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ABSTRACT 

Many software development projects fail because of their inability to deliver the 

product in a timely and cost-effective manner, i.e. the software crisis. In a commercial 

airline company, a safety-critical system for preventing a “single-point of failure” needs 

to be developed and certified. To meet the project deadline an Agile approach was used 

in developing the first portion of the system. An appropriate software development 

methodology, i.e. reverse-engineering was then applied to the software system to 

develop method that would be used in system maintenance and evaluation.  

The goals of this research study were to develop a segment of one of the UML 

activity diagrams as a purposeful and systematic methodology for conducting reverse-

engineering on complete safety critical systems of the airline system. This was done to 

capture very high and very low level designs of software engineering and to verify and 

validate the source code.  

The UML activity diagram was developed from a source code of an aircraft-gate 

assignment system. This was done in order to capture very low-level details of the 

program code, from which the model was reversed engineered. The diagram was made 

to represent the entire source code, by going through and analyzing the source code 

line-by-line. Whenever there is a condition in the source code, the diagram branches out 

and interacts with other activities. To directly see the flow of the program, the 

directional arrows in the diagram were assigned.  

With the data flow of the source code being represented in the visual format of 

the UML activity diagram, the interaction of each component can be easily understood 

and identified. The user can see the information that goes into each method, and what 

each method required. Once the user understands the flow of data within the program, 

the user can validate and verify that the software was developed with  correct methods.  
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As the UML activity diagram represented the pseudo code of the program in a 

graphic way, it should be a good candidate to be used as a tool to help in reverse-

engineering safety critical systems of an airline system. The UML activity diagram 

should be able to represent all aspects required in the deconstruction phrase of the 

reverse-engineering methodology. With the source code in the graphic diagram form, it 

should be much easier to identify the structure, functions and determine how each 

aspect of the program interact with each other so that the activity diagram can be used 

in a formal methodology for reverse-engineering. 

Keywords:  UML Activity Diagram, source code, the reverse-engineering 

methodology 
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1. INTRODUCTION 

Reverse engineering (NPD Solutions, 2016) is a process of purposefully and 

systematically deconstructing an object that can be used on a software system to reveal 

its design and purpose. In addition, the process of reverse-engineering also refers to the 

examination of the system, but not the reconstruction or modification of the original 

system. The examination of reverse-engineering of a software system has become 

increasingly important, not only in the industrial field but also the academic field. For the 

industrial field, the reverse-engineering of a software system was required to both 

innovate and debug the software (Innovation Enterprise Channels, 2019). This is required 

as complex programs are made up from many smaller components that do a certain 

specific task. In an academic and some industrial setting, reverse software engineering is 

used to study and reuse old programs in the development of new systems with enhanced 

functionality. 

In an academic setting, reverse engineering acts as a stepping stones to approach real-

world conditions of the software engineering (Bothe, 2001). Reverse engineering of a 

software system can also be explored in a more practical way as a method for students to 

deconstruct an example program for usage in their own program. 

Reverse engineering (Engard, 2016) is a very important tool for software developer as 

it is a technique used whenever someone wants to understand a process and its 

functionality. Reverse engineering in computer science is used mainly in product and 

process improvement, cybersecurity field, and intelligence and espionage.  

In the last decade, there have been many methodologies and models for software 

development that are still in use. Some methodologies improved on the ideas of past 

formal methods and steps to follow in a software engineering process. There are many 

formal methodologies and notations that work on specific phases of software engineering, 

each with their own pros and cons, but there are currently no single formally established 
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methodologies to reverse engineer a software system. Because of this, an opportunity 

exists for reverse-engineering methodologies to be defined.  

Systems modeling is the concept of using models to conceptualize and construct 

systems in IT environment (sebokwiki, 2018). The fundamental concept in system 

modeling is abstraction, which draws focus from unimportant details to essential 

characteristic. System modeling lower the size and complexity of the system and make it 

easier in order to be computationally and intellectually tractable. There are many 

conceptual models used in the system modeling, each with their own focuses. One 

modeling concept that stands out from the rest is the Unified Modeling Language as it 

provides detailed modeling, well-defined process and is supported by powerful tools 

(Visual Paradigm, 2018).  

A Unified Modeling Language (UML) activity diagram presents a path of execution 

through the program and displays a representation of the code. Since the activity diagram 

is a graphical representation of the program pseudo code, it is a good candidate as a tool 

to be used in reverse-engineering. Each phase of the reverse-engineering modified model-

driven methodology can be used to measure the UML activity diagram as an adequate 

tool for a formal methodology of reverse-engineering. 

The UML Activity Diagram should be able to represent all aspects required in the 

deconstruction phase of the reverse-engineering methodology. With the source code in 

the graphic diagram form, it should be much easier to identify the structure, functions and 

determine how each component of the program interact with each other. The Activity 

diagram then can be used in a formal methodology for reverse-engineering. 

1.1 Problem Description 

In the year 2018, there are various methodologies and models for software 

development that are actively being applied in every level of the professional software 

development. Yet, there currently is no formally established methodology to reverse 

engineer a software system. There is, however, a formal methodology to reverse engineer 
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a program code (Gannod, 1994). The problem is that a large amount of the methodology 

cannot be applied to software development due to the difference in the structure and 

method to study an object.  

In academia, reverse-engineering for software is a known practice, but there is no 

real formal exploration into the subject. There have been attempts to explore the reverse-

engineering as a learning process for engineering (Barone & Mandredi, 2007). The 

attempt was made with the computer-aided design (CAD) and analysis software in mind, 

with the emphasis on the general reverse-engineering of the object as the learning subject. 

Although there were some attempts to use reverse-engineering as a learning experience, 

none of these were related to software engineering. The majority of computer science 

learning processes involve learning by example. Reverse engineering computer programs 

is an assumed part of this process but is not explored explicitly.   

In a commercial airline company, a safety-critical system for preventing a “single-

point of failure” needs to be developed and certified through compliance with DO-178C. 

The DO-178C, Software Consideration in Airborne Systems and Equipment 

Certification, is the document specification to approve software-based aerospace systems 

by verify and validate the software concepts of high-level requirements and low-level 

requirements. The DO-178C may uses agile approach in developing the system so a way 

to produce a documentation of the system is needed, which leads to the need to reverse 

engineer the code. This then necessitate the identification of a suitable reverse 

engineering methodology in which will then be implemented on the code.  

1.2 Motivation 

The use of reverse-engineering in academia to learn computer programming was 

explored from both a student perspective, as a master’s degree-seeking student of 

computer science at the University of North Dakota, and from the teaching perspective, 

as a teaching assistant to class “Computer Science II”. In a computer science class, 

students are expected to learn how to program by using an example program as a guide. 
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This fits the description of reverse-engineering: deconstructing to analyze its parts, with 

the objective of creating something from the parts. The use of reverse-engineering and its 

effect can be clearly seen in the lecture and lab portion of the class, where the lectures 

taught the student about the information behind the commands and the lab portion took 

those concepts and put it to practical use. The example of this will be demonstrated in 

chapter 5.3 of this thesis. There is an overlap experience between reverse-engineering a 

software system and the way to teach programming to the student which makes studying 

the reverse-engineering in the field of software system an exciting task.  

