a downward 

movement of the building chamber piston takes place while an upward movement of the powder 

chamber's piston takes place by a defined thickness of the layer [6]. 

 

Figure 2.1 The Process of powder bed fusion [6] 

The process results in the formation of powder cake, which is visible only after the removal of 

excess powder. In comparison to the DED technologies, the processes based on PBF technologies 

require more build time. However, it results in a better surface finish and high complexity in which 

minimum post-processing is needed.  

2.2.2. Laser-Based Systems 

The laser-based metal additive manufacturing processes that are discussed in this section are SLS 

or DMLS, SLM, and LENS.  The SLS or selective laser sintering is defined as the process that 

allows the building of structures and complex parts through the formation of multiple layers of 

powder. The thermal energy which is required for the sintering of the powder is provided by high 

laser power. When the temperature rises above the metal's melting point, sintering takes place 

between the particles of the powder [7]. Depending on the type of material, Yb-fiber and CO2 
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lasers are most commonly used. In laser sintering of metal powders, Yb-fiber lasers or Nd: YAG 

lasers are used most commonly as a wavelength of 1064 nm are generated by these lasers which 

indicates a high absorptivity for the powders of metal [7]. The SLS processes used in metals are 

known as DMLS or Direct Metal Laser Sintering. Fig. 2.2 shows the processing window for 

stainless Steel-Cu which is sintered by CO2 and YAG laser.   

 

Figure 2.2 Processing window for stainless steel-Cu sintered by a) CO2 and b) Nd: YAG 

laser [7] 
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Selective Laser Melting (SLM) is an advanced form of the SLS process in which one or more 

lasers are used to carry out the full process of/for melting of the particles of the powder bed [8]. 

After the deposition of a layer of powder on the building platform, the powder bed is directed 

towards the laser source and selective fusing of the material takes place. Because of the full melting 

of the powders, fully dense objects are produced having mechanical properties like bulk materials 

[4].  

 

Figure 2.3 Schematic representation of the SLM process [9]. 

The SLM technique is used widely to produce complex shaped components for applications in a 

few industries such as biomedical, automotive, and aerospace sectors. Recently, it has also been 

demonstrated that SLM can also be used to produce MMCs i.e. metal matrix composites [9]. Fig. 

2.3 shows the schematic of the SLM process. 

According to ASTM/ISO 52900, the SLM process is also known by trade name direct metal laser 

sintering and it produces homogeneous metal objects directly by doing layering from 3D CAD 
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data, and by using a laser beam to selectively melt the metal powder's fine layers [9]. The currently 

available lightweight materials that are frequently explored for SLM processing are aluminum and 

titanium alloys. The most frequently used alloys of aluminum are Al-Si alloys, which contains 

about 80% of the all casting alloys of aluminum.  

There is a large variety of variables and factors by which the final properties of the components 

are determined. The process parameters and powder properties are two main categories into which 

components final properties can be divided. Since the process of SLM is dependent on the metallic 

powders' processing, the fabricated parts' properties are largely dependent on the properties of 

starting material. Fig. 2.4 shows a typical Al powder which is normally preferred for the SLM 

processes as they are spherical in shape. Table 2.1 shows the chemical composition of the 

AlSi10Mg powders. 

Table 2.1 The chemical composition of the AlSi10Mg powder [20] 

Element  Amount (%wt) 

Si 9.6 

Fe 0.16 

Cu 0.003 

Mn <0.001 

Mg 0.4 

Zn <0.002 

Ni <0.005 

Ti 0.004 

Al Remaining  

The powder used for the AM process can either be produced via the gas atomization process or 

via plasma rotation electrodes. The quality of the powder utilized in the additive manufacturing 

process typically varies from process to process [35]. The additive manufacturing process entails 
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the successive deposition of the uniform layers of the powder thus the powder will require certain 

characteristics such as packing density, flowability and the size distribution [36]. For instances, 

spherical particles will increase the flowability and the dense packaging of the powder.  

 

Figure 2.4 Field Emission Scanning Electron Microscopy (FESEM) image of the 

powder of gas atomized aluminum [9]. 

Some difficulties have been found while working with aluminum alloys because of the challenges 

posed by laser melting of aluminum due to the characteristics of powder such as poor flowability, 

high thermal conductivity, high reflectivity, and the oxide layer's stability [9]. 

Similarly, there is an impact of main process parameters such as scanning speed, layer thickness, 

hatching distance, and laser power on the intensity and the method that is carried out to send energy 

to the powder's single layer [9].  

2.3. AlSi10Mg alloy  

Aluminum (Al) is almost always used as an alloy even if it is more than 99% aluminum [41]. Pure 

aluminum has a comparably lower strength when compared with its alloys. Pure Al is utilized in 

electrical connection and applications especially cable conductor. Therefore, alloying aluminum 
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is common approach to improve its mechanical properties. The primary alloying element is Mg, 

Cu, and Si used in strengthening aluminum. The elements Sb and Mn are utilized for enhancing 

corrosion resistance while Cr and Ti are utilized in grain refinement, Ni improves the thermal 

strength of the element and Co, Fe and Bi for enhancement of the machinability.  

Aluminum possesses a low melting point and excellent castability which makes it naturally 

attractive for casting purposes. This leads to the development of the existing manufacturing 

processes which allow for complex engineered shaped being produced through melting and casting 

of aluminum alloys [10]. 

Among various Al alloys, aluminum-silicon (Al-Si) alloys are used in a large variety of 

applications in both the automotive and aerospace industries. This is due, in part, to the 

combination of excellent mechanical properties and castability, along with the alloy’s affinity for 

wear and corrosion resistance [11]. The addition of Si to Al will improve several of its properties 

such as reduction in the solidification contraction and fluidity. The two components have eutectic 

reaction especially at 12.6% Si at a temperature of 577 oC [13], see Fig. 2.5. The Al-Si alloy is not, 

however, easily machined due to the introduction of the hard phases of Si. The addition of Mg in 

the alloy will lead to the formation of the Mg-Si precipitate that would allow the alloy to heat 

treatment. The Mg also increases the strength of the element and solubility, improves corrosion 

resistance and improves weldability and machinability [14].  
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Figure 2.5 Al-Si phase diagram [13]. The green dashed line shows the position of the 

AlSi10Mg alloy. 

AlSi10Mg is an alloy of aluminum in which thermal properties and good strength are very well 

combined with flexible post-processing capabilities and low weight. Due to these reasons, 

AlSi10Mg alloy is widely preferred in automation, aerospace, and automotive [13]. This alloy of 

aluminum-silicon is primarily used in castings as they have low shrinkage comparatively and high 

melt fluidity [12]. When magnesium is alloyed to the alloy of Al-Si, the precipitation of Mg2Si is 

enabled due to which the matrix gets strengthened to a considerable extent without the mechanical 

properties being compromised [13]. There is a significant impact of the microstructure of SLM 

AlSi10Mg on mechanical properties such as elongation, strength, and fatigue behavior. Also, the 

imperfections formed in these parts at the time of post-processing procedures and during the 

process affect the microstructure of these parts [4].  
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Cast aluminum alloys possess the highest castability rating where it can be produced within a wide 

variety of characteristic. One of the common casting methods for aluminum and aluminum alloys 

is pressure die casting [15]. It began as a mechanical process where the molten metal was pumped 

under pressure into the molds using hydraulic systems. Aluminum can be cast using all the existing 

casting methods such as permanent mold, clay/water bonded sand, chemically bonded sand, plaster 

mold, and investment casting. The advantages of cast aluminum alloys are good fluidity, low 

melting point, fast rapid heat transfer from molten aluminum to the mold and cost effective. On 

the other hand, internal porosity during the solidification, stress concentrations at the voids and 

shrinking during solidification are some limitations of aluminum casting [15].  

The SLM process is best suited to the production of Al-Si alloys and processing of Al-Si powder 

to get parts having functionally gradient material properties and super high strength [14, 15]. The 

metal powder of AlSi10Mg is comparatively easy to be processed due to a small difference 

between the solidus and liquidus temperature in comparison to high strength alloys of aluminum 

(Al-wrought alloys). The initial SLM process is carried out on AlSi10Mg powder which is shown 

in Fig. 2.6. The aluminum powder has particles spherical in shape and are near cast eutectic casting 

alloys.  

