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ABSTRACT 

New approaches in carbonate geochemistry are aiding geoscientists in 

understanding dolomite formation. Dolomite is largely absent in modern depositional 

environments but is present in ancient rocks. The current problem is the inability to 

synthesize it under low-temperature conditions in the laboratory. Until recently 

laboratory preparation of dolomite required elevated temperatures (<100oC) to overcome 

kinetic barriers.  One novel approach involves using bacteria to overcome the kinetic 

barriers that have frustrated efforts to synthesize dolomite at near surface temperatures. 

This study presents preliminary results of experiments in which three strains of bacteria 

were used to inoculate a magnesium deficient amorphous calcium carbonate (Mg-ACC) 

medium (CO3
2-: Mg2+: Ca2+ in 2:1:1 ratio). The bacteria used include an aerobic strain, 

Virgibacillus marismortui (ATCC® 700626™) and two anaerobic strains, Desulfovibrio 

desulfuricans subsp. deslufuricans (ATCC®29577™) and Escherichia coli.  All the 

experiments were conducted at 30oC and 37˚C for 40 days. Preliminary XRD results are 

consistent with the precipitation of a carbonate phase with a dolomite-like XRD peak 

near 31˚ 2θ, Cu kα radiation. Similar peaks were not apparent for the experiments using 

the aerobic strain nor the bacteria free control.  These results indicate that the two strains 

of anaerobic bacteria may aid in the formation of a magnesium-rich carbonate phase 

similar to dolomite at low temperature, within short periods of time.   
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CHAPTER I 

INTRODUCTION 

Background 

Science changes over time with new methods that result in new experiments. The 

“Dolomite Problem” is considered an enigma in the field of sedimentary geology and has 

continued for the better part of two centuries. Research involving microbes to precipitate 

carbonates is a new approach in understanding formation of dolomite. The origins and 

method of dolomite formation is debated. Dolomite is found throughout the geologic 

record, as far back as the Precambrian, with thick units in bulk limestone across the world 

(Ries 2011). The complexity of this mineral’s formation is that it should form directly 

from solutions containing magnesium, calcium and carbonate ions (Sadooni 2009).  

When exposed to magnesium rich fluid, metastable carbonates exchange calcium ions for 

magnesium ions making a stable carbonate which is dolomite (Sadooni 2009). 

Eq(1) 

 Dolomite eq(1), is thermodynamically the most stable carbonate phase in 

seawater. Dolomite could form as a primary precipitate or a diagenetic replacement with 

sufficient magnesium source and saline environment with moving fluid but does not form 

in the present. It can form in different waters such as sea water and waters where brines 

2 CaCO
3(calcite)

 + Mg

2+

 ↔ CaMg(CO
3

)
2(Dolomite)

 + Ca

2+
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mix with ocean water (Warren 2000). In anoxic reducing conditions, bacteria can act to 

facilitate the primary precipitation of dolomite (Warren 2000). Dolomitic frequently 

recrystallizes after initially forming which is metastable, disordered and non-

stoichiometric (Nordeng 1993). Many dolomites have crystals that have no trace of their 

precursors. This is because nonstoichiometric dolomite crystals can be replaced by more 

stable phases later (Braithwaite 1991).  

The chemistry and kinetic barriers are parameters that have been identified as 

reasons for much debate and uncertainty. One of the interesting interdisciplinary ideas to 

come forth is microbial mediation. The prominent kinetic inhibiting factors are thought to 

involve the high hydration energy of magnesium, low activity of carbonate ions and or 

low concentrations of sulfate (Rao 2003). Due to ambiguities in reaction kinetics, the 

mineral’s origins have been linked to inorganic chemical models like seepage reflux of 

concentrated brines or dolomite oversaturation caused by fresh and seawater circulation. 

Neither model has been demonstrated in experimental conditions and therefore cannot be 

reproduced (Mckenzie 2010). Geochemical models have lately included a 

microbiological approach that is now gradually being recognized. In this model, 

microbes, under specific conditions appear to mediate the formation of dolomite at low 

temperature (Mckenzie 2010).  

Carbonate diagenesis through biological means can certainly garner interest and 

new information as well as perspective. Including a biogenic approach can bring new 

perspective to biominerals in carbonate research. (Mckenzie 2010).  While there is 

research showing microbial precipitation of dolomite, it is a stepping stone in answering 
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the enigma of dolomite formation. Research demonstrating biogenic origins of dolomite 

may describe biological mechanisms for biomineralization (Nash 2011). Applying 

laboratory techniques from molecular biology, in testing dolomite would help in 

understanding the role that microbial metabolism plays in facilitating precipitation 

(Mckenzie 2010). To mineralize, a localized zone must maintain super saturation 

(Vasconcelos 2009). Biominerals like pyrite and biogenic calcite have spherical 

structures linking to microbial activity (Vasconcelos 2009).  