There is currently no single formal Reverse Engineering Methodology for software 

engineering, either for academic use or industrial use. This could mean that the use of 

reverse-engineering in academia has not yet been fully understood, or at least not enough 

to where reverse-engineering can be applied consistently to teach students about 

programming in computer science. The other possibility is that the industrial use of 

reverse software engineering is something that should not be done. Even though there are 

methodologies for reverse-engineering in general, there are none that apply specifically 

to software engineering. 

1.3 Objectives 

The goals of this research study were to develop a segment from the UML activity 

diagrams as a purposeful and systematic methodology for conducting reverse-engineering 

on a safety critical system of an airline system and to develop an updated model of the 

methodologies. Validation of the objective was the development and acceptance of the 

models of the methodology as a true representation of the system.  

1.4 Scope of Work 

In this thesis, the type of UML model will be focused on is the UML activity diagram. 

The diagram is used in demonstrating the application of reverse-engineering in software 

development as it is a visual representation of the software system dynamic execution.  
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The domain of the problem will only focus on the reverse-engineering in a software 

system, specifically in the computer science field and not in other engineering fields. The 

goal is to underline the problem regarding the awareness and practicality of the  

application of reverse-engineering in academia, for both teaching and learning.  

The UML Activity diagram was developed with access to the original source code 

developer so that there would be no misunderstandings of each method in the source code. 

The UML Activity Diagram itself, however, was not written with the source code 

developer’s explanation of the purpose of the methods, but rather generated directly from 

the source code itself.  

Even though the diagram was not made specifically to fit the DO-178C, it was made 

as a traditional UML activity diagram and then later verify with the DO-178C 

requirements. In addition, during the construction phase of the diagram, there was neither 

verification nor validation process done directly with the diagram. However, both 

processes were considered and applied during the application process of DO-178C.   

1.5 Description of Thesis / Report Organization 

Chapter 2 explains most of the core knowledge required to fully understand this work 

along with the tools used in creating the work for this thesis and any related work. Chapter 

3 contains the description of the research done in defining the reverse engineering 

methodology used in this work. Chapter 4 shows the content of the work done during this 

study such as application of the methodology and a detailed description of what was 

performed during this study. Chapter 5 presents a discussion of what was achieved on 

this project and lessons learned. Chapter 6 is the conclusion of the success of this work 

and ideas about the future of this topic.  
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2. BACKGROUNDS 

In order to fully understand this work, a base knowledge regarding the definition, 

history and the tools must first be established. This chapter contains the information on 

the evolution of the model notations and its link to the reverse engineering, a core 

methodology used in this work as well as two of the tools used in the creation of models 

of this work.  

2.1 UML Notations 

In the last decade, there has been intense research activities in software development 

methodologies. A software development methodology is a framework to structure, plan, 

and control the process of developing an information system (Association of Modern 

Technologies Professionals, 2018). There are many methodologies that are currently used 

in the software engineering industry such as Agile Software Development (Agile 

Alliance, 2019), Rapid Application Development (RAD) (Anderson, 2019), Rational 

Unified Process (RUP) (Powell-Morse, 2016), Waterfall (TutorialsPoint, 2018), and 

Spiral (TutorialsPoint, 2019). 
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Figure 1. Evolution of object-oriented methods and notations 1980s – mid 2000s1 
 
Figure 1 shows the evolution of object-oriented methods and notations from 1980 

through the mid-2000s, but some information regarding years and whether the notations 

are still in use are missing. The chart also shows how the Unified Modeling Language 

has gone through many iterations throughout the years, with the latest version from the 

chart being UML 2.2 in 2008. The chart also reveals the influence of UML being 

integrated into another form of models, which transformed RD into Executable UML or 

xUML (Zockoll, Scheithauer, & Dekker, 2009).  

                                                 
 
 
1 “History of Object Oriented Modeling languages”, Digital Image, 

<https://en.wikipedia.org/wiki/Unified_Modeling_Language#/media/File:OO_Modeling_languages_histo
ry.jpg> 
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A methodology is defined as the theoretical analysis of methods applied to a field of 

study (Merriam-Webster, 2018). In Software Engineering, it refers to the process of 

dividing the software development work into separate phases in order to help improve the 

design of the product and to reduce the complexity in the management process. For 

software engineering specifically, it is known as the “software development life cycle”. 

This means that a single software will have to go through many “cycles” of the process 

from the beginning to the end of the program’s lifespan. (Centers for Medicare & 

Medicaid Services, 2008)  

The chart, however, cuts short the information regarding the Unified Process, only 

including RUP and OEP. Even though the Unified Process evolved and grew alongside 

UML in the beginning, there is no update between 1997 and 2005. The chart also does 

not specify when and how far the Systems Modeling Language (SysML) and the Business 

Process Model and Notation (BPMN) evolved since its separation from UML 2.1.2. Part 

of the work of this thesis is to extends this model to the current time in order to find the 

most efficient models to represent the system.  

2.2 Definition of Reverse Engineering and Methodologies 

Reverse Engineering is a process of purposefully and systematically deconstructing 

an object to reveal the design and the purpose of the specific parts inside. In the field of 

software engineering, Institute of Electrical and Electronics Engineers (IEEE) defined 

reverse-engineering as “the process of analyzing a subject system to identify the system’s 

components and their interrelationships and to create representations of the system in 

another form at a higher level of abstraction” (Beckmann, Vogelsang, & Reuter, 2017). 

The process of reverse-engineering only refers to the examination of the system, and not 

the reconstruction or modification of the original system. As of 2018, there is no formal 

methodology of reverse-engineering a software system (Asif, 2003). The definition of 

Reverse Engineer by Merriam-Webster dictionary is “to disassemble and examine or 

analyze in detail (a product or device) to discover the concepts involved in manufacture 
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usually in order to produce something similar” (Merriam-Webster, 2018). Though the 

definition from the dictionary states that the objective for reverse-engineering a product 

is to produce something similar, in fields where the product consists of many complex 

parts working together, discovering the concepts of each specific part can produce another 

product that had very little in common with the original.   

2.3 History of Reverse Engineering and Methodologies 

Reverse Engineering has historically been used in the military for strategic advantages 

such as knowing the weak points of a tank or decrypting the ciphers that were widely 

used in wartime. (New World Encyclopedia, 2018) The reverse-engineering process is 

not meant to modify the object in any way, but rather to explore its parts to better 

understand how the object functions or the procedure of the object’s design and 

production. In any case, reverse-engineering may be used in the procedure of improving 

an existing product and may be used more than once in the improvement of the product 

cycle. The usage of reverse-engineering in software development may simply be to 

document the code for future changes or improvements. The process of reverse-

engineering may help reduce the overall cost of software maintenance by reducing the 

time required to understand the source code. Understanding the source code may be one 

of, if not the most time-consuming process of the entire software maintenance cycle, 

especially if the source code’s original writer is not there to explain. 

