
University of North Dakota
UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2018

Regional And Residential Short Term Electric
Demand Forecast Using Deep Learning
Tareq Hossen

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact
zeineb.yousif@library.und.edu.

Recommended Citation
Hossen, Tareq, "Regional And Residential Short Term Electric Demand Forecast Using Deep Learning" (2018). Theses and
Dissertations. 2235.
https://commons.und.edu/theses/2235

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2235?utm_source=commons.und.edu%2Ftheses%2F2235&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

i

REGIONAL AND RESIDENTIAL SHORT TERM ELECTRIC DEMAND
FORECAST USING DEEP LEARNING

 by

 Tareq Hossen

Bachelor of Science, Chittagong University of Engineering Technology

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota
May
2018

ii

© 2018 Tareq Hossen

iv

PERMISSION

Title Regional and Residential short term electric demand forecast using

Deep learning

Department Electrical Engineering

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a graduate
degree from the University of North Dakota, I agree that the library of this University
shall make it freely available for inspection. I further agree that permission for
extensive copying for scholarly purposes may be granted by the professor who
supervised my thesis work or, in his absence, by the chairperson of the department
or the dean of the Graduate School. It is understood that any copying or publication
or other use of this thesis or part thereof for financial gain shall not be allowed
without my written permission. It is also understood that due recognition shall be
given to me and to the University of North Dakota in any scholarly use which may
be made of any material in my thesis.

 Tareq Hossen
 May 2018

v

TABLE OF CONTENTS

1 Introduction .. 14

1.1 Motivation .. 14

1.2 Thesis Contributions: ... 16

1.3 Thesis Organization... 17

1.4 Publications ... 18

2 Regional short-term load forecasting using deep neural network 19

2.1 Overview ... 19

2.2 Background and related work .. 20

2.3 Short term regional load forecasting .. 21

2.4 Implementation of deep neural networks ... 24

2.5 Structure of DNN ... 24

2.6 Dataset .. 25

2.7 Activation function ... 26

 Sigmoid function ... 26

 Rectified linear unit (RELU) .. 28

 Exponential linear unit (ELU) .. 29

2.8 System model .. 30

 Case 1. ReLU Activation Function with Single Hidden Layer 30

 Case 2. ReLU Activation Function with two hidden layers 30

 Case 3. ReLU - Sigmoid Combination .. 31

 Case 4. ELU Activation Function with Single Hidden Layer 32

 Case 5. ELU Activation Function in two hidden layers 32

 Case 6. ReLU-ELU Combination .. 33

 Case 7. Sigmoid-ELU Combination .. 34

2.9 Error Metrics for Evaluation ... 35

2.10 Simulation Parameters .. 36

3 Residential load forecasting using deep neural networks (DNN) 45

3.1 Overview ... 45

vi

3.2 Background and related work .. 45

3.3 Implementation of recurrent neural networks for residential load

forecasting ... 47

3.4 Structure of RNN ... 47

3.5 Recurrent neural network model for short term load forecasting 48

 Simple RNN .. 48

 Long short term memory (LSTM) .. 49

 Gated recurrent unit(GRU) .. 50

3.6 Implementation of recurrent neural networkS (RNN) for residential load

forecasting ... 51

 Data set .. 51

 Load Forecasting structure based on keras 52

 Optimization technique ... 52

3.7 Error Metrics for Evaluation ... 53

4 Optimal operation of smart home appliances using deep learning 58

4.1 Summary ... 58

4.2 Background and related work .. 58

4.3 DNN based Day-Ahead energy forecast ... 59

 Designing Deep Neural Networks ... 59

 Backpropagation learning algorithms .. 60

 DNN energy Forecasting Models .. 60

 Dataset ... 62

 Error Metrics for Evaluation: ... 63

 Forecasting Evaluation of different home appliance 63

4.4 Residential Appliance Scheduling ... 69

 Smart Home Management System ... 69

 System Modeling .. 69

 Optimization Tool .. 71

5 Residential load forecasting based on deep neural network(DNN) and k-shape

clustering .. 74

5.1 Overview ... 74

vii

5.2 Background and related work .. 74

5.3 Methodology for clustering based DNN forecast 75

5.4 Methods of network level clustering .. 77

 Completely aggregated method .. 78

 Completely disaggregated method ... 78

 Clustering based forecasting method .. 79

5.5 Designing Deep Neural Networks ... 80

5.6 Evaluation Metrics: .. 81

5.7 MAPE evaluation ... 81

6 Conclusion and future work .. 83

6.1 Conclusion ... 83

6.2 Future work ... 84

APPENDIX A .. 89

viii

LIST OF FIGURES

Figure 2-1: DNN based short term load forecast ... 25
Figure 2-2: Sigmoid function.. 27
Figure 2-3: Rectified linear unit ... 28
Figure 2-4: Exponential linear unit ... 29
Figure 2-5: Tensor board graph for case 2 ... 31
Figure 2-6: Tensor board graph for case 3 ... 32
Figure 2-7: Tensor board graph for case 5 ... 33
Figure 2-8: Tensor board graph for case 6 ... 34
Figure 2-9: Tensor board graph for case 7 ... 35
Figure 2-10: Comparison of different cases load forecast with actual data versus MAPE
values .. 38
Figure 2-11: MAPE evaluations for entire 90-day data sets .. 39
Figure 2-12: Weekend Forecasts .. 41
Figure 2-13: MAPE evaluations for Weekend forecast .. 41
Figure 2-14: Weekday Forecasts .. 43
Figure 2-15: MAPE evaluation for weekday forecasts ... 43
Figure 3-1: An unrolled simple recurrent neural network .. 48
Figure 3-2: Long short term memory (LSTM) .. 50
Figure 3-3: Gated recurrent unit (GRU) ... 51
Figure 3-4: Keras code structures for three different RNN scenario 52
Figure 3-5: Residential load forecast using Simple RNN .. 55
Figure 3-6: Residential load forecast using GRU ... 55
Figure 3-7: Residential load forecast using LSTM ... 56
Figure 3-8: MAPE ranking for RNN’s .. 56
Figure 3-9: MAPE ranking for conventional methods .. 57
Figure 4-1: DNN energy Forecasting Models[37]. .. 61
Figure 4-2: Predicted day ahead energy usage for Furnace HRV 64
Figure 4-3: Predicted day ahead energy usage for Cellar Outlets 64
Figure 4-4: Predicted day ahead energy usage for Fridge Range 65
Figure 4-5: Predicted day ahead energy usage for Master Lights 65
Figure 4-6: Predicted day ahead energy usage for Duct Heater HRV 66
Figure 4-7: Predicted day ahead energy usage for Kitchen Lights 66
Figure 4-8: Predicted day ahead energy usage for Disposal Dishwasher 67
Figure 4-9: Daily energy usage for Disposal Dishwasher ... 68
Figure 4-10: Daily energy usage for Duct Heater HRV .. 68
Figure 4-11: Scheduled energy usage of individual appliance for the residential
customer ………73
Figure 5-1: Framework of constructing the model .. 76
Figure 5-2: Flows of constructing the DNN based method with K-Means algorithm..... 77
Figure 5-3: Completely aggregated method. ... 78
Figure 5-4: Completely disaggregated method ... 79
Figure 5-5: Clustering based forecasting method ... 80

ix

LIST OF TABLES

Table 1: Tensor-flow parameters ... 36
Table 2: MAPE evaluations for entire 90-day data sets ... 37
Table 3: Weekend MAPE evaluations ... 39
Table 4: Weekday MAPE evaluations ... 42
Table 5: MAPE summaries for residential load forecasts ... 54
Table 6: MAPE summaries for conventional methods .. 54
Table 7: DNN simulation settings and parameters .. 62
Table 8: MAPE evaluation for smart home appliance ... 67
Table 9: Residential day-ahead energy price ($/KWhr) .. 72
Table 10: Residential appliance rating and user preference .. 72
Table 11: Deep learning tensor-flow parameter ... 80
Table 12: MAPE evaluations of residential home dataset using RNN 81

x

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Prakash

Ranganathan for his continuous guidance, support, and advice which he had

provided from the day one. I’m very fortunate to have him as my advisor.

I am thankful to the members of my committee, Dr. Hossein Salefar and Dr.

Saleh Faruque for their acceptance of being on my committee as well as their

guidance. I would also like to acknowledge the role of the Department of Electrical

Engineering at University of North Dakota (UND), Grand Forks, North Dakota for

providing me the opportunity to study and conduct research.

My thanks also goes to my friends and colleagues here in Grand Forks for

supporting me both academically and socially.

Special thanks to my parents, brother, sister and my wife for their

continuous support, patience, and encouragements.

Above all, I am grateful to the Almighty God for giving me the capability and

the chance to complete this thesis work.

xi

ABBREVIATIONS

SG Smart Grid

ARIMA Auto Regressive Integrated Moving Average

SVM Support Vector Machine

AI Artificial Intelligence

DSM Demand Side Management

STLF Short Term Load Forecasting

DNN Deep neural network

RNN Recurrent neural network

ELU Exponential linear unit

Re-LU Rectified linear unit

LSTM Long short-term memory

GRU Gated recurrent unit

TF Tensor flow

MAPE Mean absolute percentage error

MSE Mean square error

RMSE Root mean square error

MAE Mean absolute error

MIBEL Iberian Electricity Markets

AMPDs The Almanac of Minutely Power Dataset

12

ABSTRACT

For optimal power system operations, electric generation must follow load

demand. The generation, transmission, and distribution utilities require load

forecasting for planning and operating grid infrastructure efficiently, securely, and

economically. This thesis work focuses on short-term load forecast (STLF), that

concentrates on the time-interval from few hours to few days. An inaccurate short-

term load forecast can result in higher cost of generating and delivering power.

Hence, accurate short-term load forecasting is essential. Traditionally, short-term

load forecasting of electrical demand is typically performed using linear regression,

autoregressive integrated moving average models (ARIMA), and artificial neural

networks (ANN). These conventional methods are limited in application for big

datasets, and often their accuracy is a matter of concern. Recently, deep neural

networks (DNNs) have emerged as a powerful tool for machine-learning problems,

and known for real time data processing, parallel computations, and ability to work

with large dataset with higher accuracy. DNNs have been shown to greatly

outperform traditional methods in many disciplines, and they have revolutionized

data analytics. Aspired from such a success of DNNs in machine learning

problems, this thesis investigated the DNNs potential in electrical load forecasting

application. Different DNN Types such as multilayer perception model (MLP) and

recurrent neural networks (RNN) such as long short-term memory (LSTM), Gated

recurrent Unit (GRU) and simple RNNs for different datasets were evaluated for

accuracies. This thesis utilized the following data sets: 1) Iberian electric market

dataset; 2) NREL residential home dataset; 3) AMPds smart-meter dataset; 4)

13

UMass Smart Home datasets with varying time intervals or data duration for the

validating the applicability of DNNs for short-term load forecasting. The Mean

absolute percentage error (MAPE) evaluation indicates DNNs outperform

conventional method for multiple datasets. In addition, a DNN based smart

scheduling of appliances were also studied. This work evaluates MAPE accuracies

of clustering-based forecast over non-clustered forecasts.

