
University of North Dakota
UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2018

Using Citizen Scientists To Inform Machine
Learning Algorithms To Automate The Detection
Of Species In Ecological Imagery
Marshall Mattingly

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact
zeineb.yousif@library.und.edu.

Recommended Citation
Mattingly, Marshall, "Using Citizen Scientists To Inform Machine Learning Algorithms To Automate The Detection Of Species In
Ecological Imagery" (2018). Theses and Dissertations. 2281.
https://commons.und.edu/theses/2281

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2281?utm_source=commons.und.edu%2Ftheses%2F2281&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu


Using Citizen Scientists to Inform Machine Learning Algorithms to
Automate the Detection of Species in Ecological Imagery

by

Marshall Paul Mattingly III
Bachelor of Science, University of North Dakota, 2015

A thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota
May
2018

mailto:marshall.p.mattingly@und.edu
http://www.und.edu/




PERMISSION

Title Using Citizen Scientists to Inform Machine Learning Algorithms to
Automate the Detection of Species in Ecological Imagery

Department Department of Computer Science

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a
graduate degree from the University of North Dakota, I agree that the library of
this University shall make it freely available for inspection. I further agree that
permission for extensive copying for scholarly purposes may be granted by the
professor who supervised my thesis work or, in his absence, by the Chairperson
of the department or the dean of the School of Graduate Studies. It is
understood that any copying or publication or other use of this thesis or part
thereof for financial gain shall not be allowed without my written permission. It
is also understood that due recognition shall be given to me and to the
University of North Dakota in any scholarly use which may be made of any
material in my thesis.

Marshall Paul
Mattingly III
May 2018

iii

http://engineering.und.edu/computer-science/
http://www.und.edu/
http://www.und.edu/


CONTENTS

List of Figures v

List of Tables vi

Acknowledgements vii

Abstract viii

1 Introduction 1

2 Related Work 5

I Citizen Science Projects . . . . . . . . . . . . . . . . . . . . . . . . 5

II Object Detection Techniques . . . . . . . . . . . . . . . . . . . . . . 6

III Object Detection in Wildlife Ecology . . . . . . . . . . . . . . . . . 9

3 Wildlife@Home Image Dataset 11

I Data Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II Wildlife@Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II.I Ecological Importance . . . . . . . . . . . . . . . . . . . . . 13

II.II User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II.III Storing the Data . . . . . . . . . . . . . . . . . . . . . . . . 15

III Technical Issues and Corrections . . . . . . . . . . . . . . . . . . . . 15

4 Methodology 17

I Database Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

II Image Review Interface . . . . . . . . . . . . . . . . . . . . . . . . . 18

III Generating Training Data . . . . . . . . . . . . . . . . . . . . . . . 18

IV High Performance CNN Training . . . . . . . . . . . . . . . . . . . 21

V Matching Observations . . . . . . . . . . . . . . . . . . . . . . . . . 21

VI Extracting Matched Observations . . . . . . . . . . . . . . . . . . . 22

5 Results 24

I Comparing Citizen Scientist vs Experts . . . . . . . . . . . . . . . . 24

II Comparing individual altitudes vs one large dataset . . . . . . . . . 24

II.I 75m Individual Datasets . . . . . . . . . . . . . . . . . . . . 26

II.II 100m Individual Datasets . . . . . . . . . . . . . . . . . . . 27

II.III 120m Individual Datasets . . . . . . . . . . . . . . . . . . . 27

II.IV General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 27

III High Performance Scalability . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusion 33

I Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Literature Cited 36

iv



LIST OF FIGURES

Figure Page

1 Visual representation of the architecture used for the CNNs in this
paper for comparison with CNNs ran over the aggregate dataset
combining altitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 An example of the UAS takeoff procedure used by the Trimple UX5
and an example flight path that is flown using transects. . . . . . . 11

3 The graphical user interface (GUI) of the web portal for identifying
objects in ecological imagery for the Wildlife@Home projects. . . . 14

4 An example of the blue-shift error in an image from the 2015 dataset
compared against its normalized image and an image from the 2016
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 UML database diagram, based on the UML class diagram, showing
the important entities within the database for storage of the mosaics
and user observations relevant to this research. . . . . . . . . . . . . 23

6 The average percent error in the 75m altitude individual datasets
for expert and matched observations. . . . . . . . . . . . . . . . . . 29

7 The average percent error in the 100m altitude individual datasets
for expert and matched observations. . . . . . . . . . . . . . . . . . 30

8 The average percent error in the 120m altitude individual datasets
for expert and matched observations. . . . . . . . . . . . . . . . . . 31

9 The running time of a single iteration of the CNN training and
testing program vs the number of cores utilized. . . . . . . . . . . . 32

v



LIST OF TABLES

Table Page

1 Description of the architecture used for the CNNs in this research for

comparison with CNNs run over the aggregate dataset combining altitudes. 8

2 IDX file format description, showing the byte-by-byte values at each

location, which are always encoded with most-significant byte (MSB) first. 19

3 Custom binary format (BIN) file format description. . . . . . . . . . . . 20

4 Comma separated value (CSV) file format used for validating the counts

output by the CNNs against expert counts from the same images. . . . . 20

5 The number of expert observations within mosaics that are able to be

matched, using the corner-point matching algorithm, with at least one

matched user observation with the aggregate observation of two citizen

scientists, extracted using the overlap algorithm. . . . . . . . . . . . . . 25

6 Results of the CNN feedback loop for the aggregate data and each alti-

tude with a 3:1 background to target object ratio. . . . . . . . . . . . . 26

vi



ACKNOWLEDGEMENTS

Thank you to my advisor, Dr. Travis Desell, for encouraging me to publish,

giving me creative freedom, and guiding me through my research.

Thank you to Dr. Susan Ellis-Felege for helping me understand the ecological

importance of this work.

I appreciate the support and dedication of the Wildlife@Home citizen

scientists, and Jennifer Booth specifically, who have spent significant amounts of

time reviewing images and classifying objects within them.