The process of deformation in aluminum occurs via the process of crystallographic slip on the 

lattice in the plane direction therefore in an aluminum crystal 12 slip systems are leading to the 

high ductility of the metal. Aluminum melts at 660 oC with a boiling temperature of 2520 oC [16]. 

The aluminum powder exists in a variety of diameters ranging from 0.015 µm to 17000 µm. 

Additionally, the metal powder can be in various forms and shapes, i.e. thin flakes, irregular 

powder, sphere, etc. The aluminum powder is classified based on several parameters such as 

specific surface, apparent density, and oxygen content, these powders can be air atomized, 
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acicular, water atomized, spherical atomized, granulated, grained, flakes, and fiber, chopped, 

balled, flitter, cut foil, shot particles, brittle alloy, ultra-fine and machine particles [17].  

 

Figure 2.6 AlSi10Mg alloy powder under SEM micrographs a) Sample of powder b) grain 

size close-up [14] 

In an experiment carried out by [14], the SLM process investigations were carried out on the 

AlSi10Mg powder. They deposited a single track of powder of AlSi10Mg on a substrate of Al 

6082 after laser processing which is visible in Fig. 2.7. As shown in Fig. 2.7b, the metal powder 

of melted AlSi10Mg shows a crack-free and dense structure which is easily visible in higher 

magnification as well.  

Fig. 2.8 shows the upper surface layer of the deposited AlSi10Mg under SEM micrographs. In the 

upper layer, no hard or brittle oxidation is observed which provides a promising ground for the 

establishment of reactive materials multilayer manufacturing process. The deposited layer's 

bottom zone shows that it is homogeneous having a smooth transition zone between the powder 

of the deposited metal and base material [14]. 
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Figure 2.7 Optical micrographs of AlSi10Mg aluminum alloy after laser processing a) 

formation of single-track b) microstructure of melted middle zone [14]. 

 

Figure 2.8 SEM micrographs of AlSi10Mg on Al6082 substrate after Selective Laser 

Melting process a) microstructure of upper surface formation of single track, b) bottom 

area's microstructure [14]. 

2.3.1. The Microstructure of conventional cast AlSi10Mg and AM AlSi10Mg alloy 

The AM-SLM method used to fabricate AlSi10Mg alloy leads to pre-alloyed powder solidification 

or melting resulting in a fine eutectic microstructure [16]. The dual impact of rapid melting and 

directional cooling caused by repeated cycles of heating has a great influence on the alloy's 



30 
 

microstructure [17]. Fig. 2.9 shows the AM-SLM AlSi10Mg alloy's fine eutectic microstructure. 

The borders of the melt pool show a coarse structure due to repeated cycles of melting and 

solidification. The defects that are included in the additive manufacturing process are shown in the 

form of asymmetrical pores (solidification) and symmetrical pores (entrapped gas).   

 

Figure 2.9 Fine eutectic microstructure in the SLM AlSi10Mg alloy [17]. 

In another study carried out by [18], the microstructure of the SLM and the cast AlSi10Mg alloy 

was studied after T6 heat treatment and in as-built conditions on an optical microscope. Fig. 2.10 

shows the AlSi10Mg alloy microstructure obtained by the SLM process in as-built condition, there 

are three different types of structures of grains. Fine grain structures are seen in melt pool's middle 

section. Elongated and coarser grain structures towards the source of heat are observed at the sides 

of the melt pool. Heat affected zone (HAZ) is the area between the overlapping of two melt pools. 

Fig. 2.10 (right) shows the pores present in the produced cross-section. The length of the key-hole 

pores varies to around 700 micrometers from 250 micrometers. The smaller spherical pores are 

known as metallurgical pores [18].  
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Figure 2.10 left) The AlSi10Mg microstructure in as-build SLM form; right) Porosity in the 

SLM sample [18]. 

Fig. 2.11 shows the microstructure of cast AlSi10Mg alloy which includes an irregular eutectic 

phase and large α-Al grains in the as-delivered structure condition. In Fig. 2.11b, it is indicated 

that microstructure's morphology has been changed due to the heat treatment. It is also clearly 

indicated that around the primary grains of α-Al, spherical particles of Si are located which have 

been converted from the eutectic phase. The microstructure of SLM AlSi10Mg alloy after T6 heat 

treatment is demonstrated in Fig. 2.11c. The Si particles are found to be uniformly distributed and 

grown in the Al matrix in the resulting solution treatment [18].  

The impact of preheating during SLM of AlSi10Mg alloy was determined by [17]. They found 

that at a temperature of 150 oC, a significant reduction in distortion was observed while at 250 oC, 

no considerable distortion was observed [17]. It was concluded by them that a very fine eutectic 

microstructure was exhibited by the components of AlSi10Mg which did not require much 

machining.  
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Figure 2.11 a) Cast AlSi10Mg alloy microstructure-etched; b) Cast AlSi10Mg alloy after T6 

heat treatment; c) SLM AlSi10Mg alloy after T6 heat treatment [18] 

2.4. Mechanical properties of AM-SLM AlSi10Mg alloy and conventional cast alloy 

The fracture behavior and mechanical properties response of the AlSi10Mg alloy with respect to 

different temperatures and treatment regimens show that the elongation values are increased, and 

the tensile strength is decreased under hot isostatic pressure (HIP) treatment [17]. Additionally, 

there were considerable changes in the size, dimple shape, and content of porosity with HIP. 

Normal ductile behavior was exhibited by all the fractured surfaces. Under the treatment of high 

temperature, the tensile strength is lowered, and elongation values are increased [17].  

The mechanical properties of SLM AlSi10Mg are found to be higher than the AlSi10Mg cast 

material due to very fine distribution and microstructure of the Si phase [17]. Even after conducting 

a T6 heat treatment on conventional cast AlSi1Mg alloys, the properties for SLM AlSi10Mg are 
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still higher. For the SLM AlSi10Mg alloy, there is a high micro-hardness which surpasses the 

conventional cast alloy and is comparable to the die-cast alloy that has been hardened [19]. 

The Al-Si casting alloys which are desirable for welding have been recently developed using 

optimization of the AM deposition process via the use of powder bed fusion laser (PBFL) and the 

direct energy deposition (DED) techniques [20]. The DED technique results in the production of 

fully dense, functional metal components that is carried out by depositing metal powders on a 

substrate then utilizing a laser beam as the energy source maintained in a closed-loop control 

system to regulate the dimensional accuracy and the integrity of the material [2]  

The main use of the DED is to generate components used to repair or rebuild a section or a damaged 

or worn out parts. Moreover, this technology can be used in the manufacture of new elements. The 

resultant Al-Si has a high reflectivity that may lead to a low rate of energy absorption that may 

result in the consolidation defects while ageing such as cracks, pores and un-milted areas [22]. In 

practice, the AlSi10Mg casting is traditionally solidified in a dendritic structure that is made of Al-

Si and primary α-Al at the eutectic phase. The solidification process is substantially influenced by 

the parameters applied in the process hence the evolution of the microstructure, and the 

morphology will be affected as well [21]. One experiment [23] illustrated that AlSi11 alloy created 

from direct melt deposition led had banding microstructure so that the layers, in this case, were 

solidified with cellular morphology. The structure was further from the substrate particularly after 

the tenth layers leading to the formation of a dominant dendritic morphology [23]. As mentioned 

earlier, the resultant microstructure will affect the mechanical properties of the alloy for instance 

Table 2.2 compares the microhardness of the AlSi10Mg formed from three different processes.  
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Table 2.2 The comparison of the microhardness of the AlSi10Mg produced from different 

techniques [24] 

Process  Microhardness (HV) 

SLM 130 

Conventional cast alloys  55 

Direct melt deposit  107 

To better understand the behavior of the SLM AlSi10Mg, a single track “single layer” of the alloy 

were examined by Aboulkhair et al [24]. Due to the slow scan speed, 250 mm/s, used to produce 

the single track, it resulted in a microstructure lacking any irregularities, see Fig 2.12, which leads 

to a decrease in pores formation when building a component [24]. The decrease in pores is a result 

of the longer exposure time to the laser heat [24]. The single track was built on top of cast AlSi 

substrate, where the melting pool of AlSi10Mg powder were melted into the cavity created by 

laser beam and solidified (Fig. 2.12). Just like in welding, where one can apply different modes 

such as conduction or keyhole, and that depends on beam power and feed speeds, see Fig 2.14, 

SLM exhibit same procedure. Due to the high energy transfer “the ratio between the laser energy 

absorbed by material and the laser power compared to the material’s absorptivity” and the slow 

scan speed, a keyhole melting pool shape was observed when single track was created [24, 25].  

