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ABSTRACT

This study performed a detailed analysis of convective storms across the Contiguous
United States from 77 case dates using a 4-member microphysics Weather Research and
Forecasting (WRF) ensemble and Stage IV gauge-adjusted radar derived precipitation. Dates
included the 2016 NOAA Spring Forecast Experiment (SFE) with the remainder from 2010-2012.
Quantitative attributes of precipitation objects in both simulations and observations were
diagnosed using the Method of Object-Based Diagnostic Evaluation Time-Domain (MODE-TD).
The microphysics schemes tested were WSM6, Thompson, Morrison, and Milbrandt.

Among all simulation case dates, compared to observations, the number of precipitation
objects less than 90 km in length are overpredicted, with the WSM6 scheme greatest and
Morrison scheme least. All simulation members also generally initiate and dissipate
precipitation objects too early. For precipitation rates, the Morrison scheme predicts them best
while the Milbrandt and WSM6 schemes overpredict the strongest rates. The microphysics

biases found within this study should aid in the prediction of convective events.
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CHAPTER |

INTRODUCTION

Motivation

Convective storms pose a major threat to American society including flooding, hail,
damaging winds, and tornadoes. Each year billions of dollars in property damage and loss of
life result. Just in 2013, eight out of nine weather-related billion-dollar losses resulted from
convective storms and flooding (NOAA 2017). Many of these losses occur due to flash flooding

- the largest weather-related cause of property damage (Rauber et al. 2008).

Squall lines are one type of mesoscale convective system (MCS) that can produce
flooding rains. MCSs are a difficult weather phenomenon to forecast as they vary significantly
in structure, time, and intensity. Further improvements in storm-scale forecasting are needed

to better predict convective events and provide ample warning time to the public.

Within the last 10 years, the National Weather Service and Storm Prediction Center have
been using numerical weather prediction (NWP) models to guide their convective forecasts.
The precipitation processes within NWP models, such as the Weather Research and Forecasting
(WRF) model (Skamarock et al. 2008), are represented by so-called microphysics
parameterization schemes (or just “microphysics schemes”), which come in varying levels of
complexity. Approximately 20 microphysics schemes are available for use in WRF and most
have not been extensively tested in their ability to represent important properties of

convection. For those that have, testing has been limited such that scientists have not agreed



upon a best performing scheme to use operationally. To gain a better understanding of the
microphysics scheme and its role in simulating convective properties, more than a few

convective forecasts need to be tested and analyzed.

Objectives

The main objective of this study was to analyze the impacts microphysics
parameterization, within high resolution models, have on simulated convective properties,
focusing on multi-cellular thunderstorms and MCSs, in hopes of aiding operational forecasting.
Specifically, the focuses included determining microphysics biases and a best performing
microphysics scheme. Previous literature has investigated the role of various hydrometeors
and predictive properties within microphysics parameterization, but has only done so for a
limited amount of cases and atmospheric conditions. To further bridge the gap and possibly
reiterate findings from past studies, this study performed an extensive analysis of a multitude
of convective simulations spanning multiple warm seasons utilizing a microphysics ensemble.
The analysis performed uses an object based performance metric comparing the microphysics
ensemble simulations to radar derived precipitation observational data in hopes of determining

biases within microphysics to aid the forecaster in prediction of convective events.

MCS Structure and Intensity
MCSs have been found to have two regions, convective and stratiform, which differ in
their precipitation processes (Houze 1977; McAnelly and Cotton 1989; Houze et al. 1990). The

convective region consists of strong cumulus-scale updrafts supporting development of a



diverse set of hydrometeors such as hail, graupel, rain and snow. Convective updrafts
experience net condensational heating at all levels due to the freezing and condensing
associated with hydrometeor formation and growth (Houze 2004). Air behind the convective
region ascends more slowly in the stratiform region, and because of these weaker updrafts,
precipitation there consists primarily of snow that melts into rain. Descent in both the
convective and stratiform regions is aided by melting and evaporational cooling of falling
hydrometeors (Houze 2004). Thus, the microphysical processes associated with hydrometeors
play a significant role in updrafts and downdrafts, which in turn impact MCS structure and

intensity.

Convection-Allowing Models

The WRF model utilized can be run as a “convection-allowing model” (CAM), meaning
that the model can move air and associated precipitation within individual storm updrafts and
downdrafts, albeit coarsely. As such, these models must use microphysics schemes. CAMs are
commonly used in storm-scale forecasting, as they are capable of simulating a multitude of
convective storms, such as supercells, multicells, and MCSs. Fowle et al. (2003) also found that
CAMs are capable of accurately predicting the initiation and organizational mode of convective
systems 36-48 h into the forecast. However, many past studies have shown that CAM forecasts

are sensitive to the microphysics within the simulated convection.

When WREF is run at a grid spacing (Ax < 4 km), it is said to be a CAM because this grid
spacing is fine enough to explicitly resolve deep convection to produce weather forecasts for

large areas of the United States (Kain 2006). It is well known that to coarsely resolve a wave



within a model, at least five or six gridpoints are needed meaning that storm features being
simulated need to be at least 20 km across. Thus, it is no surprise that Weisman et al. (1997)
also suggested that grid spacing as coarse as 4 km is sufficient enough to declare a model to be
a CAM as it would resolve basic mesoconvective circulations and net momentum and heat

transports of convective systems in the mid-latitudes.

In recent history, CAMs have replaced non-CAMs that contained “convective
parameterization schemes” (CPSs). Years ago when computational power lacked, WRF along
with other NWP models were run at larger horizontal grid spacing and were unable to resolve
individual storm updrafts. Thus, CPSs were used to parameterize the small scale updrafts
associated with convective storms. CPSs adjust the environmental temperature and moisture
profiles, create cloud, and precipitate out rainfall all within one model timestep in attempt to
model the modifications convective storms have on the atmosphere (Straka 1994 and Stensrud

2007).

Microphysics Parameterization and Simulation within the CAM

Microphysics includes all processes that occur on the scale of hydrometeors (order of
102 to 10 m) located within clouds (Warner 2011, p. 121). However, because the forecast
model grid spacing is, on order, 100 to 1000 times larger than individual precipitation particles,
and because forecast models need to finish prior to the event occurring, simplifying
assumptions are made to parameterize these sub-grid processed including that a smaller

number of microphysical properties be predicted and diagnosed. More sophisticated schemes,



while generally slower to run, treat microphysical attributes or processes more realistically,
such as including important species or predicting more moments of the size distribution for

each species.

Microphysics representation is a primary factor affecting the skill of forecasted
precipitation properties (Warner 2011, p. 121). As previously stated, microphysics schemes
vary in their representation of hydrometeors and the affiliated microphysics processes.
Specifically, schemes vary in the number of predicted hydrometeor species, number of
moments predicted (e.g., mass mixing ratio and total number concentration), assumptions in
parameterizing the microphysical processes, and in bulk particle properties. Hydrometeor
species are the particle types involved in microphysical processes (e.g., cloud droplets, rain,
cloud ice, snow, graupel, and hail). Bulk particle properties include mathematical descriptions
of how the particle shapes, mass, and fall speeds vary across the size distribution. These
relationships allow for deriving an analytical solution representing given microphysical
processes that can be diagnosed and evaluated in one model time step for all particles in a
model grid cell. Microphysical processes include: condensation, accretion (collision and
coalescence in warm rain processes), evaporation or freezing of liquid drops, melting of ice,
aggregation of ice crystals; accretion of smaller crystals by larger ice particles (snow aggregates
or hail), and vapor deposition (Warner 2011, p. 123). In schemes where total number
concentration is also predicted, the processes of droplet breakup and ice crystal shattering can
also be parameterized. Microphysical parameterizations commonly used in operational models
use the bulk method for size distributions and include either one or two prognostic categories

for each hydrometeor represented in the microphysics scheme. The bulk method assumes a



functional form for the size distribution of each particle type. This allows for computational
efficiency while maintaining an accurate assumption of the size distribution. Single-moment
schemes have one prognostic variable for each hydrometeor species. The prognostic variable is
commonly the mass mixing ratio. In addition to the mass mixing ratios, double-moment
schemes also typically predict the species’ total particle number concentration (Warner 2011,

p. 125).

Past Studies: Sensitivity to Ice Species

Previous studies, such as Fovell and Ogura (1988), Gilmore et al. (2004a), Gilmore et al.
(2004b), Morrison and Milbrandt (2011), and Wu et al. (2013) investigated the sensitivity of
simulated convective simulations to the representation and inclusion of ice species. The
inclusion of ice species into microphysical schemes began in the 1980s (Lin et al. 1983; Cotton
et al. 1982, 1983; and Rutledge and Hobbs, 1984) and continues to this day. Studies followed in
the late 1980s investigating the sensitivity of precipitation processes in convection to ice

species (Fovell and Ogura 1988; Tao and Simpson, 1989; and others).

Wu et al. (2013) looked into the impact of ice hydrometeors on two WRF simulated
squall lines across the Southern Great Plains. They found that the simulated differences from
two ice and three ice schemes were prominent in convective/stratiform areal coverage.
Schemes with only two ice species (hereafter 2-ice schemes) produced less convective coverage
and more stratiform coverage. This resulted from 2-ice schemes containing more particles

lower in density, allowing smaller particles to spread to the stratiform region rather than falling



out as precipitation in the convective region. Fovell and Ogura (1988) were among the first to
discover the inclusion of ice species, particularly snow, in the microphysics resulted in a more
realistic looking trailing portion of the storm and more widespread precipitation. They also
found that melting hail/graupel was the largest source of rain for a simulated 2D squall line. In
addition, Wu et al. (2013) found the scheme containing hail produced the most precipitation
and highest peak reflectivity in the convective region, but underpredicted peak reflectivity in
the stratiform region. This was attributed to a larger amount of denser ice hydrometeors and
less overall in-cloud hydrometeors, resulting in less advection of hydrometeors into the

stratiform region.

Gilmore et al. (2004a) tested the sensitivity of the inclusion of ice species in the
microphysics scheme to storm morphology and precipitation characteristics. They showed the
microphysics scheme that included ice species produced ~40% more total ground-accumulated
precipitation after 2 h compared to liquid only microphysics. Gilmore et al. (2004b) was the
first to explore the impact of particle species assumptions in a microphysics scheme. In their
study, they performed idealized supercell simulations using a simple liquid-ice microphysics
scheme similar to the scheme used in Lin et al. (1983). They varied the “large ice”
concentration intercept and particle mass density to study model sensitivity to whether the
“large ice” was more representative of graupel or hail. On one end of the parameter space was
low density, numerous, and smaller “larger ice” particles (similar to graupel) and on the other
end was high density, few, and giant particles (similar to large hailstones). For the small graupel
cases (large hail intercept parameter and/or small particle density) hail mass mixing ratio (qgn)

growth rates and updrafts were larger than the large hail cases (small hail intercept parameter



and/or large particle density). In addition, time and domain average qn with height was larger
at higher altitudes as one moved from large hail to small graupel. Despite the larger production
rates aloft, Gilmore et al. (2004b) showed that large hail cases produced two to four times
more accumulated rainfall at the surface compared to small graupel cases. This was attributed
to the small graupel cases having low fallout velocities that led to less ground accumulation and

more horizontal spread of graupel particles aloft.

Morrison and Milbrandt (2011) also studied representation of ice species in
microphysics, but the focus was on comparing the two different double-moment schemes.
Despite the similarities of the two parameterizations compared, the baseline simulations
differed considerably in terms of storm dynamics, reflectivity structure, surface precipitation,
and cold pool characteristics. Similar to Gilmore et al. (2004b), their study also showed the
large sensitivities in the assumptions made about the single category (hail and graupel), rimed
ice hydrometeor. Differences in simulated cold pool strengths and downdrafts were found to
be primarily due to assumptions with fall speed parameters for different species. Also, cold
pool and downdraft characteristics were sensitive to raindrop breakup for the Morrison
scheme. In contrast, the Milbrandt scheme generally produced smaller raindrop sizes making
the choice of drop breakup parameterization less significant. The large differences produced by
Morrison and Milbrandt for a simulated thunderstorm, highlighted how the different
assumptions in those schemes lead to forecast uncertainties. In particular, most of the
differences were in ice particle properties (density, fall-out speeds, and rain-drop break-up or

hail/graupel break-up). Morrison and Milbrandt (2011) argued that there is a critical need for



further observational studies investigating the ice-particle properties and PSDs to better

understand microphysics and validate microphysics schemes.

