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ABSTRACT 
 

A multitude of organs play a critical role in managing metabolism including 

the liver, pancreas, gut, brain, muscle, and adipose tissue. Abnormal function in 

any one of these can offset the metabolic balance and negatively affect whole body 

function thereby contributing to the development of metabolic complications and 

obesity. Although no single metabolic abnormality is responsible for obesity, 

understanding how normal cellular processes are regulated provides us with 

knowledge to reverse them during times of dysfunction. The main focus of this 

dissertation is on the regulation of adipose tissue due to its dual role of storing 

excess lipids and endocrine organ capabilities. Adipocytes, along with a majority 

of other cell types, are highly dependent on calcium (Ca2+), thus the role of Ca2+ 

and the involvement of the Ca2+ channel Transient Receptor Potential Canonical 

1 (TRPC1) were studied. The evidence provided in this dissertation shows that 

Ca2+ entry in adipocytes, especially upon store-depletion, plays an important role 

in adipocyte differentiation, autophagy, and adipokine secretion and subsequently 

metabolic regulation. The endogenous Ca2+ entry channel in both subcutaneous 

and visceral adipocytes was found to be dependent on TRPC1-STIM1 complexes 

and altering or blocking TRPC1 resulted in dysfunctional adipocytes.  

 Adipocyte differentiation, the process of pre-adipocytes converting to 

adipocytes, is a tightly regulated process with Ca2+ dependency. Blockage of 
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TRPC1-mediated Ca2+ entry with SKF-96365 inhibited differentiation which was 

indicated by decreased lipid accumulation and expression of PPARg, FAPB4, and 

perilipin in both subcutaneous adipose tissue (Subc AT) and visceral adipose tissue 

(VAT). Loss of TRPC1 in either adipose tissue type resulted in a reduced ability to 

differentiate which occurred prior to PPARg expression indicating TRPC1-mediated 

Ca2+ entry is necessary for the initial stages of differentiation.  

 Diets high in fat induce unhealthy expansion of adipose tissue, while exercise 

reduces adipocyte size and lipid content. Mice deficient of TRPC1 function and 

challenged with both a high-fat diet and exercise had lower fat mass and fasting 

glucose concentrations along with decreased adipocyte numbers. Further investigation 

indicated a decrease in autophagy with a concurrent increase in apoptosis. Together, 

this data shows that TRPC1 inhibits the positive effects of exercise under a high-fat 

diet-induced obesity environment. 

 Adipose tissue is an important endocrine organ responsible for secreting a 

number of cytokines, including adiponectin and leptin, which have a functional role in 

modulating metabolism. Secretion of adiponectin from adipose tissue has been found 

to be Ca2+ dependent, but the identity of the responsible Ca2+ channel is unknown. 

This study provides evidence that TRPC1 deficient mice have reduced serum 

adiponectin concentration which is believed to be due to an inability of adipose tissue 

to properly secrete adiponectin. Further, it was shown that loss of TRPC1-mediated 

Ca2+ influx is involved in SNARE complex formation necessary for proper exocytosis 

of adiponectin loaded vesicles. 
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 Serum adiponectin concentrations have been shown to be correlated to 

adiponectin receptor expression, thus it was investigated whether reduces in serum 

adiponectin concentrations observed in TRPC1 deficient mice was due to 

dysfunctional adiponectin signaling in muscle. Within this study, it was observed that 

skeletal muscle of TRPC1 deficient mice have reduced adiponectin targets including 

PGC1α, lipid metabolism, and mitochondrial biogenesis mRNA expression. Though 

data suggests AdipoRon initiated adiponectin signaling in muscle is Ca2+ and SOCE 

dependent, TRPC1 is not a contributing member as loss of TRPC1 did not inhibit Ca2+ 

influx or PGC1α expression indicating decreased adiponectin targets is likely due to 

reduce serum adiponectin concentrations. 

 Overall, evidence from the combined studies suggests TRPC1-mediated Ca2+ 

influx is an important regulator of adipocyte processes necessary for maintaining a 

healthy body. 
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CHAPTER I 

INTRODUCTION 

 

Calcium Signaling 

The ability of cells to communicate with their environment and respond 

temporarily to external events is a critical cellular function. This process, called cell 

signaling or signal transduction, is initiated by a receptor-ligand interaction which 

triggers a chain reaction of biochemical and molecular steps which alter cell 

physiology. Calcium (Ca2+) signaling is a particular subtype of cell signaling that 

involves altering the cellular balance of internal versus external cellular Ca2+ 

concentrations. The Ca2+ ion is an important secondary messenger molecule 

involved in regulating numerous cell processes including cell proliferation and 

differentiation, motility, gene transcription, and exocytosis (Berridge et al., 2000). 

At basal conditions, the free intracellular calcium concentration ([Ca2+]i) is 

measured at ~100 nM, while the extracellular concentrations are more than 

20,000-fold greater (Clapham, 2007). Cell stimulation can be in the form of 

electrical, hormonal, or mechanical and can increase the [Ca2+]i to around 1,000 

nM. Increases in [Ca2+]i are the result of either direct Ca2+ entry from the 

extracellular milieu upon membrane depolarization (Woodard and Rosado, 2005) 
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Figure 1 Cellular Ca2+ Regulators 

Schematic diagram of common Ca2+ signaling pathways. Many cells contain 

multiple pathways, but not necessarily all mechanisms shown here are present 

in one single cell type. Influx of Ca2+ is primarily mediated by voltage-operated 

channels (VOCs or VGCCs), receptor-mediated Ca2+ entry (ROC), transient 

receptor potential channels (TRP), ligand-gated channels, and store-operated 

Orai channels (SOC) that are activated by STIM1 protein. Efflux of Ca2+ is 

achieved by PM Ca2+ ATPase (PMCA) or Na+/ Ca2+ exchanger (NCX). Release 

of Ca2+ from the ER is mediated through IP3 (IP3R) receptors. The reuptake of 

Ca2+ into the ER is mediated by ER Ca2+ATPase (SERCA). Other components 

shown include: GPCR (G proteins); PIP2 (phosphatidylinositol 4,5-

bisphosphate); PLC (phospholipase C); PKC (protein kinase C); DAG 

(diacylglycerol); IP3 (inositol 1,4,5-trisphosphate); (IP3R inositol 1,4,5-

trisphosphate receptor). Reprinted from “Functional role of TRP channels in 

modulating ER stress and Autophagy” by P. Sukumaran, 2016, Cell Calcium, 

60, 123-132. Copyright 2016 by Elsevier. Reprinted with permission. 
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or by the process of store-operated Ca2+entry (SOCE), which includes the release 

of Ca2+ stores from the endoplasmic reticulum (ER) that initiates an influx of Ca2+ 

from the extracellular milieu (Parekh and Putney, 2005; Putney, 1986; Putney et 

al., 2017). 

The direct method of Ca2+ entry involves the opening of selective 

Ca2+ channels in the plasma membrane (PM) thus triggering a rapid inflow of 

Ca2+ ions. The most widely understood Ca2+ channels in this process are voltage-

operated channels (VOCs or VGCCs), which are found in excitable cells and are 

activated by changes in electrical membrane potential near the channel (Figure 1). 

VOCs are generally ion-specific and channels have been identified for sodium 

(Na+), potassium (K+), Ca2+, and Chloride (Cl-). The ability of VOCs to promptly 

influx Ca2+ is needed for cellular processes such as muscle contraction or 

exocytosis at synaptic endings (Berridge et al., 2003). Along with VOCs, there are 

many other Ca2+ channels that are initiated by different external signals including 

receptor-operated channels (ROCs), such as the NMDA (N-methyl-D-aspartate) 

receptors (NMDARs) that respond to glutamate. At the end of the signaling event, 

Ca2+ is removed out of the cytoplasm to return the cell to basal [Ca2+]i through PM-

associated pumps and exchangers. The plasma membrane Ca2+ ATPase (PMCA) 

is important for this process and has low capacity but high affinity for Ca2+ transport 

with a stoichiometry of one Ca2+ ion to one ATP (Lopreiato et al., 2014). The 

Na+/Ca2+ (NCX) also performs this job, however, has a low Ca2+ affinity but high 
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capacity for Ca2+ transport giving it the ability to transport Ca2+ quickly out of the 

cell but only at higher concentrations (Brini and Carafoli, 2011). 

Within the cell, Ca2+ is stored inside the ER, mitochondria, lysosomes, Golgi 

and nucleus (La Rovere et al., 2016). The ER is the main Ca2+ storage organelle 

boasting relatively high Ca2+ concentrations that can be quickly released into the 

cytoplasm. SOCE was identified in 1986 and is a ubiquitous PM Ca2+ entry 

mechanism. The process begins with a ligand, such as a hormone, 

neurotransmitter, growth factor, glycoprotein, or cytokine, binds to a G protein-  

coupled receptor (GPCR), thereby activating the receptor (Putney, 1986) (Figure 

1). Ligand docking dissociates GDP from the G protein complex, resulting in the 

detachment of G-alpha subunit and G-beta/G-gamma complex. The GTP bound 

G-alpha subunit then docks to Phospholipase C (PLC) causing a conformational 

change of PLC and hydrolyzing phosphatidylinositol biphosphate (PIP2) into the 

secondary messengers diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) 

(Berridge, 1993). The role of the freed IP3 is to bind with IP3 receptors bound to 

the PM of the ER thus initiating an efflux of ER Ca2+ stores necessary for the 

signaling event (Berridge et al., 2003). When the Ca2+ level in the ER lumen drops 

following IP3 receptor binding, stromal interaction molecule (STIM), a family of 

single-pass ER membrane bound proteins, senses the depleted Ca2+ and 

translocates to the cell’s PM where it activates selective plasma membrane 

Ca2+ channels called SOCs (store-operated Ca2+ channels) to transport 

Ca2+ across the PM from the extracellular milieu (Prakriya and Lewis, 2015). Due 
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to the limited quantity of Ca2+ stored of the ER, ER Ca2+ release can only produce 

transient signals; however, sustained store depletion can induce Ca2+ entry 

through SOCs that is prolonged for minutes to hours. SOCs are not voltage 

dependent, thus they can conduct Ca2+ at negative membrane potentials and are 

complementary to VOCs. The first SOCs were identified in mast cells after whole 

cell patch clamp recordings identified a Ca2+-selective current which was 

characterized by an inward rectification and a reversal potential > +40 mv (Hoth 

and Penner, 1992; Parekh et al., 1997). These channels were termed Ca2+ 

release-activated Ca2+ (CRAC) channels and include ORAI1, ORAI2, and ORAI3. 

The transient receptor potential canonical family (TRPC) of Ca2+ channels has also 

been identified as SOCs and will be discussed more readily in the following 

sections. The induction of Ca2+ influx by SOCs results in an increase in [Ca2+]i 

which is used for the signaling event and to refill the ER via the Ca2+-ATPase 

pump, sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) and the golgi via the 

secretory pathway Ca2+ ATPase (SPCA) (Guerini et al., 2005; Strehler and 

Treiman, 2004). Termination of SOCE occurs following the refilling of the ER by 

SERCA and SOCs return to their original positions (Cao et al., 2015; Jousset et 

al., 2007; Manjarrés et al., 2011).To respond dynamically to the fluctuations of Ca2+ 

signaling needs, cells must be able to accurately control the amount and location 

of Ca2+ influxed through Ca2+ transporters and channels. In the next section, we 

will discuss a particular group of Ca2+ channels important for this process.  

  



6 
 

TRP Family of Ion Channels 

The transient receptor potential channel genes were first discovered in the 

fruit fly Drosophila melanogaster during research centered on understanding the 

Drosophila melanogaster phototransduction cascade in the retina (Cosens and 

Manning, 1969). It was found that light-induced conformational changes of the 

protein rhodopsin stimulated the attached GTP-binding protein thereby activating 

phospholipase-C and an influx of cations. Within this study, a spontaneously 

formed mutant with a blind phenotype was analyzed and the correlating gene 

mutation caused a transient cation influx response to light instead of the expected 

sustained response. Due to these results, the mutated gene and the corresponding 

protein were given the name trp for Transient Receptor Potential (Cosens and 

Manning, 1969). Further research identified that the decline of photoreceptor 

potential in the trp mutant was due to exhaustion of Ca2+ mobility of TRP and 

resulted in a tenfold decrease in Ca2+ influx (Vaca et al., 1994; Xu et al., 1997). 

Since the structure of the mutated trp protein resulting in changes in Ca2+ 

permeability was similar to other known cation channels, it was hypothesized to be 

a new Ca2+ channel involved in the inositol phosphate signaling system (Hardie 

and Minke, 1992; Montell, 1999; Montell and Rubin, 1989). Subsequent 

investigation revealed numerous TRP channels which were grouped into a family. 

TRP channels are tetrameric complexes consisting of four pore-forming 

units (Figure 2). Each unit contains six hydrophobic stretches and a pore loop motif 

intercalated between the fifth and sixth transmembrane segments (Dietrich et al., 
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2014; Nilius, 2007; Pani et al., 2008; Venkatachalam and Montell, 2007). The 1275 

amino acid protein has 3 domains with a neutral 333 amino acid N-terminal 

domain, followed by a 228-amino acid domain with 6 transmembrane segments 

and a hydrophilic 614 amino acid C-terminal domain. The Transient Receptor 

Potential superfamily is broken into seven subfamilies which are separated into 

two groups based on sequence and topological differences. Group 1 consists of 

five subfamilies and includes TRPC (Canonical) (TRPC1–TRPC7), TRPCV 

(Vanilloid) (TRPV1–TRPV6), TRPM (Melastatin) (TRPM1–TRPM8), and TRPA 

(Ankyrin) and TRPN (NOMPC-like). Group 2 includes TRPP (polycystin) (TRPP1-

TRPP2) and TRPML (mucolipin) (TRPML1-TRPML3). Of all the mammalian TRP 

channels, the members of the TRPC sub family are the most closely related to the 

Drosophila TRP (Birnbaumer, 2009; Montell, 2005; Putney, 1986, 1990). 
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Figure 2 TRP Channels 

Phylogenetic tree and topology of TRP channels grouped by structural 

similarities. Subfamilies include TRPC (Canonical) (TRPC1– TRPC7), TRPCV 

(Vanilloid) (TRPV1–TRPV6), TRPM (Melastatin) (TRPM1–TRPM8), and TRPA 

(Ankyrin) and TRPN (NOMPC-like), TRPP (polycystin) (TRPP1-TRPP2) and 

TRPML. Reprinted from “TRP Channels in Disease” by B. Nilius, 2005, Science 

Signaling, 2005, 295. Copyright 2005 by The American Association for the 

Advancement of Science. Reprinted with permission. 
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TRPC Subfamily 

Expression of TRPC channels is ubiquitous in nature and have been found 

in a wide variety of tissues including the brain, hypothalamus, adipose tissue, 

smooth and cardiac muscles, endothelium, kidney, adrenal gland, lung, and 

pituitary glands (Pedersen et al., 2005; Qiu et al., 2010; Sukumar et al., 2012; 

Zanou et al., 2010). The first mammalian TRPC channel to be identified and cloned 

was TRPC1 which lead to the identification of the other members (Wes et al., 

1995). The human TRPC subfamily contains seven members which are separated 

into two individual groups (Figure 3) based on their biochemical and functional 

similarities: TRPC1/4/5 and TRPC3/6/7 (Ong and Ambudkar, 2017). TRPC 

channels are non-selectively permeable to Ca2+, but the selectivity ratio of 

PCa/PNa varies significantly between groups (Ong and Ambudkar, 2017; 

Venkatachalam and Montell, 2007). Sequence homology in TRPC channels is 

found within the block of roughly 25 residues on the C-terminal tail termed the TRP 

domains which includes TRP boxes 1 and 2. TRP box 1 is a conserved amino acid 

sequence of EWKFAR and TRP box 2 is a six-amino acid proline-rich domain. The 

C-terminal tail also includes binding domains for PIP2 and calmodulin (CaM) 

named CIRB. The N-terminal tail of TRPCs contains 3-4 ankyrin repeats and a 

coiled-coil domain of alpha-helices (Ong and Ambudkar, 2011). The domains for 

Homer1, IP3R and caveolin-1 (Cav-1) binding have also been uncovered, but the 

exact function of each of these remains elusive.  
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All TRPC channels are activated by PIP2 hydrolysis and ER Ca2+, though 

not all are involved in SOCE mechanisms (Ong and Ambudkar, 2015). Importantly, 

none of the TRPCs exhibit currents similar to CRAC channels. TRPC channels 

display currents with a relatively linear current-voltage relationship with a reversal 

potential from zero to slightly positive, however this can vary based on cell type 

and complex formation (Cheng et al., 2013). Figure 3 shows representative 

current-voltage relationships for groups of TRPCs. The TRPC channels 3/6/7 are 

unique to the TRPC family as they may be directly activated by DAG or its 

metabolite polyunsaturated fatty acid (PUFAs) (Poburko et al., 2007; 

Venkatachalam and Montell, 2007). One study showed exposure of 

overexpressed TRPC3 channels to exogenous DAG/PUFAs resulted in Ca2+ 

transients indicating TRPC3 channel activation, however, in the presence of DAG 

activated protein kinase C (PKC), TRPC3 channels were inhibited (Soboloff et al., 

2007). In this instance, it was surmised that PKC activation by DAG may be a 

feedback control for TRPC channels. 
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Figure 3 TRPC Channels 

(A) Common topography of TRPC channels along with specific current-

voltage relationships shown below for each TRPC channel grouping. (B) 

Phenotype of TRPC channel genetic deletions. The TRPC7 -/- phenotype has 

not been reported and TRPC2 is a pseudogene in humans. Reprinted from 

“International Union of Basic and Clinical Pharmacology. LXXVI. Current 

progress in the mammalian TRP ion channel family” by L-J. Wu, 2010, 

Pharmacological Reviews, 2010;62(3):381:404. Copyright 2010 by American 

Society for Pharmacology and Experimental Therapeutics. Reprinted with 

permission. 
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TRPC1 Involvement in SOCE 

Data suggests that TRPCs contribute to SOCE mechanisms, although 

certain TRPCs have varying findings. The most consistent and soundest studies 

support a role for TRPC1 in SOCE, however activation of TRPC5, TRPC6, and 

TRPC7 seem to be also activated via store-independent mechanisms (Cheng et 

al., 2013). TRPC3 and TRPC4 have also been implicated in SOCE, although to a 

lesser degree.  

The first evidence of involvement of endogenous TRPC1 in SOCE and 

confirmation of its contribution to Ca2+ permeability was found in human 

submandibular gland (HSG) ductal cells showing that knockdown of TRPC1 

decreased SOCE functionality (Liu et al., 2003). The relative Ca2+-selective 

currents were not consistent to those of CRAC channels, hence, the TRPC1-

mediated currents were termed store-operated calcium current channels (ISOC) as 

they have a reversal potential that is outward rectifying at roughly +15 mV. It had 

been previously established that STIM1 and ORAI1 were necessary components 

of SOCE in that knockdown of either protein abolished SOCE currents (Cheng et 

al., 2008; Jardin et al., 2008; Kim et al., 2009). It was further found that elimination 

of either ORAI1 or STIM1 completely abolished TRPC1-mediated SOCE. The 

current understanding of SOCE mechanisms, shown in Figure 1, is that after ER 

Ca2+ store release, STIM1 interacts with both ORAI1 and TRPC1, however a 

preceding ORAI1-mediated Ca2+ influx is required for TRPC1 function (Ambudkar 

et al., 2017).  
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Within this study, we utilize the 

TRPC1-/- mouse which is missing a coding 

region of exon 8 (Liu et al., 2007). This 

deletion results in a loss of portions of 

transmembrane segments 4 and 5 along 

with a small part of the putative pore 

domain causing the protein to be 

expressed but nonfunctional. Confirmation 

of its competence has been well reported, 

however we confirmed the absence of 

TRPC1 in subcutaneous adipose tissue by assessing TRPC1 mRNA (Figure 4). 

 

Metabolism Regulation 

It is well understood that managing energy within the body to create a 

relatively stable internal environment, or metabolic energy homeostasis, is 

imperative for survival. Metabolic energy homeostasis is maintained by numerous 

mechanisms which monitors systemic nutritional status and responds 

appropriately, both behaviorally and metabolically, to changes in energy 

availability (Yamada et al., 2008). The amount of energy available is in limited 

supply requiring tight regulation so that each organ/tissue and consequently its 

cells function properly. Communication between organs in the form of neuronal 

and hormone signals is imperative, and dysfunction can lead to an imbalance of 

Figure 4 Confirmation of TRPC1 
loss in subcutaneous adipose 
tissue  

RT-PCR expression of TRPC1 from 

subcutaneous adipose tissue of WT 

and TRPC1-/- mice 
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metabolic homeostasis resulting in metabolic disorders. As shown in Figure 5, 

adipose tissue is a major organ responsible for regulating metabolism. Dysfunction 

in adipose tissue is thought to contribute toward a proinflammatory, atherogenic, 

and diabetogenic state along with being linked to the development of chronic 

inflammation, insulin resistance, metabolic syndrome and other obesity related 

disorders (Klöting and Blüher, 2014). An understanding of how adipose tissue 

modulates normal cellular processes is the first step in understanding disease 

related dysfunction. In the following chapters, I will discuss how the involvement of 

TRPC1 in adipose tissue is imperative to maintaining proper function needed for 

metabolic energy homeostasis. 
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Figure 5 Inter-tissue Communication 

Humoral and neuronal pathways allow communication between major organs 

to regulate metabolic information. Neuronal networks controlled by the brain 

function as a negative-feedback mechanism to maintain body weight 

homeostasis, while the liver and other organs possibly representing a 

positive-feedback mechanism. Reprinted from “Inter-organ metabolic 

communication involved in energy homeostasis: Potential therapeutic targets 

for obesity and metabolic syndrome” by T. Yamada, 2008, Pharmacology and 

Therapeutics, 117(1),11. Copyright 2008 by Elsevier. Reprinted with 

permission. 
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CHAPTER II 

METHODS 

Animals   

Chapter III &V 

Male B6129SF2/J (WT) or TRPC1 knockout (TRPC1-/-) mice (Jackson 

Laboratories, Bar Harbor, MI) were used for these experiments. All animals 

were housed in a temperature controlled room under a 12/12 h light/dark 

cycle with ad libitum access to food and water. All animal experiments were 

carried out as per the institutional guidelines for the use and care of animals. 