Funding was provided by North Dakota EPSCoR, the Hudson Bay Project,

Central and Mississippi Flyways, North Dakota Department of Commerce, and

the UND College of Arts and Sciences. UAS data collection supported by the

Hudson Bay Project. Permissions and in-kind assistance were provided by Parks

Canada, Wapusk National Park Management Board, and the community of

Churchill, Manitoba.

This work has been partially supported by the National Science Foundation

under Grant Number 1319700. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

Special thanks to M. P. Corcoran for assistance in flight operations.

vii



Dedicated to my wife, Shaina, who encourages me to chase my dreams.
Her unconditional support drives me every day.



ABSTRACT

Modern data collection techniques used by ecologists has created a deluge of

data that is becoming increasingly difficult to store, filter, and analyze in an

efficient and timely manner. In just two summers, over 65,000 unmanned aerial

system (UAS) images were collected, comprising the several terabytes (TB) of

data that was reviewed by citizen scientists to generate inputs for machine

learning algorithms. Uncontrolled conditions and the small size of target species

relative to the background further increase the difficulty of manually cataloging

the images. To assist with locating and identifying snow geese in the UAS

images, a citizen science web portal was created as part of Wildlife@Home. It is

demonstrated that aggregate citizen scientist observations are similar in quality

to observations made by trained experts and can be used to train convolutional

neural networks (CNN) to automate the detection of species in the imagery.

Using a dataset comprising of the aggregate observations produces consistently

better results than datasets consisting of observations from a single altitude,

indicating that more numerous but slightly variable observations is preferable to

more consistent but less numerous observations. The framework developed

requires system administrators to manually run scripts to populate the database

with new images; however, this framework can be extended to allow researchers

to create their own projects, upload new images, and download data for CNN

training.
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CHAPTER 1

INTRODUCTION

Ecologists today are able to collect significant amounts of data, especially

through the use of unmanned aerial systems (UAS). From 2007-2010, there were

a handful of UAS projects related to evironmental sciences, ecology, and wildlife;

now more than 5% of all publications in top journals related to those fields utlize

UAS [1]. Storing, filtering, and analyzing this deluge of data in an efficient and

timely manner is becoming increasingly difficult. In just two summers of UAS

data collection, over 65,000 UAS images comprising over 3 TB (terabytes) of

imagery has been generated. Manually examining this vast quantity of data for

ecological species and events is a laborious task which must be overcome before

any meaningful scientific conclusions can be drawn.

To aid wildlife ecologists in the cataloging of ecological video and images, an

online hub called Wildlife@Home 1 was created as part of the Citizen Science

Grid [2] at the University of North Dakota (UND). Collectively, the

Wildlife@Home projects comprise more than 100,000 hours of video footage from

nest cameras, 1,800,000 images from trail cameras, and 65,000 images from UAS

flights taken at three different altitude: 75m, 100m, and 120m. The volunteers

who review the images and video on Wildelife@Home are known as citizen

scientist.

Placing a project on Wildlife@Home allows exponentially more observations

to be made than in traditional small lab setting. It must first be shown that

citizen scientists can make reliable ecological observations that can be used to

draw sound scientific conclusions, even though only 1 out of 49 users in a

voluntary survey on Wildlife@Home identified as having a wildlife biology or

1https://csgrid.org/csg/wildlife/
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ecology background. Prior work has shown that citizen scientists on

Wildlife@Home produce actionable results for both video footage [3, 4] and

imagery [5, 6]. The end goal of the manual object detection is to use the

observations, primarily from citizen scientists, as the inputs to image and video

classification algorithms that can detect a majority of the targets in future

imagery and video, respectively. This paper is focused on the detection of lesser

snow geese (Anser caerulescens caerulescens), hereafter called snow geese

(singular: snow goose), in UAS imagery from the Hudson Bay area of Canada,

and further discussion of object detection will be on that specific topic unless

otherwise specified. The snow geese come in two phases: white and blue, with a

respective population proportion ratio of 2:1.

Automating the detection of snow geese from the same general geographic

location has significant challenges even with a robust, representative set of

manually detected observations. The first significant challenge is the relatively

small area (18×18 pixels) of the snow geese when compared against the size of a

typical UAS image (844×755 pixels to 2000×3000 pixels). This relatively small

target object size is further exacerbated by the relative infrequency of snow geese

within the imagery, with less than 1% of the imagery, by area, comprising of

snow geese. The second major challenge is cryptic coloration, whereby the snow

geese blend into or appear similar to other objects in the background. White

phase snow geese appear remarkably similar to rocks within the landscape, and

blue phase snow geese naturally look similar to the landscape.

The image classification technique used on in this research is convolutional

neural networks (CNNs), which use manually labeled input data (generally of

the same dimensions) to train a set of weights that can be used to detect objects

of each target label in other images. CNNs have proven to be an effective,

accurate method for image classification in other projects, such as the Modified

National Institute of Standards and Technology (MNIST) handwritten digit
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dataset [7–11]. CNNs were choses as the image classification technique for use on

this project due to familiarity of the technique and the demonstrated accuracy of

CNNs on other image classification projects.

A primary goal of this project is to identify, document, and work toward

creating a general interface and workflow that can be utilized to create a citizen

science web portal. The web portal should be able to be setup by a wildlife

ecologist (or other researcher) on their own with a little help from their technical

support team. This generalizable interface with support for templates, multiple

database backends, and simple spawning of CNN tasks has not been fully

developed. The requirements have been explored, Unified Modeling Language

(UML) diagrams have been created to show some aspects of the system, and

many portions of the system have been coded, including the scripts and web

pages to ingest new images and produce training data. The current image review

interface code is tightly coupled to Wildlife@Home and lacks an

all-encompassing project management interface.