14

1 Introduction

1.1 Motivation

Load forecasting play an important role for planning and operation of electric

utilities. In today’s world, with the high development of electricity market and rapid

expansion of power system, load forecasting is becoming an important factor of

power system operation scheduling. If the load forecasting is accurate, there will

be a great potential savings in the control operations and decision making, such

as dispatch, unit commitment, fuel allocation, power system security assessment,

and off-line analysis. Thus, how to improve the accuracy of short-term load

forecasting has always been the focus of load forecasting study.

Based on various time intervals, load forecasting can be divided into three main

categories: short-term forecasting, medium-term forecasting, and long-term

forecasting. Short-term forecasting usually forecasts one hour to one-week,

medium-term forecasting concerns the future electric load from a week to a month,

and long-term forecasting often predicts load of a year or even longer. Short term

load forecasting plays an important role in estimating load flows and in making

decisions to prevent overloading in power system. The medium-term and long-

term forecasting are applied to determine the capacity of generation, transmission,

or distribution system. In addition, these types of forecasting required for

transmission planning, maintenance scheduling, etc.

15

Among these three types of forecasting, Short-term load forecasting draws much

attention. Short term load forecasting is essentially a time varying signal

processing problem. Normally the load forecasting is carried out by making use of

past historical data along with influencing factor that effects the load consumption.

In recent years, different approach of load forecasting has been proposed. It can

be classified as four major categories time series approach, linear and non-linear

regression approach, expert system approach and neural network approach[1].

The energy consumption in different region and different level are not same.

Therefore, no prediction technique can be claimed as best technique in load

forecasting. But it is interesting to notice that neural network-based forecasting

model has been widely used in this area based on its powerful nonlinear modeling

capability for utility companies in different locations and different level. There are

several important key factors that influence the neural network-based forecasting

model for example selection of inputs variables, the size of the network, learning

rate of the neural network, selection of activation function and the number of

epochs of neural training etc.

The goal of this thesis is to adapt the Deep Neural Network (DNN) technology to

short-term forecasting of different level (Regional, Residential, Appliance) of

electrical power demand and to evaluate the DNNs performance as a forecaster.

16

1.2 Thesis Contributions:

The following are the objectives of this work:

Objective 1. Develop a deep neural network-based load forecasting of varying

data durations using regional, residential and appliance level datasets

To accomplish this objective, following tasks were carried out:

Task 1. Conduct literature review on various load forecasting algorithms suitable

for time-series demand datasets.

Task 2. Develop deep neural network forecasting model with different activation

functions such as Sigmoid, Rectifier linear unit (Re-LU), and Exponential linear unit

(ELU) on 90 days of Iberian electric market (MIBEL) regional datasets. For this

purpose, a multi-layered deep neural network was tested using Google’s machine

learning Tensor-Flow platform.

Task 3. Develop recurrent neural network-based forecasting model to forecast

individual residential consumer demand. Then, accuracies for different types of

recurrent neural network were compared. Investigated RNNs include Long short-

term memory (LSTM), gated recurrent unit (GRU) and simple RNN on a single

user with 1 – minute resolution based one year of historical dataset. Conventional

forecasting technique such as such as auto regressive integrated moving average

(ARIMA), random forest (RF), support vector machines (SVM), Generalized linear

models (GLM) also developed to forecast this individual level dataset.

Task 4. Develop a novel smart home appliance scheduling technique using deep

learning. Parameters considered include price, demand, energy ratings and

constraint formulations using linear programming.

17

Objective 2. Investigate the effects of clustered versus non-clustered

forecasts on MAPE accuracies.

Task 5. This task considers 200 residential user and demand profiles to study

clustered versus non-clustered based forecasts.

1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 presents regional short-term load

forecasting using deep neural network with multiple type of activation functions.

Chapter 3 talks about the individual residential consumer demand forecasting

using different recurrent neural network and other conventional method of

forecasting. Chapter 4 discusses scheduling of smart home appliance using deep

learning. Chapter 5 presents clustering based short term load forecasting using

deep neural network. Finally, Chapter 6 summarizes the conclusion and provides

direction for the future work.

18

1.4 Publications

• Tareq Hossen, Siby Jose Plathottam, Radha Krishnan Angamuthu,

Prakash Ranganathan, and Hossein Salehfar. "Short-term load forecasting using

deep neural networks (DNN)." In Power Symposium (NAPS), 2017 North

American, pp. 1-6. IEEE, 2017.

• Tareq Hossen, Arun Sukumaran Nair, Sima Noghanian, Prakash

Ranganathan “Optimal Operation of Smart Home Appliances using DNN”

submitted in Power Symposium (NAPS), 2018 North American, pp. 1-6. IEEE,

2018.

• Tareq Hossen, Arun Sukumaran Nair, Radha Krishnan Angamuthu,

Prakash Ranganathan “Residential Load Forecasting Using Deep Neural

Networks (DNN)” Submitted in International Electro/Information Technology 2018

North American, pp. 1-6. IEEE, 2018.

• Tareq Hossen, Mitch campion, Prakash Ranganathan, “Improving

residential load forecasting based on Deep Neural Network (DNN) and K-shape

clustering” (Under preparation).

• A. Sukumaran Nair, P. Ranganathan, T. Hossen, and N. Kaabouch, “Multi-

Agent Systems for Resource Allocation and Scheduling in a Smart Grid: A Survey,”

Technology and Economics of Smart Grids and Sustainable Energy (Under Rev).

19

2 Regional short-term load forecasting using deep neural network

2.1 Overview

Load forecasting is an important electric utility task for planning resources in Smart

grid. This function also aids in predicting the behavior of energy systems in

reducing dynamic uncertainties. The efficiency of the entire grid operation depends

on accurate load forecasting. This chapter proposes and investigates the

application of a multi-layered deep neural network to the Iberian electric market

(MIBEL) forecasting task. Ninety days of energy demand data are used to train the

proposed model. The ninety-day period is treated as a historical dataset to train

and predict the demand for day-ahead markets. The network structure is

implemented using Google’s machine learning Tensor-flow platform. Various

combinations of activation functions were tested to achieve a better Mean Absolute

percentage error (MAPE) considering the weekday and weekend variations. The

tested functions include Sigmoid, Rectifier linear unit (Re-LU), and Exponential

linear unit (ELU). The preliminary results are promising, and show significant

savings in the MAPE values using the ELU over other activation functions.

20

2.2 Background and related work

Load forecasting play a vital role in operations and planning of electrical power and

energy systems. Data related to load forecasting are non-linear in nature, making

the load prediction task a challenging one. One simple approach, however, to load

forecasting is using regression techniques. Regression is a statistical procedure

for estimating the relationship between dependent and predictor (independent)

variables. It allows one to see how the dependent variable changes with respect

to changes in the independent variable. The advantage of this method is that it is

easily understandable. The limitation of this approach is there exist a high degree

of over fit. The other disadvantage the linear regression is too simple to capture

the complex relationship in multi-variate data sets [2]. Logistic regression is the

adaptation of linear regression to problem classification (e.g., yes/no questions,

groups etc.) This method also has high probability and challenges to over-fit the

model [2]. In decision trees, a graph-based branching method is used to match all

the possible outcomes for a decision. It is used normally for a simple problem and

not potent enough to solve complex data[3][4]. Other popular method of

forecasting is the Random forest. Random forest takes the mean of many decision

trees–each of which is made with some random samples. Each tree is weaker than

a full-decision tree. When this individual tree is combined with others, it yields a

better result. This method is fast to train and can work with high quality models[3].

Gradient boosting uses weaker trees. In this method, a small change in training

set can create radical change in the model. This could be its limitation[4]. The other

well-known method of load forecasting is using neural-network. In neural network,

21

the interconnection of neuron passes messages to each other with one or more

hidden layers in between them. In deep learning, several hidden layers are placed

one after the other. This method can handle extremely complex tasks with high

accuracy. The disadvantage of this method is it is very slow to train and require a

lot of power. The other disadvantage of this method is it is almost impossible to

understand the prediction[5]. A neural network consists of an input layer, varying

no of hidden layers, and an output layer. These layers are connected by neuron

which processes the data. Neural network with a single layer is not capable of

understanding the complex relationship between input and output. A neural

network with more than three hidden layers is known as a deep neural network. A

deep neural network has a better capability of feature abstraction of input and

output pattern[6]. Recent development in the field of big data and internet of things

(IoT) increase the acceptance of deep neural network (DNN) in multiple research

disciplines [6]. In [7], a three-layered neural network based backpropagation

technique was developed for load forecasting. In this work multilayer perception

neural (MLP) networks have been used to forecast the demand from domestic

users.

2.3 Short term regional load forecasting

The Electricity demand forecast process involves multiple steps that include data

cleansing, data preparation, and data evaluation. The following are steps involved:

1- (Gather Load data): We collected the load consumption data through the web-

link provided by the Iberian Electricity market.

22

2 – Glean and order the data: We used the 90 days of the dataset to build the

model and evaluate how well the model generalizes to future results.

3 – Training a model on the data

To model the relationship between the predictor variables used in modeling and

the electricity demand, we used deep neural networks multi-layer perception

model. The neural network model of this work is developed using the Tensor-Flow

deep learning platform[8]. Tensor-Flow is an open source software library for

numerical computation using data flow graphs. The nodes in the graph represent

mathematical operations, while the graph edges represent the multidimensional

data arrays (tensors) communicating between the nodes. The flexible architecture

of Tensor-Flow allows one to deploy computations to one or more Central or

Graphical Processing Units (CPUs or GPUs) on a desktop, server, or mobile

device with a single Application Process Interface (API). Tensor-Flow was

originally developed by researchers and engineers working on the Google Brain

Team within Google's Machine Intelligence research organization for the purposes

of conducting machine learning and deep neural networks research. However, the

Tensor-Flow system is general enough to be applicable to other domains as well

[8].

The choice of a neural network structure depends on several factors. In general,

neural network modeling is divided into five steps [9]

a. Select input and output variables.

b. Build the neural network model.

23

c. Cluster training, test, and validation data.

d. Train the neural network model with the training data set.

e. Validate the neural network model.

The selection of inputs to the neural network is an important aspect of the design.

In this work, we consider temperature, wind-speed, solar irradiance, and the prior

load data as input. These data sets are normalized to accommodate the

application of activation functions. The following expression is used to normalize

load:

 min

max min

 Normalized lo
x x

x
ad

x

−
=

−

(1)

Where x is he actual data value. To build the neural network model, a trial and

error method select the number of hidden layers and neurons. The datasets are

categorized into three sets: training, validation, and testing sets. The test and

validation data sets are not used to train the neural network. These datasets are

used to evaluate the error by comparing the obtained results with the actual data.

Training of the neural network is a process of determining the network weights that

provide a minimum error. As an acceptable minimum level of training error does

not ensure the same level of performance with all other related input datasets, it is

often necessary to validate the network performance once the training process is

completed [9].

24

2.4 Implementation of deep neural networks

In this work, we developed both shallow and deep neural networks on a Tensor

Flow platform. After building the model, it is tested using various combinations of

activation functions and neurons.

2.5 Structure of DNN

The numbers of layers and neurons are key in modeling neural network structures.