 

Figure 1. The microbial dolomite model, showing mechanism of precipitation. 

(Vasconcelos 2008) 

The microbial dolomite model (Fig 1) shows the bacterial schematic for the 

precipitation of dolomite. This is the model that the experiment is based on and tests three 

different bacteria. According to the microbial model, cell walls acts as nucleation sites, 

from which, mineralized globules detach from the surface and leave the bacterial cell 
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intact (Vasconcelos 2009). Precipitation can steadily occur in an organic matrix and 

microbes with different metabolic pathways promote dolomite formation (Mckenzie 

2010). The motivation in this experiment is to replicate the microbial mediation of 

dolomite formation. In addition, this is an interesting combining of a geological problem 

with microbiology and molecular biology. 

Previous Works 

 From algae, aerobic, aero-tolerant anaerobic to aero sensitive sulfate reducing 

bacteria, each classification of bacteria has different metabolic pathways and 

requirements for growth. Understanding biological constraint of geological problems can 

offer solutions through experiments (Vasconcelos 2009). Cultured experiments using 

isolated sulfate reducing bacteria and precipitating dolomite at low temperatures have 

been conducted (Vasconcelos 2009). The microbial dolomite model developed from 

experiments in laboratory that precipitated dolomite under aerobic as well as anaerobic 

conditions (Vasconcelos 2009). This study demonstrated microbial metabolism may 

control conditions that overcome kinetic barriers (Vasconcelos 2009). 

Another study testing mixing zone with sulfate reducing bacteria to promote a 

dolomitizing environment was conducted. Sumrall (2014) showed that microbes can 

change their environment by exchanging ions and producing products that would cause a 

change in concentrations of calcium and magnesium. The study suggested that microbes 

act as sites of nucleation for carbonate crystallites (Sumrall 2014).  

In China, a similar experimental design was used to test microbial dolomite 

precipitation. A core from Qinghai Lake, and the isolated sulfate reducing bacteria for 
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their analysis were obtained. This study concluded that overcoming the kinetic barrier 

and dolomite precipitation was due to the increase in pH, removal of sulfate and 

carbonate alkalinity (Deng 2010).  In the Coorong region of southwest Australia, a 

similar study was carried out. In this study, the lake sediments and bacteria were 

available from the lake being studied. They precipitated dolomite and concluded that 

sulfate reducing bacteria overcame kinetic barriers. This was done in hypersaline 

solution, by removing sulfate, releasing calcium and magnesium ions and increasing 

carbonate ion concentration (Wright 2005). In Brazil, water samples and the bacterial 

were collected and isolated from the study location of Lagoa Vermelha, a hypersaline 

lagoon.  

The study was successful in that dolomite was precipitated with a consistent 

dumbbell morphology, similar to the shape in the observed lake sediments (Lith 2000). 

An experiment using aerobic bacteria, Virgibacillus marismortui (ATCC® 700626™), 

was able to show precipitation of dolomite within 30 days of incubation at 25-30°C, also 

showing that precipitation decreased with elevated temperatures and increases with more 

incubation time (Banerjee 2016).  

The inspiration for using a precursor carbonate in this experiment was taken from 

Rodriguez-Blanco (2015) The precursor is a magnesium deficient amorphous calcium 

carbonate (Mg-ACC). The experiment they conducted involved dehydrating the Mg-ACC 

that caused it to nucleate into a non-stoichiometric proto dolomite. After some time on a 

larger scale of days, the disordered proto dolomite transformed into ordered and 

stoichiometric dolomite (Rodriguez-Blanco 2015).  
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In a magnesium free ACC, the precursor converted into vaterite by spherulitic 

growth and then gradually into calcite via dissolution and re precipitation (Rodriguez-

Blanco 2015). The growth was shown to occur due to a nucleation mechanism and the 

growth of vaterite from the ACC was comparable to the dolomite formed via microbial 

metabolism (Rodriguez-Blanco 2015). They further speculate that microbial carbonates 

may have also required such a precursor to facilitate spherulitic growth (Rodriguez-Blanco 

2015). Experiments demonstrating the microbial model have been conducted in Australia, 

China, India and Brazil by collecting samples of dolomitized sediment and tested with 

bacterial cultures isolated from the location.  