2.3.1 Reverse Engineering 

Reverse Engineering can also be categorized into different motivations. Each reason 

for reverse-engineering requires different tasks to obtain different items from the same 

product. The reasons for reverse-engineering according to (New World Encyclopedia, 

2018) are lost documentation where the documentation of the product has been lost or 

didn’t exist to begin with. Many products that are in use in today are a constant upgrade 

from the products of the past, which means that sometimes the person who originally 
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designed the parts that are to be modified to fit the new product is no longer available. 

This means that the only way to fully understand how that specific part works is to 

disassemble it and write the documentation so that it can be used in the future with a 

better understanding. 

 The other reason for reverse-engineering is product analysis. When a product is 

completed it is difficult to understand how it works since the product usually functions 

best when it is fully intact the way it was intended to be. This means that it is difficult to 

see what components it consists of without breaking the product or voiding the warranty. 

Some of the components of the product may break or stop functioning the moment the 

product is dissembled, so it is important to know the exact function and materials of each 

component to estimate costs. A product may look cheap and simple from the outside, as 

many products have user interface in mind, and to minimize the complexity of the user’s 

to interaction with the product and to maximize the usability of the product, the 

interactable parts are usually kept simple and bland. This makes it difficult to estimate 

the cost of the more complex interior of the product.  

An important reason to reverse-engineer a product is to identify the potential patent 

infringement which many products may contain. In a recent example, a software company 

“Bethesda” sued “Warner Bros” for a copyright infringement of Bethesda’s game 

“Fallout Shelter” by “Westworld” for mobile. “Bethesda sued Westworld game developer 

Behavior Interactive and their publisher Warner Bros, claiming Behavior stole its design, 

artwork, and coding, and used them in the mobile app” (Hood, 2018). With the video 

game industry becoming increasingly large and important in modern society, there are 

many cases where video games can have many similarities between each other, with very 

few small differences in the art style and gameplay. It is very difficult to determine if 

video games infringe on each other‘s copyrights. In the example provided with Bethesda 

suing Warner Bros, the two games are extremely similar in gameplay experience, but 

with a different art style and overall game design, it is difficult to determine if Westworld 

had infringed on Fallout Shelter or not. But as the original developer of the game, 
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Bethesda saw that Westworld had bugs that were evident in the early development of 

Fallout Shelter, which reinforced the claim that Westworld had at least part of Fallout 

Shelter’s code.  

2.3.2 Methodologies 

The history of software development methodologies is as old as the word “framework” 

in software development (Oleksandrova, 2018). A brief history of software development 

methodologies is shown in figure 2. Back in the 1950s, the software lifecycle and 

structured programming was considered the only methodology framework as software 

and the computer were mostly tied to each other. The main objective of the software 

development methodology in 1960 was “to develop large-scale functional business 

systems in an age of large-scale business conglomerates. Information systems activities 

revolved around heavy data processing and number crunching routines”.  

In the 1960s, the first process model called the waterfall model was introduced. It is 

referred to as the linear-sequential life cycle model, which is simple to understand and 

use. It is composed of phases where each phase must be completed before the next one 

can start. The structure is like flowing down a waterfall (since you cannot go back up). 

Phases in the waterfall model are requirement analysis, system design, implementation, 

testing, deployment and maintenance (TutorialsPoint, 2018). The Iterative and 

Incremental model which was introduced later, in the year 1970, uses a similar model to 

waterfall but introduces iteration loops to the phases.  

Figure 2(2) shows the Prototyping model introduced in the early 1980s. It was a 

system in which a prototype is built, tested and then reworked. This process is repeated 

until an acceptable prototype is achieved. After a fully developed prototype is complete, 

the complete system or product can be generated (Rouse, 2018). The Spiral model is one 

of the most important software development life cycle models for risk handling. The 

process of the loop is very similar to how the iterative and incremental model works, but 

with different phases, and the time spent in each loop is increasingly smaller. The phases 
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in this model include objective determination and identify alternative solutions, risk 

identify and resolve, development of the next product version, and review/plan for the 

next phase (Pal, 2018).  
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Figure 2. A Brief History of Software Development Methodologies; 2(1) from 

1950s-early 1980s, 2(2) late 1980s-2000s, 2(3) from 1994-2001, 2(4) 2000s- 2010s, and 

and summarizing the AGILE umbrella of methods. 2 

                                                 
 
 
2 “A Brief History of Software Development Methodologies”, digital image, viewed 11th November 

2018, <https://intetics.com/blog/a-brief-history-of-software-development-methodologies> 
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Figure 2(3) shows V-Model development methodologies, which is very similar to 

the waterfall method that follows strict, step-by-step stages. The methodology has 2 

main phases: project definition, and project test and integration. The “V” in the model 

represent the two phases and how they interact with each other. This model is the first 

to adopt verification and validation methods into its model (Powell-Morse, 2016). At 

this point at the end of 1980, the waterfall era ends, and agile era begins as the software 

development model changes from predictive to adaptive. During 1990, the rapid 

application development (RAD) model was introduced. This model is based on 

prototyping and iterative development with no specific planning involved 

(TutorialPoint, 2018).  

There were many development methods generated from 1990 to the 2000s as shown 

in figure 2(4). Unified Process, an agile-based UML was born during this era along with 

SCRUM, Crystal and Extreme Programming. SCRUM in particular, was a popular 

software development technique using agile framework with an emphasis on software 

development (and not just for product development).   

During the next 10 years, as shown in figure 2(5), the agile development technique 

had further branched into Rational Unified Process (RUP) and Object Engineering 

Process (OEP). RUP had later become Agile Unified Process (AUP). SCRUM in the other 

hand, had become a prominent figure in the software development industries as it expands 

to include Large-Scale SCRUM (LeSS) which differ itself from regular SCRUM by 

applied to a much larger scale development (over hundreds of people for LeSS compared 

to SCRUM that meant for 3 to 9 members) (Schwaber, 1993).  