CNNs are only capable of automating object detection within images if the

input data is truly representative of the target objects and have an abundance of

examples from which to train. Considering the vast amount of time it takes a

single person to go through millions of images, a web interface was designed to

allow multiple people to go through the same images, labeling all objects within

the image [5]. However, there is no guarantee that the objects detected by the

citizen scientists are representative of the target objects. To verify that the

citizen scientists inputs are representative enough to be used in CNN training,

the observations of citizen scientist were compared against observations made by

a trained expert. It was shown that aggregate citizen scientist observations,

known as matched observations, are extremely similar to trained expert

observations [5]. This research verifies that the prior results hold true with a

much larger dataset.
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Prior work on the UAS image dataset aggregated the different image altitudes

– 75m, 100m, and 120m – into a single dataset. CNNs were trained and tested

using images from all altitudes, instead of looking at each altitude

individually [6]. To expand upon the prior work, individual CNNs were trained

and tested for each separate altitude, with the datasets only coming from the

respective altitudes. Comparing the more precise data from each individual

altitude against the more abundant aggregate dataset can lead to a discussion of

which is more important for CNNs used in this research.

This paper is organized into the following sections: Chapter 2 introduces the

background knowledge required for understanding this paper and presents

related works that focus on citizen science and automated object detection

within wildlife ecology. Chapter 3 details how the UAS data were collected, how

the Wildlife@Home interface allows citizen scientists to label objects within the

images, and the specific collections of data used for training the CNNs.

Chapter 4 details the methodology describing the components of the image

review interface and algorithms used to extract objects from the observations

made by citizen scientists. Chapter 5 compares the expert and citizen scientists

observations to examine the viability of citizen scientist to generate data that is

good enough for input into the CNNs; compares a technique of using individual

CNNs for each altitude (75m, 100m, and 120m) instead of an aggregate CNN

that merges the altitudes into a single dataset, such as in prior work; and

examines the scalability of the CNN code used in this and prior work. Finally,

Chapter 6 refines the results of this paper and discusses future work from this

research.
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CHAPTER 2

RELATED WORK

Citizen Science Projects

Citizen science is a modern technique whereby the general population can help

scientists process and catalog data. Since 2011, there has been a surge in the

number of citizen science projects, such as PlanetHunters [12], which allows

citizen scientists to identify planet candidates from the NASA Kepler public

release data. However, there are few projects using citizen science within avian

ecology. NestWatch [13] was a Cornell project that opportunistically captures a

variety of cavity-nesting species from video cameras installed in bird houses.

CamClickr [14] was used to catalog nesting behavior in over 600,000 images, and

was incorporated into a university biology curriculum to teach students how to

accurately identify objects in images while being aware of potential observer

biases [14]. eBird [15] provided spatio-temporal information about bird

distribution and abundance by allowing users to upload user-taken images of

bird observations through handheld devices. Data from eBird was compared

against formal surveys, and showed that the opportunistic data gathered by

citizen scientists differed by only 0.4% / year [16], allowing for citizen scientist

inputs to inform avian ecological finding.

In fact, the surge of citizen science projects is large enough that a platform,

called Zooniverse [17], was developed to allow for the rapid creation of citizen

science projects. There were over 20 citizen science projects hosted by Zooniverse

at the start of 2014, which has grown to 50 active citizen science projects in

2018. The best performing projects on Zooniverse are well-established projects

relating to astronomy [18]. A couple of projects hosted on Zooniverse include
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GalaxyZoo [19, 20], which allows citizen scientists to classify galaxies in images

from the Sloan Digital Sky Survey [21], and Snapshot Serengeti [22], which allows

citizen scientists to identify objects from camera traps in the Serengeti National

Park. This research is differentiated from Zooniverse by the specificity of input;

Zooniverse allows for basic questions about an image to be answered, such as the

total number of a target species in the image, while this research allows boxes to

be drawn over the target species in the image. This specificity is what allows the

CNNs to be trained, while the ability to rapidly get a project into the hands of

citizen scientists on Zooniverse is useful for getting aggregate answers quickly.

A major problem with citizen science is incentivizing the citizen scientists to

provide accurate observations to ensure field scientists can draw correct

conclusions. Gamification [23] is a technique that can be used to encourage

citizen scientists to provide accurate observations. Gamification gives a small

amount of points to citizen scientists for making observations, but a large

amount of points when those observations can be matched to an expert

observation (or several other citizen scientists). After the implementation of

gamification on the UAS images project on Wildlife@Home, there were four (4)

citizen scientists who completed over four (4) full mosaics, when compared

against zero (0) citizen scientists who had completed even a single full mosaic.

Object Detection Techniques

CNNs are widely used for image classification. CNNs have a set of weights and

biases which are used, along with the CNN architecture, to generate outputs,

such as classifications of an image. Finding the best CNN architecture can be

challenging, as some CNN architectures are more suited to a task than others.

After an architecture has been decided, individual weights get trained using

input classifications.
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The architecture of CNNs typically consist of many “hidden” layers stacked

between a single input layer and a single output layer, such that the output

values of one hidden layer are the input values of the next layer in the stack until

the final output layer is reached. Each hidden layer is comprised of feature maps

and filters which process the data. There are several types of hidden layers, some

of which contain weights associated with each feature map, while others contain

no weights.

It has been shown that CNNs can be used to classify objects within the

aggregate UAS imagery dataset [24]. The exact same CNN code and

architecture is being used to train and run the CNNs on the different altitude

datasets within this research to compare against the aggregate altitude dataset.

The CNN architecture for this research is shown in Fig. 1 and Table 1.

Figure 1: Visual representation of the architecture used for the CNNs in this paper
for comparison with CNNs ran over the aggregate dataset combining altitudes.

Object detection in both video and still imagery is a rapidly advancing topic

in computer science, with many different challenges and datasets used to validate

and compare techniques amongst each other. The ImageNet Large Scale Visual

Recognition Competition is a collection of image and object classification

challenges, with two of the challenges in the past few years focusing on object

detection in images with 200 fully labeled classes and object detection within

videos of 30 fully labeled classes [25]. There are a multitude of techniques to

perform the object detection, even when using CNNs as the baseline, with two

7



Table 1: Description of the architecture used for the CNNs in this research for compar-
ison with CNNs run over the aggregate dataset combining altitudes.