For high-fat diet and exercise experimentation, four month old males were 

fed diets containing either 16% (normal-fat, NF) or 45% fat (high-fat, HF) for 

12 weeks and subjected to voluntary wheel running exercise. All animal 

protocols were approved by the institutional IACUC committee. 

 

Chapter IV  

Four-month-old male B6129SF2/J (WT) or TRPC1 knockout (KO) mice 

(Jackson Laboratories, Bar Harbor, MI) were fed diets containing either 16% 

(normal-fat, NF) or 45% fat (high-fat, HF) for 12 weeks and subjected to 

voluntary wheel running exercise (exercise, E) or sedentary cage activity 

(sedentary, S). Experimental groups were labeled according to diet and
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 exercise conditions yielding eight groups: WT-NF-E, WT-NF-S, WT-HF-E, 

WT-HF-S, KO-NF-E, KO-NF-S, KO-HF-E, and KO-HF-S. Food intake, body 

weight, and body composition were measured biweekly on alternating 

weeks during the experimental feeding period. After 12 weeks, mice were 

injected with xylazine (Akorn Inc., Decatur, IL) and ketamine (Zoetis Inc., 

Kalamazoo, MI) and then killed by exsanguination according to the animal 

use and care protocol approved by the USDA Agricultural Research Service 

Animal Care and Use Committee. 

 

Stromal vascular fraction (SVF) and primary adipocyte isolation 

Subcutaneous and visceral adipose tissue were weighed and digested with 

0.5% collagenase type I (Gibco Thermo Fisher Scientific, Waltham, MA) at 

37°C for 1 h, adipose tissue cells were filtered using 100 μm nylon cell 

strainers (Corning Life Sciences, Tewksbury, MA) followed by centrifugation 

(1000 rpm, 10 min, 4°C) to separate floating primary adipocytes 

(supernatant) from adipose SVF (cell pellet). The SVF cell pellet was treated 

with RBC lysis buffer (Sigma Aldrich, St. Louis, MO) then quenched with 

DMEM (Dulbecco's modified Eagle's medium; high glucose, L-glutamine) 

and centrifuged (1000 rpm, 10 min, 4°C). Final pellet was resuspended with 

DMEM + 10% FBS. SVF was plated at 70-80% confluence and grown in 

DMEM + 10% FBS + Penicillin Streptomycin. 
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Adipose cell size and number determination 

The supernatant from digested adipose tissue (see above) was washed and 

resuspended in 0.9% NaCl. Adipose cell size and number determination 

was determined using a Beckman Coulter Multisizer 4 with a 400-μm 

aperture. The instrument was set to count 6000 particles and the cell 

suspension was diluted so that coincident counting was <10%. After 

collection of pulse sizes, the data were expressed as cell numbers per 

particle diameter. 

 

SVF differentiation 

SVF was grown to a minimum of 80% confluence and differentiated for 36 

hours in a cocktail of DMEM (10% FBS + Pen/Strep), 25mM glucose, 2 uM 

dexamethasone (Sigma Aldrich, St. Louis, MO), 300 nM insulin (Sigma 

Aldrich, St. Louis, MO), and 20 uM PGJ2 (Caymen Chemical, Ann Arbor, 

MI). After 36 hours of differentiation, media was removed and cells were 

grown in DMEM (10% FBS + Pen/Strep) for 7-10 days. 

 

Chapter III 

For differentiation experiments utilizing SKF and increased Ca2+ 

concentrations, cells were differentiated with the addition of SKF96365 

(Sigma Aldrich, St. Louis, MO) or CaCl2. Final concentrations of Ca2+ were 

1x-1.8 mM, 2x-3.6mM, 4x-5.4mM. 
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C2C12 cell culture and differentiation 

The mouse skeletal cell line C2C12 was cultured in DMEM (Dulbecco's 

modified Eagle's medium; high glucose, L-glutamine) + 20% FBS + 1% 

Pen/Strep and incubated at 37 °C, 5% CO2. At 80% confluence media was 

switched to DMEM + 2% horse serum + 1uM Insulin for 3 days and then 

DMEM + 2% horse serum for the remaining 4-7 days until fully 

differentiated. 

 

EchoMRI measurements of body composition 

Whole body composition, including fat mass and lean mass, was 

determined biweekly during the 12 week period without sedation using 

nuclear magnetic resonance technology with the EchoMRI700™ instrument 

(Echo Medical Systems, Houston, TX). 

 

Red Oil Staining 

Culture plates were washed by PBS and cells were fixed in 4% formalin, 

followed by staining with oil-red-O (Sigma Aldrich, St. Louis, MO) for 10 min, 

washed, and photographed. The dye was then extracted with 100% 

isopropanol and the absorbance was determined at 492 nm. 
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Gas chromatography/mass spectrometry (GC/MS) 

Tissue samples were pulverized under liquid nitrogen conditions to a fine 

homogeneous powder.  Lipids were extracted with hexane/2-propanol 

(3:2, v/v, HIP) as previously described (Saunders and Horrocks, 1984).  

Briefly, ~10 mg of tissue powder was homogenized in 2 ml of HIP using a 

2 mL Tenbroeck tissue grinder (Kontes Glass Co.).  HIP contained 

0.005% of butylated hydroxytoluene (BHT) to prevent fatty acid oxidation, 

and a mixture of stable isotope labeled internal standards (Cambridge 

Isotope Laboratories, Tewksbury, MA) for quantification.  For each 

sample, we used 100 ng of 10:0-2H17 for short chain FA quantification, 5 

µg of 16:0-13C16 for saturated long chain FA, 1 µg of 18:1-13C18 for 

monounsaturated FA, and 1 µg of 20:4n6-2H8 for polyunsaturated FA.  

After centrifugation, HIP supernatant was evaporated under a stream of 

nitrogen and subjected to saponification to release FA as previously 

described (Brose et al., 2014).  Briefly, lipids were re-dissolved in 260 µL 

of methanol containing 0.02% BHT (0.158mg/mL) add 40 µL 5M KOH (in 

water), and saponified at 60°C for 60 min in a water bath.  The solution 

was neutralized with the addition of 20 µL 5 M HCl followed by the addition 

of 780 µL 0.9% NaCl.  The free FA were extracted with 2 mL hexane 3 

times. The hexane extracts were combined, dried under nitrogen stream, 

re-dissolved in 1 mL of hexane, 100 µL (for short chain FA) or 1 µL (for 

long chain FA) was transferred into micro-inserts (National Scientific, 
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Rockwoods, TN; catalog No. C4010-S630), evaporated under nitrogen 

stream, and finally re-dissolved in 100 µL of the initial UPLC gradient for 

analysis.   

UPLC-MS analysis was performed as previously described (Brose et al., 

2014; Wang et al., 2014).  The UPLC system consisted of a Waters 

ACQUITY UPLC pump with a well-plate autosampler (Waters, Milford, 

MA) equipped with an ACUITY UPLC HSS T3 column (1.8 µM, 100 A pore 

diameter, 2.1×150 mm, Waters) and an ACUITY UPLC HSS T3 Vanguard 

precolumn (1.8 µM, 100 A pore diameter 2.1 × 5 mm, Waters). One 

microliter of a sample was injected onto the column. The column 

temperature was 55°C and the autosampler temperature was 8°C. 

Solvent A consisted of acetonitrile : water (40 : 60) with 10 µM ammonium 

acetate and 0.025% acetic acid.  Solvent B was acetonitrile : 2-propanol 

(10 : 90) containing 10 µM ammonium acetate and 0.02% acetic acid. The 

flow rate was 0.3 mL/min, and the initial %B was 30%.  At 0.1 min %B was 

increased to 54% over 10 min, to 99% over another 10 min, held at 99% 

for 8 min, and then returned to initial conditions over 0.5 min. The column 

was equilibrated for 2.5 min between injections. 

FA were quantified using a quadrupole time-of-flight mass spectrometer 

(Q-TOF, Synapt G2-S, Waters) with electrospray ionization in negative ion 

mode as described previously (Brose et al., 2014; Wang et al., 2014). The 
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analyzer was operated with extended dynamic range at 10,000 resolution 

(fwhm at m/z 554) with an acquisition time of 0.1s. MSE mode was used to 

collect data.  Leucine enkephalin (400 pg/µl, ACN : water, 50 : 50 by 

volume) was infused at a rate of 10 µl/min for mass correction. MassLynx 

V4.1 software (Waters) was used for instrument control, acquisition, and 

sample analysis.  FA were quantified against corresponding internal 

standards using generated standard curves.  

Blood collection and serum isolation 

Mice were anaesthetized with an injected of xylazine (Akorn Inc., Decatur, 

IL) and ketamine (Zoetis Inc., Kalamazoo, MI). A 3 cc syringe with a 22-25 

gauge x 1" needle was inserted from the posterior aspect and animal was 

terminally bled. Whole blood was allowed to coagulant for 30 min at room 

temperature. Blood was then centrifuged at 2,000 x g for 15 minutes at 4°C 

and serum was removed from clotted blood and frozen at -20°C. 

 

Adiponectin and Leptin Concentrations 

Serum, culture media, and protein lysates samples were analyzed for 

adiponectin and leptin using the adiponectin mouse ELISA kit (Abcam, 

Cambridge, UK) and Leptin Mouse ELISA kit (Invitrogen, Carlsbad, CA). 
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Glucose tolerance test 

At the end of 12 weeks of feeding, mice were fasted overnight and then 

injected with 2 g/kg body weight of 20% D-glucose (Sigma Aldrich, St. Louis, 

MO) intraperitoneally. Approximately 5 μl of tail blood, obtained through tail 

nick procedure, was used to measure the blood glucose concentrations 

using the Accu Check Aviva glucometer at baseline and then 15, 30, 60 and 

120 min post glucose injection. 

 

Measurement of plasma insulin 

Mice were fasted overnight and then plasma was obtained to analyze insulin 

concentrations (Insulin ELISA kit: EXRMI-13K, EMD Millipore, St. Charles, 

MO) using the Bio-Rad Luminex system (Hercules, CA) according to 

manufacturer’s protocols. 

 

Electrophysiology  

For patch clamp experiments, coverslips with cells were transferred to the 

recording chamber and perfused with an external Ringer's solution of the 

following composition (mM): NaCl, 145; CsCl, 5; MgCl2, 1; CaCl2, 1; Hepes, 

10; Glucose, 10; pH 7.3 (NaOH). Whole cell currents were recorded using 

an Axopatch 200B (Axon Instruments, Sunnyvale, CA, USA). The patch 

pipette had resistances between 3 -5 MΩ after filling with the standard 

intracellular solution that contained the following (mM): cesium methane 
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sulfonate, 150; NaCl, 8; Hepes, 10; EGTA, 10; pH 7.2 (CsOH). Basal leak 

was subtracted from the final currents and average currents are shown. The 

maximum peak currents were calculated at a holding potential of –80 mV. 

The voltage-current (I-V) curves were made using a ramp protocol ranging 

from -100mV to +100mV and 100ms duration were delivered at 2s intervals, 

whereby current density was evaluated at various membrane potentials and 

plotted.  

 

Calcium imaging 

Cells were incubated with 2uM Fura-2 (Molecular Probes, Eugene, OR, 

USA) and the fluorescence intensity was monitored with a CCD camera-

based imaging system (Compix, Cranbery, PA, USA) mounted on an 

Olympus (Shinjuku, Tokyo, Japan) XL70 inverted microscope equipped 

with an Olympus 40× (1.3 NA) objective. A dual wavelength monochromator 

enabled alternative excitation at 340 and 380 nm, whereas the emission 

fluorescence was monitored at 510 nm with an Orca Imaging camera 

(Hamamatsu, Shizuoka Prefecture, Japan). Fluorescence traces shown 

represent [Ca2+]i values in 340/380 nm ratio that are a representation of 

results obtained in at least 3-4 individual experiments using 40-70 cells in 

each experiment. 
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PCR analysis  

Adipose tissue 

Total RNA was extracted using the RNeasy Lipid Tissue Mini kit and 

Qiacube (Qiagen, Valencia, CA) from flash-frozen subcutaneous adipose 

tissue. cDNA was synthesized using the Quantitect Reverse Transcriptase 

kit (Qiagen, Valencia, CA) Rox FastStart Universal Probe Master mix assay 

reagents were purchased from Roche (Indianapolis, IN). Primers were 

purchased from Integrated DNA Technology (IDT, Coralville, IA). The 

endogenous control (18S rRNA) was purchased from Applied Biosystems 

(Foster City, CA). RT-PCR analysis for TRPC1 transcripts was done with 

primers from the eighth and ninth exons (Up-5’ 

GCAACCTTTGCCCTCAAAGTG and Dn-5’ GGAGGAACATT-

CCCAGAAATTTCC) after the EcoRI site (Eurofins MWG Operon, 

Huntsville, AL). 

 

qPCR analysis 

Chapter IV 

Total RNA was extracted using the RNeasy Lipid Tissue Mini kit and 

Qiacube (Qiagen, Valencia, CA) from flash-frozen hind leg biceps femoris 

skeletal muscle or subcutaneous adipose tissue. cDNA was synthesized 

using the Quantitect Reverse Transcriptase kit (Qiagen, Valencia, CA) and 

then used to measure expression of glucose transporter type 4 (GLUT4), 
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hypoxia-inducible factor 1-alpha (HIF1α), fibroblast growth factor 21 

(FGF21), peroxisome proliferator-activated receptor gamma (PPARγ), 

microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A), and 

beclin 1 (BECN1) by qPCR (ABI Prism 7500 PCR System, Applied 

Biosystems, Foster City, CA). Rox FastStart Universal Probe Master mix 

assay eagents were purchased from Roche (Indianapolis, IN). Primers were 

purchased from Integrated DNA Technology (IDT, Coralville, IA). The 

control (18S rRNA) was purchased from Applied Biosystems (Foster City, 

CA). 

 

Chapter VI 

Total RNA was extracted from liver and bicep femoris (BF) skeletal muscle 

using Quick-RNA Miniprep kit (Zymo Research, Irvine, CA). cDNA was 

synthesized using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA) 

and expression was measured using SsoAdvanced Universal SYBR Green 

Supermix (Bio-Rad, Hercules, CA). Primers were purchased from Thermo 

Fisher (Waltham, MA) with the sequences in Table 1. Analysis of expression 

was calculated by using the endogenous control (18S rRNA) and the ΔΔCT 

method. 
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Table 1 Primer Sequences 

Symbol Gene 
Accession 
number Primer Sequence 

ERRα Estrogen-Related Receptor 
Alpha NM_007953.2 

fwd-GGAAGTGCTGGTGCTGGGTGT 
rev-GAATTGGCAAGGGCCAGAGCT 

NRF1 Nuclear Respiratory Factor 1 NM_001293164.1 
fwd-GGAGCACTTACTGGAGTCC  

rev-CTGTCCGATATCCTGGTGGT 

TFAM Transcription Factor A NM_001361693.1 
fwd-CCTGAGGAAAAGCAGGCATA  

rev-ATGTCTCCGGATCGTTTCAC 

ACC Acetyl-Coenzyme A 
Carboxylase NM_133360.2 

fwd-GTCCCCAGGGATGAACCAATA 

rev-GCCATGCTCAACCAAAGTAGC 

FASN Fatty Acid Syntase NM_007988.3 
fwd-AGAGATCCCGAGACGCTTCT 

rev-GCCTGGTAGGCATTCTGTAGT 

ACADM 
Acyl-Coenzyme A 
Dehydrogenase, Medium 
Chain 

NM_007382.5 
fwd-AGAGCTCTAGACGAAGCCACGA 

rev-GAGTTCAACCTTCATCGCCATT 

PGC1a PPARG Coactivator 1 Alpha 
  

NM_008904.2 
fwd-AAACTTGCTAGCGGTCCTCA 

rev-TGGCTGGTGCCAGTAAGAG 

18s     fwd-GCCGCTAGAGGTGAAATTCTTG 

    rev-CTTTCGCTCTGGTCCGTCTT 

 

Muscle Isolation and Culture 

Extensor Digitorum Longus (EDL) muscle was isolated from WT and 

TRPC1-/- mice and digested using a solution of 0.2% Collagenase type I 

(Gibco Thermo Fisher Scientific, Waltham, MA) in DMEM (Dulbecco's 

modified Eagle's medium; high glucose, L-glutamine with 110 mg/ml sodium 

pyruvate) for 1 hour at 37°C. Tissue was transferred to a horse serum lined 

dish with DMEM and flushed until individual fibers were released from 

tissue. Each fiber was moved to a separate dish coated with Matrigel 

(Corning, Corning, NY) and suspended in DMEM with 20% FBS, 1% 

Chicken Embryo extract (Accurate Chemical, Westbury, NY) and 1% 
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Penicillin/Streptomycin. Myofibers were incubated for 4 days at 37 °C, 5% 

CO2 without handling to allow myofibers to adhere and activate satellite 

cells. Following that time frame, media was replaced every other day until 

cells naturally differentiated ~ 14 days. Confirmation of differentiation was 

obtained by visually observing new muscle formation and contraction. 

 

Immunoblotting 

Crude lysates were prepared from Subc AT and VAT and SVF and 

differentiated adipocyte cultures. 40 μg of proteins were resolved on 

NuPAGE Novex 4-12% Bis-Tris gels, transferred to nitrocellulose 

membranes, and probed with respective antibodies (all from Cell Signaling). 

Respective peroxidase conjugated secondary antibodies were used to label 

the proteins, which were then detected by an enhanced chemiluminescence 

detection kit (SuperSignal West Pico, Pierce, Appleton, WI). Densitometric 

analysis was performed using image J analysis (National Institutes of 

Health) and results were corrected for protein loading by normalization to 

β-actin levels. Non-denaturing PAGE was performed by resolving protein in 

Novex Tris-Glycine Native Sample Buffer on NuPAGE™ 3-8% Tris-Acetate 

Protein Gels, transferred to nitrocellulose membranes, and probed with 

respective antibodies. Membranes were stained with Ponceau S (Sigma 

Aldrich, St. Louis, MO) and bands were quantified using image J analysis 

to determine total protein load.  
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Co-immunoblotting 

Subc AT and VAT was manually homogenized in the presence of HBSS 

containing Ca2+ and Mg2+ and then treated as described for 30 min at 37°C. 

Samples were incubated overnight with anti-VAMP2 antibody after which 

agarose anti-mouse IgG beads were added. Isolated beads were then 

washed, boiled, and separated by SDS-PAGE. SNARE proteins were 

detected using the indicated antibodies.  

 

Adiponectin Secretion from Fresh Adipose Tissue 

Isolated subcutaneous and visceral adipose tissue was suspended in 

Hank’s balanced salt solution (HBSS) (Gibco) supplemented with 1.26 mM 

CaCl2, 0.5 mM MgCl2, and 2% bovine serum albumin (Fisher Scientific, 

Hampton, NH). Adipose tissue was cut into 8-15 mg pieces and suspended 

in supplemented HBSS for 30 min at 37°C to recover. Samples were then 

placed into a 96 well plate suspended in DMEM containing 2% BSA, 

stimulated with 100 nM insulin (Sigma Aldrich, St. Louis, MO) for 6 hours. 

 

Statistical Analysis 

Mean and standard error values were computed for all continuous variables 

and frequency distributions were calculated for all categorical variables 

using GraphPad Prism 7. Statistical comparisons were made using two-

tailed Student’s t test or ANOVA and the effects of TRPC1 KO, diet, or 
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exercise were assessed by three-way ANOVA.  When an interaction was 

significant (p < 0.05), Tukey contrasts were used to perform pairwise 

comparisons. All statistical tests were two-tailed with significant reported as 

follows: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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CHAPTER III 

LOSS OF TRPC1 IN ADIPOCYTES IMPAIRS DIFFERENTIATION 

 
Introduction 

Intracellular Ca2+ signaling has been suggested to play several important 

roles in regulating cellular energy metabolism (Filadi et al., 2017); however, the 

specific Ca2+ ion channels involved have not yet been identified. As we’ve stated 

before, TRPC1 functions as a Ca2+ entry channel that is found in key metabolic 

tissues, including the hypothalamus (Qiu et al., 2010), adipose tissue (Sukumar et 

al., 2012), and skeletal muscle (Zanou et al., 2010), making it a likely candidate for 

the regulation of cellular energy metabolism. As such, functional disturbance of 

TRP family channels could play a role in regulating adiposity and obesity-related 

conditions such as insulin resistance (Graham et al., 2009; Hu et al., 2009; 

Sabourin et al., 2015).  