This experiment will try to accomplish the same but under strict laboratory 

conditions using bacteria and an Mg-ACC precursor. It is hypothesized that proto dolomite 

can be synthesized by simply adding microbes to a magnesium deficient amorphous 

calcium carbonate (Mg-ACC) media to form ordered stable dolomite.
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CHAPTER II 

EXPERIMENTAL METHODS 

The experiment is a geomicrobiological approach to enabling growth of solid 

crystals in an aqueous solution. Precipitating dolomite using the influence of microbes at 

low temperatures is the objective. Two bacterial strains were ordered from ATCC (The 

Global Bioresource Center), Virgibacillus marsimortui (ATCC® 700626™) and 

Desulfovibrio desulfuricans subsp. deslufuricans (ATCC®29577™). In addition to these 

strains, Escherichia coli was also used which is a facultative anaerobe. The ordered 

strains are halophilic aerobic and sulfate reducing anaerobic respectively. Additionally, 

each strain has its own metabolic properties which may provide insight into how kinetic 

inhibition is overcome. Each strain in the vials tested was given a number for 

identification. 

Culturing Escherichia coli, Virgibacillus marismortui (ATCC® 700626™) and 

Desulfovibrio desulfuricans subsp. deslufuricans (ATCC®29577™) was done by 

following instructions provided by the ATCC. The tip of the vial is broken by heating it 

and then adding a few drops of cold water to crack the vial tip.  The vials contained a 

secured freeze dried powder at the bottom which is to be rehydrated carefully without 

contamination. The bacterial strains are handled separately based on nature and media. 

The media in which both bacterial strains are to be grown were clearly stated in the 
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documentation sheet provided by ATCC.  For the halophilic aerobic bacteria, the vial is 

opened and cautiously rehydrated with the prepared media. All the chemicals, their 

quantities, and the method are noted and carried out in order per instructions (Appendix 

A). To grow the anaerobic bacterial strain, the contents of the vial is examined first to 

check for compromise. Autoclaving the media in which it is to grow follows after making 

the media by carefully adding the specified amounts of chemicals mentioned in the 

provided media list (Appendix A).. 

When handling the chemicals, each component was measured, and the solution 

was adjusted to the corresponding pH (Appendix A).  Once the solution was adjusted, it 

was autoclaved. After the autoclaving process, a precipitate formed at the bottom which 

was removed by filtering the media solution through a 2-micron filter. Carefully, a little 

of the media was added to the bacterial vial to rehydrate and then placed back in the 

solution vial to grow. 

The amorphous magnesium deficient calcium carbonate is an important 

component of the experiment because it is an approach to determine if a calcium rich 

semi solid can transform into a solid mediated by microbial metabolism. The amorphous 

calcium carbonate is made separately, at room temperature by mixing the required 

chemicals (Appendix A). Upon reacting, a white gel is instantaneously precipitated and is 

inoculated with a bacterial strain and its respective growth media. The media is set aside 

and left to nucleate. The controls in this experiment include two vials for each bacterial 

strain. One vial containing only the growth media, the second with only the bacteria and 

its growth media. This was to check for any dolomitization that might occur in the 
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absence of combining the amorphous carbonate. A third vial for each strain with only the 

media and amorphous carbonate was made a control for testing precipitation without a 

bacterial strain. The fourth vial for each strain was a mixture of the strain, growth media 

and amorphous carbonate. 

Evaluation of Precipitates 

(XRD) or X-ray diffraction analysis was used for phase identification of a 

crystalline structure can provide information about unit cell dimensions. To run the 

analysis, a sample was collected from the bottom of each vial containing the amorphous 

carbonate, dried by heating in a crucible to a fine powder and placed onto a specimen 

holder in the XRD using Cu kα radiation. Using Bragg’s Law, defined by nλ=2dsinɵ, 

peaks can be found on X-ray pattern at ɵ values that correspond to each of the d-spacings 

that characterize the mineral of interest. In the equation, n is the order, λ is a wavelength, 

d is the lattice spacing and ɵ is the crystal orientation. 

 The run time for each sample was roughly 40 minutes to 90 minutes depending 

on the length of the 2ɵ scale of interest. For some samples, the scale was from 10 to 60 

degrees 2ɵ, run at half degree per minute and for others it was from 20 to 40 degrees 2ɵ, 

run at one degree per minute. The other method is (SEM) or scanning electron 

microscope, which will create an image by producing signals that can provide 

information about surface topography as well as something about the composition. In the 

SEM, a small sample is placed onto a carbon conductive adhesive tab and examined at 

powerful MAGNIFICATION to see the morphologies in the sample. For the SEM analysis,  
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only the vials that showed positive results for carbonates in the XRD scan were 

investigated further to see the budding mechanism of precipitation. 