Layer Type Layer Dims Filter / Stride Filters Padding
Pool Size

Input 18 x 18 x 3

Convolutional 18 x 18 x 32 3 1 32 1

Max Pooling 9 x 9 x 32 2 2

Convolutional 9 x 9 x 64 3 1 64 1

Max Pooling 3 x 3 x 64 3 3

Fully Connected 1 x 1 x 128 128

Fully Connected 1 x 1 x 3 3

prominent techniques being region-based CNNs and whole-image CNNs.

Region-based CNNs, such as R-CNN [26], Fast R-CNN [27], and Faster

R-CNN [28], attempt to identify areas of interest, known as regions, that are

then run through the CNN. A region of interest (RoI) pooling layer maps a set of

features from the variable sized RoI onto a fixed size feature map, with different

RoI’s sharing computations and memory where applicable to minimize runtime

and storage requirements. Faster R-CNN greatly decreases the computational

requirements of generating the RoI’s by implementing a Region Proposal

network.

Whole-image CNNs, such as You Only Look Once (YOLO) [29] and its

refinement YOLOv2 [30], simply run the entire image through CNNs without

any preprocessed RoI detection. The input images are split into many same-size

regions and run through the CNN, with a bounding box and probability of

detection produced for each region. This allows the CNN to be completed on a

single pass, whereas region-based CNNs may run many sub-images from the

same whole-image through the CNN with significant overlap.

8



Object Detection in Wildlife Ecology

A similar project by Xu and Zhu [31] sought to automate the classification of six

(6) species of seabirds on complex and uncontrolled backgrounds. The image is

segmented using Grabcut [32], which attempts to roughly identify all objects

similar to the user-specified target object within the image. The segmented

objects are then extracted and run through three (3) different models: k-Nearest

Neighbor [33], Logistic Boost [34, 35], and Random Forest [36]. The outputs of

these models are then used to vote on the final classification of the objects

within the image. This non-CNN technique resulted in a recognition accuracy of

88.1% when run over 900 samples.

Villa et al. [37] trained CNNs over the data gathered from the Snapshot

Serengeti project using four (4) datasets: (i) a raw unbalanced dataset, (ii) a raw

balanced dataset, (iii) a balanced dataset that only includes animals that are

present in the foreground of an image, and (iv) a dataset that includes segmented

images that contained part (or parts) of an animal within the segments. Multiple

CNN architectures were trained and compared on each of the four datasets. The

CNNs trained on the unbalanced dataset were the worst and the best results

were on the segmented dataset, with an accuracy of 58% and 88.9%, respectively.

Non-CNN object detection methods were used on mosaic UAS imagery of

white-tailed deer with both visible (RGB) and thermal infrared (TIR)

spectra [38]. Supervised and un-supervised pixel-based detection, which are

extremely basic object detection methods, were both unsuccessful on the

imagery. Object-based image analysis (OBIA), however, produced no

false-positives while matching the 50% detection rate of manned aerial surveys

on the TIR imagery [38]. OBIA on the RGB images had an extreme number of

false positives, with 1,946 deer detected in an image with only 4 actual deer

present, as an example [38]. This demonstrates that using a different spectrum,
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such as TIR instead of RGB, on the same images using the same object

detection methods can potentially improve results.

Feature-based analysis is an object detection method that is faster than

CNNs and could potentially be used to pre-process a dataset to highlight

interesting images for manual inspection. This would dramatically reduce the

effort of citizen scientists, as many images that are obviously background-only

with no target species can be skipped. Feature-based analysis using two features,

color and shape, was used to detect birds from video recorded during UAS

flights [39]. The omission and commission rates were less than 20% each [39],

which gives credence to using feature-based analysis to preprocess UAS images

before showing them to citizen scientists.

10



CHAPTER 3

WILDLIFE@HOME IMAGE DATASET

Data Gathering

The UAS imagery used in this project was collected using a Trimble UX5 1 fixed

wing UAS (Fig. 2(a)). The images were collected in Wapusk National Park in

Manitoba, Canada in 2015 and 2016, and produced over 65,000 images (over 3

TB of data) in total. Flights occurred during the snow goose nesting season and

were flown at altitudes of 75m, 100m, and 120m above ground level. A 16

megapixel Sony camera placed in the nadir position recorded the images with an

80% overlap between consecutive images. Figure 2(b) is example of the flight

path over an area.

(a) UAS takeoff (b) UAS flight path

Figure 2: An example of the UAS takeoff procedure used by the Trimple UX5
and an example flight path that is flown using transects. Photo credit Susan
Ellis-Felege.

The images taken were then used to create mosaics for each flight. The

1http://uas.trimble.com/ux5
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Trimble Business Center 2 (version 3.51) was used for the 2015 data and Pix4D 3

(version 3.2.23) was used for the 2016 data. In total, 36 distinct mosaics were

created, each of which were several GB large and totaled over 50GB of mosaic

data. Each mosaic was then split down into mosaic split images (MSIs) that

could be shown to experts and citizen scientists through a web portal. From the

36 mosaics, 8,759 MSIs were created.

Wildlife@Home

Wildlife@Home is a collection of citizen science projects hosted on the UND

Citizen Science Grid [2]. Users are able to volunteer time and computing

resources by manually classifying objects within images or events within video,

and by allowing a Berkeley Open Infrastructure for Network Computing

(BOINC) [40] client to run on their idle computer to help with classification.

BOINC has been used by Wildlife@Home to run background subtraction

algorithms over their entire video dataset [41] and to train the Evolutionary

eXploration of Augmenting Convolutional Topologies (EXACT) algorithm [10].

In the future, BOINC could be used to train and test the CNNs for object

detection.

The data source from Wildlife@Home used in this research is the UAS

imagery, as described in I. Citizen scientists are able to place bounding boxes

around objects, indicating the exact location and label of all objects in the

image. Target species objects in the UAS imagery make up less than 1% of the

area in the UAS images, making manual detection particularly challenging. This

is especially true for blue phase snow geese which naturally blend with the

majority of the background.

