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ABSTRACT 

This project involved the development of a technology for segregating fuel-based 

contaminants (char) from oxygen carrier material in the context of chemical looping combustion 

(CLC) application. In chemical looping, the well-mixed solids that flow from the fuel reactor 

consisting of char and oxygen carrier particles cannot be completely separated into their 

constituents before they enter the air reactor. The slip of carbon leads to char oxidation in the 

wrong reactor and poor carbon dioxide separation efficiency. An efficient method to separate 

char from oxygen carrier material is critical for the deployment of chemical looping technology. 

This segregation system consists of a novel combination of methodologies that together provide 

high separation efficiency under the extreme conditions of chemical looping systems. 

Experimental results obtained from this project have shown that separation of char from 

varying particle size distributions of oxygen carrier (ilmenite) are achievable under both ambient 

and elevated temperatures (300-400℃). Tests show that separation efficiency is directly 

impacted by the average particle size of the oxygen carrier relative to char. Results suggest that 

as oxygen carrier particles undergo attrition due to cycling in a chemical looping combustion 

system, a higher oxygen carrier recycle (split) is necessary in order to maintain high separation.   

The technology and test methods developed have demonstrated the ability to improve 

carbon capture rates within chemical looping combustions systems and will continue to undergo 

development with the goal of lowering greenhouse gas emissions from fossil fuel combustion.  
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CHAPTER I 

INTRODUCTION 

Due to dependency on fossil fuels for energy production, the global atmospheric 

concentration of C  has increased strongly to about 397 ppm in 2015 [1]. Concentrations above 

450 ppm are considered to lead to catastrophic climate change, which is only 15% over today’s 

value. A reduction in emissions of greenhouse gases, particularly C , is necessary.  

Several strategies are being considered and deployed to reduce C  emissions, including 

reducing energy consumption, increasing energy efficiency, switching to less carbon-intensive 

fuels (natural gas instead of coal), increasing renewable energy sources, and use of nuclear 

energy. However, no single technology option is likely to provide a majority of emissions 

reduction. In this context, C  capture and storage (CCS) appears to be a necessary and 

additional option. According to some recent studies [2,3], CCS could account for about 20 

percent of the total C  emission reductions needed to stabilize climate change impacts.  

Chemical Looping Combustion 
 

Chemical Looping Combustion (CLC) has emerged as an attractive alternative for C  

capture, where a near-pure C  stream is produced from fossil fuel combustion without the use 

of oxygen obtained from air separation. In this type of system, a solid carrier is used to bring 

oxygen to the fuel to convert it to a pure C  stream. The solid is then regenerated (oxidized) 
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separately using air. This technology is expected to be more cost-effective and energy efficient 

compared to oxygen separation from air by other processes.   

Figure 1 presents a simplified schematic for the CLC process. The oxygen carrier (OC) is 

usually a solid, metal-based oxide ( ). In the fuel reactor, the OC material reacts with the 

introduced fuel to release oxygen and oxidize the fuel. In this manner, the products of fuel 

oxidation (C  and O) are kept separate from the rest of the flue gases/nitrogen, resulting in a 

concentrated C  stream. The fuel reactor typically operates at an elevated temperature (700-

1000 ºC). After reaction in the fuel reactor, the OC, now in its’ reduced form ( -1), is cycled 

to the air reactor (typically 800–1000ºC) where it is oxidized. Heat is extracted from the gases 

leaving the fuel and air reactors to produce steam, drive a turbine, and generate power. The 

overall chemical reactions in the two reactors, shown for an iron oxide OC, can be expressed as:  

Oxidizer: 2   + ½    → 3     

Reducer: Cn m + (6n+3m)    → n C  +m O + (4n+2m)  

Net reaction: Cn m + ½ (2n+m)  → n C  +m O + heat 

 
Figure 1. Process Schematic for Chemical Looping Combustion 
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The Problem 
 

When a solid fuel is used, only a portion of the fuel is converted in a single pass in the 

fuel reactor. This necessitates the need for segregation of the material leaving the fuel reactor 

into unconverted fuel (char) and OC, performed by a char separator. The separated char can be 

returned to the fuel reactor to increase its conversion.  

If unconverted fuel is transferred to the air reactor, it would be combusted in air releasing 

its CO2 with the N2-rich gases. Since the primary motivation of chemical looping technology is 

to achieve a high carbon capture rate (CCR), an efficient char separator is mandatory. The CCR 

is the percent of fuel carbon that is converted to CO2 in the fuel reactor. The design and 

development of such a char separation device is the object of this research project.  

Oxygen Carriers (OC) 
 

The oxygen carrier is the most important component of a CLC system. The role of an OC 

is to transfer O2 between air and fuel efficiently. Suitable oxygen-carriers for solid fuels in the 

CLC process must have selectivity to form CO2 and O, enough oxygen transport capacity, 

high reactivity, high mechanical strength, attrition resistance, and negligible agglomeration 

tendency. Besides these, the OC must also be abundantly available, environmentally benign and 

inexpensive. Each of the different types of oxygen carriers are discussed further below, with their 

particular suitability for use with solid fuels.  

Copper-Based Materials 

Copper-based materials have shown to be very reactive, with full combustion of 

gasification products at a mass ratio of OC/solid fuel of only 10:1 at 850 °C [4]. Cu-based 

oxygen carriers are especially suited for a chemical looping with oxygen uncoupling (CLOU) 
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process, where oxygen is released from the carrier in the fuel reactor. Copper-oxygen carriers 

prepared by impregnation on SiO2, TiO2, ℽ-alumina or co-precipitation with alumina [5] have 

excellent chemical stability and mechanical strength after multi-cycle testing. Other supports 

have shown unacceptable levels of attrition. The main concern with Cu-based oxygen carriers is 

agglomeration due to melting. A content of less than 20% CuO was required to avoid 

agglomeration issues. Forero et al. [6] analyzed the behavior of a Cu-based oxygen-carrier with ℽ 

- . Stable operation for more than 60 h was only feasible below 800 °C in the fuel reactor 

and 900 °C in the air reactor.  

Adánez et al. [7] prepared stable bimetallic Cu-Ni/ O3 particles and observed that the 

presence of NiO in the oxygen carrier stabilized the CuO phase. Long-term tests in a CLC unit 

under continuous operation showed high metal oxide utilization, and low and stable attrition rate 

after 67 h of operation at high temperature. This was the first time that a Cu-based oxygen-

carrier, prepared by a commercial manufacturing method, exhibited good behavior at these 

temperatures.  

The required inventory of Cu-oxygen carrier is significantly lower (120-200 kg/MWth) 

compared to other OCs (e.g. Fe-based OC-2000 kg/MWth). Even with lower inventory 

requirement, the significantly higher cost implies that it needs to have high particle lifetimes and 

excellent attrition resistance. Density of the Cu-based OC ranged from 3700-5400 kg/ . 

Iron-based Materials 

Iron-based materials represent an abundant, low cost, environmentally benign alternative 

for OC material, but have much lower reactivity and consequently a high OC to solid fuel ratio 

(50-100:1) which results in a low overall char content making separation a challenge. At Ohio 

State University [8], the iron-based OC developed incorporates inert support materials, 
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increasing the reactivity and recyclability. A 200-hour test performed in a 25 kWth chemical 

looping facility with lignite and sub-bituminous coal was presented by Bayham et al. [9], and 

showed minimal CH4 /CO/H2 slippage through the fuel reactor. Particle size of the oxygen 

carrier was around 1.5-5 mm, the fuel reactor was operated as a moving bed and the air reactor as 

a fluidized bed. Other researchers have used Fe-based carriers, including Leion et al [10]. An OC 

of 60 wt.% Fe2O3 and Mg O4 as inert was used with petroleum coke as the fuel. High 

reactivity was found with the gasification products (H2 and CO) of coke with steam. Shen et al 

[11] used a biomass fuel in a continuous 10 kWth CLC system and accomplished a 30 h test. The 

fuel reactor temperature was varied between 740 and 920°C and CO2 was used as a gasification 

medium. Low reactivity of the oxygen carrier was observed due to sintering.  