In shallow neural network (i.e., single hidden layer), we can only vary the number

of neurons that are in the single hidden layer, while both the width and the depth

of the network can be changed in DNN. For both shallow neural network (SNN)

and deep neural network (DNN), the number of input and output neurons is

predetermined according to the dimension of the training set and the forecasting

period [10]. A heuristics method was used to choose the number of hidden neurons

in the shallow neural network (SNN) in [10]. In DNN, it is not possible to do the

same as SNN, as one has to consider both the width and the depth of the network

[11]. The structure of DNN model used in this work is given below:

25

Figure 2-1: DNN based short term load forecast

2.6 Dataset

The size of dataset impacts the accuracy, training, and transfer of learning within

the deep neural network [12]. For example, the 2016 DNN competition [13] uses

456,567 images for visual recognition applications. The authors of the present

26

work used 90-days hourly data of Iberian Energy Market Operator (MIBEL). We

selected a single day (July 31, 2015) to forecast and validate the performance with

different deep neural network model.

2.7 Activation function

Activation function is a deciding parameter that evaluate and capture the trends or

feature patterns from within the data. If the output value from the activation function

is zero, the feature is absent and if the value is one the feature is present in the

data. In computational networks, the activation function of a node defines the

output from that node given an input or a set of inputs. A standard computer chip

circuit be a digital network of activation functions that can be either "ON" (1) or

"OFF" (0), depending on the input. This is like the behavior of the linear perceptron

in neural networks. However, the nonlinear activation function allows such

networks to compute nontrivial problems using only a small number of nodes. In

artificial neural networks, this function is also called the transfer function. In training

the multi-layer neural network model, activation function plays an important role in

adjusting the weights. In this work, the authors have used a non-linear sigmoid and

a rectified linear unit function for hidden layers in the model.

 Sigmoid function

The sigmoid function is defined as

27

 1
()

1 x
f x

e − +
=

+

(2)

where x is input to a neuron. α is the offset parameter and sigmoid function

evaluates its value as zero. The sigmoid function is very similar to the step function,

which acts like threshold. When x is a large positive number, the output of the

sigmoid function is near to 1.

The difference between the linear and sigmoid functions is that the sigmoid one

saturates to a high value of x. The sigmoidal function can make the gradient-based

learning difficult. For this reason, use of linear function in deep neural network is

discouraged [14].

Figure 2-2: Sigmoid function

28

 Rectified linear unit (RELU)

Rectified linear unit is defined as

 () max(0,)R x x= (3)

where x is the input to the neuron.

Figure 2-3: Rectified linear unit

ReLU is similar to linear function with the only change having an output that is

zero across half of its domain. Specifically, ReLU has the two following advantages

[15]:

i) It is very quick to use and train when compared with other activation functions.

ii) It is not the subject to the vanishing gradient problem. The limitation of ReLU,

however, is that its mean output is not zero. For deep neural networks, this function

29

introduces a bias for the next-layer which can slow down the learning process of

the network.

 Exponential linear unit (ELU)

The exponential linear function is defined as

 () (1), 0xf x a e x= − otherwise ()f x x= (4)

where, α is a parameter to be chosen and x is the input.

Figure 2-4: Exponential linear unit

ELU function behaves like the ReLU unit for values of x that are positive, but for

all negative values, this function is bounded by a fixed value of α is -1 for. This

behavior helps to push the mean activation of neurons closer to zero which is

beneficial for learning and is robust to noise [16].

30

2.8 System model

For a proper development and implementation of neural networks, a sound training

data set is an absolute necessity. This requires several parameters during the

design phase such as the availability of historical load data; number of neurons;

selection of the number of layers; and the activation functions. For our system

model, temperature, wind-speed, solar irradiance, and the prior load data used as

input. In this chapter, several short-term load forecasting cases using various

combinations of activation functions were investigated. An ADAM optimizer inside

Tensor-flow framework was used to train our model. This optimizer uses a

gradient- descent algorithm. This method has a faster convergence rate compared

to the stochastic gradient descent (SGD) approach [17].

 Case 1. ReLU Activation Function with Single Hidden Layer

In this case, five input variables, ReLU activation function, were selected to do the

forecast. The number of neurons is varied randomly until a better mean absolute

percentage error (MAPE) result is obtained.

 Case 2. ReLU Activation Function with two hidden layers

In this case, ReLU activation function, and two hidden layers were selected to do

the forecast. The number of neurons is varied randomly until a better MAPE result

is obtained.

31

Figure 2-5: Tensor graph for case 2

 Case 3. ReLU - Sigmoid Combination

In this case, ReLU and Sigmoid activation functions, and two hidden layers were

selected to do the forecast. The number of neurons are varied randomly until a

better MAPE result is obtained. ReLU is used in layer 1 and sigmoid is used in

layer 2.

32

Figure 2-6: Tensor graph for case 3

 Case 4. ELU Activation Function with Single Hidden Layer

In this case, ELU activation function, and one hidden layer is selected to do the

forecast. The number of neurons are varied randomly until a better MAPE result

is obtained. We used ELU in layer 1.

 Case 5. ELU Activation Function in two hidden layers

33

In this case, ELU activation function, and two hidden layers were selected to do

the forecast. The number of neurons are varied randomly until a better MAPE

result is obtained. We used ELU in both layers 1 and layers 2.

Figure 2-7: Tensor graph for case 5

 Case 6. ReLU-ELU Combination

In this case, ReLU is used as the activation function in layer 1 and ELU is used for

that in layer 2.

34

Figure 2-8: Tensor graph for case 6

 Case 7. Sigmoid-ELU Combination

In this case, sigmoid and ELU activation functions, and two hidden layers were

selected to do the forecast. The number of neurons are varied randomly until a

better MAPE result is obtained. We used sigmoid in layer 1 and ELU in layer 2.

35

Figure 2-9: Tensor graph for case 7

We also tested the sigmoid-sigmoid combination for layer 1 and 2 respectively, but

this combination yielded very poor MAPE values. So, we disregarded the result.

Tensor-flow is used to training and test the designed model. In case of designing

and training deep neural network it becomes complex and confusing.

2.9 Error Metrics for Evaluation

To assess the accuracy of the forecasting model, three metrics are used: mean

absolute percentage error (MAPE), mean square error (MSE), and root mean

square error (RMSE).

0

1
100%

t T
T T

t T

F A
MAPE

T A

=

=

−
=

(5)

36

2

1

()
t T

T T

t

A F

MSE
T

=

=

−

=

(6)

2

1

()
t T

T T

t

A F

RMSE
T

=

=

−

=

(7)

where,

TF = forecasted load, TA = actual load and T= test set size.

2.10 Simulation Parameters

The simulation settings, and parameters used in this work are listed in Table 1.

Table 1: Tensor-flow parameters

Parameters Values

Total number of samples 2208

Training samples 2184

Test samples 24

Minimum load data at same hour on previous day,
P.DD-1

3640.1 KW

Minimum load at same hour on previous week, P.DD-
6

3640.1 KW

Minimum temperature 3 degrees Celsius

Maximum load at same hour on previous day, P.DD-1 7177.2 KW

Maximum load at same hour on previous day, P.DD-6 7177.2 KW

Maximum temperature 35.7 degrees Celsius

Maximum irradiance 975.9 kw

Maximum wind-speed 8.1 m/s

Learning rate 0.001

Training epochs 500000

37

From Table 2, it is obvious that ELU function outperformed the other functions.

This is because ELU does not saturate for the larger values of input x, and the

mean of the ELU activation function is closer to zero. This is because of the

negative portion of the function characteristics that ensures faster and accurate

learning of DNNs.

Table 2: MAPE evaluations for entire 90-day data sets

Activation function
Number of
neurons

MAPE(%) RMSE

Case 1:

Single layer

ReLU

4 1.641 111.02

6 1.66 112.88

8 1.77 118.17

10 1.62 110.86

12 1.628 109.86

Case 2:

Double layer ReLU- ReLU

3 1.52 115.92

4 1.73 104.4

5 1.83 120.14

7 1.6 109.9

9 1.48 104.29

Case 3:

Double layer ReLU- Sigmoid

3 3.7 297.3

4 2.2 172.8

6 1.9 154.2

8 2.7 205.8

10 3.9 254.5

Case 4:

Single layer

ELU

3 1.79 119.46

4 1.5 103.54

6 1.71 113.96

8 1.56 107.74

38

10 1.49 103.90

Case 5:

Double layer

ELU- ELU

3 1.008 73.42

4 1.192 85.74

6 1.52 107.9

8 1.36 98.06

Case 6:

Double layer

RELU- ELU

3 1.86 121.16

4 1.58 106.52

6 1.39 97.67

8 1.77 117.49

10 1.93 127.11

Case 7:

Double layer

Sigmoid- ELU

3 2.34 189.75

4 2.63 182.63

6 2.6 185.01

8 3.05 213.62

10 3.29 211.667

Figure 2-10: Comparison of different cases load forecast with actual data versus
MAPE values

39

Figure 2-11: MAPE evaluations for entire 90-day data sets

Figure 2-11 show the forecasted graph for all 7 cases with actual demand data. It

is observed that case 5 yield better results, and case 7 yield poor results. The ELU-

ELU combination with two layers performs better with the 90-day data set. This

isdue to the closer correlation of the 90-day pattern profile with the ELU activation

function.

Table 3: Weekend MAPE evaluations

Activation function Number of neurons MAPE(%) RMSE

Case 1:

Single layer

ReLU

3 1.29 73.22

4 1.3 74.53

6 1.31 74.95

8 1.32 75.29

Case 2:

Double layer

4 1.25 70.94

6 1.22 63.81

40

ReLU- ReLU 8 1.16 64.88

10 1.20 67.66

Case 3:

Double layer

Sigmoid -ReLU

4 1.39 82.31

6 1.51 100.52

8 2.03 119.65

10 1.59 94

Case 4:

Single layer

ELU

4 1.34 76.1

6 1.27 72.29

8 1.36 77.53

10 1.34 76.35

Case 5:

Double layer

ELU- ELU

4 1.53 79.2

6 1.52 86.3

8 1.31 75.09

10 1.27 72.34

Case 6:

Double layer

RELU- ELU

4 1.53 86.47

6 1.21 68.43

8 1.41 80.24

10 1.39 78.47

Case 7:

Double layer

Sigmoid- ELU

4 1.28 73.17

6 1.69 106

8 2.37 133.6

10 1.96 126.22

41

Figure 2-12: Weekend Forecasts

Figure 2-13: MAPE evaluations for Weekend forecast

42

Table 4: Weekday MAPE evaluations

Activation function Number of
neurons

MAPE(%) RMSE

Case 1:

Single layer

ReLU

4 2.19 150.21

6 2.20 150.02

8 2.29 157.66

10 2.31 159.67

Case 2:

Double layer

ReLU- ReLU

4 2.31 158.5

6 2.34 161.65

8 2.36 162.63

10 2.30 158.748

Case 3:

Double layer

Sigmoid -ReLU

4 3.27 241.92

6 3.44 249.11

8 3.13 206.62

10 3.24 206.56

Case 4:

Single layer

ELU

4 2.25 154.44

6 2.24 154.27

8 2.19 150.3

10 2.20 151.39

Case 5:

Double layer

ELU- ELU

4 2.29 158.67

6 2.03 142.15

8 2.43 169.89

10 2.42 167.86

Case 6:

Double layer

RELU- ELU

4 2.31 159.2

6 2.12 143.24

8 2.38 165.08

10 2.27 155.84

Case 7:

Double layer

4 2.75 182.01

6 3.97 250.13

43

Sigmoid- ELU 8 3.28 216.19

10 3.6 234.53

Figure 2-14: Weekday Forecasts

Figure 2-15: MAPE evaluation for weekday forecasts

44

ELU function performed, because it has improved learning characteristics

compared to other activation functions. In contrast to the Sigmoid and ReLU

activation functions, the ELU values are negative in x-axis which allows to make

the mean value closer to zero, and this speed up the learning process, and enable

the gradient closer to the unit’s natural gradient.