2http://www.trimble.com/Survey/trimble-business-center.aspx
3https://pix4d.com/
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Ecological Importance

All UAS images in this research were taken in Wapusk National Park in

Manitoba, Canada, where there is an overabundance of snow geese causing

widespread destruction to the habitat, with the reduction in snow goose

population being considered the best method for recovery [42]. Currently,

ground counts are used to estimate the snow goose population, whereby

ecologists count the number of snow goose nests within a 50-meter radius each

year. This methodology provides an estimate of the total snow goose population,

but due to limited spacial coverage may not be representative of the actual

density of the expanding population of snow geese. To cover a larger area in a

more reasonable timeframe, UAS are flown to collect imagery which can then be

either manually labeled or used with image classification algorithms.

It is also possible to do manned flights whereby the pilot and/or other

surveyors in the plane attempt to count the geese directly. This allows for a

greater area coverage, but is more costly and comes with more safety risks than

UAS flights given the relatively low altitude and speed with which the plane

needs to fly to allow accurate spotting of snow geese [43, 44].

User Interface

The Wildlife@Home review image interface (Fig. 3) allows users, which are made

up of both citizen scientists and pre-determined experts, to go through a

collection of image projects to make observations. Users are shown an image

from a selected project and instructed to draw a bounding box around all target

species for that project while minimizing the amount of excess background. After

a bounding box is drawn, a corresponding observation entry is generated on the

left-hand side of the interface where the user can label the observation with the

help of example images included in the interface documentation. If there are no
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target species in the image, the user can select “There’s Nothing Here”. The

observations are then recorded to a database when the user presses “Submit”.

Figure 3: The graphical user interface (GUI) of the web portal for identifying
objects in ecological imagery for the Wildlife@Home projects. This screenshot
shows a UAS image with two white snow geese identified by the user.

Observations made using the web portal are either designated expert or

unmatched. Expert observations are assumed to be true, good data (though

there is still potential for human error) that can be used for the inputs to CNNs,

while unmatched observations are the individual citizen scientists observations

that come with a degree of uncertainty. To increase confidence in the unmatched

data, matching algorithms were developed and compared, finally selecting on the

10-pixel corner point method from prior work [5]. This matches two unmatched

observations into a single matched observation, with the intersecting area being

used as the extents of the matched observation [5].

14



Storing the Data

All observations, including bounding boxes and labels, are stored in a MySQL

database. The user observations are given one of three (3) designations:

1. Expert - if the recording user is a trained expert. Observations made by

experts are presumed true and used to evaluate citizen scientists

observations.

2. Unmatched - if the recording user is a citizen scientist. Individual

observations made by citizen scientists come with no assumptions of

quality, and has been shown to come with wide variability and limited

quality [5].

3. Matched - if two citizen scientist observations are matched, the intersection

of their bounding boxes is considered a matched observation. This has

been shown to produce results with quality rivaling expert observations [5].

Considering the already demonstrated variable quality of the unmatched

observations [5], only expert and matched observations are used for this research.

Technical Issues and Corrections

There was a mechanical error with the RGB camera used to capture images

during the 2015 data collection that resulted in the images having a significant

blue-shift. Instead of considering the 2015 and 2016 data as separate, thus

decreasing the overall size of the dataset, the 2015 images were normalized

against the 2016 images by finding the relative ratio of the average color of a

white snow goose in each dataset. The red, green, and blue channels of all

images in the 2015 dataset where multiplied by 233.0/150.0, 255.0/189.0, and

236.0/190.0, respectively. Each channel was rounded down to the nearest integer
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and capped at a maximum value of 255. Manual inspection of the normalized

2015 images appears to be correct (Fig. 4), and the CNNs were able to train well

on the combined and shifted dataset.

(a) Example original blue-
shifted image from the 2015
dataset

(b) The same image from the
2015 dataset after normaliza-
tion to the 2016 dataset

(c) Example image from the
2016 dataset

Figure 4: An example of the blue-shift error in an image from the 2015 dataset
compared against its normalized image and an image from the 2016 dataset.
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CHAPTER 4

METHODOLOGY

Prior to development of the web portal, basic software engineering practices

were utilized to ensure that the product being developed matched the needs of

the client, in this case a wildlife biologist. A software requirements document

was written to discover the functional and non-functional requirements of the

web portal. A software design document was generated from the software

requirements, which included use case, activity, and class diagrams to inform the

development of the web portal. Included within this methodology are

descriptions and/or UML diagrams for: (i) the web portal for image detections;

(ii) the database to store the information collected; (iii) the generation of training

and testing data sets; and (iv) the the high performance neural network training.

Database Schema

The basic idea is to have the mosaic images related to a single project for

filtering purposes (Fig. 5). The mosaic images are then split into smaller

sub-images, as individual mosaics are tens of thousands of pixels in each

dimension and up to several gigabytes large — much too large to download, let

alone view, in a reasonable time. The split images are referenced to a generic

image type that is shared with other projects on Wildlife@Home and stores the

information about the file location of the image on network storage.

Image observations made by users are stored in a table relating to the generic

image to which it relates, and includes whether the observation was made by an

expert — expert information is defined in another database for security

purposes. A single image observation is tied to 0 (in the case of nothing here)
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or more image observation boxes, which store the x, y, width, height, and species

information of the observations.

Using this schema, joins can be used to gather all the information required to

extract observations from specific projects or mosaics for both experts and

citizen scientists. These observations can then be used to run the matching

algorithms to generate all the data files required for training and to place copies

of the corresponding images in the datasets into a folder for download.

Image Review Interface

The image review interface is the web-based application on which users make

observations on the images. Since the mosaic images are split into hundreds or

thousands of sub-images, the logic to determine the next image to present to the

user is relatively complex. If the user has not started reviewing any mosaics for

the project, a new mosaic in the project is randomly selected, and the user is

shown the first sub-image from the mosaic. If the user has started a mosaic in

the project, the next sub-image for the mosaic is shown. If there are no more

sub-images for the started mosaic, the user has completed the mosaic and is

shown a completion screen that displays how many images were reviewed and

how many observations of each specific type were made.

