
University of North Dakota
UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2018

Autonomous Localization Of A Uav In A 3d Cad
Model
Akkas Haque

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact
zeineb.yousif@library.und.edu.

Recommended Citation
Haque, Akkas, "Autonomous Localization Of A Uav In A 3d Cad Model" (2018). Theses and Dissertations. 2409.
https://commons.und.edu/theses/2409

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2409?utm_source=commons.und.edu%2Ftheses%2F2409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

AUTONOMOUS LOCALIZATION OF A UAV IN A 3D CAD MODEL

by

Akkas Uddin Haque

Bachelor of Science, Chittagong University of Engineering and Technology, 2013

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

In partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

December

2018

PERMISSION

Title Autonomous Localization of a UAV in a 3D CAD Model

Department Mechanical Engineering

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate
degree from the University of North Dakota, I agree that the library of this
University shall make it freely available for inspection. I further agree that
permission for extensive copying for scholarly purposes may be granted by the
professor who supervised my thesis work or, in his absence, by the chairperson of
the department or the dean of the Graduate School. It is understood that any
copying or publication or other use of this thesis or part thereof for financial gain
shall not be allowed without my written permission. It is also understood that due
recognition shall be given to me and to the University of North Dakota in any
scholarly use which may be made of any material in my thesis.

Akkas Uddin Haque
November 7th 2018

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xii

1. INTRODUCTION . 1

1.1 Contributions . 2

1.2 Constraints and Assumptions . 3

2. BACKGROUND . 6

2.1 Current Research . 6

2.2 Simultaneous Localization and Mapping(SLAM) 9

2.2.1 ORBSLAM . 10

2.2.2 Large Scale Direct Monocular SLAM (LSD-SLAM) 11

2.2.3 ORBSLAM2 . 12

2.3 Convolutional Neural Network . 14

2.3.1 Region-based Convolutional Neural Networks (R-CNN) . . . 15

2.3.2 YOLO . 17

iv

Page

2.3.3 SSD - Single Shot Multibox Detection 18

2.3.4 YOLOv2 . 21

3. SYSTEM OVERVIEW . 23

3.1 Preprocessing . 27

3.2 Exploration mode . 29

3.3 Localized mode . 32

4. FEATURE DETECTION AND EXTRACTION 34

4.1 Data Preparation and Training . 35

4.1.1 Data Collection and Preparation 35

4.1.2 Annotation and Data Augmentation 35

4.1.3 Training . 36

4.2 Detection Refinement . 37

4.2.1 Line Segment Detector(LSD) 37

4.2.2 Refinement . 38

4.2.3 3D Reconstruction . 40

5. FEATURE REGISTRATION . 44

5.1 Feature Descriptor . 45

5.1.1 Lookup Table for Fast Descriptor Matching 47

v

Page

5.1.2 Descriptor Matching . 50

5.2 Initial Registration . 51

5.2.1 Least Squares Rigid Transformation Estimation 53

5.3 Registration Refinement . 56

6. RESULTS AND DISCUSSION . 57

6.1 CNN Detection . 57

6.2 Feature Descriptor Results and Accuracy 63

6.3 Localization within the CAD model 65

6.4 ReLocalization within the CAD model 68

7. CONCLUSION AND FUTURE WORK 69

7.1 Conclusion . 69

7.2 Future Work . 70

A. APPENDICES . 72

A.1 Semi-Global Block Matching . 72

LIST OF REFERENCES . 73

vi

LIST OF TABLES

Table Page

6.1 Feature Descriptor Accuracy . 65

6.2 Localization accuracy . 66

vii

LIST OF FIGURES

Figure Page

2.1 LSD process flow . 12

2.2 ORB-SLAM2 process flow . 13

2.3 R-CNN structure . 16

2.4 YOLO process flow . 19

2.5 Comparison between YOLO and SSD 20

2.6 Improvements of YOLOv2 over YOLO 21

3.1 The system setup . 24

3.2 Communication setup . 25

3.3 Process flow . 26

3.4 The building information model . 28

3.5 Typical K-D tree construction . 29

3.6 Coordinate Transformation and Registration 31

3.7 A* Algorithm for path finding . 33

4.1 Feature Detection and Refinement . 38

4.2 Reconstruction and Registration of Feature in 3D 39

viii

Figure Page

5.1 Orientation invariance of the Feature descriptor 46

5.2 Kernel Density Estimator . 49

5.3 The 64-bit feature descriptor . 50

5.4 Feature Registration . 55

6.1 Precision-Recall curve for door/window detection 59

6.2 Object detection and 2D feature extraction 60

6.3 Failures in Feature Extraction . 62

6.4 The histogram and KDE probability density function for distance . . . 64

6.5 Runs of different lengths in the test setup 67

6.6 Relocalization of the UAV . 68

ix

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my adviser
and mentor, Dr. Jeremiah Neubert for the support and guidance he provided me
throughout the course of my research and study. His guidance, boundless knowledge
and motivation pushed me to explore the breadth of my capabilities and I will forever
be indebted to him for that.

My sincere thanks to my committee members, Dr William Semke and Dr Marcellin
Zahui for their support and academic insight.

I am grateful to Ian Nordeng, Ahmad Jarjis Hasan, Shudipto Roy and Tarek El-
derini for lending me a hand in various stages throughout the research, including data
acquisition and annotation from the construction sites. I also thank PCL Construc-
tion Limited for providing me with the access to their construction sites to collect
data for my research.

x

To my wife Zeenat Nahar, who has been a constant source of encouragement,
and to my parents for getting me to where I am today.

xi

ABSTRACT

This thesis presents a novel method of indoor localization and autonomous navigation

of Unmanned Aerial Vehicles(UAVs) within a building, given a prebuilt Computer

Aided Design(CAD) model of the building. The proposed system is novel in that it

leverages the support of machine learning and traditional computer vision techniques

to provide a robust method of localizing and navigating a drone autonomously in

indoor and GPS denied environments leveraging preexisting knowledge of the envi-

ronment. The goal of this work is to devise a method to enable a UAV to deduce

its current pose within a CAD model that is fast and accurate while also maintain-

ing efficient use of resources. A 3-Dimensional CAD model of the building to be

navigated through is provided as input to the system along with the required goal

position. Initially, the UAV has no idea of its location within the building. The

system, comprising a stereo camera system and an Inertial Measurement Unit(IMU)

as its sensors, then generates a globally consistent map of its surroundings using a

Simultaneous Localization and Mapping (SLAM) algorithm. In addition to the map,

it also stores spatially correlated 3D features. These 3D features are then used to

generate correspondences between the SLAM map and the 3D CAD model. The

correspondences are then used to generate a transformation between the SLAM map

and the 3D CAD model, thus effectively localizing the UAV in the 3D CAD model.

Our method has been tested to successfully localize the UAV in the test building in

an average of 15 seconds in the different scenarios tested contingent upon the abun-

xii

dance of target features in the observed data. Due to the absence of a motion capture

system, the results have been verified by the placement of tags on the ground at

strategic known locations in the building and measuring the error in the projection

of the current UAV location on the ground with the tag.

xiii

1. INTRODUCTION

There is an estimated cost of $15.8 billion per year due to inadequate interoperability

in U.S. capital facilities due to not properly utilizing information technologies [1].

While many industries such as automobile, computer, and aircraft manufacturers

have utilized an array of technologies such as automation technology and electronic

standards to replace paper documents, the construction industry has not used such

technologies as effectively to integrate design, construction, and operational processes,

thereby increasing missed opportunities and costs. During the planning phase of a

construction project, the construction industry does typically produce a building in-

formation model (BIM) from 3D computer aided design (CAD) models of the intended

project [2], however current techniques for tracking the progress of the construction

project typically are performed using manual measurements that are both time and

labor intensive [3].

Many in the construction industry are beginning to use small Unmanned Aerial

Vehicles (UAV) to aid in inspections of the as-built structure including both the inte-

rior and exterior of the structure [4,5,6,7,8]. Currently methods using UAVs require

a pilot to operate the UAVs to collect pictures and video. Inspection engineers then

manually view the pictures and video to detect possible inspections or maintenance

problems during the construction process. Using the data collected from the UAVs,

methods to create as-built documentation as well as compare to the original design

1

could be introduced to increase the interoperability found in the construction indus-

try.

Collection of data for as-built documentation using UAVs flying autonomously to

a goal location would greatly reduce costs. One important part of autonomous flight

is the determination of the current location of with respect to the surroundings. This

work aims to reduce costs by creating a tool to aid in the autonomous flight of a UAV

in the CAD model. More specifically, the work aims to develop a novel system to

allow a small UAV to automatically localize itself in a building given only the 3D CAD

model, and the images collected via video from an onboard camera. To accomplish

this task, the proposed system utilized an open-source Simultaneous Localization and

Mapping (SLAM) algorithm, and an open-source Deep Convolutional Neural Network

(CNN) to identify key features found in both the 3D CAD model, as well as the fully

constructed building (windows, and doors), which are then aligned to perform the

registration. A novel and fast orientation invariant descriptor has been developed

specifically for this purpose and its efficiency and accuracy measured on a portable

system.

To the best of our knowledge, our system is the first to autonomously localize

itself within a given 3D CAD model in the context of indoor flight of a UAV.

1.1 Contributions

A novel pipeline is proposed to autonomously localize a UAV given only a CAD

model as input. The system would only require the user to provide the CAD model

of the building, in which the UAV is to be localized, in the BIM(Building Information

2

Model) format. The BIM format stores information regarding features like doors and

windows which are then used to localize the UAV. A novel 3D feature descriptor is

also proposed and developed, that is orientation invariant, and is fast and efficient

to compute. The process of computing and matching the descriptors is shown in

section 5.1. The performance of the system is evaluated by implementing on a UAV

and having it autonomously localize itself in the CAD model. Using the CAD model

and the SLAM map as inputs to a path-planning algorithm, waypoints are generated

that are then used by the UAV to navigate the goal position within the CAD model.

Finally, leveraging a SLAM algorithm that supports relocalization, we ensure the fast

relocalization of a UAV in the 3D CAD model once the generated SLAM map has

been registered to the 3D CAD model.