Table 1. The Bacterial Strains and the Experimental Controls Used are Presented in the 

Table Showing how the Vials were going to be Inoculated. 

 

 

 

 

 

 

 

 

 

 

Bacterial Strains Media 
only 

Strain and 
media 

Media and       
(Mg-ACC) 

Strain with media and 
(Mg-ACC) 

Escherichia coli 5ml 5ml 4 ml media+ 1ml 
amorphous (Mg-
ACC) 

4 ml media+ 1ml 
amorphous (Mg-ACC) 

Virgibacillus 
marismortui 
(ATCC® 700626™) 

5ml 5ml 4 ml media+ 1ml 
amorphous (Mg-
ACC) 

4 ml media+ 1ml 
amorphous (Mg-ACC) 

Desulfovibrio 
desulfuricans 
subsp. 
deslufuricans 
(ATCC®29577™) 

5ml 5ml 4 ml media+ 1ml 
amorphous (Mg-
ACC) 

4 ml media+ 1ml 
amorphous (Mg-ACC) 
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CHAPTER III 

RESULTS 

After the amorphous carbonate was incubated and left in the vials for 40 days, 

there were positive results for the precipitation of solid carbonates. There was a mixture 

of calcite and or magnesite present within almost all the vials with some dolomite in 

small amounts, some showing faint peaks. XRD analysis was interpreted using standard 

2ɵ peak data from the American mineralogist crystal structure database, with which 

peaks from the sample vials were compared (Appendix C). Standard peaks for calcite, 

dolomite, magnesite and vaterite were selected and compared to peaks from each vial and 

matched based on XRD scans. SEM analysis was conducted by marking points of 

potential carbonate crystals and magnified at 10 micrometers. From (Appendix C) every 

strain used was able to precipitate dolomite based on the XRD peaks. Figures 1, 4, 7 and 

11, show labeled peaks for dolomite on the XRD scans. The SEM analysis shows calcite 

crystals for Escherichia coli as well as stoichiometric percentages for.  Tables 2 and 3 

shows the strains with their respective labelled vials and shows results of carbonate 

precipitation based on XRD and SEM.     
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Table 2. Experimental Numbered Vials with the Strains used showing Precipitation of the 

Types of Carbonates based on XRD and SEM Analysis. (Bold numbers represent Vials 

name) 

  

 

Table 3. The Table Shows no Activity or Precipitation in the Control Vials with only 

Media and Bacteria and Media Only. 

 

 

 

Results Based On XRD, SEM XRD XRD 

Experimental Vials Calcite 

Precipitation 

Calcite 

Precipitation 

Magnesite 

Precipitation 

Dolomite 

Precipitation 

ATCC Medium 1249 and 

amorphous carbonate (1) 

Yes (Fig 11) Yes (Fig 26)

  

Yes  Yes (Fig 1) 

ATCC Medium 1249 with 

Desulfovibrio desulfuricans 

subsp. deslufuricans 

(ATCC®29577™) and 

 amorphous carbonate (2) 

No (Fig 7) Yes (Fig 23) No (Fig 7) Yes (Fig 7) 

ATCC Medium 2101 and 

amorphous carbonate (3) 

No (Fig 3) - Yes (Fig 3) No (Fig 3) 

ATCC Medium 2101 with 

Virgibacillus marismortui 

(ATCC® 700626™) 

and amorphous carbonate (4) 

No (Fig 2) - Yes (Fig 2) Yes (Fig 2) 

Luria-Bertani Media and 

amorphous carbonate (5) 

Yes (Fig 6) - Yes (Fig 6) No (Fig 6) 

Luria-Bertani Media with 

Escherichia coli 

 and amorphous carbonate (6) 

Yes (Fig 4) Yes (Fig 5) Yes (Fig 4) Yes (Fig 4) 

Experimental Vials Precipitation in Control Vials 

Escherichia coli  (*) No 

Virgibacillus marismortui (ATCC® 

700626™) (*) 

No 

Desulfovibrio desulfuricans subsp. 

deslufuricans (ATCC®29577™) (*) 

No 
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Figure 2. ATCC® Medium 2101: Bacillus marismortui, Virgibacillus marismortui 

(ATCC® 700626™) and amorphous carbonate. In this image, XRD scan shows very 

weak signal for dolomite as shown by the arrow. The figure was magnified to show the 

peak (Appendix B Figure 17). 
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Figure 3. ATCC® Medium 2101: Bacillus marismortui and amorphous carbonate. In the 

figure, XRD scan shows no signal for dolomite and weak signal for magnesite (red 

arrow). 
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Figure 4. Escherichia coli, Luria-Bertani media and amorphous carbonate. In the figure 

above, there was no signal for dolomite. However, there was signal for precipitation of 

magnesite (red arrow), a faint peak for dolomite (orange arrow) and calcite (black arrow). 