Generating Training Data

Accessing the observation data directly from the server during training, testing,

and validation is infeasible because the data in the database can change between

CNN training iterations. To overcome this obstacle, the required data for

training is stored in files that can be used off-line for training, testing, and

validating. This is especially important to test how changes to the CNN

parameters and algorithm can alter the results of a given dataset.
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The IDX (non-acronym) file format, which is a simple file format for vectors

and multidimensional matrices of various numerical types, is used to store the

individual observations, including the label of the observation. This file format

was chosen because it is used in the MNIST dataset [9], which is also used to test

the CNNs developed for this research. This meant that no specialized file format

needed to be developed to process observations and maximizes the ability of

other researchers to compare results using the datasets produced in this research.

The byte-by-byte representation of an IDX file is shown in Table 2, which is

encoded with the most-significant byte (MSB) first. The first two bytes are

always 0. The third byte is a magic byte that informs the data type of every

element in the IDX file (byte, short, int, float, and double are the options, with

predefined byte widths). The fourth byte holds the number of dimensions

(1 ≤ N ≤ 255). Then there are 4×N bytes that hold the width of each

dimension n ε N as a 4-byte integer. Following the widths is the actual data,

with
∏N

n=1W (n) total elements, where W (n) is the width of the nth dimension.

Table 2: IDX file format description, showing the byte-by-byte values at each location,
which are always encoded with most-significant byte (MSB) first.

Byte # Width Description

0 1 0

1 1 0

2 1 Data type (w)

3 1 Number of dimensions (N)

4 + (n× 4) 4 Width of n (W (n))

4× (N + 1) w Start of data

A custom binary format (BIN), known henceforth as a location file, was

created to store more information about individual observations, as described in

Table 3. The first value in the location file is an integer with the total number of

MSI entries in the file. Each MSI entry is comprised of an integer for the MSI

number and the total number of observations within the MSI. Each observation
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entry is comprised of an integer for the species ID, top-left x pixel, top-left y

pixel, width, height, and a hash to identify the user who made the observation,

in that order.

Table 3: Custom binary format (BIN) file format description.

Byte # Width # Description

0 4 Number of MSI entries (M)

4 4 Number of observations within MSI (N)

8 4 Species ID

12 4 Top-left pixel x

16 4 Top-left pixel y

20 4 Width

24 4 Height

28 4 User hash

- - Repeat Species ID User hash for each nεN

- - Repeat observations for each mεM

Comma separated value (CSV) files are used to store the counts of each label

within the image, as described in Table 4. Each line in the CSV file is “MSI

number, Number of white-phase snow geese, Number of blue-phase snow geese”.

This simple spreadsheet file format is used to validate the output observations of

the CNNs with the known expert observations for the same images. If multiple

experts had observations for the same image, the average of their observation

counts were taken and rounded down to the nearest whole number and stored in

the CSV file.

Table 4: Comma separated value (CSV) file format used for validating the counts
output by the CNNs against expert counts from the same images.

MSI # of white-phase # of blue-phase
# snow geese in MSI snow geese in MSI

Repeat for each unique MSI
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High Performance CNN Training

The initial training and testing of the CNNs for this and prior research was done

using the CPU-only on a Mac Pro using a 3.5 GHz 6-Core Intel Xeon E5

processor using the CNN code available at:

https://github.com/Connor-Bowley/neuralNetwork [6]. To test the

scalability of the framework, the program was limited to 1-, 2-, 3-, 4-, 5-, and

6-cores. The code is an excellent candidate for conversion to BOINC, to allow an

even greater distribution and parallelization of processing. The code conversion

was attempted for this work, but was not completed.

Matching Observations

Two algorithms were developed for matching individual observations within a

single image to observations made by a different user. These two methods are

the corner-point method (Eq 1) and the percent area overlap method (Eq 2) [5].

The corner-point method determines the maximum distance between each of the

four corners of the observation while the area overlap method determines the

percentage of total area overlap between the two observations.

c0 =
√

(x10 − x20)2 − (y10 − y20)2

c1 =
√

(x11 − x21)2 − (y10 − y20)2

c2 =
√

(x11 − x21)2 − (y11 − y21)2

c3 =
√

(x10 − x20)2 − (y11 − y21)2

C = max(c0, c1, c2, c3)

(1)
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Li = min(x11, x21)−max(x10 − x20)

Hi = min(y11, y21)−max(y10 − y20)

Ai = max(0, Li ×Hi)

Au = A1 + A2 − Ai

O =
Ai

Au

(2)

Extracting Matched Observations

After two observations have been determined to be matching observations using

one of the matching algorithms, a new matched observation can be extracted.

Since the individual observations are not in identical locations, two algorithms

have been developed to extract an “agreed upon” matched observation from the

individual observations. These two algorithms are the extract average method

(Eq 3) and the extract intersection method (Eq 4) [5]. The extract average

method determines the Cartesian coordinates for the top-left and bottom-right

corners by averaging the left-, right-, top-, and bottom-most extents of the

observations, while the extract intersection methods extracts the overlapping

area between the observations.

(x0, y0) =

(∑n
i=1 xi0
n

,

∑n
i=1 yi0
n

)
(x1, y1) =

(∑n
i=1 xi1
n

,

∑n
i=1 yi1
n

) (3)

(x0, y0) =
(

n
max
i=1

(xi0),
n

max
i=1

(yi0)
)

(x1, y1) =
(

n
max
i=1

(xi1),
n

max
i=1

(yi1)
) (4)
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Figure 5: UML database diagram, based on the UML class diagram, showing
the important entities within the database for storage of the mosaics and user
observations relevant to this research. user id is stored in another database for
security purposes and not shown in this schema.
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CHAPTER 5

RESULTS

Comparing Citizen Scientist vs Experts

Given the demonstrated applicability of the corner-point method for matching

observations with a 10-pixel maximum corner distance, and the quality of the

overlap algorithm in extracting aggregate user observations from the matched

observations [5], a new technique was used to show that the methods hold over a

larger sample for comparing against expert observations. Matched citizen

scientist observations were extracted from mosaics which had 250 or more expert

observations. For each of these mosaics, expert observations were attempted to

be matched with at least one matched citizen scientist observation using the

corner-point method with a 10-pixel maximum. If the expert could be matched,

it was added to the binary matches for the mosaic.