1.2 Constraints and Assumptions

The following are the constraints that have been imposed on our use case:

1. No access to GPS or other active sources of localization : Since our

system was developed for the use of localization within a building, and because

GPS systems are unreliable indoors, they were ruled out as a source of localiza-

tion. This is due to the interference caused by the signals bouncing off walls in

addition to the having poor coverage indoors.

2. No access to Time of Flight, Received Signal Strength Indicator(RSS)

and other forms of device based localization: These systems require the

3

setup of complex systems in the building and would need to be carefully cali-

brated to enable efficient localization.

3. Availability of CAD model with Building Information : Since we are

trying to solve the problem of localizing a UAV given a CAD model, we assume

that the UAV will be flown within the building of which we have the CAD

model available. We also assume that the said CAD model is a Building Infor-

mation Model, containing information regarding the features we are interested

in. This limitation could be relaxed if we make assumptions about the general

size and shape of the features we are interested in and try to deduce the fea-

tures from information gleaned from the overall structure of the CAD model.

For example, windows could be extracted based on the information that most

of the windows are only present along the exterior of the building and not the

interiors. Similarly doors could be defined as being the access points to different

rooms, etc.

4. Planarity assumption regarding the overall structure of the building:

Since most buildings have walls that are usually planar, the assumption that

large numbers of map points that fit certain criteria for being considered parts

of planes is used to further refine the SLAM to CAD correspondence. This in

turn leads to better localization as the SLAM map-points become more tightly

coupled with the CAD model. This assumption could be further extended to

include other shapes as well, by estimating the local plane normals using the

surrounding map-points. That would however place a restriction on the SLAM

4

that could be used for the application in that the estimation of local plane

normals would need a more densely populated set of map points.

5. Hardware Constraints : Since the system will need to be run on a UAV that

provides live data to a portable workstation, the only mode of communication

would be through a wireless link between the two devices and all the required

hardware would have to be on the two devices. The UAV will also need to be

able to travel the length of the building and should thus be able to conserve

enough power to run for the duration of the flight. This is why, it was decided

early on, that the only sensor inputs to the UAV would be a stereo camera

and an IMU. The UAV could carry a low powered computer on board to follow

waypoints set by the workstation .

5

2. BACKGROUND

This chapter is devoted to the evaluation of the available algorithms and systems

used in the development of our localization system. The first section evaluates the

current state of art in indoor localization technologies and their shortcomings. Our

system is dependent upon two main components that are crucial to its working: A fast

and accurate SLAM algorithm and a Convolutional Neural Network that is capable

of running in real-time. The second section assess a few of the state of art SLAM

systems that have been considered for our implementation. The SLAM system will

be used by the UAV to build a map of its surroundings. The constructed map will

also be used by the UAV to perform basic navigation. The third section is devoted

to the study of a few of the currently available Convolutional Neural Networks for

object detection. This will be used to detect the features necessary for localization.

2.1 Current Research

Indoor localization has been a very hard problem owing to the lack of reliable

GPS sensor information in indoor environments. Many different approaches have

been made to overcome this problem. A few companies like SnapTrack [9], Atmel

and U-blox have developed technologies that enable indoor localization based on

specialized devices [10]. However, these technologies tend to rely on wireless sensor

6

networks, and are thus costly and limited by the fact that a specialized building-wide

setup has to be constructed in order for these systems to work [10].

Time of Flight and Received Signal Strength Indicator(RSS) based methods at-

tempt to perform localization by using the known locations of devices. Time of Flight

measures the distance between the transmitter and receiver by measuring the time

taken for the signal to reach the target. The time of flight value multiplied by the

speed of light gives the distance between the transmitter and receiver. The main

drawback of this method is that it requires at least three separate transmitters to

be able to localize in 3D space as explained in [11]. It would also require the knowl-

edge of the absolute locations of the transmitters. and requires strict synchronization

between the reference nodes.

A novel method of localization within a known 3D structure has been explored

in [12]. The system extracts lines from the environment using an omni-directional

camera and attempts to generate hypothesis for locations by proposing a robust

matching algorithm to match the 2D lines from images to 3D line segments in the

CAD model. Even though the system brings in a number of innovative features edge

segment matching and prior visibility analysis, it requires the robot to be moving

only in SE(2) and moving in SE(3) would exponentially increase the search space

for the initial localization of the robot. It also requires the availability of a bulky

omni directional camera, which is not feasible in our case.

A more recent paper [13] proposes a method of autonomous exploration in an

unknown indoor environment. The paper proposes a mode of exploration where it

utilizes the semi-dense nature of the map obtained from LSD-SLAM [14] to generate

7

an octomap [15] that it then uses to locate spaces that the UAV can navigate through.

The UAV follows a mode of exploration dubbed as ”star discovery” that it uses to

populate unknown regions of the space around it.

Our system introduces a novel method of solving the indoor localization problem

where we extract features present in images observed using a stereo camera. The

features are extracted from the images using a fast and efficient Convolutional Neu-

ral Network, which ensures that the detections are accurate and quick to compute.

These features are spatially registered to a SLAM map that is built in parallel to the

extraction of features. Simultaneous Localization and Mapping(SLAM) is the pro-

cess of creating a map of the surroundings while also localizing within it. This map

is usually made up of feature points that have defining characteristics like corners,

lines or intensity gradients. The creation of a SLAM map ensures that the UAV is

localized within the generated map. Since we use a stereo camera rig as our sensor,

and a SLAM system that uses stereo images, the SLAM map generated has accurate

scale. The registration of the extracted features within the SLAM map ensures that

the relative distances and orientations of the features are consistent with the relative

distances and orientations of features in the CAD model. This information is then

used to form correspondences between the two sets of features which are then used

to estimate a rigid transformation between the two sets of data. This transformation

effectively registers the SALM map with the CAD model, which in turn localizes the

UAV within the CAD model.

To the best of our knowledge, our system is the first to autonomously localize

itself within a given 3D CAD model in the context of indoor flight of a UAV.

8

2.2 Simultaneous Localization and Mapping(SLAM)

Simultaneous Localization and Mapping(SLAM) is the process of creating a map

of an unknown environment based on sensor inputs while simultaneously tracking

the location of the agent within the constructed map [16,17]. This had traditionally

been thought to give rise to a causality dilemma, owing to the fact that both the

localization and the mapping components need the other to work. Mapping without

localization had been explored in [18, 19] while localization without mapping had

been explored in [20,21]. All of these methods however assumed that either the map

or the location was already available. The breakthrough came with the realization

that a joint estimation of the location and the map made up of landmarks could

be co-estimated if formulated into a single problem if the correlations between the

landmarks could somehow be integrated into the solution [16]. A more in-depth

analysis of the history and evolution of SLAM algorithms can be found in [16,22].

For our work, we require a SLAM system that generates a globally consistent

and accurate map, can scale well enough to encompass the whole of the interior of

a building, and is able to run comfortably on a portable computing platform. The

SLAM should also be able to estimate the scale of the environment to a reasonable

degree. In the following sections, we evaluate two state-of-art SLAM algorithms and

their applicability in our work.

9

2.2.1 ORBSLAM

ORBSLAM [23] is a graph-based pure visual SLAM that aims to generate an

accurate map and 6DOF pose. ORBSLAM uses ORB descriptors (Oriented FAST

and Rotated BRIEF) [24]. What this means is that it uses FAST [25] to detect

corners in different pyramid levels and then computes the orientation of the corners

by computing the intensity centroid [26]. These corners are then used to compute the

”rotated BRIEF” descriptor. The BRIEF descriptor [27] is ”steered” in the direction

of the orientation of the FAST corners. Utilizing FAST as the corner detector and

BRIEF as the descriptor, both of which are extremely fast to compute, ORB features

result in a very efficient feature matching alternative to the the more expensive and

slower SIFT [28] or SURF [29] features.

The system runs three parallel threads that are each responsible for tracking,

local-mapping and loop-closing. The tracking thread localizes the camera with every

frame by finding feature matches to the local map and minimizing the reprojection

error by applying motion-only Bundle Adjustment. Bundle Adjustment is an opti-

mization procedure that is used mainly to obtain consistency in a map by minimizing

reprojection errors. The local mapping thread manages the local map and optimizes

it performing full bundle adjustment. The loop closing thread detects large loops and

corrects that can later drift by performing pose graph optimization.

The scalability, global consistency accurate map and localization provided by

OBBSLAM makes it a very good candidate for our work. However, since it is a

monocular based system, the scale would have to be estimated from other sources.

10

2.2.2 Large Scale Direct Monocular SLAM (LSD-SLAM)

Large Scale Direct Monocular SLAM (LSD-SLAM) [14] is a direct or featureless

SLAM algorithm designed for monocular cameras. This direct method circumvents

the use of keypoints, but instead uses image intensities to estimate the map and

camera location. This algorithm provides a semi-dense map by creating a depth map,

an inverse depth map and variance of the inverse depth map in the neighborhood of

large image intensity gradients from particular key-frames.

LSD-SLAM also seperates the problem into three parts including tracking, depth

map estimation, and map optimization. In the tracking section, the current camera

pose is estimated from a image with respect to the current keyframe pose by mini-

mizing a variance-normalized photometric error. The depth map estimation section

is used to determine if a new image will be selected as a new keyframe, or else refine

the current keyframe. Finally map optimization is performed by minimizing an error

function based on photometric residual and depth residual which are scaled with the

variance of both images. LSD-SLAM provides a more detailed map due to the use of

more of the image information and produces a semi-dense map that could potentially

provide useful information during for obstacle avoidance and path-planning. This,

however comes at a higher computational cost. LSD-SLAM, like ORB-SLAM is also

a monocular system and thus requires the estimation of scale from other sources.

11

Figure 2.1. LSD process flow. Three parallel threads run to create a
SLAM map from direct observations. The tracking thread tracks camera
pose based on the current camera keyframe, denoted as KF in the image
above. Keyframes in LSD-SLAM are views in the camera view frame that
are used to estimate the depth of the surrounding by the computation
of the photometric error with the subsequent images. The depth map
estimation thread refines the depth from multiple views w.r.t the current
keyframe. The map optimization thread optimizes the map by finding the
closest keyframes and adding keyframes to the global map. The image is
taken from Jakob Engel et al. [14].