The use of cheap natural minerals such as ilmenite (iron titanate) represents another 

promising OC candidate. Berguerand and Lyngfelt [12,13] operated a 10 kWth unit using coal 

and petroleum coke; combustion efficiencies of 85-95% were obtained. Thon et al. [14] used 

ilmenite in the size range of 100-400 microns. The solid fuel was lignite with 70 percent smaller 

than 150 microns. Activated ilmenite (after circulating in reactor system) was determined to have 

a density of about 3600 kg/m3 [15]. Results also showed a low tendency for attrition and 

agglomeration for this material and its low market price makes it a promising option for use as 

an oxygen carrier. 

Calcium-based Materials 

General Electric (GE) Power (formerly Alstom) is developing a CLC process where 

CaSO4 is used as oxygen-carrier for heat generation, syngas production or hydrogen generation 

[16]. Density of CaS is around 2600 kg/m3. The size of the OC used is comparable to bed ash 

from a circulating fluid bed combustor, with the coal being finer.  
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Manganese-based Materials 

Although a promising metal oxide, Mn-based oxygen carriers have not been widely tested so 

far. The disadvantage of manganese oxides is their incompatibility with common support materials 

like Al2O3 and SiO2. Mn-based OC supported on ZrO2 stabilized with MgO has shown good 

reactivity with syngas components [17], but lower reactivity has been found for CH4 [18]. These 

particles have also been tested in a continuously operated 300Wth CLC unit [19]. Absence of 

agglomeration and low attrition rate were observed. Very high efficiencies (>99.9 %) were obtained 

at temperatures in the range 800-950 °C for syngas combustion.  

Arjmand et al. [20] evaluated the CLC performance of various manganese ores with two 

fuels, petroleum coke and a wood char. The particle size of the OC was 150-350 microns and 

activated densities ranged from 2200-3600 kg/m3. Fuel particles used were 180-250 microns, 

similar in size to the OC. 

Attrition and its impacts on char/oxygen carrier separation 

The attrition behavior of OCs is an important characteristic for char/ash separation as the 

particle size distribution of the fresh OC is only partly relevant for an operating system. Because 

of attrition, the size of the circulating OC will be finer than the fresh material. This reduces 

differences in the terminal velocity values for the char and the OC, making efficient separation 

more difficult. All OCs have a limited lifetime, either because of reactivity loss, or due to 

attrition processes that elutriate the OC particles out of the system.  

In summary, particle densities of OC vary from about 2200 to 5000 kg/m3. On the other 

hand, char densities vary from 500-800 kg/m3. The density ratio ( OC/ char) varies from 3-10. 

With an appropriate choice of the size ratio of the OC to coal, a terminal velocity difference-

based method may be used as a partial basis for separation of the char from the OC. However, 
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overlapping terminal velocities for a part of the OC material (small size) and char (large size) 

necessitates that alternate characteristics be used for good separation. 

Current Char/OC Segregation Methods 

Due to its importance to CLC technology, there has been significant research into 

development of carbon separation methods for CLC in recent years. Several methods can be used 

to separate the char, ash, and OC particles from each other based on differences in size, density, 

terminal velocity, magnetic properties, and triboelectric properties. However, the high 

temperature condition (800-1000 ℃) precludes most methods. Based on a review of various 

separation methods, it was concluded that those based on size/density are the most promising. 

The following sections outline some of the recent work.  

Sun et al (2015) [21] developed a 70 kW CLC cold flow model with a carbon stripper 

that consisted of a 4-chamber fluidized bed in which the bottom of the bed was operated in a 

turbulent fluidization regime and the top of the bed, due to its decreasing cross-section, acted as 

an elutriating bed for the small/light particles that escaped to the surface of the lower turbulent 

bed. A simulated OC/carbon mixture was used made up of ilmenite particles and Plexiglas beads 

representing the carbon particles, with the ilmenite having a slightly larger size distribution. A 

maximum of only 60% separation of the Plexiglas beads was achieved.  

Sun et al (2016) [22] developed a cold flow riser-based carbon stripper that used a 

mixture of ilmenite and plastic beads to simulate the OC/char mixture, both with a relatively 

narrow size distribution and the plastic beads being slightly smaller than the ilmenite. Results 

indicated good plastic beads separation (>90%) when operating at sufficiently high velocity, but 

at the expense of significant elutriation of the ilmenite with the plastic beads.  
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In their 1 MWth pilot plant, Strӧhle et al (2015) [23] operated a carbon separation system 

that consisted of two cyclones in series and a fluidized bed carbon stripper. The larger/heavier 

particles were separated first in a low-efficiency cyclone, which were then routed to an 

elutriation-based fluid bed to separate the carbon from the OC. The non-elutriated OC-rich 

fraction was routed to the air reactor, with the elutriated carbon-rich fraction returned to the fuel 

reactor. The particles bypassing the low-efficiency cyclone were routed to a high-efficiency 

cyclone where the smaller/lighter particles were separated and returned to the fuel reactor. Due 

to issues with using pulverized coal as the fuel, poor carbon burnout was achieved in the fuel 

reactor, and a large quantity of the unburned carbon bypassed the high-efficiency cyclone.  

Abad et al (2015) [24] developed the conceptual design of a 100 MWth CLC system, in 

which an elutriation-based carbon stripper was used. According to their models, very high 

carbon separation efficiency could be achieved (~99%) when using small fuel particles (Average 

particle size = 47μm) under the appropriate fluidization velocity.  

Markstrom et al (2013) [25] of Chalmers University, Sweden used a multi-section 

bubbling bed with a tortuous path to prevent short-circuiting. The particle size of the coal used 

was finer than the OC and they achieved good carbon separation, recycle, and high (>90%) CO2 

capture efficiency. However, given the short-term test periods used, they did not account for the 

expected size reduction of circulating OC, which would reduce the terminal velocity differences 

between the char and the OC and lower separation efficiencies.  

The above examples are just a few of the current efforts related to carbon separation 

devices for CLC. In most cases, a terminal velocity-based entrainment method is employed, 

which can be aided by the use of cyclones. However, in the above examples realistic mixtures of 

OC/char were not used due either to simulated mixtures or relatively short operating test periods. 
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In an actual system, due to OC attrition, there is likely to be a very broad size distribution of the 

OC. Additionally, the density of the carbon particles cannot be assumed to be that of pure carbon 

due to association with fuel ash, as well as agglomeration/sintering mechanisms that result in 

difficulty in removing the carbon/ash from the OC. There is likely to be a broad distribution of 

both the content of carbon within and the density of the carbon-containing particles in the solids 

mixture. These challenges result in a significant overlap of the entrainment parameters of the 

OC/char, making it unlikely for an elutriation-only system to be successful in achieving a high 

carbon capture rate (CCR) without significant recycle burden of OC to the fuel reactor. Rather, it 

will likely be necessary to use a multi-step approach with methods specifically targeting ranges 

of particle size and density. Our proposed approach addresses the shortcomings of current work 

in such a manner. 

The Solution 
 

Figure 2 displays a schematic of a particle char separator (PCS) system, which is the 

optimum configuration as identified from the proof of concept phase of the project for a calcium-

based OC. To separate the carbon from the OC, the distributed mixture of solids leaving the fuel 

reactor in the CLC system is sent to the PCS. The PCS comprises two main components which 

are discussed below. 
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Figure 2. Char Separation System 

 
Size segregation bed (SSB)  

Through a combination of hydrodynamic fluidization regimes, the coarse carbon-rich 

particles (lower density than OC) are preferentially segregated to the top of the fluidized bed. 

Details regarding the fluidization regimes are proprietary and therefore cannot be discussed. The 

carbon-rich top layer is removed from the SSB by spilling over a weir and recirculated to the fuel 

reactor while the carbon-depleted bottom layer is sent to the next stage of the PCS system. 

Elutriation bed (EB) 

With the largest carbon-rich particles removed in the SSB, the EB is run at a relatively 

moderate velocity to elutriate the remaining fine-sized carbon-rich particles. A high efficiency 

cyclone captures the elutriated carbon-rich particles, which are recirculated to the fuel reactor. 
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The non-elutriated bottom layer, consisting of the carbon-depleted OC is sent to the air reactor of 

the chemical looping combustion (CLC) system for regeneration. 