The lowest percent of expert matches against aggregate citizen scientists is

73%, while the highest percent of expert matches is 92% (Table 5). This suggests

that the matched citizen scientist observations extracted using the overlap

algorithm still corresponded well with expert observations, even after the overlap

extraction. This, along with the original results over a smaller dataset, gives

confidence that the matched citizen scientist observations can be used to train

the CNNs with accuracy comparable to expert observations.

Comparing individual altitudes vs one large dataset

The same application and code, with the same settings of 30 epochs and 5

training iterations with a feedback loop, was used to train and test the CNNs of
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Table 5: The number of expert observations within mosaics that are able to be matched,
using the corner-point matching algorithm, with at least one matched user observation
with the aggregate observation of two citizen scientists, extracted using the overlap
algorithm.

Mosaic Expert Matched Binary Percent
# Observations Observations Matches Matched

44 1226 989 1093 89%

45 1522 1634 1403 92%

46 874 1340 720 82%

49 862 689 756 88%

50 282 190 214 76%

53 1465 1161 1076 73%

54 1033 941 856 83%

56 3295 1831 2696 82%

62 734 1010 1316 76%

individual altitudes as was used in prior work to train and test CNNs on the

aggregate altitude dataset [6, 45]. A background to target object ratio of 3:1 was

chosen for all the CNN training, as it was shown to be a ratio which maximized

the training of the CNN without introducing too many over-fitting errors [45].

The CNNs were trained and tested at 75m, 100m, and 120m for both expert and

matched citizen scientists observations for a total of 6 distinct CNNs.

There is a large discrepancy in the number of observations in the eight (8)

datasets. The aggregate datasets had 2056 expert and 6560 matched

observations, respectively. The 75m altitude dataset had 480 expert and 1540

matched observations. The 100m altitude dataset had 555 expert and 2035

matched observations. The 120m altitude dataset had 680 expert and 2350

matched observations.

Iteration 0 (Table 6) is the baseline iteration with no feedback loop

implemented, providing a baseline of the CNN. The improvement in Iteration 1

shows how a single instance of retraining using the feedback loop can

25



Table 6: Results of the CNN feedback loop for the aggregate data and each altitude
with a 3:1 background to target object ratio.

Training set Iteration Predict Actual |%Error| Observations

Agg. Expert 0 850.00 331 156.80 2056
Agg. Expert 1 279.00 331 15.71 2056
Agg. Expert best (3.00) 288.67 331 12.79 2056

Agg. Matched 0 1054.33 331 218.53 6560
Agg. Matched 1 330.00 331 0.30 6560
Agg. Matched best (2.67) 318 331 3.93 6560

75m Expert 0 114 96 18.75 480
75m Expert 1 111 96 15.63 480
75m Expert best (4.00) 107 96 11.46 480

75m Matched 0 155 96 61.46 1540
75m Matched 1 217 96 126.04 1540
75m Matched best (0.00) 155 96 61.46 1540

100m Expert 0 750 111 575.68 555
100m Expert 1 579 111 421.62 555
100m Expert best (4.00) 370 111 233.33 555

100m Matched 0 212 111 90.99 2035
100m Matched 1 330 111 197.30 2035
100m Matched best (0.00) 212 111 90.99 2035

120m Expert 0 308 136 126.47 680
120m Expert 1 296 136 117.65 680
120m Expert best (4.00) 275 136 102.21 680

120m Matched 0 217 136 59.56 2350
120m Matched 1 226 136 66.18 2350
120m Matched best (3.00) 191 136 40.44 2350

dramatically reduce the error of the CNN in the case of the total aggregate data

from prior research. The improvement in each subsequent iteration for the

individual datasets, however, is not as prominent. Each training set had a

different iteration which produced the least error, with the average best iteration

shown for each dataset.

75m Individual Datasets

The 75m expert dataset produced the overall best results with both the lowest

average error with 11.46% and the lowest standard deviation in individual results
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with 24.15% (Fig. 6(a)). The 75m matched dataset was 61.47% with a standard

deviation of 59.35% (Fig. 6(b)), which is the best among the individual matched

datasets. The standard deviations on both 75m datasets is extremely high,

indicating that either more data is required or further CNN configuration tuning

needs to occur before this altitude can match the aggregate dataset CNN.

100m Individual Datasets

The 100m expert dataset average percent error improved notably with

retraining, reducing the average percent error from 575.68% to 233.33%

(Fig. 7(a)). The standard deviation, however, saw minimal reduction. The 100m

matched dataset average percent error and standard deviation remained similar

during retraining, with the baseline iteration being marginally better than the

other iterations (Fig. 7(b)). This indicates similar issues to the CNN retraining

of the 75m individual datasets.

120m Individual Datasets

The 120m expert (Fig. 8(a)) and matched (Fig. 8(b)) datasets both have

marginally positive results on the average percent error from retraining. The

standard deviation of the error varies between retrain iterations, both positively

and negatively, for both datasets. This is further evidence that either the

retraining algorithm requires more observations to be effective or that the CNN

parameters need tweaking for smaller datasets.

General Notes

The expert and matched both produced the best individual CNN results with

the 75m altitude dataset. This is likely explained by the size of the target

objects being relatively larger from 75m altitude than from 100m or 120m
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altitude. This highlights a major obstacle in generalizing the CNN for usage in

multiple projects: the CNN configurations need be able to account for the target

object size. Using the same CNN configuration with a target object size of

14px×14px works well for the 75m altitude, but may need to be adjusted for the

100m and 120m altitudes.