Past Studies: Sensitivity to the Number of Predicted Moments

Previous studies have shown simulated convective properties are strongly sensitive to
whether only a one moment (1M) of the species is predicted (typically mass mixing ratio) or
whether two moments (2M) are predicted (typically total number concentration). Though the
overall storm structure was similar in simple 2-D simulations, Morrison et al. (2009) argued that
2M schemes were better than 1M schemes in producing a squall line storm’s stratiform region
compared to actual squall line observations that are typically observed. The 1M scheme lacked
hydrometeors and precipitation in trailing stratiform regions. The reason for differences was
attributed to variability in the simulated updrafts between the schemes. Increased evaporation
rates in the convective region occurred in the 2M compared to the 1M, which resulted in

weaker updrafts and more detrainment from the convective to stratiform region.

Bryan and Morrison (2012) findings were similar to Morrison et al. (2009), but expanded
to the investigation of convective sensitivities due to representation of ice species. They
compared the Morrison 1M and 2M schemes for a simulated squall line, but also looked at
differences when incorporating hail versus graupel in the microphysics scheme, similar to
Gilmore et al (2004b). The 2M scheme again was claimed to represent the storm structure
better than the 1M scheme because of its ability to represent a varying size distribution

intercept parameter, as it would in actual storms. More evaporation in the convective region



and less evaporation in the stratiform region for the 2M scheme was argued to be more
realistic. They also found, similar to Gilmore et al. (2004b) that surface precipitation and cold
pool strength were sensitive to representation of graupel and hail in the microphysics scheme.
The inclusion of graupel led to a wider, but weaker reflectivity in the convective region, as
previously found in Gilmore et al. (2004b). When hail was included instead of graupel, storms
were found to have larger reflectivity, but a narrower region of peak reflectivity. In addition,
Bryan and Morrison (2012) performed additional sensitivity tests using the hail scheme, but
with much slower graupel-like fall speeds. They found that assumptions in the fall speeds of
large ice species have more of an impact over bulk density assumptions in terms of specification
of rimed-ice characteristics. The modified bulk density simulation was similar to the original
unmodified hail simulations in terms of reflectivity structure. The modified fall speed
simulation showed noticeable differences in reflectivity structure and was similar to the scheme
with graupel representation. These findings were also found in Morrison and Milbrandt (2011),
but for surface precipitation and cold pool characteristics. Thus, hydrometeor precipitation
loading, fallout rate, and evaporation rates from the microphysical processes have been shown
to affect updrafts and downdrafts of a MCS, which result in differences in simulated reflectivity

storm intensity and structure.

Past Studies from the NSSL Spring Experiment

Each year during the peak of spring severe weather season (May — June) the

Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather Testbed (HWT) hosts a

10



Spring Forecasting Experiment (SFE) run by the National Severe Storms Laboratory (NSSL) and
the Storm Prediction Center (SPC). The first official SFE was held in 2000 (Clark and Coauthors
2012b). Further information on the first few SFEs is detailed in Kain et al. (2003). For each SFE
the specific subject of emphasis changes, but the general goal is to test and analyze new severe
weather forecasting tools from research to operations. Since 2003, experiments have focused
on the development and implementation of CAMs. Following the 2003-2005 SFE vyears,
numerous studies were performed detailing the data from the first generation of CAMs (Kain et
al. 2006, Kain et al. 2009, and Davis et al. 2009). The first real-time CAM ensemble was
implemented during the 2007 SFE (Clark and Coauthors 2012b). Following the 2007
experiment, numerous studies were performed that investigated and analyzed data from the
first real-time 10-member CAM ensemble. (Clark et al. 2009, Schwartz et al. 2009, and Schwartz

et al. 2010).

In most recent years, emphasis has been put on the generation of severe probabilistic
forecasts valid at better temporal and spatial resolutions than current SPC products utilizing
CAMs. Testing of CAM forecasts to sensitivity of microphysics scheme started in the 2010 SFE
where CAPS included four members in their Storm Scale Ensemble Forecast (SSEF) system
configured identically, but with varying microphysics (Weiss et al. 2010). CAPS continued to
reserve four to six members of their SSEF system to test microphysics sensitivity until the 2016
SFE (Weiss et al. 2010, Weiss et al. 2011, Clark et al. 2012, Coniglio et al. 2013, Clark et al. 2014,
Clark et al. 2015). In the 2016 SFE, the University of North Dakota (UND) continued the effort
of testing microphysics sensitivity by running a microphysics sub-ensemble, which was part of
the 65-member Community Leveraged Unified Ensemble (CLUE).
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Observations: Stage IV Precipitation Data

For verification of the microphysics ensemble simulations, Stage IV (Baldwin and
Mitchell 1997) hourly precipitation data from National Centers for Environmental Prediction
(NCEP) were used as observations. This multi-sensor precipitation analysis (MPE) merges
precipitation radar estimates and rain gauge observations available across the contiguous
United States. The National Weather Service (NWS) and 12 River Forecast Centers (RFC) across
the United States produce the MPEs and then NCEP combines those into a national product.
The processing of the raw radar data at each radar site to the national product of hourly
precipitation contains four stages. The first step is the conversion of raw radar reflectivity data
to accumulated precipitation. The second step referred to as Stage Il, estimates an optimal
hourly rainfall accumulation combining both radar and rain gauge observations. These first two
steps are explained further below. For Stage Ill, each of the 12 RFCs interpolates mosaic Stage I
data to their respective forecast areas. Manual control is performed separately by each RFC to
create the Stage lll dataset. The final step is Stage IV, where NCEP interpolates the Stage IlI
data onto a national grid. Stage IV data are available in hourly, 6-hourly, and 24-hourly
accumulated intervals. Fulton et al. (1998) explains the four stages of the rainfall processing in

further detail.

Regarding the data sources and algorithms used in Stage | and Il, rain rate observations
are available from approximately 3000 automated rain gauge sites through the GOES Data

Collections Platform (DCO) and Automated Surface Observing System (ASOS). Radar reflectivity
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observations are from the National Oceanic and Atmospheric Administration (NOAA) National
Weather Service (NWS) network of 160 S-band Weather Surveillance Radars (WSR-88D) across
the United States. These observations are converted to an estimated rainfall accumulation
using a standard z-R power law relationship (Battan 1973; Doviak and Zrnic 1984) within the
Precipitation Processing System (PPS) algorithm. More about this algorithm can be found in

Fulton et al. (1998).

The MPE is mapped onto a national grid referred to as the Hydrological Rainfall Analysis
Project (HRAP). The HRAP grid is a 1221x881 polar stereographic grid spanning the contiguous
United States and has horizontal grid spacing of 4 km. For the purpose of intercomparing
simulated and observed storm behavior, the Stage IV data on the polar stereographic grid is
regridded or interpolated to the WRF model grid. For this study, the budget interpolation
method (Acadia et al. 2003) was used to remap the Stage IV data to the post-processing grid.
That way, the precipitation accumulations from both the WRF simulation and the observations

would be on the same grid for post processing.

The budget interpolation method was detailed along with bilinear interpolation in
Acadia et al. (2003). In the following paragraph, the reader can think of the native grid as the
HRAP grid. While bilinear interpolation would use a linear distance weighting between the
center of the surrounding native gridcells and the center of the post-processing grid cell in two
dimensions, the budget method instead uses an area weighting. The budget method otherwise
known as the nearest-neighbor method or remapping, weights the interpolation by the

approximate area from each native (HRAP) gridcell that overlaps the post-processing grid cell.
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The area is estimated by subdividing the post-processing grid cells into smaller boxes. This is
demonstrated in Figure 1 for a post-processing gridcell that has been subdivided into 5x5
smaller boxes. The smaller boxes are assigned the precipitation value associated with the
native gridcell that the smaller box’s center falls within. The average of these subgrid points
within a post-processed grid cell are then used for the remapped value (Acadia et al. 2003).
Using the example shown in Figure 1, the interpolated values assigned to the gridcell for post-
processing would be weighted by 5/25 and 20/25 the values of the native (HRAP) gridcells #2
and #5 respectively. Although Figure 1 shows 5x5 subdivided grid boxes, the automated storm
tracking analysis (explained below) utilizes 2x2 subdivided grid boxes to perform the

interpolation.
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Figure 1. Example of the budget interpolation method. Solid lines and black triangles are native grid
boxes (N grid) and native grid points, respectively. The dashed lines and black circles are the post
processing grid box (P grid) and grid points, respectively. The dotted lines with the small white circles are
the subgrid boxes. [Figure from Acadia et al. 2003]

Herein, the budget method is selected because Acadia et al. (2003) found the budget
method resulted in less smoothing of the precipitation data compared to the bilinear

interpolation method. Smoothing is not desirable since it acts to increase the minima and
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decrease the maxima of the original precipitation values. Acadia et al. (2003) also compared
the skill scores of both interpolation methods to the skill scores of the native grid and found
that the budget method was superior. For these two reasons, the budget (area) interpolation

method is used herein.

Verification: Method for Object-Based Diagnostic Evaluation (MODE)

The interpolation to the post processing grid is done within a tool called Method for
Object-Based Diagnostic Evaluation (MODE; Davis et al. 2006a; Davis et al. 2009), which now
comes as part of a suite of Model Evaluation Tools (MET)®. Davis et al. (2006a) introduced this
object-based identification and comparison method to quantitatively and subjectively analyze
model simulations to observations. After remapping to a common post-processing grid, Davis’s
method utilizes a smoothing, thresholding, and merging/matching process to create objects
from model simulations and observations. Smoothing and thresholding operations can be
adjusted to yield objects of different spatial and intensity scales. The smoothing performed is
deliberate unlike the smoothing that results from regridding. Once objects are identified and
matched the original raw data is applied to the objects and a series of performance metrics or
attributes are applied for analysis. The object identifying method is illustrated in Figure 2.
These performance metrics include area, number of objects, centroid location, orientation (axis
angle), aspect ratio and additional attributes resulting from the added temporal dimension,

such as duration, velocity, percentile intensities, and directional tracking.

' MET is managed by the Developmental Testbed Center (DTC) at the National Center for
Atmospheric Research (NCAR).

15



MODE has been used in multiple studies within the past few years to verify and analyze
data for convection-allowing forecasts. Specifically, it’s been used to evaluate CAM data from
the 2008, 2009 and 2010 SFEs (Kain et al. 2010a and Clark et al. 2012a). Multiple studies that
used MODE to examine convective simulations noted a common trend where simulations
tended to overpredict the amount of MODE precipitation objects (Davis et al. 2009, Johnson et
al. 2013, Clark et al. 2014, and Goines 2017). Herein, MODE Time Domain (MODE-TD), an
extension of MODE, was used to analyze simulated precipitation properties of convective
storms (size, intensity, number, location, and duration) for the simulation suite to be described
below, compared to NEXRAD Stage IV radar derived precipitation products. The details and

settings regarding MODE-TD can be found in the methodology section below.
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Figure 2. Example of the NCAR DTC Method for Object-based Diagnostic Evaluation (MODE). The object
identifying process includes, (a) the original raw two-dimensional data field, (b) a convolution radius
applied to smooth the field, (c) a threshold applied to create objects, and (d) original raw data applied
inside the identified objects. [Figure from Davis et al. 2006]
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CHAPTERIII

METHODOLOGY

WRF Model Ensemble

The WRF model version 3.7.1 (Skamarock et al. 2008) was used to conduct the
simulations for the microphysics ensemble. The WRF configuration for this study was the
configuration used for the 2016 NOAA/HWT Spring Forecasting Experiment. This experiment
included numerous CAM ensemble members, managed by various groups from around the
country, referred to as CLUE. CLUE included sub-ensembles totaling 65 total members. All
CLUE members used the same initialization time, horizontal grid spacing, domain, long- and
shortwave radiation schemes, vertical levels, and model top (WRF configuration detailed in
following text and Appendix A). For this study, the focus was on the microphysics ensemble
provided by the University of North Dakota (UND) group, which included 5-members within
CLUE. Four of the five microphysics schemes were analyzed in this study. The schemes making
up each ensemble member, detailed in Table 1 include the WRF single-moment 6-class scheme
(hereinafter WSM6, Hong and Lim 2006), Morrison double-moment scheme (Morrison et al.
2009), Milbrandt double-moment scheme (Milbrandt and Yau 2005), Thompson scheme
(Thompson et al. 2008), and Predictive Particle Properties scheme (hereinafter P3, Morrison
and Milbrandt 2015), which was excluded. The WSM6 scheme is the least sophisticated
scheme as it is the only single-moment scheme in the ensemble. The remaining schemes are all
double-moment with the Milbrandt scheme being the most complicated scheme as it predicts

seven moments.
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Table 1: List of microphysics ensemble members, their predicted variables (including mixing ratio Qx and
total number concentration Nx), and the original reference that describes the scheme. Subscriptsc, i, r, s,
g, h refer to cloud water, cloud ice, rain water, snow, graupel, and hail, respectively. Q* refers to a “free
ice” category that is used instead of separate ice species.