This chapter of thesis investigates the application of DNN’s in electric power

system analysis. This sections of thesis uses a 90-day Iberian market dataset to

predict the day-ahead loads. Multiple combinations of activation functions were

trained, and tested with both single and double-layer neural networks. The results

indicate that the combination of ELU with ELU performs better than other

combinations when evaluated against MAPE values. On weekend data sets, the

ReLU-ReLU combination outperform other combinations.

45

3 Residential load forecasting using deep neural networks (DNN)

3.1 Overview

Forecasting consumer electricity usage plays an important role for reliable smart

grid. As the activities of an individual residential consumer has many uncertain

variables, it is hard to accurately forecast the varying residential load levels. For

planning electrical resources and to balance demand and supply, accurate

forecasting are critical tasks. This chapter presents Deep Neural Network (DNN)

based short-term load forecasting for residential consumers. In this work, we

compare the Mean Absolute Percentage Error (MAPE) values for residential

electricity dataset using different types recurrent neural networks (RNN). Our

preliminary results indicate that Long short-term memory (LSTM) based RNN

performed better compared with simple RNN and gated recurrent unit (GRU). This

method is deployed for a single user with 1-minute resolution based on one year

of historical data sets.

3.2 Background and Related work

Load forecasting has remained an important research area for conducting planning

operations in electrical power systems. The advanced metering infrastructure

(AMI) technology revolutionized the mass adaptation of smart meters at residential

consumer levels by utilities. A significant portion (e.g., 20% to 40%) of the total

electricity energy production is consumed by residential loads [18]. Load

forecasting based on smart metering datasets that are within 1-minute intervals

are relatively new area of research. In [19], authors introduced a methodology of

46

short-term functional time-series based forecast to predict household-level

electricity demand. A Kalman -filter based forecasting model to predict the

residential load is discussed in [18] and forecasting using conditional kernel density

estimation is discussed in [20]. A hybrid model approach for forecasting future

residential electricity consumption for buildings is developed in [21]. An occupancy

model has been developed for residential load forecasting and discussed in [22].

Artificial Intelligence (AI) based forecasting techniques such as Fuzzy logic [23],

artificial neural networks [9], support vector machines [24] and wavelets neural

networks [25] are investigated under short term load forecasting. The AI methods

are most conducive due to their ability to handle non-linear relationships between

dependent and independent variables. Recently, DNN has been successfully used

in application such as image processing, automatic speech recognition, natural

language processing and for time-series modeling tasks such as load forecasting.

There are several review papers on load forecasting focused at aggregated level

for commercial users. However, there are limited work on residential level data

sets. We think that this is because short term load forecasting at granular level is

extremely challenging due to uncertainty and volatility [18]. Most short-term load

forecasting models focuses on regular pattern that are easily predictable.

Residential loads are more uncertain due to erratic and stochastic nature of

consumer behavior that are hard to predict. This chapter represents a deep

learning- based method for the meter-level load forecasting for residential

consumers. We have used recurrent neural network for residential load

forecasting. We compare our forecasting accuracy by using different recurrent

47

neural network (RNN) models for residential dataset. We also test our dataset with

other conventional time-series analysis such as ARIMA, Generalized linear model

(GLM), Random Forest (RF) and machine learning approaches Neural network

and Support Vector machine (SVM) methods. The rest of the chapter is organized

as follows: section 2 discusses background information on RNN, LSTM, GRU and

some related work, section 3 discusses implementation platforms, and section 4

focuses on preliminary results and discussions.

3.3 Implementation of recurrent neural networks for residential load
forecasting

In this chapter, the effectiveness of different DNN models is investigated for

residential level forecasting. We have developed different RNN models to predict

day ahead residential demand using smart meter dataset. We also used different

conventional method of forecasting such as ARIMA, GLM, Random Forest, neural

network and support vector machine for day ahead forecasting.

3.4 Structure of RNN

Recurrent neural networks (RNNs) are fundamentally different from traditional

feedforward neural network. They are sequence-based models, which are able to

establish the temporal correlations between previous information and the current

circumstances. For time series problem, this means that the decision an RNN

made at time step 1t − could affect the decision it will reach at time step later t

.Such characteristic of RNNs is ideal for the load forecasting problems of individual

households, since it has been pointed out that residents intrinsic daily routines may

48

be one of the most important factors to the energy consumption at the later time

intervals.

RNN can have a signal traveling in both directions by introducing a loop in the

network. The computations in RNN derived from earlier input are fed back to the

network, which gives them a special memory. A RNN can be thought of as multiple

copy of same network, each passing a message to successor [26]. An unrolled

structure of RNN is given below: In Figure 1, a chunk of neural network A, looks at

some input and outputs a value . A loop allows information to be passed from

one stage of the network to the next stage.

3.5 Recurrent neural network model for short term load forecasting

We have used three different recurrent model structures for our load forecasting.

The structure of these three RNN is given below:

 Simple RNN

Simple RNN accepts input xt at time t and the status is updated by a non linear

mapping f from time to time. One simple way defining the recurrent unit f is linear

transformation plus a non-linear activation.

1tanh([,])t t th w h x b−= + (8)

Figure 3-1: An unrolled simple recurrent neural network

tx th

49

 Long short term memory (LSTM)

LSTM is a special kind of RNN that was introduced by Hochreiter & Schmidhuber

[27]. This type of RNN is apparently modeled to avoid the long term dependency

problem [28]. All the RNN models are of the form having a chain of repeating

modules of neural networks. In standard RNNs, this repeating module will have a

simpler structure, such as a single tanh layer. In RNN, instead of having a single

neural network layer, there are four layers. The step by step operation of LSTM

can be represented by the following equation:

1(.[,])t f t t ff w h x b −= + (9)

t = tanh().[.]+c t x t cC w h x b

−

−
(10)

1t t t t tC f C i C−= + (11)

1(.[,])t o t t oO w h x b −= + (12)

 tanh()t t th O C= (13)

50

Figure 3-2: Long short term memory (LSTM).

From Figure. 2, of a LSTM network, each block has two parallel lines going in and

out. The top line is the cells, the essential point is the hidden state information.

Finally, there is a third line going in from the bottom, representing X. In total, three

inputs and two outputs. xt would be X_train,ht-1 would be h_previous, xt+1 would be

X_train.next, and ht would be h_current.

 Gated recurrent unit(GRU)

Gated Recurrent Unit, or GRU is a modified version of the LSTM . GRU is

introduced by Cho in 2014 [28] that combines the forget and input gates into a

single update gate. In contrast to LSTM, a GRU network only has two inputs and

one output and no cell layers [29]. GRU unit takes X_train and h_previous as

inputs. They perform certain calculations and then pass along h_current. In the

next iteration X_train.next and h_current are used for more calculations.

The step by step operation of GRU can be represented by the following equation.

 1,(.[])t z t tz w h x −= (14)

 1,(.[])t r t tr w h x −= (15)

1,tanh(.[*])t t t th w r h x−=
(16)

 1(1)* * tt t t th z h z h−= − +

(17)

51

Figure 3-3: Gated recurrent unit (GRU).

3.6 Implementation of recurrent neural networkS (RNN) for residential
load forecasting

In this chapter, we have used keras on top of tensor-flow to implement the

recurrent neural network. Keras is a high-level neural network library written in

python and it can run on top of either Theano or tensor flow [30]. Tensor-flow

platform is one of the most leading machine learning library used in developing

deep learning models. However, Tensor-flow is not simple to use. On the contrary,

keras is a high-level API built on tensor-flow that are more user friendly and simple

to use.

 Data set

In this chapter , we used AMPds dataset. This dataset contains one year of data

that includes 11 measurements at one minute intervals for 21 sub-meters. AMPds

also includes natural gas and water consumption data [31]. We convert energy

consumption data to KWh to mimic the commonly available smart meter data.

52

 Load Forecasting structure based on keras

We experimented several parameters to train our model with the keras deep

learning packages. The following Fig 4. shows a set-up carried for residential short

term load forecasting cases in keras.

Figure 3-4: Keras code structures for three different RNN scenario

 Optimization technique

The challenging aspects of modeling deep neural network is the optimization of

training criteria over millions of parameters. In this work, we choose RMS Prop

optimization. RMS Prop is a biased estimator proposed in neural networks for

Case1: Simple RNN forecasting model based on keras

model = Sequential() Input (length {S})
layers = [1, 50, 100, 1]
model.add(SimpleRNN(layers[1],input_shape=(None,layers[0]),return sequences=True))
model.add(Dropout(0.2))
model.add(SimpleRNN(layers[2],return sequences=False))
model.add(Dropout(0.2))
model.add(Dense(layers[3]))
model.add(Activation("linear"))
Case2: GRU forecasting model based on keras

model = Sequential() Input (length {S})
layers = [1, 50, 100, 1]
model.add(GRU(layers[1],input_shape=(None,layers[0]),return sequences=True))
model.add(Dropout(0.2))
model.add(GRU(layers[2],return sequences=False))
model.add(Dropout(0.2))
model.add(Dense(layers[3]))
model.add(Activation("linear"))
Case3: LSTM forecasting model based on keras

model = Sequential() Input (length {S})
layers = [1, 50, 100, 1]
model.add(LSTM(layers[1],input_shape=(None,layers[0]),return sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(layers[2],return sequences=False))
model.add(Dropout(0.2))
model.add(Dense(layers[3]))
model.add(Activation("linear"))
Here, S= Number of sequence in recurrent neural network

53

machine learning [17]. It is a gradient based optimization. RMS Prop has remained

the method of choice for most recurrent neural network modeling. In this chapter,

we utilize the RMS Prop as our parameters update optimizer, with parameter

update rule according to the following formulae.

 2 2 2

1 1[] [] (1)t t tE g E g g − −= + − (18)

1
2[]

t t t

t

g
E g

+ = −

+

(19)

where, t R is the iteration times. The θ is the parameters of neural network. E is

the weighted sum operation. g2 is vector of gradient square. The ηϵ(0,1) is the

learning rate. The ԑ is a smoothing term that avoids division by zero.

3.7 Error Metrics for Evaluation

1

1 t T
t t

t t

A F
MAE

T A

=

=

−
=

(20)

1

1
100%

t T
t t

t t

A F
MAPE

T A

=

=

−
=

(21)

where,

tF = forecasted load, tA = actual load and T= test set size.

From Table 1, LSTM based RNN with sequence 40 performed better compared to

other forecasting models. The training and prediction time of LSTM model are also

smaller compared with other models.