2.2.3 ORBSLAM2

ORB-SLAM2 [30], built from the previous ORB-SLAM, was the first open source

SLAM system for monocular, stereo and RGB-D cameras. Akin to the original monoc-

ular implementation, the system comprises of three main parallel threads: tracking,

local-mapping and loop-closing. The contribution of ORB-SLAM2 over ORB-SLAM

12

was the inclusion of stereo keypoints which provide depth information from just one

frame. The stereo observations also enable the weighting of keypoints based on the

distances and thus result in a more accurate map than direct methods.

Figure 2.2. ORB-SLAM2 process flow. Three parallel threads are run
to produces a globally consistent map. The first one localizes the camera
with every frame by matching features with a local map while minimizing
a reprojection error. A second thread maintains the local map of 3D
features and optimizes it. The last searches for potential loop closures
and performs local and global bundle adjustment. The image is taken
from Raul Mur-Artal et al. [30]

In addition to these features, it also provides a lightweight mode to localize against

a previously constructed map. In this mode, the local-mapping and loop-closing

13

threads are deactivated and the camera is continuously localized by the tracking

thread, using relocalization if needed.

Even though it provides a fast and efficient method to estimate the location of

the camera sensor and its surroundings, it does lose valuable information as it only

tracks feature points. However, this is easily overcome by the computation of 3D

points when required as shown in section 4.2.3.

ORB-SLAM2 provides a scalable, globally consistent, accurate and efficient map-

ping and localizing mechanism and thus meets all our requirements from the SLAM

system. Additionally, the relocalization feature provided by this system is a very

useful feature that enables the reuse of a previously registered SLAM map to localize

within the CAD model without going through the costly process of re-registering or

regenerating the SLAM map. Due to these reasons, ORB-SLAM2 was selected as the

SLAM algorithm of choice for our work.

2.3 Convolutional Neural Network

Even though Convolutional Neural Networks have been around for almost 20

years, they have only recently gained popularity due to the availability of low-cost and

powerful graphics processors that enable the the networks to train in a highly parallel

framework. CNNs were first implemented by Yann LeCun in his work involving the

classification of different types of numbers with high precision [31]. Interest in the

use of CNNs for solving object detection problems was revived by the introduction of

AlexNet [9] in 2012 as a contribution in the ImageNet [32] classification competition.

14

CNNs derive their name from the use of sets of filters that are convolved with the

image. The filters are trained to activate specific features in the image. In addition to

the convolutional layers, the extracted features are also passed through max-pooling

layers which down-sample the image. These layers condense the complex information

from the features and enable the drawing of assumptions from different image regions

at various scales. The combination of convolutional and max-pooling layers allow for

the definition of the abstract form of objects. The network produces a feature map

as the output, which provides information about the type and location of features in

the image.

For use in our work, we require a CNN that is fast, lightweight, and has the

potential to run realtime on a low powered GPU. It should also output bounding

boxes predicting the locations of the objects in the image. In the following sections,

we evaluate three different state of art networks and discuss their applicability in our

work.

2.3.1 Region-based Convolutional Neural Networks (R-CNN)

R-CNN [33] is a region-based proposal network that extracts approximately 2000

region proposals from an input image, which are then fed into a Convolutional Neural

Network that extracts features for each of the proposals. Each of the proposed regions

are then classified using linear Support Vector Machines(SVM’s) that identifies the

class the regions belong to. Figure 2.3 shows the different stages in the classification

process. R-CNN performed better detections than other algorithms at the time it was

introduced. Due to the large size of the network however, the network takes about

15

20 seconds to detect objects on an image using a desktop GPU [33]. Since we need a

system that is real-time, this would not meet our requirements.

Figure 2.3. R-CNN structure taken from Ross Girshick et al. [33]

Fast R-CNN

Even though R-CNN is able to classify objects well, it is slow in running the

detection process as it runs a full forward pass for the 2000 region proposals. Fast

R-CNN [34] proposes to increase the processing efficiency by using Spatial Pyramid

Pooling Networks(SPPNets). The feature map is computed once for the entire image

and is used in classifying the region proposals directly. This speeds up the process of

testing images as the whole image is fed into the initial convolutional layer, on which

the region specific operations are done as opposed to extracting regions and then

feeding the warped region proposals into a network. This speeds up computation

in both training and test time. The paper claims a speedup of about 10 times as

16

compared to the slow R-CNN. This however is still not fast enough to for use in our

system.

Faster R-CNN

Fast R-CNN [35] improved the performance of R-CNN at the convolutional net-

work but neglected the slow creation of region proposals. Even though the CNNs

were GPU accelerated, the region proposals were still being generated on the CPU.

Faster R-CNN solved this problem with the introduction of Region Proposal Networks

(RPNs) which were able to reuse the convolutional layers present in the existing CNN.

This in turn led to a significant reduction in time taken for the creation of region pro-

posals. The paper claims that it is able to process about 7 fps on a Titan X GPU.

Since our goal is to make make the system available on a portable system, it is

still too restrictive.

2.3.2 YOLO

The first iteration of YOLO approached object detection as a regression problem

to spatially separated bounding boxes and associated class probabilities [36]. This

resulted in an improvement in speed over previous methods as a single neural net-

work predicts both the bounding boxes and class probabilities in one evaluation. As

the complete pipeline is a single unified network, end-to-end optimizations directly

improve detection performance. Unlike sliding window and region proposal based net-

17

works, YOLO sees the entire image during training and test time, so it can predict

both the classification and the localization in a single pass through the network.

Region based methods on the other hand try to classify the same region several

thousand times. YOLO is structured so that it looks at every part of the image only

once which is where it got the name. Each image is first split into a 7x7 grid of cells.

Each of these cells predict two bounding boxes which have their centers at the centers

of the respective cells. Next, the confidence values for each of these bounding boxes

are predicted representing the degree of certainty with which the network is able to

correctly predict the coverage of an object. This results in a total of 7x7x2=98 boxes

with corresponding confidence values. Each of these 98 boxes are then classified into

the objects to be detected. This is done by running the classification for every cell.

Since all the bounding boxes are centered on the cells, the bounding boxes for the

object can be taken to be the same as the bounding boxes predicted for the cells.

The output of the network is the set of all bounding boxes and their associated class

probabilities. The correct boxes are filtered out by applying a threshold on the class

probabilities. The process is shown in figure 2.4.

The paper claims that the network runs at 45 fps using a TitanX GPU. In addition,

they discuss a simpler version of the network, tiny-yolo which can be run on smaller

GPUs with reduced accuracy.

2.3.3 SSD - Single Shot Multibox Detection

Similar to YOLO, SSD [37] produces a fixed number of detections, the highest

ones of which are selected as the valid detections. The initial layers are based on the

18

Figure 2.4. The image is divided into a 7x7 grid from which bounding
boxes and class probabilities are predicted. The final output generated
after thresholding is shown to the right. Image taken from Joseph Redmon
et al. [36]

VGG16 [38] network architecture. A set of convolutional feature layers are added at

the end that extract features at different scales. Unlike YOLO, feature maps produced

at each layer is used to predict detections and are also used as the input to the next

layer.

SSD improves over YOLO by proposing a network that is fully convolutional

and is able to detect at different scales. The large number of connections needed in

fully connected layers makes them computationally expensive. The use of low cost

convolutional layers in SSD enables it to generate a greater number of detections per

19

Figure 2.5. Comparison between YOLO and SSD. The upper portion
shows the SSD network architecture. The image is passed into a set of
convolution layers taken from the VGG16 network which produces 38x38
cells that contain feature vectors of length 512. Bounding boxes are then
predicted using each of these cells for objects that fit in the cell approxi-
mately. This process is repeated for subsequent convolutional layers that
are have smaller number of cells. The initial layers are used to detect
smaller objects while the deeper layers combine these features to detect
larger objects. The YOLO architecture is shown the lower portion of the
image. The fully connected layers impact performance and the absence of
scaling give rise to more localization errors [37].

class in each image as compared to YOLO. Figure 2.5 shows that SSD is able output

8732 predictions as opposed to YOLO which is able to output 98 predictions per class.

This enables SSD to detect objects of varying sizes better than YOLO.

20

2.3.4 YOLOv2

YOLOv2 [39] introduced a number of improvements over YOLO that each con-

tributed to an increase in performance of the detector as shown in Figure 2.6. One of

the most important improvements is that the network was converted to a fully convo-

lutional network which increased the speed of the network. The 224x224 pretrained

classifier used in YOLO was replaced by a classifier of size 448x448 to enable higher

resolution in the detections. As shown in Figure 2.6 a number of other features, like

batch normalization, use of dimension priors, location prediction, multi-scale detec-

tion lead to incremental improvements in the overall accuracy of the detector.

Figure 2.6. Improvements of YOLOv2 over YOLO. The addition each new
feature leads to incremental improvement in the performance of the CNN.
Converting to a fully convolutional network did not increase accuracy, but
increased the speed of the algorithm

The result of the optimizations and changes to the architecture is a network that

is able to run at 67 frames per second on 416x416 size images while maintaining

21

an mean average precision(mAP) of 76.8 on the VOC 2007 and VOC 2012 training

datasets. This corresponds to 45 frames per second on the laptop that was used for

the application. Since the network was run wholly on the GPU, the workstation was

free to use the CPU for running other parts of the system, like the localizer and the

SLAM module.

22

3. SYSTEM OVERVIEW

Five major steps are involved in enabling the goal of localizing the UAV in a CAD

model. The first is a pre-processing step, in which the features in the CAD model

are extracted and feature descriptors are computed. During the live operation of the

UAV, the system creates a map of the surroundings of the UAV while also simulta-

neously localizing within this map. This is accomplished using a preexisting SLAM

algorithm. Thirdly, known features are extracted from the surroundings using an

existing real-time CNN for object detection. These features are spatially registered

to the SLAM map. Fourthly, feature descriptors are computed from the extracted

features. Finally, feature descriptors from the two sets of data, i.e. the CAD model

and the observed data are matched and a rigid transformation is computed using

the matched features. Since the UAV is already localized in the SLAM map, the

computation of the transformation effectively localizes the UAV in the CAD model.

The hardware system is comprised of two main components: a SLAMdunk module

mounted on top of a Parrot Bebop 2 and the ground control station. The SLAMdunk

is an integrated kit that uses the NVIDIA Jetson TK1 as the processing unit and has

integrated sensors including a stereo camera rig, an IMU, a front-facing ultrasound

rig, an inertial measurement unit(IMU), a barometer and a magnetometer. The setup

is shown in Figure 3.1.