Adipocytes are vital to maintaining lipid homeostasis and energy balance 

by storing triglycerides and releasing free fatty acids in response to energy need 

changes (Rosen and Spiegelman, 2006). Though adipose tissue is an important 

endocrine organ, excessive accumulation of adipose tissue, defined as obesity, is 

a major risk factor for insulin resistance and other diseases such as Type II 

diabetes, dyslipidemia, and cardiovascular disorders (Wu et al., 1999). Adipocytes
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are the predominant cell type in adipose tissue; however, not all adipose tissue 

functions identically. Several studies have shown that anatomical distribution of 

adipose tissue dictates differing characteristics where subcutaneous adipocytes 

have distinct metabolic properties from visceral adipocytes (Baglioni et al., 2012). 

Proliferation of the subcutaneous adipose tissue (Subc AT) may be considered 

beneficial, in part, by increasing “healthy” lipid storage capacity that produces 

fewer inflammatory cytokines. Whereas, visceral adipose tissue (VAT) is thought 

to be more inflammatory (Kadiri et al., 2017; O'Rourke et al., 2009) and leads to 

the development of obesity and related metabolic diseases (Foster et al., 2011; 

Seale et al., 2011). Although the debate about the metabolic function of Subc AT 

and VAT is not yet settled (Fabbrini et al., 2010; Thörne et al., 2002), variances in 

distribution of lipids in Subc AT and VAT could be critical in the development of 

metabolic diseases.  

One such area to investigate regarding variances between Subc AT and 

VAT tissues could be the process of differentiation of committed preadipocytes into 

mature adipocytes. Interestingly, it has been shown that differentiation is impaired 

in Subc preadipocytes of obese subjects and their ability to differentiate is 

negatively correlated to BMI and cell size (Isakson et al., 2009). Further, in an 

obese state, the preadipocyte to mature adipocyte ratio is reduced and the ability 

of Subc AT to differentiate properly may be diminished pushing the accumulation 

of fat to visceral depots (Tchoukalova et al., 2007). Similar results have shown an 

age-dependent decline in differentiation and increases in adipose tissue 
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accumulation in obesity is likely due to hypertrophy instead of hyperplasia (Kim et 

al., 2014).  

 Although several nuclear receptors and transcription factors that regulate 

adipocyte differentiation and adipogenesis have been identified (Farmer, 2006), 

Figure 6 Schematic of adipocyte differentiation 

The induction of transcription factors C/EBPβ and C/EBPδ are induced early 

during adipogenesis with PPARγ induction occurring shortly after. Lipid droplet 

formation and expression of mature adipocyte proteins such as FAPB4, perilipin, 

and adiponectin occur during the late stage. Reprinted from “Cellular models for 

the evaluation of the antiobesity effect of selected phytochemicals from food and 

herbs” by Y-C. Tung, 2017, Journal of Food and Drug Analysis, 25(1), 100-110. 

Copyright 2017 by Elsevier. Reprinted with permission. 



34 
 

factors upstream to the activation of these transcription factors are still unknown. 

Adipogenesis is an intricate process involving coordinated temporal and spatial 

control of a transcriptional system which regulates the expression of adipocyte-

specific genes (Figure 6). The first step involves the initiation of the 

CCAAT/enhancer-binding proteins (C/EBPs) family of transcription factors 

including C/EBPβ and C/EBPδ with C/EBPα and Peroxisome proliferator–

activated receptor γ (PPARγ) activation occurring in the intermediate or late stage 

of adipogenesis (Garin-Shkolnik et al., 2014). Although the C/EBP transcription 

factors seem to work in conjunction with PPARγ, PPARγ has been determined to 

have a dominant role and functions as a master regulator of adipogenesis (Haider 

et al., 2017). PPARγ has been linked to the transcription of genes expressed in 

mature adipocytes such as fatty acid binding protein (FABP4), required for 

transport of free fatty acids, and perilipin (PLIN1), which covers the surface of 

mature lipid droplets in adipocytes and regulates lipolysis. PPARγ also regulates 

lipoprotein lipase (LPL), adiponectin (ADIPOQ), fatty acid transporter CD36 

(CD36), glycerol-3-phosphate dehydrogenase (GPD1), and insulin-responsive 

glucose transporter 4 (GLUT4), all involved in regulating lipid and glucose 

metabolism (Rosen et al., 1999; Siersbaek et al., 2010; Tung et al., 2017). Not 

surprisingly, several studies have demonstrated that PPARγ has a role in 

metabolic diseases. Mutations to the PPARγ gene have been linked to type II 

diabetes, obesity, hypertension and insulin resistance (Pap et al., 2016), while 

adipose-specific knockout of PPARγ in mice fed a high-fat diet display insulin 
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resistance in adipose tissue and liver, but not in muscle (He et al., 2003). PPARγ 

agonists, such as rosiglitazone and pioglitazone, which are part of the 

thiazolidinediones (TZD) family, have been widely used in the treatment of type II 

diabetes due to their ability to enhance insulin sensitivity and increase adiponectin 

levels (Mooradian et al., 2002; Saltiel and Olefsky, 1996; Yang et al., 2002).  

Calcium has been identified as important for the transcriptional regulation 

of adipocyte differentiation; however, the molecular identity of the Са2+ channel 

has yet to be identified. Studies on preadipocytes show that elevating [Ca2+]i early 

in differentiation inhibits PPARγ induction and triglyceride accumulation (Neal and 

Clipstone, 2002; Shi et al., 2000). Similarly, elevating extracellular Ca2+ 

concentrations, with no change in [Ca2+]i, inhibited adipocyte differentiation in 

white (Jensen et al., 2004) and brown (Pramme-Steinwachs et al., 2017) 

adipocytes.  In contrast, elevations of [Ca2+]i during late adipogenesis promoted 

lipogenesis and GPDH activity in white adipocytes (Shi et al., 2000). Though 

elevating extracellular calcium concentrations had negative effects on white and 

brown adipocyte differentiation, reducing extracellular concentrations had the 

opposite effect on brown adipocytes where decreased levels increased brown 

adipocyte differentiation (Pramme-Steinwachs et al., 2017). Finally, initiating a 

Са2+ response through the usage of angiotensin II is known to modulate adipocyte 

proliferation and differentiation, triglyceride accumulation, expression of adipokine-

encoding genes and adipokine secretion (Shum et al., 2013). Together these 

studies demonstrate the importance of modulating Са2+ during differentiation, 
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however the mechanism and channel necessary is still unknown. Microarray 

analysis has shown both TRPC1 and TRPC5 expression are amplified when 3T3-

L1 adipocytes mature; however, the physiological characterization of the Ca2+ 

entry channel in subcutaneous and visceral adipocytes is still missing (Sukumar et 

al., 2012). Additional data from this study is shown in Figure 7 confirming the 

expression of TRPC1 and TRPC5 in mouse epididymal adipose tissue and 

perivascular adipose from humans with coronary artery disease (CAD). It is 

notable that this study found TRPC1 expression surmounted TRPC5 expression 

at both the RNA and protein level. It was also recently shown in El Hachmane et 

al., 2018 that SOCE proteins STIM1, ORAI1, and TRPC1 are highly expressed in 

3T3-L1 adipocyte cell line and play a functional role in SOCE mechanisms further 

indicating the importance of TRPC1 in adipose function.  

The aim of this study was to identify the endogenous Ca2+ entry channel in 

adipocytes cells and establish its physiological function in modulating adipocyte 

differentiation. We report for the first time the adipose tissue-dependent differences 

in sensitivity to SOCE, differentiation, and lipid accumulation. We further report that 

the endogenous Ca2+ entry channel in adipocytes is dependent on TRPC1 and 

loss of TRPC1 function inhibits adipocyte differentiation. These results suggest 

TRPC1 is crucial for adipocytes differentiation, which plays an important role in 

regulating metabolic homeostasis. 
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A B 

C D 

Figure 7 TRPC1 and TRPC5 expression in mouse and human adipose 

(A) RNA RT-PCR products from mouse epididymal adipose tissue. Analysis of 

mRNA from human coronary artery disease (CAD) perivascular adipose by RT-

PCR (B) and western blot protein (C). (D) Immunostaining (brown colour in the 

upper panels indicates channel detection) of TRPC1 and TRPC5. The control 

was the antibody (Ab) preadsorbed to its antigenic peptide (+pep). Scale bar, 

100 μm. Reprinted from “Constitutively Active TRPC Channels of Adipocytes 

Confer a Mechanism for Sensing Dietary Fatty Acids and Regulating 

Adiponectin”, P. Sukumar, 2012, Circulation Research, 111(2), 191-200. 

Copyright 2012 by Wolters Kluwer Health, Inc. Reprinted with permission. 
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Results 

 

Subcutaneous and visceral adipocytes display SOCE mechanisms 

To establish the molecular identity of the SOCE channel in adipose cells, 

we evaluated Ca2+ signaling in isolated stromal vascular fraction (SVF) of mouse 

adipose tissue. Addition of thapsigargin (1mM, Tg), a SERCA pump blocker that 

causes loss of Ca2+ from the internal ER stores, showed a small increase in 

intracellular Ca2+ ([Ca2+]i ) levels (first peak) in subcutaneous adipose tissue (Subc 

AT) SVF cells (Figure 8 A, B). Addition of 1mM external Ca2+, Subc AT SVF cells 

showed a significant increase in [Ca2+]i  (second peak), indicating the presence of 

store-mediated Ca2+ entry (Figure 8 A, B). Importantly, Subc AT SVF cells treated 

with SKF96365 (10mM SKF, a blocker of store-mediated Ca2+ influx channels) 

were observed to have a significant reduction in SOCE without any change in 

internal ER Ca2+ release (Figure 8 A, B).  

To establish the molecular identity of the Ca2+ influx channel in Subc AT 

SVF cells, electrophysiological recordings of membrane currents were performed. 

Addition of Tg induced an inward current, which was non-selective in nature and 

reversed between 0 and -5 mV (Figure 8 C, D). The current properties observed 

in Subc AT SVF cells were similar with previous recordings observed of TRPC1 

channels (Liu et al., 2004; Selvaraj et al., 2012; Shi et al., 2012; Yuan et al., 2007). 

Moreover, pretreatment with SKF significantly inhibited the Tg-induced  
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Figure 8 Subc AT SVF exhibits SOCE  

Representative Fura-2 traces showing the transient increase in [Ca2+]i after 

addition of 1 μM Tg and 1 mM Ca2+ to Subc AT SVF cells (A) in control and 

cells pretreated with 10 μM SKF for 15 min. Bar diagram quantifies Tg-induced 

ER Ca2+ release and Ca2+ entry peaks for Subc AT SVF cells (B) under these 

conditions. Each bar gives the mean ± SEM of 40–60 cells in three separate 

experiments. Application 1 μM Tg in bath solution induced inward currents at 

−80mV in control and SKF treated Subc AT SVF cells (C). Respectively IV 

curves under these conditions are shown for Subc AT SVF in (D). Quantitation 

(n = 7 recordings) of current intensity at −80 mV is shown for Subc AT SVF in 

(E). Graphs are mean ± SEM, significance: *, p < 0.05. 
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nonselective current (Figure 8 C-E), suggesting that in Subc AT SVF cells, the 

SOCE mechanism is dependent on TRPC1 channels.  

We next evaluated the physiological properties of the SOCE channels in 

differentiated adipocytes from Subc AT. Samples taken from both Subc AT 

deposits were cultured and differentiated into mature adipocytes ex vivo. Similar 

to the observed response in Subc AT SVF cells, differentiated Subc adipocytes 

showed no change in the ER Ca2+ release (upon addition of Tg, 1mM) (Figure 9 

A,B). Addition of 1mM external Ca2+ again resulted in an increase in [Ca2+]i, which 

were significantly reduced when treated with SKF as compared to untreated 

Control (Figure 9 A,B). Furthermore, a similar TRPC1-like current was observed in 

differentiated Subc AT adipocytes during whole cell patch clamp recordings and 

the Tg-induced currents were again inhibited by SKF (Figure 9 C-E).  Comparison 

of Current-Voltage (I-V) Curves of Subc AT SVF and differentiated Subc AT 

adipocytes indicated a ~25% increase in amplitude of TRPC1-like currents in 

differentiated Subc AT (Figure 8 E, Figure 9 E).  



41 
 

 

-80 -60 -40 -20 0 20 40 60 80

-4

-2

0

2

pA
/p

F

mV

 Control
 +SKF

0.2

0.3

0.4

Ca2+ Peak
+SKF

F 34
0/F

38
0

Control Control +SKF
Tg Peak

NS

***

0 200 400 600 800

0.2

0.3

0.4

Ca2+

F 34
0/F

38
0

Time (sec)

 Control
 +SKF

Tg

A     B 

C    D         E 

-4

-2

0

pA
/p

F

 Control
 + SKF

60s

Tg

-80mV

Figure 9 Blockage of SOCE in differentiated Subc AT by SKF 

Representative Fura-2 traces showing the transient [Ca2+]i after addition of 1 μM 

Tg and 1 mM Ca2+ to differentiated Subc AT (A) in control and cells pretreated 

with 10 μM SKF for 15 min. (B) Bar diagram quantifies Tg-induced ER Ca2+ 

release and Ca2+ entry peaks under these conditions. Each bar gives the mean 

± SEM of 40–60 cells in three separate experiments. Application 1 μM Tg in bath 

solution induced inward currents at −80mV in control and SKF treated 

differentiated Subc AT (C). Respectively IV curves under these conditions are 

shown in (D). Quantitation (n = 7 recordings) of current intensity at −80 mV is 

shown in (E). Graphs are mean ± SEM, significance: *, p < 0.05; ***,  p < 0.001. 
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To confirm that TRPC1 is involved in modulating SOCE, protein expression 

of TRPC1, STIM1, and ORAI1 in both Subc AT SVF and differentiated Subc AT 

was analyzed. Consistent with other studies, expression of TRPC1 and STIM1 was 

increased upon differentiation (Graham et al., 2009; Sukumar et al., 2012); 

however, there was no change in ORAI1 expression (Figure 10 A, C). Known 

markers of adipocyte differentiation, FABP4 and perilipin, were used to confirm 

differentiation.  
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Figure 10 Changes in Ca2+ channel expression during differentiation in 
Subc AT and VAT 

Western blot and quantification of TRPC1, ORAI1, Stim1, FAPB4, and perilipin 

protein expression normalized to actin of Subc AT SVF and differentiated Subc 

AT (A,C) and VAT SVF and differentiated VAT (B,D). Graphs are mean ± SEM, 

significance: *, p < 0.05; **, p < 0.01. 
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Differentiated visceral adipocytes exhibit increased  

store-operated Ca2+ entry 

White AT has different properties based on its location. It is well known that 

visceral adipose tissue (VAT), when compared with Subc AT, is functionally 

different in that VAT has higher inflammatory potential (Zhou et al., 2007) due to 

increased localization of inflammatory and immune cells. VAT has greater 

oxidative capacity and lipolysis potential than Subc AT and less capacity to 

differentiate resulting in a greater percentage of large adipocytes as compared to 

Subc AT (Ibrahim, 2010). To date, it is unknown whether store-mediated changes 

in [Ca2+]i leading to adipocyte differentiation is analogous between VAT and Subc 

AT. Thus, we investigated SOCE from adipocytes derived from the VAT depots. 

Consistent with Subc AT protein expression, STIM1, ORAI1 and TRPC1 were 

expressed in both VAT SVF and differentiated VAT adipocytes with increased 

expression of STIM1 and TRPC1 seen in differentiated VAT, and again no change 

in ORAI1 expression (Figure 10 B, D).  

Measurements of membrane current recordings of VAT SVF adipocytes 

induced upon the addition of Tg (1mM) showed an inward TRPC1-like current and 

pretreatment with SKF (10mM) significantly inhibited the nonselective current 

(Figure 11 A, B). Importantly, after differentiation, the similar TRPC1-like current 

was observed in VAT cells (Figure 11 D, E) and a ~50% increase in the current 

amplitude was observed upon differentiation (Figure 11 C, F). Again Tg-induced 
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currents were inhibited by the addition of SKF in differentiated VAT adipocytes 

(Figure 11 D, E).  
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Figure 11 Increased SOCE currents in differentiated VAT 

Application of 1 μM Tg in bath solution induced inward currents at −80mV in 

control and SKF treated VAT SVF cells (A) and differentiated VAT (D). 

Respectively IV curves under these conditions are shown for VAT SVF in (B) and 

differentiated VAT in (E). Quantitation (n = 5 recordings) of current intensity at 

−80 mV is shown for VAT SVF in (C) and differentiated VAT in (F). Graphs are 

mean ± SEM, significance: *, p < 0.05. 
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Calcium imaging of VAT SVF adipocytes treated with SKF had no change 

in internal Ca2+ release, but had a significant reduction in SOCE upon the addition 

of 1mM external Ca2+ (Figure 12 A, B). However, differentiated VAT adipocytes 

treated with SKF showed a reduction in both internal Ca2+ ER store release upon 
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Figure 12 Fura-2 Traces of SVF and differentiated VAT 

Representative Fura-2 traces showing the transient increase in [Ca2+]i after 

addition of 1 μM Tg and 1 mM Ca2+ to VAT SVF cells (A) and differentiated 

VAT (C) pretreated with 10 μM SKF for 15 min. Bar diagram quantifies Fura-2 

Tg and Ca2+ peaks for VAT SVF cells (B) and differentiated VAT (D). Each bar 

gives the mean ± SEM of 40–60 cells in three separate experiments. Graphs 

are mean ± SEM, significance: *, p < 0.05; **, p < 0.01. 
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Tg treatment and SOCE upon addition of external Ca2+ which could be attributed 

to slightly smaller ER stores in the cells sampled or a specific response of 

differentiated VAT to SKF (Figure 12 C, D). These results indicate that 

differentiated VAT adipocytes may be more sensitive to alterations in store-

operated Ca2+ entry than VAT SVF adipocytes, however the properties of both 

Subc AT and VAT exhibit similar SOCE functionality.  

 
 

Figure 13 Inhibition of SOCE impairs ability of adipocytes to differentiate 

(A) Oil-red-o staining (using 10X objective) of Subc AT and VAT differentiated in 

the presence of SKF (10 µM) for 7 days. Quantification of absorbance at 492nm 

of stained lipid droplets using eluted oil-red-o stain for Subc AT (B) and VAT (D).  

Western blot of PPARg, FAPB4, and perilipin protein expression of Subc AT (C) 

and VAT (E) differentiated in the presence of SKF. Graphs are mean ± SEM, 

significance: ***, p < 0.001; ****, p <0.0001. 
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Inhibition of SOCE impairs ability of adipocytes to differentiate 

Impaired differentiation of preadipocytes has been shown in obese subjects 

(Isakson et al., 2009). Interestingly, altering [Ca2+]i inhibits differentiation of 

adipocytes (Jensen et al., 2004; Neal and Clipstone, 2002), however to date, it is 

unknown whether store-mediated changes in [Ca2+]i leading to adipocyte 

differentiation is analogous between VAT and Subc AT. To investigate, we first 

blocked SOCE by pretreating cells with SKF and then initiated differentiation. Subc 

AT and VAT SVF adipocytes were differentiated in the continuous presence of 

SKF (10 mM) for 7 days and lipid accumulation was detected by oil-red-O (Figure 

13 A). Oil-red-o stains neutral triglycerides and lipids and the absorbance at 492 

nm can be used to quantify total lipid in sample. As such, treatment with SKF 

significantly reduced the ability of both Subc AT and VAT SVF cells to accumulate 

intracellular lipids (Figure 13 B, D). Expression of PPARg, FABP4, and perilipin is 

absent in undifferentiated preadipocytes, thus measuring their protein expression 

level is a measurement of adipogenesis. In both Subc AT and VAT, treatment with 

SKF blocked nearly all expression of FABP4, perilipin, and PPARg (Figure 13 C, 

E). These results further indicate the involvement of SOCE mediated Ca2+ influx in 

adipocyte differentiation and that it may be necessary for early stages of 

transcriptional regulation. 
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Loss of TRPC1 in adipocytes reduces SOCE  

Since TRPC1 is an active member of SOCE mechanisms and is highly 

expressed in adipocytes, we explored whether TRPC1 is vital to adipocyte 

differentiation. To do this, SVF cells from TRPC1-/- and WT mice were isolated and 

differentiated. Analysis by Ca2+ imaging of both Subc AT cell types (SVF and 

differentiated adipocytes) showed TRPC1-/- cells had a reduction in internal ER 

Ca2+ release (first peak) with the addition of Tg as compared to WT (Figure 14 A-

D). When 1mM external Ca2+ was added, [Ca2+]i in both SVF and differentiated 

TRPC1-/- cells was significantly reduced as compared to WT indicating diminished 

SOCE in TRPC1-/- cells. The TRPC1-like membrane current observed in WT Subc 

SVF adipocytes upon the addition of Tg (1mM) was significantly reduced in Subc 

AT SVF from TRPC1-/- mice (Figure 14 E-G).  Similar results were observed in 

differentiated Subc AT, where loss of TRPC1 significantly decreased Tg-mediated 

Ca2+ currents (Figure 14 H-J). 

