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ABSTRACT 

For optimal power system operations, electric generation must follow load 

demand. The generation, transmission, and distribution utilities require load 

forecasting for planning and operating grid infrastructure efficiently, securely, and 

economically. This thesis work focuses on short-term load forecast (STLF), that 

concentrates on the time-interval from few hours to few days. An inaccurate short-

term load forecast can result in higher cost of generating and delivering power. 

Hence, accurate short-term load forecasting is essential. Traditionally, short-term 

load forecasting of electrical demand is typically performed using linear regression, 

autoregressive integrated moving average models (ARIMA), and artificial neural 

networks (ANN). These conventional methods are limited in application for big 

datasets, and often their accuracy is a matter of concern. Recently, deep neural 

networks (DNNs) have emerged as a powerful tool for machine-learning problems, 

and known for real time data processing, parallel computations, and ability to work 

with large dataset with higher accuracy. DNNs have been shown to greatly 

outperform traditional methods in many disciplines, and they have revolutionized 

data analytics. Aspired from such a success of DNNs in machine learning 

problems, this thesis investigated the DNNs potential in electrical load forecasting 

application. Different DNN Types such as multilayer perception model (MLP) and 

recurrent neural networks (RNN) such as long short-term memory (LSTM), Gated 

recurrent Unit (GRU) and simple RNNs for different datasets were evaluated for 

accuracies. This thesis utilized the following data sets: 1) Iberian electric market 

dataset; 2) NREL residential home dataset; 3) AMPds smart-meter dataset; 4) 
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UMass Smart Home datasets with varying time intervals or data duration for the 

validating the applicability of DNNs for short-term load forecasting. The Mean 

absolute percentage error (MAPE) evaluation indicates DNNs outperform 

conventional method for multiple datasets. In addition, a DNN based smart 

scheduling of appliances were also studied. This work evaluates MAPE accuracies 

of clustering-based forecast over non-clustered forecasts. 
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1 Introduction 

1.1 Motivation 
 

Load forecasting play an important role for planning and operation of electric 

utilities. In today’s world, with the high development of electricity market and rapid 

expansion of power system, load forecasting is becoming an important factor of 

power system operation scheduling. If the load forecasting is accurate, there will 

be a great potential savings in the control operations and decision making, such 

as dispatch, unit commitment, fuel allocation, power system security assessment, 

and off-line analysis. Thus, how to improve the accuracy of short-term load 

forecasting has always been the focus of load forecasting study. 

Based on various time intervals, load forecasting can be divided into three main 

categories: short-term forecasting, medium-term forecasting, and long-term 

forecasting. Short-term forecasting usually forecasts one hour to one-week, 

medium-term forecasting concerns the future electric load from a week to a month, 

and long-term forecasting often predicts load of a year or even longer. Short term 

load forecasting plays an important role in estimating load flows and in making 

decisions to prevent overloading in power system. The medium-term and long-

term forecasting are applied to determine the capacity of generation, transmission, 

or distribution system. In addition, these types of forecasting required for 

transmission planning, maintenance scheduling, etc. 
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Among these three types of forecasting, Short-term load forecasting draws much 

attention. Short term load forecasting is essentially a time varying signal 

processing problem. Normally the load forecasting is carried out by making use of 

past historical data along with influencing factor that effects the load consumption. 

In recent years, different approach of load forecasting has been proposed. It can 

be classified as four major categories time series approach, linear and non-linear 

regression approach, expert system approach and neural network approach[1]. 

The energy consumption in different region and different level are not same. 

Therefore, no prediction technique can be claimed as best technique in load 

forecasting. But it is interesting to notice that neural network-based forecasting 

model has been widely used in this area based on its powerful nonlinear modeling 

capability for utility companies in different locations and different level. There are 

several important key factors that influence the neural network-based forecasting 

model for example selection of inputs variables, the size of the network, learning 

rate of the neural network, selection of activation function and the number of 

epochs of neural training etc.    

The goal of this thesis is to adapt the Deep Neural Network (DNN) technology to 

short-term forecasting of different level (Regional, Residential, Appliance) of 

electrical power demand and to evaluate the DNNs performance as a forecaster. 
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1.2 Thesis Contributions: 

The following are the objectives of this work: 

Objective 1.   Develop a deep neural network-based load forecasting of varying 

data durations using regional, residential and appliance level datasets  

To accomplish this objective, following tasks were carried out: 

Task 1. Conduct literature review on various load forecasting algorithms suitable 

for time-series demand datasets. 

Task 2. Develop deep neural network forecasting model with different activation 

functions such as Sigmoid, Rectifier linear unit (Re-LU), and Exponential linear unit 

(ELU) on 90 days of Iberian electric market (MIBEL) regional datasets. For this 

purpose, a multi-layered deep neural network was tested using Google’s machine 

learning Tensor-Flow platform. 