The figure was magnified to show the peak (Appendix B Figure 20). 
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Figure 5. Luria-Bertani media and amorphous carbonate. In the above figure, there is a 

peak for calcite (red arrow) and magnesite (orange arrow). There was no peak for 

dolomite. The figure was magnified to show the peak (Appendix B Figure 30). 
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Figure 6. SEM analysis of Escherichia coli, Luria-Bertani media and amorphous 

carbonate.  
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Figure 7. ATCC Medium 1249: Modified Baar's media, Desulfovibrio desulfuricans 

subsp. deslufuricans (ATCC®29577™) and amorphous carbonate. In the above figure, 

there is a signal for dolomite (red arrow). 
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Figure 8. ATCC Medium 1249: Modified Baar's media and amorphous carbonate only. In 

the above figure, there is a signal for dolomite (red arrow). 
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Figure 9. ATCC Medium 1249: Modified Baar's media, Desulfovibrio desulfuricans 

subsp. deslufuricans (ATCC®29577™) and amorphous carbonate. In the figure above, 

there appears small partial rhombohedral crystals budding off the bacteria which could be 

dolomitic in composition. 
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Figure 10. ATCC Medium 1249: Modified Baar's media, Desulfovibrio desulfuricans 

subsp. deslufuricans (ATCC®29577™) and amorphous carbonate. The above figure 

shows SEM analysis of several points 
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Figure 11. ATCC Medium 1249: Modified Baar's media, Desulfovibrio desulfuricans 

subsp. deslufuricans (ATCC®29577™) and amorphous carbonate. The above figure 

shows SEM analysis of several points.  
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Figure 12. Desulfovibrio desulfuricans subsp. deslufuricans (ATCC®29577™) with 

media and amorphous carbonate only.  
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Figure 13. Experimental vials for Desulfovibrio desulfuricans subsp. deslufuricans 

(ATCC®29577™) showing white precipitate (yellow arrow) at the bottom. 
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CHAPTER IV 

 

DISCUSSION 

 

Based on the experiment with three bacterial strains used, the results suggest that 

there is a biological component to precipitating carbonates, especially dolomite. Using 

the XRD and SEM analysis, carbonates such as calcite, magnesite and dolomite 

precipitated in 40 days using an amorphous carbonate, bacteria and growth media. The 

morphology and composition of the produced carbonates were observed in the SEM. 

Whether proto dolomite could be synthesized by microbes at low temperature to 

accelerate Mg-ACC to ordered stable dolomite, was the subject of the experiment.  

Based on the previous studies and this experiment, the microbial model appears 

valid. The idea for the amorphous carbonate was taken from (Rodriguez-Blanco 2015), in 

which mixing chemical components would create a carbonate pre cursor. This method 

had not been conducted before which should be interesting to see, whether there is 

growth of dolomite if anything at all. Similar experiments in which a solid dolomitic 

mass was precipitated by microbes has been well documented, however, this is still a new 

methodology in sedimentary geology. The difference between previous experiments 

conducted was that dolomite, water samples and the isolated bacterial culture were taken 

from the study location.
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In contrast, this experiment attempted to produce dolomite from scratch in a lab, 

using an amorphous carbonate as opposed to readily available carbonate samples. This 

would allow microbes to use chemicals from the amorphous component to carry out their 

metabolism. The idea from here is that carbonates precipitation would be a result of a 

biological reaction which would bypass a kinetic inhibition that prevents precipitation. 

The premise that dolomite may be a bio mineral was also suggested by (Vasconcelos 

2008) paper in which the microbial model was broken down and explained through a 

geo-microbiological perspective. 

From figure 14, taken from (Goldsmith 1961), the dolomite 2ɵ peak values were 

plotted to show relative molar percent of magnesium. As the percentage of magnesium 

increases, the c-axis contacts producing the d spacing along the 104 plane. 
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Figure 14. The graph displays where XRD analysis shows dolomite peaks and a dashed 

solid line to show approximate mol percent of magnesium. The orange and red lines 

represents the Desulfovibrio desulfuricans subsp. deslufuricans (ATCC®29577™), with 

orange (bacteria, amorphous, media) and red (media and amorphous only) respectively. 