Project Objective 

The objective of this project was to design, fabricate, and test a hot flow char separation 

system utilizing past proof-of-concept work in order to identify optimum operating conditions. 

This thesis consists of all design processes that lead to the final product, as well as any 

changes/improvements that were made during the initial testing period. Relevant calculations are 

shown to support design. To ensure the best separation was achieved, several operating 

conditions were varied and documented. For each variable changed, multiple test runs were 

made to demonstrate repeatability. Results from each variation were analyzed to determine the 

optimum conditions. Process conditions that were varied include the combinations of gas 

velocities of the size segregation bed, as well as the gas velocity of the elutriation bed. Results 

reveal what operating conditions are necessary to achieve the best separation of solids based on 

size/density. 

Approach 

It is critical that the char entering the air reactor is minimized in order to have a high 

CCR. With this in mind, the configuration of the particle char separation (PCS) system is set up 

to maximize purity of the OC going to the air reactor, even at the expense of a slightly larger OC 

recirculation load (split) to the fuel reactor. Discussions with GE Power suggests that 20% 

recycle can easily be tolerated. Given this, combined with the results of the proof of concept 

phase, it is expected to be able to achieve greater than 80 % separation of the carbon leaving the 

fuel reactor.  
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The PCS system is a multi-step approach with unit operations that target specific ranges 

of particle size and density to mitigate the challenge of a large overlap in the entrainment 

parameters of the OC and carbon-rich particles. Rather than undergoing a single “treatment,” the 

OC undergoes two steps to ensure maximum removal of the carbon. The PCS approach offers a 

high degree of flexibility in terms of both configuration and operating parameters to optimize 

operation based on the properties of the material being segregated and overall CLC process 

requirements. 
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CHAPTER II 

PROOF OF CONCEPT 

The first step in this work was the development of a two-step separation methodology for 

char/OC separation. The proof-of-concept of the char-OC separation for Chemical Looping 

Combustion (CLC) systems was demonstrated through laboratory-scale evaluation of the multi-

step separation process with cold flow systems. The operating window and carbon separation 

performance were determined in a previous project prior to this research. The project identified 

the optimum Particle Char Separator (PCS) configuration for the oxygen carrier (OC)-char 

mixture that was used during the tests. It also revealed enhancements to the PCS design and 

configuration which would be expected to improve performance and system operability 

significantly. Testing showed that char separation from the OC is feasible with key 

accomplishments summarized below: 

 Carbon was successfully separated from a synthetic test material of glass beads/activated 

carbon during concept verification experiments. 

 An oxygen carrier-char material obtained from the GE Power pilot test unit with a carbon 

content of 1.4% was tested in the laboratory-scale PCS test systems. A very broad size 

distribution of the OC and carbon-rich particles represented a realistic and very challenging 

material for separation testing. 
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 Testing on the first unit – Size Separation Bed (SSB) showed 25% to 30% of the carbon was 

separated into 10% of the total material, for an enrichment factor of 2.5. Significantly better 

separation was achieved in the coarse particles. 

 Testing on the second unit – Elutriation Bed (EB) – showed approximately 43% of the carbon 

was separated with 8% of the material, for an enrichment factor of approximately 5 to 6. 

Significantly better separation was achieved in the fine particles. 

 When combining the performance of the SSB and EB based on “coarse” and “fine” size 

fractions, the results were 55% and 70% carbon separation in 18% and 29% of starting 

material, respectively. 

 Proof of concept testing identified the key operating conditions and factors governing 

separation efficiency for the SSB and EB. 

It was found that the performance of the EB and SSB systems depends on the size 

distribution of the OC being separated and the distribution, size and association (i.e. discrete, OC 

or fuel ash) of carbon-rich particles in said material. Based on the results of the proof of concept, 

an ideal PCS configuration for the GE Power OC material will separate the coarse carbon 

particles first in the SSB, allowing the subsequent EB unit to be operated at a relatively low 

velocity, while targeting the fine carbon and avoiding excessive OC entrainment. The success of 

this research justified expanding the PCS proof-of-concept testing to operation at relevant CLC 

temperatures (~800oC) and understanding the impacts of a reducing fluidizing atmosphere (e.g. 

steam) and gas generation due to reactions on the separation method and efficiency.  
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CHAPTER III  

DESIGN AND CONTRUCTION  

Prior to beginning construction of the hot flow system, a review of the design of the 

bench scale PCS system was necessary to finalize the specifications for the hot flow system. One 

area that needed review was controlling of the solid flow between beds. Initially it was planned 

to use screw feeders to transport the material between process components in the PCS. However, 

scale-up concerns related to the use of a screw feeder in a commercial system resulted in the 

designing of loop seals as a means to transport solids between the different beds.  

The other area of the design that needed to be revisited was the final specifications such 

as the dimensions, operating conditions (flow rate), and system control of the SSB and EB. In 

order to address these concerns, cold flow units were constructed for the SSB and EB. A 

procured oxygen carrier and simulated char substitute were then tested on the cold flow unit. 

Results from the cold flow testing were used to finalize the hot flow design. The testing and 

results obtained from the cold flow units are discussed below.  

Preparation of Test Materials 
 

Two particle size distributions (PSD’s) of fresh ilmenite were obtained from GE Power 

(formerly Alstom) following preliminary discussions on what oxygen carrier (OC) to test on the 

PCS system. The two batches of ilmenite consisted of a coarse and a fine PSD with average 

particle sizes of 230 μm and 94 μm, respectively. Ilmenite is a high density oxygen carrier that 

occurs naturally in its reduced form (FeTiO3) and is oxidized at high temperatures to 
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pseudobrookite (Fe2TiO5) and rutile (TiO2) [26]. It has also been tested significantly and is 

considered a promising OC material [27].  

Recent work done on another SBIR/STTR project – DE-SC0011984 – shows that fresh 

ilmenite, when subjected to several oxidation-reduction cycles, undergoes physical changes 

affecting particle density (porosity development) and size (fragmentation and attrition). Table 1 

illustrates the change in bulk density of ilmenite after an oxidation-reduction (redox) cycling for 

5000 minutes (approximately 400 cycles). The bulk density of “cycled” or “in-process” ilmenite 

is 40 percent lower than the fresh material. The corresponding true particle densities are 

approximately twice the values (i.e. ~ 2600 kg/m3 for the cycled ilmenite material). 

Table 1. Change in bulk density for an ilmenite sample cycled for 5000 min 
Size Range 

(μm) 
Fresh Ilmenite Cycled Material (5000 min) 

Average Density (S.G.) Average Density (S.G.) 
840-500 2.1 1.3 
150-105 2.1 1.3 
105-75 2.1 1.3 

<75 2.0 1.1 
 

Table 2 shows the size distribution of the fresh ilmenite obtained from GE Power. Figure 

3 shows the change in size distributions of the cycled ilmenite as a function of the number of 

cyclic operations. The data shows that when the larger size particles in the oxygen carrier 

inventory are subjected to cyclic oxidation and reduction in the chemical looping combustion 

process they undergo fragmentation and attrition. As a result, smaller size oxygen carrier 

particles (e.g. less than 53 microns in Figure 3) are created. These expected changes are 

important factors in the range of oxygen carrier properties that must be considered in the 

separation process.  
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Table 2. Ilmenite particle size distributions 

Size (μm) Coarse OC Distribution 
% 

Fine OC Distribution 
% 

>300 3 0 
300-150 95 2 
150-105 2 21 
105-75 0 70 
75 - 53 0 6 

< 53 0 0 
 

 
Figure 3. Change in ilmenite size distribution after 5000 min of redox cycling 

 
Activated carbon (AC) and char were used to simulate the OC/char mix for the 

carbonaceous char component for the cold flow testing. Coal char was produced by pyrolyzing a 

Powder River Basin (PRB) sub-bituminous coal. Both materials were prepared to a size 

distribution similar to that observed for unburnt char in GE Power’s pilot Chemical Looping 

Combustion (CLC) facility. The size distributions for the coarse and fine batches of ilmenite and 
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activated carbon can be seen in Figures 4 and 5, respectively. In order to evaluate the 

performance of the cold flow unit, the total carbon content of the AC and char was determined 

and results are presented in Table 3.  