Task 3. Develop recurrent neural network-based forecasting model to forecast 

individual residential consumer demand. Then, accuracies for different types of 

recurrent neural network were compared. Investigated RNNs include Long short-

term memory (LSTM), gated recurrent unit (GRU) and simple RNN on a single 

user with 1 – minute resolution based one year of historical dataset. Conventional 

forecasting technique such as such as auto regressive integrated moving average 

(ARIMA), random forest (RF), support vector machines (SVM), Generalized linear 

models (GLM) also developed to forecast this individual level dataset. 

Task 4. Develop a novel smart home appliance scheduling technique using deep 

learning. Parameters considered include price, demand, energy ratings and 

constraint formulations using linear programming. 
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Objective 2.    Investigate the effects of clustered versus non-clustered 

forecasts on MAPE accuracies.  

Task 5.  This task considers 200 residential user and demand profiles to study 

clustered versus non-clustered based forecasts. 

1.3 Thesis Organization 

The thesis is organized as follows. Chapter 2 presents regional short-term load 

forecasting using deep neural network with multiple type of activation functions. 

Chapter 3 talks about the individual residential consumer demand forecasting 

using different recurrent neural network and other conventional method of 

forecasting. Chapter 4 discusses scheduling of smart home appliance using deep 

learning. Chapter 5 presents clustering based short term load forecasting using 

deep neural network. Finally, Chapter 6 summarizes the conclusion and provides 

direction for the future work. 
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2 Regional short-term load forecasting using deep neural network  

 

2.1 Overview  
 

Load forecasting is an important electric utility task for planning resources in Smart 

grid. This function also aids in predicting the behavior of energy systems in 

reducing dynamic uncertainties. The efficiency of the entire grid operation depends 

on accurate load forecasting. This chapter proposes and investigates the 

application of a multi-layered deep neural network to the Iberian electric market 

(MIBEL) forecasting task. Ninety days of energy demand data are used to train the 

proposed model. The ninety-day period is treated as a historical dataset to train 

and predict the demand for day-ahead markets. The network structure is 

implemented using Google’s machine learning Tensor-flow platform. Various 

combinations of activation functions were tested to achieve a better Mean Absolute 

percentage error (MAPE) considering the weekday and weekend variations. The 

tested functions include Sigmoid, Rectifier linear unit (Re-LU), and Exponential 

linear unit (ELU). The preliminary results are promising, and show significant 

savings in the MAPE values using the ELU over other activation functions. 
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2.2 Background and related work 
 

Load forecasting play a vital role in operations and planning of electrical power and 

energy systems. Data related to load forecasting are non-linear in nature, making 

the load prediction task a challenging one. One simple approach, however, to load 

forecasting is using regression techniques. Regression is a statistical procedure 

for estimating the relationship between dependent and predictor (independent) 

variables. It allows one to see how the dependent variable changes with respect 

to changes in the independent variable. The advantage of this method is that it is 

easily understandable. The limitation of this approach is there exist a high degree 

of over fit. The other disadvantage the linear regression is too simple to capture 

the complex relationship in multi-variate data sets [2]. Logistic regression is the 

adaptation of linear regression to problem classification (e.g., yes/no questions, 

groups etc.) This method also has high probability and challenges to over-fit the 

model [2]. In decision trees, a graph-based branching method is used to match all 

the possible outcomes for a decision. It is used normally for a simple problem and 

not potent enough to solve complex data[3][4]. Other popular method of 

forecasting is the Random forest. Random forest takes the mean of many decision 

trees–each of which is made with some random samples. Each tree is weaker than 

a full-decision tree. When this individual tree is combined with others, it yields a 

better result.  This method is fast to train and can work with high quality models[3]. 

Gradient boosting uses weaker trees. In this method, a small change in training 

set can create radical change in the model. This could be its limitation[4]. The other 

well-known method of load forecasting is using neural-network. In neural network, 
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the interconnection of neuron passes messages to each other with one or more 

hidden layers in between them. In deep learning, several hidden layers are placed 

one after the other. This method can handle extremely complex tasks with high 

accuracy. The disadvantage of this method is it is very slow to train and require a 

lot of power. The other disadvantage of this method is it is almost impossible to 

understand the prediction[5]. A neural network consists of an input layer, varying 

no of hidden layers, and an output layer. These layers are connected by neuron 

which processes the data. Neural network with a single layer is not capable of 

understanding the complex relationship between input and output. A neural 

network with more than three hidden layers is known as a deep neural network. A 

deep neural network has a better capability of feature abstraction of input and 

output pattern[6]. Recent development in the field of big data and internet of things 

(IoT) increase the acceptance of deep neural network (DNN) in multiple research 

disciplines [6]. In [7], a three-layered neural network based backpropagation 

technique was developed for load forecasting. In this work multilayer perception 

neural (MLP) networks have been used to forecast the demand from domestic 

users. 