23

Figure 3.1. The system setup - A S.L.A.M.dunk mounted on a Parrot
Bebop 2 drone

The NVIDIA Tegra K1 has an onboard GPU which has the Kepler architecture

with 192 CUDA cores. It also has an ARM cortex A15 CPU and a 2GB x16 Memory

with 64-bit width [40]. The SLAMdunk controls the Parrot Bebop 2 by connecting to

an access point hosted by the bebop 2. The complete network configuration is given

in figure 3.2. The SLAMdunk interacts with the ground control station by connecting

via the wifi connection between the Parrot Bebop 2 and the ground control station.

All communication between the SLAMdunk and the ground control is routed via

the Parrot Bebop 2 server. This is done to leverage the powerful wifi hardware already

available on board the Bebop 2.

24

Figure 3.2. Communication setup between Ground Control, SLAMdunk,
and Parrot Bebop 2. The Bebop 2 is connected to the ground control
station via wifi. It hosts an access point that both the SLAMdunk and
the ground control are connected to. The SLAMdunk is connected to the
Bebop 2 server via USB. It also uses the USB to send control commands
to the Bebop 2.

There are two main modes of operation of the UAV, exploration and localized

mode. During the exploration mode, the UAV operation is based completely on the

SLAM map, while the localizer continuously tries to localize the UAV in the SLAM

map that is generated on the fly. Once the UAV is localized, the UAV switches to the

Localized mode, where it follows a set of way-points to a goal position. The process

flow shown in figure 3.3 is the one used in the exploration mode. Before either of

these modes are enabled however, there needs to be an extra preprocessing phase

done during which the data to be used by the system is prepared.

25

Figure 3.3. Process flow

26

3.1 Preprocessing

During the preprocessing phase, the 3D CAD model of the building is first loaded

onto the program on the ground control system using the Open Asset Import Li-

brary(Assimp) [41]. Assimp is a platform independent library used to import dif-

ferent 3D model formats and provides a unified method of accessing them. Being

written in C++, it was easily integrated into the pipeline. Since the CAD model is in

the modern Building Information Model(BIM) format, it contains information about

the features that we later use for the localization: doors and windows(from here on

referred to as features).

The features from the CAD model are extracted and the positions of the centroids

are stored in a K-Dimensional Tree(k-d tree) for easy retrieval of the nearest neighbors

of any given feature. A k-d tree is a data structure that enables easy storage and

retrieval of points in a k-dimensional space [42]. The points are stored in the form

of a binary tree with every node being a k-dimensional point. A hyperplane that

is perpendicular to the axis at a given level is used to split the children along that

dimension. This is done in practice by first selecting a root node. Using the first

dimension as the axis(for example, the x-axis), the child nodes are split into two

groups: nodes having the coordinate value of the first dimension smaller than the

root node, go into the left tree and the nodes having greater values go into the right

subtree. In the next level, the second dimension is used to divide the nodes and so

on. Once all the dimensions are expended, the first dimension/axis is used to divide

the data. This process continues in a cycle until all the nodes have been represented.

As the elements are represented in the form of a tree structure, retrieving the closest

27

Figure 3.4. The building information model: The required features(doors
and windows) are extracted and shown. Doors are depicted in black,
windows are shown in blue. All the other components like walls etc are
shown in translucent gray.

N nodes is fast and efficient. For our implementation, the dimension of the k-d tree

used is 3, to model the 3D structure of the data represented by it. Using a k-d tree

speeds up the retrieval of nearest neighbors which will be used later in the pipeline

during the coarse registration phase. The construction of a 2D k-d tree is depicted

in figure 3.5.

28

Figure 3.5. Typical K-D tree construction. The algorithm for the con-
struction of the tree is described in section 3.1. The image is taken
from [43].

Using the k-d tree, descriptors are computed for each of the features based on the

algorithm outlined in algorithm 2. The descriptors are later used to find correspon-

dences between the detected features and the CAD features.

3.2 Exploration mode

The left and right images from the stereo cameras are used to compute depth from

disparity using GPU optimized Semi Global Block Matching(SGBM) [44] on-board

the SLAMdunk. An explanation of the algorithm can be found in appendix A.1 The

left image and the computed depth images are sent via wifi to the ground control

station at a rate of 30fps. IMU updates are also sent over to the ground control at

29

150Hz. All communication between the UAV and the ground control including the

images are handled via Robot Operating System(ROS) communication packets.

ROS is a robust messaging system that provides a framework and a set of tools

to build robotics applications [45]. It provides a method to enable robust form of

communication between the UAV and ground control and takes care of missed or

dropped packets along during the transmission. ROS also has a set of tools to visualize

point cloud data, lines, objects, and robot pose. It also has plugins that can be used

to test path planning and mapping algorithms.

On the ground control, the system divides into two main components : the SLAM

module and the localization module. The SLAM module estimates the current UAV

pose in a map generated using the images and IMU data. ORBSLAM2 [30] is used

as the SLAM algorithm and is used in the RGBD mode, leveraging the left and

computed depth images from the UAV. It constructs a map consisting of a sparse set

of 3D map points while also estimating the 6DOF current UAV pose in it.

The localizer extracts features(doors and windows) from the images and tries to

localize the UAV in the CAD model by first forming correspondences between the

detected features and features extracted from the CAD model, which are then used to

estimate a rigid transformation in SE(3) between the two coordinate frames(SLAM

and CAD model) using a robust transformation estimation algorithm explained in

5.2.

In the localizer, the left images are first passed through a previously trained Con-

volutional Neural Network(CNN), YOLOv2 [39] which is trained to detect doors and

windows. YOLOv2 is a real-time object detection system that is able to simultane-

30

(a) (b)

(c) (d)

Figure 3.6. Coordinate Transformation and Registration.The CAD co-
ordinate system is shown in (a). The SLAM coordinate system is shown
in (b).(c)shows the correspondences found between the SLAM and CAD
coordinate systems. The UAV is shown localized in the CAD model in
(d).

31

ously classify and localize objects in images using a single network. YOLOv2 outputs

bounding boxes of predictions in the images passed to it. Image processing techniques

are applied to the area within the bounding boxes to extract the boundaries of fea-

tures. These are reprojected into the 3D space by using information from the current

camera pose.

These features are then registered to the keyframes in which they were first de-

tected in the SLAM map. This registration enables the accurate positioning of the

features in the SLAM map by leveraging the support of bundle adjustment during

local and global loop closures.

The detected features are then used to register the SLAM map with the CAD

model as described in chapter 5.

3.3 Localized mode

Once the UAV is localized using the localizer module, the UAV begins the process

of traveling to the destination. The height of the UAV from the ground level is

retrieved using an ultrasound sensor located beneath the Bebop 2 drone. A cross

section of the current floor, roughly at the height of flight of the UAV is generated from

an Octomap [15] representation of the building. The octomap provides a probabilistic

3D voxel representation of the environment/building that is updated realtime with

objects that do not appear in the original CAD model as well. The goal position and

the current location of the UAV are then projected onto the 2D occupancy grid that

is generated from the cross section generated earlier. An A* search algorithm [46]

to plan a path from the current location to the goal position is then run on this

32

grid map. This generates a path of shortest route between the current location and

the goal location. Dividing the floor into a 2D grid reduces the search space and

consequently provides an efficient method to compute the shortest distance. Using

the path generated, waypoints are sent to the UAV representing the centroids of the

cells in the 2D grid which are connected by the computed path. The A* algorithm is

illustrated in figure 3.7. Since the UAV does not undergo fast motions, it is sufficient

to supply the waypoints as a set of location coordinates with respect to the CAD

coordinate system.

Figure 3.7. A* Algorithm for path finding. A cross section of the floor is
used to generate the 2D occupancy grid The dark green cell is the start
location and the red cell is the goal location. The gray cells are occupied
and the white cells are free. A path is computed by applying the A*
algorithm and waypoints are generated using the centroids of the grid
cells.

33

4. FEATURE DETECTION AND EXTRACTION

To register the SLAM map with the 3D CAD model, features have to be detected

and one to one correspondences need to be established between detected features and

the features extracted from the CAD model. To perform this correspondence, we first

create feature descriptors using the features in both the datasets. The descriptors are

created so that they are rotation invariant. The process is discussed in greater detail

in section 5.1. In this section we will be discussing the methods employed to detect

the features from the observed data.

Traditionally, object detection algorithms have focused on extraction of features

like HAAR classifiers, HOG, SIFT, SURF etc. which were then passed through a

learning algorithm like Support Vector Machines, Random Forests, etc. Deep learning

algorithms bypass the feature extraction method completely. We select YOLOv2 for

its speed and accuracy in both detecting and localizing the required objects.

Our goal is to devise a method to detect doors and windows reliably and efficiently

from observed data and register these with the constructed SLAM map. Using a CNN

like YOLOv2 to take care of the object detection ensures a high level of accuracy while

maintaining speed. It has also been found to perform much better than filters that

are hand-designed to perform the detections. Windows are especially hard to detect

using traditional methods, as reflections, objects on other side of the window, prevent

successful detections of windows. YOLOv2 performs real-time detections by applying

34

a single neural network to the full image. This network divides the image into regions

and predicts bounding boxes and probabilities for each region.

4.1 Data Preparation and Training

4.1.1 Data Collection and Preparation

Short video sequences containing doors and windows from real datasets were used

to train the network. The data was collected from a variety of different sources

including those from the site of the construction. Care was taken to collect images in

different lighting conditions, during night and daytime, and from different distances,

and angles. Since the use case is predefined, i.e, it would be used on a UAV that

would not undergo extreme motions like flipping etc., the images were collected to

mimic only slightly more than the range of motions that the UAV would go through

in practice.

4.1.2 Annotation and Data Augmentation

The images were annotated using the LabelImg [47] software. The doors and

windows in each image were marked using rectangular boxes and the coordinates

were stored in normalized coordinates by expressing the coordinates as a fraction of

the length and width of the image.

Slight perturbations in angle were provided to the images during augmentation.

This was done by applying a rotation on the input images given by

35

Rz(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (4.1)

where Rz is a rotation about an axis perpendicular to the xy plane and θ is the

angle of rotation. This angle is kept to a maximum of ±20 degrees in 5 degree

increments to simulate the maximum roll of ±20 degrees from the collected data.