 

2.4 The Software Methodology Used 

The software development methodology applied in this project came out of the 

academic program taught in the university and research work on the safety-critical system 

in general, and more specifically for avionics software systems (Grant & Ajjimaporn, 
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2018).  The genesis of the methodology was on an unmanned aerial system (UAS) for 

monitoring the flight operations of unmanned aerial vehicles (UAVs) in unrestricted 

airspace.  In order to conduct software development in UAS domain, the RTCA DO-

178C specification was used as the definitive guideline (RTCA, 2011).  The work with 

DO-178C was two-fold: firstly, the document was transformed from its textual 

representation to a graphical representation, in the UML notation.  Figures 3, and 4 

illustrate two of the models developed to represent the DO-178C specification.  Figure 3 

represents the DO-178C specification, software development methodology components 

as a UML package-level model.  Each package of Figure 3 is decomposed into a set of 

UML use case diagrams, class diagrams, and activity diagrams.  Figure 4 represents the 

DO-178C Software Planning Process (Section 4 of the DO178C specification) as a UML 

Use Case Diagram, wherein the user is the project development team. Figure 4 is one of 

the models contained in the Software Planning Process 4.0 of Figure 3 package-level 

model (Grant & Ajjimaporn, 2018). 

 

 
 

Figure 3. DO-168C UML Package-Level Representation. 
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Figure 4. DO-178C Software Planning Process 4.0 UML Use Case Diagram 
Representation 

 
The second area of work with the DO-178C specification is the definition of a model-

driven software development methodology that incorporates and is compliant with the 

DO-178C requirements.  This methodology is illustrated in Figure. 5 in the form of a 

UML activity diagram.  Figure 5 is a UML activity diagram representation of the 

requirement-level activities contained in the Software Development Process 5.0 package 

of Figure 3.  The activities of Figure 5 are mapped to the respective sections of the DO-

178C document, by way of the DO-178C section number being listed in the activities of 

the model. Figure 5 captures the activities as specified in the DO-178C for the software 

requirements analysis and design phases; the software implementation (coding), testing, 

and deployment phases are represented in separate UML activity diagrams. The work 

reported on in this manuscript is limited to the scope of Figure 5.  The UML models 

specified in Figure. 5 are specific to this instantiation of the methodology; in other 
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instantiations, other models may be used to satisfy the requirements of either the problem 

domain or the expertise of the development team. 

A first task requirement of DO-178C Software Planning Process (4.0) is the 

determination of the software level of development.  DO-178C specifies five (5) levels 

of criticality, designated Level-A through Level-E, with Level-A being the highest and 

Level E the lowest.  Once the software level has been determined then DO-178C Software 

Development Process (5.0) and Software Integral process (6.0 – 10.0) specify the required 

set of activities and data elements necessary for certification of the system that is to be 

developed.  The outputs of these activities are the Software Plan (4.2a), Software 

Standard (4.2b), Software Method (4.2c), and Software Tool (4.2c), as listed in Figure 4. 

There may be Additional Considerations, for the particular application domain (Grant & 

Ajjimaporn, 2018). This work focus on the creation of the UML Activity Diagram on the 

“Conduct High-Level Design” phase of the methodology which also covers the “Verify 

High-Level Design” phase as well.  
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Figure 5. UML Activity Diagram of DO-178C Model-Driven Methodology. 

 

2.5 Contrast Academia and Industries 

The main purpose for the reverse-engineering of a software is to expand the 

information about the software development process, to fully understand the software 

functionality. With that being the main product of the reverse-engineering, there can be 

many other benefits stemming from understanding the function of said parts. The benefits 

of reverse-engineering can be categorized into two aspects: the academic aspect of the 

reverse software engineering and the industrial benefit from the reverse-engineering. 
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2.5.1 Reverse Engineering in Academia 

For academia, reverse software engineering reuses the older programs to help develop 

new systems with enhanced functionality (Rashid, Salam, ShahSani, & Alam, 2013). The 

main concept for the usage of reverse software engineering in academia is “innovation”, 

specifically to build more complex and better programs by understanding the old existing 

programs. This concept is shown in many of the computer science classes at the 

University of North Dakota (UND). For example, an assignment for a computer science 

class “Data Engineering and Management” was to construct an Android application from 

Android Studio and integrate Android Google Maps to create a native mobile app. The 

students were then shown the examples of a few small programs including source codes, 

such as a basic app that uses GPS to obtain longitude and latitude data then display them 

to the user. The students were then shown a few more applications that implemented the 

Google Maps Android API using Android Studios. The students could then reverse 

engineer the example programs for specific parts and functionalities that they needed to 

complete the assignment. This example shows that the reverse software engineering in 

academia plays a very important role. It teaches the students about the topics of the class 

so that they can use the concepts that they learn to write programs.  

 

Figure 6. UND Requirements for Undergraduates Majoring in Computer Science. 
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“In many USA universities, reverse-engineering is normally taught as an “add-on” to 

software development methodologies.  The resulting situation is that graduates leave 

these software engineering programs with minimal knowledge about reverse-engineering 

then find themselves in a work environment where reverse-engineering is of paramount 

importance. Figure 6 shows the requirements for getting a bachelor of science degree in 

Computer Science from the University of North Dakota during the year 2018-2019. As 

shown from Figure 6, there was no emphasis on the reverse-engineering aspect of the 

computer science program, even though the idea of reverse-engineering were applied 

during the Computer Science I and Computer Science II classes (University of North 

Dakota, 2018). The experience of the faculty researchers on the project documented in 

this report, and from a prior project on the development of a UAS airworthiness system 

for monitoring UAVs operation in a restricted airspace, is that there needs to be a change 

in the pedagogical approach to teaching reverse-engineering. 

The student researchers on this project and a prior project, in which reverse-

engineering was also applied, expressed specific and strong opinions on the need to be 

taught formal approaches to reverse-engineering.  Some of these student researchers had 

participated in internship programs at a variety of industrial organizations and had been 

exposed to reverse-engineering tasks.  There was a unanimous conclusion that reverse-

engineering is important to the software development activities in the real-world project 

and consequently, they think the process should be offered in courses on the same level 

as forwarding engineering topics.  There was also a consensus among the student 

researchers that working with code at the start of the project was challenging and this 

challenge may be alleviated if they had a grounding in techniques to reconstruct the 

code.” (Grant & Ajjimaporn, 2018) 

2.5.2 Reverse Engineering in Industry 

The other aspect of reverse software engineering is to be used in the industry setting. 

For the industry, everything must be as efficient as possible to maximize profit gains and 
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minimalize deficit. Reverse engineering can help by offering a more efficient way to 

perform software debug and maintenance. By reverse-engineering software, one can add 

comments and notes to the source code to clarify and specify the intention of the section 

of the code. A program usually has more functionality than it intended to, and by 

understanding each and every line of the code, the debugging phase of the software can 

be reduced and the misunderstanding during the software development phrase will be 

lessened. During the reverse engineering process, the source code is not altered, but more 

information about it is generated (Muller, Wong, & Tilley, 1994). Another major usage 

of the reverse-engineering in the industrial area is the fact that many of the original 

programmers who wrote the code for a program do not keep working on that program, 

but rather pass it onto the next phrase or for future uses. Which means that the person 

who worked on the program next will have to first study the source code to find out how 

the program works, which will take time and money to do so. But with reverse-

engineering, one can lessen the burden on the next programmer by explaining the 

functions and code in the comment sections. 