2.3 Short term regional load forecasting 
 

The Electricity demand forecast process involves multiple steps that include data 

cleansing, data preparation, and data evaluation. The following are steps involved: 

1- (Gather Load data): We collected the load consumption data through the web-

link provided by the Iberian Electricity market. 
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2 – Glean and order the data: We used the 90 days of the dataset to build the 

model and evaluate how well the model generalizes to future results. 

3 – Training a model on the data 

To model the relationship between the predictor variables used in modeling and 

the electricity demand, we used deep neural networks multi-layer perception 

model. The neural network model of this work is developed using the Tensor-Flow 

deep learning platform[8]. Tensor-Flow is an open source software library for 

numerical computation using data flow graphs. The nodes in the graph represent 

mathematical operations, while the graph edges represent the multidimensional 

data arrays (tensors) communicating between the nodes. The flexible architecture 

of Tensor-Flow allows one to deploy computations to one or more Central or 

Graphical Processing Units (CPUs or GPUs) on a desktop, server, or mobile 

device with a single Application Process Interface (API). Tensor-Flow was 

originally developed by researchers and engineers working on the Google Brain 

Team within Google's Machine Intelligence research organization for the purposes 

of conducting machine learning and deep neural networks research. However, the 

Tensor-Flow system is general enough to be applicable to other domains as well 

[8]. 

The choice of a neural network structure depends on several factors. In general, 

neural network modeling is divided into five steps [9] 

a. Select input and output variables. 

b. Build the neural network model. 
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c. Cluster training, test, and validation data. 

d. Train the neural network model with the training data set. 

e. Validate the neural network model. 

The selection of inputs to the neural network is an important aspect of the design. 

In this work, we consider temperature, wind-speed, solar irradiance, and the prior 

load data as input. These data sets are normalized to accommodate the 

application of activation functions. The following expression is used to normalize 

load:  

 
 min

max min

  Normalized lo
x x

x
ad

x

−
=

−
 

(1) 

Where x is he actual data value. To build the neural network model, a trial and 

error method select the number of hidden layers and neurons. The datasets are 

categorized into three sets: training, validation, and testing sets. The test and 

validation data sets are not used to train the neural network. These datasets are 

used to evaluate the error by comparing the obtained results with the actual data. 

Training of the neural network is a process of determining the network weights that 

provide a minimum error. As an acceptable minimum level of training error does 

not ensure the same level of performance with all other related input datasets, it is 

often necessary to validate the network performance once the training process is 

completed [9].
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2.4  Implementation of deep neural networks 
 

In this work, we developed both shallow and deep neural networks on a Tensor 

Flow platform.  After building the model, it is tested using various combinations of 

activation functions and neurons. 

2.5 Structure of DNN  
 

The numbers of layers and neurons are key in modeling neural network structures. 

In shallow neural network (i.e., single hidden layer), we can only vary the number 

of neurons that are in the single hidden layer, while both the width and the depth 

of the network can be changed in DNN. For both shallow neural network (SNN) 

and deep neural network (DNN), the number of input and output neurons is 

predetermined according to the dimension of the training set and the forecasting 

period [10]. A heuristics method was used to choose the number of hidden neurons 

in the shallow neural network (SNN) in [10]. In DNN, it is not possible to do the 

same as SNN, as one has to consider both the width and the depth of the network 

[11]. The structure of DNN model used in this work is given below: 
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Figure 2-1: DNN based short term load forecast 

 

2.6 Dataset 
 

The size of dataset impacts the accuracy, training, and transfer of learning within 

the deep neural network [12]. For example, the 2016 DNN competition [13] uses 

456,567 images for visual recognition applications. The authors of the present 



26 

 

work used 90-days hourly data of Iberian Energy Market Operator (MIBEL). We 

selected a single day (July 31, 2015) to forecast and validate the performance with 

different deep neural network model. 

 

2.7 Activation function 
 

Activation function is a deciding parameter that evaluate and capture the trends or 

feature patterns from within the data. If the output value from the activation function 

is zero, the feature is absent and if the value is one the feature is present in the 

data. In computational networks, the activation function of a node defines the 

output from that node given an input or a set of inputs. A standard computer chip 

circuit be a digital network of activation functions that can be either "ON" (1) or 

"OFF" (0), depending on the input. This is like the behavior of the linear perceptron 

in neural networks. However, the nonlinear activation function allows such 

networks to compute nontrivial problems using only a small number of nodes. In 

artificial neural networks, this function is also called the transfer function. In training 

the multi-layer neural network model, activation function plays an important role in 

adjusting the weights. In this work, the authors have used a non-linear sigmoid and 

a rectified linear unit function for hidden layers in the model. 