Inverse warping was applied to get rid of holes in the warped image. Holes are

artifacts of forward warping where pixels in the warped image are not painted in due

to the unavailability of one-to-one mapping from the source image to the destination

image. The bounding boxes were resized to include the rotated bounding boxes. This

was done by detecting the maximum and minimum limits of the bounding box corners

after warping and constructing the new bounding box using these limits.

4.1.3 Training

The network selected for our work, YOLOv2 was trained on a desktop with a

TitanX GPU for a week from scratch on the recorded and augmented data. A total

of 1540 images were collected from short video sequences containing different doors

and windows in different lighting conditions to account for variations in the operating

environment. A total of 12320 images were generated from these images through

augmentation. 80% of the dataset was randomly selected as the training set and 20%

was used to validate the detection accuracy. This was done to compute the precision-

recall curve for the detections using the 20% set aside. The precision-recall curve

36

provides information that is used to decide on the cut-off threshold on the detection

confidence. This is discussed in more detail in section 6.1. Two classes, one each for

the doors and windows were used to classify the detections. In addition, to remove

detections that looked like a door or window, a third class was added. This class was

not used in the evaluation but led to an increased accuracy of the network.

4.2 Detection Refinement

YOLOv2 provides rectangular bounding boxes of detections in the image space.

Each of these bounding boxes correspond to a single detection of either a door or a

window. These detections have to be translated into the actual objects in the 3D

space. To do this, lines are first detected in each of the areas within the bounding

boxes using LSD, a line segment detector [48].

4.2.1 Line Segment Detector(LSD)

LSD is a linear-time Line Segment Detector that claims to provide sub-pixel accu-

rate results and claims to successfully detect lines on images without any parameter

tuning [48]. It works by first generating a Gaussian pyramid from the original image,

containing N octave levels, by down sampling N-1 times, and blurring at each level

by the application of a Gaussian filter. From each layer in the pyramid, lines are then

extracted using the various image processing mechanisms like, gradient computation,

gradient pseudo-ordering, gradient thresholding, region growing etc. The algorithm

is claimed to have an execution time that is proportional to the number of pixels in

37

the image. In practice, even though the algorithm did perform quite well in detecting

lines, it was prone to breaking up lines even after rigorous parameter tuning. These

detections were further refined using the methods outlined below.

4.2.2 Refinement

The lines that are closest to the vertical sides of the bounding box that are within

a threshold distance from the sides are joined to form a single line provided they meet

certain criteria. LSD outputs lines as point pairs denoting the endpoints of the line

segments. These endpoints are used to compute the slope of the line segments.

(a) (b) (c)

Figure 4.1. Feature Detection and Refinement. The bounding box from
YOLOv2 is shown in (a). Lines detected using LSD Algorithm are shown
in (b). Two vertical sides of object are selected and marked in (c).

38

Line segments that have slope within a threshold angle between them, provided

the closest endpoints are within a threshold distance are joined by getting rid of the

closest endpoints and using the other two endpoints as the endpoints of the new

joined line. The threshold for the angle in our implementation is set to 2 degrees and

the distance in pixels between the closest endpoints of the line segments is set to 10

as they seem to have worked best for our system. The longest lines closest to the two

vertical sides of the bounding box are then taken to denote the vertical sides of the

door or window. This is illustrated in figure 4.1.

(a) (b)

Figure 4.2. Reconstruction and Registration of Feature in 3D. The current
frame with tracked ORB features is shown in (a). The detected windows
projected into the 3D world coordinates of the SLAM map is shown in
(b).

39

4.2.3 3D Reconstruction

Using the 2D lines detected for the vertical edges of the feature, we project the

lines into the 3D space. The stereo image pairs are used to compute the depth from

disparity at each point in the image. This computation is highly parallelizeable and

is done on board the UAV utilizing the GPU of the Jetson TK1 using the algorithm

described in appendix A.1. The left image and the disparity image are used to

reconstruct the feature in 3D.

Points are sampled along the 2D lines detected in figure 4.1(c) and using the depth

at each point, are projected into the 3D world coordinate system. This is computed

by,

P3x

P3y

P3z

 = d

(P2x − cx)/fx

(P2y − cy)/fy

1

 , (4.2)

where (P3x, P3y, P3z) are the coordinates of the point in 3D with respect to the

current pose of the camera in the world coordinate system(also called view coordi-

nates), (P2x, P2y) the coordinates of the point in 2D image coordinates, (cx, cy) the

coordinates of the principal point of the camera and (fx, fy) the focal length of the

camera and d, the computed depth at the point. The sampled points are used to

compute the line in 3D using a least-squares line fitting algorithm using orthogonal

distance as explained in [49]. Outliers are removed by removing points that are at a

threshold distance from the computed line. The line is once again recomputed from

the inliers using the orthogonal regression used previously. This two step computa-

40

tion of the line provides a better estimate and is resistant to outliers in practice. The

algorithm used for line fitting is shown in algorithm 1. The endpoints of the line is

computed by finding the projection of the two endpoints of the line segment in 3D

onto the fitted line.

Algorithm 1: Fitting a line using orthogonal regression as explained in [49]

Result: Descriptor vector, d

The four points that make up these line segments now represent the feature in 3D

in the view coordinates. Each of these features detected are assigned to the keyframe

in which they were first detected. As explained earlier, keyframes are frames in a graph

41

based slam that are tracked across multiple frames and consist of the camera pose at

the instant along with the mappoints in the view of that keyframe and also contain

the connection to other keyframes in the slam map that share closely correlated map

points. Assigning the detected features to the keyframes ensures spatial consistency

in the even of a bundle adjustment step occurring before the localization step is

complete.

A homogeneous point in 3D is defined by

~P =

Px

Py

Pz

1

(4.3)

where Px, Py, Pz are the three scalar coordinates. A transformation, T ∈ SE(3) is

represented by

T =

 R ~t

0 1

 (4.4)

where R ∈ SO(3) is a rotation matrix and ~t is a translation.

At any point in time, the locations of the feature points in world coordinates can

be computed by,

~Pw = T cw ~Pc, (4.5)

where ~Pw is the homogeneous coordinates of the point in the world coordinate system,

~Pc the homogeneous coordinates of the point in the view coordinate system, and T cw

the transformation between the camera and the world coordinate system.

42

For the coarse registration phase that takes place after this step, each of the

features computed above are further reduced to their respective centroids in the world

coordinate system. The descriptors are then computed as explained in section 5.1.

43

5. FEATURE REGISTRATION

Registration is the process of transforming a set of data from one coordinate system

into another coordinate system. For our system, we need to register the set of features

in the SLAM coordinate system to the features in the CAD model. Since the UAV is

already localized in the SLAM map, the registration of the SLAM coordinate system

with the CAD coordinate system ensures that the two coordinate systems are aligned,

thus localizing the UAV in the CAD coordinate system.

Using a SLAM algorithm that utilizes stereo images ensures that the SLAM map

generated has an accurate estimate of scale. Since the two sets of data have the same

scale, a rigid transformation is sufficient to align the two sets of data. To compute

this transformation, point-to-point correspondences need to be found between the

two datasets. Once the correspondences are found, A Random Sample Consensus

(RANSAC) [50] based approach uses subsets of these correspondences to determine

the best set of corresponding features and the required transformation is computed.

To speed up the process of finding corresponding features, a novel method has been

devised that encodes each feature into a binary feature descriptor that is orientation

and location invariant. The use of a binary descriptor ensures fast descriptor matching

through the use of Hamming distance as the distance measure. Computation of

Hamming distance can be done in a single XOR operation between the two binary

strings. The orientation and location invariance helps in removing the dependence

44

of the feature descriptors on the coordinate system. The process of computing the

descriptors is explained in section 5.1.

5.1 Feature Descriptor

To form matches between the two sets of features, the descriptor computation

needs to be decoupled from the coordinate system of each of the points sets. This is

done by encoding the distances and angles to the closest 5 features into the feature

descriptor. Since the SLAM coordinate system has close to accurate scale, the rel-

ative distances and orientations between the closest features stays the same in both

coordinate systems. One such example is shown in figure 5.1. As seen in the figure,

when the features are reduced to their respective centroids, the relative distances and

orientations between the features stay the same.

Figure 5.1(a) shows a portion of the CAD model with a feature whose descriptor

is to be calculated. Figure 5.1(b) shows the SLAM map generated from a run, along

with the detected features. The corresponding features are labeled in both images.

The feature descriptor is computed by first retrieving the closest 5 features from the

feature whose descriptor is to be computed. This is done efficiently by the use of a

KD-tree to store the centroids of the detected features. Next, using the closest feature

as the base, the angles to each of the 4 other features is computed using the formula,

α = arccos

(
~a ·~b

||~a|| · ||~b||

)
(5.1)

45

where ~a is the vector from the current feature to the closest feature, ~b is the vector

from the current feature with the feature whose angle is to be calculated and α, the

angle between the two vectors.

(a)

(b)

Figure 5.1. Orientation invariance of the Feature descriptor. The images
show the relative distances and orientation of a few selected features, with
’e’ being the feature of which the descriptor is being calculated. Image
(a) shows the features in the 3D CAD model while image (b) shows the
same features in the SLAM map

46

The encoding of the orientations and the distances to each of the nearest features

are done by using a lookup table. The lookup table ensures that the values of distances

and angles that are close to local means are assigned the same value. This binning

process enables the encoding of the distances and the angles into a compact form

that can then be used to form the binary descriptor. This process is outlined in

algorithm 2. In addition to the distance and orientation information, the first bit in

the descriptor is used to denote the type of the feature i.e. door or window.

Algorithm 2: Computation of Feature Descriptor

Result: Descriptor vector, d
Extract closest 5 features from KD tree with distances;
v ← all 5 points
x← current pt
vec0 ← v0 − x
forall i in [1, 2, 3, 4] do

veci ← vi − x
disti ← LUTdist(|veci, vec0|)
∠i← LUTangle(veci, vec0)

end
Descriptor vector,
d← [feature type, [dist1], [∠1], [dist2], [∠2], [dist3], [∠3], [dist4], [∠4]]

5.1.1 Lookup Table for Fast Descriptor Matching

The lookup table seen in algorithm 2 is actually computed through a binning

process. There are two lookup tables created, one for angles and the other for storing

distances. These tables are used to group together values that are close to local

47

means. The boundaries of these bins are computed using a process known as Kernel

Density Estimation.