The melt pool zone shown in Fig. 2.13a has a depth that is more than half its width which indicates 

that it is keyhole mode rather than conduction [24, 26]. Thus, the laser beam penetrates deeply, it 

results in minimizing the heat affected zone, Fig. 2.15. 
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Figure 2.12 Single track AlSi10Mg [19]. 

 

Figure 2.13 Diffusion process showing a) melt pool b) solidified track [21]. 
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Figure 2.14 AlSi10Mg microstructure a) keyhole melting pool shape b) fine grain at melt 

pool and coarse at melt pool boundary [21]. 

 

Figure 2.15 Compression of different melting pool mode that result in different rate of 

heat affected zone [21]. 
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Due to the fast-rapid cooling, that result into a fine microstructure at the melting pool zone, the 

melt pool boundary exhibits coarsened form and elongate because of the thermal gradient. To 

validate that thermal conductivity plays a role on the microstructure, similar study conducted on 

SLM AlSi10Mg cubes [24, 28, 29] proving that with a lower thermal conductivity of Al substrate, 

the result is identical where the melt pool boundary is coarser compared to the core. Moreover, 

same behavior occurs when comparing SLM and cast AlSi10Mg, where cast alloy has a coarser 

microstructure and that because of low solidification rate that allow the Si to diffuse with Al matrix 

creating Si flakes, see Fig. 2.16 [24]. Because of the fine microstructure, the mechanical properties 

of the SLM alloy improved, in particularly the nano-hardness of SLM alloy is twice the value of 

the cast alloy where the average nano-hardness of the SLM alloy was 2.2±0.1 GPa but average 

nano-hardness of cast alloy was 0.9±0.03 GPa [24]. The authors pointed out that the results on 

SLM alloy were uniform and that due to the homogenous microstructure compared to the cast 

alloy.  

 

Figure 2.16 Chemical composition of the AlSi10Mg [24]. 

Multi-track printing is preferred over a single track as it provides more information and confident 

before building the whole component. Aboulkhair et al [24] provided great studies over the past 
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few years on the additive manufacturing of the AlSi10Mg alloys and their metallurgical behaviour; 

for instance, in a study [24] cubic and dog-bone shaped samples were produced to demonstrate 

hardness and tensile tests respectively using parameters in Table 2.3. The AlSi10Mg exhibited a 

typical uniform homogenous distribution (due the fast solidification [30]). As a result, a fine 

microstructure with constant needle like Si fibers at the grain boundaries was produced, see Fig. 

2.17. Moreover, due the fine microstructure, a uniform nano-hardness values with an average of 

1.82± 0.01 GPa was observed which is higher than its cast counterpart [30].  

Table 2.3 SLM parameters to produce AlSi10Mg [30] 

 

 

Figure 2.17 The AlSi10Mg microstructure in AM [30]. 

In addition, micro-hardness “Vickers” was obtained to have an average of 109.7 ± 0.9 HV for XY 

plane where average micro-hardness for YZ plane was 99.07 ± 2 HV [30]. the different in results 

between XY and YZ plane is due to the anisotropy behavior that caused by grain of the multi-layer 
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structure and thermal conductivity, see Fig. 2.18 [6,7,8]. More important, the micro-hardness of 

SLM AlSi10Mg is still higher than its cast counterpart with a value of 95 HV [30,32].  

Read et al [30] extracted the mechanical properties by extrapolating the stress-strain curve where 

the SLM alloy behaved in a brittle manner, in which tensile strength was about 320 MPa and yield 

strength at 175 MPa (higher than cast alloy), see Fig. 2.19 [30, 33]. On the other hand, the ductility 

of the SLM alloy was less than the cast only (around 3% elongation) [9]. The main reasons for 

enhanced mechanical properties in the the SLM alloys are grain size reduction developed by rapid 

solidification, solid solution strengthening, and dislocation strengthening [30].  

 

Figure 2.18 AlSi10Mg cubic schematic [34]. 
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Figure 2.19 Stress and strain curve of AlSi10Mg [30]. 

2.5 Heat treatment of aluminum alloys 

The cast AlSi10Mg requires the T6 treatment (Fig. 2.20) for improvement of the performance, for 

instance, the temperature for the solution and ageing treatment are 500-545oC and 150-180oC, 

respectively [24]. The components created from the SLM AlSi10Mg require heat treatment since 

upon the solution, ageing and quenching treatments there is the formation of anisotropy in the 

microstructure caused by the layering process. The heat treatment will dissolve the microstructure 

and improve the ductility of the alloy [33].  

The addition of Si to Al will improve its properties such as reduction in the solidification 

contraction and fluidity. The two components have eutectic reaction especially at 12.6% Si at a 

temperature of 577 oC [13]. The Al-Si alloy is not easily machined due to the introduction of the 

hard phases of Si. The addition of Mg in the alloy will lead to the formation of the Mg2Si 
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precipitates that would allow the alloy to be heat treated. The Mg also increases the strength of the 

element and solubility [34]. 

 

Figure 2.20 The process schematic for the two-stage T6 process [18]. 

The heat treatment process of Al-Si-Mg takes the following sequence: 

• Solution heat treatment (SHT) 

This process entails the heating of the material at a high temperature in a single-phase region, but 

not exceeding the solid temperature but below the eutectic temperature that will avoid overheating 

or inducing localized heating [35].  

• Quenching  

The hot material is quenched to room temperature which entails rapid cooling to room temperature 

to create a supersaturated solid solution (SSSS). Water is typically used in the quenching process 

for large objects, but for the small parts, the process may introduce residual stress thus an 

alternative quenching rate of boiling water is utilized or sometimes air-cooling [13]. 



42 
 

• Ageing or precipitation hardening  

The ageing process can either be natural or artificial thus the product can be kept at an elevated 

desired temperature for a specific duration of time to permit the SSSS to decompose into a fine 

precipitate.  

Several studies have explored the effect of such heat treatment on the SLM alloy and have 

compared SLM with their cast counterpart. According to Aboukir et al [38] the hardness varies 

depending of the duration of the treatment; overall hardness value decreases after heat treatment 

and that is due to the difference in strengthening mechanisms [38]. The heat treatment cycle used 

by Aboukir et al [29, 38] includes: homogenizing at elevated temperature of 793 K for various 

times, i.e. 1, 2, 3 and 4 hrs, then quenching to maintain supersaturated structure, and finally 

artificial ageing between 423-453 K for different time windows (6, 8, 10 and 12 hrs) [38]. The 

particles in microstructure during the solutionizing began to form with a specific size and density 

and their size increased with different range of time duration with average sizes of 1.04 and 1.42 

µm for the 3 and 4 hours respectively [38]. One the other hand, the density of the particles 

decreased with increasing solutionizing duration that because the particles companied to form 

larger particles but remained constant quantity [38]. When artificial ageing utilized, both particles 

size and density did not show significant changes, see Fig. 2.21 [38].  

To further investigate the change in the SLM AlSi10Mg microstructure, the authors conducted a 

hardness tests “Vickers”. Although with the increasing of the solutionizing time duration, the 

hardness values were slightly increased yet all of them showed a significant drop in the hardness 

values compared to the as built sample, see Fig. 2.22, where during solutionizing the alloy softened 

and with the increase of time duration the particle sizes increased [38]. Moreover, the hardness 

value increased after the being artificially aged and that is due to Mg2Si precipitates formation, 
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and it the different time duration of this process has a slight effect of the hardness value [38]. It is 

important to mention that the hardness value after the heat treatment cycle still lower than the as 

built value.  