The navy blue line (bacteria, media and amorphous) represents Virgibacillus marismortui 

(ATCC® 700626™). 
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Figure 15. Dolomite structure showing the lattice of calcium, magnesium and carbonate 

ions and how they organize. (Warren 2000) 

For the peaks observed in the XRD scans, the signals for some samples were 

weak. This could be due to the fact that the sample to work with was insufficient and 

were not washed thoroughly enough due to potential damage to the crystals present in the 

sample. The results from Desulfovibrio desulfuricans subsp. deslufuricans 

(ATCC®29577™) suggest the media could be the source of nutrients that overcome 

kinetic barriers in the precipitation reaction. This experiment is important to show that 
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there is a geomicrobiological perspective in carbonate precipitation that has been 

overlooked until recent studies.  

To understand this mineral, researching the properties of its formation and 

kinetics are necessary. With the proper treatment of the media, bacteria and a controlled 

environment, dolomite crystals can grow and may form a clusters around the bacterial 

strain. This result would also demonstrate that the microbial model is testable, 

reproducible and valid. Additionally, the usage of a semi solid pre-cursor would indicate 

that certain conditions must be met but the range of variables could be wide with respect 

to temperature and bacterial concentration.  

The results show dolomite precipitation by each bacterial strain with its respective 

growth media and the amorphous carbonate. The ATCC Medium 1249 and amorphous 

carbonate showed precipitation of dolomite without the presence of bacteria. This could 

suggest that the media is the organic source for the precipitation while the bacteria may 

be a component that enhances the process in this case. The other vials with the bacteria 

showed that the bacteria were required for dolomite to precipitate as the controls showed 

no signal for dolomite. The ATCC Medium 1249 under anaerobic conditions could be a 

factor in the mediation of dolomite, in the presence of an amorphous carbonate pre-

cursor. In contrast, the Luria-Bertani and ATCC medium 2101 with the pre- cursor 

carbonate showed no signal in aerobic conditions. 

 With this microbial model, the bio mineral aspect is gaining recognition as it has 

been demonstrated by different researchers but not entirely from scratch as this 

experiment has attempted to do. Based on the results of this experiment, dolomite can be 
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considered a bio mineral and can be precipitated by microbes at low temperatures in a 

controlled environment. The question to answer going forward is how and where 

amorphous carbonate would be present in the nature to provide similar conditions for 

microbial mediation.
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CHAPTER V 

CONCLUSION 

The microbial dolomite model, based on the results of this experiment support the 

premise that microbial metabolism is capable of precipitating dolomite and other 

carbonates. The bacterial strains, with their different metabolisms show that some 

bacteria work at different rates and temperatures to be able to precipitate carbonates.   

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
APPENDICES 

 

 

 

 

 

 

 

 

 

 



33 

 

APPENDIX A 

 

STRAINS AND COMPONENTS USED 

 

 
Strains and components used: 

1) Escherichia coli 

2) Virgibacillus marismortui (ATCC® 700626™) 

3) Desulfovibrio desulfuricans subsp. deslufuricans (ATCC®29577™) 

4) Amorphous calcium carbonate 

 

Strains 2 and 3 were obtained from the American Type Culture Collection (ATCC) for 

the experiment. The following strains were cultivated in a molecular biology laboratory 

along with the media required for their growth. Each of the strains used classify as 

biosafety level 1. In each case for the preparation, the strains were only handled after 

making the media first. 

 

1) Luria-Bertani broth: 

 

The Escherichia coli strain was obtained from the ATCC and cultivated using an 

enriched media. This media is called Luria-Bertani, it uses amino acids as its 

source of carbon for the consumption of the bacteria. This is a commonly used 

media and permits fast growth. To prepare this broth:
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a) 10 grams of tryptone 

b) 5 grams of yeast extract 

c) 10 grams of NaCl 

d) 1 liter of distilled water 

e)  

Adjust the pH to 7 with 1 molar NaOH and autoclave. The mixture was prepared using a 

weighing scale, magnetic stir plate and bar and the chemicals were ordered and ready to 

use. Each chemical component was measured and added to the mixture in succession. 

The readily available strain was cultivated in the laboratory for 4 days. The media and 

bacteria were inoculated by adding the amount of 50 microliters of the bacteria to the 

media aseptically.  

 

Sezonov, Guennadi. "Escherichia Coli Physiology in Luria-Bertani Broth▿." Journal of 

Bacteriology 189 (2007): n. pag. American Society for Microbiology. Web. 