Microphysics Scheme Variables predicted in addition to  Original Reference

Ens 1. WSM6 Hong and Lim (2006)

Ens 2. Thompson Ni, Nr Thompson et al. (2008)

Ens 3. Morrison Ni, Nr, Ns, Ng Morrison et al. (2009)

Ens 4. Milbrandt Qh, Ni, Nr, Ns, Ng, Nc, Nh Milbrandt and Yau (2005)

Ens 5. P3 Qgc, Qr, Nc, Nr, Q* Morrison and Milbrandt
(2015)

Model Configuration and Domain Setup

One domain covered the contiguous United States with a horizontal grid spacing of 3
km. There were 1681 grid points in the west/east direction and 1153 grid points in the
north/south direction and 51 vertical levels. Since the focus domain was in the CONUS a
Lambert Conformal map projection was used, which is often used for domains in the mid-
latitudes. The 12 km North American Mesoscale (NAM; Rogers et al. 2009) model data was used
for the initial and boundary conditions of the model, where the time-varying lateral boundary
conditions were applied every 3 h during the simulation. The time step for the majority of the
runs was 18 s. for each microphysics scheme. All simulations were initialized at 00z allowing for
12 h of spin up and the last 24 h to cover the full diurnal cycle. Certain runs had to be rerun

using a 15 s timestep because of stability issues.
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The default namelist settings for WRF were used except for a few settings that were
changed for all CLUE members. Those changes are summarized here and the full name list is
provided in Appendix A. The physical parameterizations used in this study included the
Mellor_Yamada_lJanic (MYJ; Mellor and Yamada 1982; Janjic 2002) boundary layer scheme,
Rapid Radiative Transfer Model (RRTMG; Lacono et al. 2008) shortwave and longwave radiation
schemes, and the Noah land-surface model (Chen and Dudhia 2011). The cumulus
parameterization was turned off, due to the fine grid spacing. The time elapsed between
radiation physics calls (model parameter, radt) was set to 15 min. For the dynamics, the
vertical velocity damping (model parameter, w_damping) was turned on and the advection
options for scalars and for moisture were both set to monotonic. Since a PBL scheme was used
the K option (model, parameter, km_opt) was set to 2d deformation, which means horizontal
diffusion is diagnosed from just horizontal deformation and the vertical diffusion is assumed to
be done by the PBL scheme. Damping (model parameter, damp_opt) was set to use with
Rayleigh damping, where an implicit gravity-wave damping layer is included near and above the

tropopause. Again, these were the only changes made from the WRFV 3.7.1 default namelist.

Initialization / Selection of Cases

The WRF microphysics ensemble was run for case dates occurring during the 2016 CLUE
time period, and for selected cases from a retrospective warm season period of April-
September 2010-2012. WREF initial conditions for all cases originated from the 12 km NAM.

WRF initial conditions for the real time runs were prepared by the Center of Analysis and
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Prediction of Storms (CAPS) employees using the Advanced Regional Prediction System (ARPS)
model. The retrospective cases were included to increase the sample size and thus the
statistical significance of the results. Other than necessary differences in the initial conditions
for the real time runs (to be described below), both the real time runs and retrospective runs
used the same configuration. In total, there were 46 retrospective case dates simulated and 31
real time case dates during 2016 NOAA SFE simulated for a total of 77 cases. First, the

retrospective case date selection criteria will be described.

The 46 retrospective case dates were chosen from a larger “case date” pool, where
examination of hourly radar images revealed the presence of one or more MCSs having
convective region reflectivity of at least 40 dBZ for at least three consecutive hours in their life
cycle. MCSs were defined herein as storms that “evolve 3-6 h and longer, contain at some
stage both convective and stratiform precipitation regions, and typically attain horizontal
dimensions of at least 100 km” (Hilgendorf et al. 1998) and “include a wide variety of mesoscale
phenomena ranging from short-lived indiscriminate aggregates of a few thunderstorms to well-
organized squall lines” (Fritsch, 2001). This list of 307 case dates contained information on the
start and end times, region formed, and region dissipated. This pool was reduced by finding 63
case dates that had one or more MCSs that were simultaneously located, or that passed
through more than one region of the country (regions shown in Figure 3)°. Thus, from the
master list of 307 case dates with MCSs, 63 case dates had MCSs that traveled through more

than one specified region (in Figure 3), and of those, 46 cases dates were randomly selected for

’These regions are not related to this specific study, but are used for a follow-on study lead by
Hagenhoff and Kennedy (personal communication, 2016).
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simulation based upon available computational time. Appendix B shows the reduced list of 63
case dates and the 46 case dates within the reduced list that were simulated and included in

the data analyzed.
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Figure 3. Regions of interest (red boxes) that storms had to be located within to be considered for
inclusion.

In addition to the retrospective cases, 31 real time runs during 2016 NOAA SFE using the
WRF microphysics ensemble were also completed and added to the dataset of case dates
analyzed. This included case dates from April 20-22, 25-29, May 2-6, 9-10, 12-13, 16-20, 23-
25,27, 30-31, and June 1-3, 2016 totaling 31 real time cases. The real time runs benefitted from
improved initial conditions utilizing 3D variational assimilation (3DVAR; Xue et al. 2003; Gao et
al. 2004) of radar observations and other high-resolution observations into 12 km NAM data
using ARPS, which is known to give superior forecasts during the first 12 h of simulation (Kain
et. al 2010a)- desirable for guiding the 2016 SFE forecasters. This may at first seem to be an
important inconsistency, but data assimilation has been shown to have little impact on
forecasts when lead times are greater than 12 h. Kain et al. (2010a) showed the “memory” of

small convective features that are assimilated is lost between 6-12 h (compared to runs without
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detailed assimilation), and mesoscale forcing mechanisms increasingly dominate the convection
after 12 h into the simulation. Thus, since the work herein only analyzes model output
between 12 and 36 h into the simulation, we believe that the output from the retrospective

runs and the real time runs can be included together in the same analysis.

Object Tracking

MODE-TD was used for the analysis, which was released as an update made to the
MODE toolkit on 26 October 2015. Clark et al. (2014) was one of the first to utilize a beta
version of MODE-TD to analyze data from CAMs. The methodology herein in terms of the
configurations and analysis of MODE-TD is similar to that of Clark et al. (2014) and Goines
(2017). MODE objectively identifies objects within two-dimensional fields. Objects are
classified from a single model variable, in this case hourly precipitation accumulation. The
objects are identified through a convolution thresholding process, which applies a convolution
radius and precipitation threshold to raw® hourly precipitation data. The convolution replaces
the precipitation value at a grid point with the average of the surrounding grid points within a
specified distance. For example, if a convolution radius of four is specified, gridpoints within a
four grid point radius centered on a grid point are averaged, this averaged value then replaces
the raw value at that centered grid point. Following the convolution step, a precipitation
threshold is applied removing any grid point precipitation values less than the user specified

value. This removes areas of weak precipitation and allows the object boundaries to be

3 Raw refers to model output and Stage IV observational data.
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detected. Lastly, the original raw precipitation values are applied back to the grid points within

the identified objects (Process illustrated in Figure 2).

The aforementioned process details object identification at one time. To identify an
object through time (tracked object), MODE-TD convolves in both time and space, matches
precipitation regions forwards and backwards across all forecast times and then identifies them
accordingly with an object identity (object ID). A single object ID is assigned to two or more
precipitation regions that started as one precipitation region (common for supercell
thunderstorms that split and move away from one another) or when two or more precipitation
regions merge into a single precipitation region. Because the algorithm searches forward and
backward in time, it is able to assign a single object ID and the precipitation region at any given
time includes all of the combined precipitation regions that are encompassed by the object ID,

even if they are temporarily separate.

The number of detected objects refers to the total number of times that MODE was able
to track that region of precipitation, hour to hour, for the entire object lifespan (number of
hour counts). This number of detected objects should not be confused with object ID, which is
just an object numbering/naming system. This number of detected objects quantity is also
potentially confusing since there can be more than one identified precipitation region being
tracked by MODE-TD and each with a different lifespan. For example, if MODE-TD diagnosed
and tracked a region of precipitation that initiated during the first hour and continued to the

24" hour, the number of detected objects would equal 24 and the object lifespan would equal
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24. If MODE-TD tracked a second region that lasted only 7 h, then the total number of detected

objects would equal 31.

MODE Convolution Thresholding and Sensitivity Test

MODE-TD can be adjusted to identify precipitation regions of varying strengths. Certain
thresholds within MODE-TD will remove areas of weak precipitation, allowing focus to be on
precipitation regions convective in nature. Past studies have set length and intensity thresholds
to identify MCSs while retaining small individual precipitation regions possibly related to that of
individual thunderstorms. Dauvis et al. (2006a) expressed that the choice of convolution radius
will vary depending on the interest of the study, but a minimum of four grid points is necessary
as it relates to the scale resolved by the model. A convolution radius of four grid points was
used in Davis et al. (2006a, 2006b), Clark et al. (2014), and Goines et al. (2017). Clark et al.
(2014) also used a convolution radius of eight grid points. In addition, these studies used
precipitation thresholds ranging from 2.5 — 15 mm/hr. Utilizing the studies mentioned,
precipitation thresholds of 5 mm and 10 mm along with convolution radii of four grid points (12
km) and eight grid points (24 km) were tested for a case date (7/3/2010) to determine the most

appropriate MODE settings for the purpose of this study.

The sensitivity test showed that increasing the convolution radius or increasing the
precipitation threshold led to fewer detected objects, which was an expected outcome when
using MODE. When the precipitation threshold was increased from 5 mm to 10 mm, while
keeping the convolution radius at four grid points, the total number of detected objects was
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approximately cut in half. In addition, the average size of the detected objects decreased with
the smallest objects entailing the largest percentages. By increasing the precipitation
threshold, the stratiform and lighter convective precipitation regions are smoothed leading to
the detected objects being individual convective cells rather than larger mesoscale convective
systems. When the convolution radius is increased from four grid points to eight grid points,
while keeping the precipitation threshold at 5 mm, the number of detected objects was
significantly reduced. The reduction in detected objects mainly occurred for the smallest
objects with the larger objects being retained. This led to an increase in the average size of the
detected objects over time as the focus of the detected objects shifted towards larger sizes. To
focus more on large propagating storms rather than individual convective cells, a convolution

radius of eight grid points (24 km) and a precipitation threshold of 5 mm was selected.

Attributes of MODE Objects

MODE-TD outputs multiple object attributes and statistics. Hourly detected object
information includes centroid location and area. The addition of the temporal dimension adds
information regarding the tracked object’s velocity, start and end time (duration), and intensity
percentile of the raw data within the object. For this study, the MODE-TD attributes analyzed
were the number of detected objects and their area/size; along with attributes for tracked

objects that include initiation, dissipation, duration, velocity, and percentile [rain] intensities.

For the detected objects, the number of detected objects over time is a useful attribute
as it gives information about the total amount of precipitation regions summed over all times,
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which should be proportional to the number of storm cells and their longevity. The object area
of a detected object is a count of the grid squares a region of precipitation occupies at one time

and gives vital information concerning spatial coverage of storms.

For each tracked object, object duration allows one to gain information on a storm’s
initiation and dissipation, which is of significant importance in forecasting. The object velocity is
calculated by MODE-TD by computing the spatial difference of the precipitation region’s
centroid location over contiguous times, then averaging these distances over the duration of
the precipitation region. The centroid is the geometric center of an identified precipitation
region. Speed and direction are obtained from the object velocity, thus from object velocity
information about the storm’s propagation or track can be obtained. Object [rain] intensity
percentiles (10", 25", 50", 75" and 90") mm h™ were computed by sorting the raw (grid
point) hourly precipitation accumulation data® within each tracked object for the entire object
duration. Following traditional statistical definitions, the 50" percentile is the median of the
rain rate intensity whereas the 90" percentile would be the rain rate intensity containing the
lower 90% of rain rate values. These percentiles are computed automatically within MODE-TD.
Object [rain] intensity percentiles are useful for comparing hourly rain rate distributions and

intensities among storms.