 
Figure 4. PSD of coarse OC and AC 

  

 
Figure 5. PSD of fine OC and AC  
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Table 3. Carbon content of AC and char for different size bins 
 Carbon Content 

Size (μm) AC Char 
> 300 84% 67% 

300 - 150 83% 64% 
150 - 105 82% 66% 

< 105 80% 67% 
Average 82% 66% 

 

Loop Seal Design 

 In the initial test equipment design, material flow between process components was to be 

controlled using high temperature screw feeders between each unit. However, due to the high 

cost of custom high temperature screw feeders, it was required that an alternative solution be 

developed. A loop seal was designed based on literature [28] and modified to operate similar to 

an L-valve by providing fluidizing air on the feed leg only. A proof-of-concept loop seal was 

constructed out of 1-inch-thick acrylic sheets and tested using the procured ilmenite. Flow to the 

loop seal was controlled using a mass flow controller and the solids feed rate of the loop seal was 

determined for varying flow rates. Figure 6 shows the calibration results using the coarse 

ilmenite which demonstrate that it was possible to vary the material transfer rate in a predictable 

manner by varying the fluidizing air flow to the loop seal. 
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Figure 6. Cold flow loop seal calibration for coarse ilmenite 

Following successful operation of the temporary loop seal, two hot flow loop seals were 

constructed out of stainless steel. Figure 7 shows an image of one of the loop seals and a cross-

section schematic of the design. The loop seals were then installed on the cold flow units of the 

EB and SSB for testing.  
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Figure 7. 3D cross-section of the original loop seal design (left) and an image of the constructed 
loop seal (right) 

During operation, it was observed that material flow rates were a function of one 

additional parameter besides the fluidizing air flow – the particle size distribution (PSD) of the 

feed material. Material that contained smaller particle sizes required less air flow to obtain 

similar solid feed rates to that of the large particle sizes. Figure 8 shows calibration of the loop 

seal using fine ilmenite. It can be seen that to obtain a material feed rate of 50 kg/hr a gas flow 

rate of 2.8 slpm is required, whereas using the coarse ilmenite a gas flow rate of 12.9 slpm is 

required. 
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Figure 8. Loop seal calibration using fine ilmenite 

It was later discovered during hot flow testing that these lower flow rates make consistent 

operation of the loops seals difficult. This is due to the high sensitivity of the loop seal design to 

air flow as well as the fact that the mass flow controllers (calibrated for nitrogen/carbon dioxide) 

were sized to be able to achieve high flow rates for the coarse ilmenite, resulting in lower 

resolution at low gas flow rates. Appropriately sized mass flow controllers would help resolve 

this problem, however, a re-design of the loop seal was found to be a more cost effective 

solution. Figure 9 shows three new loop seal configurations that were investigated. The new loop 

seal design consisted of a plenum with a divider located in the middle to allow for different 

configurations (A, B, and C) to be tested. Configuration “A” provided gas to both plenums 

equally, configuration “B” provided gas to the left plenum only, and configuration “C” provided 

gas to the right plenum as well as aeration gas on the inlet leg to allow for better material flow. 

The new design utilized quarter inch gas inlets and a 325 mesh screen as the distributor plate to 

prevent material from falling into the plenum. 
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Figure 9. New loop seal configurations to be tested 

 Results from testing of the new loop seal designs can be seen in Figure 10. These results 

show that “configuration A” requires the highest gas flow rates for the desired material 

throughput (50 kg/hr). It can also be seen that “configurations A’s” feed rate stays linear the 

longest, making operation more predictable and consistent than other configurations. Using this 

data, the resolution for each configuration can also be found. Figure 11 shows the average 

percent change with 1 slpm increase in flow (sensitivity). It can be seen that “configuration A” 

has the lowest percent change (lowest sensitivity). These tests clearly demonstrated that 

“configuration A” of the new loop seal design would be easiest to control at the desired material 

feed rates. This new loop seal design was later implemented into the hot flow design.  
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Figure 10. New loop seal design testing 

 

 
Figure 11. Comparison of new loop seal’s sensitivity to gas flow 

 
During operation of the hot flow unit, additional parameters (discussed later) such as 
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seals. Nevertheless, the trend of increasing feed rate with increasing fluidizing flow was 

preserved and can still be used as a control mechanism. During hot flow testing, heat tapes rated 

to temperatures up to 760°C for continuous operation were used to heat the loop seals. Without 

the ability to maintain temperature between beds, the gas density would change as temperature 

decreases resulting in a change of material feed rates through the loop seals which would 

necessitate re-calibration. 

Design and Construction of the Feed Bed 
 

The particle char separator (PCS) testing unit comprises four primary components, the 

OC/Char feed bed, the SSB and EB, and loop seals in–between. A PVC pipe was purchased and 

modified to serve as the feed bed for cold flow tests. The sizing of the cold flow bed was the 

same as for the hot flow. The hot flow feed bed was designed to hold a capacity of 100 kg of 

material heated to the desired temperature of approximately 800°C. It was constructed using 

Schedule 40 stainless steel due to the high resistance to corrosion and high temperatures. A grid 

plate made out of 325 mesh screen sandwiched between two perforated plates (quarter inch 

holes) for structural support was implemented for the purpose of providing nitrogen gas flow 

(less than minimum fluidization velocity) to the bed. The flow of nitrogen is necessary to ensure 

an inert environment is maintained to prevent burning of the char as well as to prevent 

agglomeration of the ilmenite particles at 800 °C. Low gas flow rates were necessary to prevent 

any pre-separation of particles that may occur at minimum fluidization velocity. Table 4 

summarizes the specifications for the feed bed and Figure 12 shows images of the cold flow feed 

bed system and hot flow system under construction.  
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Table 4. Feed bed specification 
Feed Bed Specifications 

Height 1.3 m 4.3 ft. 
Internal Dimensions 0.2 m 0.67 ft. 

Ilmenite Capacity 100 kg 220 lb. 
Ilmenite Heat Capacity 0.9 kJ/(kg . K) 0.22 BTU/(lb.°F) 

Ilmenite Packing Density 2400 kg/m3 500 lb./ft3 
Heat Duty 14 kW 48000 Btu/hr. 

Operating Temperature 800°C 1472°F 
Temperature Ramp 2 – 3 hours  

 

 
Figure 12. Cold flow feed bed (left) and hot flow feed bed system under construction (right) 
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Construction of the hot flow system feed bed includes four external 3.5 kW heaters for 

heating the OC and two external 3.5 kW for pre-heating the fluidizing gases. Thermocouples are 

installed in three zones (top, middle and bottom) of the bed to monitor the temperature. Two 

mass flow controllers (MFC) for nitrogen/air and methane are used to supply the inert/oxidizing 

and reducing gas respectively, during operation.  

To account for the expected change in porosity during redox cycling of ilmenite, the feed 

bed will be used to “condition” the “fresh” ilmenite by subjecting to several redox cycles. The 

oxidation and reduction (with methane) equations of ilmenite are: 

FeO.TiO2 + 1/2O2   = Fe2O3.TiO2 + TiO2  Oxidation cycle 

Fe2O3.TiO2 + 2·TiO2 + CH4 = CO2 + 2·H2O + 2·FeO.TiO2 Reduction cycle 

Based on the reduction and oxidation equations for ilmenite and methane and assuming only 

50% of the 100 kg of ilmenite is reduced during each cycle (to ensure the methane is completely 

consumed), approximately 840 liters of methane will be needed per reduction cycle. At a planned 

methane feed rate of approximately 12 liters/min and a purge cycle of 20 minutes, it will take 80 

min per reduction cycle. Assuming oxidation will be completed in 1 hour using house air, a 

complete cycle of the material will take approximately 3 hours. Based on other research, 15 

cycles are considered sufficient to transform the ilmenite to its more porous form.  