All the possible values are first computed using the CAD model. These values

are then sorted and grouped into clusters. This clustering is done by first sorting all

the values and then estimating the shape of the probability density function f , that

provides a representation the data. This probability density function is estimated

by the use of Kernel Density Estimation(KDE). KDE is a non-parametric method

of estimating the probability density function. The Kernel Density Estimator, f̂h is

given by

f̂h(x) =
1

n

n∑
i=1

Kh (x− xi) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (5.2)

where K is the kernel (in our case a gaussian kernel), Kh is the scaled kernel and h

is a smoothing parameter also known as bandwidth, (x1, x2, . . . , xn) are a univariate,

independent and identically distributed samples drawn from the distribution function,

f . The ˆ is a notation to signify that the variable is an approximated value. By

estimating and analyzing the shape of f , and dividing the distribution along the local

minimae of this function, we can create the bins required for our look up table. This

is illustrated in figure 5.2.

If we consider the underlying density of this density function to be gaussian, we

can estimate the value of h using

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5, (5.3)

48

where σ̂ is the approximate standard deviation of the values. This approximation is

known as Silverman’s rule of thumb [51].

Figure 5.2. The Kernel Density Estimate. This is used to create bins for
the lookup table.

Each of the bins are then assigned a number between 0 to the total number of

bins, the maximum being 255 to fit in an 8-bit width in the binary representation

of the number. This way each neighboring feature gives rise to two 8-bit values, one

each for distance and the angle. The total size of the descriptor is thus 64 bits. The

first bit in the 64-bit vector is usually zero as the number of bytes to represent the

bins in the angles are less than 8 bits, in practice. So we store the type of the feature

in this bit. This is done to ensure that the total size of the descriptor fits into a

49

multiple of 8, which it the number of bits that make a byte. The layout of the feature

descriptor is shown in figure 5.3.

Figure 5.3. The 64-bit orientation invariant feature descriptor. The first
bit is used to determine if the feature types match. The feature type is
either 0 or 1, based on whether it is a door or a window. If the feature
types match, the descriptor score is evaluated using the rest of the bits,
If not, the maximum value for the distance is returned i.e. 64. The first
bit in the 64-bit vector is usually zero so we store the type of the feature
in this bit.

5.1.2 Descriptor Matching

Since this is a binary descriptor, matching of the descriptor is done by finding

the Hamming distance between two descriptors [52]. The descriptors are matched on

the basis of the lowest Hamming distance. Hamming distance computes the number

of positions of two equal strings where the corresponding values are different. This

is computed very easily and efficiently using the XOR operator and then summing

the total number of set bits in the result. Computers with newer hardwares usually

have support for counting the total number of set bits in CPU instructions. These

are invoked by calling the builtin popcount(x) operator of the GCC compiler. This

50

results in a very fast matching mechanism. The complexity for finding matches be-

tween the observed features and the CAD features is thus, O(mn), with m being the

number of observed features and n being the number of CAD features.

5.2 Initial Registration

During the initial registration phase, features are first extracted using the methods

outlined in chapter 4. For each feature extracted, the centroid of the feature is stored

in the KD tree and the descriptors are computed when the feature has more than a

threshold number of neighbors. These descriptors and the descriptors computed from

the CAD model are then matched using the methods outlined in section 5.1.

The matched features are then used in a RANSAC [50] based transformation

estimation mechanism. RANSAC is a robust iterative method that is used to estimate

the parameters of a mathematical model from noisy data that has outliers.

RANSAC works by selecting the minimum number of parameters needed to es-

timate a model hypothesis. The generated model is then used to compute the total

number of inliers for the model hypothesis. This process is repeated for a total of N

times to generate N hypotheses and the hypothesis with the most number of inliers is

selected as the transformation. The number N is a function of the desired probability

of success, p. 1 − p can then be considered to be the probability of failures. If w is

the probability of selecting an inlier for each a point is selected, and m is the number

of points needed to estimate the model, then 1−wm will be the probability of finding

at least one outlier among the m points. (1 − wm)N is thus the probability of never

selecting m points that are all inliers. Thus,

51

1− p = (1− wm)N , (5.4)

which simplifies to,

N = log(1− p)/log(1− wm) (5.5)

is the equation to estimate the total number of hypothesis that need to be generated

for a desires probability of success, p.

N different hypotheses are generated to estimate the model. In our case, the model

is the rigid transformation between two 3D point sets. Since this requires at least four

point-to-point correspondences, the value of m in our case is four, which are randomly

selected from the matched features. The rigid transformation is then computed using

a linear least square method based on singular value decomposition(SVD). The Least

Squares rigid transformation estimation method is described in section 5.2.1.

Coplanarity or collinearity of the points give rise to degenerate conditions and

have to be avoided. Since collinear points are also coplanar it is sufficient to perform

the check for coplanarity. The test for coplanarity can be done by computing the

scalar triple product, which is given by,

(~x3 − ~x1) · [(~x2 − ~x1)× (~x4 − ~x1)] = 0, (5.6)

where ~x1, ~x2, ~x3, ~x4 ∈ R3 are the four distinct points. The scalar triple product denotes

the volume of the parallelepiped formed from the three vectors shown in equation 5.6.

52

This equates to zero for points on a plane. However, in practice it is better to assume

a margin of error for the volume instead of zero. The equation thus becomes

(~x3 − ~x1) · [(~x2 − ~x1)× (~x4 − ~x1)] < ε, (5.7)

where ε = 0.01 is the margin of error. Any set of points giving rise to a value < ε are

considered to be coplanar. If the selected points pass the coplanarity test, they are

rejected and a new set of points are selected for the hypothesis. The hypothesis that

generates the most number of inliers is then selected as the transformation.

5.2.1 Least Squares Rigid Transformation Estimation

The rigid transformation in SE(3) between the two point sets is computed using

the method outlined in [53]. If A := {ai|i = 1, 2, . . . , n, ai ∈ R3} and B := {bi|i =

1, 2, . . . , n,bi ∈ R3} are two corresponding sets of points, A being the source and

B being the destination set, the rigid transformation to be computed is found by

minimizing the squared error of the transformed coordinates, which is given by

(R, t) = argmin
R∈SO(3),t∈R3

n∑
i=1

wi ‖(Rai + t)− bi‖2 (5.8)

where R is the rotation in SO(3) and t in the translation and wi > 0 are the weights

assigned to the squared differences for each point pair.

53

We first compute the weighted centroids on both sets by,

a =

∑n
i=1wiai∑n
i=1wi

, b =

∑n
i=1wibi∑n
i=1wi

(5.9)

where a and b are the centroids of the two sets. Vectors are then computed using

the point sets and the respective centroids by,

xi := ai − a, yi := bi − b, i = 1, 2, . . . , n (5.10)

where xi and xi are the corresponding vectors originating at the respective centroids.

The 3× 3 covariance matrix is then computed using

S = XWY > (5.11)

where X and Y are the vectors of dimension 3 and W = diag (w1, w2, . . . , wn), the

weight matrix. The singular value decomposition of

S = UΣV > (5.12)

is computed where, U and V are orthogonal unitary matrices, and σ is a diagonal

matrix with non-negative real numbers along the diagonal which are the singular

values of S. The rotation matrix R is then given by

R = V U> (5.13)

54

The translation can then be calculated by

t = b−Ra (5.14)

(a) (b)

(c)

Figure 5.4. Feature Registration. The generated SLAM map is shown in
(a). Detected and reconstructed doors in the slam map are shown in (b).
The localized UAV is shown in (c)

55

5.3 Registration Refinement

After computing the transformation matrix using the least-squares based RANSAC

method outlined above, the transformation is refined by using all the points from all

the features. What this means is that we use all the four points that make up the

corners of the features(doors/windows) in the 3D space and compute the least-squares

rigid transformation using the method outlined in section 5.2.1. This gives rise to a

better estimation of the transformation.

56

6. RESULTS AND DISCUSSION

The following sections evaluates the performance and accuracy of the different al-

gorithms used in our research. Section 6.1 evaluates feature detection accuracy and

performance and calculates the average precision for an Intersection over Union (IOU)

over 65%. Section 6.2 evaluates the performance of the feature descriptor extraction

and matching. Section 6.3 evaluates the performance of the system as a whole.

6.1 CNN Detection

The CNN used in the detection of doors and windows from images as explained

in section 2.3 was tested with the testing data set aside from the augmented dataset.

20% of the augmented dataset containing 12320 images amounting to 2464 images

were used to test the accuracy of the predictions from the network. Since the bound-

ing boxes for annotation were resized to include the effects of rotating the image

during augmentation, the annotations from the original images could be used in the

validation.

Precision and recall are widely used to measure the performance of object classi-

fication and detection using CNNs. Precision and recall are defined by

Precision =
TP

TP + FP
(6.1)

57

and

Recall =
TP

TP + FN
(6.2)

where TP is the number of True Positives, FP the number of False Positives, and FN

the total number of False Negatives. Precision, as seen from the equation calculates

what percentage of the positive detections are actually positive. Recall, on the other

hand measures the percentage of correctly detected positives in the total pool of

actual positives. True Positives were defined as detections that were predicted as the

correct class and had an IOU over 65%. Detections with IOU less than 65% were

added to the False Positives. It is worth noting that the IOU defined by

IOU =
Aprediction ∩ Agroundtruth
Aprediction ∪ Agroundtruth

(6.3)

places a strict check on the 2D localization accuracy of th object detection. This

enforces greater accuracy in the localization of the detections during the actual run of

the algorithm which in turn enables better extraction and refinement of the features.

YOLOv2 outputs the confidence values for each of the detections produced. To

determine an optimal threshold for confidence value, a range of values are tried out

from 0 to 1 and the total number of True Positives, False Positives, True Negatives

and False Negatives are counted. These vales are used to compute the precision and

recall values for each of the values of the probabilities and a Precision-Recall curve is

plotted. This is shown in figure 6.1.