2.6 UML Activity Diagram 

The Unified Modeling Language or UML is a general-purpose, developmental, 

modeling language in the field of software engineering, that is intended to provide a 

standard way to visualize the design of a system. (Booch, Rumbaugh, & Jacobson, 1998) 

The UML Activity Diagram is an important diagram in UML to describe the dynamic 

aspects of the system. The diagram performs similarly to a flowchart that represented the 

data flow from one activity to another with the purpose to capture the behavior of the 

system. (TutorialsPoint, 2018). The purpose of the activity diagram works wonderfully 

in fulfilling the requirement of reverse-engineering. Since the UML Activity Diagram 

shows the flow of data, the sequence of the control flow, and how each decision branched 

out, the purpose of the methods in the source code can easily be interpreted by the user 

of the diagram.  
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UML Activity Diagram was mainly used as a flowchart to show the activities 

performed by the system. Before drawing the diagram, there are multiple elements to be 

identified, such as the activities, the association of the activities, the condition, and the 

constraints. Once the elements are identified, the diagram flow design can start. The UML 

Activity diagram has a template of how a general diagram should look, and are mostly 

consist of 5 elements.  

 

Figure 7. Example of Activity Diagram.3 
 

The UML Activity Diagram as shown as an example in Figure 7 starts the flow with a 

solid black circle, representing the start of the process. Each of the activity will be 

represented by the rectangle with round edges, with a phrase representing the activities 

inside the shape. Connecting all the activity will be a directional line with a point toward 

                                                 
 
 
3 “UML Activity Diagram”, digital image, viewed 13th November 2018, 

<https://www.tutorialspoint.com/uml/uml_activity_diagram.htm> 
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the next activity, representing the “directional flow” from one activity to another. The 

flow can only be in one direction. If the activity is a condition, the shape will instead, 

becomes a rectangular-diamond shape, with the condition phrase itself above the shape, 

and the resulting phrase being under the shape around each branch’s directional line. A 

certain version of the UML Activity Diagram may have the conditional phrase in a normal 

activity shape prior to the conditional diamond for a more organized look. At the end of 

each and every branch of the UML Activity Diagram, there must be a termination point, 

represented by a similarly shaped black circle to the starting point, but with an additional 

circle around the shape (TutorialsPoint, 2018).  

2.6 Support Tools 

 
Figure 8. StarUML Windows Interface 

 
The UML Activity Diagram created during this thesis were created in StarUML 

software, an open-source software to generate many types of diagrams using an easy to 
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use graphical user interface meant for professional persons and educational institutes 

(StarUML, 2018). The reason StarUML is chosen for the creation of the UML Activity 

Diagram was due to its accessibility and its open-source nature. StarUML is a multi-

platform software which means that the software can be installed and use on all 3 major 

operating system, Windows, Mac OS, and Linux. The accessibility nature of the software 

means that the generated diagram can be accessed by many of the users as possible, as 

long as the user owned the software and is installed in their machine. But that part is also 

covered by the open-source nature of the software, which means that the software is free 

to download and use. So, any user should have access to the software to be able to view 

the diagram. Figure 8 shows StarUML application user-interface that was used in the 

creation of the diagrams made for this thesis as StarUML version 2.1.4 on machines with 

Windows 7, 8.5, and 10 OS. The “Activity Diagram” option was selected to create each 

of the diagrams. The modeling concepts used for generating the diagram as shown on the 

bottom left of Figure 8 was: 

• Action: a bubble to create an activity. Can click and drag to create the activity to 

be a specific size or click to place a default size bubble to just put information in 

and let the auto-resize feature adjust the bubble size to perfectly fit the information 

in the activities.  

• Initial: the initial node is crucial in all activity diagram as it marks the starting of 

the flow in the diagram and locating the first activity to run in this program. There 

can only be one initial node per diagram.  

• Final: the final node or terminal node is a node that marked the end of the path 

flow in the diagram. There can be more than one final node in a single diagram 

due to the fact that a single program can have multiple termination points.  

• Decision: the decision diamond split a flow into at least two directions according 

to the conditional statement in the immediate activity prior to the decision node.  

• Control Flow: an arrow used to represent the flow of the activity from one to the 

next, with the arrowhead pointing toward the next activity. The control flow line 
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can have multiple styles, either rectilinear or oblique, which is mostly up to the 

developer of the diagram to decide.  

The usage of these options will be explained in more detail in conjunction with the 

UML activity diagram made for this thesis in chapter 3.  

 
Figure 9. bubbl.us Web-Interface 

 
In order to update “Evolution of Methodology” (Figure 1) to the current time however, 

bubbl.us was chosen as a platform to generate the chart instead of the StarUML. Bubbl.us 

is a free to use, web-based mind map generator, which is perfect for a one-timed 

generation of a graphical chart image. Bubbl.us works the same on all platform since it is 

web-based software, so it provides a degree of accessibility to the user. The software also 

able to link itself onto Google Drive to directly deposit the generated chart for easy access. 

However, bubbl.us is not powerful enough to generate a more detailed diagram to be used 

as the UML Activity Diagram (LKCollab, 2018). 

Figure 9 shows the web-interface of bubbl.us, where the user can make multiple mind-

map type diagrams on each tab on the top left. If the user clicked on any of the blue “+” 

symbols on the right and bottom of the selected item, another bubble for the purpose of 

making the diagram will be created. Using this web-interface, the user can customize the 

font and how the text inside the bubble looks, the user can also customize other parts of 

the bubble such as the color and the pointer to their liking.  
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3. APPLICATION OF METHODOLOGY 

3.1 Source Code Background 

Research showed that many software development projects fail because of the inability 

to deliver the product in a timely and cost-effective manner, i.e. the software crisis.  In 

1998, Paul Dorsey reported the reasons of systems projects to fail (Dorsey, 1998), which 

one of those is the lack of use of an appropriate software development methodology and 

focusing the development efforts on coding. The initial strategy for modeling the system 

was used as an Agile based methodology. After developing the system’s user interface 

and generic algorithm solutions, the coded components of the system were rapidly 

produced. Then, after consultation with the stakeholders, the code was refined. 

3.2 Modified Methodology 

 Our study modified the development methodology in use to accommodate the 

work of the initial strategy.  This modification was an iterative reverse engineering 

process that is illustrated in Figure 10. 

 

Figure 10. Reverse-Engineering Modified Model-Driven Methodology 
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The process model of Figure 10 was developed to incorporate a reverse-engineering 

strategy to complement the forward-engineering activities.  This process model also 

illustrates the use of formal specification techniques for validating the reverse and forward 

engineering activities.  The “Design UML Models” activity of Figure 10 is reflective of the 

Conduct High-Level Design 5.2.2” and “Conduct Low-Level Design 5.2.2” of Figure. 5, and 

the “Formal Models” activity of Figure 10 is synonymous to the “Verify High-Level 

Design 6.3” and “Verify Low-Level Design 6.3” activities of Figure 5.  The green (solid) 

arrowed lines represent the forward engineering path through the process model, while 

the red (broken) arrowed lines represent the reverse engineering path through the 

model.  The forward engineering process commenced with the “Design UML Models” 

activities, while the reverse engineering process commenced at the “Program Code” 

activity. 