To confirm that lack of TRPC1 alters SOCE mechanisms in differentiated 

Sub AT, we depleted internal stores through treatment with angiotensin II, which 

stimulates endogenous G-protein coupled receptors. Addition of angiotensin II 

resulted in a decrease of Ca2+ entry in TRPC1-/- differentiated Subc AT indicating 

that TRPC1 is the functional store/receptor-operated Ca2+ entry (S/ROCE) channel 

in these cells (Figure 15 A, B). Importantly, basal Ca2+ entry (no store depletion) 

was unaltered in adipocytes from WT or TRPC1-/- mice (Figure 15 C, D). 
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Figure 14 Loss of TRPC1 in adipocytes reduces SOCE  

0.3

0.4

0.5 *

    WT     TRPC1-/-

F 34
0/F

38
0

   WT     TRPC1-/-

Tg Peak Ca2+ Peak

*

0 200 400 600
0.2

0.3

0.4

0.5

F 34
0/F

38
0

Time (sec)

 WT
 TRPC1-/-

Ca2+

Tg

0 200 400

0.2

0.3

0.4

F 34
0/F

38
0

Time (sec)

 WT
 TRPC1-/-

Ca2+

Tg

0.2

0.3

0.4 **

   WT     TRPC1-/-

F 34
0/F

38
0

   WT     TRPC1-/-

Tg Peak Ca2+ Peak

**

A    B 

C    D 

-4

-2

0

pA
/p

F

 WT
 TRPC1-/-

60s
Tg

-80mV

-80 -60 -40 -20 0 20 40 60 80

-4

-2

0

2

pA
/p

F

mV

 WT
 TRPC1-/-

WT TRPC1-/-
0

-2

-4

pA
/p
F

*

-80mV

-4

-2

0

pA
/p

F

 WT
 TRPC1-/-

60s
Tg -80mV

-80 -60 -40 -20 0 20 40 60 80

-4

-2

0

2pA
/p

F

mV

 WT
 TRPC1-/-

WT TRPC1-/-

-2

-4

-80mV

*

pA
/p
F

E        F           G 

H        I           J 



50 
 

 

 

  

Figure 14 Loss of TRPC1 in adipocytes reduces SOCE  

Fura-2 traces and quantification of transient increase in [Ca2+]i after addition of 

1 μM Tg and 1 mM Ca2+ to WT  and TRPC1-/- Subc AT SVF (A, B) and 

differentiated Subc AT (C, D). Application of 1 μM Tg induced inward currents 

at −80mV in WT Control and TRPC1-/- Subc AT SVF (E) and differentiated Subc 

AT (H). Respective IV curves of Subc AT SVF (F) and differentiated Subc AT 

(I). Quantification (n = 5 recordings) of current intensity at −80 mV is shown for 

Subc AT SVF in (G) and differentiated Subc AT in (J). Graphs are mean ± SEM, 

significance: *, p < 0.05; **, p < 0.01. 
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Figure 15 Angiotensin II treatment of differentiated Subc AT 

Analog plots of Ca2+ entry upon addition of angiotensin II in a Ca2+ containing 

media from an average of 30-50 cells isolated from WT or TRPC-/- mice are 

shown in B. Quantification (mean ± S.D.) of 340/380 ratio under these 

conditions is shown in B. Basal Ca2+ entry (without store-depletion) from an 

average of 40-50 cells in each condition are shown in C. (D) Quantification 

(mean ± S.D.) of 340/380 ratio. significance: *, p < 0.05; ***,  p < 0.001. 
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Next, isolated VAT from WT and TRPC1-/- mice was evaluated in the same 

manner as the Subc AT experiments. Electrophysiological recordings of 

membrane currents indicate TRPC1 currents were significantly reduced in both 

VAT SVF TRPC1-/- cells (Figure 16 A-C) and differentiated TRPC1-/- VAT (Figure 
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Figure 16 SOCE currents in visceral adipocytes reduced  

Application of 1 μM Tg induced inward currents at −80mV in WT Control and 

TRPC1-/- VAT SVF cells (A) and differentiated VAT (D). Respective IV curves 

for each cell type are shown for VAT SVF (B) and differentiated VAT (E). 

Quantitation (n = 5 recordings) of current intensity at −80 mV for VAT SVF (C) 

and differentiated VAT (F). Graphs are mean ± SEM, significance: *, p < 0.05. 
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16 D-F). Interestingly, after differentiation, the Ca2+ current in TRPC1-/- VAT was 

more inwardly rectifying and showed properties similar to ORAI1 currents. Analysis 

of Ca2+ influx upon treatment with Tg showed a decrease in internal ER Ca2+ 

release in TRPC1-/- differentiated VAT adipocytes but not in undifferentiated VAT 

SVF (Error! Reference source not found. A-D). Similar to Subc AT, addition of 

external Ca2+ resulted in a reduction in Ca2+ influx in both types (SVF and 

differentiated) of TRPC1-/- VAT as compared to WT control (Error! Reference 

source not found. A-D). Combined data from Subc AT and VAT indicates SOCE 

mechanisms in SVF and differentiated adipocytes from both depots are impaired 

due to the loss of TRPC1.   

Protein expression analysis of numerous Ca2+ regulating proteins in WT and 

TRPC1-/- Subc AT and VAT was performed to rule out compensation for the lack 

of TRPC1. As shown in Figure 18, an increase in STIM1 and TRPC5 expression 

was observed in Subc AT of TRPC1-/- mice which is consistent with our previous 

Figure 17 Ca2+ channel 
expression of WT and 
TRPC1-/- Subc AT and VAT 

Western blot of TRPC5, 

TRPC3, STIM1, ORAI3, and 

ORAI1 protein expression of 

WT and TRPC1-/- Subc AT 

and VAT tissue lysates. 
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work (Krout et al., 2017). However, no significant change in either STIM1 or 

TRPC5 was observed in VAT. It is known that TRPC1 forms a C1/C5 

heterotetramer with TRPC5 (Shi et al., 2012), however loss of TRPC1 would make 

TRPC5 inactive and thus not compensate for the loss of TRPC1 in TRPC1-/- mice.  

Interestingly, increasing STIM1 expression has been shown to have no effect on 

normal SOCE mechanisms (Gwozdz et al., 2012). The remaining Ca2+ channels, 

TRPC3, ORAI1, and ORAI3, showed no change in protein expression between 

WT and TRPC1-/- in either tissue type (Figure 18). This indicates the lack of TRPC1 

function in adipose tissue most likely does not increase Ca2+ entry by altering 

protein expression of other Ca2+ channels.   

 

Lack of TRPC1 mediated Ca2+ influx reduces ability to differentiate 

We next investigated whether a lack of TRPC1 would alter the ability of 

Subc and VAT SVF cells to differentiate. Analysis of lipid accumulation via oil-red-

o in WT and TRPC1-/- adipocytes after seven days of differentiation revealed a 

significant reduction in total lipid when TRPC1 is nonfunctional in Subc AT (Figure 

19 A, B) and VAT (Figure 19 C, D). This same phenomenon is replicated in the 

protein expression of perilipin, FABP4, and PPARg which were also reduced in 

TRPC1-/- Subc AT (Figure 20 A, B) and VAT (Figure 20 C, D) as compared to WT. 

To offset the reduced ability to increase [Ca2+]i of TRPC1-/- cells, Subc AT and VAT 

SVF cells from WT and TRPC1-/- mice were differentiated with a 2 and 4 fold 

greater extracellular Ca2+ concentration than basal. In WT and TRPC1-/- Subc AT 
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cells, increasing extracellular Ca2+ to both 2 and 4 fold produced no change in lipid 

accumulation (Figure 19 A, B). No difference in lipid accumulation was observed 

when extracellular Ca2+ concentrations were increased in TRPC1-/- VAT, however 

WT VAT adipocytes differentiated with a 4 fold greater extracellular Ca2+ 

concentration had significantly less lipid than basal (Figure 19 C, D). We next 

assessed whether the reduction in lipid accumulation due to increased 
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extracellular Ca2+ was replicated in adipogenetic protein expression. In WT Subc 

AT there was a significant reduction in expression of PPARg and perilipin when 

extracellular Ca2+ concentration was raised to 4-fold, however the expression of 

FABP4 did not seem to be altered in either tissue type (Figure 20 A, B). Raising 

extracellular Ca2+ concentrations in TRPC1-/- Subc AT and VAT had similar results 

WT 

TRPC1
-/-

 

2x	Ca
2+

 4x	Ca
2+

 1x	Ca
2+

 

1 x 2 x 4 x 1 x 2 x 4 x
0 .0

0 .5

1 .0

1 .5

A
b

s
o

rb
a

n
c

e
 4

9
2

 n
m

W T  S u b T R P C 1 -/ -  S u b

*

1 x 2 x 4 x 1 x 2 x 4 x
0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

0 .3 0

A
b

s
o

rb
a

n
c

e
 4

9
2

 n
m

W T  V is c T R P C 1 -/ -  V is c

*
* *

2x	Ca
2+

 4x	Ca
2+

 1x	Ca
2+

 

WT 

TRPC1
-/-

 

A                  B																																				

C                D																																					

Subc	AT 

VAT 

Figure 18 Loss of TRPC1 in adipocytes reduces ability to differentiate 

Oil-red-o staining of WT and TRPC1-/- Subc AT (A) and VAT (C) differentiated in 

1x (basal), 2x, or 4x extracellular Ca2+ for 7 days. Quantification of eluted oil-red-

o stain at 492nm of Subc AT (B) and VAT (D). Graphs are mean ± SEM, 

significance: *, p < 0.05; **, p < 0.01. 
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to WT with the greatest expression observed at basal for PPARg and perilipin. 

Together these results reveal TRPC1 to be a functional partner in SOCE in both 

Subc AT and VAT differentiation and may necessary for the early stages of 

differentiation to promote PPARg expression. Further, reduced Ca2+ influx due to 

loss of TRPC1 cannot be supplemented by raising extracellular Ca2+ 

concentrations. Finally, increased extracellular Ca2+ concentrations diminish lipid 

accumulation and PPARg expression in WT Subc AT and VAT, however no 

substantive change was observed in FABP4 expression.   
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Figure 19 Adipogenetic protein expression in TRPC1-/- adipocytes 
diminished 

Western blot of PPARg, FAPB4, and perilipin protein expression of WT and 

TRPC1-/- Subc AT (A) and VAT (B) differentiated in 1x (basal), 2x, or 4x 

extracellular Ca2+. 
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TRPC1-/- mice have increased fatty-acid desaturation index  

and adiposity with age 

We have determined that lack of TRPC1 leads to a reduction in lipid 

accumulation and differentiation in an ex vivo model, leading us to next investigate 

whether dysfunctional TRPC1 channels could alter overall body composition. Body 

mass composition analysis was performed on TRPC1-/- and WT mice aged 13-15 

months, which resulted in a more than two-fold increase in the ratio of total fat to 

body weight in TRPC1-/- mice as compared to age matched WT mice (Figure 21 

A). Visually this difference in body composition can be seen in Figure 21 B where 

9-month-old TRPC1-/- mice have increased Subc AT and VAT volume as 

compared to its WT counterpart. Interestingly, the increase in total fat observed in 

TRPC1-/- mice did not translate to an increase in their overall body weight. Within 

a majority of age groups, no significant difference in the overall body weight was 

observed in TRPC1-/- mice when compared with WT mice, however younger 

TRPC1-/- mice, aged 0-3 months, had reduced overall body weight (Figure 21 C). 

In all ages, TRPC1-/- mice did have lower organ weights (such as hearts and 

kidneys), which were reduced in size regardless of age and may attribute to the 

increase in adiposity without an increase in overall body weight (Figure 21 D).  
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Figure 20 TRPC1-\- mice have increased adiposity with age 

(A) Body fat mass measured by EchoMRI and calculated by dividing the fat 

weight by total body weight of mice aged 13-15 months n=9-11. (B) Exposed 

Subc AT and Visc AT of WT and TRPC1-/- male mice aged 9 months. (C) Total 

body weight of WT and TRPC1-/- mice grouped by 3-month increments of age. 

(D) Ratio of organ to total body weight of WT and TRPC1-/- mice. Graphs are 

mean ± SEM, significance: *, p < 0.05; **, p < 0.01; ***, p < 0.001. 
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Obesity is most easily characterized by excess adipose accumulation, 

however excess lipids are also stored in other organs such as the liver, muscle, 

and pancreas. To determine whether the increased adiposity observed in TRPC1-

/- mice effected important metabolic organs, fatty acid composition of liver samples 

from WT and TRPC1-/- mice was calculated using gas chromatography/mass 

spectrometry (GC/MS). Liver fatty acid composition was relatively the same 

between WT and TRPC1-/- samples with the exception of mono and 

polyunsaturated fatty acids which were increased in TRPC1-/- (Figure 22 A). These 

included palmitoleic acid (16:1), oleic acid (18:1), linoleic acid (18:2), eicosenoic 

acid (20:1), and eicosadienoic acid (20:2). Increased ratios of monounsaturated to 

saturated fatty acids (desaturation index), particularly palmitoleic to palmitic acid 

(16:1/16:0) and oleic to stearic acid (18:1/18:0), has been correlated to obesity and 

insulin resistance (Jeyakumar et al., 2009; Pinnamaneni et al., 2006; Yee et al., 

2014). Within our study, we found that both ratios were increased in liver samples 

from TRPC1-/- mice (Figure 22 B), indicating increased activity of Stearoyl CoA 

desaturase 1. Together these data suggest that the loss of TRPC1 function 

attributes to an increase in the accumulation of adipocytes, but not overall weight, 

and a liver lipid profile similar to an obese phenotype.  
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Figure 21 Desaturation of liver fatty acids increased in TRPC1-/- mice 

Composition of liver fatty acids of WT and TRPC1-/- mice aged 4 months 

determined by gas chromatography/mass spectrometry (GC/MS) n=5. (B) Fatty 

acid desaturation index (16:1/16:0 and 18:1/18:0) calculated from (A). Graphs 

are mean ± SEM, significance: *, p < 0.05. 
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Conclusion 

The incidence of obesity-associated diseases such as type II diabetes, 

hypertension, cardiovascular risk, and cancer has increased drastically worldwide. 

Consequently, scientific inquiry into the mechanisms underlying adipose tissue 

development and the pathology of obesity has gained interest. Though an array of 

metabolic disorders are linked to alterations of Ca2+ homeostasis (Arruda and 

Hotamisligil, 2015), the study of Ca2+ within adipose tissue has been 

underrepresented. Evidence suggests adipose tissue [Ca2+]i is partly mediated by 

SOCE (El Hachmane et al., 2018), thus we focused on the identification of the 

endogenous Ca2+ entry channel and establish its role in adipocyte function. In our 

study, we identify TRPC1 as a major regulator of adipocyte energy metabolism 

through mediation of adipocyte differentiation. 

SOCE was first identified as a major component of non-excitable cells 

(Parekh and Putney, 2005), but further research has identified SOCE within a 

multitude of tissue types. This knowledge has unveiled it to be a ubiquitous Ca2+ 

signaling pathway which regulates numerous cellular functions including those 

connected with diabetic complications (Chaudhari and Ma, 2016). Identification of 

SOCE mechanisms within adipocytes may lead to a better understanding of the 

onset of obesity and metabolic disorders and reveal therapeutic possibilities. 

Within our study, Ca2+ entry was demonstrated to have SOCE properties that could 

effectively be reduced by the addition of a non-specific Ca2+ entry channel blocker 

SKF in both Subc AT and VAT. This indicates a similar mechanism for Ca2+ entry 
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influx between the tissue types. Furthermore, the current properties observed and 

blocked by SKF were similar to that of a TRPC1 channel (Liu et al., 2003; Selvaraj 

et al., 2012). The role of SOCE and the specific Ca2+ channel involved within Subc 

AT and VAT was further confirmed using adipose tissue with a genetic ablation of 

TRPC1. Loss of TRPC1 showed a significant decrease in Ca2+ entry upon 

treatment with Tg in SVF and differentiated adipocytes of both tissue types. 

Importantly, although ORAI1 was present, it was not able to compensate for the 

loss of TRPC1, suggesting that the major Ca2+ entry channel in adipocytes is 

mediated via TRPC1. Interestingly, loss of ORAI1 has been shown to modulate 

immune function (Ahuja et al., 2017), which also plays a vital role in obesity. Within 

our study, TRPC5 expression is increased upon adipocyte differentiation; however 

as TRPC1 forms C1/C5 heterotetramers (Shi et al., 2012), loss of TRPC1 would 

inactivate TRPC5 and thus could not compensate in TRPC1-/- mice. Upon 

differentiation, a higher amplitude of TRPC1-like current in both Subc AT and VAT 

was observed which is most likely attributable to the more than 2-fold upregulation 

of TRPC1 expression. In addition, current properties in differentiated VAT cells, 

especially in TRPC1-/-, were similar to that observed with ORAI1. This suggests 

that ORAI1 could play a role in VAT tissues, however further research is needed 

to fully establish the role of ORAI1 in these cells. 

Adipocyte differentiation is a complex process and dysregulation can lead 

to lipid accumulation and altered energy and metabolic regulation. Though the 

process is not fully understood, several studies have identified Ca2+ dependency 



64 
 

within adipocyte differentiation (Jensen et al., 2004; Neal and Clipstone, 2002; 

Pramme-Steinwachs et al., 2017; Shi et al., 2000). Our study is the first to use both 

genetic and pharmacological inhibitors to show that Ca2+ entry via TRPC1 is critical 

for adipocyte differentiation. Our results are consistent with other studies that have 

identified modulators such as STIM1 expression changes (Graham et al., 2009) 

and calcineurin, a calcium and calmodulin dependent serine/threonine protein 

phosphatase, activation (Neal and Clipstone, 2002) as important for the maturation 

of adipocyte precursor cells. Use of SKF to block store-mediated Ca2+ entry during 

differentiation not only impaired lipid droplet formation in WT Subc AT and VAT 

SVF, but also inhibited the expression of lipid mobilization proteins FABP4 and 

perilipin and transcription factor PPARg.  

The transcription factor PPARg is essentially expressed during early 

differentiation stages and regulates a number of adipocyte marker genes, including 

FABP4 and perilipin (Farmer, 2006; Wu et al., 1999). Here we show blockage of 

Ca2+ influx by SKF suppresses PPARg expression indicating Subc AT and VAT 

SVF may be unable to induce the initial processes of differentiation when SOCE 

is inhibited. Suppression of SOCE by TRPC1 loss, as seen in TRPC1-/- Subc and 

VAT cells, resulted in a reduction but not a complete impairment of lipid 

accumulation in both tissue types. Correspondingly, TRPC1-/- Subc and VAT 

differentiated adipocyte expression of FABP4, perilipin, and PPARg was reduced 

when compared to WT indicating TRPC1 may be involved in the initial stages of 

PPARg mediated differentiation. In the next chapter, we will discuss adipocyte size 
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more, however it was found that TRPC1-/- had a lower quantity of large adipocytes 

in Subc AT and VAT as compared to WT which may be attributed to partial 

differentiation dysfunction.  

In contrast to Ca2+ blockage, continuous exposure to high external Ca2+ has 

been shown to inhibit preadipocyte differentiation (Jensen et al., 2004) and block 

adipocyte lipid accumulation and expression of adipogenic transcription factors 

(Pramme-Steinwachs et al., 2017; Shi et al., 2000). The relationship between 

serum and extracellular Ca2+ is tightly regulated and kept at relatively similar 

concentrations (Hofer and Brown, 2003). Interestingly, increased serum Ca2+ has 

been associated with obesity (Ren et al., 2013) and type II diabetes (Lorenzo et 

al., 2014) and could denote a correlative increased extracellular Ca2+ 

concentration. Within our study, increasing normal extracellular Ca2+ 

concentrations by 4-fold decreased differentiation in WT VAT but had no effect on 

Subc AT. Interestingly, a slight difference in lipid accumulation was observed 

between WT Subc AT and WT VAT at all Ca2+ concentrations. Subc AT is known 

to have greater differentiation potential and proliferative ability when compared to 

VAT (Baglioni et al., 2012), which most likely explains the differences observed in 

WT Subc and VAT lipid accumulations. Subc AT was able to overcome the 

inhibitory effect of the increased extracellular Ca2+ to sustain lipid accumulation, 

whereas VAT adipocytes were not. Though increasing extracellular Ca2+ 

concentrations had no effect on lipid accumulation in Subc AT, protein expression 

of key differentiation factors reduced when Ca2+ increased which is similar to that 
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of VAT. This may confirm what other studies have shown that extended exposure 

to high Ca2+ concentrations inhibits differentiation of adipocytes, particularly in 

VAT.  

Impaired adipogenesis can lead to a multitude of different outcomes with 

the most common being an unhealthy expansion of adipose tissue. This 

phenomenon is generally seen in adult obesity which is hypertrophic in nature and 

the reason why PPARg agonists such as TZDs are useful in obesity (Choe et al., 

2016). Interestingly, hypertrophic adipocytes from obese mice were observed to 

have increased Ca2+ deposits surrounding lipid droplets possibly indicating 

increased [Ca2+]i  (Giordano et al., 2013). Within our study, TRPC1-/- mice exhibited 

increased adipose tissue accumulation as they aged; however overall body weight 

did not significantly increase relative to WT mice. This increase in adipose 

accumulation could be due to dysfunctional adipose differentiation which in time 

results in a hypertrophic expansion. Another important finding was that organ 

weights were reduced, which could be due to the fact that TRPC1 has been shown 

to play a critical role in cell proliferation (Alonso-Carbajo et al., 2017) and may be 

a reason for the increase in adipose accumulation without an increase in body 

weight.  