 

2) Virgibacillus marismortui (ATCC® 700626™): 

This strain was obtained from the ATCC and required the preparation of ATCC® 

medium 2101: Bacillus marismortui medium. This aerobic strain was cultivated 

for a period between 24 to 48 hours at 37°C. To prepare the medium: 

a) 81 grams of NaCl 

b) 7 grams of MgCl2 

c) 9.6 grams of MgSO4 

d) 0.36 grams of CaCl2 

e) 0.026 grams of NaBr 

f) 5 grams of proteose peptone 

g) 10 grams of yeast extract 

h) 1 gram of glucose 

i) 1 liter of deionized water 
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Using a weighing machine, each of the ingredients were measured and combined using a 

beaker and magnetic stir plate. Upon combining the components, the final pH was 

adjusted to 7 using KOH. It was then autoclaved for an hour. The vial was opened by 

breaking the sealed glass tip. Using the dried bacteria, it was rehydrated. The rehydrated 

pellet was aseptically transferred back into the broth table and mixed thoroughly. 

 

3) Desulfovibrio desulfuricans subsp. deslufuricans (ATCC®29577™) 

This strain was obtained from the ATCC and required the preparation of ATCC 

medium 1249: Modified Baar’s Medium for Sulfate Reducers. This anaerobic 

strain was cultivated for a period between 7-9 days at 30°C. For this strain, the 

inoculated broth was immediately placed in an anaerobic chamber in which the 

oxygen was removed by placing an anaerobic gas pack in the chamber. This pack 

helps the strain grow. As a control, a vial of the bacteria was observed separately 

to check for possible contamination before proceeding with the experiment. The 

ingredients required: 

Component I 

a) 2 grams of MgSO4 

b) 5 grams of Sodium Citrate 

c) 1 gram of CaSO4 x 2H2O 

d) 1 grams of NH4Cl 

e) 400 milliliters of Deionized water 

 

Component II  

a) 0.5 grams of K2HPO4 

b) 200 milliliters of Deionized water 
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Component III 

a) 3.5 grams of Sodium lactate 

b) 1 gram of Yeast extract 

c) 400 milliliters of Deionized water 

The components were adjusted to a pH of 7.5 and cultivated. They were mixed 

aseptically after the media to be used was scaled depending on the quantity to be used in 

the experiment with the amorphous carbonate. In this experiment, this media was scaled 

and adjusted for 1 liter. 

The media was used to rehydrate the bacteria, aseptically, followed by their placement in 

the gas chamber with a gas mixture of 80% N2 – 10% CO2 – 10% H2. The chamber was 

sealed and left for 40 days. 

4) Amorphous calcium carbonate 

The procedure to create the amorphous component was taken from (Rodriguez-

Blanco 2015), and prepared according to the ratio described in the literature.  In 

this experiment, these components were adjusted to 100 milliliters. It was 

combined by taking each chemical component and using a micro pipette to add 

and mix thoroughly. They were combined and kept in a ratio of CO3
2+: Ca2+:Mg2+ 

= 2:1:1 at room temperature. The components: 

a) 1 molar Na2CO3 solution 

b) 1 molar CaCl2 solution 

c) 1 molar MGCl2 solution 

The solutions were made by dissolving molar mass in liter of deionized water. Deionized 

water is reactive and changes when it is exposed to air. Before contact with air, it has a 

pH of 7 but upon contact with CO2 becomes an acidic 5.6.
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APPENDIX B 

 

FIGURES AND IMAGES 

 

Figures and Images 

 

Virgibacillus marismortui (ATCC® 700626™) 

 

 
Figure 16. ATCC® Medium 2101: Bacillus marismortui, Virgibacillus marismortui 

(ATCC® 700626™) and amorphous carbonate. In the above figure, only the halite peak 

is apparent. This analysis was done at a small scale and preliminary test. 
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Figure 27.  ATCC® Medium 2101: Bacillus marismortui, Virgibacillus marismortui 

(ATCC® 700626™) and amorphous carbonate. In this figure, XRD scan shows very 

weak signal for dolomite with the (2ɵ= 30.931) value magnified from figure 2. 
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Figure18. ATCC® Medium 2101: Bacillus marismortui with amorphous carbonate only. 

In the above figure, preliminary XRD scan shows halite peak and potential carbonate 

peaks. 
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Escherichia coli  

 

Figure 19. Luria-Bertani media with Escherichia coli, and amorphous carbonate. In the 

above figure, a preliminary scan was conducted that shows halite peak and calcite peak. 