*1f 10 mm of rainfall accumulates at a grid point over 1 h period, then the associated rain rate is
simply 10 mm h™.)
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CHAPTER Il

RESULTS

Overview

The following text within the results describes the findings from the MODE-TD analysis
performed on the aforementioned case dates. The results section details MODE-TD
characteristics in the following order: number of detected objects, detected object size
distribution, detected object size with time, and tracked object characteristics including

initiation/dissipation, duration, precipitation intensity, and velocity.

Various aforementioned characteristics of the precipitation objects to be evaluated
herein were created by MODE-TD using a precipitation threshold of 5 mm/hr and a convolution
radius of eight grid points (24 km). The analysis between Stage IV and forecasted ensemble
members included 77 case dates. The results only evaluated the last 24 forecast hours,
excluding the first 12 h (model spin-up), of each case date. Hereafter, “forecast times” only
refers to the final 24 h period of the 36 h forecast. In addition, to help reduce areas where
Stage IV lacks in coverage, the results only included objects that were within the 30 to 50 °N
and 75 to 110 °W area. To determine if the results changed by region, a supplemental analyses
was also performed for the southeastern United States (30 to 40 °N and 105 to 90 °W) and the
south central United States (30 to 40 °N and 90 to 75 °W). The supplemental analyses for the
Southeastern United States and the South Central United States are in Appendix C and

Appendix D, respectively.
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Number of Detected Objects

The total number of detected objects (i.e. the number of identified objects present over
all forecast times and case dates), along with the corresponding percentage increase relative to
Stage IV and model bias are shown in Table 2. All microphysics ensemble members produced
17 % or more detected objects compared to Stage IV. Thus, all microphysics members had a
high bias for total number of detected precipitation objects. WSM6 and Milbrandt produced
the most detected objects with 8,013 and 7,532, respectively. Therefore, they also had the
highest percentage increase relative to Stage IV with 43.1 % for WSM6 and 34.5 % for
Milbrandt. Thompson and Morrison had the least amount of detected objects out of the
forecast ensemble members with 6,599 and 6,578 respectively. As a result, they had the lowest
percentage increase relative to Stage IV with values of 17.8 % for Thompson and 17.4 % for
Morrison. In terms of occurrence of detected precipitation objects, Morrison was more
representative of the observations as it produced the amount of detected objects closest to
Stage IV, although Morrison still significantly overpredicted the total number of detected
objects. See Appendix E for number of detected objects and percentage increase relative to

Stage IV separated by 4 °N by 5 °W regions across the entire analysis domain.
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Table 2: List of MODE-TD diagnosed detected objects across all forecast hours and case dates. The
increase relative to Stage IV and model bias are also listed

Number of Increase relative to Model bias relative to Stage
detected Stage IV (%) IV (number of detected
objects objects)

Thompson
Milbrandt
Morrison
WSM6
Stage IV

The number and percentage of detected objects at each forecast time for Stage IV and
the forecast members are shown in Figure 4, respectively. Demonstrated in Figure 4a,
simulations overpredicted detected object occurrence noticeably across forecast hours before
the last six forecast hours. Although, Thompson predicted nearly the same way as Stage IV
between 0-2 UTC. Consistent with the total number of detected objects summed over all
forecast hours, WSM6 generally overpredicted the most with Thompson and Morison the least
for the majority of the forecast hours, excluding the last 8 h of simulation time. In addition, the
convective diurnal cycle was evident in the detected object curves with a minimum around
forecast hours 15-17 (15-17 UTC) followed by a sharp increase in detected object occurrence
until a peak was reached between forecast hours 22-24 (22-00 UTC). Following this peak, all
datasets had a significant reduction in number of detected objects until another minimum was
reached between forecast hours 32-34 (08-10 UTC). To mitigate issues with the high bias in
detected object occurrence the percentage of detected objects as a function of forecast hour

was illustrated (Figure 4b). Consistent with Figure 4a, simulations had a maximum and
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minimum in detected object occurrence about 2 h earlier than Stage IV, excluding Milbrandt
and Morrison. Stage IV’s peak occurred at 25 h (01 UTC). Thompson reached detected object
occurrence peak the earliest at 22 h (22 UTC), then WSM®6 at 23 h (23 UTC) and Milbrandt and
Morrison at hours 24 (00 UTC) and 25 (01 UTC), respectively. In general, the simulations
detected object occurrence curve was shifted to the left indicating all microphysics initiate and
dissipate precipitation objects earlier than observations. In terms of percentage of detected
objects with time, Morrison was most similar to Stage IV as their shape curves are similar in
both shape and percentage values, but Morrison was generally shifted 1 h earlier. Thompson
appeared to resemble Stage IV the least as it peaks the earliest and its peak percentage value
was furthest from Stage IV’s peak. In addition, Thompson did not have a noticeable drop off in
percentage of detected objects during the last 5 h (07-12 UTC) of forecast time. Bias issues
aside, Morrison best resembled percentage of detected object occurrence and Thompson the

worst.
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Figure 4. (a) Number of detected (b) percent of total detected objects ((# of objects at time / n)*100) for
the microphysics and Stage 1V at each forecast hour (UTC time). The n refers to the total number of
detected objects accumulated over all forecast hours and case dates.
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Detected Object Size Distribution

Size distributions of the detected objects for Stage IV and the microphysics forecast
members are shown in Figure 5 and Figure 6. The “size” is defined herein as the square root of
the detected object area giving a characteristic length of the detected object in km, assuming
the detected object was a square. Recall, that the object area is a count of the grid squares a
detected object occupies at a single time. Thus, to get the object size in km, the square root of
the area was taken then multiplied by the horizontal grid spacing (3 km). The detected objects

were binned into 30 km bins ranging from zero to 420 km.

Figure 5a shows the detected object count for particular object size bins over the
forecast period (final 24 h) for every simulation. All simulations overpredicted the number of
detected objects across all size intervals, excluding sizes larger than 240 km. Bins with the most
detected objects occurred at sizes less than 120 km with the peak in detected objects occurring
for the 30-60 km bin. The most likely reason that the smallest size (0-30 km) does not have the
largest percentage of detected objects across the observations and forecasts was due to the
selection of the larger convolution radius (8 grid points), which smoothed smaller objects. For
bins with sizes less than 120 km, WSM®6 overpredicted the most with Milbrandt, Thompson, and
Morrison lesser amounts, in that order. Thus, Morrison in terms of number of detected objects
was closest to observations at the smaller storm sizes (<120 km) and WSM6 had the highest
bias for detected objects at smaller storm sizes. In terms of percentage of detected objects

(Figure 5b), the simulations better resembled observations than the distribution in number of
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detected objects. In general, Thompson and WSM6 had the highest biases for the smallest bin
sizes (0-90 km) as they had the highest percentage of detected objects at these sizes.

Otherwise, there was not a systematic bias among the smallest sizes.
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Figure 5. Distribution of (a) the number or (b) percentage of detected objects ((# of objects at size /
n)*100) for each object size for all case dates

The spread of the microphysics members and the observations appeared to be largest at
the smallest detected object size intervals, with the spread decreasing towards the larger sizes.
It was difficult to analyze the bins at the largest sizes (Figure 4), due to the large difference in

detected objects at the smaller versus larger sizes, and thus, Figure 6 focuses on larger sizes.

Figure 6 like Figure 5 shows the size distribution of forecast and observed detected
objects, but Figure 6 focuses on size bins larger than 120 km, which are likely more
representative of MCSs. Like the smaller sizes, all microphysics had a high bias in number of
detected objects, excluding sizes larger than 240 km. The differential in detected objects
between the forecasts and observations seemingly decreased as the size increased. Among
small to mid-size MCSs (120-240 km), Milbrandt had the most number of detected objects,

where WSM6 had the most for sizes less than 120 km. lllustrated in Figure 6b, Stage IV for the
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most part had higher percentages for number of detected objects at sizes greater than 240 km.
Thus, detected object amount aside, the microphysics produced smaller percentages of large
MCSs than observed. Although, the low bias was relatively small between the microphysics and

Stage IV as the differences were less than 0.5%
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Figure 6. Distribution of (a) the number or (b) percentage of detected objects ((# of objects at size /
n)*100) for each object size greater than 120 km for all case dates

Overall, Morrison, Thompson, and Milbrandt consistently had the largest percentage of
detected objects for small to mid-size MCSs (120-240 km) with WSM6 agreeing most with Stage
IV. For larger MCSs (> 240 km), there was no noticeable trend among microphysics; just that
Stage IV generally exceeded schemes in percentage values. Note sizes greater than 240 km

occurred rather infrequently as all datasets had less than 1% of detected objects at each bin.

Detected Object Size with Time

Figure 7 expresses the average size of the detected objects at each hour for the

observations and microphysics ensemble members. Like Figure 5 and Figure 6 the object size

33



used in Figure 7 is the square root of the object area, representing characteristic length of the
object in km. In general, the microphysics represented the overall shape and trend of average
size with time well, but it was evident that the simulations’ peaks were shifted compared to
Stage IV and the simulations failed to represent the smaller peak between forecast hours 3-6
(15-18 UTC). Thus, the microphysics prematurely reached their peak size 2-4 h before the
observations and failed to simulate the observed smaller peak early in the forecast time.
Milbrandt and Morrison produced the largest and similar average peak size, with WSM6 and
Thompson having the smallest average peak size. Notice the last 3 h of the simulation times
(09-12z), Thompson was the only scheme that did not have a significant drop off in average
size. Subjectively, Milbrandt best represented truth as it was closest to observations in peak
size and trend in average size with time. Meanwhile, Thompson was least representative of
truth as it was among the lowest bias in peak size and did not undergo a significant drop-off in

average size the last 3 h of simulation hours.
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Figure 7. Average size (square root of area, expressed in km) of detected objects as a function of UTC
time
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Initiation / Dissipation

Figure 8 illustrates the number and percentage of newly tracked objects Figure 8a and c,
respectively) and number and percentage of discarded tracked objects (Figure 8b and d,
respectively) at each forecast hour in UTC time. First recognition is always associated with
tracked object initiation while last recognition occurs when the tracked object is discarded by
MODE-TD due to dissipation. Recall that object splitting does not initiate tracked objects. Also,
because MODE-TD counts ongoing precipitation regions at the t=12 and t=36 h as “newly-
detected” and “discarded”, respectively, then those hours are omitted from Figure 8a and
Figure 8b so that only actual object initiation and dissipation is shown. In the legend, N for each
data set represents the sum of the number of tracked objects over all cases and is the number
used when calculating the percentage. Thus, a tracked object that lasted multiple hours was
counted only once rather than each hour. In Figure 8a, the microphysics all had a high bias in
the amount of tracked objects initiated at each hour up to the forecast hour 11 (23 UTC) and
the peak object initiation was again shifted so the microphysics peaked 1-3 h earlier than
observed. This was consistent with the high bias in total number of detected objects with time
(Figure 4), and a premature peak for some microphysics schemes. Figure 8c again shows the
shift in initiation, but the newly tracked objects with time were normalized as percentages.
With the large differential in number of tracked objects aside, Morrison resembled Stage IV the

best as the percentage values were similar, but Morrison’s initiation was shifted 1 h earlier.

Figure 8b and d express tracked object dissipation with time, in terms of number of

tracked objects and percentage of tracked objects, respectively. Forecasts had a high bias in
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dissipated tracked objects at most hours before forecast hour 12 (00 UTC). In terms of
percentage of tracked objects (Figure 8d), Thompson least resembled observations as it
reached peak dissipation the earliest and dissipated the highest percentage of tracked objects
at the end of the simulations. In general, peak dissipation occurred 2-3 h earlier than observed

and there did not seem to be a best performing microphysics scheme for dissipation.
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Figure 8. The number of tracked objects that were a) newly detected and b) discarded as a function of
UTC time. The percentage of detected objects ((# of objects at time / n)*100) that were c) newly
detected and discarded d) as a function of UTC time. N represents the total number of tracked objects
summed over all the case dates.