Though differentiation may contribute to the increased adiposity, there 

could be other explanations including a reduction of lipolysis. If this is the case, 

fatty acids are not mobilized from triacylglycerol stores properly, which in turn 

would expand adipose tissue volume over time. Furthermore, deletion of FABP4 
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has been shown to reduce lipolysis and FABP4 knockout mice have increased 

white AT mass on a high-fat diet (Hotamisligil et al., 1996). In our model, lack of 

TRPC1 may inhibit the expression FABP4 thus reducing lipolysis. Another 

possibility is that TRPC1 could be involved in store-operated Ca2+ entry necessary 

to induce lipolysis. Lack of store-operated Ca2+ entry proteins have shown to 

disrupt regulators of lipid metabolism and results in increased organ lipid droplet 

formation (Maus et al., 2017). Together, these results indicate that SOCE via 

TRPC1 may be involved in the initial stages of adipocyte differentiation of both 

Subc AT and VAT and result in increased adipose tissue volume over time, 

however more research needs to be done to determine the exact mechanism. 
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CHAPTER IV 

THE TRPC1 Ca2+-PERMEABLE CHANNEL INHIBITS  

EXERCISE-INDUCED PROTECTION AGAINST HIGH-FAT DIET-INDUCED 

OBESITY AND TYPE II DIABETES 

 

Introduction 

Obesity is a hallmark of metabolic syndrome and a key feature of obesity is 

the disruption of metabolic homeostasis leading to excess adipose accumulation 

(Blüher, 2009; Claycombe et al., 2013; Claycombe et al., 2016; Claycombe et al., 

2015), thus therapeutic targeting of proteins involved in these pathways could be 

essential for slowing or preventing the development of obesity and obesity-related 

health problems, including insulin resistance and type II diabetes. As shown in 

Chapter one along with other reports (Sukumar et al., 2012), TRPC1 gene 

expression is induced in differentiated adipocytes, yet no data are currently 

available on whether TRPC1 has a role in adipocyte energy metabolism regulation 

by altering mitochondrial energy oxidation, adipocyte lipid storage and size, and 

adipose tissue weight.  

A possible way that TRPC channels may control energy metabolism and 

adiposity is by acting as sensors for chemical factors necessary in adipocyte 

biology (Sukumar et al., 2012). Dietary saturated fat intake promotes obesity and
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 type II diabetes (Holzer et al., 2011) whereas n-3 polyunsaturated fatty acids 

(PUFAs) mainly found in fish oil produce opposite effects (Kuda et al., 2016; 

Ouguerram et al., 2006). Treatment of human embryonic kidney cells (HEK 293) 

with n-3 PUFAs such as linolenicdocosahexaenoic, and eicosapentaenoic acids 

inhibit Ca+2 entry via TRPC5 homomeric and TRPC1–TRPC heteromeric 

channels. Interestingly, the PUFA concentrations used in this study were within the 

physiologically achievable range of the human diet (Sukumar et al., 2012). 

Whether high dietary saturated fat intake modulates adipocyte energy metabolism 

via TRPC1-mediated signaling is not yet known. 

Moreover, experimental evidence indicates that several TRP channels play 

an important role in the onset of diabetes (Graham et al., 2009; Hu et al., 2009; 

Sabourin et al., 2015) or diet-induced obesity (Ye et al., 2012); however, the role 

of TRPC1 in these circumstances is not yet established. Exercise regulates body 

energy stores and insulin resistance by reducing adipocyte size and lipid content 

(Craig et al., 1981; Gollisch et al., 2009) and by regulating serum glucose 

homeostasis through inducing GLUT4 (glucose transporter type 4) protein 

expression (Stanford et al., 2015). Interestingly, treadmill running prevents Ca+2 

dysregulation and diabetic dyslipidemia in high-fat (HF) fed swine (Witczak et al., 

2006). TRPC1 knock-out (KO or TRPC1-/-) mice with attenuated Ca+2 entry (Liu et 

al., 2007) experienced reduced muscular endurance due in part to reduced force 

production and a greater rate of muscle fatigue (Zanou et al., 2010). However, 

whether a HF diet could exacerbate reduced exercise tolerance in TRPC1 KO mice 
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or contribute to mitochondrial energy metabolism dysfunction is also not yet 

known. Currently, no other studies have investigated the effects of dietary HF and 

exercise on adipocyte energy metabolism alteration via TRPC1 protein regulation 

of intracellular Ca+2 homeostasis.  

The regulation of adipocyte size and longevity may also be an area of 

involvement for TRPC1. It has been shown that increased subcutaneous adipocyte 

size is predictive to the development of insulin resistance and type II diabetes 

(Lundgren et al., 2007; Skurk et al., 2007; Weyer et al., 2000). Further, there is a 

negative correlation between adipocyte size and insulin sensitivity and a positive 

correlation with proinflammatory adipocytokine secretion (Lönn et al., 2010; Yang 

et al., 2012). It has also been reported that adipose mass along with differentiation 

is regulated by a process called autophagy (Singh et al., 2009; Zhang et al., 2009). 

Interestingly, there is an increase in autophagy in obese subjects, particularly in 

VAT depots (Kovsan et al., 2011) along with an increase in apoptotic pathways 

(Alkhouri et al., 2010; Sorisky et al., 2000). Autophagy deficient mice exhibit 

reduced efficiency in adipogenesis (Baerga et al., 2009) with altered morphology 

(Wang and Peng, 2012).  

Autophagy is described as a cellular process responsible for the delivery of 

proteins or organelles to lysosomes for degradation. Cells encountering stressful 

situations can either try to survive using the beneficial process of autophagy or by 

activating a programmed cell death program called apoptosis (Decuypere et al., 

2011; East and Campanella, 2013; Kondratskyi et al., 2013). To date, three types 
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of autophagy exist; macroautophagy, microautophagy and chaperone-mediated 

autophagy (CMA) (Decuypere et al., 2011; Kato et al., 2014). Cellular stress 

conditions including nutrient starvation, hypoxia conditions, invading microbes, 

and tumor formation have been shown to induce autophagy and allows cell survival 

in these stressful or pathological situations (Kato et al., 2014). In addition, 

autophagy also recycles existing cytoplasmic components that are required to 

sustain vital cellular functions (Zhang and Calderwood, 2011). Although autophagy 

and apoptosis are mechanistically different cellular processes, there are some 

common regulatory proteins that intervene in both, such as the anti-apoptotic/anti-

autophagy regulators B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-X large (Bcl-

XL) and Ca2+ signaling. Bcl-2 and Bcl-XL are known to inhibit apoptosis by binding 

to Bcl-2–associated X (Bax) or Bcl-2 homologous antagonist/killer (Bak) but also 

suppress autophagy by binding to Beclin-1 (Lindqvist et al., 2014).  

Intracellular Ca2+ is known to play an important role in autophagy in both 

basal and induced models (Cárdenas et al., 2010; Høyer-Hansen et al., 2007), 

however the mechanism by which Ca2+ regulates autophagy remains controversial 

(Decuypere et al., 2011). This is due to the previous studies showing both an 

activating and inhibitory role in autophagy (Cárdenas et al., 2010; Su et al., 2013). 

A commonality to these different studies is the focus on IP3R which is important 

for SOCE mechanisms (Figure 23). With regards to channel identity, our laboratory 

has shown in numerous studies indicating TRPC1 has a role in cell survival and 

apoptosis (Bollimuntha et al., 2006; Pani et al., 2006; Selvaraj et al., 2009). 
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Recently our lab has shown that TRPC1 is a key regulator in hypoxia and nutrient 

depletion dependent autophagy (Sukumaran et al., 2015). Specifically, that an 

increase in intracellular Ca2+ via TRPC1 regulates autophagy, thereby preventing 

cell death in two morphologically distinct cells lines (Sukumaran et al., 2016).  

The present study investigated the involvement of TRPC1 in diet-induced 

obesity and type II diabetes. Additionally, regulation of adipocyte formation under 

normal-fat (Stanford et al., 2015) or HF diet and control cage or voluntary exercise 

conditions was also evaluated to determine how optimal dietary treatments and 

exercise promote a healthy body weight. Our data indicate that TRPC1 KO mice 

fed a HF diet and exercised are protected from diet-induced obesity and type II 

diabetes risk due to decreased autophagy and increased apoptosis resulting from 

loss of Ca+2 influx through TRPC1.  
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Figure 22 Role of intracellular Ca2+ and Ca2+ permeable channels in 
autophagy 

Schematic diagram showing intracellular Ca2+ and Ca2+ permeable channels 

in the control of autophagy. Stimulation of Ca2+ permeable channels are 

activated both excited and non-excited Ca2+ channels and results in release of 

the store Ca2+ from the ER and Golgi bodies. These results in ER stress and 

disturbed Ca2+ homeostasis in the cells; which via various Ca2+ regulated 

proteins like ERK, calpains, cAMP regulates the autophagy processes. 

Reprinted from “Functional role of TRP channels in modulating ER stress and 

Autophagy” by P. Sukumaran, 2016, Cell Calcium, 60, 123-132. Copyright 

2016 by Elsevier. Reprinted with permission. 
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Results 

 

Body fat mass is decreased in TRPC1 KO mice fed a HF diet and exercised 

For 12 weeks, mice were fed diets containing either 16% (normal-fat, NF) 

or 45% fat (high-fat, HF) for 12 weeks and subjected to voluntary wheel running 
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Figure 23 TRPC1 KO mice fed a HF diet and exercised have decreased 
body fat mass 

A and B, body weight was measured at week 0 (A) and week 12 (B). C, body 

weight change was calculated by dividing the body weight at week 12 by the body 

weight at week 0. D and E, body fat mass was measured by EchoMRI at week 0 

(D) and week 12 (E). F, body fat change was calculated by dividing the fat weight 

at week 12 by the fat weight at week 0. Data are presented as mean ± S.D., n = 

6–8. Significant (p < 0.05) effects from 3-way ANOVA are indicated by + (mouse 

type), × (diet), and # (exercise). 
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exercise. TRPC1 KO mice had lower body weight (Figure 24 A) and body fat mass 

(Figure 24 D) at the start of the study and after 12 weeks of diet and exercise 

(Figure 24 B, E) when compared to WT mice. However, when calculated as a fold 

change, there was no change in body weight when comparing WT to TRPC1 KO 

mice (Figure 24 C). Within groups, change in body fat mass was significantly 

decreased in TRPC1 KO mice fed a HF diet and exercised compared to WT mice 

fed a HF diet and exercised (Figure 24 F). Furthermore, TRPC1 KO mice fed a HF 

diet and exercised had less change in body fat mass than TRPC1 KO mice fed a 
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Figure 24 Daily food intake and exercise is unaltered 

Food consumption and exercise were measured biweekly from WT and TRPC1 

KO mice over the course of 12 weeks. Data are presented as means ± S.D., n = 

7-8. Significant (p < 0.05) effects from 3-way ANOVA are indicated by + (mouse 

type), × (diet), and # (exercise). 
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HF diet and subjected to sedentary cage activity (Figure 24 F). Though food intake 

variation was influenced by the type of mouse and an exercise x diet interaction, 

altered body composition was not a result of group differences in food consumption 

or exercise (Figure 25 A, B). As we saw from the data presented in Chapter One, 

TRPC1 is the major Ca2+ entry channel in adipocytes and the new data presented 

here shows that loss of TRPC1 decreases obesity risk in HF fed mice that exercise. 
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Figure 25 TRPC1 KO mice fed a HF diet and exercised have reduced insulin 
resistance 

A–D, blood glucose (A and B), plasma insulin (C), and calculated homeostatic 

model assessment of insulin resistance (D) were measured from WT and TRPC1 

KO mice fasted overnight after 12 weeks of diet and exercise. Data are presented 

as mean ± S.E. (A) or S.D. (B–D), n = 7–8. Significant (p < 0.05) effects from 3-

way ANOVA are indicated by + (mouse type), × (diet), and # (exercise). 
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TRPC1 KO mice fed a HF diet and exercised are protected  

from type II diabetes risk 

The data provided above show an important role for TRPC1 in the onset of 

metabolic syndrome. Thus, glucose concentrations were next evaluated under 

these conditions. Maximum blood glucose concentrations occurred 15-30 min after 

intraperitoneal injection of glucose in all groups (Figure 26 A). Interestingly, overall 

TRPC1 KO mice had reduced blood glucose concentrations as compared to WT, 

however, within groups, blood glucose concentrations were only decreased in 

TRPC1 KO mice fed a HF diet and exercised when compared to WT mice fed a 

HF diet and exercised (Figure 26 B). Similarly, serum insulin concentrations were 

overall decreased in TRPC1 KO mice and the group TRPC1 fed a HF diet and 

exercised was decreased as compared to WT mice fed a HF diet and exercised 

(Figure 26 C). Using a homeostatic model assessment of insulin resistance 

(HOMA IR) to assess the fasting blood glucose/insulin ratio, we found that, once 

more, TRPC1 KO mice were overall less insulin resistant than WT and the TRPC1 

KO group fed a HF diet and exercised were less insulin resistant than WT mice fed 

a HF diet and exercised (Figure 26 D). It was confirmed that this difference was 

not due to altered expression of GLUT4 in the subcutaneous adipose tissue 

(Figure 27 A) or skeletal muscle (Figure 27 B). These studies suggest that loss of 

TRPC1 decreases insulin resistance and risk of diabetes thereby inhibiting 

metabolic syndrome.  
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Figure 26 GLUT4 expression is unaltered in Subc AT and skeletal 
muscle 

A and B, GLUT4 expression in subcutaneous adipose tissue (A) and hind 

leg biceps femoris skeletal muscle (B) was measured from WT and TRPC1 

KO mice following 12 weeks of diet and exercise. Data are presented as 

mean ± S.D., n = 7–8. 
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Adipocyte numbers are decreased in  

TRPC1 KO mice fed a HF diet and exercised 

To establish if adipocyte number or size is varied under these conditions, 

we counted the number of adipocytes present in adipose tissue depots and 

determined the adipocyte size. In the subcutaneous and visceral adipose tissue 

depots, adipocytes with size ranges of 80-160 μm were decreased in TRPC1 KO 

mice fed a HF diet and exercised compared to WT mice fed a HF diet and 

exercised but not in the smaller size range of 20-80 μm (Figure 28). In addition, 

TRPC1 KO mice fed a HF diet and subjected to sedentary cage activity had 

decreased adipocytes from 160-200 μm when compared to WT mice fed a HF diet 

and subjected to sedentary cage activity (Figure 28) This data suggests that loss 

of TRPC1 combined with a HF diet decreases the number of larger adipocytes, 

which could explain the decreased fat mass observed in Figure 24. 
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Figure 27 TRPC1 KO mice fed a HF diet and exercised have fewer 
adipocytes 

Adipose tissue harvested from WT and TRPC1 KO mice following 12 weeks of 

diet and exercise was measured by a Multisizer. Data are presented as mean 

± S.D., n = 6–8. Significant (p < 0.05) effects from 3-way ANOVA are indicated 

by + (mouse type), × (diet), and # (exercise). 
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Autophagy marker expression is decreased while apoptosis marker 

expression is increased in TRPC1 KO mice fed a HF diet and exercised 

To determine whether reduced adipocyte numbers in adipose depots of 

TRPC1 KO mice fed a HF diet and exercised seen in Figure 28 were due to 

apoptosis or reduced differentiation of adipocytes, we measured mRNA of key 

markers for adipogenesis (PPARγ), beiging (FGF21), hypoxia (HIF1α), and 

autophagy (MAP1LC3A, BECN1). Though there was no altered mRNA expression 

of PPARγ, FGF21, HIF1α, or BECN1 in subcutaneous adipose tissue (Figure 30 

A-D), expression of the autophagy marker MAP1LC3A was decreased (as 

indicated by an increased Ct value) in TRPC1 KO mice fed a HF diet and exercised 

compared to WT mice fed a HF diet and exercised (Figure 29 A). To confirm that 

our mRNA expression was replicated on the protein level, we examined protein 

expression of autophagy (LC3A, p62) and apoptosis (Bax, Bcl-xl) regulating 

proteins in WT and KO mice fed a HF diet and exercised. LC3A expression was 

decreased along with an increase in p62 expression in samples from TRPC1 KO 

mice that were fed a HF diet and exercised when compared with WT mice fed a 

HF diet and exercised indicating a deficiency in autophagy (Figure 30 B, C). 

Conversely, increased expression of Bax and an increased Bax to Bcl-xl ratio, 

which is an indication of increased apoptosis, was observed in the TRPC1 KO 

mice fed a HF diet and exercised compared to WT mice fed a HF diet and 

exercised (Figure 29 B-D). Together, these results suggest that loss of TRPC1 

decreases autophagy, a survival mechanism, and increases apoptosis, which 
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could promote loss of larger adipocytes. In addition, loss of TRPC1 significantly 

decreased phosphorylation of ERK2, whereas no change in the phosphorylation 

of ERK1 and AMPK was observed (Figure 31). These data further indicate that 

loss of TRPC1 inhibits ERK2 phosphorylation, which has been shown to interact 

with ATG proteins and thus could modulate autophagy in these cells.  
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Figure 28 Autophagy marker expression is decreased whereas apoptosis 
marker expression is increased in TRPC1 KO mice fed a HF diet and exercised 

A, MAP1LC3A mRNA expression was measured from subc adipose tissue taken 

from WT and TRPC1 KO mice following 12 weeks of diet and exercise. Data are 

presented as mean ± S.D., n = 6–8. B, subc adipose tissue from WT and TRPC1 

KO mice fed a HF diet and exercised was resolved and analyzed by Western 

blotting using antibodies labeled in the figure. Quantification of each protein is 

shown in C. Data are presented as mean ± S.D., n = 7–11. D, ratio of Bax/Bcl-xl is 

presented as a fold increase of TRPC1 KO over WT values.  
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Figure 29 Expression of markers for adipogenesis, beiging, and 
hypoxia were unaltered in subcutaneous adipose tissue 

mRNA expression of PPARγ (adipogenesis) (A), FGF21 (beiging) (B), 

HIFIα (hypoxia) (C), and BECN1 (autophagy) (D) was measured from 

subcutaneous adipose tissue taken from WT and TRPC1 KO mice 

following 12 weeks of diet and exercise. Data are presented as means ± 

S.D., n = 6-8.  
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Figure 30 Reduced ERK2 phosphorylation observed in in TRPC1 KO 
mice fed a HF diet and exercised 

Subc adipose tissue isolated from WT and TRPC1 KO mice fed a HF diet and 

exercised was resolved on SDS-PAGE gels and analyzed using different 

antibodies as labeled in the figure with quantification of the phosphorylated to 

non-phosphorylated form of each protein. Data are presented as mean ± S.D., 

n = 5.  
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Conclusion 

This study is the first to show that TRPC1 KO mice that exercise are 

protected from HF diet-induced obesity and type II diabetes risk due to decreased 

adipose tissue mass and adipocyte number as a result of reduced autophagy and 

increased apoptosis. Thus, in combination, exercise, HF diet, and loss of TRPC1 

reduce adiposity through a yet undefined mechanism. Given that TRPC1 is 

involved in Ca2+ entry following depletion of internal Ca2+ stores in the ER, TRPC1 

KO results in decreased Ca2+ entry in a variety of cell types including adipocytes 

(Sukumar et al., 2012), skeletal muscle (Zanou et al., 2010), neuronal (Fiorio Pla 

et al., 2005), intestinal epithelial cells (Rao et al., 2006), and salivary glands (Liu 

et al., 2007; Liu et al., 2000). Thus, based on our data, it is probable that reduced 

Ca2+ entry due to TRPC1 KO is influenced further by HF diet and exercise, 

suggestive of a relationship between Ca2+ entry, diet, and exercise. Although 

expression of Orai1 and STIM1 was observed in adipocytes, the properties of the 

endogenous channel was similar to that observed with TRPC1-mediated ISOC (Liu 

et al., 2007; Liu et al., 2000) and not as observed with ICRAC channels (Peinelt et 

al., 2006; Yuan et al., 2009). Similarly, the increased expression of TRPC5 in 

adipocytes did not alter Ca2+ influx as current-voltage recordings were distinctly 

different from TRPC5 homologs and TRPC1/TRPC5 heteromeric channels would 

be non-functional due to the loss of TRPC1 function (Strübing et al., 2001; Wu et 

al., 2010). Furthermore, TRPC1 KO mice showed exercise-mediated inhibition of 

adiposity and decreased insulin resistance in the absence of TRPC1 suggesting 
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that TRPC1 might be the dominant Ca2+ channel in these cells. However, additional 

studies will be needed to determine the role of Orai1 channels in exercise-

mediated regulation of metabolic syndrome.  

The present study demonstrated that fat mass was reduced in TRPC1 KO 

mice compared to WT mice following twelve weeks of HF diet and exercise. 