 

Figure 2.21 Particles and density values comparison along different heat treatment 

duration [38]. 
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Figure 2.22 Vickers hardness results for the as-built and heat treated AlSi10Mg [38]. 

As mentioned in the previous study [29], the as built SLM AlSi10Mg mechanical properties are 

affected by three main strengthening mechanisms, where mainly the reduction of the grain size 

thus increases of grain boundaries that block the dislocation motion. On the other hand, Orowan 

strengthening is the mechanism observed as precipitates in the heat-treated alloy microstructure 

where these precipitates act as obstacles to stop the dislocation motion along with solid solution 

strengthening and dislocation strengthening [38, 39]. Important to notice that the strength of the 

alloy decreases if alloy is overaged, and it is because the increasing size of precipitates that lower 

the effect of Orowan strengthening [38, 40, 41]. 

Sjölander and Seifeddine [40, 41] compared the SLM alloy with it is cast counterpart; in term of 

microstructural behavior before and after the heat treatment cycle, they reached the following 

conclusions: 
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• A fine microstructure with continuous Si separation represented in SLM alloy whereas 

a coarsened microstructure with Si flakes in cast alloy [38,42] 

• After the heat treatment, the SLM microstructure coarsened to become a solid Si 

whereas in the cast alloy a fine Si particle formed and clustered at the grain boundaries 

[38, 42] 

• The hardness value for the SLM decreased after the heat treatment whereas the 

hardness values increased for the cast alloy [38,43].  

Using another heat treatment approach, Aboulkhair et al [44, 45] investigated the nano-hardness 

of the SLM alloy of same cubic samples to deeply understand the local mechanical properties 

characterization. The heat treatment cycle was in following sequence a solution heat treatment for 

1 hr at 520ºC followed by quenching, then immediately the samples were artificial aged for 6 hrs 

at 160ºC [44, 45]. The result of nanoindentation showed uniform hardness within the alloy, yet an 

outstanding spatial variation was observed after heat treatment. The fine microstructure is of the 

uniformity in the as built sample whereas the spatial variation was due to phase transformation 

during treatment in which during solutionization the Si particles had enough to diffuse, form 

spheroids and coarsen [45, 46]. The average nano-hardness of the as-built SLM was 1.82 ± 0.01 

GPa whereas the average nano-hardness was reduced to 1.52 ± 0.02 GPa after heat treatment [44]. 

The decrease in nano-hardness after heat treatment is attributed to softening and that is due the 

changes in the strengthening mechanisms of the microstructure as explained previously. After heat 

treatment, the microstructure is no longer fine structure, but Si particles spheroid “spherodisation” 

resulting in strengthening the alloy through Orowan strengthening [44]. Thus, the dislocation 

motion in the as-built is limited by the increased volume of grain boundaries where in the heat-

treated alloy it is through obstruction by the Si spheroids. Furthermore, micro-hardness “Vickers”, 
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provides the same trend as the nano-hardness results where the as-built alloy was 125 ± 1 HV and 

the heat-treated alloy was 100 ± 1 HV which conforming the alloy softening [44, 45]. Moreover, 

the heat treatment cycle produces harder alloy when used on cast sample, where it increased the 

micro-hardness from 95 HV to 130 HV [44,47] and that caused by precipitating Mg2Si through 

solution heat treatment and artificial ageing [4, 48].  

A macro analysis was conducted as well, to provide the tensile strength and the ductility of the 

alloy before and after the heat treatment. The as-built samples behaved in a brittle manner under 

tensile loading, whereas the heat treatment enhanced the alloy ductility. According to the authors, 

brittle failure originated at a surface flaw and it is because of the poor surface roughness, or the 

presence of sub-surface defects “pores or laser spatter” [44,50] and that fracture surface was flat 

with a few regions showing shear lips [44,51].  

The results in Table 2.4 show a decrease in the heat treated SLM alloy’s ultimate tensile strength, 

yield strength, because of microstructural coarsening, because of grain boundary reduction that 

behave as obstacle for the dislocations motion during deformation. On the other hand, the ductility 

of heat-treated alloy enhanced. The ultimate and yield tensile strengths of the as-built SLM 

material were higher than the cast counterpart but presented poorer elongation.  

Table 2.4 Mechanical properties comparison of AlSi10Mg [44] 

Sample Yield strength (MPa) Ultimate Strength 
(MPa) 

Elongation 
(%) 

SLM - As-built 268 ± 2 333 ± 15 1.4 ± 0.3 
SLM – Heat treated 239 ± 2 292 ± 4 3.9 ± 0.5 
Cast 175 320 3.0 

Yu et al [51] studied the effect of heat treatment on SLM AlSi10Mg through Brinell hardness test 

as well as its microstructure. The SLM samples were heat treated at an elevated temperature of 
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535 ºC and then artificial aged for 10 h at 158 ºC. The average hardness of the as-built alloy was 

102.2 HB on XY plane and 103.2 HB on YZ plane [51]. On the other hand, the average hardness 

of the heat-treated alloy was 83.5 HB on XY plane and 88.7 HB on YZ plane [51]. From the results, 

a significant drop in the hardness values are observed which confirm the results, see Fig. 2.23. The 

authors explained the reason for this lower hardness after heat treatment and it is because of the 

fine grain recrystallization of the microstructure formed during solutionizing [51]. 

 
Figure 2.23 AlSi10Mg Brinell hardness results [51]. 

In the as-built samples, as it contains the cellular dendritic microstructure and the spread of eutectic 

Si in the matrix, high hardness values were observed [48, 51, 52]. However, the solutionizing 

dissolved the Si particles in the microstructure and made the hardness reduce significantly. 



48 
 

Although, artificial aging can initiate the precipitation of the Mg2Si phase [53], this transformation 

only causes a limited backlash to the hardness values. Thus, the heat treatment could relief stresses 

and enhance ductility instead of benefiting to hardness values. Important to notice that propagate 

in the heat-treated samples which can cause the Si particles to spheroidize around oxidation regions 

to create a dimple structure thus enhance the mechanical properties [51].  

2.6 Parameters in additive manufacturing 

To achieve the desired mechanical properties, almost fully dense AlSi10Mg need to be produced. 

The dense of the alloy depends on the parameters of the AM technique used, the main parameters 

to provide a part with minimum porosity are hatch spacing, scan speed and scan strategy [35]. 

Hatch spacing is the distance between track or layers see Fig. 2.24, as the distance decreases the 

denser the sample becomes, see Fig. 2.25. The increase of hatch spacing would create gap between 

the tracks which would cause balling when continue creating multi-tracks samples see Fig. 2.26. 

Thus, accumulation of balling would create porosity that increases with the increase of hatch 

spacing [35].  

When it comes to the speed of scanning, it has significant impact of the porosity formed in the 

microstructure not only quantitatively but also qualitatively. The presence of porosity in the alloy 

is inventible but by altering the parameters, the porosity percentage would get lower or higher, 

these porosities are of different types. A metallurgical porosity is small spherical shaped hydrogen 

porosity trapped in the melt pool due to the low scanning speed, see Fig. 2.27 [35]. This type of 

porosity would decrease with the increasing of speed scanning, but keyhole porosity “keyhole 

instabilities” would appear because of the rapid solidification creating [35]. Moreover, with 

increasing of scan speed, balling would occur that is due to the large distance of hatch spacing of 
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a single scan, as a result the alloy powder would be fully melt. Important to mention that to reduce 

the balling, altering the scan strategy would be required, to be discussed later in this section. 

 
Figure 2.24 Density of AlSi10Mg with various hatch spacing [35]. 
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Figure 2.25 Schematic of SLM shows the hatch spacing. 

 
Figure 2.26 Topography of AlSi10Mg samples a) 50	𝝁𝒎 hatch spacing b) 100 𝝁𝒎 hatch 

spacing with noticeable spacing between layers [35]. 
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The hatch spacing, and the scan speed proportionally affect the energy density through Eq. 2.1 

[35]. Even though energy density and the presence of porosity can be related, yet it is important to 

mention to observe what type of porosity would be presented. 