36



Duration

Figure 9 expresses the count of tracked objects with a particular object duration (Figure
9a) and percentage of total tracked objects with a particular object duration (Figure 9b) per
dataset. The total tracked objects of each dataset are listed in the legend, as in the start/end
detection plot (Figure 8). Figure 9a shows the microphysics capture the trend and shape of the
duration curve well, but the overprediction of number of tracked objects was apparent at
object durations 6 h or less, especially for WSM6 and Milbrandt. All datasets had a peak in
object duration at 2 h with a sharp drop-off for longer durations. To detail longer durations,
which had significantly fewer objects than the shorter durations, the count of tracked objects
with a particular object duration was plotted using a log scale for the y-axis shown in Appendix
F. Figure 9b shows how similar object durations were between microphysics and observations
when the datasets were normalized to percentages of total tracked objects. At 2 h, all
simulations, excluding WSM6, had approximately 3-5 %, with respect to their total, less tracked
objects than the Stage IV. Otherwise, there were little differences between simulations and

observations.
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Figure 9. Number of tracked objects (a) and percentage of tracked objects ((# of objects at time / n)*100)
(b) as a function of object duration. N represents the total number of tracked objects summed over all
the case dates

Percentile [Rain] Intensity

Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, and Figure 15 and Table 3, Table 4,
Table 5, and Table 6 express rain intensities of the tracked objects through percentile [rain]
intensities. Tracked objects are used as in the initiation, dissipation, and duration (Figure 8 and
Figure 9) plots. The percentile [rain] intensities of a tracked object were determined by
summing up all the grid-point precipitation values within the tracked object over its life span
then calculating percentiles (10", 25", 50™, 75", and 90"). Figure 10, Figure 11, Figure 12,
Figure 13, and Figure 14 represent the 10", 25", 50", 75" and 90" percentile [rain] intensities,
respectively, of the tracked objects in terms of hourly precipitation rate and average size. The
average size of a tracked object was calculated by summing the sizes of a tracked object at each
time over its lifespan then dividing by the number of hours the tracked object was present. The
four size ranges (<60 km; 60-120 km; 120-180 km; and >180 km) for each percentile allowed for

separation of tracked objects representative of individual thunderstorms and MCSs and
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maintain consistency with the size bins used in the size distribution plots (Figure 5 and Figure
6). Note the count of tracked objects for each microphysics dataset and size range differs.
These values are shown on the right side of Figure 10 — Figure 14. Tracked objects that were

only detected once were excluded from the percentile [rain] intensity analysis.

Table 3: List of object averaged percentile precipitation intensities (mm h™) across all cases for objects
with an average size 60 km or less. Best performing forecast values are bolded.

Size: < 60 km

Thompson

Milbrandt
WSM6
Morrison
Stage IV

Table 4: List of object averaged percentile precipitation intensities (mm h™) across all cases for objects
with an average size 60 — 120 km. Best performing forecast values are bolded

Size: 60-120 km

Thompson

Milbrandt
WSM6
Morrison
Sage IV
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Table 5: List of object averaged percentile precipitation intensities (mm h™) across all cases for objects
with an average size 120 — 180 km. Best performing forecast values are bolded.

Size: 120-180 km

Thompson

Milbrandt
WSM6
Morrison
Stage IV

Table 6: List of object averaged percentile precipitation intensities (mm h™) across all cases for objects
with an average size greater than 180 km. Best performing forecast values are bolded.

Size: > 180 km

Thompson
Milbrandt
WSM6

Morrison
Stage IV
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10th Percentile Precipitation Intensity

xxx ST4, N = 1242
e0e Thompson, N = 1388
000 Milbrandt, N = 1579
e®e WSM6, N = 1769
HOK X KK X X e®e Morrison, N = 1400 15
© o om0 00 © ° 17
—_ paooma» oo o 19
E e o . 18
= o0 ® mm® o000 16
b 1)
& 180 | l g
8 oomoocmonnconee x| x X% X x o &
i FOXOoIOmanoND o 0 O ° 62 O
o [EImo . ocoowo o o 71 o
Q  ————r—eied L] 78 }"
= e e S n
R N g
B 120f C
g S 349 ©
[v] e ———er e 397 #
E OO DICDOGBOCHO0D0 0 @ 4;;
RO IXORIIOMCEIOXO0 CIODOO00. . A
- 391
sof 111 ; ;
MEROOK XX x 831
L L] 912
600006 o 101
o @ o 1205
® o o 914
0 LI . . . .
0 2 4 6 8 10 12

Hourly Precipitation Rate (mm/hr)

Figure 10. Tracked object 10" percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 10"
percentile precipitation intensities of all the tracked objects within the corresponding size range.

25th Percentile Precipitation Intensity
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Figure 11. Tracked object 25" percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 25"
percentile precipitation intensities of all the tracked objects within the corresponding size range.
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50th Percentile Precipitation Intensity
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Figure 12. Tracked object 50™ percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 50"
percentile precipitation intensities of all the tracked objects within the corresponding size range.

75th Percentile Precipitation Intensity
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Figure 13. Tracked object 75 percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 75"
percentile precipitation intensities of all the tracked objects within the corresponding size range.
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90th Percentile Precipitation Intensity
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Figure 14. Tracked object 90" percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 90"
percentile precipitation intensities of all the tracked objects within the corresponding size range.

Average Percentile Precipitation Intensity

180

120

Object Average Size (km)

60 -

i H
0 5 10 15 20 25 30
Hourly Precipitation Rate (mm/hr)

Figure 15. Tracked objects averaged precipitation percentile intensities from Figure 10, Figure, 11, Figure
12, Figure 13, and Figure 14 plotted together. Following the color convention of previous figures, black
refers to observations, blue WSM6, red Thompson, green Morrison, and yellow Milbrandt.

To aid in the interpretation of the percentile [rain] intensities that were generated by
grouping all case dates, Figure 16 was created for only a single case date. Figure 16 illustrates
hourly precipitation values applied within the MODE defined objects. Figure 16 shows one
forecast hour and one object for each microphysics and Stage IV from a retrospective case date
(initialized 7/19/2010). This case date was selected from the 46 simulated retrospective case

dates based off the criteria that there were a sufficient amount of detected objects across all
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forecast times, and the case date was similar to the statistical analysis trend of detected object
size with time and detected object number with time. The 17" forecast hour was selected
because that forecast time had the largest average object size among the microphysics. Figure
17 — Figure 21 express the percentile [rain] intensities for the case date (initialized 7/19/2010).
The percentile [rain] intensities that are outlined by boxes correspond to the objects in Figure
16. Note that these percentile [rain] intensities are calculated over the lifespan of the tracked

object, not at one time.

Observing Figure 16, Thompson, Milbrandt, and WSM6 all appear to have stronger
convective regions compared to Stage IV and Morrison as they have higher peak precipitation
values. This is quantitatively expressed in Figure 20 and Figure 21 where WSM6, Milbrandt, and
Thompson all have higher 75" and 90" percentile values than Stage IV and Morrison for the
respective objects shown in Figure 16. Also, in Figure 16 it appears that there is more of an
abrupt transition from the weaker to stronger precipitation values for WSM6 and Milbrandt
compared to Stage IV. WSM6’s and Milbrandt’s weak intensity bias for the 10" and 25"
percentiles is shown in Figure 17 and Figure 18 where their 10" and 25" percentiles values are
the lowest. Thus, indicating that WSM6 and Milbrandt produced a weaker stratiform region
and stronger convective region relative to Stage IV. As what will be shown in the following text,
the results for this case study were consistent with the statistical analysis performed, excluding
the large percentile [rain] intensity values produced by Thompson for the 75" and 90™

percentiles.
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Figure 16. A MODE object for each microphysics ensemble member and Stage IV with the raw hourly
precipitation values inside the object. Precipitation values are in mm. Valid for forecast hour 17 (12z

07/19/2010 - 12z 07/20/2010).
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Figure 17. Tracked object 10" percentile precipitation intensities sorted by object average size (<60 km,
60-120 km, 120-180 km, and > 180 km) for tracked objects. Vertical lines are the averaged 90"
percentile intensities of the tracked objects within the corresponding size range. Valid for one case (12z
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25th Percentile Precipitation Intensity
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Figure 18. Tracked object 25" percentile precipitation intensities sorted by object average size (<60 km,
60-120 km, 120-180 km, and > 180 km) for tracked objects. Vertical lines are the averaged 90"
percentile intensities of the tracked objects within the corresponding size range. Valid for one case (12z
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Figure 19. Tracked object 50" percentile precipitation intensities sorted by object average size (<60 km,
60-120 km, 120-180 km, and > 180 km) for tracked objects. Vertical lines are the averaged 90"
percentile intensities of the tracked objects within the corresponding size range. Valid for one case (12z
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07/19/10 - 12z 07/20/10). Boxes correspond to the objects in Figure 16.

46



Tracked Object Size (km)

180

120

60|

75th Percentile Precipitation Intensity

xxx ST4,N =25

000 Milbrandt, N = 37
o0 WSM6, N = 52
= e®e Morrison, N = 42

00e Thompson, N = 37

Hourly Precipitation Rate (mm/hr)

25

Figure 20. Tracked object 75 percentile precipitation intensities sorted by object average size (<60 km,
60-120 km, 120-180 km, and > 180 km) for tracked objects. Vertical lines are the averaged 90"
percentile intensities of the tracked objects within the corresponding size range. Valid for one case (12z
07/19/10 - 12z 07/20/10). Boxes correspond to the objects in Figure 16.
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Figure 21. Tracked object 90" percentile precipitation intensities sorted by object average size (<60 km,
60-120 km, 120-180 km, and > 180 km) for tracked objects. Vertical lines are the averaged 90"

percentile intensities of the tracked objects within the corresponding size range. Valid for one case (12z
07/19/10 - 12z 07/20/10). Boxes correspond to the objects in Figure 16.

Figure 10 shows that across all size ranges the averaged 10" percentile [rain] intensities

were consistent between microphysics with Thompson and Morrison having the largest and

WSM6 the smallest.

All microphysics had low intensity biases relative to observations,

excluding Morrison at sizes less than 60 km. Morrison performed closest to observations with
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Thompson a close second. WSM6 and Milbrandt had the largest magnitude of low negative
average 10" percentile biases across all sizes. WSM6's 10" percentile averages were
approximately 1 mm/hr less than Stage IV across most sizes (Tables 3-6). Milbrandt’s low bias
for the 10" percentile average was not as significant as WSM6’s bias, but still larger in
magnitude than Morrison and Thompson. The relative magnitude of the biases between
schemes in the 25™ percentile averages (Figure 11) was similar to the 10" percentile averages.
In other words, the microphysics schemes were weaker than observations, excluding Morrison
at sizes less than 120 km, and were ordered similarly, relative to each other. Overall, Morrison
and Thompson best represented truth with Morrison closest to observed. The WSM6 and
Milbrandt schemes were least representative of Stage IV with WSM6 performing the worst.
Thus, for lighter rain (10™ and 25™ percentile intensities) Morrison and Thompson tracked
objects produced precipitation rates closest to Stage IV, and WSM6 objects produced rates

furthest from observed.

The 50 percentile (a.k.a. median) [rain] intensities and the corresponding averages are
illustrated in Figure 12. Unlike the 10" and 25 averaged percentiles, there was no longer a
low intensity bias across the majority of the microphysics and sizes. Unlike other percentiles,
Morrison did not perform well. In general, WSM6 tracked objects best-represented median

precipitation intensity values within simulated storms.

Figure 13 and Figure 14 show the 75" and 90" percentile [rain] intensities, respectively.
Unlike the low percentile intensities (10™ and 25"), the high percentile intensities (75™ and

90"™) for the forecasts had more of a high bias in rain rates. . WSM6 performed the worst when
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predicting intense storm rain rates by producing the highest biases and largest differentials
from Stage IV. Meanwhile, Thompson captured rain intensities quite well for the 75"
percentile and Morrison for the 90" percentile. Thompson and Morrison for the 75" and 90"
percentiles have the smallest differentials from Stage IV. Thus, when forecasting convective
precipitation, Thompson and Morrison were most likely to produce intensities similar to

observations.

Figure 15 is a summary plot that displays the tracked object-averaged percentile
intensities from all percentiles for the four size ranges. Plotting the 10", 25" 50" 75™ and
90" percentiles together made it is easier to compare the range of precipitation rates between
the microphysics and Stage IV. In general, across all sizes the WSM6 had the largest relative bias
in average rain percentiles, thus having the largest spread from the 10™ to 90™ percentiles
making WSMG6 the furthest from observations. Morrison performed best as its averaged rain
rates across all percentiles and sizes closely resemble observations. Thompson also performed
well, as its averaged rain rates did not deviate from observations nearly as much as Milbrandt
and WSM6. Therefore, despite having overpredicted the number of detected objects, the
Morrison microphysics scheme best matched the observed rain rate intensities and

distributions.