Design and Construction of the Elutriation Bed 
 

A cold flow elutriation bed (EB) unit was constructed first with the goal to 

verify/replicate the results obtained during the proof-of-concept testing and to confirm that a bed 

velocity of 30 cm/s was sufficient to elutriate the target material. Figure 13 is an image showing 

the cold flow unit and the construction of the hot flow unit. 
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Figure 13. Cold flow EB unit (left) and hot flow EB unit with air preheater (right) 

 
The unit was constructed from an 8 cm (3 inch) schedule 40 PVC clear pipe with 60 cm 

between feed and exit locations (maximum bed height) and a free board above the inlet point of 

25 cm. A 325 mesh screen was used as the grid plate and a fabric filter was installed on the exit 

to capture elutriates. Two of the constructed loop seals were used to control feed into and out of 

the unit. Fluidization was achieved using compressed air and a rotameter for control of gases. 

The EB feed pressure during testing was monitored and a proportional response to 

material bed height was observed on the pressure sensors as shown in Figure 14. Bed pressure is 

seen to increase, stay stable, then decrease as the bed fills up, maintains stable, then decreases; 

respectively. This observation is important as it can be combined with cold flow calibration of 

the loop seals to maintain bed inventory during hot operation and estimate system feed rates.   
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Figure 14. Bed pressure response as material is fed and removed from the bed 

 
The final design specifications, gas velocity, and fluidization flow for cold and hot flow 

operation obtained for the EB are summarized in Table 5. The results obtained are for room 

temperatures and have been corrected for hot operating temperatures of 800°C at which gas 

volume and viscosity changes are significant. For gas volume, a temperature correction from 

25°C to 800°C implies a decrease by a factor of approximately 4. As for viscosity changes, the 

terminal velocity as a function of temperature was calculated to be 43% lower for a 

representative ilmenite particle at 800°C versus 25°C – see Figure 15. Calculated values of 

minimum fluidization were determined using Wen and Yu approximation seen in Equation 1 and 

terminal velocities were calculated using Equation 2. [29] 

  ……………………………………… (1) 

…………………………………...………………………… (2) 

 

Bed decreasing 
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Table 5. Specifications for the EB at cold flow conditions and calculated hot flow conditions 
EB Specifications 

Bed Dimensions Cylindrical - 8 cm diameter; bed height: 60 
cm; Free board: 25 cm 

Operating Gas Velocity for coarse OC 
At 25°C 

40 – 60 cm/sec 

Calculated Operating Gas Velocity for Coarse 
OC At 800°C 

17 – 26 cm/sec 

Fluidization Flow for Coarse OC At 25°C 110 - 165 slpm 
Calculated Fluidization Flow for Coarse OC 

At 800°C (calculated) 
47 – 71 slpm 

 

 
Figure 15. Graph showing calculated changes in terminal velocity and minimum fluidization 

velocity with temperature for ilmenite particles 
 

With the specifications from the cold flow EB finalized, the hot flow EB was then 

constructed to the same specifications as the cold flow unit described in Table 5. Minor 

modifications to the bed length and the freeboard length were made to accommodate the heaters. 
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Similar to the feed bed, a gas pre-heater was attached to the bottom of the EB unit. The grid plate 

was made of 325 mesh screen sandwiched between two perforated plates for structural support. 

External heaters were used to maintain the temperature of the bed at the desired 800°C and 

carbon dioxide controlled by a mass flow controller was used as the fluidizing gas.  

Design and Construction of the Size Segregation Bed 
 

In the proof-of-concept testing, the size segregation bed (SSB) was able to segregate 

particles based predominantly on particle density. This characteristic of separation based on 

particle density should be complementary to the separation in the elutriation bed (EB) which 

relies on differences in terminal velocities of particles. It’s believed that the “Brazil nut effect” 

[30] potentially plays a role in the movement of the larger char particles to the top of the SSB. 

From the “Brazil nut effect” study, it was indicated that if the large particles are less dense than 

their surrounding particles they rise to the top and stay there. This remains true with the SSB 

unless bed circulation redirects the char particles away from the top.  

Testing showed that vertical transportation of char particles was influenced by both the 

gas velocities and the hydrodynamic fluidization regime being utilized. As discussed previously, 

segregation is not just due to differences in terminal velocities but more likely due to differences 

in densities of the materials. Areas identified during initial testing that required design 

improvements were a) improving the carbon-rich top layer discharge and b) identifying control 

options for continuous operation. The cold flow system was built to address some of these issues 

prior to construction of the hot flow system.   

The cold flow unit was built using 2.5 cm (1 inch) thick acrylic boards to the internal 

dimension specifications identified in the proof-of-concept testing as 15 cm wide by 30 cm long 

with a bed depth of 15 cm. A distributor plate was designed to ensure a pressure drop of at least 
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7.5 kPa (30 in- ) so as to ensure a uniform air flow throughout the bed. The distributor plate 

consisted of holes drilled to a diameter of 0.04 cm (1/64 inches) in a square pattern. Mixed 

material was fed from one side of the bed while char rich material and cleaned ilmenite exited 

the top and bottom, respectively, at the other side of the bed. The exit wall of the system 

consisted of a weir located 6 inches above the distributor plate for the char rich material and a 

rectangular exit on the bottom for the clean ilmenite. Figure 16 and 17 show pictures of the cold 

flow system showing inlet, outlet and position of loop seals.  

 
Figure 16. Image showing cold flow SSB system 
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Figure 17. Image showing SSB cold flow set up with rotameters, loop seals, and feed bed 

 
During testing it was observed that separation of materials was possible, however char 

was dispersed throughout the entire bed and became stuck in certain zones. As a result, the 

separated char was not exiting the bed in the most efficient manner; overflow of ilmenite was 

significant. To prevent this, the bed was tilted slightly in the direction of flow to improve 

directionality of flow and eliminate dead spots that trap char. Tilting had the unexpected 

advantage of causing the char to “pool” at the bed surface with the lowest elevation (see Figure 

18) and creating a char-rich layer that grows as the bed level rises. Also, the char layer location 

was affected by where bubbles were formed in the OC/char material. For example, by directing 

more gas flow in the bed towards the walls, the char could be concentrated in the center of the 

bed making removal much easier. Figure 19 and 20 illustrate the pooling of char as the bed 
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height increases and the concentration of char to the center of the bed by channeling more air to 

the walls.  

 
Figure 18. Image showing char segregation  

 

 
Figure 19. Image showing char building up as bed height rises 
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Figure 20. Image showing char concentrating in center of bed due to higher air flow at walls 

 
The “pooling” of char ensures a rich char-OC mix can be removed from the system. A 

control system was designed that consisted of dropping the bed height by 2 to 4 inches in order 

to allow time for char to concentrate before being discharged at the top. Operating the unit this 

way allows the SSB to serve as a “polishing surge tank” which prevents fresh feed material from 

“short-circuiting” the bed. One other advantage of operating the unit this way is that a control 

scheme can be devised that involves using bed pressure to determine bed inventory. A pressure 

tap was installed in the bed from the top (see Figure 20) and as the bed level engulfs the inlet of 

the pressure tap, a small but quantifiable increase in pressure is detected. Placing pressure taps in 

several locations allows for the bed inventory to be monitored. Also, the material feed rate can be 

determined through the use of these pressure taps by dividing the weight of material in between 

them by the time it takes to fill/discharge from one to the other.   
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Based on the results obtained from the cold flow SSB testing, the final design 

specifications were acquired and are summarized in Table 6. The results obtained were also 

corrected for hot operating temperatures of 800°C as with the EB. Viscosity changes are 

expected to affect the minimum fluidization velocity which is a key factor for the SSB (terminal 

velocity for the EB). As shown in Figure 15, higher temperatures will also reduce the minimum 

fluidization by approximately 42%. The corrected gas velocity and fluidization flow are also 

included in Table 6.  