𝐀𝐫𝐞𝐚𝐥	𝐄𝐧𝐞𝐠𝐲	𝐃𝐞𝐧𝐬𝐢𝐭𝐲 = 	 𝐋𝐚𝐬𝐞𝐫	𝐩𝐨𝐰𝐞𝐫	
𝐇𝐚𝐭𝐜𝐡	𝐒𝐩𝐚𝐜𝐢𝐧𝐠∗𝐒𝐜𝐚𝐧	𝐒𝐩𝐞𝐞𝐝

	(𝐉 𝐦𝐦𝟐D )          (2.1) 

       

Figure 2.27 presence of pores with various scan speed (a) 250, (b) 500, (c) 750, and (d) 

1000 mm/s [35]. 

As mention before, scan strategy affects the presence and type of porosity on the microstructure. 

By scanning the same layer twice or over lapping or pre-melting “alternating, checkerboard etc” 

see Fig. 2.28, a decrease in keyhole porosity would be achieved in the microstructure see Fig. 2.29. 

But it important to mention that at a lower scan speed the double scanning strategy would produce 

metallurgical pores and that is due to the high amount of energy.  
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Figure 2.28 Examples of various scan strategies a) x-direction b) y-direction c) alternating 

[56]. 

According to Aboulkhair et al [35], at scan speed of 500 mm/s, hatch spacing of 50 𝜇m and 

using the pre-melting strategy with 100 W laser power, a 40 𝜇m layer thickness with 99.77± 0.08 

% dense sample can be produced, see Fig. 2.30 [35]. Similar results were achieved with a 200 and 

900 W laser power [47, 15]. The importance of finding the balance between these parameters 

would result in the desired almost fully dense microstructure of AlSi10Mg with improved 

mechanical properties. 
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Figure 2.29 The presence of porosity in the AlSi10Mg microstructure at various scan speed 

with different scan strategy [35]. 
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Figure 73: Porosity evolution in samples processed using different combinations of scan speeds and 

scan strategies. 
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Figure 2.30 The percentage of porosity with respect to energy density at scan speed of 500 

mm/s and hatch spacing of (50 and 100) 𝝁m [35] 

 

2.7 Overview  

Aluminum alloys are being used as alternatives to steel in the automotive industry due to the 

changes in the standards for fuel efficiency, recycling, air pollution and safety [20]. This has led 

to most components such as, cylinder heads, suspension link, wheels, pumps, engine heads, engine 

blocks, calipers, etc. to be created from aluminum alloy. Initially, the Aluminum parts were made 

from foundry processing, low pressure or gravity die casting. For instance, the Al-Si alloys have 

been hardened via the addition of Mg which will form the Mg2Si precipitates when the solution is 

treated then naturally or artificially aged [21].  

In this chapter a brief literature review was provided on the additive manufacturing, the metal 

additive manufacturing, and additive manufacturing on the AlSi10Mg alloy. This is a friendly 
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alloy for the MAM, however, in most cases, to reach the desired mechanical and microstructural 

properties, different post processing techniques are required. To this end, heat treatment, i.e. T6, 

and the HIP are quite common. 

Current thesis aims at assessing the microstructure and the local mechanical properties induced 

through additive manufacturing and T6 heat treatment on an AlSi10Mg alloy.  

The post heat treatment cycle will enhance the mechanical properties of AM AlSi10Mg using 

artificial ageing. However, due the lack of published reports and results on the AlSi10Mg alloy 

with various cooling rate such as Air Cooling, Furnace Cooling and water Quenching, the focus 

for this study is to expand and explore of such methods.  Therefore, the novelty of this work is 

detailed characterization of the controlling mechanisms of microstructural evolution in the printed 

and the heat treated AlSi10Mg alloys.  In the following chapters, first, the experimental procedures 

that were conducted in this project will be provided. Then, the main results are presented and 

discussed in the preceding chapters. Finally, the main conclusions that were extracted from this 

study along with suggestions for the future works will be provided.  
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3. Experimental Procedure  

3.1. Part fabrication 

The part was fabricated by SLM 280 printer at CalRAM Inc. This machine is suitable for aluminum 

alloys, nickel, and titanium (specifications are provided in Table 3.1). Five AlSi10Mg cubic 

samples 1 cm3 were produced from atomized powders using the SLM 280 printer with twin 400-

watt lasers at CalRAM Inc. (Figs. 3.1 and 3.2). The AlSi10Mg test samples were built according 

to the default parameters of SLM 280. The process of printing was performed in an inert argon 

atmosphere to avoid oxidation in the samples. After printing, the samples were dissembled from 

the substrate using electron discharge machining (EDM). 

 

Figure 31 Selective Laser Melting machine (SLM200) [1]. 
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Table 3.15 specification of SLM 200 [1] 

 

 

Figure 32 Schematic of AlSi10Mg sample [2]. 

3.2. Cutting 

A cutting equipment known as Buehler- IsoMet low speed saw were used to cut the cubic samples 

in half through their z-plane (Fig. 3.3). Coolant is used to reduce the heating at the cutting location 

caused by the friction. The cutter is perfect for precision cutting processes. Since the low speed 

Build Envelope Volume (x/y/z) 280 x 280 x 365 mm  

IPG Fiber Laser Power Single: 400W or 700W 
Twin: 2x 400W or 2x 700W 

Build Rate 88 ccm/h 400W Twin 

Layer Thickness 20 – 75 µm 

Min. Feature Size 150 µm 

Beam Focus Diameter 80 – 115 µm 

Scan Speed 10 m/s 

Inert Gas Consumption in Operation Ar/N₂, 2.5 L/min 

Inert Gas Consumption Purging Ar/N₂, 70 L/min 

E-Connection / Consumption 400 Volt 3NPE, 63 A, 50/60 Hz, 3.5 5.5 KW 

Compressed Air Requirement ISO 8573-1:2010 [1:4:1], 50 l/min @ 6 bar 

Dimensions in mm (L x W x H) 2600 x 1200 x 2700 mm 
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saw does not produce much heat on the cutting location, the microstructure stands less chances 

of being altered. The machine’ speed was set at 200-300 rpm and it used gravity fed force to cut.  

 

Figure 33 Buehler- IsoMet cutting machine [3]. 

3.3. Heat treatment  

A separate set of as-printed samples were employed toward T6 heat treatment (artificial aging). 

This includes solutionizing at 520 °C for 1 h, followed by water quenching, and the artificial ageing 

at 170 °C for 4 h. A separate set of samples (another three samples) were solution treated at 520 

°C for 1 h followed by various cooling rate at different cooling media. This includes air cooling 

(AC) where the sample cooled down in the air, furnace cooling (FC) where the sample cooled 

down gradually inside the furnace and water quenching (WQ), see Fig. 3.4.  
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Figure 34 Heat Treatment cycle diagram: black line represents artificial ageing, green 

represent air cooling and red represent furnace cooling. 

3.5. Mounting  

By employing the Buehler metallurgical mounting – Simplimet 1000 equipment’s technique for 

hot mounting, the samples were mounted. A force of 29kN was subjected to the black phenolic 

resin, which was used a material for mounting. The heating and cooling time was 6 and 2 hours 

respectively, Fig. 3.5. 

 

Figure 35 A mounted AlSi10Mg sample (left), Simplimet 1000 machine (right) [4]. 
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3.6. Polishing 

To prepare the samples for further microstructural assessments and the nanoindentation testing, 

the Struers- Knuth Rotor manual polisher was required for Fig. 3.6. Several steps were carried out 

in polishing of all the used samples. All the samples generated from the X, Y and inner Z plane 

were grounded using the Strueres SiC abrasive papers for grindings.  These were 320 grits for a 

period of 10 minutes, 600 grits for a period of 10 minutes, 1000 grits for 10 minutes and 1200 for 

a period of 10 minutes, 600 grits for a period of 10 minutes, 1000 grits. More so, these were later 

polished using the 0.05 µm AP-D suspension 5 minutes and then using the 0.25 µm diamond 

suspension for another 5 minutes.  