Using the precision-recall values at each point, the best threshold for the confi-

dence value was selected by the use of F-score. The F-score is a method of determining

58

Figure 6.1. Precision-Recall curve for door/window detection

the ideal balance of precision and recall while deciding on a threshold. F-score is de-

fined by,

Fβ =
(
1 + β2

)
· precision · recall

(β2 · precision) + recall
(6.4)

which is a measure of the effectiveness of retrieving the recall with β times more

importance than precision. Since the same scene is viewed in multiple frames during

the coarse of a single run of the UAV, the possibility of a feature being detected

multiple times is high. We select a β value of 0.5 placing 2 times more importance

to precision than to recall, to reduce the number of false positives in the detections.

The highest F-score, F.5 = 0.9019 was found at the threshold value of .75 which was

then selected as the threshold for the system.

59

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.2. Object detection and 2D feature extraction. The green rect-
angles are the predicted bounding boxes from running YOLOv2 on the
input image. Lines are extracted from the within each bounding box and
refined. The refined lines are shown in blue. The longest two lines closest
to the two vertical sides of the bounding box are shown in white.

60

A few examples of the CNN predictions and subsequent feature extractions are

shown in figure 6.2. A seen from the pictures, the algorithm is able to detect doors

and windows accurately. The predicted bounding boxes from YOLOv2 are shown

in green. The regions within these boxes are then used to run the image processing

algorithms outlined in section 4.2. The blue lines are the line candidates detected

using the LSD line detection algorithm, refined by joining broken lines that LSD failed

to connect. The white lines are the two vertical edges of the feature selected from the

lines detected. Figure 6.2(g), 6.2(h) show cases where smaller lines are detected that

are closer to the sides of the bounding box. These are filtered out by the imposition

of a threshold requirement on the length of the extracted line. Figure 6.2(d) shows a

challenging case where a panel to the left side of the image would have been detected

as a window using traditional image processing techniques, but is correctly filtered

out from the detection.

Even though the Neural Network employed was able to successfully detect the

required features, the image processing step employed to extract the vertical edges

of the detected features would provide the incorrect results in a few corner cases

as shown in figure 6.3. Figure 6.3(a) shows a case where the left edge is detected

incorrectly due to the door being only partly visible in the image frame. Figures

6.3(b) and 6.3(c) show cases where the bounding box, even though it detects most of

the feature, leaves out the edge, which results in the right edge not being detected

correctly. Figure 6.3(d) shows a case where the left edge is detected correctly, but the

lower portion is cut off due to the door not being fully visible. Figure 6.3(e) shows

a case similar to 6.3(b) and 6.3(c) but is mostly due to the object being far from

61

(a) (b) (c)

(d) (e) (f)

Figure 6.3. Failures in Feature Extraction. This collection of figures
shows different cases that lead to bad extraction of features even after
successful detection by YOLOv2

the camera and could be improved by adding a padding to the bounding box, i.e.

increasing the size to get make sure the edges lie within the bounding box. Figure

6.3(f) shows two bounding boxes with incorrect edge extractions. In the left bounding

box, the left edge is incorrectly detected as the edge of the wall. The right bounding

box also detects the edge of the wall as the left edge of the door. This case could

be improved by imposing stricter requirements on the line segments detected to be

62

classified as the feature edge, i.e. impose a threshold minimum length as a pergentage

of the height of the bounding box for the detected lines in the bounding box.

6.2 Feature Descriptor Results and Accuracy

A naive method of selecting features based on distances to neighboring features

was initially explored. In this method, lookup table of distances from each feature

to every other feature was first computed from the CAD model in the preprocessing

phase. Two features were then selected at random from the observed dataset and

matched with distances computed from the CAD model. On finding a successful

match, a new feature was then selected such that the distances to the two selected

features was consistent with the distances in the CAD model. This process was

repeated until a total of four correspondences were found. This method was found to

be resource intensive and slow.

The histogram of the distances to the closest five features from each feature whose

descriptor is to be calculated is shown in figure 6.4(a). The probability density func-

tion of the Kernel Density Estimator is shown in figure 6.4(b). As is seen from the

comparison of the histogram with the KDE, the shape of the KDE closely resembles

the histogram and is thus representative of the underlying data. Dividing the proba-

bility density function along the local minimae yields 24 different bins for the lookup

table.

The accuracy of the matches formed on the basis of the descriptor created from

this lookup table as explained in section 5.1 has been evaluated across 5 separate runs

of the algorithm in different settings and has been shown in table 6.1. Each of the

63

matches are formed by finding the feature descriptor with the least hamming distance

from the features in the CAD model.

(a)

(b)

Figure 6.4. The histogram and KDE probability density function for
distance. The horizontal axis represents the distance starting from 0. In
figure (a), The histogram of distances between 5 closest features is shown.
The vertical axis here represents the number of features at a particular
distance. The KDE probability density function is shown in figure (b).
Here the vertical axis represents the probability density of a particular
distance.

It is seen that the matching accuracy increases with the number of features de-

tected. This is expected, as increasing the number of features results in a more

complete picture of neighboring features which are used to build the feature vector.

Lower number of features detected leads to greater chance of ambiguity in the feature

vectors due to multiple features having similar distances. Run 3 in one such example.

The extraction of the 5 nearest neighbors from the kd-tree has been found to take

an average of approximately 0.052ms on the test system consisting of a 6th generation

64

core-i7 processor. The matching of descriptors using the brute-force matching tech-

nique has a complexity of O(mn) and takes approximately 0.3ms for 25 descriptors

in the observed dataset and 106 descriptors in the CAD dataset.

Table 6.1.
Feature Descriptor Accuracy. The total number of features matched for 5
runs is shown here along with the number of correct and incorrect runs.
Accuracy is calculated by dividing the number of correct matches by the
total number of matched features.

Run Id Features detected Correct matches Incorrect matches Accuracy

Run 1 21 15 6 71.4%

Run 2 25 19 6 76%

Run 3 7 4 3 57.1%

Run 4 31 24 7 77.4%

Run 5 19 14 5 73.6%

6.3 Localization within the CAD model

The descriptors computed from both the CAD model and the observed data are

used to match the two sets of features and calculate the SE(3) rigid transformation

between the SLAM map and the CAD model. Figure 6.5 shows 5 runs of different

lengths within the test setup. AprilTags [54] were placed at the goal positions for each

run. AprilTags are fiducial markers that are not prone to the ambiguities inherent

in other markers like Checkerboards or Circlegrids. To measure the accuracy of the

65

localization, the distance between the final location of the UAV and the april tag

located at the goal position was measured.

The localization time was calculated based on how long it took the UAV to suc-

cessfully localize itself in the CAD model from the time the system was started up.

Table 6.2 shows the error between localization time and the error between the system

goal position with the actual goal position for each of the runs depicted in figure 6.5.

Table 6.2.
Localization accuracy. The localization time and error between the system
goal position with the actual goal position is shown.

Run Id Localization Time Error(m) Error(% trajectory length)

Run 1 16 0.25 4%

Run 2 17 0.14 3%

Run 3 13 0.23 3%

Run 4 15 0.15 1%

Run 5 13 0.26 2%

The UAV was able to successfully localize itself within the CAD model approxi-

mately 15 seconds of starting on average. Run 4 had been performed with multiple

goal locations to generate the complete map of the floor. This map is then used in a

run to test the relocalization mode of the UAV.

66

(a) (b)

(c) (d)

(e)

Figure 6.5. Runs of different lengths in the test setup. (a), (b), (c), (d),
and (e) represent the top-down view of the generated SLAM map for Run
1, Run 2, Run 3, Run 4, and Run 5, respectively. The run in (d) has
been set with multiple goal locations to generate a larger map for use in
re-localization testing.

67

6.4 ReLocalization within the CAD model

To test the relocalilzation capability of the system, a SLAM map was generated

from a previous run and its transformation with respect to the CAD model stored.

These were then used when running the UAV a second time. The system was able to

quickly localize the UAV within a second of the system initialization. This is possible

because of ORB-SLAM2 uses a fast and efficient relocalization module. The initial

SLAM map and the view from the perspective of the camera is shown in 6.6.

(a) (b)

Figure 6.6. Relocalization of the UAV in previously constructed map.
The previously constructed map is shown in (a). The UAV is shown
localized in this map in (b).

68

7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

Utilizing a pre-existing scale accurate SLAM system using stereo images to esti-

mate depth, and an pre-existing real-time Convolutional Neural Network for object

detection coupled with a novel and computationally efficient method of registration

of the SLAM map with the CAD model, the system has been successfully tested to

localize a UAV in a given 3D CAD model of a building.

The major contributions of this study has been two-fold. A novel pipeline com-

bining a real-time CNN based object detection network, a SLAM system and a novel

registration mechanism combined with image processing techniques to localize a UAV

in a CAD model. A computationally efficient, orientation invariant feature descrip-

tor to match features in the CAD model and the observed data, based solely on the

spatial correlation between the features.

A major contribution of this work has been the fast and efficient computation

of orientation invariant feature descriptors that were used to form correspondences

between the observed features and the features in the CAD model. The use of a KD-

tree enabled the quick extraction neighboring features. The use of Kernel Density

Estimation to group clusters of discrete values together to reduce the time needed to

match features had played a crucial part in improving the efficiency and performance

of the algorithm.

69

Leveraging readily available 3D CAD models of buildings has been a core feature

of the work and provides valuable information regarding the environment of the UAV.

It provides the system with all the information needed to deduce the current location

of the UAV within the CAD model, and enables the UAV to find its pose without the

use of unreliable GPS in indoor environments or other costly systems that emulate

the GPS mechanism indoors.

The use of a SLAM system registered to a CAD model also enables the system to

leverage the relocalization feature of the SLAM to enable fast localization in previ-

ously visited locations.

To the best of our knowledge, the proposed system is the only one combining

the accurate object detection mechanisms provided by modern Convolutional Neural

Networks with a spatially accurate SLAM system to perform indoor localization.

7.2 Future Work

The system suffers from a few limitations that could be improved. The accuracy

of the feature descriptor could be improved by applying a threshold on the computed

hamming distance. This could be calculated by first saving all the computed descrip-

tors and then studying the result of using different thresholds varying from 0 to 64

for the descriptor matches. All of these matches could then be used to generate an

ROC curve, which could be used to deduce the best possible value for the threshold

distance.