54

Table 5: MAPE summaries for residential load forecasts

Scenario S MAPE Train
time (s)

Prediction
time (s)

Validation
loss

Training
loss

LSTM 30 35% 1116.7 0.0190 3.1197e-05 4.2183e-05

LSTM 40 24% 1505 0.0210 2.0085e-05 4.2721e-05

LSTM 50 29% 2145 0.0200 2.5080e-05 4.3218e-05

Simple
RNN

30 59% 213 0.019049 2.6471e-05 1.1500e-04

Simple
RNN

40 37.7% 294 0.019050 2.4830e-05 2.7659e-04

Simple
RNN

50 45.7% 398.01 0.021054 2.6893e-05 1.7445e-04

GRU 30 34.3% 1095 0.0210 2.4373e-05 4.2037e-05

GRU 40 24.7% 1491.87 0.0210 2.1842e-05 3.9982e-05

GRU 50 39.7% 1993.13 0.0200 2.6099e-05 3.9602e-05

Table 6: MAPE summaries for conventional methods

Conventional time series model for residential load forecast

ARIMA 74%

GLM 75%

RF 74%

SVM 50%

FFNN 73.54%

Table 2 show the MAPE values for conventional time-series methods. It is

important to note that we were not able to perform the day-ahead forecasting

computation with 2-year datasets for conventional methods, due to larger

computation run-time. Instead, we used smaller 1-year dataset. For RNN, the

computational run-time is less over the conventional methods. Some inferences

are: Support vector machine (SVM) perform better than other conventional

methods; RNNs are much better than the conventional methods.

55

In order to visualize how each method perform, the first 100 time steps for each

forecasting model is plotted Figs.5-7.

Figure 3-5: Residential load forecast using Simple RNN.

Figure 3-6: Residential load forecast using GRU.

56

Figure 3-7: Residential load forecast using LSTM.

The performance different RNN models with varied sequences are summarized

in Table 1.

Figure 3-8: MAPE ranking for RNN’s.

57

Figure 3-9: MAPE ranking for conventional methods.

Figures 8 and 9 show MAPE values for RNN and conventional methods. All

frameworks are built on a desktop PC with a 3.4 GHz Intel i7 processor and 16GB

of memory using the Keras library [32] with tensor-flow backend [8][33].

58

4 Optimal operation of smart home appliances using deep learning

4.1 Summary

This chapter discusses optimal operation and scheduling of smart home

appliances using deep learning. One year of data sets were used that include

price, demand, rating, and energy constraints. Using deep neural network

platform, the Mean Absolute Percentage Errors (MAPE) were computed for 9

appliances using historical data sets. The preliminary results show promising

improvement in forecasting accuracies coupled with Linear Programming suitable

for demand response and scheduling loads.

4.2 Background and related work

The smart home system is envisioned to contain distributed renewable sources

and smart appliances that able to participate in demand response. An important

challenge faced by the power generation and distribution system is the sudden

surge in energy demand during peak hours [34]. Power system companies are

forced to install additional generating units, just to support the peak energy

demand. The power transmission infrastructure also presents an additional

bottleneck to support the ever-increasing growth in power demand. One way to

overcome this surge in demand during peak hours is to encourage consumers to

operate their equipment during off peak hours [35]. With advent of smart

appliances, the consumers can take the advantage of time-of-use pricing scheme

to reduce their electricity cost. This chapter presents a DNN based predictive

model to forecast the next day energy consumption at an appliance level from a

59

one-year historical residential dataset. The forecasted consumption data along

with the day-ahead energy price from MISO is used to model the smart home

appliance management system. The concept of linear programming is used to do

the optimization with the help of the AMPL (A Mathematical Programming

Language) software.

4.3 DNN based Day-Ahead energy forecast

It is significant to forecast a particularly household daily consumption in order to

design and size suitable renewable energy systems and battery storage. In this

work, we did a Short-Term Load Forecasting (STLF) of household equipment. It is

a challenge to forecast the household energy consumption in an appliance level

because of its uncertainty [36]. Despite the uncertainty associated with household

electric power consumption, we were able to forecast the energy consumption with

a significant accuracy using DNN.

 Designing Deep Neural Networks

Selecting an appropriate design of deep neural network is the first step of DNN-

based forecasting system. In the current studies, the network architecture was built

based on multilayer perceptron (MLP), full-connected, which is a feed-forward type

of neural network, and the training task was performed through a backpropagation

learning algorithm.

60

 Backpropagation learning algorithms

The backpropagation learning algorithms, most common in use in feed-forward

DNN, are based on steepest-descent methods that perform stochastic gradient

descent on the error surface. Backpropagation is typically applied to multiple layers

of neurons and works by calculating the overall error rate of an artificial neural

network. The output layer is then analyzed to see the contribution of each of the

neurons to that error. The neurons weights and threshold values are then adjusted,

according to how much each neuron contributed to the error, to minimize the error

in the next iteration.

 DNN energy Forecasting Models

The neural network model of this work is developed using the Tensor Flow deep

learning platform. Tensor Flow is an open source software library for numerical

computation using data flow graphs. The nodes in the graph represent

mathematical operations, while the graph edges represent the multidimensional

data arrays (tensors) communicating between the nodes. The flexible architecture

of Tensor Flow allows one to deploy computations to one or more Central or

Graphical Processing Units (CPUs or GPUs) on a desktop, server, or mobile

device with a single Application Process Interface (API). Tensor Flow was

originally developed by researchers and engineers working on the Google Brain

Team within Google's Machine Intelligence research organization for the purposes

of conducting machine learning and deep neural networks research. However, the

61

Tensor Flow system is general enough to be applicable to other domains as well

[5]. The structure of load forecasting model of DNN is given below.

Figure 4-1: DNN energy Forecasting Models[37].

One-year smart home appliance data with one-minute resolution was used to

predict the next day[38]. The previous load consumption of different appliance

along with weather data was used to train our neural network model. In this work,

an ADAM optimizer inside Tensor-flow framework is used to train our model. It

62

uses gradient descent algorithm. This method is faster in convergence than

Stochastic Gradient Descent (SGD) approach [28]. The simulation settings and

parameters used are listed in Table 1.

Table 7: DNN simulation settings and parameters

Parameters Values

Total number of samples 236970

Training samples 235530

Validation samples 1440

Shape of training input data set (235530, 11)

Shape of training target data set (235530, 1)

Shape of validation input data set (1440, 11)

Shape of validation target data set (1440, 1)

epochs 100

Learning rate 0.001

mini_batch_size 100

Activation function Linear

Number of hidden layer 3

Learning rate 0.001

Training epochs 500000

 Dataset

The size of dataset impacts the accuracy, training, and transfer of learning within

the deep neural network[37]. In this work, we used 1 year of 1-minute resolution

data of UMass Smart Home Data Set. In this dataset contains data for 114 single-

family apartments for the period 2014-2016. This data set includes a variety of

63

traces from three separate smart homes[38]. In our work, we used single smart

home data of 2016 to predict next day different home appliance energy

consumption.

 Error Metrics for Evaluation:

To assess the accuracy of the forecasting model, Mean absolute percentage error

(MAPE) is used.

1

1
100%

t T
T T

t T

A F
MAPE

T A

=

=

−
=

(22)

where,

TF = Forecasted load

TA =Actual load and

 T =Test set size

 Forecasting Evaluation of different home appliance

The one day ahead predicted energy usage of different home appliance is given

below (figure 2 to figure 10).

64

Figure 4-2: Predicted day ahead energy usage for Furnace HRV.

Figure 4-3: Predicted day ahead energy usage for Cellar Outlets.

65

Figure 4-4: Predicted day ahead energy usage for Fridge Range.

Figure 4-5: Predicted day ahead energy usage for Master Lights.

66

Figure 4-6: Predicted day ahead energy usage for Duct Heater HRV.

Figure 4-7: Predicted day ahead energy usage for Kitchen Lights.

67

Figure 4-8: Predicted day ahead energy usage for Disposal Dishwasher.

Table 8: MAPE evaluation for smart home appliance

Sr. no Appliance MAPE value (%)

AP1 Furnace HRV 1.575

AP2 Cellar Outlets 3.23

AP3 Fridge Range 5.24

AP4 Master Lights 0.509

AP5 Bedroom Outlets 1.7359

AP6 Duct Heater HRV 10.8561

AP7 Bedroom Lights 1.7359

AP8 Kitchen Lights 2.23

AP9 Disposal Dishwasher 3.2

Table 2 and figure 11 shows the MAPE evaluation of different appliance. We got

higher accuracy (MAPE of 0.509%) for masters’ lights (AP4) and lower accuracy

(MAPE of 10.8561%) for Duct Heater (AP6). It can be explained by the actual

energy consumption behavior of this appliance. Figure 12 and 13 shows the actual

68

load consumption of master lights and Duct heater. It shows the Master lights have

more continuous energy consumption pattern compared to Duct Heater.

Figure 4-9: Daily energy usage for Disposal Dishwasher.

Figure 4-10: Daily energy usage for Duct Heater HRV.

69

4.4 Residential Appliance Scheduling

 Smart Home Management System
The introduction of distributed energy sources has necessitated the need for

improved metering and home management systems. The new generation

residential appliances are becoming smarter and energy efficient to reduce the

energy cost and improve the convenience for the customer.

 System Modeling

 The objective of the proposed optimization model is to reduce the total electricity

cost for a residential customer. In this chapter cost is calculated on 24-hour period

(e.g. USD per Wh). Here, jC denote the day-ahead energy price in each time

period. ijP represents the energy used by appliance i in time period j

1 1

M N

ij i

i j

Min E C
= =

(23)

The optimization is performed subjected to several constraints [39]–[44]. They are

listed below.

4.4.2.1 Energy Constraint

This constraint makes sure that the scheduling process allocates the required

energy requirements for all the appliances in a residential home.

1

M

ij j

i

E E
=

=
(24)

For each appliance j , the total allocated energy in all the time-period should meet

the predicted electricity usage for each appliance.

70

4.4.2.2 Power safety constraint

The allotted energy in each time-period for each appliance should not cross a power

limit. Residential appliance would not be able to use more the rated power of the

appliance. If more power is allocated to the appliance, it won’t be able to use more

than its rated power and will result not meeting the energy requirements for a day.

 []ijE Rating i (25)

Rating[i], stands for the rated power of each appliance in the scheduling problem.

The scheduled power allocated to an appliance in each time period should be less

than the maximum power for the appliance.

4.4.2.3 Production capacity constraint

The energy usage during peak hours creates a challenge for power companies to

generate and transmit the required power. An important requirement of bringing

forth the demand-response and time-of-use pricing scheme is to reduce the peak

energy usage. This constraint prevents the allocation of all the appliance to the

lowest price time slot. If all the house hold appliances are scheduled to the same

time, it can create transmission constraints for the power companies.

1 1

*
N N

ij j

j j

E K E
= =

=
(26)

Here, K percentage of total demand that can be scheduled in each hour. In this

work, the percentage was assumed to be 10%.

71

4.4.2.4 Consumer Preference

The user preference for the scheduling of the appliances is also considered in this

optimization model. The consumer can specify the preferred time of use each

individual appliance. The optimization model will not schedule appliances in other

time-slots.

4.4.2.5 Equipment Flexibility

All the consumer residential appliances won’t be committed to do scheduling based

on energy price. Consumers prefer some appliances to be keep running without

interruption for their comfort. The residential appliance committed to the scheduling

and those which are supposed to be run at customers preferred time can be

achieved in this model.