Table 6. Specifications for the SSB cold and hot flow conditions 
SSB Specifications 

Bed Dimensions Rectangular - 15 x 30 cm; Bed depth: 15 cm 
Operating Velocity for Coarse OC at 25°C 6 cm/sec 

at 800°C (calculated) 2.5 cm/sec 
Flow rate at 25°C 160 standard L/min 

Flow rate at 800°C (calculated) ~ 20 standard L/min 

Final Design of PCS System 

With the results obtained from cold flow testing, the final design of the PCS system is 

shown in Figure 21. The schematic shows the feed bed, loop seals, SSB and EB unit. The MFCs 

are used to control the loop seals and to provide fluidization gas to the beds. Pressure transducers 

are used as a control strategy to monitor inventory of the respective beds. A cross sectional view 

of the SSB showing the location of the pressure taps, char exit, and ilmenite exit can be seen in 

Figure 22.  
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Figure 21. Final control schematic and configuration of PCS system 
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Figure 22. Cross sectional view of SSB 

 
A picture of the completed fabrication of the hot flow unit can be seen in Figure 23. All 

beds and loop seals are heated using ceramic heaters or high temperature heat tape. Cyclones and 

fabric filters are used to capture char-rich material removed from the respective beds. 
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Char Exit 
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Figure 23. Completed hot flow unit 
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Process Control 

In order to partially automate operation, a control system was created using LabVIEW 

software. Images of the system control and heater control panel can be seen in Figures 24 and 25, 

respectively. The control panel allows for operators to easily view pressures, temperatures, 

material feed rates, and bed inventory. Additionally, valves can be opened or closed to allow for 

gases to flow to a laser gas analyzer (LGA) to determine gas composition in various locations. 

Alarms were also created to alert operators of unwanted pressure or temperatures in several 

locations. A data logging system was also implemented in order to gather details about various 

parameters for post run analysis.  

 
Figure 24. System Control 
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Figure 25. Heater control 
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CHAPTER IV 

COMPONENT TESTING OF THE HOT FLOW SYSTEM 

This section will look at the char segregation results obtained during operation of the EB 

and SSB in the hot flow unit at ambient temperature. Four tests were performed (two EB and two 

SSB). Tests 3 and 4 were done on the SSB and EB respectively using best practices and control 

methods developed during previous testing and shakedown (Test 1 and 2). First, we will discuss 

results obtained from Test 3 and 4 before discussing Test 1 and 2. 

Test 3 – SSB testing with 0.5% char/OC mix 
 

A 91 kg (200 lb.) ilmenite sample was mixed with 454 g (1 lb.) of prepared char (Tables 

2 and 3). The batch was prepared by mixing smaller batches of 9 kg ilmenite with 45 g of char. 

Figure 26 shows initial char vs OC size distribution with approximately 34% of the char particle 

size distribution (PSD) overlapping with the ilmenite PSD. The operating conditions during 

testing of the SSB are summarized in Table 7. During operation, the feed rate to the bed was kept 

constant at approximately 41 kg/h (92 lb./hr), and the cleaned ilmenite was withdrawn from the 

unit by turning the bottom loop seal on and off at feed rates of approximately 93 kg/h (205 

lb./hr). The on/off trigger for the bottom loop seal was based on how long – approximately 3 

minutes – char-rich OC had exited from the top discharge of the SSB. Figure 27 shows step wise 

operation of the bottom loop seal and top discharge. 
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Figure 26. PSD of char and ilmenite used during test 3 

 
Table 7. SSB operating conditions during test 3 of cold flow work. 

Test Conditions 
Total average Flow 84 slpm 

Ilmenite 90 kg 
Char 0.45 kg 
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Figure 27. Graph showing test 3 operation of the SSB bottom loop seal (top) and top discharge 

(bottom) 
 

From 0 to 25 min, the bottom loop seal and bed are filling. It takes approximately 20 kg 

of ilmenite to fill the system. During fill up, fluidization and vibration are turned on to reduce the 

amount of char that is “lost” to the bottom loop seal. Once the bed is full (a bed height of 15 cm) 

material starts exiting through the top discharge, and a 3-minute timer is started. Timer duration 

is based on previous testing. At the 3-minute mark, the bottom loop seal is turned on at double 

the feed rate to drop the bed height to approximately 10 cm. The cycle is then repeated. Close to 
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the 100-minute mark, the feed bed is almost empty, so the top discharge duration is extended to 

ensure all the segregated char is discharged. The bed is then emptied and the bottom ilmenite 

saved for Test 4. 

Final tops-bottom split is shown in Figure 28 along with the char fractional removal 

efficiency for each size fraction and a total removal efficiency of 77%, with a 2%/98% split for 

the tops/bottom discharge. The top was sieved into four size bins and analyzed using a total 

carbon analyzer. The results obtained were corrected for the carbon content of the char – see 

Table 3; to determine the percent by weight char in the ilmenite.  

 
Figure 28. Chart showing tops/bottom split (left) and char removal efficiency (right) for Test 3 

 
Char removal efficiencies were calculated based on amount of char in feed. While the 

results suggest the SSB is less efficient for coarser particles (> 300 μm), this result may be due to 

the large amount of ilmenite in this size fraction. Recall from Figure 26 that the coarse loading of 

the char was low and overlapped significantly with the ilmenite. Consequently, the total amount 

of char in this size range is very small to begin with. Moreover, based on discussions with GE 

Power, the use of finer coal for CLC to improve conversion rates will reduce the occurrence of 

unburnt char in large size fractions.  

Tops 

Bottoms 



46 
 

The char concentration in the tops discharge was 13 percent, up from 0.5 percent in the 

feed, an increase by a factor of 26. Such a high increase is due to the density difference between 

the char and OC and also from the initial PSD of the ilmenite/char used. The SSB is good for 

separating large particles with lower densities from high density and large particles. However, 

very fine particles are also separated due to their lower terminal velocities. It’s expected that 

conditioned/cycled OC will have a finer OC distribution which will result in the tops discharge 

having a higher OC content than above. Another factor that would directly impact the tops 

discharge is the operation mode. A longer duration for the tops discharge will also result in more 

OC being removed from the tops discharge and affecting the overall tops/bottom split. 

Test 4 – EB Testing of Test 3 Bottoms 
 
 The bottoms from the SSB were cycled through the EB unit as a “polishing” step to 

improve overall separation. The EB unit was operated at a bed velocity of 60 cm/s for an 

operating flow of 160 standard liters per minute. This velocity was chosen following results 

obtained from Test 1. During operation the feed and discharge loop seal were operated to 

maintain an EB pressure drop of approximately 15 kPa (60 in. water) which corresponds to a bed 

inventory of approximately 3 kg and bed height of 28 cm. The bed pressure drop was used to 

maintain inventory in the bed. Figure 29 summarizes the results obtained. During operation, the 

feed rate through the system was approximately 31 kg/h – slightly lower than for the SSB, even 

though the same loop seals and operating conditions were used. This is attributed to the lower 

concentration of fines in the OC/Char mix used from Test 3. During hot flow operation, focus 

will be on bed inventories to minimize the effect of changing feed rates.  
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Figure 29. Chart showing tops/bottom split (left) and char removal efficiency (right) for Test 4 

  
The tops loading of the EB was very small – 0.1% due to the absence of fines in the 

ilmenite used. The total char removal is 22 percent with most of the separation occurring in the 

150 to 105 μm range. The EB separates particles as a function of their terminal velocity 

differences and so the absence of fine OC with terminal velocities that overlap with the char 

results in a low amount of elutriate. The combined removal efficiency of running the PSSB and 

EB in series was 82 percent. 

Test 1 – Optimizing EB Performance 
 

Test 1 focused on optimizing the EB to determine optimum cold flow operating 

conditions which will then be corrected to account for temperature. For these tests, 8 test samples 

comprising 7 kg of ilmenite and 70 g (1 percent) of activated carbon (Table 2 and 3) were 

prepared and ran through the EB at different bed velocities. The elutriate collected was then 

analyzed using a carbon analyzer. The results were used to determine optimal bed velocities and 

separation efficiencies for the EB during cold flow operation. The data will then be corrected to 

develop the test conditions for the hot flow unit. Figure 30 shows the total material elutriated and 

percent char removed as a function of bed elutriation velocity. 