 

 Sigmoid function 
 

The sigmoid function is defined as  
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 1
( )

1 x
f x

e − +
=

+

 

 

(2) 

where x is input to a neuron. α is the offset parameter and sigmoid function 

evaluates its value as zero. The sigmoid function is very similar to the step function, 

which acts like threshold. When x is a large positive number, the output of the 

sigmoid function is near to 1. 

The difference between the linear and sigmoid functions is that the sigmoid one 

saturates to a high value of x. The sigmoidal function can make the gradient-based 

learning difficult. For this reason, use of linear function in deep neural network is 

discouraged [14]. 

 

Figure 2-2: Sigmoid function 
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 Rectified linear unit (RELU) 
 

Rectified linear unit is defined as   

 ( ) max(0, )R x x=  (3) 

 

where x is the input to the neuron. 

 

Figure 2-3: Rectified linear unit 

 

 

ReLU is similar to linear function with the only change having an output that  is 

zero across half of its domain. Specifically, ReLU has the two following advantages 

[15]:  

i) It is very quick to use and train when compared with other activation functions.  

ii) It is  not the subject to the vanishing gradient problem. The limitation of ReLU, 

however, is that its mean output is not zero. For deep neural networks, this function 
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introduces a bias for the next-layer which can slow down the learning process of 

the network.  

 Exponential linear unit (ELU) 
 

The exponential linear function is defined as 

 ( ) ( 1), 0xf x a e x= −   otherwise ( )f x x=  (4) 

where, α is a parameter to be chosen and x is the input. 

 

Figure 2-4: Exponential  linear unit 

 

ELU function behaves like the ReLU unit for values of   x  that are positive, but for 

all negative values, this function is bounded by a fixed value of α is -1 for. This 

behavior helps to push the mean activation of neurons closer to zero which is 

beneficial for learning and is robust to noise [16]. 
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2.8 System model 
 

For a proper development and implementation of neural networks, a sound training 

data set is an absolute necessity. This requires several parameters during the 

design phase such as the availability of historical load data; number of neurons; 

selection of the number of layers; and the activation functions.  For our system 

model, temperature, wind-speed, solar irradiance, and the prior load data used as 

input. In this chapter, several short-term load forecasting cases using various 

combinations of activation functions were investigated. An ADAM optimizer inside 

Tensor-flow framework was used to train our model. This optimizer uses a 

gradient- descent algorithm. This method has a faster convergence rate compared 

to the stochastic gradient descent (SGD) approach [17]. 

 Case 1. ReLU Activation Function with Single Hidden Layer 
 

In this case, five input variables, ReLU activation function, were selected to do the 

forecast. The number of neurons is varied randomly until a better mean absolute 

percentage error (MAPE) result is obtained. 

 Case 2. ReLU Activation Function with two hidden layers 
 

In this case, ReLU activation function, and two hidden layers were selected to do 

the forecast. The number of neurons is varied randomly until a better MAPE result 

is obtained. 
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Figure 2-5: Tensor graph for case 2 

 

 Case 3. ReLU - Sigmoid Combination  
 

In this case, ReLU and Sigmoid activation functions, and two hidden layers were  

selected to do the forecast. The number of neurons are varied randomly until a 

better MAPE result is obtained. ReLU is used in layer 1 and sigmoid is used in 

layer 2. 
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Figure 2-6: Tensor graph for case 3 

 

 Case 4. ELU Activation Function with Single Hidden Layer 
 

In this case, ELU activation function, and one hidden layer is selected to do the 

forecast. The number of neurons are varied randomly until a better MAPE result 

is obtained. We used ELU in layer 1. 

 Case 5. ELU Activation Function in two hidden layers 
 



33 

 

In this case, ELU activation function, and two hidden layers were selected to do 

the forecast. The number of neurons are varied randomly until a better MAPE 

result is obtained. We used ELU in both layers 1 and layers 2. 

 

 

Figure 2-7: Tensor graph for case 5 

 

 Case 6. ReLU-ELU Combination  
 

In this case, ReLU is used as the activation function in layer 1 and ELU is used for 

that in layer 2. 
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Figure 2-8: Tensor graph for case 6 

 

 Case 7. Sigmoid-ELU Combination  
 

In this case, sigmoid and ELU activation functions, and two hidden layers were 

selected to do the forecast. The number of neurons are varied randomly until a 

better MAPE result is obtained. We used sigmoid in layer 1 and ELU in layer 2. 
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Figure 2-9: Tensor graph for case 7 

 

We also tested the sigmoid-sigmoid combination for layer 1 and 2 respectively, but 

this combination yielded very poor MAPE values. So, we disregarded the result. 

Tensor-flow is used to training and test the designed model. In case of designing 

and training deep neural network it becomes complex and confusing. 

2.9 Error Metrics for Evaluation 
 

To assess the accuracy of the forecasting model, three metrics are used:  mean 

absolute percentage error (MAPE), mean square error (MSE), and root mean 

square error (RMSE). 
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where,   

TF   = forecasted load,  TA  = actual load and T= test set size.  