 

Figure 36 Struers- Knuth Rotor polisher [5] 

3.7. Etching 

As the final step in the metallographic preparation and to prepare the samples for the 

microstructure studies, an etchant solution should be applied in order to reveal the AlSi10Mg 

microstructure. To this end a Keller’s reagent: 2.5% HNO3, 1% HF, 1.5% HCl, 95% distilled water 

was used for 30 seconds.  
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3.8. Optical Microscopy 

Upon polishing and etching, a metallurgical light microscope model MM 500T was used to 

observe the thin microstructures, Fig 3.7. These were observed using the lens magnification of 

50X, 100X, 200X and 500X.  

3.9. Scanning Electron Microscopy (SEM) 

The microstructures were later observed using the SEM model FEI 650 FEG machine, Fig. 3.7.  

For the SEM observations, samples need to be prepared, mounted and grounded inside the 

machine. The session can start only when the pressure inside the machine is less than 2×10-5 Pa. 

The surface is usually focused, and then different images are taken at a desired location using the 

desired panel in front. It is advisable that the focus be taken at 3 times the magnification. An 

example is if we take an image using the 2000X magnification lens, it is therefore recommended 

that we take a focus of this image at 6000X and after zooming it out. A magnification of 500x-

25000x were collected for all samples.  

 

Figure 37 Optical microscopic (left) and SEM (right) to capture the microstructure of the 

alloy [6]. 
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3.10. Nanoindentation 

Mechanical properties were measured and observed using the Hysteron Triboindenter TI 750 

nanoindentation machine, Fig. 3.8. A self-similar pyramidal Berkovich tip was employed to obtain 

the hardness and the Young’s modulus, Fig. 3.9. This also shows the force/ displacement curves 

calculated using the various properties. The diagram indicates the schematics of the 

nanoindentation pattern where the Young’s modulus was computed. While in this process, a 

trapezoidal shaped loading and unloading was applied with the maximum force of 9500 µN as 

indicated in the diagram.  While in this method, the loading force goes up to a constant 9500 µN 

in a period of just 5 seconds. This holds for about 5 seconds holding and the unloading force goes 

back to zero within a period of 5 seconds as a constant rate, Fig. 3.10. Indentation load (P), 

indentation depth (h), and time are three main parameters that are recorded during the testing.  

 
Figure 38 Hysteron Triboindenter TI 750 [8]. 
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Figure 39 Berkovich indenter tip [9]. 

 

  

Figure 40 Schematic of Berkovich indent apply F load on sample with h displacement (left) 

loading and unloading cycle (right). 

When all the calibrations are done, the actual tests were taken at center of each samples where the 

distances between these indents were observed to have an indent of 5µm in both X and Y direction. 

Upon completion of the indents, the young’ modulus plotted against the hardness is obtained from 

the load displacement curve.  The derived young's modulus from the machines is reduced young's 

modulus constant which is a result of its deformation of the tip of itself. Data was calculated from 
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the different locations so that an average can be obtained and reduce on the margin of error. 

Reducing the margin error also increases the level of accuracy of the experiment hence the 

experimenter can easily draw conclusions about this data set. 
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Chapter 4: Results and Discussion  

In this chapter, microstructure and mechanical analysis of Selective Laser Melting (SLM) 

AlSi10Mg is studied for the as-built and the heat treated samples through optical, scanning electron 

microscopy (OM, SEM) and the instrumented indentation testing techniques (Vickers, Nano-

indentation).  The goal of this project is to discover processing-structure relationship of the SLM 

process for AlSi10Mg cellular structures in the as-printed and heat treated conditions. Cellular 

structures fabricated by SLM have great potential for extreme loads due to high specific strength 

and stiffness. However, the product quality is often inconsistent due to complex geometry and 

manufacturing process. The key barriers include the lack of understanding of the physics involved 

in process and the inaccurate control of the process, leading to huge variations in microscale 

features and defects. The inability to understand the effects of uncertainties in material handling 

and properties also leads to a lack of consistency in the product quality.  

It is worth mentioning that SLM could potentially manufacture parts with superior, tailored 

properties because of its high degree of local control over the microstructure of a manufactured 

part. In particular, cellular structures have many advantages, compared to their fully solid 

counterparts, including high specific strength and stiffness, high energy absorption, and low heat 

conductivity. However, the fabrication of cellular structures using conventional machining 

processes is often an impossible or at least extremely time-consuming task with many limitations. 

In this regard, SLM is an excellent solution for producing metal parts due to its superior capability 

of constructing complicated geometry. 
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4.1 Microstructural analysis  

Fig. 4.1 shows the OM images of the as-printed (SLM) AlSi10Mg samples. The present 

microstructure is a result of the rapid solidification from SLM laser where the sample experienced 

fast cooling rate during the printing operation. Cellular microstructure characteristic observed in 

as-built sample where supersaturated Al matrix with continuous fibrous coral shape of eutectic Si 

particles of the SLM AlSi10Mg are existing in a half circular shape melt pools which coincide 

with local melting and rapidly solidifying regions.  

  
 

 

Figure 41 a) Optical microcopy images of as-built AlSi10Mg and b) shows half circular 

shape grain at different magnification c) a close look at the grain where “1” is melt pool 

and “2” melt pool boundary  
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Figure 42 SEM images of as-built sample a) cellular like shape microstructure with Al as 

matrix, b) a higher magnification shows Si in different orientation “1” elongated and “2” 

equiaxed, c) shows elongated Si at melt pool boundary “MPB” and equiaxed in melt pool 

“MP”. 

The breakdown of the microstructure, employing the SEM, shows that it is distinguished into 

layers see Fig 4.2. There are sections known as the melt pools that are divided into three regions. 

These are: 

MPB  

MP 
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• the heat affected zone (HAZ) 

• the melt pool boundary 

• the melt pool core  

Due to the SLM “layer by layer” manufacturing nature, the microstructures are often non-

homogenous. The Al cells usually appear equiaxed towards the melt pool core when viewed 

perpendicular to the build direction. When viewed parallel to the build direction, the Al cells at the 

melt pool boundaries appear elongated.  

The microstructure changes dramatically after heat treatment, Figs. 4.3 & 4.4 show a 

comparison between the SLM AlSi10Mg microstructures before and after heat treatment (heat 

treatment cycles were explained in Chapter 4 of this thesis). The interconnected fibrous coral shape 

of silicon transform into spherical shape silicon particles which are uniformly distributed 

throughout the Al matrix with different shape and size. Fig. 4.3 shows the SEM micrographs of 

the as-printed and the various heat treated samples (AC, FC, WQ and Aged). Comparing Fig. 4.2a, 

the as-built, with 5.4a, the artificially aged, it is unambiguous that Si particles in the aged sample 

become larger, spaced more uniformly spread because of coalescence and Ostwald ripening.  
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Figure 43 Side by side OM comparison of a) as-built, b) artificially aged, c) WQ, d) AC, e) 

FC samples. 
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a                   

 

b 
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c 

 

d 

Figure 44 SEM micrographs the AlSi10Mg when a) artificially aged, b) WQ, c) AC, d) FC.  
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Ostwald ripening is a phenomenon where large particle grows at the cost of collective small 

particles. It is a spontaneous process that reduces internal energy of a system thermodynamically 

[1]. Small particles possess large surface-to-volume ratio that results in high internal energy of the 

system because of large surface energy. However, when particles grow, this internal energy 

reduces as surface-to-volume ratio becomes smaller. Having said this, smaller particles on the 

surface tend to disengage themselves and migrate (diffuse) to the surface of coarser particles. In 

Fig. 4.4, a clear gradually decreasing trend can be observed from aged, WQ, AC to FC samples 

respectively, where the artificially aged sample microstructure shows large number of Si particles 

spread throughout the matrix; on the other hand, the FC sample shows small number of coursed Si 

particles. The coarsening phenomenon of the Si particles is a diffusion based process and diffusion 

is a time and temperature dependent phenomenon. That is, with providing time and temperature 

the diffusion process is expedited. Here the rate of cooling the FC sample is the slowest which 

mean that sufficient time is available for the Ostwald ripening to occurs as compared with the AC 

sample where there is literally no time for the Ostwald ripening phenomenon to be effective. Since 

Si coarsening is directly related to the cooling rate and it is obvious that WQ cooling arte> AC cooling 

arte> FC cooling arte, therefore, the Si particle coarsening is greatest in the FC condition and the least 

in the WQ conditions.    