Tops 

Bottoms 
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Figure 30. Total material elutriated and corresponding char removal for Test 1 

 
The data in Figure 30 show that as the velocity increases the amount of material 

elutriated increases up to approximately 45 cm/s at which point the elutriate and char removal 

level off. A further increase is observed for the 60 cm/s test condition. The bump at the 60 cm/s 

is due to the char reaching terminal velocity for the smaller particles as noted by the size 

distribution of the char being elutriated. This is better illustrated in Figure 31 which shows 

carbon removal as a function of size fraction loaded. As the velocity increases, finer carbon (less 

than 150 μm) is removed significantly with removal rates of over 80% observed at 60 cm/s. The 

larger char size fraction (300 – 150 μm) stays the same at 40 cm/s to 60 cm/s. Based on these 

results, optimum cold flow operating conditions are bed velocities from 40 cm/s to 60 cm/s for 

an OC/char mix with similar densities.  
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Figure 31. Char removal efficiency as a function of particle size and bed velocity 

Test 2 – Optimizing SSB Performance 
 

For test 2, three 23 kg ilmenite samples were prepared at AC concentrations of 1, 2 and 

0.5 percent; and fed in that order through the SSB system consecutively. Due to memory effects 

from the loop seals and bed (carbon material retained in the different units), the results were 

combined and the feed composition treated as a composite of 1.2 percent AC. On average, 68 kg 

of ilmenite containing 820 g of activated carbon (AC) was fed through the SSB unit. To reduce 

the memory effects, fresh ilmenite was fed through the system at different intervals to “flush” out 

char. The operating conditions were similar to Test 4, and visual observation of the char layer 

was used as the control method for the test. Optimized operating practices such as dropping the 

bed height to increase char concentration, timing the duration of the tops discharge, and 

monitoring bed inventory to account for changes in feed rate were established during this test. 

The tops discharge collected from this test was analyzed to determine the carbon content 

of the tops discharge. The results obtained are summarized in Figure 32 showing a tops/bottom 

split of 2.2%/97.8% respectively and a total char separation of 45 percent. The tops/bottoms 
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splits include the fresh ilmenite added at separate intervals to flush out char. Consequently, the 

results presented are for an average separation performance calculated from the amount of 

activated carbon fed and removed from the tops discharge.  

 
Figure 32. Chart showing tops/bottoms split (left) and char removal efficiency (right) for Test 2 

 
34 percent of the AC material used was in the “> 150 μm” range (Table 7). AC’s “> 150 

μm” size bin was coarser than the char used in Test 3. This explains the better separation 

observed for the larger size fraction than with the char material in Test 3. Separation observed in 

the finer fractions was also significant with over 30% observed for the “< 150 μm” size bins.  

This test showed the potential of the SSB to achieve the bulk of the char segregation but 

also served to provide insight on possible control options for the hot flow case. Operating 

practices such as dropping the bed height to increase char concentration, timing the duration of 

the tops discharge, monitoring bed inventory to account for changes in feed rate, and using 

pressure to determine bed inventory were all developed as part of this test campaign. 

 

 

Tops 

Bottoms 
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Summary of Test Results and Implications for the Hot Flow Design 
 

The results obtained during component testing of the cold flow PCS system were used to 

finalize the design of the hot flow PCS System. The impact can be sub-divided into two main 

areas: operating conditions for hot flow testing and control of hot flow unit. 

Operating Conditions 

Cold flow testing identified operating conditions – flow rates and velocity – for the SSB 

and EB units. These were then corrected for temperature to obtain starting operating conditions 

for hot flow testing. Table 8 summarizes operating conditions identified. 

Table 8. Operating conditions for SSB and EB units 
 EB SSB 

Solids Residence Time 1 minute 6 minutes 
Superficial Gas Velocity 
At 25°C 40 – 60 cm/sec 6 cm/sec  
At 800°C (calculated) 17 – 26 cm/sec 2.5 cm/sec  
Fluidization Flow Rate (std. L/min) 
At 25°C 110 - 165 80  
At 800°C (calculated) 13 – 19 10.5  

 

Control of Hot Flow Unit 

The biggest challenge with hot flow testing is the absence of visual feedback on how 

effective the units are at segregating char from the OC. During cold flow testing, a key objective 

was to determine methods to control unit operations without compromising effectiveness of 

segregation. For the EB, the separation principle is terminal velocity – a fast separation method 

that depends on bed velocities; and disengagement height. Bed velocities were determined 

during cold flow testing and adjusted for temperature (see Table 8). Disengagement height is a 
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function of bed inventory. During EB cold flow testing, bed inventory was successfully 

monitored using bed pressure drop. 

For the SSB, the separation principle is such that particles of lower density get segregated 

to the top of the bed due to differences in size and density. Cold flow testing established that by 

cycling the bed height through a high (discharge) and low level, we can minimize the amount of 

ilmenite that is discharge/entrained with the segregated char. The challenge lies in monitoring the 

bed height at temperatures of 800°C. This will be achieved by installing a thermocouple at the 

bed discharge and using pressure taps at desired bed heights to control the bed inventory. The 

thermocouple will detect when material is flowing from the bed; the pressure taps will be used to 

identify the bed inventory/height. 
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CHAPTER V 

HOT FLOW RESULTS AND DISCUSSION 

 Upon completion of component testing, the next step was to begin testing of the 

integrated system. Before ramping the system to 800°C, it was important to first discover any 

possible challenges associated with elevating temperatures from 25°C. In order to determine how 

the system would react to increasing temperature, tests were first conducted at temperatures of 

300°C - 400°C. After various tests, several challenges were identified and mitigations strategies 

were implemented which are listed below. 

Challenges and Mitigation Strategies 

Challenge: Inconsistent loop seal feeding – During the operation of the loop seals it was 

observed that desired feed rates would change unexpectedly, making operation difficult.  

Causes: 

 Cold flow testing showed that the original loop seal design fed better at flow rates greater 

than the desired operating window 

 It was found that uneven heat distribution within the feed leg would cause the loop seals 

to change feed rates due to changes in gas viscosity 

 Unknown instantaneous feed rates during runs made operation of the loop seals difficult 

and calibration before each run utilized too much material 
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Mitigation strategies: 

 A re-design of the loop seal made it less sensitive to changes in gas flow during runs 

o The new design consisted of a plenum that stretched across the entire length of the 

loop seal body 

o A change in the distributor plate design from a mesh screen to a perforated plate 

created a larger pressure drop across the distributor plate 

 In order to maintain an even heat distribution, the loop seals were wrapped with thicker 

insulation to prevent heat loss during transportation of the solids 

 Heat tapes that were found to be loosely wrapped were re-adjusted in order to allow for 

better heat transfer to the loop seals 

 The LabVIEW programming was optimized to allow for better operation of the loop seals 

o A program was created that could be used to determine the approximate feed rate 

of the loop seals in real time 

o A graph buffer program was created to take the moving average of the pressure to 

make graph lines smooth 

o Differential pressure calculations were integrated into LabVIEW in order to better 

determine the bed height of the material in the SSB 

Challenge: High/inconsistent pressures and talk between units – During operation it was 

observed that pressure transducers were maxing out when the SSB was full. The high pressure 

made it so that when gas flows were changed in one unit, pressures would change proportionally 

in other units.  

Causes: 
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 Higher gas flows that were used with the coarse oxygen carrier resulted in a larger 

pressure build up within beds 

 Exhaust lines from each unit were originally designed to be tied together in order to 

simplify the exhaust exit 

 It was found that water build up within the filter on the feed bed exhaust would fill up 

with evaporated water, restricting gas flow and resulting in a higher pressure drop across 

the filter 

 The original filters had a relatively small cross sectional area, resulting in a fast 

accumulation of fine particles, resulting in a greater pressure drop 

Mitigation strategies: 

 A water bubbler was added to the exhaust of the last loop seal in order to relieve any 

pressure build up in the system 

 The diameter of the exhaust lines was increased in order to create less of a pressure drop 

through the exhaust 

 The new exhaust lines for each unit were ran individually to the exhaust system of the 

building in order to isolate the pressures from each other 

 Due to the low gas flow rates in the feed bed, the filter was able to be removed and a 

condenser was added to capture moisture 

 The old cyclone on the EB was removed and replaced with a lower efficiency cyclone in 

order to reduce pressure drop 

 The filter located after the cyclone on the EB was replaced with a Donaldson filter that 

consisted of a larger surface area, allowing for a greater amount of particle build up 

without a significant increase in pressure 
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 The filter on the exhaust of the SSB was replaced with a bag filter with a larger surface 

area 

Challenge: Long heat up time – When attempting to heat up to desired temperatures it was 

found that a significant amount of time was needed (over 10 hours). This heat up time wouldn’t 

be of concern in a continuous system, however, with a batch system its necessary to heat up and 

cool down for each run in order to load material. 