Velocity

Figure 22. illustrates the tracked object-averaged velocity components and magnitude
as a function of tracked object duration. The object velocity is the average velocity for all
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tracked objects of the specified duration. Thus, all tracked objects across all cases were
separated according to their duration then the average tracked object’s u- and v-components
and magnitude of the velocity were calculated for each duration. Only durations with at least
ten total tracked objects were considered; thus durations of more than 14 h were not
considered. Note there were significantly more tracked objects at shorter durations than
longer durations (see Figure 9), thus the averages at shorter durations were more heavily

weighted.

In general, as the object duration increased in simulations or observations, the u-
component of the velocity also increased (Figure 22a). In addition, for all durations, the
average u-velocity was positive, indicating the simulated and observed tracked objects, on
average, propagate to the east. The average v-velocity (Figure 22b) for microphysics and
observations at shorter durations had slight positive values for duration, indicating that storms
with northward movement dominated over storms that had southward movement. As the
duration increased, the simulations and observations did not appear to have a noticeable trend.
In general, datasets had a much stronger u-velocity than v-velocity component. This was
affirmed with the magnitude of the velocity (Figure 22c), which looks significantly similar to the

u-velocity (Figure 22b).

The simulations tended to have a slow bias across durations greater than 5 h for u-
velocity and durations of 5-7 h for the magnitude of velocity. Simulations had a slow bias in
magnitude for durations 5-7 h with a bias as low as approximately 8 km/hr. Thompson

performed slightly better at durations less than 6 h and Milbrandt performed better at the
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longest durations (> 10 h) as it also had a spike in u-velocity at duration hours 12 and 13. In
summary, the simulations all had a slight slow bias in storm propagation between durations 5-7
h with better representation at durations less than 10 h and more variation for longer duration

objects (~¥12 km/hr difference).

U-Component V-Component 7 Magnitude

Tracked Object Velocity (km/hr)
Tracked Object Velocity (km/hr)
Tracked Object Velocity (km/hr)

12

2 7 3 8 10 12 14 2 4 3 8 10 12 14 2 2 6 8 10 12 14
Duration (hours) Duration (hours) Duration (hours)

Figure 22. Tracked objects averaged velocity for the u-component (a), v-component (b), and
magnitude(c) as a function of object duration. Only objects with durations of 14 h or less are plotted

The tracked object-averaged velocity components and magnitude as a function of
tracked object duration, but only for objects greater than 120 km were also plotted to focus on
large tracked objects similar in size of an MCS. But, this was not included herein because there

were no noticeable trends of significance.

Analysis Summary

Table 7 summarizes the best performing microphysics scheme for the MODE-TD
characteristics analyzed in the results. The MODE-TD characteristics in the table include: total
number of detected objects (Table 2), number of detected objects with time (Figure 4a),
percentage of objects with time (Figure 4b), size distribution of detected object count (Figure

5a), size distribution of percentage of detected objects (Figure 5b), detected object size with
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time (Figure 7), number of newly tracked objects (Figure 8a), percentage of newly tracked
objects (Figure 8c), number of discarded tracked objects (Figure 8b), percentage of discarded
objects (Figure 8d), the 10" — 90™" percentile [rain] intensities (Figure 10, Figure 11, Figure 12,
Figure 13, and Figure 14) and tacked object velocity (Figure 22). The determination of the best
performing microphysics for each attribute was chosen based off the plots in the analysis. The
affiliated plot of each MODE-TD characteristic was examined independently and weighted
equally. Note that MODE-TD characteristics that were analyzed in terms of both number and
percentage of objects were scored separately. Morrison was the best performing microphysics
scheme with nine and a half points and Milbrandt was the worst performing scheme with only

three points.
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Table 7: Best performing microphysics for each MODE-TD characteristic. Checkmarks (v’) represent a
clear winner and are worth 1.0 point. Hyphens (-) represent no clear best performing microphysics or tie
for best performing microphysics and are worth 0.5 points.

Thompson Milbrandt Morrison WSM6

Total # of -
detected objects

# of detected
objects with time

% of detected v
objects with time

Size distribution

(#)

Size distribution
(%)

Size with time v
Initiated (#) - -
Initiated (%) - -
Dissipated (#) - -

Dissipated (%) - - -
Duration (#) - -

Duration (%) v

<

th
10 Percentile

th
25 Percentile v
th
50 Percentile v
th
75 Percentile v

th
90 Percentile v

Velocity - - - -

Total: 4.5 3.0 9.5 3.5
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CHAPTER IV

DISCUSSION

Implications to Forecasting

As mentioned earlier, previous studies have shown that the choice of microphysics
parameterization significantly affects simulated convective storm structure and intensity. The
study herein examined sensitivities of simulated convective events due to the choice of
microphysics parameterization over a large number of cases that span a variety of spring and
summer conditions, in hopes of obtaining results and systematic biases that are more
significant than examining a single case study. Therefore, obtaining results that could aid
forecaster when interpreting model guidance. In addition, the results could help indicate a best
performing microphysics scheme that could be implemented more widely among operational
models. The utilization of MODE-TD to analyze the results was deliberately used as it provides
many performance metrics useful to an operational forecaster. Model behavior and bias was
established by analyzing precipitation regions with time using MODE-TD, which does not rely on
point-to-point, verification methods, but rather uses an object-based approach that replicates
more of the forecaster’s interpretation of skill of model guidance. MODE-TD distinguishes
individual storms and gives quantitative metrics, such as size, intensity, propagation speed that
common verification methods are not capable of doing. Thus, by utilizing MODE-TD for the
analysis and analyzing a multitude of cases, the study herein was able to gather results that are

transferable to operational forecasting.
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In general, the results revealed previously-established and well-known conclusions for
CAM forecasts and lesser-known conclusions specific to microphysics scheme choice, all of
which have forecast implications. The well-documented conclusions include CAMs tendency to
overforecast surface rainfall and over simulate the occurrence of convective storms. Thus, the
high precipitation bias reaffirmed in this study reiterates a CAM bias forecasters should
continue to take into consideration. As mentioned earlier, Milbrandt and the sole single-
moment scheme in the study, WSM®6, were the two worst performing schemes, with Milbrandt
performing the worst. It is surprising that Milbrandt performed the worst as it is the most
complex scheme within the microphysics ensemble used in this study. On the contrary is not
that surprising that WSM6 was not among the best performers, as many studies have shown
double-moment schemes outperform single-moment schemes when simulating convective
storm structure and intensity. Although Morrison was declared the best performing
microphysics scheme based off the ranking criteria used in this study, there was no clear best
performer in the schemes tested as Morrison was not consistently the best performer across all
of the MODE-TD characteristics. The results from this study also support the use of
probabilistic forecasting utilizing ensembles rather than a single deterministic solution as there

is no clear best performer among microphysics.

Overprediction of Detected Objects

The overforecast of detected objects by all microphysics is one of the most noticeable

biases evident from the results herein. WSM6 and Milbrandt had the largest biases with
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percentage increases relative to Stage IV of 43.1% and 34.5%, respectively; and Morrison and
Thompson had the smallest biases of 17.4% and 17.8%, respectively. On the contrary, Clark et
al. (2014) found Thompson to have the largest bias in detected objects when comparing
simulated forecasts from WSM6, WDM®6, Morrison, and Thompson to Stage IV. The
discrepancy is most likely due to the difference in choice of precipitation thresholds and
convolution radii between studies. Clark et. al (2014) used smaller thresholds and radii
retaining the weaker smaller precipitation areas, which Thompson seems to generate the most
of. By increasing the precipitation threshold and convolution radius the smaller, weaker
precipitation regions are smoothed Yet, the simulations and observations herein still produced

many small objects (30 — 60 km); more than any other size range.

The high precipitation bias found is not abnormal as CAMs typically overpredict
precipitation based off the findings from previous studies (Davis et al. 2009, Johnson et al.
2013, Clark et al. 2014, and Goines 2017). The exact reason why CAMs tend to have a high bias
in precipitation remains unknown. Johnson et al. (2013) suggested it is due to errors within the
model dynamics and physics, which is a broad reason and does not further clarify the problem.
Davis et al. (2009) suggested the source of the problem might be from the misrepresentation of
numerical dissipation leading to excessive small-scale convection. While Goines et al. (2017)
hypothesized the model bias may be from the choice of microphysics scheme; the work herein
indicates that all microphysics schemes significantly overproduce rain regions, indicating the
choice of microphysics is not the sole reason for the high precipitation bias. Although, some
schemes are more likely to produce a higher occurrence of rain regions. Still one cannot
completely rule out microphysics, because all microphysics may treat a process or make an
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assumption in a similar manner causing the precipitation bias. One possibility that can be ruled

out is the choice of CPS since that was turned off in these CAM simulations.

Microphysics Performance

Based of the microphysics performance (Table 7) and interpretation of the plots
displaying the objective and quantitative MODE-TD attributes, Morrison performed the best
overall and Milbrandt the worst. Note that the interpretation of the plots and the weights
applied to each MODE-TD characteristic could affect the ranking scores. In addition, Morrison

did not did not outperform the other microphysics in all the MODE-TD characteristics.

A noteworthy result is the microphysics performance for the percentile [rain] intensities.
Morrison best represented percentile [rain] intensities in simulated storms, while WSM6
performed the worst. WSM®6 had the largest spread and Milbrandt the second largest spread in
rain rate distributions. They produced the lowest rain rates for the smallest percentiles (10"
and 25™) and the highest rain rates for the largest percentiles (75" and 90™), possibly indicating
a poor representation of typical progressive transition of rain rates between the convective and

stratiform regions.

The differences in percentile [rain] intensities and distributions can possibly be
attributed to the differences in predicted moments and species among microphysics schemes.
WSMBG6 is the only single-moment scheme used in the microphysics ensemble; therefore, it does

not include number concentration as a prognostic variable. Double-moment schemes have
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been shown to better represent the convective and stratiform regions and associated transition
between regions within a storm, for case studies and idealized 2D studies. Single-moment
schemes, such as WSM6 herein, tend to overpredict peak convective rainfall and underpredict
light stratiform rainfall, suggesting why WSM6 produced the lowest rain rates for the 10" and
25" percentiles and the highest rates for the 75" and 90™ percentiles. These findings are
supported in Morrison et al. (2009) and Bryan and Morrison (2012). The Milbrandt scheme had
the largest spread of rain intensities among double-moment schemes in the microphysics
ensemble herein. The differences in performance among double-moment schemes (Thompson,
Morrison, and Milbrandt) are most likely due to the representation of rimed ice species
between the schemes. Other microphysical properties, such as the representation of particle
species and assumptions that may differ between schemes could also be reason for the
differences. Milbrandt includes hail as a prognostic species in contrast to Morrison and
Thompson, which only predict graupel. Schemes containing hail tend to produce the most
precipitation and highest peak reflectivities in the convective region, but underpredict peak
reflectivity and precipitation in the stratiform region (e.g., Gilmore et al. 2004b and Wu et al.
2013). Thus, this could explain why Milbrandts’ 10" and 25" percentile [rain] intensities were
the lowest and the 75™ and 90" percentiles were the highest, making it the worst performing
microphysics among the double-moment schemes for the percentile [precipitation] intensity

characteristic.
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Limitations / Weaknesses

As in all studies, some limitations exist within this study. This study only analyzed the
microphysics ensemble simulations using one combination of a precipitation threshold and
convolution radius. Although, sensitivities of CAM analysis do arise depending on choice of
precipitation threshold and convolution radius as explained in past studies (Clark et al. 2014
and Goines et al. 2017). After deliberation, it was decided that there was little significance in
performing the analysis using multiple MODE thresholds and radii because past studies have
done so and our focus was on large propagating convective systems. Upon further analysis, it
maybe helpful to adjust to a larger convolution radius to further the focus on MCSs and
eliminate small scale convection that might impact the results. Although, this may not be the
best option as this could smooth too much and possibly remove convective precipitation
regions important to the formation of MCSs. Another option would be to discard short-lived

objects from the statistical analysis.

There are also a few limitations, assumptions, or nuances to consider when interpreting
the results. These include the size assumption, object identification process,
initiation/dissipation of tracked objects at first/last lead times, and poor model initialization.
Recall that when determining object size, the size was calculated by taking the square root of
the area, which is a count of the grid squares a region of precipitation occupies. The resulting
length, as calculated herein, corresponds to a side of a square — often quite unlike the original
storm’s shape. A nuance to be considered arises when MODE-TD identifies a tracked object.