2.10 Simulation Parameters 

The simulation settings, and parameters used in this work are listed in Table 1. 

Table 1: Tensor-flow parameters 

Parameters Values 

Total number of samples 2208 

Training samples 2184 

Test samples 24 

Minimum load data at same hour on previous day, 
P.DD-1 

3640.1 KW 

Minimum load at same hour on previous week, P.DD-
6 

3640.1 KW 

Minimum temperature 3 degrees Celsius 

Maximum load at same hour on previous day, P.DD-1 7177.2 KW 

Maximum load at same hour on previous day, P.DD-6 7177.2 KW 

Maximum temperature 35.7 degrees Celsius 

Maximum irradiance 975.9 kw 

Maximum wind-speed 8.1 m/s 

Learning rate 0.001 

Training epochs 500000 
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From Table 2, it is obvious that ELU function outperformed the other functions. 

This is because ELU does not saturate for the larger values of input x, and the 

mean of the ELU activation function is closer to zero. This is because of the 

negative portion of the function characteristics that ensures faster and accurate 

learning of DNNs. 

Table 2: MAPE evaluations for entire 90-day data sets 

Activation function 
Number of 
neurons 

MAPE(%) RMSE 

Case  1: 

Single layer 

ReLU 

4 1.641 111.02 

6 1.66 112.88 

8 1.77 118.17 

10 1.62 110.86 

12 1.628 109.86 

Case  2: 

Double layer ReLU- ReLU 

3 1.52 115.92 

4 1.73 104.4 

5 1.83 120.14 

7 1.6 109.9 

9 1.48 104.29 

Case  3: 

Double layer ReLU- Sigmoid 

3 3.7 297.3 

4 2.2 172.8 

6 1.9 154.2 

8 2.7 205.8 

10 3.9 254.5 

Case  4: 

Single layer 

ELU 

3 1.79 119.46 

4 1.5 103.54 

6 1.71 113.96 

8 1.56 107.74 
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10 1.49 103.90 

Case 5: 

Double layer 

ELU- ELU 

3 1.008 73.42 

4 1.192 85.74 

6 1.52 107.9 

8 1.36 98.06 

Case  6: 

Double layer 

RELU- ELU 

 

3 1.86 121.16 

4 1.58 106.52 

6 1.39 97.67 

8 1.77 117.49 

10 1.93 127.11 

Case  7: 

Double layer 

Sigmoid- ELU 

3 2.34 189.75 

4 2.63 182.63 

6 2.6 185.01 

8 3.05 213.62 

10 3.29 211.667 

 

 

Figure 2-10: Comparison of different cases load forecast with actual data  versus 
MAPE values 
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Figure 2-11:  MAPE evaluations for entire 90-day data sets 

 

Figure 2-11 show the forecasted graph for all 7 cases with actual demand data. It 

is observed that case 5 yield better results, and case 7 yield poor results. The ELU-

ELU combination with two layers performs better with the 90-day data set. This 

isdue to the closer correlation of the 90-day pattern profile with the ELU activation 

function. 

Table 3: Weekend MAPE evaluations 

 

Activation function Number of neurons MAPE(%) RMSE 

Case 1: 

Single layer 

ReLU 

3 1.29 73.22 

4 1.3 74.53 

6 1.31 74.95 

8 1.32 75.29 

Case 2: 

Double layer 

4 1.25 70.94 

6 1.22 63.81 
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ReLU- ReLU 8 1.16 64.88 

10 1.20 67.66 

Case 3: 

Double layer 

Sigmoid -ReLU 

4 1.39 82.31 

6 1.51 100.52 

8 2.03 119.65 

10 1.59 94 

Case 4: 

Single layer 

ELU 

4 1.34 76.1 

6 1.27 72.29 

8 1.36 77.53 

10 1.34 76.35 

Case 5: 

Double layer 

ELU- ELU 

4 1.53 79.2 

6 1.52 86.3 

8 1.31 75.09 

10 1.27 72.34 

Case 6: 

Double layer 

RELU- ELU 

 

4 1.53 86.47 

6 1.21 68.43 

8 1.41 80.24 

10 1.39 78.47 

Case 7: 

Double layer 

Sigmoid- ELU 

4 1.28 73.17 

6 1.69 106 

8 2.37 133.6 

10 1.96 126.22 
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Figure 2-12:  Weekend Forecasts 

 

 

 

Figure 2-13:  MAPE evaluations for Weekend forecast 
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Table 4: Weekday MAPE evaluations 

Activation function Number of 
neurons 

MAPE(%) RMSE 

Case 1: 

Single layer 

ReLU 

4 2.19 150.21 

6 2.20 150.02 

8 2.29 157.66 

10 2.31 159.67 

Case 2: 

Double layer 

ReLU- ReLU 

4 2.31 158.5 

6 2.34 161.65 

8 2.36 162.63 

10 2.30 158.748 

Case 3: 