Similarly, previous studies have shown that TRPV4 KO mice (another Ca2+ entry 

channel from the TRPV family) are also protected from obesity and metabolic 

dysfunction with exposure to HF diet (Ye et al., 2012) suggesting that Ca2+ 

channels negatively regulate obesity. This is in contrast to the expectations that 

HF-fed mice develop obesity and glucose intolerance (Kalupahana et al., 2010) 

since TRPC1 KO mice fed a HF-diet and exercised were less insulin resistant than 

their WT counterpart, indicative of protection from type II diabetes risk, yet GLUT4 

expression was unaltered in hind leg biceps femoris skeletal muscle or 

subcutaneous adipose tissue. Furthermore, the number and size of subcutaneous 

and visceral adipocytes are decreased in TRPC1 KO mice compared to WT mice 

when fed a HF diet and exercised. Because TRPC1 plays a key role in cell survival 

and apoptosis (Bollimuntha et al., 2006; Pani et al., 2006; Selvaraj et al., 2009), it 

was hypothesized that TRPC1 KO mice would alter expression patterns of key 

markers for adipogenesis, apoptosis, or autophagy in subcutaneous adipose 

tissue. TRPC1 KO mice fed a HF diet and exercised had decreased expression of 

the autophagy marker MAP1LC3A and increased p62 expression along with an 

increase in apoptosis markers (particularly the ratio of Bax/Bcl-xl). This is in 
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agreement with our previous findings that silencing of TRPC1 decreased 

autophagy and increased cell death (Sukumaran et al., 2015). Loss of TRPC1 also 

decreased phosphorylation of ERK2, which is consistent with previous studies 

where activation of Ca2+ channels in adipocytes increased ERK2 phosphorylation 

(Ye et al., 2012). In addition, loss of TRPC1 decreased the number of larger 

adipocytes. These findings suggest that elimination of TRPC1-mediated Ca2+ entry 

in TRPC1 KO mice promotes suppression of autophagy in HF diet-fed and 

exercised mice resulting in increased adipocyte cell death. These results are 

consistent with previous studies where patients with metabolic syndrome also have 

higher serum Ca2+ levels (Saltevo et al., 2011; Sorva and Tilvis, 1990), which could 

be due to the loss of TRPC1 or other Ca2+ channels that mediate Ca2+ entry in 

adipocyte cells, thereby increasing serum Ca2+ levels. Interestingly, in skeletal 

muscle, even though contraction does not depend on extracellular Ca2+ (Armstrong 

et al., 1972), Ca2+ entry through TRPC1 is essential for maintaining force during 

sustained repeated contractions. TRPC1 KO mice experience muscle fatigue 

during endurance exercise though spontaneous wheel running activity is 

unchanged (Zanou et al., 2010). Our data is in agreement as we showed no 

alteration in voluntary exercise. However, a reduction in endurance exercise might 

be expected because loss of TRPC1 could impact mitochondrial respiration by 

altering Ca2+ homeostasis, due to an increase in total mitochondrial protein 

stimulated by exercise training (Holloszy, 1967; Scalzo et al., 2014), and Ca2+ is 

needed for proper functioning of mitochondria (Chan et al., 2009). In addition, ER 
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stress resulting from reduced Ca2+ entry could increase translocation of apoptotic 

factors into mitochondria thus permeabilizing the membrane, causing release of 

cytochrome c and activation of caspases, leading to mitochondrial-mediated cell 

death (Budihardjo et al., 1999; Pan et al., 2001; Selvaraj et al., 2009; Wei et al., 

2001). These findings demonstrate that loss of TRPC1 disrupts Ca2+ homeostasis 

potentially resulting in mitochondrial-mediated cell death of adipocytes. Although 

a previous study has shown that knockdown of TRPC1 only attenuated non-

stimulated Ca2+ influx in breast cancer cells (Davis et al., 2012), our results using 

adipocytes did not show any decrease in basal Ca2+ entry. These results suggest 

that while in breast cancer cells other Ca2+ influx channels (Orai1) might be more 

important for SOCE, TRPC1 is essential for adipocyte function, especially in 

blocking the effects of exercise in HF diet-induced obesity. The mechanism by 

which TRPC1 KO mice fed a HF diet and exercised are protected from obesity and 

type II diabetes risk needs further investigation. However, our study and another 

published study (Ye et al., 2012) indicate that loss of Ca2+ might be the main factor 

that inhibits the formation of metabolic syndrome.  
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CHAPTER V 

TRPC1 TRANSPORTS Ca2+ INVOLVED IN SNARE COMPLEX FORMATION 

DURING ADIPONECTIN SECRETION 

 

Introduction 

Adipose tissue was initially considered to be an inert fat storage depot until 

the discovery of linkages between obesity and inflammation. Currently, adipose 

tissue is considered a complex endocrine organ secreting over 600 bioactive 

factors (Lehr et al., 2012; MacDougald and Burant, 2007), termed adipokines. 

These adipokines influence diverse physiological processes by relaying 

information to other metabolically active organs such as muscle, liver, pancreas, 

and brain, thereby modulating systemic metabolism (Ouchi et al., 2011). 

Importantly, increased adipose accumulation, as seen in obesity, correlates to 

dysregulation of adipokine secretion (Arita et al., 1999; Matsuzawa, 2010; Maury 

and Brichard, 2010) and increases susceptibility to other diseases (Rasouli and 

Kern, 2008). Altering levels of the adipokines, mainly adiponectin (Fruebis et al., 

2001; Okada-Iwabu et al., 2013) and leptin (Stern et al., 2016), have shown to 

improve energy homeostasis and offset diet-induced obesity. Thus, adipokines 

have potential to be therapeutic targets to combat/counter or reduce obesity and 
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other metabolic diseases, however, a full understanding of the mechanisms and 

intracellular mediators that modulate adipokine secretion within adipose tissue is 

first required. 

Adiponectin is a cytokine primarily secreted from mature adipocytes, 

however it has been shown to be expressed in other tissues including human and 

murine osteoblasts, liver, myocytes, epithelial cells, and placental tissue (Achari 

and Jain, 2017). Adiponectin is known to have an anti-inflammatory effect as it 

inhibits the expression of vascular adhesion molecules, scavenger receptors, is an 

antagonist of toll like receptors (TLR) and their ligands, and pro-inflammatory 

cytokines TNFα, IL-6 and IL-1β in various tissues types (Fantuzzi, 2013; Tsatsanis 

et al., 2005; Turer and Scherer, 2012). Anti-oxidant properties have also been 

attributed to adiponectin which are mediated by the cyclic AMP/protein kinase A 

pathway (Ebrahimi-Mamaeghani et al., 2015; Scherer et al., 1995; Yamauchi and 

Kadowaki, 2013). Adiponectin has garnered interest as a metabolic therapeutic 

due to its positive effect on lipid and glucose metabolism in kidney, liver and 

muscle. Utilizing the AMPK pathway, adiponectin is known to increase fatty acid 

oxidation, mitochondria biogenesis, and insulin sensitivity (Achari and Jain, 2017; 

Komai et al., 2014).  

Adiponectin is one of the most abundant circulating cytokine accounting for 

roughly 0.01% of total serum protein (Villarreal-Molina and Antuna-Puente, 2012). 

Normal human serum adiponectin concentrations are 3 to 30 µg/mL (Ouchi et al., 

2003), however concentrations have been found to be negatively correlated to 
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obesity and positively correlated to insulin sensitivity (Achari and Jain, 2017; 

Kadowaki et al., 2006; Kovacova et al., 2012). Decreases in blood concentrations 

during obesity have been attributed to disturbances in both production and 

Figure 31 Adiponectin synthesis  

Schematic representation of the steps involved in the production and secretion of 

adiponectin. Monomeric adiponectin (mAd) is the initial form and post-

translationally modified and oligomerized into trimers (low molecular weight, 

LMW), hexamers (medium, MMW) and oligomeric (high, HMW) forms. Reprinted 

from “Adiponectin action: A combination of endocrine and autocrine/paracrine 

effects” K. Dadson, 2011, Frontiers in Endorcinology, 2011;2-62. Copyright 2011 

by Frontiers Media SA. Reprinted with permission. 
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secretion of adiponectin from adipose tissue (Hoffstedt et al., 2004; Kovacova et 

al., 2012; Liu and Liu, 2009). Interestingly, mice fed a high-fat diet and treated with 

a synthetic small-molecule adiponectin receptor (AdipoRon) agonist ameliorated 

insulin resistance and glucose intolerance (Okada-Iwabu et al., 2013). Moreover, 

treatment with this synthetic adiponectin inhibited the onset of diabetes in 

genetically obese rodent model db/db mice further highlighting the prospect of 

using adiponectin as a therapeutic target for metabolic disorders. 

Adiponectin is initially synthesized as a monomeric pre-hormone (Figure 

32), then oligomerized into three isoforms and packaged in vesicles until 

stimulated for release (Dadson et al., 2011). Expression is transcriptionally 

regulated by the transcription factors C/EBPs, sterol regulatory element binding 

protein 1c (SREBP1c), and nuclear receptor peroxisome proliferator-activated 

receptors γ (PPARγ) which is induced by the thiazolidinedione (TZD) family of 

drugs (Dadson et al., 2011; Liu and Liu, 2009; Yamauchi and Kadowaki, 2013). 

Adiponectin is first formed as a 30 kDa monomer that is assembled within the ER 

into complex isoforms such as high (HMW 300 kDa), medium (MMW 140 kDa), 

and low (LMW 67 kDa) molecular weights (Figure 32). The HMW isoform is thought 

to be the most biologically active and Ca2+ has been implicated as important for its 

formation (Banga et al., 2008; Rosen and Spiegelman, 2014). Interestingly, the 

ratio of plasma HMW adiponectin to total adiponectin appears to be a stronger 

indicator of insulin resistance than measuring total adiponectin levels alone due to 

its high correlation with glucose and insulin levels (Lara-Castro et al., 2006). 
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Release of adiponectin from adipocytes has been shown to be insulin and 

Ca2+ dependent (Bogan and Lodish, 1999; Cong et al., 2007; Komai et al., 2014; 

Xie et al., 2008) and a high-Ca2+ diet has been shown to stimulate the expression 

of adipokines along with inhibition of pro-inflammatory factors (Sun and Zemel, 

2007). The mechanism of secretion is mediated by golgi-localized, gamma adaptin 

ear-containing, ARF-binding protein 1 (GGA1)-coated vesicles originating at the 

Golgi with exocytosis being regulated through protein kinase A (PKA)-independent 

cAMP stimulation in both a Ca2+ dependent and independent process (Komai et 

al., 2014; Xie et al., 2008). Though Ca2+ dependency has been shown in 

adiponectin exocytosis, the specific Ca2+ channel involved has yet to be 

determined. We’ve shown in previous chapters the high expression and 

importance of TRPC1 in adipocyte function, thus TRPC1 could likely be involved 

in the Ca2+ dependent mode of adiponectin secretion (Baboota et al., 2014; Bishnoi 

et al., 2013; Sukumar et al., 2012).  

Regulated exocytosis in adipocytes mediates key functions, exemplified by 

insulin-stimulated secretion of peptides such as adiponectin and recycling of 

intracellular membranes containing GLUT4 glucose transporters to the cell surface 

(Bogan and Lodish, 1999). Plasma membrane synaptosomal-associated protein 

25 (SNAP-25) and syntaxin-1, termed t-SNAREs, and secretory vesicle-

associated protein 2 (VAMP-2 or v-SNARE), are part of the conserved protein 

complex involved in the fusion of opposing membranes necessary for exocytosis 

(Söllner et al., 1993; Trimble et al., 1988; Zhang et al., 2016) (Figure 33). An 



96 
 

important feature of each of these proteins is a stretch of heptad repeats, termed 

SNARE motifs, which serve as co-binding locations (Fasshauer et al., 1998; 

Weimbs et al., 1997). Syntaxin-1 and VAMP-2 each contain a single SNARE motif 

while SNAP-25 contains two. During the initial stage of exocytosis, the vesicle 

approaches the PM and VAMP-2, syntaxin-1, and SNAP25 interact with each other 

via SNARE motifs to form quaternary bundles of a-helices called SNARE 

complexes. It has been well demonstrated that Ca2+ provides the final event 

needed for vesicle fusion and release of its content, however channel specificity is 

still elusive (Di Giovanni et al., 2010; Südhof and Rothman, 2009). Our laboratory 

has shown an interaction between VAMP-2 and TRPC3 in neuronal and epithelial 

cells was necessary for exocytosis (Singh et al., 2004). Interestingly, there is data 

implying an interaction between SNAP-25 and TRPC1 in human platelets during 

TRPC1 trafficking (Redondo et al., 2004) which could suggest a more involved role 

for the two proteins in SNARE complex formation.  

As shown in Chapter 2, TRPC1-/- adipose tissue has reduce SOCE function 

and differentiation leading us to investigate whether other adipose functions are 

impaired. Ca2+ has been shown in numerous studies to be involved in the secretion 

of adipokines from adipose tissue (Komai et al., 2014; Sukumar et al., 2012; Ye et 

al., 2010), however the Ca2+ channel(s) involved have not been identified. The aim 

of this study was to identify the endogenous Ca2+ entry channel in adipocytes 

necessary for adipokine production and secretion. We report that loss of TRPC1 

function reduces serum adiponectin concentrations in TRPC1-/- mice due to 
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impaired exocytosis of adiponectin from adipocytes. We further show TRPC1-

mediated Ca2+ is necessary for SNARE complex formation necessary for 

adiponectin loaded vesicle fusion.  

  

Figure 32 SNARE complex formation 

Assembly of SNARE complex formation depicting the steps involved with vesicle 

fusion and exocytosis. (I) monomeric t-SNAREs SNAP-25 and syntaxin located 

on the PM, (II) partial assembly of t-SNARE complex, (III) the folded t-SNARE 

complex and introduction of vesicle associated proteins synaptotagamin and 

VAMP2 along with Munc-18, (IV) activated SNARE complex, (V) partially 

zippered trans-SNARE complex, (VI) introduction of Ca2+ completes the zippered 

SNARE complex and exocytosis occurs. Reprinted from “Single-molecule study 

of t-SNARE complex” by X. Zhang, 2016, Proceedings of the National Academy 

of Sciences, 113(50) E8031-E8040. Copyright 2016 by Proceedings of the 

National Academy of Science. Reprinted with permission. 
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Results 

 

Serum adipokines levels are reduced in TRPC1-/- mice 

To determine whether the reduction in Ca2+ influx in TRPC1-/- adipose tissue 

alters adipokine levels, we assessed serum adiponectin and leptin concentrations 

of WT and TRPC1-/- mice. Elisa assessed serum concentrations of both 

adiponectin and leptin were significantly reduced in TRPC1-/- mice as compared to 

their WT counterpart (Figure 34 A, B), whereas no change in food intake was 

observed (Figure 25). Adiponectin and leptin are almost entirely produced by 

adipocytes which led us to question whether the reduction in serum concentrations 

seen in TRPC1-/- mice was due to a decrease in overall production. To assess this, 

Figure 33 Serum adipokines are altered in TRPC1-/- mice. 

Elisa assessed total serum APN (A) and leptin (B) of WT and TRPC1-/- mice 

aged 3-9 months, APN n=6, leptin n=8. Graphs are mean ± SEM, 

significance: *, p < 0.05 
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Subc AT and VAT lysates from WT and TRPC1-/- mice were evaluated for 

adiponectin and leptin protein expression. No difference was observed in either 

adiponectin or leptin expression between adipose tissue obtained from TRPC1-/- 

or their WT counter parts indicating loss of serum concentrations is most likely not 

Figure 34 No difference in leptin and adiponectin concentrations within 
adipose tissue 

Western blot and quantification of leptin and adiponectin protein expression 

normalized to actin of WT and TRPC1-/- tissue lysates of Subc AT and VAT and 

quantified. 
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due to a malfunction in production (Figure 35). Interestingly, both WT and TRPC1-

/- VAT samples contained higher levels of both adiponectin and leptin than Subc 

AT samples possibly indicating VAT may play a larger role as a distributor of 

adipokines. These results suggest that reduced serum adiponectin and leptin 

concentrations in TRPC1-/- mice are not likely a consequence of lower adipose 

tissue production.  

 

Exercise recovers diminished serum  

adiponectin concentrations in TRPC1-/- mice 

Exercise is known to increase circulating adiponectin concentrations 

(Kriketos et al., 2004; Lee et al., 2011; Wang et al., 2015), however there are 

conflicting views on the effect of a high-fat diet on serum adiponectin 

concentrations (Barnea et al., 2006; Bullen et al., 2007). This lead us to investigate 

whether a high-fat diet and exercise would alter serum adipokine concentrations 

in TRPC1-/- mice. WT and TRPC1-/- mice were placed on a diet of either normal-

chow (16% fat) or high-fat (45% fat) diet for 12 weeks and subjected to voluntary 

wheel running exercise. At the end of the 12 weeks, serum adiponectin 

concentrations were assessed. Within WT groups, adiponectin concentrations 

were increased in sedentary WT mice fed a high-fat diet and in exercised WT mice 

fed a normal-chow diet as compared to WT sedentary mice fed a high-fat diet, 

however, the combination of high-fat diet and exercise had no effect on adiponectin 

concentrations (Figure 36).  Similar to Figure 34, sedentary TRPC1-/- mice feed a 
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normal-chow diet had significantly reduced adiponectin concentrations as 

compared to their WT counterparts which was replicated in sedentary TRPC1-/- 

mice feed a high-fat diet indicating the increase in adiponectin due to high-fat diet 

is impaired in TRPC1-/- mice. Notably, reduced adiponectin concentrations in 

TRPC1-/- mice fed either normal-chow diet or high-fat diet was offset by the addition 

Figure 35 Reduced serum adiponectin concentrations in TRPC1-/- mice 
recovered when exercised  

Total serum adiponectin from WT and TRPC1-/- mice fasted overnight after 12 

weeks on normal-chow (16% fat) or high-fat (45% fat), n=8 mice. Normal-chow 

(NF), High-fat (HF). Significant (p < 0.05) effects from 3-way ANOVA are 

indicated by + (mouse type), × (diet), and # (exercise). Graphs are mean ± SEM, 

significance: *, p < 0.05; **, p < 0.01.; ***, p < 0.001. 
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Figure 36 Serum adiponectin isoforms altered in TRPC1-/- mice 

Serum adiponectin isoforms (A) assessed by non-denaturing PAGE. Optical 

density of each isoform (HMW (high molecular weight), MMW (middle 

molecular weight), LMW (low molecular weight)) normalized to total protein 

from respective Ponceau S stains and quantified (B). (C) Non-denaturing 

PAGE of Subc AT and VAT protein tissue lysates and quantified. Graphs are 

mean ± SEM, significance: *, p < 0.05; **, p < 0.01. 
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of exercise. Overall this indicates that serum adiponectin concentrations in TRPC1-

/- mice are affected by the addition of exercise, but a high-fat diet results in no 

change. 

 

Adiponectin isoforms are altered in TRPC1-/- mice 

The isoform composition of total serum adiponectin has been shown to be 

important to overall health assessment due to its correlation with glucose and 

insulin levels (Lara-Castro et al., 2006), thus we assessed the composition of 

serum samples from Figure 34. Evaluation of serum adiponectin from WT and 

TRPC1-/- mice by non-denaturing gel electrophoresis indicated a significant 

reduction in both HMW and MMW isoforms with no difference in LMW (Figure 37 

A, B). To understand whether the reduction of HMW and MMW isoforms in TRPC1-

/- mouse serum is due to an issue in adiponectin production and folding within 

adipose tissue, Subc AT and VAT adiponectin isoform composition was assessed. 

In all three isoforms, there was no difference observed between WT and TRPC1-/- 

in either Subc AT or VAT indicating isoform assembly is not a likely candidate for 

differences in serum levels (Figure 37 C). Within these studies, we observed 

TRPC1-/- mouse serum contains significantly less of the biologically active form of 

adiponectin (HMW) than WT mice, which does not correspond to intracellular 

tissue quantities. 
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Diminished adiponectin secretion in Subc AT from TRPC1-/- mice  

Secretion of adiponectin from adipose tissue can be triggered by insulin 

(Bogan and Lodish, 1999; Cong et al., 2007). To mimic this process ex vivo, fresh 

Subc AT and VAT from WT and TRPC1-/- mice was cut into 8-15 mg pieces, 

suspended in media, and stimulated with insulin (100 nM) for 6 hours. The media 

was then examined via ELISA and normalized to mg of tissue to determine total 

adiponectin concentrations. Upon insulin stimulation, secreted adiponectin 

concentrations from WT Subc AT were significantly increased compared to non-

treated control (Figure 38 A). Importantly, treatment of TRPC1-/- Subc AT with 

Figure 37 Insulin stimulated secretion diminished in TRPC1-/- Subc AT 

Elisa assessed adiponectin secreted from Subc AT (A) and VAT (B) samples 

in 8-15 mg pieces from WT and TRPC1-/- stimulated with insulin (100 nM) for 

6 hours, n=9. Concentration of adiponectin normalized to tissue size (mg). 