MODE-TD also identifies individual precipitation regions that merge into one precipitation
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region or split into separate precipitation regions as one tracked object overtime. Thus, this
needs to be considered when analyzing the MODE-TD characteristics of tracked objects
(initiation, dissipation, duration, precipitation percentile intensities, and velocity). Also, MODE-
TD inherently identifies tracked objects present at the first analysis time (12 UTC) as newly-
detected and precipitation regions remaining during the last forecast time as discarded. Storms
may, in fact, be ongoing at both of those times. Thus, this may affect the tracked object
attribute duration as MODE-TD could have identified objects as being first initiated or
dissipated when they actually were not. Lastly, the results do not consider simulations that
initialized poorly where all microphysics schemes performed poorly from the start and never
capture the main convective activity. To investigate further the affect of model initialization,
selected MODE-TD attributes were analyzed, which were separated by real-time and

retrospective cases (Appendix G).

Future Work

For future work, further analysis could be performed separating simulations that
captured the presence of the MCS or main convective activity versus those that did not. It is
possible that there were some case dates where all simulations performed poorly and there
was little resemblance to the Stage IV observations. Thus, the intercomparison of microphysics
for these cases would be of little use because the main convective activity or MCS was not
present. In addition, separating the small-scale convection and MCSs as to focus the analysis

more on large-scale convection would provide further insight on the impact of microphysics on
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MCS behavior or structure. One could possibly address this by applying a larger convolution
radius when utilizing MODE-TD to help eliminate small scale convection, although as mentioned
previously, this may smooth/remove precipitation regions pertinent to MCS formation. A more
robust study that considers the impact of the boundary layer scheme, the roles of particle
processes and assumptions within the microphysics, and the model dynamics would also be of
use to determine the reason for the high precipitation bias. Lastly, analyzing the microphysics
ensemble simulations according to synoptic regime would reveal information regarding the

performance of microphysics across varying atmospheric conditions.

CHAPTER V

CONCLUSIONS

This study performed a detailed analysis of convective simulations from a 4-member
microphysics WRF ensemble. These convective simulations included 77 total case dates from
retrospective simulations spanning from 2010-2012 and real-time simulations performed during
the 2016 NOAA Spring Forecast Experiment (SFE). The microphysics schemes in the ensemble
included WSM6, Thompson, Morrison, and Milbrandt. The convective simulations were
compared to Stage IV gauge-adjusted radar derived precipitation and analyzed using MODE-TD.
The main objective of this study was to analyze the impacts microphysics parameterization,
within high-resolution models, have on simulated convective properties, mainly MCSs, in hopes

of aiding operational forecasting. Key results from this study included:
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There was an overprediction of total detected objects by all microphysics schemes
with WSM6 the most and Morrison the least.

For all microphysics schemes and Stage 1V, the 30 — 60 km size range had the most
detected objects.

The simulations represented temporal trends in detected object size well, but the
simulations were shifted earlier than Stage IV. Milbrandt and Morrison had a large
bias in detected object size, while Thompson and Morrison had a small bias.

All microphysics schemes all captured trend of object duration well with Morrison
and Thompson performing best for duration, in terms of number tracked objects,
and WSMG6 performing best for duration, in terms of percentage of tracked objects.
All datasets had a peak object duration of 2 h with a sharp drop off for longer
durations.

Morrison matched Stage IV the best and WSM6 the worst for percentile
[precipitation] intensities.

Based off the ranking criteria herein, Morrison was the best performing

microphysics scheme overall and Milbrandt the worst.
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APPENDIX A
WRF Namelist Variables

Table A1: List of the WRF namelist variables and the settings used for the retrospective and real-
time runs.

Namelist Variable Value
&time_control

run_days 1,
run_hours 12,
run_minutes 0,
run_seconds 0,
start_year 2016,
start_month 05,
start_day 24,
start_hour 00,
start_minute 00,
start_second 00,
end_year 2016,
end_month 05,
end_day 25,
end_hour 12,
end_minute 00,
end_second 00,
interval_seconds 10800,
input_from_file true.,
history_interval 60,
frames_per_outfile 1,
restart false.,
restart_interval 5000,
io_form_history 2,
io_form_restart 2,
io_form_input 2,
io_form_boundary 2,
debug_level 0,
history_outname Jwrfout_d<domain>_<date>",
nwp_diagnostics 1,
output_ready_flag true.,
/

&domains

time_step 15,
time_step_fract_num 0,
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time_step_fract_den 1,
max_dom 1,
s_we 1,
e_we 1681,
s_sn 1,
e_sn 1153,
s_vert 1,
e_vert 51,
num_metgrid_levels 40,
dx 3000,
dy 3000,
grid_id 1,
parent_id 0,
i_parent_start 1,
j_parent_start 1,
parent_grid_ratio 1,
parent_time_step_ratio | 1,
feedback 1,
smooth_option 0,

eta_levels
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mp_zero_out_thresh e-8,
do_radar_ref ,
cugd_avedx ,
maxiens ,
maxens )
maxens2 ,
maxens3 16,
ensdim 144,
lightning_option 0,
lightning_dt 18,
lightning_start_seconds | O,
flashrate_factor 1.0,
cellcount_method 1,
iccg_method 2,
num_land_cat 24,
prec_acc_dt 60.,
hailcast_opt 1,
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&fdda

/

&dynamics

w_damping 1,
diff_opt 1,
km_opt 4,
diff_6th_opt 0,
diff_6th_factor 0.12,
base_temp 290.00,
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damp_opt 3,
zdamp 5000.,
dampcoef 0.2,
khdif 0,
kvdif 0,
non_hydrostatic true.,
moist_adv_opt 2,
scalar_adv_opt 2,
use_input_w false.,
iso_temp 0,

/

&bdy_control

spec_bdy_width 5,
spec_zone 1,
relax_zone 4,
specified true.,
nested false.,
/

&grib2
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&namelist_quilt
nio_tasks_per_group 0,
nio_groups 1,

/

&dfi_control
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&afwa

afwa_diag_opt 1,
afwa_severe_opt 1,
afwa_ptype_opt 0,
afwa_buoy_opt 0,
afwa_therm_opt 0,
afwa_turb_opt 0,
afwa_radar_opt 0,
afwa_vil_opt 0,
afwa_icing_opt 0,
afwa_vis_opt 0,
afwa_cloud_opt 0,

/

&stoch

stoch_force_opt 0,
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stoch_vertstruc_opt 0,
tot_backscat_psi 1.E-05,
tot_backscat_t 1.E-06,
nens 1,
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Appendix B
Retrospective Case Dates

Table B1: Chronological listing of the reduced retrospective case dates with one or more MCSs
traveling through the specified regions in Figure 3. The regions are southern Great Plains (SGP),
northern Great Plains (NGP), Midwest (MW), Northeast (NE), and Gulf Coast (GC). The ‘x’in the
simulated column, represents the retrospective case dates simulated and included in the
statistical analysis.

Simulated | Year | Month | Day | SGP | NGP | MW | NE | GC | Total

X 2010 4 7 1 1 2
X 2010 4| 23 1 1 2
X 2010 4| 24 1 1 2
X 2010 5 12 1 1 2
X 2010 5 15 1 1 2
X 2010 5| 24 2
X 2010 51 29 1 1 2
X 2010 5|1 30 1 1 2
X 2010 51 31 1 2
X 2010 6 1 1 1 2
X 2010 6 4 1 1 1 3
X 2010 6 5 1 2
X 2010 6 8 1 1 1 3
X 2010 6 10 1 1 2
X 2010 6 12 1 1 2
X 2010 6 13 1 1 2
X 2010 6 14 1 1 1 4
X 2010 6 15 1 1 2
X 2010 6 17 1 1 2
X 2010 6 18 2 2
X 2010 6| 22 1 1 2

2010 6| 26 1 1 2
X 2010 6| 28 1 1 2
X 2010 7 3 1 1 2
X 2010 7 5 1 1 2
X 2010 7 12 1 1 2
X 2010 7 16 1 1 2
X 2010 7 19 2
X 2010 7| 22 1 1 1 3
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X 2010 7| 23 1 1 2
X 2010 7| 24 1 1 1 3
X 2010 8 4 1 2
X 2010 8| 10 1 2
X 2010 8| 13 1 2
2010 8| 15 1 2
2010 8| 16 1 2
2010 8| 21 1 2
2010 8| 31 1 1 2
X 2010 9 1 1 1 3
2010 9 2 1 1 2
2011 4 3 2 2
2011 4 4 1 2
2011 4| 11 1 2
2011 4| 15 1 2
2011 4| 19 2
2011 4| 24
X 2011 4| 25
2011 4| 26 1 2
X 2011 5| 13 2 1 3
X 2011 5| 18 1 2
X 2011 5| 20
X 2011 5| 21 3
2011 5| 22 2
2011 5| 23 1 2
2011 5| 24
X 2011 6| 10 1 1 3
2011 6| 17 2 1 5
X 2011 6| 28 1 1 3
X 2011 7| 14 1 3
X 2011 7] 26 1 3
X 2011 8 6 1 1 3
X 2012 5 6 1 1 3
X 2012 8 9 1 3

78




Appendix C
South Central US Region (40° to 30° N and 105° to °90 W)

In general, the results for the south central region were similar to the results from the
analysis domain used for the main analysis of the paper. A high bias in detected objects across
all microphysics was still evident in the south central region, with WSM6 and Milbrandt
overpredicting the most. In addition, the performance of the microphysics schemes for the
MODE-TD characteristics of initiation/dissipation, duration, and percentile [precipitation]
intensities had little difference than the results from the main analysis. One noticeably
difference was that all microphysics underpredicted the detected object size across most
forecast hours (Figure C4), which was not the case in the main analysis.
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Figure C1: (a) Number of detected (b) percent of total detected objects ((# of objects at time / n)*100) for

the microphysics and Stage IV at each forecast hour (UTC time). The n refers to the total number of
detected objects accumulated over all forecast hours and case dates.
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Figure C2: Distribution of (a) the number or (b) percentage of detected objects ((# of objects at size /

n)*100) for each object size for all case dates
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Figure C3: Distribution of (a) the number or (b) percentage of detected objects ((# of objects at size /
n)*100) for each object size greater than 120 km for all case dates
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Figure C4: Average size (square root of area, expressed in km) of detected objects as a function of UTC
time
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Figure C5: The number of tracked objects that were a) newly detected and b) discarded as a function of
UTC time. The percentage of detected objects ((# of objects at time / n)*100) that were c) newly
detected and discarded d) as a function of UTC time. N represents the total number of tracked objects
summed over all the case dates.
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Figure C6: Number of tracked objects (a) and percentage of tracked objects ((# of objects at time /
n)*100) (b) as a function of object duration. N represents the total number of tracked objects summed
over all the case dates
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Figure C7: Tracked object 10" percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 10"
percentile precipitation intensities of all the tracked objects within the corresponding size range.
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25th Percentile Precipitation Intensity
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Figure C8: Tracked object 25" percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 25"
percentile precipitation intensities of all the tracked objects within the corresponding size range.
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Figure C9: Tracked object 50™ percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 50"
percentile precipitation intensities of all the tracked objects within the corresponding size range.
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75th Percentile Precipitation Intensity
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Figure C10: Tracked object 75 percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 75"
percentile precipitation intensities of all the tracked objects within the corresponding size range.
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Figure C11: Tracked object 90" percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 90"
percentile precipitation intensities of all the tracked objects within the corresponding size range.

85



Appendix D
Southeastern US Region (40° to 30° N and 90° to 75° W)

Similar to the south central region (Appendix C), the results for the southeastern region
were similar to the main analysis results. A noticeable difference from the main analysis was
with object size at each forecast hour (Figure D4). All microphysics overpredicted the sizes at
each forecast hour, excluding, the first 6 h, which was not the case in the main analysis.
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Figure D1: (a) Number of detected (b) percent of total detected objects ((# of objects at time / n)*100) for
the microphysics and Stage IV at each forecast hour (UTC time). The n refers to the total number of
detected objects accumulated over all forecast hours and case dates.
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Figure D3: Distribution of (a) the number or (b) percentage of detected objects ((# of objects at size /
n)*100) for each object size greater than 120 km for all case dates
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Figure D4: Average size (square root of area, expressed in km) of detected objects as a function of UTC
time
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Figure D5: The number of tracked objects that were a) newly detected and b) discarded as a function of
UTC time. The percentage of detected objects ((# of objects at time / n)*100) that were c) newly
detected and discarded d) as a function of UTC time. N represents the total number of tracked objects
summed over all the case dates.