This modification to the development methodology then transitioned along the reverse 

engineering line “Design recovery” line, from the “Program Code” to representative 

“Design (high and low) UML Models”.  The UML models were then transformed to a 

formal representation in the Z notation for analysis during the verification phases of the 

Figure 5 methodology.  If the models pass the verification, then work transition along the 

“generate” arrowed lines to the production of “Program Code”.  Otherwise, work transition 

along the “model correction” arrowed line to the UML models and the next iteration of the 

process commenced with the identified errors being corrected in the models (Grant & 

Ajjimaporn, 2018). 
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3.3 Project Implementation 

After developing an acceptable generic algorithm solution for the airline-gate 

assignment problem and a user interface for the gate-assignment conflict resolution 

system were done, then the UML activity diagram was developed for a source code of an 

aircraft-gate assignment system. 

 To verify, validate, and system documentation of reverse engineering a set of 

UML models of the genetic algorithm system, we selected to identify this system as a 

Level-A DO-178C system, in order to exercise as many of the models-driven 

methodology’s activities.   

 The main UML model developed was a set of activity diagrams that was 

implemented at the detailed-level of system modeling. The limitation to producing just 

one type of UML model was borne out of the airline system administrators’ preference for 

just the necessary models to facilitate any immediate small-scale bug fixes, versus models 

to be used for system evolution. The nature of the contract between UND and the airline 

called for the software system’s on-going maintenance (evolution) to be further contracted 

out to a third party. A sanitized example of a segment of one of the UML activity diagrams 

that were developed is presented in Figure 11 (Grant & Ajjimaporn, 2018). 
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Figure 11. UML activity diagram of Aircraft-Gate Assignment System. 
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 The diagram was made to represent the entire source code, by going through and 

analyzing the source code line-by-line. Whenever there is a condition in the source code, 

the diagram branches out and interact with other activities. To directly see the flow of the 

program, the directional arrows in the diagram were assigned. 

 UML Activity Diagrams were developed for source codes of an aircraft-gate 

assignment system. The source codes are written in C which makes the UML Activity 

Diagram much simpler due to the lack of custom objects. The source code includes many 

header files that will be excluded in the making of the activity diagram due to their main 

function is to provide additional functionality to the source code and those functionalities 

have no need to be represented in the diagram.  

 Since StarUML support multiple diagrams in a single project file, the decision 

was made to separate the StarUML’s .mdj (metadata-json) files into 3 files to represent 

each of the c language source code given. Each separate diagram will represent a method 

from the source code. The flow of the diagram will be from top to bottom, then from left 

to right in the case that the space to draw the diagrams given by StarUML weren’t enough 

(which there were several cases that weren’t). There was some unconventional usage of 

the diagonal line to connect between activities instead of the traditional rectilinear (only 

horizon and vertical lines) to lower the amount of cluttering since there were many cases 

where more than a few activities were linked to a single activity. The diagram seen in 

Figure 11 was colored to make it easier for viewing in a plain white paper of thesis. 

 

cout << "current_dart_message=" << current_dart_message 
<< ".xx" << endl; 
 
//  GET GATE NUMBER FOR TITLE 
 hold_gaterecno =  gate_recno; 
 strcpy (EG_gate_id, gate[gate_recno].id); 
 sprintf (title, "GATE  %-4.4s", EG_gate_id); 

 
Figure 12. Code Snippet from UML Activity Diagram. 
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 The beginning of the method will have denoted by the initial node icon 

represented by a black circle as seen on the top left-most of the diagram in Figure 11. 

Any of the traditional statement in the source code will be summarized by a generic title 

due to the lack in their choice in the flow of the diagram. Figure 11 does not illustrate any 

significantly unusual activity diagram modeling technique, but with the exception of the 

listing of some activities with generic titles, such as “Activity 1”, “Activity 2”, etc. This 

was done in order to capture very low-level details of the program code, from which the 

model was reversed engineered. The models were developed in the open-source tool 

StarUML and the contents of “Activity-Xs” were stored in the documentation fields of 

the models.  As implemented in this activity diagram, “Activity 2” is the snippet of code 

presented in Figure 11 

 

Figure 13. Example of a condition in UML Activity Diagram 
 

 The conditional statement such as if...else, for...loop and try...catch will be the 

statements that potentially change the direction of the flow of the diagram, and thus will 

be represented by an activity prior to the diamond conditional icon as seen in Figure 13 

under the activity labeled “compare string current_spot_message “ENTER SPOT XX”. 

The conditional statement such as this will direct the flow of the data to an activity if the 

output to the conditional statement return as TRUE, and to another activity if it returns as 

FALSE. In any and all conditional statement, the result will always be of a Boolean type, 

which is either TRUE or FALSE, there is no “in-between” and there is no “no answer”. 

From the example snippet of the diagram shown in Figure 13, if the result of the 
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comparison between a string variable “current_spot_message” and “ENTER SPOT XX” 

is TRUE, then the program will proceed to do the activity to the right, following the 

control labeled “TRUE”. In the case that the statement returns as FALSE, the program 

will proceed toward the activity following the control labeled “FALSE”.  

 

Figure 14. Example of a conditional statement with only one activity generated 
 

 The conditional statement seen in Figure 13 is an example of the statement that 

proceeded to follow by two activities made specifically for the given conditional 

statement. Sometimes, the conditional statement only needed to generate one activity to 

flow into for a condition and skipped the generated activity to the next activity in the flow 

for the other condition. Figure 14 shows the example of this type of conditional statement 

by that if the conditional statement returns FALSE, the program will proceed to the 

activity generated specifically for the conditional statement (copy string 

current_spot_message “SPOT ASSIGNED BY GROUND”), then proceed to the next 

activity (Activity_3), but if the conditional statement returns TRUE, then the flow 

proceeds directly to the next activity (Activity_3).  
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Figure 15. Example of a loop in the UML Activity Diagram 

 

 One benefit of using a UML activity diagram to represent the code is how easy it 

is to identify the usage of a loop in the source code. Loop in the UML activity diagram 

was shown by the “circular” control flow of the diagram. Figure 15 shows an example of 

the loop in the diagram by following the cyclic directional control flow from the 

conditional activity “get j less than AG_NUM_FLT_LABELS” through a TRUE path to 

“Activity_19” and activity “increment j”, then back to the starting conditional activity of 