Graphs are mean ± SEM, significance: *, p < 0.05. 
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insulin did not result in a significant increase in adiponectin secretion as seen in 

the WT Subc AT, but was significantly lower that WT Subc AT stimulated with 

insulin (Figure 38 A). Interestingly, insulin stimulation of VAT from both WT and 

TRPC1-/- mice did not result in a significant increase in adiponectin secretion 

(Figure 38 B), however all VAT samples secreted roughly 2-fold more adiponectin 

than Subc AT samples. This could be attributed to the increased endogenous 

levels seen in VAT (Figure 35) and possibly indicate non-stimulated secretion from 

VAT is higher than Subc AT. 
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Figure 38 Distribution of adiponectin isoforms from secretion samples 

Analysis of adiponectin isoforms from Figure 37 assessed by non-denaturing 

PAGE. Optical density of each isoform (HMW (high molecular weight), MMW 

(middle molecular weight), LMW (low molecular weight)) is shown as a 

percentage of total adiponectin for each lane. No significance was 

determined for all samples. 
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 Analysis of adiponectin isoforms upon insulin stimulation showed a slight 

increase in MMW secretion in Subc AT from both WT and TRPC1-/-, however no 

significance was determined. Overall the distribution of adiponectin isoforms was 

similar in all tissue types and animals (Figure 38). This data indicates adipocytes 

with TRPC1 deficiency have a reduced response to insulin–stimulated secretion 

of adiponectin, but it does not affect the overall distribution of isoforms secreted. 

 

Reduced SNARE protein interactions in TRPC1-/- adipose tissue 

Our lab has shown that a functional interaction between SNARE family 

proteins and Ca2+ influx is required for intracellular vesicle fusion (Singh et al., 

2004), thus we investigated whether impairment of adiponectin secretion may be 

due to diminished SNARE interactions due to TRPC1 loss. VAMP-2 is found within 

the plasma membrane of intracellular vesicles and is involved in the docking of the 

vesicles to the plasma membrane by interacting with plasma membrane SNARE 

proteins, such as syntaxin-1 and SNAP 25. To assess whether TRPC1 may be 

involved in SNARE complex formation needed to exocytose adipokine vesicles 

from adipose tissue, co-immunoprecipitation was performed on fresh adipose 

samples. Subc AT and VAT were isolated from WT and TRPC1-/- mice, 

homogenized, quantified, and incubated with insulin (100 nM), SKF (10 mM), or 

Tg (1 mM) for 30 min. In this model, insulin treatment mimics the initial stages of 

adiponectin secretion (as seen in Figure 38) and SKF treatment was used to 

determine whether blocking store-mediated Ca2+ influx channels would reduce 
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insulin-induced SNARE interactions. As shown in Figure 40, plasma membrane 

SNARE components syntaxin-1 and SNAP-25 co-immunoprecipitated with 

VAMP2 in both WT and TRPC1-/- control samples. Upon treatment with insulin, the 

interaction of VAMP-2 with syntaxin-1 and SNAP-25 increased in WT samples, 

however no change was observed in TRPC1-/- samples. Pretreatment with SKF 

prior to insulin did not alter interactions of SNAP-25 with VAMP-2 in WT adipose 

tissue, however it did reduce interactions of VAMP-2 with syntaxin-1. Treatment of 

TRPC1-/- adipose tissue cells with SKF had no effect on interactions of either 

syntaxin-1 or SNAP-25 with VAMP-2. Raising [Ca2+]i and initiating SOCE through 

treatment with Tg increased SNAP-25 and VAMP-2 interactions in WT adipose 

tissue, however it did not result in a change in WT VAMP-2 and syntaxin-1 

interactions. Further, no variation in interactions between VAMP-2 and SNAP-25 

or syntaxin-1 was observed upon treatment with Tg within TRPC1-/- adipose tissue 

indicating depletion of the ER and initiation of SOCE mechanisms is not enough 

to overcome the loss of TRPC1. Together these results indicate insulin stimulated 

SNARE complex formation in adipose tissue involves TRPC1-mediated Ca2+ entry, 

which is needed for exocytosis of adiponectin. 
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Figure 39 Reduced SNARE protein interactions in TRPC1-/- adipose tissue 

Co-immunoprecipitation assay of SNARE complex proteins in combined Subc 

AT and VAT tissue lysates from WT and TRPC1-/- upon stimulation with insulin 

(100 nM), SKF (20 μM), or Tg (2 μM). Western blot analysis was performed using 

anti-Vamp2 antibody and immunoprecipitating with anti-SNAP25 (A,C) and anti-

Syntaxin-1 (B,D) antibodies. Graphs are mean ± SEM, significance: *, p < 0.05; 

**, p < 0.01. 
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Conclusion 

 
Reduced secretion of adiponectin resulting in low serum concentrations is 

a common feature of obesity (Kovacova et al., 2012), whereas low serum leptin 

can be used as an indicator of malnutrition (Amirkalali et al., 2010). TRPC1-/- mice 

present both reduced serum adiponectin and leptin concentrations, however 

TRPC1-/- mice do not display either of these phenotypes. Food consumption and 

weight measurements of TRPC1-/- mice were similar to WT throughout their lifetime 

(Figure 25), however as we saw previously (Figure 21), as TRPC1-/- mice age, their 

volume of adipose deposits increases. This increase in adiposity later in life is 

could be attributed to decreased differentiation as discussed in Chapter III or to 

suppressed adiponectin secretion which lowers overall body metabolism. 

Importantly, equal concentrations of adiponectin and leptin were observed within 

the Subc AT and VAT samples of WT and TRPC1-/- mice, which is contrary to the 

reduced serum concentrations in TRPC1-/- mice (Figure 35). This indicates that 

there is no reduction in adipokine production, but rather the release of adipokines 

is affected in TRPC1-/- mice.  

When challenging both WT and TRPC1-/- mice with a high-fat diet and 

exercise for 12 weeks, we observed an increase in total serum adiponectin 

concentrations in sedentary WT mice feed a high-fat diet and exercised WT mice 

on a normal-chow. It has been well established that exercise increases circulating 

adiponectin concentrations (Kriketos et al., 2004; Lee et al., 2011; Wang et al., 

2015), however the effect of a high-fat diet on serum adiponectin is still debated. 
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Differing studies have shown both increases and decreases in serum adiponectin 

concentrations when mice are fed a high-fat diet (Barnea et al., 2006; Bullen et al., 

2007; Chaolu et al., 2011) and may be reflective of acute versus long-term feeding. 

This discrepancy in results after high-fat feeding may explain why WT mice feed a 

high-fat diet and exercised did not display an increase in adiponectin 

concentrations as compared to sedentary WT mice on a normal-chow diet. 

Importantly, the results of the 12 week study confirmed our previous result that 

sedentary TRPC1-/- mice on a normal-chow diet have significantly decreased 

serum adiponectin concentrations and as we saw in Figure 24,  sedentary TRPC1-

/- mice fed normal-chow did not display a difference in overall body weight or fat 

mass as compared to WT. This indicates reduced serum adiponectin 

concentrations in TRPC1-/- mice is not a result of increased adiposity further 

indicating a dysfunction in adiponectin secretion. It is also notable that the high-fat 

diet had no effect on sedentary TRPC1-/- mice, however the addition of exercise 

did result in differences in both TRPC1-/- mice feed a high-fat and normal-chow 

diet.  

Exercise is thought to increase circulating adiponectin concentrations 

through a multitude of processes including increased expression of adiponectin 

receptors in muscle (Tsuchida et al., 2004; Zeng et al., 2007), increased secretion 

of adiponectin from muscle through PPARy activation (Amin et al., 2010), and 

release of adiponectin from adipose tissue due to exercise induced fat mass loss 

(Wang et al., 2015). The theory that increased serum adiponectin is due to release 
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of adiponectin stores from exercise induced fat mass loss is most likely not 

occurring in our study as the only animal that had reduced weight and fat mass 

was TRPC1-/- mice that were fed a high-fat diet and exercised (Figure 24). If this 

theory was correct, we would expect the increased serum adiponectin 

concentrations in exercised WT mice on normal-chow to be correlated to a 

decrease in fat mass, which was not seen. The more probable explanation would 

be increases in either adiponectin receptors or secretion from muscle, which could 

compensate for the reduced adiponectin secretion from adipose tissue due to 

TRPC1 loss. 

Interestingly, it has been found that the greatest reduction in serum 

adiponectin in obese subjects is from Subc AT and the metabolically active isoform 

HMW (Kovacova et al., 2012). Analysis of serum adiponectin isoforms in our study 

indicates a similar reduction in HMW with the addition of MMW, however internal 

adipose tissue concentrations of adiponectin were similar between WT and 

TRPC1-/-. This reduction in TRPC1-/- serum HMW isoform is most likely due to 

increased utilization by downstream targets, such as muscle and liver, since 

overall abundance is diminished. However, due to the lack of understanding of the 

purpose and distribution of adiponectin isoforms, more investigation is needed. 

The dependence on Ca2+ for the secretion of adipokines has been shown in 

numerous studies (Bogan and Lodish, 1999; El Hachmane et al., 2018; Komai et 

al., 2014; Levy et al., 2000; Sukumar et al., 2012; Ye et al., 2010), however the 

Ca2+ channel(s) involved have not been identified. The most extensive work has 
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shown that cAMP stimulates exocytosis of adiponectin-containing vesicles in a 

Ca2+ dependent and independent manner (Komai et al., 2014), but no channel 

specificity was determined. Within the study by Sukumar et al., alterations in 

adiponectin secretion due to blockage of TRPC1 and TRPC5 in differentiated 3T3-

L1 adipose cells through use of antibodies and siRNA was investigated. Contrary 

to our findings, their results showed an increase in adiponectin in the extracellular 

media indicating increased secretion, however no measurement of changes in 

internal adiponectin production, basal internal concentrations, or agonist mediated 

release were determined. Also, the 3T3-L1 cell line originates from a single clone, 

resulting in a cell line incomparable to the characteristics of primary cell culture 

models (Ruiz-Ojeda et al., 2016). Because of this, we do not feel the 3T3-L1 cell 

line is a precise model of the in vivo state, thus we believe our usage of primary 

cell lines from SVF and ex vivo tissue stimulation is a more accurate 

representation. 

It has been well documented that regulated exocytotic events including the 

fusion of intracellular organelles such as synaptic vesicles, secretory 

vesicles/granules, or lysosomes with the plasma membrane are Ca2+-dependent 

(Reddy et al., 2001; Royle and Murrell-Lagnado, 2003). In particular, TRPC 

channels have been implicated in the GPR40 signaling pathway of glucose-

stimulated insulin secretion in pancreatic beta-cell (Yamada et al., 2016). Within 

secretory pathways, it has been suggested that increases in [Ca2+]i is needed in 

the vicinity of organelles (Barclay et al., 2005; Burgoyne and Clague, 2003), thus 
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our lab began investigation into the recruitment of Ca2+ channels to the site of 

fusion. Our lab previously demonstrated a functionally significant interaction 

between TRPC3 and SNARE proteins involved in intracellular vesicles fusion 

(Singh et al., 2004). Within this study, TRPC3 was observed to colocalize and co-

immunoprecipitate with VAMP-2 in neuronal cells, thus we theorized that this 

phenomenon may not be isolated to TRPC3. Utilizing this theory, we investigated 

whether TRPC1 may be important for SNARE complex formation adipocytes. To 

understand the mechanisms as to how TRPC1 regulates adipokine secretion, we 

stimulated fresh homogenized WT and TRPC1-/- adipose tissue with various 

agents and measured the interactions of VAMP-2 with SNAP-25 and syntaxin-1. 

Insulin stimulation induced the secretion of adiponectin and increased interactions 

of VAMP-2 with both SNAP-25 and syntaxin-1 in WT adipose tissue indicating a 

possible mechanistic action for adiponectin secretion. Treatment of adipocytes 

with Tg has shown both an increase and a decrease in adiponectin secretion in a 

time dependent manner (Torre-Villalvazo et al., 2018), thus we explored whether 

short term treatment with Tg would alter SNARE interactions. As seen in Figure 

40, a 30 min treatment with Tg increased VAMP-2 and SNAP-25 interactions only 

in WT adipose tissue. Interestingly, neither insulin or Tg resulted in changes in 

VAMP-2 interactions with either SNAP-25 and syntaxin-1 within TRPC1-/- adipose 

tissue which indicates a role for TRPC1 in insulin stimulated vesicle fusion. We 

believe these results provide enough evidence to state that insulin stimulated 

TRPC1 mediated Ca2+ influx is involved in fusion of VAMP-2 with SNAP25 and 
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syntaxin1, thus necessary for proper secretion of adipokines. Overall, our results 

provide evidence that TRPC1 not only plays a key role in adipocytes differentiation, 

but is essential for adipokine secretion, and dysfunction in these vital processes 

could lead to obesity and metabolic syndrome. 
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CHAPTER VI 

LOSS OF TRPC1 IS LIKELY NOT THE CAUSE OF 

REDUCED ADIPONECTIN SIGNALING IN SKELETAL MUSCLE 

 

Introduction 

 As discussed in Chapter V, adiponectin is known to regulate lipid 

metabolism and mitochondrial biogenesis in a number of target organs including 

muscle and liver (Achari and Jain, 2017). The effects of adiponectin are mediated 

in these tissues primarily via the action of two plasma membrane bound atypical 

seven-transmembrane domain receptors, named AdipoR1 and AdipoR2 

(Yamauchi et al., 2003) (Figure 41). Both receptors contain an intracellular N-

termini and extracellular C-termini and are significantly homologous with 67% 

amino acid identity (Kadowaki et al., 2006). AdipoR1 is ubiquitously expressed with 

the highest abundance in skeletal muscle, while AdipoR2 is predominantly 

expressed in the liver (Wang et al., 2009; Yamauchi and Kadowaki, 2013). 

Differences between AdipoR1 and AdipoR2 have been identified in binding 

properties (Yamauchi et al., 2003), cell surface  expression (Heiker et al., 2010; 

Keshvari et al., 2017), and temporal signaling profiles (Keshvari and Whitehead, 

2015). Interestingly, a deficiency in AdipoR1, AdipoR2, or both receptors produced
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Figure 40 Adiponectin signaling through AdipoR1 and AdipoR2 

Adiponectin has three known receptors of AdipoR1, AdipoR2, and T-cadherin (T-cad). 

AdipoR1/2 can interact with adaptor protein containing pleckstrin homology domain, 

phosphotyrosine-binding domain, and leucine zipper motif (APPL1). AdipoR1 increases 

Ca2+ influx to activate Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) and 

subsequent downstream kinases. Ca2+/calmodulin-dependent protein kinase (CaMK) and 

AMP-activated protein kinase (AMPK) can increase peroxisome proliferator-activated 

receptor (PPAR) gamma coactivator 1 alpha (PGC-1α) mRNA expression thereby 

increasing mitochondrial biogenesis and fatty acid oxidation. AdipoR1 activates liver kinase 

B1 (LKB1) and AMPK. AdipoR2 is predominantly expressed in the liver and can activate 

PPARα to increase FA oxidation and insulin sensitivity. Reprinted from “The multifaceted 

and controversial immunometabolic actions of adiponectin” by S. Esmaili, 2014, Trends in 

Endocrinology and Metabolism, 25(9), 444-451. Copyright 2014 by Elsevier. Reprinted with 

permission. 
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glucose intolerance in a diet-induced obesity mouse model (Yamauchi et al., 

2007), while muscle-specific AdipoR1-KO mice also display metabolic dysfunction 

(Iwabu et al., 2010). Overexpression of AdipoR1 in rat skeletal muscle has been 

shown to improve insulin resistance and promote glucose uptake (Patel et al., 

2012). Recently, overexpression of AdipoR1 or AdipoR2 in mouse tibialis anterior 

muscle increased adiponectin signaling, however the effects were diminished in 

obese mice despite no reduction in circulating adiponectin levels (Keshvari et al., 

2017). The overexpression of AdipoR1 or AdipoR2 had no effect on circulating 

adiponectin concentrations, however, knockouts of the receptors had differing 

phenotypes. Mice deficient of AdipoR1 had increased fat mass, decreased glucose 

tolerance, and no change in plasma adiponectin concentrations while AdipoR2 

deficient mice were lean, had improved glucose tolerance, and increased plasma 

adiponectin concentrations (Bjursell et al., 2007). Much is still to be understood 

about adiponectin signaling, but evidence suggests the receptors AdipoR1 and 

AdipoR2 may play differing roles.    

Another adiponectin-binding partner is T-cadherin which has been identified 

in C2C12 myoblasts and skeletal muscle. Though T-cadherin has a high binding 

affinity for hexameric and HMW forms (Hug et al., 2004), it is not thought to have 

the same receptor properties as AdipoR1 and AdipoR2 as T-cadherin does not 

contain an intracellular domain. Interestingly, deficiency of T-cadherin in mice 

leads to a major upregulation of circulating adiponectin levels indicating some sort 

of role in adiponectin signaling (Williams et al., 2012). 
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 Bound to both AdipoR1 and AdipoR2 is adaptor protein containing 

pleckstrin homology domain, phosphor-tyrosine domain, and leucine zipper 

domain 1 (APPL1) which is known to positively modulate adiponectin signaling 

(Figure 41). Specifically, suppression of APPL1 reduces adiponectin signaling 

while overexpression increases downstream events (Cheng et al., 2007; Mao et 

al., 2006). The downstream targets of AdipoR1 and AdipoR2 are contrasting and 

result in different outcomes. AdipoR1, through APPL1, is known to promote AMP-

activated protein kinase (AMPK) activation and a subsequent increase in 

expression of master regulator peroxisome proliferator-activated receptor γ 

coactivator-1α (PGC-1α), whereas AdipoR2 mediates activation of peroxisome 

proliferator-activated receptor alpha (PPARα), both of which are involved in fatty 

acid oxidation (Jäger et al., 2007; Yamauchi et al., 2007). Another interesting 

difference between AdipoR1 and AdipoR2, is the involvement in Ca2+ influx in 

AdipoR1 signaling. Iwabu et al., 2010 showed that adiponectin binding to AdipoR1 

induces a Ca2+ influx, which activates Ca2+/calmodulin-dependent protein kinase 

kinase β (CaMKKβ) and subsequent AMPK. Within this study, downregulation of 

AdipoR1 by siRNA reduced the influx of Ca2+ and chelating Ca2+ with EGTA 

reduced phosphorylation of AMPK. Though there is strong evidence to suggest 

that Ca2+ is a component of the adiponectin signaling pathway, no work has been 

done to determine the channel responsible for its influx. 

 It has been demonstrated that SOCE partially contributes to the Ca2+ supply 

necessary for the maintenance of skeletal muscle contraction, however it has been 
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determined that it is not required for the initiation of muscle contraction (Cho et al., 

2017; Stiber et al., 2008). In skeletal muscle, SOCE is modulated much faster than 

non-excitable cells with activation occurring within a second whereas non-

excitable cells require tens of seconds (Nakipova et al., 2017). The fast kinetics of 

skeletal muscle SOCE is likely due to the pre-coupling of STIM1 to ORAI1 

(Dirksen, 2009; Stiber et al., 2008). Very little has been investigated regarding 

TRPC1 involvement in SOCE within skeletal muscle, but TRPCs have been shown 

to have important roles in skeletal muscle in other ways. In particular, TRPC1 has 

been shown to be important for skeletal muscle migration and differentiation (Louis 

et al., 2008; Zanou et al., 2012). Further, skeletal muscles from TRPC1−/− mice 

display smaller myofibre cross-sectional areas resulting in reduced contractional 

force over time (Zanou et al., 2010).  

 Within this study, we investigate the involvement of TRPC1 in adiponectin 

signaling pathway in muscle to determine whether loss of TRPC1 has an effect on 

downstream targets and upstream adiponectin serum concentrations due to failed 

signaling. We report that SOCE mechanisms are exhibited in both C2C12 muscle 

cell line and primary Extensor Digitorum Longus (EDL) muscle. Additionally, 

activation of AdipoR1 with the agonist AdipoRon results in an influx of Ca2+ which 

can be blocked by SKF and 2APB, however this blockage has no effect on the 

downstream targets of AMPK and PGC1α. Further, loss of TRPC1 in EDL muscle 

does not reduce the influx of Ca2+ due to AdipoRon treatment or PGC1α 

expression, however it does reduce the phosphorylation of AMPK. Together this 
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data indicates TRPC1 is most likely not a target channel for adiponectin signaling 

and loss TRPC1 does not affect downstream effects. 
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Results 

 

 Reduced expression of adiponectin targets in TRPC1-/- muscle 

Our first step was to determine whether reduced serum adiponectin 

concentrations in TRPC1-/- mice had an effect on the expression of genes targeted 

by adiponectin in liver and muscle. These included PGC1α, lipid metabolism genes 

of medium-chain acyl-CoA dehydrogenase (ACADM), fatty acid synthase (FASN), 

and acetyl-CoA carboxylase (ACC) along with mitochondrial biogenesis genes 

nuclear-encoded NRF1 (nuclear respiratory factor 1), mitochondrial transcription 

factor A (TFAM), and estrogen-related receptor alpha (ERRα). Interestingly, the 

two tissue types had differing expression levels even though they are both 

adiponectin targets (Figure 42). Liver showed no change in PGC1α or 

mitochondrial biogenesis genes, however TRPC1-/- mice had a significant increase 

in the lipid metabolism genes FASN and ACC as compared to WT mice. 