88



250 35

— 514, N=482 — 5T N=a82
Milbrandt, N = 583 Milbrandt, N = 583
w— \WSM6, N = 642 30 w— \WSM6, N = 642
== Morrison, N = 499 [ == Morrison, N = 499
200 == Thompson, N = 496} ] == _Thompson, N = 496|
2 3
i o250
a o
] o
150 Q
3 < 20}
Y4
] i
£ = i
w“
% v 15f
S 100\ o
3 8
IS 3 10
2
50 a
5
a b
0 i - 0 H =S C——
0 6 12 18 24 0 6 12 18 24
Object Duration (hours) Object Duration (hours)

Figure D6: Number of tracked objects (a) and percentage of tracked objects ((# of objects at time /
n)*100) (b) as a function of object duration. N represents the total number of tracked objects summed
over all the case dates
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Figure D7: Tracked object 10" percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 10"
percentile precipitation intensities of all the tracked objects within the corresponding size range.
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Figure D8: Tracked object 25" percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 25"
percentile precipitation intensities of all the tracked objects within the corresponding size range.

50th Percentile Precipitation Intensity

xxx ST4, N = 456
eoo Thompson, N = 479
000 Milbrandt, N = 568
eee WSM6, N = 626
000 Morrison, N = 484

120} Il |

Tracked Object Size (km)

60} 11

o
, T ‘
0 5 10 15 20
Hourly Precipitation Rate (mm/hr)

Figure D9: Tracked object 50™ percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 50"
percentile precipitation intensities of all the tracked objects within the corresponding size range.
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75th Percentile Precipitation Intensity
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Figure D10: Tracked object 75 percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 75"
percentile precipitation intensities of all the tracked objects within the corresponding size range
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Figure D11: Tracked object 90" percentile precipitation intensities sorted by object average size (<60km,
60-120-km, 120-180km, and > 180km) for all tracked objects. Vertical lines are the averaged 90"
percentile precipitation intensities of all the tracked objects within the corresponding size range
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Appendix E
Detected Object Count Per Region

To determine if there were any biases in number of detected objects specific to regions
of the analysis domain, the analysis domain was separated into 4 °N by 5 °W. Tables E1 and
Table E2 show the number of detected objects and percentage increase relative to Stage IV,
respectively. Notice in the 50-46 °N by 85-80 °W and 80-75 °W regions there was a significant
overprediction of detected objects. This was due to the lack of Stage IV coverage (north of the
Great Lakes). At about 1 % of all detected objects they had marginal affect on the main
analysis. Also, note the underprediction of detected objects in the 38-34 °N and 34-30 °N by
105-100 °W regions (eastern Colorado and west Texas).

Table E1: Detected object number for Stage IV (St4), Thompson (Tho), Milbrandt (Mil), Morrison
(Mor), and WSM6 (Wsm) across all case dates and forecast hours. The detected object count is
separated by regions (4 °N by 5°W) covering the entire analysis domain.

110-105°W  105-100 °W  100-95 °W 95-90 ‘W 90-85 °W 85-80 °W 80-75 °W

Tho: 46 Tho: 91 Tho: 172 Tho: 112 Tho: 38 Tho: 46 Tho: 46
Mil: 40 Mil: 111 Mil: 145 Mil: 129 Mil: 44 Mil: 48 Mil: 64
50-46 °N Mor: 42 Mor: 117 Mor: 147 Mor: 102 Mor: 28 Mor: 55 Mor: 67
Wsm: 73 Wsm: 135 Wsm: 156 Wsm: 114 Wsm: 68 Wsm: 47 Wsm: 83
St4: 34 St4: 68 St4: 94 St4: 80 St4: 34 St4: 3 St4: 0
Tho: 22 Tho: 90 Tho: 250 Tho: 232 Tho: 195 Tho: 134 Tho: 109
Mil: 32 Mil: 148 Mil: 247 Mil: 297 Mil: 205 Mil: 108 Mil: 119
46-42 °N Mor: 32 Mor: 91 Mor: 236 Mor: 283 Mor: 177 Mor: 118 Mor: 94
Wsm: 47 Wsm: 129 Wsm: 271 Wsm: 307 Wsm: 224 Wsm: 114 Wsm: 124
St4: 19 St4: 82 St4: 176 St4: 225 St4: 156 St4: 81 St4: 49
Tho: 2 Tho: 102 Tho: 323 Tho: 403 Tho: 338 Tho: 223 Tho: 191
Mil: 2 Mil: 116 Mil: 328 Mil: 466 Mil: 319 Mil: 217 Mil: 205
42-38 °N Mor: 0 Mor: 85 Mor: 274 Mor: 376 Mor: 315 Mor: 185 Mor: 166
Wsm: 7 Wsm: 141 Wsm: 336 Wsm: 451 Wsm: 287 Wsm: 220 Wsm: 210
St4: 5 St4: 93 St4: 293 Std: 342 St4: 277 St4: 214 St4: 143
Tho: 8 Tho: 147 Tho: 264 Tho: 390 Tho: 300 Tho: 174 Tho: 315
Mil: 5 Mil: 166 Mil: 324 Mil: 479 Mil: 302 Mil: 226 Mil: 382
38-34 °N Mor: 6 Mor: 123 Mor: 270 Mor: 417 Mor: 286 Mor: 179 Mor: 329
Wsm: 13 Wsm: 151 Wsm: 382 Wsm: 474 Wsm: 379 Wsm: 243 Wsm: 363
St4: 3 St4: 176 St4: 303 St4: 272 St4: 286 St4: 209 St4: 353
Tho: 26 Tho: 146 Tho: 293 Tho: 369 Tho: 396 Tho: 277 Tho: 291
Mil: 34 Mil: 201 Mil: 386 Mil: 454 Mil: 538 Mil: 359 Mil: 306
° Mor: 37 Mor: 183 Mor: 332 Mor: 392 Mor: 428 Mor: 308 Mor: 278
S4S0°N Wsm: 40 Wsm: 176 Wsm: 366 Wsm: 473 Wsm: 529 Wsm: 408 Wsm: 340
St4: 35 St4: 187 St4: 253 St4: 295 St4: 339 St4: 248 St4: 163
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Table E2: Detected object percent increase relative to Stage IV for Thompson (Tho), Milbrandt (Mil),
Morrison (Mor), and WSM (Wsm) across all case dates and forecast times. As in Table E1, the
statistics are separated into regions (4 °N by 5 °W) covering the entire analysis domain.

110-105 °W

105-100 °W

100-95 °W

95-90 °W

90-85 °W

85-80 °W

80-75 °W

50-46 °N

46-42 °N

42-38 °N

38-34°N

34-30 °N

Tho: 35.3
Mil: 17.6
Mor: 23.5
Wsm: 114.7

Tho: 15.8
Mil: 68.4
Mor: 68.4
Wsm: 147.4

Tho: -60.0
Mil: -60.0
Mor: -100.0
Wsm: 40.0

Tho: 166.7
Mil: 66.7
Mor: 100.0
Wsm: 333.3

Tho: -25.7
Mil: -2.9
Mor: 5.7
Wsm: 14.3

Tho: 33. 8
Mil: 63.2

Mor: 72.1
Wsm: 98.5

Tho: 9.8
Mil: 80.5
Mor: 11.0
Wsm: 57.3

Tho: 9.7
Mil: 24.7
Mor: -8.6
Wsm: 51.6

Tho: -16.5
Mil: -5.7
Mor: -30.1
Wsm: -14.2

Tho: -21.9
Mil: 7.5

Mor: -2.1
Wsm: -5.9

Tho: 83.0
Mil: 54.3
Mor: 56.4
Wsm: 66.0

Tho: 42.0
Mil: 40.3
Mor: 34.1
Wsm: 54.0

Tho: 10.2
Mil: 11.9
Mor: -6.5
Wsm: 14.7

Tho:-12.9
Mil: 6.9

Mor: -10.9
Wsm: 26.1

Tho: 15.8
Mil: 52.6
Mor: 31.2
Wsm: 44.7

Tho: 40.0
Mil: 61.3
Mor: 27.5
Wsm: 42.5

Tho: 3.1
Mil: 32.0
Mor: 25.8
Wsm: 36.4

Tho: 17.8
Mil: 36.3
Mor: 9.9
Wsm: 31.9

Tho: 43.4
Mil: 76.1
Mor: 53.5
Wsm: 74.3

Tho: 25.1
Mil: 53.9
Mor: 32.9
Wsm: 60.3

Tho: 11.8
Mil: 29.4
Mor: -17.6
Wsm:
100.0

Tho: 25.0
Mil: 31.4
Mor: 13.5
Wsm: 43.6

Tho: 22.0
Mil: 15.2
Mor: 13.7
Wsm: 39.7

Tho: 4.9
Mil: 5.6
Mor: 0.0
Wsm: 32.5

Tho: 16.8
Mil: 55.8
Mor: 26.3
Wsm: 56.0

Tho: 1433.3
Mil: 1500.0
Mor: 1733.3
Wsm:
1466.7

Tho: 65.4
Mil: 33.3
Mor: 45.7
Wsm: 40.7

Tho: 4.7
Mil: 1.9
Mor: -13.1
Wsm: 3.3

Tho: -16.7
Mil: 8.1

Mor: -14.4
Wsm: 16.3

Tho: 11.7
Mil: 44.8
Mor: 24.2
Wsm: 64.5

Tho: N/A
Mil: N/A
Mor: N/A
Wsm: N/A

Tho: 122.4
Mil: 142.9
Mor: 91.8
Wsm:
153.1

Tho: 33.6
Mil: 43.4
Mor: 16.1
Wsm: 46.9

Tho: -10.8
Mil: 8.2

Mor: -6.8
Wsm: 2.8

Tho: 78.5
Mil: 87.7
Mor: 70.6
Wsm:
108.6
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Appendix F
Duration Plot using Log Y-Scale

To help determine any trends for tracked object duration at longer durations where
there were fewer objects, Figure 9 was re-plotted using a log scale for the y-axis as shown in
Figure F1. At durations greater than 17 h there was no noticeable trend and appeared random.

10°

— ST4, N=1332
Milbrandt, N = 1640
— WSM6, N = 1832
— Morrison, N = 1472
— Thompson, N = 1456|

101

Number of Tracked Objects (log scale)

10°

0 6 12 18 24
Object Duration (hours)

Figure F1: Number of tracked objects as a function of object duration. Note that the y-axis is a log scale.
N represents the total number of tracked objects summed over all the case dates
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Appendix G
Separation of Retrospective and Real-Time Case Dates

The MODE-TD attributes of number of detected objects and size of detected objects
were analyzed where retrospective and real-time case dates were separated. The real-time
simulations (Figure G4) did contain a peak in average size the first few hours, although the
simulation peaks were earlier and smaller than observed. The retrospective simulations (Figure
G3) did not have any indication of a peak in size during the first few forecast hours, even
though the observations had a peak.

500

— T4, n=13929 — 574,17 =3929
Milbrandt, n = 4995 Milbrandt, n = 4995
— WSM6, n = 5251 — WSM6, n = 5251
— Morrison, n = 4291 7 — Morrison, n = 4291
400} : = Thompson, n = 4211 — Thompson, n = 4211

300 -

200

Number of Detected Objects
Percentage of Detected Objects

100

12 18 00 06 12 112 18 00 06 12
Time (UTC) Time (UTC)

Figure G1: (a) Number of detected (b) percent of total detected objects ((# of objects at time / n)*100)
for the microphysics and Stage IV as a function of UTC time. The n refers to the total number of detected
objects accumulated over all forecast hours and retrospective case dates.

— 514, n =167
Milbrandt, n = 2537
— WSM6, n = 2762
== Morrison, n = 2287
== _Thompson, n = 2388

= ST4,n=1672
Milbrandt, n = 2537
m— \WWSM6, n = 2762
=== Morrison, n = 2287
w==_Thompson, n = 2388

-
%
o

Number of Detected Objects
w 8
o o

Percentage of Detected Objects

; H H 1 ; ; H
12 18 00 06 12 12 18 00 06 12
Time (UTC) Time (UTC)

Figure G2: (a) Number of detected (b) percent of total detected objects ((# of objects at time / n)*100)

with time for the ensemble forecasts and Stage IV as a function of UTC time. The n refers to the total
number of detected objects accumulated over all forecast hours and real-time case dates.
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Figure G3: Average size (square root of area, expressed in km) of detected objects (only retrospective
case dates) as a function of UTC time.
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Figure G4: Average size (square root of area, expressed in km) of detected objects (only real-time case
dates) as a function of UTC time.
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