The Si particle size for the as-built sample cannot be quantified since it is placed at the 

boundary with no particular shape. However, the average particle size of Si for the heat treated 

samples particles were measured between 0.7 and 1 µm. According to Aboulkhair at el [2] particles 

would start to form at solution heat treatment, and this is not completed until beyond 6 hours of 

ageing that the particles size start to increase. Moreover, according to Li et al [3] at artificial ageing 

time of 12 h, the Si particles can grow to a size up to 5 µm. This increasing in the Si particles size 
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indicate that in the as-built sample, the Al matrix is supersaturated and during the heat treatment 

excessive Si particles would precipitate throughout the matrix. To grasp the effect of heat treatment 

on the Si morphology better, the modification mechanisms of these eutectic collection need to be 

understood. During solution heat treatment, eutectic Si particles are evicted for the Al matrix in 

the supersaturated state, Fig 4.5. This results in the segregation of Si particles all along the grain 

boundaries with coral like eutectic Si fibers [3, 4–6]. Si fibers are fragmented, therefore Si 

spheroidization is driven through surface self-diffusion where the element changes the location by 

diffusing on the surface [7] or Al–Si inter-diffusion at Si/Al interface where the silicon atoms move 

through the aluminum at the interface.  

 

Figure 45 Al-Si phase diagram shows the region of elevated temperature of heat treatment 

solution that is below eutectic temperature around 10% of Si [8] 

The energy from the Si/Al interface diffusion is more promising, where the chemical potential 

gradient between the interfacial discontinuities and the adjacent area provides the required energy 
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from the solid-state atomic diffusion and therefore morphological evolution (spheroidization), see 

Fig. 4.6. Considering the solid-state atomic diffusion as a time and temperature dependent 

phenomenon, a heat treatment cycle at an elevated temperature but below eutectic temperature 

could be an efficient technique to change the shape and morphology of the Si. Upon providing 

sufficient time and temperature particle coarsening occurs to reduce the overall energy of the 

system. That is, the particles become coarse as the aspect ratio reduces leading to loss of the 

interconnection of the eutectic phases. Temperature and the duration of exposure determine the 

rate at which interconnectivity is lost.  
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Figure 46 The schematic representation of volume and interface diffusion resulting in the 

Si fragmentation and spheroidization [9, 10] 
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Fig. 4.7 shows the Si morphology in the as-printed and the heat treated microstructures. Si 

spheroidization phenomenon and Si coarsening are clearly observed here.  

• Artificially aged: spread small coarsened Si particles presented 

• WQ: small Si particles. 

• AC: larger Si particle 

• FC: largest Si particles with nucleation sites on top of Si. 

 

a 

 



82 
 

 

b 

 

c 



83 
 

 

d 

 

d 

Figure 47 The SEM micrographs of a) as-built AlSi10Mg, b) aged, c) WQ, d) AC, c) FC 

samples. The change in the morphology of the eutectic Si is clearly observed. 
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4.2. Mechanical properties 

Qualifying parts produced by the SLM process (or any other AM process) for real-world 

applications is a major challenge, as the existing ASTM test standards cannot capture the fine 

variations in the material properties of SLM produced parts. Therefore, in the present project, the 

mechanical properties of the as printed and heat treated materials will be achieved mainly using a 

depth-sensing nanoindentation testing approach which is capable of estimating a variety of 

material properties through non-destructive testing. The baseline mechanical properties to be 

measured include strength (nano-hardness) and stiffness (Young’s modulus). 

Nanoindentation tests were performed at a constant load of 9.5 mN. Figs. 4.8 provides the 

load/ displacement curves of the tested materials under a constant load of 9.5 mN. A significant 

softening is observed in the heat treated samples (aged, WQ, AC and FC) as compared to the as-

built AlSi10Mg alloy.  That is, the indenter displacement within the material is less in the as the 

printed sample as compared with other heat treated samples. This softening can be directly 

attributed to the change in the morphology of the Eutectic-Si particles upon various heat 

treatments.  The heat treatment causes the eutectic Si fibers to convert to spherical shape particles 

through a diffusion based spheroidization phenomenon. The spheroidization occurs when the 

temperature of the alloy is held below the eutectic temperature which is provided through heat 

during the heat treatment cycle. The Si particles assume a spheroidal shape and then is spread 

evenly through the alloy. Through the spheroidization phenomenon, the contribution of the Si 

particles toward strengthening of the alloy, as compared with the Eutectic Si-fibers, is reduced 

tangibly. The strengthening of the Si precipitates at melt pool boundary are eliminated upon the 

heat treatment. The reduction in hardness results to an increase in the ductility of the AlSi10Mg 
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alloy, in which the spherical Si particles allow the alloy to deform plastically which in turn 

increases the machinability and ductility of the alloy. 

 

Figure 48 Load vs displacement curves of the AlSi10Mg samples, as built and heat treated 

materials.  

Fig. 4.9 shows the SEM micrographs of the actual indents made on various specimens including 

as-printed and the heat treated materials. It is clear that the size of the indents become bigger when 

the rate of cooling decreases which confirm the softening phenomenon occurring due to the heat 

treatment cycles.   
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Figure 49 SEM micrographs of the indention images a) as-built, b) Artificially aged, c) 

WQ, d) AC, e) FC. 

Form the load/displacement curves, the hardness value results expected to be highest in the 

as-built samples and lowest in FC sample. In Fig. 4.10 the hardness values of each samples are 

observed. The average hardness values are measured as 1.90 ± 0.11 GPa, 1.55 ± 0.05 GPa, 1.13 

± 0.04 GPa, 0.92 ± 0.04 GPa, and FC 0.78 ± 0.02 GPa, for the as-built, the artificially aged, the 

WQ, the AC, and the FC, respectively.  

It is worth mentioning that each provided hardness number is an average of six hardness 

values, however, to make the actual hardness values visible and not to make the hardness graphs 

busy and unreadable the error bars have not been provided. Important to note that the hardness 

value shows a uniform results across the microstructure of all samples because of the spread of 

spherical Si particles. Since the Al solution (matrix) is softer than the Si fibers, if the hardness was 

to be taken in the primary Al phase as compared with the eutectic Al-Si phase, it would show a 
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lower hardness. From results a sharp drop in hardness is observed and that is due to the softening 

induced by the Si-spheroidization. 

 

Figure 4.10 Load vs displacement curves of the AlSi10Mg samples, as built and heat 

treated materials.  

The difference in hardness between all samples is affected by the thermal gradient of the heat 

treatment process. The hardness values in the as-built is higher than the all the other ones, and it 

is mainly attributed to that the aged, WQ, AC and FC being exposed to more of a thermal cycle 

then the as-built and thus more precipitation distribution in those four samples are seen than the 

as-built. 

To confirm the results from the nanoindentation “localized” approach and to find the hardness 

over a larger area, Vickers hardness test was utilized and the result in Fig. 5.11. The average 

hardness values are measured as 116.6 ± 3.3 HV, 91.6 ± 2.4 HV, 72.7 ± 2.3 HV, 57.3 ± 3.9 HV 
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and 43.9 ± 3.7 HV, for the as-built sample, the artificially aged, the WQ, the AC, and the FC, 

respectively (each provided hardness number is an average of six hardness values). The result 

provided the same trend where the hardness value drops gradually from as-built sample to FC, 

highest to lowest respectively.  

 

Figure 50 Vickers hardness measures of the as-built and heat treated AlSi10Mg materials. 

4.3. As-built vs artificially aged  

The most common heat treatment process on the Al-Si alloys is the T6 (artificial aging). 