Conversely, muscle expression levels of TRPC1-/- mice were decreased in PGC1α, 

lipid metabolism ACC and FASN mRNA, and mitochondrial biogenesis NRF1 and  

ERRα. The muscle mRNA profile is similar to those reported due to decreases in 

serum adiponectin concentrations (Civitarese et al., 2006), however more 

investigation is needed to confirm.  
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Figure 41 mRNA expression of lipid metabolism and mitochondrial 
biogenesis genes in liver and muscle 

 

Isolated mRNA from liver and bicep femoris muscle of WT and TRPC1-/- mice 

were measured for the expression of peroxisome proliferator-activated receptor 

γ coactivator 1α (PGC1α), lipid metabolism genes of medium-chain acyl-CoA 

dehydrogenase (ACADM), fatty acid synthase (FASN), and acetyl-CoA 

carboxylase (ACC) along with mitochondrial biogenesis genes nuclear-encoded 

NRF1 (nuclear respiratory factor 1), mitochondrial transcription factor A (TFAM), 

and estrogen-related receptor alpha (ERRα), n= 3. Graphs are mean ± SEM, 

significance: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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Differentiated muscle cell line exhibits SOCE characteristics 

Since muscle mRNA was reduced in TRPC1-/- mice, we investigated 

whether this was a result of reduced adiponectin signaling in muscle due to a lack 

of TRPC1 mediated Ca2+ influx. Before analyzing TRPC1 directly we first utilized 

the C2C12 muscle cell line and differentiated the cells into mature myotubes and 

measured Ca2+ influx and protein expression of SOCE proteins. Calcium imaging 

results indicated a reduction in [Ca2+]i peak upon treatment of Tg (release of ER 

stores) when cells were treated with either (10 uM) SKF or (100 uM) 2-

Aminoethoxydiphenyl borate (2-APB, an inhibitor of IP3 receptors and TRP 

Figure 42 C2C12 myotubes exhibit SOCE properties 

Quantification of Fura-2 trace peaks of [Ca2+]i after addition of 1 μM Tg and 1 mM 

Ca2+ to differentiated C2C12 myotubes treated with either 10 uM SKF or 100 uM 

2APB. Protein expression of SOCE proteins Stim1, TRPC1, and ORAI1 and 

adiponectin receptors AdipoR1 and AdipoR2 in C2C12 myoblasts and myotubes. 

Graphs are mean ± SEM, significance: **, p < 0.01; ***, p < 0.001. 
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channels) (Figure 43). Upon the addition of 1 mM extracellular Ca2+, a reduction in 

Ca2+ influx was observed in both SKF and 2APB treatments. This data confirms 

earlier reports that SOCE is displayed within C2C12 myotubes (Stiber et al., 2008), 

however, the administration of SKF and 2APB adversely affect ER store release. 

To confirm the presence of SOCE in C2C12 myotubes, protein expression of 

SOCE channels including STIM1, TRPC1, and ORAI1 was measured. Expression 

of all three SOCE proteins was highly evident in differentiated C2C12 myotubes, 

however expression of STIM1 and TRPC1 was minimal in undifferentiated C2C12 

myoblasts (Figure 43). Together this data indicates mature C2C12 myotubes 

exhibit SOCE characteristics and the STIM1, ORAI1, and TRPC1 complex may be 

involved. 

 

Blockage of SOCE reduces AdipoRon Ca2+ influx, 

but not downstream targets 

 To test whether SOCE was involved in adiponectin signaling pathway in 

muscle, we first confirmed the expression of the adiponectin receptors AdipoR1 

and AdipoR2 in C2C12 cells. As shown, neither receptor is expressed in C2C12 

myoblasts and only the AdipoR1 receptor is expressed in mature C2C12 myotubes 

(Figure 43). Utilizing the synthetic adiponectin receptor agonist AdipoRon, we 

measured the Ca2+ influx when SOCE channels are blocked. Administration of (50 

uM) AdipoRon resulted in an immediate influx of Ca2+ in C2C12 myotubes which  
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Figure 43 Blockage of SOCE reduces AdipoRon Ca2+ influx, but not 
downstream targets in C2C12 myotubes 

(A) Quantification of Fura-2 trace peaks of [Ca2+]i after addition of 50 uM 

AdipoRon to differentiated C2C12 myotubes treated with either 10 uM SKF or 

100 uM 2APB in a Ca2+ buffer. (B) Western blot quantification of ratio of p-

AMPK to AMPK after 5 min treatment with 50 uM AdipoRon with representative 

blot in (D) n=7-13. (C) Relative mRNA expression of PGC1α after 90 min 

treatment with 50 uM AdipoRon quantified by RT-PCR, n=6. Graphs are mean 

± SEM, significance: *, p < 0.05, **, p < 0.01; ***, p < 0.001 
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was completely diminished with treatment of (10 uM) SKF or (100 uM) 2APB 

(Figure 44 A). We next tested whether this reduction in Ca2+ influx due to SKF and 

2APB would alter the downstream signaling targets of AdipoR1 of AMPK and 

PGC1α. C2C12 cells were pretreated with (10 uM) SKF and (100 uM) 2APB for 10 

min and then treated with (50 uM) AdipoRon for an additional 5 min and activating 

phosphorylation of AMPK was measured (Figure 44 B, D). As shown, AdipoRon 

induced a significant increase in AMPK phosphorylation, however treatment with 

SKF or 2APB had no effect. AdipoRon is known to induce increased expression of 

PGC1α mRNA after 90 min (Okada-Iwabu et al., 2013), thus we quantified PGC1α 

mRNA expression after pretreatment with (10 uM) SKF and (100 uM) 2APB for 10 

min. Results are inconclusive as treatment with SKF and 2APB on PGC1α mRNA 

is neither significantly increased from control or decreased from AdipoRon 

treatment (Figure 44). Overall, these data suggest that adiponectin receptor 

activation results in SOCE like Ca2+ influx, however blockage of SOCE is not 

detrimental to the progression of the signaling cascade. 

 

SOCE not diminished in primary muscle due to loss of TRPC1  

Even though the downstream targets of AdipoR1 were not affected by 

blockage of SOCE in C2C12 myotubes, we were still interested in whether TRPC1 

may be involved in adiponectin signaling in either a SOCE or SOCE independent 

manner. First, WT EDL muscle fibers were isolated and individually cultured to 

activate muscle satellite cells. Upon confluence, EDL myoblasts will naturally 
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differentiate into myotubes with twitching observed around day 7. We first 

established whether primary WT EDL muscle cultures exhibit the same SOCE 

mechanisms as C2C12 cells by blocking SOCE channels with SKF or 2APB. As 

seen in Figure 45 A, WT EDL efflux relatively the same from ER stores upon 

treatment with Tg, however treatment with either (10 uM) SKF or (100 uM) 2APB 

reduced the influx of Ca2+ upon addition of 1 mM Ca2+. We next tested TRPC1-/- 

Figure 44 WT EDL muscle exhibits SOCE mediated Ca2+ influx which is 
not diminished by loss of TRPC1 

EDL muscle was isolated from WT and TRPC1-/-, cultured, and differentiated 

into mature EDL myotubes as described in Methods. (A) Quantification of Fura-

2 trace peaks of [Ca2+]i after addition of 1 μM Tg and 1 mM Ca2+ to WT EDL 

myotubes treated with either 10 uM SKF or 100 uM 2APB. (B) Quantification 

of Fura-2 trace peaks of [Ca2+]i after addition of 1 μM Tg and 1 mM Ca2+ to WT 

and TRPC1-/- EDL myotubes treated with either 10 uM SKF or 100 uM 2APB. 

Graphs are mean ± SEM, significance: **, p < 0.01. 

 

A B 
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EDL in the same manner. As compared to WT EDL, TRPC1-/- displayed no 

significant change in either ER store efflux due to Tg or Ca2+ influx due to addition 

of 1 mM Ca2+ to the extracellular solution (Figure 45 B). Together this indicates 

that EDL muscle do exhibit SOCE mechanisms, however loss of TRPC1 does not 

affect it.  

 

Initial influx of Ca2+ due to treatment with AdipoRon 

is not TRPC1 dependent 

 To determine the involvement of TRPC1 in adiponectin signaling, we first 

confirmed the expression of AdipoR1 in both WT and TRPC1-/- EDL. Neither WT 

or TRPC1-/- EDL express AdipoR2 and no difference of AdipoR1 expression was 

observed between WT and TRPC1-/- EDL (Figure 46, B). The next step was to 

measure the response of WT EDL to AdipoRon when SOCE mechanisms are 

blocked. AdipoRon administration resulted in a significant increase in Ca2+ influx 

which was blocked when treated with (10 uM) SKF or (100 uM) 2APB (Figure 46 

A). Comparison of Ca2+ influx upon treatment of AdipoRon resulted in no significant 

difference between WT and TRPC1-/- EDL (Figure 46 C). So far, this data indicates 

that treatment with the adiponectin receptor AdipoRon does not initiate a Ca2+ 

influx via TRPC1.  



130 
 

 

Loss of TRPC1 in EDL impairs the ability of AdipoRon to initiate 

downstream targets of adiponectin signaling 

The final step to determine involvement of TRPC1 in adiponectin signaling 

was to monitor the effects of AdipoRon on downstream targets of AMPK and 

PGC1α	in TRPC1-/- EDL. Addition of AdipoRon to WT EDL resulted in a more than 

2 fold increase in phosphorylation of AMPK after 5 minutes (Figure 47 A, B). When 

the same treatment was applied to TRPC1-/- EDL, there was a slight increase in 

Figure 45 AdipoRon initiated Ca2+ influx is not TRPC1 dependent 

(A) Quantification of Fura-2 trace peaks of [Ca2+]i after addition of 50 uM 

AdipoRon to differentiated WT EDL myotubes treated with either 10 uM SKF or 

100 uM 2APB in a Ca2+ buffer. (B) Protein expression of AdipoR1 and AdipoR2 

in WT and TRPC1-/- EDL. (B) Quantification of Fura-2 trace peaks of [Ca2+]i 

after addition of 50 uM AdipoRon to differentiated WT and TRPC1-/- EDL 

myotubes in a Ca2+ buffer. Graphs are mean ± SEM, significance: ***, p < 

0.001. 
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phosphorylation of AMPK, however it was not enough to be significant. Moreover, 

comparison of TRPC1-/- to WT indicated loss of TRPC1 significantly reduced 

phosphorylation of AMPK initiated by AdipoRon treatment (Figure 47 A, B). 

Expression changes of PGC1α	mRNA were next examined and found that loss of 

TRPC1 in EDL myotubes reduced the ability of AdipoRon signaling. Significant 

increases in PGC1α mRNA observed in WT EDL upon AdipoRon treatment were 

not observed in TRPC1-/- EDL (Figure 47 C). The combined results of activation of 

p-AMPK and PGC1α indicates that TRPC1 may be indirectly involved with in the 

function of adiponectin signaling. 
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Figure 46 Loss of TRPC1 in EDL impairs the ability of AdipoRon to 
activate AMPK 

(B) Western blot quantification of ratio of p-AMPK to AMPK in WT and TRPC1-

/- EDL after 5 min treatment with 50 uM AdipoRon n=6, representative blot in 

(A). (C) Relative mRNA expression of PGC1α in WT and TRPC1-/- after 90 min 

treatment with 50 uM AdipoRon quantified by RT-PCR n=6. Graphs are mean 

± SEM, significance: *, p < 0.05, **, p < 0.01; ****, p < 0.0001. 
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Conclusion 

 Within this study our aim was to extend the understanding of Ca2+ 

involvement, specifically SOCE, in adiponectin signaling to determine whether 

decreases in PGC1α expression and other targets in TRPC1-/- muscle are a result 

of decreased signaling capabilities. We employed the use of both the immortalized 

cell line C2C12 and primary EDL skeletal muscle to determine the role of SOCE 

activation due to AdipoR1 activation. Here we are the first to show that AdipoRon 

initiates Ca2+ influx that can be blocked by SKF and 2APB, however these 

treatments do not affect downstream targets. Finally, we were able to determine 

that loss of TRPC1 does not inhibit the influx of Ca2+ due to AdipoRon, but does 

diminish AMPK phosphorylation. Collectively, these results identify SOCE 

involvement in adiponectin, but TRPC1 may not be playing a role.  

 Increased hepatic lipogenesis is a common feature of obesity. Elevated 

expression of both FASN and ACC have been correlated to obesity (Beaven et al., 

2013; Dentin et al., 2006), with the enzyme FASN considered a determinant of 

maximal tissue capacity of lipid storage (Postic and Girard, 2008) and blockage of 

ACC has been shown to reduce excess liver lipid accumulation in mice on a high-

fat diet (Savage et al., 2006). Within our model, the increased expression of FASN 

and ACC observed in TRPC1-/- liver indicates an increase in lipogenesis and could 

be indicative of an obese phenotype. Multiple theories have surfaced as to why 

increased liver lipogenesis is observed in an obese state. These include the 

absence of functional adipocytes resulting in an increase of fatty acids being 
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pushed to the liver (Yki-Järvinen, 2005) and low serum adiponectin concentrations 

negatively affecting liver functionality (Viganò et al., 2011). Further investigation is 

needed to determine the cause of reduced FASN and ACC in TRPC1-/- which could 

be due to dysfunctional adipocytes or liver. 

Muscle is similarly affected by the onset of obesity. Accumulation of lipid in 

skeletal muscle due to high levels of adipose tissue lipolysis or impaired blood lipid 

clearance by adipose tissue is known to result in insulin resistance and 

hyperglycemia in skeletal muscle (Stern et al., 2016). Adiponectin is known to 

offset the negative effects of obesity by encouraging fatty acid oxidation in skeletal 

muscle thereby decreasing intramuscular lipid accumulation and improving insulin 

sensitivity (Civitarese et al., 2006; Fruebis et al., 2001; Yamauchi et al., 2002). 

Similar to adiponectin KO mice (Civitarese et al., 2006), we observed a decrease 

in PGC1α, lipid metabolism, and mitochondrial biogenesis genes in TRPC1-/- 

muscle. This lead us to investigate whether this phenomenon is due to decreased 

circulating adiponectin concentration(s) or decreased adiponectin signaling. 

The small molecule agonist AdipoRon was developed by Okada-Iwabu et 

al. in 2013 which is orally active and binds and activates both AdipoR1 and 

AdipoR2. AdipoRon is known to increase AMPK phosphorylation, PGC1α, and 

mitochondrial content making it a useful tool in studying adiponectin signaling. 

Interestingly, knockdown of AdipoR1/2 or blockage of Ca2+ by EGTA diminishes 

the benefits of AdipoRon in muscle (Okada-Iwabu et al., 2013). Within our study, 

the combination of SKF or 2APB with AdipoRon in C2C12 cells completely 
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abolished the immediate influx of Ca2+ seen in the AdipoRon only cells. However, 

blockage of SOCE currents had no effect on p-AMPK or PGC1α most likely 

indicating a Ca2+ independent mechanism within adiponectin signaling. As seen in 

Figure 41, liver kinase B1 (LKB1) is also known to phosphorylate AMPK and in our 

model, could be compensating for the lack of Ca2+ normally seen. More 

investigation is needed to determine whether LKB1 is compensating for blocked 

Ca2+, however we can determine from our data that SOCE is a partial but not a 

mandatory component of AdipoR1 signaling. 

Examination of WT EDL produced similar results to the C2C12 myotubes 

where SOCE was initiated by treatment with AdipoRon and blocked by SKF and 

2APB. When comparing AdipoRon induced Ca2+ influx in TRPC1-/- to WT EDL, we 

saw no change due to the loss of TRPC1. Importantly, expression in AdipoR1 in 

WT and TRPC1-/- EDL muscle was similar indicating increased or decreased 

binding of AdipoRon to AdipoR1 due to receptor expression changes had no effect 

on the amplitude of Ca2+ influx. This is relevant as muscle and hepatic protein 

levels of AdipoR1 are significantly reduced in obesity (Lustig et al., 2014), further 

indicating that reduced expression of downstream targets of adiponectin signaling 

in TRPC1-/- muscle is due to substrate loss. Interestingly, though there is no 

change in AdipoRon mediated Ca2+ influx due to TRPC1 loss, we did observe 

reduced AMPK phosphorylation. This reduction in AMPK phosphorylation may still 

be linked to loss of TRPC1, however through a different mechanism. Calcium entry 

via TRPCs has been found to be necessary for thrombin-induced nuclear factor 
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kappa-light-chain-enhancer of activated B cells (NF-κB) through AMPK 

phosphorylation in endothelial cells (Bair et al., 2009) which may be relevant to 

muscle function. Whether TRPC1 is linked to the reduced phosphorylation of 

AMPK in our EDL muscle, does not explain how loss of TRPC1 failed to reduce or 

increase PGC1α expression significantly. The evidence of this study suggests that 

TRPC1 does not have a role in AdipoRon mediated SOCE and TRPC1 loss in 

muscle is most likely not the cause of reduced PGC1α, lipid metabolism and 

mitochondrial biogenesis mRNA expression. 
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CHAPTER VII 

DISCUSSION 

 

The role of Ca2+ homeostasis in adipose tissue biology has garnered 

increased attention in recent years due to its connection with metabolic disorders 

(Arruda and Hotamisligil, 2015). The purpose of this dissertation is to expand this 

knowledge base with hopes that the information can someday be used for 

therapeutic interventions. The evidence provided highlights a central role for 

TRPC1 in regulating the Ca2+ dependent processes of differentiation, autophagy, 

and adipokine secretion in adipose tissue.  

TRPC1 and SOCE mechanisms in adipose tissue have recently been 

identified in the 3T3-L1 cell line (El Hachmane et al., 2018; Sukumar et al., 

2012), however no work has been done to confirm this in vivo. The work provided 

here is the first to identify TRPC1 dependent SOCE in primary cell cultures from 

isolated mouse Subc AT and VAT SVF. In both tissue types, it was identified that 

SOCE was present in SVF with TRPC1-like currents and that upon 

differentiation, these currents were amplified with concurrent increases in STIM1 

and TRPC1 protein expression. Genetic ablation of TRPC1 reduced SOCE in 

both Subc AT and VAT SVF and differentiated adipocytes further confirming its 
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role in SOCE. In differentiated VAT, an ORAI1-like current was observed, 

however there was no change in ORAI1 protein expression and ORAI1 was not 

able to compensate for the loss of TRPC1, suggesting that the major Ca2+ entry 

channel in adipocytes is mediated via TRPC1. 

By focusing on adipose tissue function, we’ve identified multiple metabolic 

regulatory functions to be dependent on TRPC1-mediated Ca2+ influx. Herein, it 

was shown that loss of TRPC1 impaired adipocyte differentiation which seems to 

be a result of inhibited PPARy expression. Further, TRPC1-/- animals fed a high-

fat diet and exercised exhibited a reduction in autophagy with a concurrent 

increase in apoptosis. Together these phenomena may be linked as it has been 

shown that a reduction in autophagy impairs adipogenesis (Baerga et al., 2009; 

Singh et al., 2009), however these studies suggest that later transcriptional 

events such as the upregulation of FABP4 and perilipin to be more severely 

impacted by decreased autophagy rather than PPARy in early adipogenesis. 

Overall the data suggests that TRPC1-/- mice have impaired adipogenesis which 

in the long-term may result in hypertrophic obesity, however if the animals are 

stressed through diet and exercise, adipogenesis is further impaired by TRPC1-

mediated reduction in autophagy resulting in apoptosis and fat mass loss. 

The other portion of this dissertation which contributes to the metabolic 

dysfunction due to TRPC1 loss in adipose tissue is the investigation of 

adiponectin secretion. Ex-vivo experimentation of insulin-stimulated adiponectin 

secretion from TRPC1-/- adipose tissue revealed that decreased secretion is 
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likely due to the lack of TRPC1-mediated Ca2+ influx necessary for SNARE 

complex formation and not reduced internal adipose tissue adiponectin stores. 

Further, analysis of serum adiponectin revealed TRPC1-/- mice to have reduced 

concentrations when fed either a high-fat or normal-fat diet as compared to WT. 

Additionally, these same mice had no change in fat mass, blood glucose, insulin, 

or insulin resistance as calculated by HOMA IR. This is contrary to a multitude of 

studies that show a correlation between reduced serum adiponectin 

concentrations and increased fat mass, blood glucose, insulin, and insulin 

resistance typically observed in obesity (Abdelgadir et al., 2013; Berg et al., 

2001; Kou et al., 2018). Together, this data further indicates a non-obesity 

induced reduction in serum adiponectin. Exercise was able to recover serum 

adiponectin concentrations in TRPC1-/- fed either a high-fat or normal-chow diet. 

This may be due to the ability of exercise to increase adiponectin secretion from 

muscle through PPARy activation (Amin et al., 2010) and increased AdipoR1 

expression (Tsuchida et al., 2004; Zeng et al., 2007) thereby bypassing 

dysfunctional adiponectin secretion from adipose tissue. 

Current modeling of adiponectin signaling indicates a direct linkage 

between AdipoR1 activation, Ca2+ influx, and AMPK phosphorylation however 

data from C2C12 cells with blocked SOCE and TRPC1-/- EDL suggests a 

different mechanism. In TRPC1-/- EDL, AdipoRon initiated Ca2+ influx was 

unchanged, however a reduction in AMPK phosphorylation was observed along 

with an inconclusive PGC1α mRNA change. This may indicate an indirect 
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reduction in stimulation or increased inhibition of AMPK due to TRPC1 loss that 

needs to be further researched. This, however, is likely not the cause of the 

significant reduction in PGC1α, FASN, and ACC observed in TRPC1-/- muscle 

and instead is the result of reduced serum adiponectin concentrations.  

In closing, this dissertation efficiently describes the role of TRPC1 in 

modulating critical Ca2+ mediated processes within adipose tissue which in turn 

effects whole body metabolic homeostasis.  
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