 Optimization Tool

AMPL is an algebraic modeling language to solve large scale optimization and

scheduling problems. It was developed at Bell Laboratories by Robert Fourer,

David Gay, and Brian Kernighan. The software supports several open-source and

commercial solvers. The AMPL coding syntax is similar to mathematical notation

of optimization problems, which helps developers to develop their model [45], [46].

The day-ahead energy price for the residential customer is shown in Table 9. The

day-ahead energy price data for Minnesota hub region (MISO-Midwest

Independent Transmission System Operator), was used as the residential energy

price [47].

72

Table 9: Residential day-ahead energy price ($/KWhr)

Hours Energy Price Hours Energy Price

0 0.01976 12 0.03376

1 0.01828 13 0.02172

2 0.01595 14 0.02297

3 0.01545 15 0.02397

4 0.0151 16 0.02611

5 0.00778 17 0.03861

6 0.01488 18 0.03391

7 0.00725 19 0.02094

8 0.01823 20 0.01891

9 0.01655 21 0.01643

10 0.0234 22 0.01885

11 0.02247 23 0.0165

Table 10 lists the equipment rating, flexibility, and preferred time of appliance

usage.

Table 10: Residential appliance rating and user preference

Equipment Rating Flexibility Preference

Furnace 12000 0 1AM:11AM

Cellar Outlets 8000 1 12AM-12PM

Fridge Range 1200 0 2AM-11PM

Master Lights 2000 1 12AM-8AM

4PM-11PM

Bedroom Outlets 2500 1 12AM-8AM

4PM-11PM

Bedroom Lights 2000 1 12AM-8AM

4PM-11PM

73

Duct Heater

3000

1

3AM-8AM

10AM-4PM

6PM-8PM

10PM-11PM

Kitchen Lights 10 0 12AM-12PM

Dishwasher 45 1 12AM-5AM

The scheduling model developed in this work allows the consumer the flexibility to

decide which appliances to commit for scheduling. If the flexibility parameter in the

table is set to 0, the appliance will not be committed for scheduling and will be run

at the costumer preferred timing without any interruption. The optimized appliance

scheduling for the household appliances based on the consumer preferred timing

and flexibility is shown in figure 11.

Figure 4-11: Scheduled energy usage of individual appliance for the residential

customer.

74

5 Residential load forecasting based on deep neural network(DNN) and k-
shape clustering

5.1 Overview

One of the most important tasks for utility companies is load forecasting in order

to plan future demand for generation capacity and infrastructure. Improving load

forecasting accuracy over a short period is a challenging open problem due to the

variety of factors that influence the load. This chapter proposes a new approach

for short term load forecasting using an effective new combination of clustering

and deep learning methods. Our evaluation using 200 residential home demand

data from a publicly available real-life dataset.

This work uses a two steps process:

1) Apply the time-series clustering (K-shape) for 200 residential home

2) Apply deep neural network method for short term load forecasting

5.2 Background and related work

Smart meter are the key components of smart grid technology. Smart meter

provides fine-grained electric power consumption information at different sampling

intervals (10,30,60 minutes). One of the most promising applications for such large

volumes of data from smart meters is to improve the accuracy of electrical load

forecasting. One of methods of improving load forecasts using the data generated

from smart meters of individual customers is based on the use of clustering [48].

In this method, the knowledge about load consumption behavior of customers is

used to improve the accuracy of forecasting. Instead of developing a single

75

forecasting model for the aggregated load consumption of all customers, clustering

can be used to divide the customers into sub-class with similar demand profiles.

Then, a forecasting model can be provided for each cluster of customers according

to their load consumption profile. Thus, a more accurate model can be provided

for each cluster and then the load forecast for all consumers can be obtained by

combining the forecasts of these models. Applying clustering as an initial step in

electric load forecasting has been the focus of several studies [49] [50]. The K-

means clustering method has been widely used in previous works for this purpose

[51] [52]. However, little attention has been paid in previous studies to the choice

of clustering method with the aim of improving the aggregate level of forecasting

accuracy. In this chapter we show that the accuracy of load forecasting can be

improved by clustering method on demand profile.

5.3 Methodology for clustering based DNN forecast

Deep learning techniques such as Recurrent neural network (RNN) has higher

performance in solving STLF by treating STLF as a time-series forecasting

problem [53], [54]. However, in this study, a novel method of combining DNN and

clustering techniques for forecasting loads on an electricity big data is proposed.

There are two phases in the procedure of creating the proposed method. In phase

1, raw data is preprocessed by removing noises and numerical processing. And

then related factor analysis on the clean data is performed for feature extraction

and selection. Millions of load samples consist of the chosen features and target

electricity loads to form a big data set. On the data set, we utilized the clustering

technique to partition the set into subsets. Furthermore, these subsets are divided

76

into training sets and testing sets. On the training sets, the method is constructed

based on DNN models.

Figure 5-1: Framework of constructing the model.

In phase 2, the method is adopted to forecast loads for 10 minutes interval on

these testing sets. The framework of the presented method is shown in Figure 1.

K-Means algorithm is utilized to divide the dataset into small clusters. Then, these

clusters are segmented into training with the DNN Based Model. In 2nd phase we

use the method to forecast loads on each testing subset so as to conduct results

on each testing subset. Prediction loads are generated by these prediction results

by these DNN models, which is shown in figure.

77

Figure 5-2: Flows of constructing the DNN based method with K-Means

algorithm.

5.4 Methods of network level clustering

The smart meter records consist of a set of M consumers 1 2, ,......, Mx x x .The

consumption history of consumer i can be define 1 2{ , ,..... } {1,2,...., }T

i i i ix x x x M=

where,

M = the total number of consumers

T = the total number of historical time periods

In our work we have used three approaches of network level clustering-

a) Completely aggregated method

b) Completely disaggregated method

c) Clustering based forecasting method

78

The brief description of this three networks level clustering is given below-

 Completely aggregated method

In completely aggregated method [3], the load consumption of all consumers that

belong to the network into a vector, 1 2(, ,....,)T

aggr aggr aggr aggrX X X X= and take this as

the input feature vector for forecasting.

Figure 5-3: Completely aggregated method.

 Completely disaggregated method

In completely disaggregated method load forecasting applies to individual

consumers and then adds individual consumers prediction to prediction the

aggregated level.

79

Figure 5-4: Completely disaggregated method.

 Clustering based forecasting method

In clustering-based forecasting method, consumer household demand are

grouped into several clusters based on actual demand profile of the consumers.

We consider that by applying a clustering algorithm, K clusters 1 2{ , ,...., }kC c c c=

are obtained, so that each cluster of households in C can then be used to train a

neural network. Therefore, K prediction models 1 2{ , ,... }c c c ckF F F F= are generated

from the k groups of consumers. To calculate the final prediction for period of

interest, we take the sum over the predictions from the clusters as follows:

1

i k

aggr cii
F F

=

=
= (27)

80

Figure 5-5: Clustering based forecasting method.

5.5 Designing Deep Neural Networks

Selecting an appropriate design is the first step of DNN-based forecasting system.

In our work we utilized multilayer perception model and different recurrent neural

such as simple RNN, long short term memory (LSTM) and gated recurrent unit

(GRU) for designing forecasting model.

Table 11: Deep learning tensor-flow parameter

Parameters Values

Total number of samples 52560

Training samples 52416

Validation samples 1440

Epochs 100

Learning rate 0.001

Mini batch size 100

Activation function Linear

81

5.6 Evaluation Metrics:

Mean absolute percentage error (MAPE), root-mean-square error (RMSE),

normalized mean absolute error (NMAE), and normalized root-mean-square error

(NRMSE) are the commonly used evaluation metrics to measure performance of

models. We choose MAPE to measure the accuracy of our model. The MAPE is a

measure of prediction accuracy in statistics. It defines accuracy as a percentage,

and is defined by the following equation.

1

1
100%

t T
T T

t T

A F
MAPE

T A

=

=

−
=

(28)

5.7 MAPE evaluation

MAPE value of different individual house and for clusters is presented. We get

better MAPE value with clustering then without clustering based forecasting. The

MAPE evaluation for different scenario is given below-

Table 12: MAPE evaluations of residential home dataset using RNN

Cluster1

(28 household)

0.352 (LSTM)

0.375(GRU)

0.320(SimpleRNN)

Cluster2

(14 household)

0.133(LSTM)

0.118(GRU)

0.153(SimpleRNN)

Cluster3

(80 household)

1.086(LSTM)

1.168(GRU)

2.409(SimpleRNN)

Cluster4

(41 household)

0.756(LSTM)

0.463(GRU)

0.479(SimpleRNN)

Cluster5 0.007(LSTM)

82

(37 household) 0.418(GRU)

0.458(SimpleRNN)

Whole 200 household 8.544(SimpleRNN)

7.305(LSTM)

4.096(GRU)

83

6 Conclusion and future work

6.1 Conclusion

This work investigated the performance of different DNNs to forecast short term

electricity. We used different dataset such as Iberian electricity markets data,

AMPds smart meter data, NREL residential home dataset to evaluate the

accuracies of DNN. It is observed that deep neural networks are powerful forecasts

that can provide better individual forecasts over conventional forecasting models.

Here, the state-of-the-art tool named TensorFlow and keras based deep

learning library utilized to develop the forecasting models. The key findings of this

research are as follows:

1. The first part of research investigated the application of DNN’s in electric

power system analysis. This part uses a 90-day Iberian market dataset to

predict the day-ahead loads. Multiple combinations of activation functions

were trained, and tested on single and double-layer neural networks. The

MAPE results indicate that the combination of ELU with ELU perform better

than other combinations. On weekend data sets, the ReLU-ReLU

combination outperform other combinations.

2. The second part of this research investigated the performance of recurrent

neural network in load forecasting for a single residential customer. Load

forecasting for a single residential customer at a 1-minute interval using

recurrent neural networks for smart-metering data sets are investigated

using DNN and conventional methods.

84

3. The third part of this research investigated a smart home management to

schedule the appliances. A deep learning based (DNN) forecasting model

was used to predict the consumer pattern and a linear programming based

optimization model was formulated to develop a day-ahead scheduling

scheme based on price, demand, rating, and energy constraints.

6.2 Future work

1. Convolutional neural networks (CNN) can be utilized for the short-term

load forecasting problem.

2. Further exploration is required to determine the reliability of DNN based load

forecasting. The following questions are crucials for effectiveness on the

applicability of DNN’s:

 a) How large should a DNN be and which configurations should be

considered?

b) What is the right sample size and data intervals are required for

sufficient training for short term forecasts?

c) How can a deep neural network be adopted for a real-time market

operation.

One possible solution is using hybrid combination of DNN and fuzzy systems.

85

REFERENCES

[1] G. D. Garson, “A Comparison of Neural Network and Expert Systems
Algorithms with Common Multivariate Procedures for Analysis of Social
Science Data,” Soc. Sci. Comput. Rev., vol. 9, no. 3, pp. 399–434, Oct. 1991.

[2] “Prediction Algorithms in One Picture - Data Science Central.” [Online].
Available: https://www.datasciencecentral.com/profiles/blogs/prediction-
algorithms-in-one-picture. [Accessed: 18-Mar-2018].

[3] A. K. Srivastava, A. S. Pandey, and D. Singh, “Short-Term Load Forecasting
Methods : A Review,” 2016.