Double layer 

Sigmoid -ReLU 

4 3.27 241.92 

6 3.44 249.11 

8 3.13 206.62 

10 3.24 206.56 

Case 4: 

Single layer 

ELU 

4 2.25 154.44 

6 2.24 154.27 

8 2.19 150.3 

10 2.20 151.39 

Case 5: 

Double layer 

ELU- ELU 

4 2.29 158.67 

6 2.03 142.15 

8 2.43 169.89 

10 2.42 167.86 

Case 6: 

Double layer 

RELU- ELU 

4 2.31 159.2 

6 2.12 143.24 

8 2.38 165.08 

10 2.27 155.84 

Case 7: 

Double layer 

4 2.75 182.01 

6 3.97 250.13 
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Sigmoid- ELU 8 3.28 216.19 

10 3.6 234.53 

 

 

Figure 2-14:  Weekday Forecasts 

 

 

 

Figure 2-15:  MAPE evaluation for weekday forecasts 
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ELU function performed, because it has improved learning characteristics 

compared to other activation functions. In contrast to the Sigmoid and ReLU 

activation functions, the ELU values are negative  in x-axis which allows to make 

the mean value closer to zero, and this  speed up the learning process, and enable 

the gradient closer to the unit’s natural gradient. 

This chapter of thesis investigates the application of DNN’s in electric power 

system analysis. This sections of thesis uses a 90-day Iberian market dataset to 

predict the day-ahead loads. Multiple combinations of activation functions were 

trained, and tested with both single and double-layer neural networks. The results 

indicate that the combination of ELU with ELU performs better than other 

combinations when evaluated against MAPE values. On weekend data sets, the 

ReLU-ReLU combination outperform other combinations. 
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3 Residential load forecasting using deep neural networks (DNN) 

 

3.1 Overview  
 

Forecasting consumer electricity usage plays an important role for reliable smart 

grid. As the activities of an individual residential consumer has many uncertain 

variables, it is hard to accurately forecast the varying residential load levels. For 

planning electrical resources and to balance demand and supply, accurate 

forecasting are critical tasks. This chapter presents Deep Neural Network (DNN) 

based short-term load forecasting for residential consumers. In this work, we 

compare the Mean Absolute Percentage Error (MAPE) values for residential 

electricity dataset using different types recurrent neural networks (RNN). Our 

preliminary results indicate that Long short-term memory (LSTM) based RNN 

performed better compared with simple RNN and gated recurrent unit (GRU). This 

method is deployed for a single user with 1-minute resolution based on one year 

of historical data sets. 

3.2 Background and Related work 
 

Load forecasting has remained an important research area for conducting planning 

operations in electrical power systems. The advanced metering infrastructure 

(AMI) technology revolutionized the mass adaptation of smart meters at residential 

consumer levels by utilities. A significant portion (e.g., 20% to 40%) of the total 

electricity energy production is consumed by residential loads [18]. Load 

forecasting based on smart metering datasets that are within 1-minute intervals 

are relatively new area of research. In [19], authors introduced a methodology of 



46 

 

short-term functional time-series based forecast to predict household-level 

electricity demand. A Kalman -filter based forecasting model to predict the 

residential load is discussed in [18] and forecasting using conditional kernel density 

estimation is discussed in [20]. A hybrid model approach for forecasting future 

residential electricity consumption for buildings is developed in [21]. An occupancy 

model has been developed for residential load forecasting and discussed in [22]. 

Artificial Intelligence (AI) based forecasting techniques such as Fuzzy logic [23], 

artificial neural networks [9], support vector machines [24] and wavelets neural 

networks [25] are investigated under short term load forecasting. The AI methods 

are most conducive due to their ability to handle non-linear relationships between 

dependent and independent variables. Recently, DNN has been successfully used 

in application such as image processing, automatic speech recognition, natural 

language processing and for time-series modeling tasks such as load forecasting. 

There are several review papers on load forecasting focused at aggregated level 

for commercial users. However, there are limited work on residential level data 

sets. We think that this is because short term load forecasting at granular level is 

extremely challenging due to uncertainty and volatility [18]. Most short-term load 

forecasting models focuses on regular pattern that are easily predictable. 

Residential loads are more uncertain due to erratic and stochastic nature of 

consumer behavior that are hard to predict. This chapter represents a deep 

learning- based method for the meter-level load forecasting for residential 

consumers. We have used recurrent neural network for residential load 

forecasting. We compare our forecasting accuracy by using different recurrent 
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neural network (RNN) models for residential dataset. We also test our dataset with 

other conventional time-series analysis such as ARIMA, Generalized linear model 

(GLM), Random Forest (RF) and machine learning approaches Neural network 

and Support Vector machine (SVM) methods. The rest of the chapter is organized 

as follows: section 2 discusses background information on RNN, LSTM, GRU and 

some related work, section 3 discusses implementation platforms, and section 4 

focuses on preliminary results and discussions. 