“get j less than AG_NUM_FLT_LABELS”. The example uses a “for...loop” conditional 

statement that took advantage of the local variable “j” that were created for the specific 

purpose to be a counter during this loop. The conditional statement uses the local integer 

variable “j” to compare to the integer variable AG_NUM_FLT_LABELS, if the variable 

“j” is lower than the given variable, the flow will be directed to an activity, then to a 

specific activity that increment the variable “j” so that it can be used to compare again in 
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the starting conditional statement. The example loop was designed to run through 

Activity_19 several times until the variable “j” no longer contains value less than the 

given value. In computer science, a loop can be thought of in the terms of multiplication 

of the activity, on how many times an activity will run. Figure 15 also shows the “double 

loop” which contains a loop inside another loop, which means that with each 

incrementation of the outer loop, the inside loop will re-initialize the local counter. The 

double loop is a multiplication of multiplication in terms of the activities ran. From the 

double loop in Figure 15, every time the conditional statement “get j less than 

AG_NUM_FLT_LABELS” finished its loop, it increments the local variable “i” counter 

by 1, which plays part in the outer loop of “get i less than headRows”. It means that when 

the activity flows back to the “get j less than AG_NUM_FLT_LABELS”, the “j” variable 

re-initialized so that the “j” variable returns to its initialize values.  

  

 

 
Figure 16. Example of a switch...case statement in UML Activity Diagram 

 

 An exception to the conditional statement was made when a “switch...case” was 

encountered. For switch...case, the conditional statement no longer flows as a binary 
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result of TRUE or FALSE, but rather with the multiple result branches from the 

conditional diamond as shown in Figure 16.  

 At the end of every diagram, or when an encounter with the statement “return” in 

the source code marks the termination of that method. The termination node was 

represented by a black solid circle inside a black circle outline as shown at the lower left 

in Figure 11. The termination node in Figure 11 was a result from the conditional 

statement which can either result in termination of the method or proceeds to activity 

“Activity_4”. Every activity node should either flow to another activity, to a diamond 

conditional node, or to termination node. 
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4. RESULTS 

With the data flow of the source code being represented in the visual format of the 

UML Activity diagram, the interaction of each component can be easily understood and 

identified. The user can see the information that goes into each method, and what each 

method required. Once the user understands the flow of data within the program, the user 

can validate and verify that the software was developed with a correct method. 

4.1 Types of Model Developed 

 

Figure 17. expanded diagram figure 1 

 

The continuation of figure 1 chart shows the latest version of UML notations being as 

recent as version 2.5.1 from December 2017. This continuation chart was developed for 

this research work. (Object Management Group, 2017) There are methods and notation 

that works on a more specific system such as Unified Component Model for Distributed, 

Real-Time and Embedded Systems. This model specification is very recent as their first 
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version, 1.0 was adopted on Jan 2018. (Object Management Group, 2018) Most of the 

modern methodologies that used Unified Process now evolve to be based on Disciplined 

Agile Delivery (DAD) or the more modern Enterprise Unified Process (EUP) instead. 

Figure 17 also shows the current version of SysML of 1.5 since its branched out from 

UML 2.1.2 back in 2007. The Business Process Modeling and Notation or BPMN was 

created to represent business processes in a graphical way so that end-users can 

understand processes concept (Campos & Oliveira, 2013). The chart also shows how the 

relationship between the Unified Process-based models such as RUP, AUP, EUP, DAD 

and new EUP. Lastly, Figure 17 shows the last relatives of OOSA, the xUML and how it 

now has branched into Foundational UML (fUML) and the Action Language for fUML 

(Alf).  

During the work for this thesis, the Department of Computer Science researchers 

formed three teams. The first team focused on developing the genetic algorithms to 

implement the aircraft-to-gate assignment solution. The second team focused on the 

design and implementation of the user interface of the system. The third team focused on 

the documentation of the system, and this work of the thesis is from the third team (team 

III). 

The effort was centered on that of reverse engineering a set of UML models of the 

genetic algorithm system for the purpose of verification, validation, and system 

documentation.  It was opted to identify this system as a Level-A DO-178C system, in 

order to exercise as many of the model-driven methodology’s activities, as represented in 

Figure 4.  The intent was to garner as many pedagogical benefits as possible for 

incorporation into the software engineering curricula of the department and provide 

comprehensive system documentation artifact to the stakeholders. 
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Figure 18. Example of a full-size diagram 

 
Figure 18 shows an example of one of the full-size diagram developed for this thesis. 

The diagram was made small to capture the detail of the software system and to show the 

size and work done. The example shows the many components of the UML activity 

diagram and how they come together into a single diagram.  
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4.2 Description of Activity Diagram 

Modified UML activity diagrams were created to answer the requirement in reverse-

engineering for the purpose of verification and validation of the source code. There were 

18 diagrams created from the 3 source files given, with the majority of the diagrams 

belong to the assign gate source code. The average size of the models produce was 

approximately 100 bubbles and 30 decision nodes from an average line of code of each 

source code at 1300 lines. The main UML model developed was a set of activity diagrams 

that was implemented at the detailed-level of system modeling.  The limitation to 

producing just one type of UML model was borne out of the airline system administrators’ 

preference for just the necessary models to facilitate any immediate small-scale bug fixes, 

versus models to be used for system evolution.  . The amount of time spent at each stage 

of the work are: approximately 10 hours understanding the code and its internal 

connections, 15 hours researching for an effective diagram to be representing the code, 

25 hours implementing the conversion of the code to diagram and up to 50 hours verifying 

and checking for errors in the diagram. The time described do not includes the changes 

to the code as the project progress and the changes made to the initial diagram.  

 The reverse engineering of the source code acts as a verification method to ensure 

that the source code produced the correct result. the UML activity diagrams show the 

work of the low-level design of the software system and its data flow, making the process 

of knowing whether the software met the specification easier. Using the graphical models 

such as UML activity diagram for specification manages complexity and improves 

reusability and analytical capabilities (Beckmann, Vogelsang, & Reuter, 2017), 

(Apfelbaum & Doyle), (Vogelsang, Eder, Hackenberg, Junker, & Teufl, 2014). 

With the data flow of the source code being represented in the visual format of the 

UML activity diagram, the interaction of each component can be easily understood and 

identified. The user can see the information that goes into each method, and what each 

method required. Once the user understands the flow of data within the program, the user 

can validate and verify that the software was made with a correct method. 
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Figure 19 shows the steps taken from the reverse-engineering modified model seen in 

figure 10. UML activity diagrams of the source code were made to capture the very low-

level details of the program flows. Each activity of the diagram can be traced back to a 

section of code within a method. This process is called traceability, which plays a major 

part in verification process of DO-178C (Jacklin). With each method being a function to 

perform an action, one can easily see a link between the source code and the action it 

performed. By crafting the activity diagram straight from the source code, this allows the 

viewer to see that each line has a purpose that leads to the fulfillment of the low-level 

requirements of the system. The user can verify that each line has purpose, and thus, 

ensuring that the system is complete. This shows the low-level requirements aspect and 

verification aspect of the software system which specifically shown as parts of the 

requirements needed for DO-187C compliant model-driven methodology as “Conduct 

Low-Level Design 5.2.2” and “Verify Low-Level Design 6.3”. By complying to the DO-

187C model, UML activity diagram has a place in the domain of safety-critical system. 