Causes: 

 The large amount of material located within the feed bed made heat transfer to the center 

of the bed slow 

 It was found that some heat loss was occurring at the top of the feed bed due to an 

insufficient amount of insulation 

Mitigation strategies:  

 A thicker layer of insulation was added to the top of the feed bed to reduce heat loss 

during heat up 

 In order to allow for a longer heat up time, a decision was made to begin heating up the 

material overnight rather than during working hours 

o This longer heat up time allowed for an even heat distribution of the material 

o Heating up overnight also allowed for more time during the day to run and do 

post analysis which increased the total amount of runs that could be conducted 

each week 
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Results for Coarse (230 μm) Ilmenite at ~ 300°C    

Once the challenges associated with operator elevated temperatures were addressed, tests 

were conducted to validate that the separation of char is possible at approximately 300°C. Table 

9 shows the operating conditions for each test as well as the split (percent OC recycled) and total 

char removal percentage. Due to protection of intellectual property, details regarding the 

fluidization regimes are not able to be discussed and will therefore be referred to as fluidization 

regimes “A”, “B”, and “C”. 

Table 9. Test Conditions for 230 μm 300°C tests 
Run 1 2 3 4 5 

Char-to-OC, % 0.54 0.78 0.48 0.87 0.55 
Feed Average, lb/hr 92 68 89 NA* 189 
Fluidization Regime C C A B B 
LCS Temperature, 

°C 
320 304 302 NA* 349 

Tops-Bottom Split, 
% 

32% 10% 19% 10% 19% 

Total Removal, % 83% 61% 65% 59% 54% 
Char pot loading 1.4% 4.5% 1.6% 4.9% 1.4% 
Clean OC loading 0.14% 0.35% 0.23% 0.41% 0.35% 

NA* - Data not available due to temporary issues with data acquisition software 

The effects that the flow regime and split have on the overall char removal can be seen in 

Figure 33. Results show that fluidization regime “C” allowed for the highest separation of 83% 

char removal with a 32% split. This split was slightly higher than the target of 20% so a test of 

the same conditions was repeated and results show a 60% removal with a 10%. It can then be 

said that with a 20% split the char removal would most likely be between 60-83% for 

fluidization regime C. All tests were performed at an average bed velocity of approximately 2.5 

cm/s which was found to be the minimum fluidization for the coarse ilmenite.  
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Figure 33. Char removal for 230 μm OC 

 
 In order to see if the SSB is effective at removing char of all size ranges, an analysis of 

the carbon percentage for each size range was conducted and results are shown in Figure 34. 

Results show that the SSB is capable of separating all size fractions of carbon rather than just 

coarse size fractions. It can be seen that for all but one condition, more than 50% of the carbon in 

each size bin is concentrated in the tops. This implies that removal of the EB from the PCS in 

future work is possible and by doing so would reduce the total amount of gas required for 

effective separation.  

Run 3 

Run 5
Run 4 Run 2

Run 1
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Figure 34. Percent Carbon in each size range 

Results for Fine (94 μm) Ilmenite at ~ 300°C    

 For the fine ilmenite testing, run conditions can be seen in Table 10 and the overall char 

removal for each fluidization regime can be seen in Figure 35. Results show that good separation 

only occurs when a high split is achieved, regardless of the fluidization regime. A larger number 

of runs were performed using fluidization regime “C” since it proved to have highest separation 

using the coarse ilmenite. Lower separation occurred due to the fact that the minimum 

fluidization velocity needed for the fine ilmenite was not high enough to bring the majority of the 

char to the top of the bed. It was observed on a separate cold flow unit that when higher gas 

velocities were used in attempt to migrate the char to the top of the bed, back mixing would 

occur, preventing any separation. 

Separation for each fluidization regime on the fine ilmenite proved to be poor, however, 

the size distribution of the fine ilmenite is not representative of what would be seen in an actual 

CLC system. Rather, the size distribution used represents an exaggerated level of attrition 

B A C 
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(discussed previously). These tests were necessary to demonstrate that char removal is possible 

(with high splits) even under high levels of attrition. 

Table 10. Test Conditions for 94 μm 300°C tests 
Test 1 2 3 4 5 6 7 8 9 10 11 
Char-to-OC, % 0.8 0.7 0.7 0.9 0.6 0.7 0.7 0.6 0.7 1.03 1.55 
Feed Average, 
lb/hr 90 67 36 27 100 124 150 126 139 34.2 70 
Avg Bed Flow, 
Umf 2.2 2.6 2.6 1.8 2.8 2.7 2.7 2 2 2.5 2.5 
Fluidization 
Regime A B B C B C C C C C C 
LCS 
Temperature, 
°C 293 312.5 272 300 309 262 283 272 322 298 300 
Tops-Bottom 
Split, % 16 46 45 18 5 8 5 10 38 33.8 44.5 
Total Removal, 
% 36 81 81 59 18 22 18 23 54 54.2 72.1 
Char pot 
loading 1.52% 1.08% 1.28% 2.98% 1.89% 1.81% 2.32% 1.17% 0.95% 1.65% 2.49% 
Clean OC 
loading 0.50% 0.22% 0.25% 0.45% 0.52% 0.59% 0.61% 0.53% 0.49% 0.71% 0.80% 
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Figure 35. Char removal for 94 μm OC 
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CHAPTER VI FUTURE WORK 

The work scope of this project was to design, fabricate, and test a hot flow char 

separation system in order to identify optimum operating conditions. Additional work is 

continuing beyond the original thesis definition to help identify these conditions. Additional 

testing at ~ 300 °C will consist of testing higher average flow rates along with different 

fluidization regimes to see if they will result in better separation efficiency (high char removal 

with low split).  

Upon completion of 300°C tests, the next step will be to perform temperature shakedown 

at 800°C. Tests will be performed to see if agglomeration of ilmenite occurs under varying 

conditions. Next, tests at 800°C will be performed to validate separation performance at actual 

CLC temperatures. Additionally, the coarse and fine batches of ilmenite will be mixed together 

to create varying particle size distributions that will be representative of different levels of 

attrition. This will show more accurately how separation is affected as ilmenite is cycled through 

a CLC system. Lastly, steam will be introduced to the SSB along with nitrogen to see how 

reacting conditions will affect separation of char from ilmenite.  
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CHAPTER VII CONCLUSIONS 

 The objective of this project was to design and develop a system capable of separating 

unconverted fuel (char) from oxygen carriers in a chemical looping combustion system in order 

to achieve high carbon capture rates (CCR). The particle char separator (PCS) was developed 

and proof of concept testing showed promising results. During the design and construction phase 

challenges were addressed and a 50 kg/hr cold flow system was constructed in order to finalize 

the hot flow design. Following completion of cold flow testing, the 50 kg/hr hot flow system was 

successfully constructed and tested. After shakedown of the system, results from tests conducted 

at approximately 300°C demonstrated that temperature has no impact on the ability for the PCS 

to separate char from ilmenite. Best results to date show a char removal of 83% with a 32% 

recycle of ilmenite (split). This split was higher than the target (20%), however, results from the 

cold flow system show that higher separation efficiencies are likely achievable. Overall, the 

particle char separator (PCS) has proven to be capable of separating all size fractions of char and 

would be effective in achieving high carbon capture rates (CCR) when implemented into a CLC 

system. 
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