3.3 Implementation of recurrent neural networks for residential load 
forecasting 

 

In this chapter, the effectiveness of different DNN models is investigated for 

residential level forecasting. We have developed different RNN models to predict 

day ahead residential demand using smart meter dataset. We also used different 

conventional method of forecasting such as ARIMA, GLM, Random Forest, neural 

network and support vector machine for day ahead forecasting.  

3.4 Structure of RNN 
 

Recurrent neural networks (RNNs) are fundamentally different from traditional 

feedforward neural network. They are sequence-based models, which are able to 

establish the temporal correlations between previous information and the current 

circumstances. For time series problem, this means that the decision an RNN 

made at time step 1t −  could affect the decision it will reach at time step later t

.Such characteristic of RNNs is ideal for the load forecasting problems of individual 

households, since it has been pointed out that residents intrinsic daily routines may 
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be one of the most important factors to the energy consumption at the later time 

intervals. 

RNN can have a signal traveling in both directions by introducing a loop in the 

network. The computations in RNN derived from earlier input are fed back to the 

network, which gives them a special memory. A RNN can be thought of as multiple 

copy of same network, each passing a message to successor [26]. An unrolled 

structure of RNN is given below: In Figure 1, a chunk of neural network A, looks at 

some input  and outputs a value . A loop allows information to be passed from 

one stage of the network to the next stage. 

3.5 Recurrent neural network model for short term load forecasting 
 

We have used three different recurrent model structures for our load forecasting. 

The structure of these three RNN is given below: 

 Simple RNN 
 

Simple RNN accepts input xt at time t and the status is updated by a non linear 

mapping f from time to time. One simple way defining the recurrent unit f is linear 

transformation plus a non-linear activation. 

 
1tanh( [ , ] )t t th w h x b−= +  (8) 

 

Figure 3-1: An unrolled simple recurrent neural network 

tx th



49 

 

 

 

 Long short term memory (LSTM) 
 

LSTM is  a special kind of RNN that was introduced by Hochreiter &  Schmidhuber 

[27]. This type of RNN is apparently modeled to avoid the long term dependency 

problem [28]. All the RNN models are of the form having a chain of repeating 

modules of neural networks. In standard RNNs, this repeating module will have a 

simpler structure, such as a single tanh layer. In RNN, instead of having a single 

neural network layer, there are four layers. The step by step operation of LSTM 

can be represented by the following equation: 

 
1( .[ , ] )t f t t ff w h x b −= +  (9) 

 
t = tanh( ).[ . ]+c t x t cC w h x b

−

−  
(10) 

 
1t t t t tC f C i C−=  +   (11) 

 
1( .[ , ] )t o t t oO w h x b −= +  (12) 

  tanh( )t t th O C=   (13) 
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Figure 3-2: Long short term memory (LSTM). 

 

From Figure. 2,  of a LSTM network, each block has two parallel lines going in and 

out. The top line is the cells, the essential point is the hidden state information. 

Finally, there is a third line going in from the bottom, representing X. In total, three 

inputs and two outputs. xt would be X_train,ht-1 would be h_previous, xt+1 would be 

X_train.next, and ht would be h_current. 

 Gated recurrent unit(GRU) 
 

Gated Recurrent Unit, or GRU  is a modified version of the LSTM . GRU is 

introduced by Cho in 2014 [28] that combines the forget and input gates into a 

single update gate. In contrast to LSTM, a GRU network only has two inputs and 

one output and no cell layers [29]. GRU unit takes X_train and h_previous as 

inputs. They perform certain calculations and then pass along h_current. In the 

next iteration X_train.next and h_current are used for more calculations.  

The step by step operation of GRU can be represented by the following equation. 

  1,( .[ ])t z t tz w h x −=  (14) 

  1,( .[ ])t r t tr w h x −=  (15) 

 
 

1,tanh( .[ * ])t t t th w r h x−=  
(16) 

 
 1(1 )* * tt t t th z h z h−= − +  

(17) 
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Figure 3-3: Gated recurrent unit (GRU). 

3.6 Implementation of recurrent neural networkS (RNN) for residential 
load forecasting  

 

In this chapter, we have used keras on top of tensor-flow to implement the 

recurrent neural network. Keras is a high-level neural network library written in 

python and it can run on top of either Theano or tensor flow [30].  Tensor-flow 

platform is one of the most leading machine learning library used in developing 

deep learning models. However, Tensor-flow is not simple to use. On the contrary, 

keras is a high-level API built on tensor-flow that are more user friendly and simple 

to use. 