The UML activity diagram also works as part of the “required documentation” step of the 

system which cuts down the need for many other diagrams that would be generated for 

the system. Another aspect of UML activity diagram that make it the contender to fit the 

preferred model for any safety-critical system, due to its graphical nature, is its ability to 

be interpreted by any user and not just those that took part in the development phase of 

the system.  
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Figure 19. Steps of reverse-engineering modified model 
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5. DISCUSSION 

5.1 Lesson Learned 

UML-based development methods were already used successfully for integrating with 

safety-critical systems in embedded software (Anda, Hansen, Gullesen, & Thorsen, 

2006). There were also a few approaches to reverse-engineer using UML diagrams. These 

were class diagrams and sequence diagrams, the combination of which can help with the 

verification component of reverse engineering similar to the activity diagram (Viktoria 

Ovchinnikova, 2014).  

Reverse-engineering in software developments are usually synonymous with the 

usage of model-based methodology and the usage of the diagram since the visual 

modeling represents the behavior of the system at a higher abstraction level. It is 

important to create a well-constructed model due to its unambiguous and easy to 

understand nature. Otherwise, the model can be misinterpreted (Angyal, Lengyel, & 

Charaf).  

The UML activity diagram was made to capture the operational workflow of the 

software system, and thus not useful in trying to obtain a static class structure, which is 

captured best by UML state diagram or the internal behavior, which is captured best by 

UML sequence diagram. UML diagrams are imprecise and do not apply well to the 

distributed system. The reason why UML diagrams are imprecise is due to the flexible 

nature of UML diagram, which leads to subjective interpretation, but that can always be 

fixed with a heavy usage of documentation (Buse).  

5.2 Difficulties Using UML Activity Diagram 

A UML activity diagram represents the possible flow of the activities’ interactions, 

but it does not show what specific variable in the source code was responsible for the 

flow (outside the conditional statements). There is a reason why UML diagrams are not 
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consisting solely of an activity diagram, but also many others such as class diagram, 

sequence diagram, etc. Using a combination of the diagrams can help with managing the 

complexity of software systems and making it easier to spot both desirable traits and 

undesirable traits of the programs. Due to the nature of the UML activity diagram 

structure, it is hard to capture the specific variable that passed into the method without 

the usage of other diagrams or breaking the UML activity diagram model.  
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6. CONCLUSIONS 

6.1 Acceptance of Work 

As the activity diagram represents the pseudo code of the program in a graphic way, 

it should be a good candidate to be used as a tool to help in reverse-engineering the safety 

critical systems of the airline system. The UML activity diagram represents many aspects 

required in the deconstruction phase of the reverse-engineering methodology. With the 

source code in the graphic diagram form, it should be much easier to identify the structure 

and functions and determine how each aspect of the program interact with each other so 

that the activity diagram can be used in the formal methodology for reverse-engineering 

(Beckmann, Vogelsang, & Reuter, 2017). 

6.2 Experience in Conducting Reverse Engineering  

University of North Dakota’s Data Engineering course taught the graduate students to 

use reverse-engineering to create an android application and web-based application.  The 

android application created for Data Engineering class must integrate Android server 

connection and some form of utilization for Google Maps API. The student learns both 

of the techniques by following step-by-step instructions on how to set-up the application, 

but in order to apply the concept to the application, students were first introduced to the 

example programs that work with both concepts fully integrated into the program. The 

student then deconstructs the example code to locate the part of the example program that 

is responsible for the connection to the android server, and for the Google Maps 

API.  After locating the specific chunk of code and fully understanding its concept and 

functionality, the student proceeds to integrate those methods and functions into their own 

code, making an original application with the two functions. A similar concept was 

applied for the web-based application programming exercise. This showed that the 

concept of reverse-engineering had already been applied broadly throughout the 

computer science field, even though the concept itself had not been taught as a class.   



45 
 

 

Figure 20. Example code used in the Computer Science II 
 

Another computer science class taught at the University of North Dakota, Computer 

Science II, is also taught with the idea of reverse-engineering as a background practice. 

In Computer Science II, the students learn basic to intermediate object-oriented 

programming concepts in Java, from objects to pointers. The students learn the concept 

aspect of the topic during the lecture. Once a week, the student gets to apply the concept 

to practice during the lab hours where the teaching assistant assigns a complex exercise 

based roughly on the current concept covered in the lecture during the previous week. 

The assignment is usually accompanied by an example code where the concept of the 

exercise is applied roughly in a similar fashion. The students can use the example and 

modify it to fit the exercise description in the same fashion as described earlier, with 

reverse-engineering. Figure 20 shows an example of the code the student may deconstruct 

to fit their own use during the learning of “Recursive Methods” concept in Java (zyBooks, 
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2018). The students can see the example code and its generated result to match with the 

concept of recursive methods, a method that called itself recursively. The students would 

notice that the method of “countDown(int countInt)” has a statement that called itself on 

“countDown(countInt-1);” This kind of statement was never shown before in the class, 

and they should be able to figure out that this method will first be given a starting number, 

then call itself with the same number lowered by 1 until the method itself had a 0 as the 

countInt variable to be able to terminate out from the recursive loop.  

6.3 Contribution to the work 

Principal contribution to this work made by the author was in the development of the 

activity diagrams by searching for a meaningful and accurate representation of the 

methodology and apply the diagram to the code, modification of the applied 

methodology, interviewing the code developers, and in developing the code components 

in the activity diagram. 

6.4 Future of Reverse Engineering 

Reverse software engineering will be a major study topic for as long as there is 

innovation in the field of computer science. As the program gets more and more complex, 

the need to understand the base functionality of said software will increase and the usage 

of reverse-engineering will be a must. Since UML activity diagram has potential to help 

reverse-engineer safety-critical software, it should be applied to other fields such as the 

medical field and the military field. The usage of UML activity diagram in the medical 

field can help with conveying the information about the patient to others due to the easy-

to-understand nature of diagrams. Either way, the use of diagrams in the process of 

reverse-engineering of a safety-critical system helps in reducing the risk of loss of life 

and make the process of understanding a complex system easier.  

Due to the importance of the role of the diagrams in the process of reverse-engineering, 

there should be an automatic process in generating a different kind of UML diagram 
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directly from the source code, where the user can decide which UML diagram will 

represent the desired traits of the program for the purpose of verification and validation. 

Since the coverage of a single type of UML diagram might not fully cover all the desired 

traits of the process of reverse-engineering, it might be more useful for multiple types of 

UML diagrams and models to be applied to the program at one time.  
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