The variability of success using the retraining iterations is most likely the

result of the randomized nature of the retrain loop. During retraining, known

false positive outputs are verified against expert observations and included in the

next retraining dataset. To limit the number of additional observations, some

initial observations are randomly dropped from the retrain dataset. This was

shown to produce consistently good results in the larger aggregate datasets, but

may have a greater potential of removing important observations from the

retrain dataset in the relatively smaller individual altitude datasets.

High Performance Scalability

The scalability of the CNN training program was tested by altering it to use a

variable number of CPU-cores simultaneously. Performance was tested using a

single training and testing iteration on the 75m expert dataset with no feedback

loop. The Mac Pro 3.5 GHz 6-core Xeon E5 machine was limited to between

1-core and 6-cores.

The single-core runtime was almost 22 hours, while the 6-core run time was

just under 3.5 hours, 96% of a pure linear improvement (Fig. 9). This shows that

the CNN training program is an excellent candidate for multithreading and

distributed computing. Converting the code to run using BOINC would allow for

even larger datasets to be processed in a reasonable amount of time.
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(a) 75m expert dataset average percent error with standard deviation shown. Re-
training has a minimal improvement on both average percent error and standard
deviation.

(b) 75m expert dataset average percent error with standard deviation shown. Re-
training produces variably poorer results in both average percent error and standard
deviation.

Figure 6: The average percent error in the 75m altitude individual datasets for
expert (a) and matched observations (b). The average percent error is shown
with the solid blue-line while the shaded area highlights the range of the standard
deviation of percent error from individual mosaic images.
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(a) 100m expert dataset average percent error with standard deviation shown. Re-
training has a meaningful impact on the average percent error, decreasing from just
under 600% to just over 200%, but a minimal impact on the standard deviation.

(b) 100m matched dataset average percent error with standard deviation shown.
Retraining has a minimal impact on both average percent error and standard devi-
ation with results getting variably better and worse each iteration.

Figure 7: The average percent error in the 100m altitude individual datasets for
expert (a) and matched observations (b). The average percent error is shown
with the solid blue-line while the shaded area highlights the range of the standard
deviation of percent error from individual mosaic images.
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(a) 120m expert dataset average percent error with standard deviation shown. Re-
training has a marginally positive impact on the average percent error while the
standard deviation is meaningfully improved.

(b) 120m matched dataset average percent error with standard deviation shown. Re-
training has a minimal impact on the average percent error, but has wildly variable
negative and positive impact on the standard deviation.

Figure 8: The average percent error in the 120m altitude individual datasets for
expert (a) and matched observations (b). The average percent error is shown
with the solid blue-line while the shaded area highlights the range of the standard
deviation of percent error from individual mosaic images.
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Figure 9: The running time of a single iteration of the CNN training and testing
program vs the number of cores utilized. The speedup is not perfectly linear due
to the overhead of thread synchronization, but there is near-linear speedup.
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CHAPTER 6

CONCLUSION

Citizen science can be a useful technique to distribute the classification of

species within UAS imagery. Matching citizen scientist observations decreases

the variability of the observations and provides matched observations that are

comparable to observations made by trained experts. The techniques used in this

research can be further used in other citizen science projects to rapidly

categorize targets within images for use in CNNs, or to just gather aggregate

data, which can then inform ecological conclusions.

The matched citizen scientist observations are comparable to expert

observations and can be used to train CNNs to help automate the detection of

species within the UAS imagery. The specific UAS imagery used in this research

trained better on the CNNs using aggregate observations from all altitudes,

instead of using individual datasets for each individual altitude — 75m, 100m,

and 120m. This has interesting implications toward requiring a significant

amount of training data, especially when the target objects make up less than

1% of the total area of the imagery, versus having more “correct” data.

The individual altitudes each contain significantly less observations than the

aggregate dataset, but all of the observations are nearly identical in size. The

dramatic improvement using retraining on the aggregate dataset, and the

variable results of retraining on the individual datasets, seem to indicate that

having more data is beneficial, even if the sizes are marginally different between

target objects. This is also apparent in the large standard deviation of percent

error in the individual altitude datasets, even after retraining. The aggregate

dataset sees some improvement in minimum and maximum deviation during

training, but has a significantly lower deviation to start with [45].
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The CNN training and retraining program is currently limited to running on

a single machine. It was demonstrated that there is a near linear improvement in

processing speed by increasing the core count from 1-core to 6-cores using the

prior developed program [6, 45]. This indicates converting the current algorithms

to use BOINC can significantly decrease the amount of time required to test the

CNNs, especially as the datasets get larger.

Future Work

This research demonstrated that a citizen scientists web portal can be used to

generate inputs for CNNs which can be downloaded using a simple interface for

single-computer training and testing. Any number of projects requiring users to

mark up images can be created on Wildlife@Home, but inserting new data

requires a developer to run the necessary scripts to insert that data into the

databases to be exposed on the website. A natural extension of the project

would be to create a generalizable framework that can allow researchers to setup

their own project on Wildlife@Home, which would require creating an additional

authentication system and further project management interfaces. The

framework could be further generalized to work as a standalone product, but

would require significant redesign.

The project management interfaces should include the ability for researchers

to filter the observations and download a single zip file containing the requested

data for CNN training. This would include all the images, IDX, BIN, and CSV

files required for training. This download could then be used with the prior

developed interface on a Mac or Linux machine to train and test the

CNNs [6, 45].

The final extension of the project would be to convert the CNN algorithms to

use BOINC to distribute the computing. This would allow citizen scientists who
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work on the project to also volunteer their idle computing resources to the

training and testing effort. However, the current code requires significant

reworking to decouple OS-specific and single-machine code to support

distributed computing. This could eventually be incorporated into the project

management interface to start a BOINC job instead of downloading a zip file

when the researcher wants to download training and testing data.
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