[4] “No Title.” [Online]. Available:
http://www.datasciencecentral.com/profiles/blogs/prediction-algorithms-in-
one-picture.

[5] M. Q. Raza and A. Khosravi, “A review on artificial intelligence based load
demand forecasting techniques for smart grid and buildings,” Renew.
Sustain. Energy Rev., vol. 50, pp. 1352–1372, 2015.

[6] S. Hosein and P. Hosein, “Load Forecasting using Deep Neural Networks.”

[7] L. Hernández, C. Baladrón, J. M. Aguiar, and B. Carro, “A Multi-Agent-
System Architecture for Smart Grid Management and Forecasting of Energy
Demand in Virtual Power Plants,” vol. 51, pp. 106–113, 2013.

[8] “TensorFlow.” [Online]. Available: https://www.tensorflow.org/. [Accessed:
18-Mar-2018].

[9] H. Shayeghi, H. A. Shayanfar, and G. Azimi, “Intelligent Neural Network
Based STLF,” 2009.

[10] W. Charytoniuk and M. S. Chen, “Neural Network Design for Short-Term
Load Forecasting,” no. 817, pp. 554–561.

[11] H. Shi, M. Xu, and R. Li, “Deep Learning for Household Load Forecasting –
A Novel Pooling Deep RNN,” IEEE Trans. Smart Grid, vol. 3053, no. c, pp.
1–1, 2017.

[12] D. Soekhoe, P. Van Der Putten, and A. Plaat, “On the Impact of data set
Size in Transfer Learning using Deep Neural Networks.”

[13] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[14] “ReLu compared against Sigmoid, Softmax, Tanh - my notebook - Quora.”
[Online]. Available: https://algorithmsdatascience.quora.com/ReLu-
compared-against-Sigmoid-Softmax-Tanh. [Accessed: 18-Mar-2018].

[15] “CS231n Convolutional Neural Networks for Visual Recognition.” [Online].

86

Available: http://cs231n.github.io/neural-networks-1/. [Accessed: 18-Mar-
2018].

[16] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep
Network Learning by Exponential Linear Units (ELUs),” Nov. 2015.

[17] D. P. Kingma and J. L. Ba, “A : a m s o,” pp. 1–15, 2015.

[18] M. Ghofrani et al., “Smart Meter Based Short-Term Load Forecasting for
Residential Customers,” pp. 13–17, 2019.

[19] I. H. L. Curves, “Clustering-Based Improvement of Nonparametric
Functional Time Series Forecasting : Application to,” vol. 5, no. 1, pp. 411–
419, 2014.

[20] S. Arora and J. W. Taylor, “Forecasting electricity smart meter data using
conditional kernel density estimation,” Omega, vol. 59, pp. 47–59, 2016.

[21] B. Dong, Z. Li, S. M. M. Rahman, and R. Vega, “A hybrid model approach
for forecasting future residential electricity consumption,” Energy Build., vol.
117, pp. 341–351, 2016.

[22] L. G. Swan and V. I. Ugursal, “Modeling of end-use energy consumption in
the residential sector : A review of modeling techniques,” vol. 13, pp. 1819–
1835, 2009.

[23] M. Chow, “Application of Fuzzy Logic Technology for Spatial Load
Forecasting MO-yuen Chow Hahn Tram,” 1996.

[24] U. Nonfully, C. Artificial, and N. Network, “L!aYuA,” vol. 7, no. 3, pp. 1098–
1105, 1992.

[25] V. S. KODOGIANNIS, M. AMINA, and I. PETROUNIAS, “A CLUSTERING-
BASED FUZZY WAVELET NEURAL NETWORK MODEL FOR SHORT-
TERM LOAD FORECASTING,” Int. J. Neural Syst., vol. 23, no. 5, p.
1350024, Oct. 2013.

[26] “Understanding LSTM Networks -- colah’s blog.” [Online]. Available:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed: 18-
Mar-2018].

[27] B. Zhang, J.-L. Wu, and P.-C. Chang, “A multiple time series-based recurrent
neural network for short-term load forecasting,” Soft Comput., 2017.

[28] S. Hochreiter and P. Frasconi, “Gradient Flow in Recurrent Nets : the Di culty
of Learning Long-Term Dependencies 1 Introduction 2 Exponential error
decay Gradients of the error function.”

[29] R. Jozefowicz and I. G. Com, “An Empirical Exploration of Recurrent
Network Architectures,” vol. 37, 2015.

[30] C. Trabelsi et al., “DEEP COMPLEX NETWORKS.”

87

[31] S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. V Baji, “AMPds : A Public
Dataset for Load Disaggregation and Eco-Feedback Research,” no. Section
III, 2013.

[32] “Keras Documentation.” [Online]. Available: https://keras.io/. [Accessed: 18-
Mar-2018].

[33] “Keras as a simplified interface to TensorFlow: tutorial.” [Online]. Available:
https://blog.keras.io/keras-as-a-simplified-interface-to-tensorflow-
tutorial.html. [Accessed: 18-Mar-2018].

[34] C. F. S. A, J. F. Franco, M. J. Rider, and R. Romero, “Optimal Charging
Coordination of Electric Vehicles in Unbalanced Electrical Distribution
System Considering Vehicle-to-Grid Technology.”

[35] N. G. Paterakis, S. Member, O. Erdinc, and A. G. Bakirtzis, “Response
Strategies Optimal Household Appliances Scheduling under Day-Ahead
Pricing and Load-Shaping Demand Response Strategies,” no. December,
2015.

[36] A. S. Nair, P. Ranganathan, H. Salehfar, and N. Kaabouch, “Uncertainty
Quantification of Wind Penetration and Integration into Smart Grid : A
Survey.”

[37] T. Hossen, S. J. Plathottam, R. K. Angamuthu, P. Ranganathan, and H.
Salehfar, “Short-term load forecasting using deep neural networks (DNN),”
2017 North Am. Power Symp., pp. 1–6, 2017.

[38] “Smart - UMass Trace Repository.” [Online]. Available:
http://traces.cs.umass.edu/index.php/Smart/Smart. [Accessed: 25-Mar-
2018].

[39] K. C. Sou, J. Weimer, H. Sandberg, and K. H. Johansson, “Scheduling Smart
Home Appliances Using Mixed Integer Linear Programming,” pp. 5144–
5149, 2011.

[40] A. Dubey, S. Santoso, M. P. Cloud, and M. Waclawiak, “Determining Time-
of-Use Schedules for Electric Vehicle Loads: A Practical Perspective,” IEEE
Power Energy Technol. Syst. J., vol. 2, no. 1, pp. 12–20, 2015.

[41] N. Korolko and Z. Sahinoglu, “Robust optimization of EV charging schedules
in unregulated electricity markets,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp.
149–157, 2017.

[42] Z. Wu, S. Zhou, J. Li, and X. P. Zhang, “Real-time scheduling of residential
appliances via conditional risk-at-value,” IEEE Trans. Smart Grid, vol. 5, no.
3, pp. 1282–1291, 2014.

[43] J. Ning, Y. Tang, and W. Gao, “A hierarchical charging strategy for electric
vehicles considering the users’ habits and intentions,” IEEE Power Energy
Soc. Gen. Meet., vol. 2015–Septe, 2015.

88

[44] M. L. Crow, “Multi-Objective Electric Vehicle Scheduling Considering
Customer and System Objectives.”

[45] R. Fourer, D. M. Gay, M. Hill, B. W. Kernighan, and T. B. Laboratories,
“AMPL : A Mathematical Programming Language,” Manage. Sci., vol. 36, pp.
519–554, 1990.

[46] D. M. Gay, “The AMPL modeling language: An aid to formulating and solving
optimization problems,” in Springer Proceedings in Mathematics and
Statistics, 2015, vol. 134, pp. 95–116.

[47] “MISO Day-Ahead price data.” .

[48] S. Haben, C. Singleton, and P. Grindrod, “Analysis and Clustering of
Residential Customers Energy Behavioral Demand Using Smart Meter
Data,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 136–144, Jan. 2016.

[49] M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi, “OPTIMIZED
CLUSTERS FOR DISAGGREGATED ELECTRICITY LOAD
FORECASTING,” REVSTAT – Stat. J., vol. 8, no. 2, pp. 105–124, 2010.

[50] P. Goncalves, D. Silva, D. Ili, and S. Karnouskos, “The Impact of Smart Grid
Prosumer Grouping on Forecasting Accuracy and its Benefits for Local
Electricity Market Trading.”

[51] A. Shahzadeh, A. Khosravi, and S. Nahavandi, “Improving load forecast
accuracy by clustering consumers using smart meter data,” in 2015
International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–7.

[52] F. L. Quilumba, W.-J. Lee, H. Huang, D. Y. Wang, and R. L. Szabados,
“Using Smart Meter Data to Improve the Accuracy of Intraday Load
Forecasting Considering Customer Behavior Similarities,” IEEE Trans.
Smart Grid, vol. 6, no. 2, pp. 911–918, Mar. 2015.

[53] J. Geng, M. L. Huang, M. W. Li, and W. C. Hong, “Hybridization of seasonal
chaotic cloud simulated annealing algorithm in a SVR-based load
forecasting model,” Neurocomputing, vol. 151, no. P3, pp. 1362–1373, 2015.

[54] J. C. B. Gamboa, “Deep Learning for Time-Series Analysis,” arXiv, 2017.

89

 APPENDIX A

 FORECASTING OF ELECTRICAL DEMAND

#CODE FOR IMPLEMENTION OF MULTI LAYER PERCEPTION DEEP

NEURAL NETWORK USING TENSORFLOW:

import numpy as np

import tensorflow as tf

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

data_dir ="C:/Users/tareq.hossen/Desktop/load_predict/data/"

model_dir ="C:/Users/tareq.hossen/Desktop/load_predict/model/"

summaries_dir =

"C:/Users/tareq.hossen/Desktop/load_predict/summaries"

#Extract data from CSV

df1=pd.read_csv(data_dir+"PJM LOAD.csv")

col1 = df1[['P.DD-1','P.DD-6','Temp','irradiance','windspeed']]

col2 = df1[['Actual']]

#Convert to Numpy array

InputX1 = col1.as_matrix()

InputY1 = col2.as_matrix()

InputX1.astype(float, copy=False);

InputY1.astype(float, copy=False);

print("Input:",InputX1)

print("Output:",InputY1)

#print("Samples:",InputX1.shape[0])

#Min-max Normalization

X1_min = np.amin(InputX1,0)

X1_max = np.amax(InputX1,0)

print("Mininum values:",X1_min)

print("Maximum values:",X1_max)

Y1_min = np.amin(InputY1)

Y1_max = np.amax(InputY1)

InputX1_norm = (InputX1-X1_min)/(X1_max-X1_min)

InputY1_norm = InputY1 #No normalization in output

#InputY1_norm = (InputY1-Y1_min)/(Y1_max-Y1_min)

#Reshape

Xfeatures = 5 #Number of input features

Yfeatures = 1 #Number of output features

samples = InputX1.shape[0] # Number of samples

print("Total Samples:",samples)

InputX1_reshape = np.resize(InputX1_norm,(samples,Xfeatures))

90

InputY1_reshape = np.resize(InputY1_norm,(samples,Yfeatures))

print("X1 normalized:",InputX1_reshape)