Therefore, further investigation was conducted and the results compared to as-built sample. The 

results of both nano-indentation and Vickers tests show the same trend as previously stated in Figs. 

5.10 and 5.11. The result extracted from these two tests were conducted on the XY and YZ plane, 

see Fig 5.12.  
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Figure 51 Schematic of AlSi10Mg XY and YZ planes. 

There is a clear change in the hardness values of the artificially aged alloy is observed; As 

seen in Fig. 5.13, the average nano-hardness value on the YZ plane for the as-built materials is 

measured as 2.71 ± 0.12 GPa whereas the heat treated one shows 1.56 ± 0.11 GPa. This confirms 

42% decrease in the strength upon heat treatment. On other hand, the average nano-hardness on 

XY for the as-printed and the heat treated materials is 2.58 ± 0.12 GPa and 1.59 ± 0.11 GPa, 

respectively (38% decrease in strength); each provided hardness number is an average of 25 

hardness values.  
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Figure 52 Nano-hardness results for the AlSi10Mg samples, a) YZ plane, b) XY plane (heat 

treated: artificial aged). 

These results were confirmed upon performing Vickers hardness tests, see Fig 5.14; the 

average Vickers hardness value on the YZ plane for the as-built and the heat treated materials is 
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the as-built and the heat treated materials is 112.7 ± 2.4 and 94.4 ± 2.84, respectively; each 

provided hardness number is an average of 50 hardness values. 

 

a 

 

b 

Figure 53 Nano-hardness results for the AlSi10Mg, a) YZ plane, b) XY plane. 
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As-built SLM AlSi10Mg tend to form anisotropy where the mechanical properties of one 

direction on the sample is different than the other direction. From the results, it is clear that the 

average nano-hardness values for as-built on both planes does not necessarily match; this is due to 

the layer by layer nature of the SLM which results in a complex cooling gradient. Yet the heat 

treatment dissolves formation of anisotropy in the microstructure thus improve the ductility and 

that is observed from the average nano-hardness value of heat treated on both planes where they 

match. 

Indentation size effect (ISE) is the change of mechanical properties observed by indentation 

where reduction of the indent size leads to an increase in the hardness and a decrease in the 

plasticity deformation through indentation [12, 13]. Through the following equation, one can 

expect that indentation hardness (stress) is a depth dependent phenomenon:  

𝛔𝐢𝐧𝐝 =
𝐏

𝟐𝟒.𝟓𝟔∗(𝐡𝐢𝐧𝐝N𝟎.𝟎𝟔𝐑)𝟐
                                                                                    (4.1) 

where R is Berkovich tip radius equal to 100 nm.  
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Figure 54 Indentation size effect in the as-printed and heat treated samples [1] 

As observed in Fig 4.16, indentation stress is dependent upon depth where it increases with the 

decrease in the indentation depth. The shallow-depth indentation results in higher hardness as 

compared with large-depth ones, where it is attributed to dislocation starvation and strain gradient 

plasticity [12, 13]. 

When indenter tip is at few nanometer depths in contact with surface of the material, the 

material can be considered dislocation free “dislocation starved” where the strength of the material 

can be as big as the theoretical strength (see Fig. 4.17). As the indenter further drives within the 

material, an extra storage of dislocations “geometrically necessary dislocations” (GNDs) is 

introduced in the material in order to provide the necessary lattice rotation to accommodate the 

shape of the indenter, see Figs. 4.17 and 4.18 [12, 13]. As the indentation is shallow, the plastic 

deformation is to be happen over a very small volume of martial containing a limited number of 
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easy slip systems. Therefore, the GNDs may have different mobility and Burger’s vector as 

compared with ordinary dislocations [1]. The density of GNDs is inversely related with indentation 

depth where at shallow depths larger number of GNDs is expected which results in the increasing 

strength near the surface of the sample.  

 

Figure 55 The ISE and the corresponding changes in the dislocation contributions [14]. 
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Figure 56 Schematic of geometrically dislocations (GNDs) created during the indentation 

process. The dislocation structure is idealized as circular dislocation loops [11]. 

The density of GNDs [12, 13]: 

𝝆𝑮𝑵𝑫𝒔 = 	
𝟑
𝟐𝒃𝒉

𝒕𝒂𝒏𝟐𝜽                                                                           (4.2) 

where 𝜃 is effective semi-angle of the comicalindenter = 70.32°, b is Burgers vector: 

2.86×10`ab m, and h is the contact depth.  

As observed in Fig. 4.19, the density of GNDs increases with decreasing in the indentation 

depth which is directly attributed to the strain gradient near the surface. The ISE is more noticable 

in the as-built sample because of less strength in the heat-treated material. Studies on the 

assessment of the dependence of the geometrically necessary dislocation upon depth and strain 

rate on the polycrystalline fcc metals/alloys have suggested that GNDs density displayed the 

characteristic decrease with increasing h. Apparently, for the small indentation depths, GNDs are 

main contributing dislocations in order to accommodate for the lattice rotation imposed by indenter 

geometry. GNDs are, therefore, dependent upon h and the indenter geometry.  However, for large 

indentation depths (macroscopic regime), statistically stored dislocations (SSD) are responsible 

for plastic deformation.  The SSDs which are a function of plastic strain in the material are 

independent of h. 
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Figure 57 Density of GNDs versus depth in the as-printed material [1]. 
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5. Conclusion   

This study considered the various aspects of heat treatment cycles on selective laser melting 

of an aluminum-silicon alloy, AlSi10Mg. This project tried to uncover the variations in mechanical 

properties and then correlate them to the microstructural evolution in the as-printed and heat-

treated alloys.  Through Vickers and nanoindentation techniques, micromechanical responses of 

an additive manufactured AlSi10Mg in the as-built, heat treated “artificially aged”, WQ, AC and 

FC conditions were elaborated, along with microstructural assessments (OM and SEM) to provide 

evidence to establish microstructure/micromechanical correlations.  

The findings in this investigation conclude the following 

• The cellular-dendritic solidification resulted in the fine equiaxed grains at the melt pool 

core whereas elongated grains at the boundary with continuous segregations Si fiber. 

• Upon heat treatment cycle of 1-h solution heat treatment at 520 °C, enough time and 

temperature are provided for the interconnected Si fibers to be transformed to the Si 

particles (spheroids). 

• The artificial ageing at 170 °C for 4 h promotes the Si spheroidization which results in the 

softening of the alloy. 

• After heat treatment, variation in nano-hardness was observed due to the presence of Si 

particles.  

• The heat treatment resulted in softening the alloy. The hardness of the as-built sample was 

higher than the various heat-treated samples. 

• The FC showed to the softest and the as-built showed the hardest conditions.  

• The as-built material exhibited uniform nano-hardness due to the fine microstructure. 
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• The average hardness values are: 

o As-built sample: 1.90 ± 0.11 GPa,  

o Artificially aged: 1.55 ± 0.05 GPa,  

o WQ: 1.13 ± 0.04 GPa,  

o AC: 0.92 ± 0.04 GPa  

o FC: 0.78 ± 0.02 GPa. 

• Heat Treatment dissolved the formation of anisotropy in the microstructure caused by the 

layering process improve the ductility. 

• Indentation size effect, increase in hardness with the decrease in the depth, is observed in 

both as-built and heat-treated materials. 
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6. Future Work  

The following are recommended to develop the relationships between mechanical properties and 

microstructural features: 

• Fabricate AlSi10Mg alloy with different tailored parameters, spend scan, scan strategy, 

hatching spacing, layers’ thickness and laser power, to assess the effect of print parameters 

on the mechanical properties and microstructural evolution. 

• Tailor the heat treatment cycle, e.g. by changing solutionization and/or ageing time and 

study the effects of different profiles on the microstructure and mechanical response of the 

AlSi10Mg and determine the tool which provides optimum result.  

• Utilize the electron back-scattering diffraction (EBSD) to further assess the grain size and 

morphology of various AlSi10Mg alloy conditions and evaluate the texture in the 

microstructure of this alloy.  

• Utilize Transmission electron microscopy (TEM) to study and investigate the correlation 

of mechanical properties and how it affects the strengthening mechanisms.  
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