The system performance could also be significantly improved by the inclusion of

other features like drinking fountains, exit signs, posts etc. Including more features

70

would enable the UAV to localize quickly due to the abundance of features and also

due to the variation in the feature types which would give rise to less ambiguity in

the feature descriptors. This would also alleviate problems arising from symmetric

features.

The system currently relies on the connection to a ground control system(laptop)

to do most of the processing. With a few optimizations made to the algorithms used

in the work, it could be possible to enable all the algorithms to run on the onboard

computer, thus enabling the UAV to function independently of the ground control

system, using the connection to only receive the CAD model and the goal location.

This would greatly increase the usability of the system as it would not have to be

limited by the range of the wireless communication between the UAV and the ground

control.

Some other areas that could be explored include being able to generate a tempo-

ral history of spatially correlated images from multiple visits to the same location.

Leveraging the work done in this thesis, it could be possible to retrieve all images of

a given location and thus monitor the progress in construction. The system, though

developed with the construction industry in mind, could potentially also be used in

other areas such as reconnaissance and rescue operations.

71

APPENDICES

A. APPENDICES

A.1 Semi-Global Block Matching

Semi-Global Block Matching [44] is the method used to compute the depth from

the disparity image. It produces a better estimate of the depth as compared to naive

block-matching algorithms. The algorithm minimizes the global energy function, E

defined by,

E(D) =
∑
p

(
C (p,Dp) +

∑
q

P1T [|Dp −Dq| = 1] +
∑
q

P2T [Dp −Dq| > 1]

)
(A.1)

with P2 ≥ P1 where D is the disparity image, and E(D) is the energy function; p, q

are pixel locations, p, C(p,Dp) is the pixel matching cost, P1 is the penalty imposed

for a change in disparity values of 1 between neighboring pixels Np; P2 is the penalty

for values greater than 1. I[.] is a binary function that returns zero or one based on

the condition in the brackets. The function produces a smooth disparity map based

on the parameters P1 and P2

72

LIST OF REFERENCES

LIST OF REFERENCES

[1] NIST GCR. Cost analysis of inadequate interoperability in the us capital facilities
industry. National Institute of Standards and Technology (NIST), 2004.

[2] Viorica Pătrăucean, Iro Armeni, Mohammad Nahangi, Jamie Yeung, Ioannis
Brilakis, and Carl Haas. State of research in automatic as-built modelling. Ad-
vanced Engineering Informatics, 29(2):162–171, 2015.

[3] Pingbo Tang, Daniel Huber, Burcu Akinci, Robert Lipman, and Alan Lytle.
Automatic reconstruction of as-built building information models from laser-
scanned point clouds: A review of related techniques. Automation in construc-
tion, 19(7):829–843, 2010.

[4] Ian E Nordeng, Ahmad Hasan, Doug Olsen, and Jeremiah Neubert. Debc detec-
tion with deep learning. In Scandinavian Conference on Image Analysis, pages
248–259. Springer, 2017.

[5] Ahmad Hasan, Ashraf Qadir, Ian Nordeng, and Jeremiah Neubert. Construction
inspection through spatial database. arXiv preprint arXiv:1611.03566, 2016.

[6] Francisco Agüera-Vega, Fernando Carvajal-Ramı́rez, and Patricio Mart́ınez-
Carricondo. Assessment of photogrammetric mapping accuracy based on varia-
tion ground control points number using unmanned aerial vehicle. Measurement,
98:221–227, 2017.

[7] Hesam Hamledari. Inpro: Automated indoor construction progress monitoring
using unmanned aerial vehicles. Master of Applied Science University of Toronto,
Toronto, Canada, 2016.

[8] Quentin FM Dupont, David KH Chua, Ahmad Tashrif, and Ernest LS Abbott.
Potential applications of uav along the construction’s value chain. Procedia En-
gineering, 182:165–173, 2017.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[10] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. Survey of wireless indoor
positioning techniques and systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 37(6):1067–1080, 2007.

73

[11] Faheem Zafari, Athanasios Gkelias, and Kin Leung. A survey of indoor localiza-
tion systems and technologies. arXiv preprint arXiv:1709.01015, 2017.

[12] Olivier Koch and Seth Teller. Wide-area egomotion estimation from known 3d
structure. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, pages 1–8. IEEE, 2007.

[13] Lukas von Stumberg, Vladyslav Usenko, Jakob Engel, Jörg Stückler, and Daniel
Cremers. Autonomous exploration with a low-cost quadrocopter using semi-
dense monocular slam. CoRR, abs/1609.07835, 2016.

[14] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct
monocular slam. In European Conference on Computer Vision, pages 834–849.
Springer, 2014.

[15] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. Octomap: An efficient probabilistic 3d mapping framework based on
octrees. Autonomous Robots, 34(3):189–206, 2013.

[16] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
part i. IEEE robotics & automation magazine, 13(2):99–110, 2006.

[17] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian Reid, and John J Leonard. Past, present, and future of simul-
taneous localization and mapping: Toward the robust-perception age. IEEE
Transactions on Robotics, 32(6):1309–1332, 2016.

[18] Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, (6):46–57, 1989.

[19] Benjamin Kuipers and Yung-Tai Byun. A robot exploration and mapping strat-
egy based on a semantic hierarchy of spatial representations. Robotics and au-
tonomous systems, 8(1-2):47–63, 1991.

[20] Dieter Fox, Sebastian Thrun, Wolfram Burgard, and Frank Dellaert. Particle fil-
ters for mobile robot localization. In Sequential Monte Carlo methods in practice,
pages 401–428. Springer, 2001.

[21] John J Leonard and Hugh F Durrant-Whyte. Mobile robot localization by
tracking geometric beacons. IEEE Transactions on robotics and Automation,
7(3):376–382, 1991.

[22] Tim Bailey and Hugh Durrant-Whyte. Simultaneous localization and mapping
(slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117, 2006.

[23] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a
versatile and accurate monocular slam system. IEEE Transactions on Robotics,
31(5):1147–1163, 2015.

74

[24] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An
efficient alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE
international conference on, pages 2564–2571. IEEE, 2011.

[25] Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In European conference on computer vision, pages 430–443. Springer,
2006.

[26] Paul L Rosin. Measuring corner properties. Computer Vision and Image Under-
standing, 73(2):291–307, 1999.

[27] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. In European conference on com-
puter vision, pages 778–792. Springer, 2010.

[28] Tony Lindeberg. Scale invariant feature transform. 2012.

[29] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In European conference on computer vision, pages 404–417. Springer,
2006.

[30] Raul Mur-Artal and Juan D. Tard. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics,
33(5):1255–1262, 2017.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[33] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Region-based
convolutional networks for accurate object detection and segmentation. IEEE
transactions on pattern analysis and machine intelligence, 38(1):142–158, 2016.

[34] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1440–1448, 2015.

[35] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[36] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

75

[37] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In
European conference on computer vision, pages 21–37. Springer, 2016.

[38] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834–848, 2018.

[39] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 6517–
6525, July 2017.

[40] Jetson TK1 Embedded Development kit, 2018 (accessed March 10, 2018). http:
//www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html.

[41] Thomas Schulze, Alexander Gessler, Kim Kulling, David Nadlinger, Jonathan
Klein, Mark Sibly, and Matthias Gubisch. Open asset import library (assimp),
january 2012. Computer Software, 2012. https://github.com/assimp/assimp.

[42] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975.

[43] Robert Sidgewick. K-d Trees, 2018 (accessed March 10, 2018). https://www.
coursera.org/learn/algorithms-part1/lecture/Yionu/kd-trees.

[44] Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual in-
formation. IEEE Transactions on pattern analysis and machine intelligence,
30(2):328–341, 2008.

[45] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[46] Amit Patel. Amits A* Pages, 2018 (accessed September 12, 2018). http://
theory.stanford.edu/~amitp/GameProgramming/.

[47] Tzutalin. Labelimg, 2015. Git code (2015)https://github.com/tzutalin/
labelImg.

[48] R. Grompone von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall. Lsd: A
fast line segment detector with a false detection control. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(4):722–732, April 2010.

[49] David Eberly. Least squares fitting of data. Chapel Hill, NC: Magic Software,
2000.

76

http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
https://github.com/assimp/assimp
https://www.coursera.org/learn/algorithms-part1/lecture/Yionu/kd-trees
https://www.coursera.org/learn/algorithms-part1/lecture/Yionu/kd-trees
http://theory.stanford.edu/~amitp/GameProgramming/
http://theory.stanford.edu/~amitp/GameProgramming/
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg

[50] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981.

[51] Simon J Sheather. Density estimation. Statistical science, pages 588–597, 2004.

[52] Mohammad Norouzi, David J Fleet, and Ruslan R Salakhutdinov. Hamming
distance metric learning. In Advances in neural information processing systems,
pages 1061–1069, 2012.

[53] Olga Sorkine-Hornung and Michael Rabinovich. Least-squares rigid motion using
svd. 3:1–5, 2017.

[54] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages 3400–
3407. IEEE, 2011.

77

	University of North Dakota
	UND Scholarly Commons
	January 2018

	Autonomous Localization Of A Uav In A 3d Cad Model
	Akkas Haque
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	introduction
	Contributions
	Constraints and Assumptions
	background
	Current Research
	Simultaneous Localization and Mapping(SLAM)
	ORBSLAM
	Large Scale Direct Monocular SLAM (LSD-SLAM)
	ORBSLAM2

	Convolutional Neural Network
	Region-based Convolutional Neural Networks (R-CNN)
	YOLO
	SSD - Single Shot Multibox Detection
	YOLOv2

	system overview
	Preprocessing
	Exploration mode
	Localized mode

	Feature Detection and Extraction
	Data Preparation and Training
	Data Collection and Preparation
	Annotation and Data Augmentation
	Training

	Detection Refinement
	Line Segment Detector(LSD)
	Refinement
	3D Reconstruction

	Feature Registration
	Feature Descriptor
	Lookup Table for Fast Descriptor Matching
	Descriptor Matching

	Initial Registration
	Least Squares Rigid Transformation Estimation

	Registration Refinement

	Results and Discussion
	CNN Detection
	Feature Descriptor Results and Accuracy
	Localization within the CAD model
	ReLocalization within the CAD model

	conclusion and future work
	Conclusion
	Future Work

	Appendices
	Semi-Global Block Matching
	LIST OF REFERENCES