#print("Y1 normalized:",InputY1_reshape)

#Training data

batch_size = 2000

InputX1train = InputX1_reshape[0:batch_size,:]

InputY1train = InputY1_reshape[0:batch_size,:]

#Validation data

v_size = samples-batch_size

InputX1v = InputX1_reshape[batch_size:batch_size+v_size,:]

InputY1v = InputY1_reshape[batch_size:batch_size+v_size,:]

print("Training Samples:",batch_size)

print("Validation Samples:",v_size)

#print(InputX1v)

print(InputY1v)

#Network hyper parametres

learning_rate0 = 0.001

training_epochs = 500000

display_epoch= 50000

summarize_epoch = 500

reset everything to rerun in jupyter

tf.reset_default_graph()

#Input

X =

tf.placeholder(tf.float32,shape=(None,Xfeatures),name="X")#[batch

size, input_features]

#Output

Y =

tf.placeholder(tf.float32,shape=(None,Yfeatures),name="Labels")

#Neurons

L1 = 6 #Number of neurons in 1st layer

#Layer1 weights

with tf.device('/cpu:0'):

 with tf.name_scope('Layer_1'):

 W_fc1 =

tf.Variable(tf.random_uniform([Xfeatures,L1]),name="W") #

[input_features,Number of neurons])

 b_fc1 = tf.Variable(tf.random_uniform([L1]),name="bias")

 matmul_fc1=tf.matmul(X, W_fc1) + b_fc1 #Weights * Inputs

 tf.summary.histogram("Layer1_Weights",W_fc1)

 tf.summary.histogram("Layer1_biases",b_fc1)

 with tf.name_scope('ReLU'):

 h_fc1 = tf.nn.relu(matmul_fc1) #ReLU activation

 #h_fc1=tf.sigmoid(matmul_fc1) #Sigmoid activation

#Output layer

 with tf.name_scope('Output_Layer') as scope:

91

 W_fO=

tf.Variable(tf.random_uniform([L1,Yfeatures]),name="W") # [Number

of neurons in preceding layer,output_features])

 b_fO =

tf.Variable(tf.random_uniform([Yfeatures]),name="bias")

 matmul_fco= tf.matmul(h_fc1, W_fO) + b_fO

 output_layer = matmul_fco #linear activation

 tf.summary.histogram("Output_Layer_Weights",W_fO)

 tf.summary.histogram("Output_Layer_biases",b_fO)

 with tf.name_scope('Softmax') as scope:

 output_layer_prob = tf.nn.softmax(output_layer) #Applying

softmax activation to find probabilities for each class

with tf.device('/cpu:0'):

 #Loss/cost function

 with tf.name_scope('MSE'):

 mean_squared_error = tf.losses.mean_squared_error(Y,

output_layer)

 tf.summary.scalar('mean_squared_error',

mean_squared_error)

 #Decreasing learning rate

 with tf.name_scope('Learning_rate'):

 global_step = tf.Variable(0, trainable=False)

 starter_learning_rate = learning_rate0

 learning_rate =

tf.train.exponential_decay(starter_learning_rate,

global_step,1000000, 0.96, staircase=True)

 #Training step

 with tf.name_scope('Optimizer'):

 #train_step=

tf.train.GradientDescentOptimizer(learning_rate).minimize(mean_sq

uared_error,global_step=global_step)

 train_step=

tf.train.AdamOptimizer(learning_rate).minimize(mean_squared_error

,global_step=global_step)

 #train_step=

tf.train.AdagradOptimizer(learning_rate).minimize(mean_squared_er

ror,global_step=global_step)

 #Merge all the summaries

merged = tf.summary.merge_all()

#Operation to save variables

saver = tf.train.Saver()

#tensorboard --

logdir=C:\Users\tareq.hossen\Desktop\load_predict\summaries

#Initialization and session

init = tf.global_variables_initializer()

init_local = tf.local_variables_initializer()

92

with tf.Session() as sess:

 train_writer =

tf.summary.FileWriter(summaries_dir+"/1/",sess.graph) #For

writing summaries

 sess.run([init,init_local]) #Initializes all variables

 print("Initial Training

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train}))

 for i in range(training_epochs):

 train_size = np.random.randint(low=5,high=batch_size)

 Xtrain = InputX1train[0:train_size,:]

 Ytrain = InputY1train[0:train_size,:]

 if i%display_epoch ==0:

 print("Iteration:",i)

 print("Batch size:",train_size)

 print("Training

loss:",sess.run([mean_squared_error],feed_dict={X:Xtrain,Y:Ytrain

}))

 print("Validation

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1v,Y:Inpu

tY1v}))

 print("Learning rate:",sess.run([learning_rate]))

 if i%summarize_epoch ==0:

 summary,_ =

sess.run([merged,train_step],feed_dict={X:Xtrain,Y:Ytrain})

 train_writer.add_summary(summary, i)

 else:

 sess.run([train_step],feed_dict={X:Xtrain,Y:Ytrain})

 #Close summary writer

 train_writer.close()

 # Save the variables to disk.

 save_path = saver.save(sess, model_dir+"Load_predict.ckpt")

 #/tmp/Load_predict.ckpt

 print("Model saved in file: %s" % save_path)

 print("Final training

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train}))

 print("Final validation

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1v,Y:Inpu

tY1v}))

 print("Labels:",sess.run([Y],feed_dict={Y:InputY1train}))

print("Prediction:",sess.run([output_layer],feed_dict={X:InputX1t

rain}))

with tf.Session() as sess:

 # Restore variables from disk.

 saver.restore(sess, model_dir+"Load_predict.ckpt")

 print("Model restored.")

93

 print("Training

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train}))

print("Output:",sess.run([output_layer],feed_dict={X:InputX1train

}))

 print("Validation

Output:",sess.run([output_layer],feed_dict={X:InputX1v}))

 print("Validation Acutual:",InputY1v)

Recover model and re-run training session

with tf.Session() as sess:

 train_writer =

tf.summary.FileWriter(summaries_dir+"/2/",sess.graph) #For

writing summaries

 # Restore variables from disk.

 saver.restore(sess, model_dir+"Load_predict.ckpt")

 print("Model restored.")

 print("Training

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train}))

 for i in range(training_iterations):

 summary,_ =

sess.run([merged,train_step],feed_dict={X:InputX1train,Y:InputY1t

rain})

 train_writer.add_summary(summary, i)

 if i%display_iterations ==0:

 print("Iteration:",i)

 print("Training

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train}))

 print("Training

accuracy:",sess.run([accuracy],feed_dict={X:InputX1train,Y:InputY

1train}))

 print("Validation

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1v,Y:Inpu

tY1v}))

 print("Learning rate:",sess.run([learning_rate]))

 # Save the variables to disk.

 save_path = saver.save(sess, model_dir+"Load_predict.ckpt")

 #/tmp/RC_classifier.ckpt

 print("Model saved in file: %s" % save_path)

 print("Final training

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train}))

94

 print("Final Training

accuracy:",sess.run([accuracy],feed_dict={X:InputX1train,Y:InputY

1train}))

 print("Final validation

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1v,Y:Inpu

tY1v}))

print("Labels:",sess.run([class_labels],feed_dict={Y:InputY1train

}))

print("Prediction:",sess.run([class_pred],feed_dict={X:InputX1tra

in}))

95

#CODE FOR IMPLEMENTION OF RECURRENT NEURAL NETWORK USING

KERAS WITH TENSOR-FLOW BACKEND:

from __future__ import print_function

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from keras.layers.core import Dense, Activation, Dropout

from keras.layers.recurrent import LSTM

from keras.layers.recurrent import GRU

from keras.layers.recurrent import SimpleRNN

from keras.models import Sequential

random seed

np.random.seed(1234)

df_raw = pd.read_csv('C:\data\hourly_load_2010.csv', header=None)

load raw data

df_raw_array = df_raw.values

daily load

list_daily_load = [df_raw_array[i,:] for i in range(0, len(df_raw))

if i % 24 == 0]

hourly load (23 loads for each day)

list_hourly_load = [df_raw_array[i,1]/100000 for i in range(0,

len(df_raw)) if i % 24 != 0]

the length of the sequnce for predicting the future value

sequence_length = 23

define a function to convert a vector of time series into a 2D

matrix

def convertSeriesToMatrix(vectorSeries, sequence_length):

 matrix=[]

 for i in range(len(vectorSeries)-sequence_length+1):

 matrix.append(vectorSeries[i:i+sequence_length])

 return matrix

convert the vector to a 2D matrix

matrix_load = convertSeriesToMatrix(list_hourly_load,

sequence_length)

shift all data by mean

matrix_load = np.array(matrix_load)

shifted_value = matrix_load.mean()

matrix_load -= shifted_value

print ("Data shape: ", matrix_load.shape)

split dataset: 90% for training and 10% for testing

train_row = int(round(0.9 * matrix_load.shape[0]))

train_set = matrix_load[:train_row, :]

shuffle the training set (but do not shuffle the test set)

96

np.random.shuffle(train_set)

the training set

X_train = train_set[:, :-1]

the last column is the true value to compute the mean-squared-

error loss

y_train = train_set[:, -1]

the test set

X_test = matrix_load[train_row:, :-1]

y_test = matrix_load[train_row:, -1]

the input to LSTM layer needs to have the shape of (number of

samples, the dimension of each element)

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1],

1))

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

build the model

model = Sequential()

layer 1: LSTM

model.add(GRU(input_dim=1, output_dim=150,

return_sequences=True))

model.add(Dropout(0.2))

layer 2: LSTM

model.add(GRU(output_dim=150, return_sequences=True))

model.add(Dropout(0.2))

model.add(GRU(output_dim=150, return_sequences=True))

model.add(Dropout(0.2))

model.add(GRU(output_dim=150, return_sequences=False))

model.add(Dropout(0.2))

layer 3: dense

linear activation: a(x) = x

model.add(Dense(output_dim=1, activation='linear'))

compile the model

model.compile(loss="mse", optimizer="adam")

train the model

model.fit(X_train, y_train, batch_size=512, nb_epoch=1,

validation_split=0.05, verbose=1)

evaluate the result

test_mse = model.evaluate(X_test, y_test, verbose=1)

test_mape = model.evaluate(X_test, y_test, verbose=1)

print ('\nThe mean squared error (MSE) on the test data set is %.3f

over %d test samples.' % (test_mse, len(y_test)))

print ('\nThe mean absolute percentage error (MAPE) on the test

data set is %.3f over %d test samples.' % (test_mape*100,

len(y_test)))

get the predicted values

predicted_values = model.predict(X_test)

num_test_samples = len(predicted_values)

97

predicted_values = np.reshape(predicted_values,

(num_test_samples,1))

plot the results

fig = plt.figure()

plt.plot(y_test + shifted_value)

plt.plot(predicted_values + shifted_value)

plt.xlabel('Hour')

plt.ylabel('Electricity load (*1e5)')

plt.show()

fig = plt.figure()

ax = fig.add_subplot(111)

ax.plot(y_test[:150])

plt.plot(predicted_values[:150])

plt.show()

	University of North Dakota
	UND Scholarly Commons
	January 2018

	Regional And Residential Short Term Electric Demand Forecast Using Deep Learning
	Tareq Hossen
	Recommended Citation

	tmp.1559259364.pdf.sMn2z