Additionally, there appears to be a potential dolomite peak. 
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Figure 30. Escherichia coli, Luria-Bertani media and amorphous carbonate. Signal for 

precipitation of faint peak for dolomite (2ɵ=37.39) and calcite (2ɵ=29.419) are shown 

above from magnification of figure 4. 
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Figure 21. Luria-Bertani media with Escherichia coli, and amorphous carbonate. The 

SEM analysis shows crystal growth, in this figure showing magnesium carbonate 



43 

 

 

Figure 22. Luria-Bertani media with Escherichia coli, and amorphous carbonate. In the 

figure, magnesium carbonate growth can be seen as well as the morphology of the 

bacteria. 
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Figure 23. Luria-Bertani media with Escherichia coli, and amorphous carbonate. The 

above figure shows growth of carbonate crystals observed under SEM. 
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Figure 24. Luria-Bertani media with Escherichia coli, and amorphous carbonate. The 

above figure shows calcite with radial growth. 

 



46 

 

 
 

Figure 25. Luria-Bertani media with Escherichia coli, and amorphous carbonate. The 

above figure shows the growth and structure of carbonate budding off the bacterial 

surface. 
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Desulfovibrio desulfuricans subsp. deslufuricans (ATCC®29577™) 

 

Figure 26- ATCC® Medium 1249: Modified Baar's media with Desulfovibrio 

desulfuricans subsp. deslufuricans (ATCC®29577™) and amorphous carbonate. In the 

above figure, carbonate can be seen growing and budding off bacterial surface. 
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Figure 27. ATCC® Medium 1249: Modified Baar's media with Desulfovibrio 

desulfuricans subsp. deslufuricans (ATCC®29577™) and amorphous carbonate. In the 

above figure, carbonate can be seen budding off bacteria as well as calcite precipitate to 

the right. 
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Figure 28. ATCC® Medium 1249: Modified Baar's media, Desulfovibrio desulfuricans 

subsp. deslufuricans (ATCC®29577™) and amorphous carbonate. In the above figure, 

calcite can be seen in the small clusters as well as the bigger piece of calcite in the center 

as indicated by the arrows. 
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Figure 29. ATCC® Medium 1249: Modified Baar's media and amorphous carbonate 

only. In the figure, calcite can be seen in the center with radial growth patterns along the 

edges as indicated by the arrow. 
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Figure 40. Luria-Bertani media and amorphous carbonate. In the above figure, there is a 

peak for calcite (2ɵ=29.419), magnified from figure 5. 
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APPENDIX C 

 

MINERAL DATA TABLE 

 

 

Table 1. Data table showing standard XRD 2ɵ peaks vs peaks from samples for the 

mineral dolomite with intensity and H, K, L. (1) and (2) are peaks for Desulfovibrio 

desulfuricans subsp. deslufuricans (ATCC®29577™), (6) for Escherichia coli and (4) 

for Virgibacillus marismortui (ATCC® 700626™). 

 

 

 

 

 

 

 

 

 

 

 
Table 2. Data table showing standard XRD 2ɵ peaks vs peaks from samples for the 

mineral calcite with intensity and H, K, L. (1) is peak for Desulfovibrio desulfuricans 

subsp. deslufuricans (ATCC®29577™), (5) and (6) are for Escherichia coli.       

 

Dolomite Standard 

2ɵ 

Sample 2ɵ Yes/No H K L Intensity 

 30.86 30.78(1),30.57(2) Yes 1 0 4 100 

 37.35 37.27, 37.39(6) Yes 1 1 0 11 

 50.93 50.91(4) Yes 1 1 6 12.85 

Calcite Standard 

2ɵ 

Sample 2ɵ Yes/No H K L Intensity 

 29.42 29.41(1,5,6) Yes 1 0 4 100 

 31.46  No 0 0 6 2.43 

 36 36.027(1) Yes 1 1 0 13.71 
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Table 3. Data table showing standard XRD 2ɵ peaks vs peaks from samples for the mineral 

magnesite with intensity and H, K, L. (5) and (6) are peaks for Escherichia coli , (2) is for 

Desulfovibrio desulfuricans subsp. deslufuricans (ATCC®29577™) and (3) is for Virgibacillus 

marismortui (ATCC® 700626™).  

 

Table 4.  Data table showing standard XRD 2ɵ peaks vs peaks from samples for the 

vaterite with intensity and H, K, L. No peaks were identifiable with the standards chosen. 

 

Magnesite Standard 2ɵ Sample 2ɵ Yes/No H K L Intensity 

 32.67 32.79(5), 

32.87(3) 

Yes 1 0 4 100 

 38.88 38.24(1) Maybe 1 1 0 6.3 

 51.66 51.6(6), 

51.76(4) 

Yes 0 2 4 5.33 

Vaterite Standard 2ɵ Yes/No H K L Intensity 

 21.07 No 0 0 6 9.85 

 24.42 No 1 1 0 56.83 

 31.68 No 2 0 4 11.03 

 40.37 No 2 0 8 9.38 
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