 Data set 
 

In this chapter , we used AMPds dataset. This dataset contains one year of data 

that includes 11 measurements at one minute intervals for 21 sub-meters. AMPds 

also includes natural gas and water consumption data [31]. We convert energy 

consumption data to KWh to mimic the commonly available smart meter data. 
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 Load Forecasting structure based on keras 
 

We experimented several parameters to train our model with the keras deep 

learning packages. The following Fig 4. shows a set-up carried for residential short 

term load forecasting cases in keras. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: Keras code structures for three different RNN scenario 

 

 Optimization technique 
 

The challenging aspects of modeling deep neural network is the optimization of 

training criteria over millions of parameters. In this work, we choose RMS Prop 

optimization. RMS Prop is a biased estimator proposed in neural networks  for 

Case1: Simple RNN forecasting model based on keras 

model = Sequential() Input (length {S}) 
layers = [1, 50, 100, 1] 
model.add(SimpleRNN(layers[1],input_shape=(None,layers[0]),return sequences=True)) 
model.add(Dropout(0.2)) 
model.add(SimpleRNN(layers[2],return sequences=False)) 
model.add(Dropout(0.2)) 
model.add(Dense(layers[3])) 
model.add(Activation("linear")) 
Case2: GRU forecasting model based on keras 

model = Sequential() Input (length {S}) 
layers = [1, 50, 100, 1] 
model.add(GRU(layers[1],input_shape=(None,layers[0]),return sequences=True)) 
model.add(Dropout(0.2)) 
model.add(GRU(layers[2],return sequences=False)) 
model.add(Dropout(0.2)) 
model.add(Dense(layers[3])) 
model.add(Activation("linear")) 
Case3: LSTM forecasting model based on keras 

model = Sequential() Input (length {S}) 
layers = [1, 50, 100, 1] 
model.add(LSTM(layers[1],input_shape=(None,layers[0]),return sequences=True)) 
model.add(Dropout(0.2)) 
model.add(LSTM(layers[2],return sequences=False)) 
model.add(Dropout(0.2)) 
model.add(Dense(layers[3])) 
model.add(Activation("linear")) 
Here, S= Number of sequence in recurrent neural network  
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machine learning [17]. It is a gradient based optimization. RMS Prop has remained 

the method of choice for most recurrent neural network modeling. In this chapter, 

we utilize the RMS Prop as our parameters update optimizer, with parameter 

update rule according to the following formulae. 

  2 2 2

1 1[ ] [ ] (1 )t t tE g E g g − −= + −  (18) 
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where, t R  is the iteration times. The θ is the parameters of neural network. E is 

the weighted sum operation. g2 is vector of gradient square. The ηϵ(0,1)  is the 

learning rate. The ԑ is a smoothing term that avoids division by zero. 

3.7 Error Metrics for Evaluation 
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where,  

tF   = forecasted load, tA  = actual load and T= test set size.  

From Table 1, LSTM based RNN with sequence 40 performed better compared to 

other forecasting models. The training and prediction time of LSTM model are also 

smaller compared with other models. 
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Table 5: MAPE summaries for residential load forecasts 

Scenario  S MAPE Train 
time (s) 

Prediction 
time (s) 

Validation  
loss 

Training 
loss 

LSTM 30 35% 1116.7 0.0190 3.1197e-05 4.2183e-05 

LSTM  40 24% 1505 0.0210 2.0085e-05 4.2721e-05 

LSTM 50 29% 2145 0.0200 2.5080e-05 4.3218e-05 

Simple 
RNN 

30 59% 213 0.019049 2.6471e-05 1.1500e-04 

Simple 
RNN 

40 37.7% 294 0.019050 2.4830e-05 2.7659e-04 

Simple 
RNN 

50 45.7% 398.01 0.021054 2.6893e-05 1.7445e-04 
 

GRU 30 34.3% 1095 0.0210 2.4373e-05 4.2037e-05 

GRU 40 24.7% 1491.87 0.0210 2.1842e-05 3.9982e-05 

GRU 50 39.7% 1993.13 0.0200 2.6099e-05 3.9602e-05 

 

Table 6: MAPE summaries for conventional methods 

Conventional time series model for residential load forecast 

ARIMA 74% 

GLM 75% 

RF 74% 

SVM 50% 

FFNN 73.54% 

 

Table 2 show the MAPE values for conventional time-series methods. It is 

important to note that we were not able to perform the day-ahead forecasting 

computation with 2-year datasets for conventional methods, due to larger 

computation run-time. Instead, we used smaller 1-year dataset. For RNN, the 

computational run-time is less over the conventional methods. Some inferences 

are: Support vector machine (SVM) perform better than other conventional 

methods; RNNs are much better than the conventional methods. 
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In order to visualize how each method perform, the first 100 time steps for each 

forecasting model is plotted Figs.5-7. 

 

Figure 3-5: Residential load forecast using Simple RNN. 

 

Figure 3-6: Residential load forecast using GRU. 
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Figure 3-7: Residential load forecast using LSTM. 

 

The performance different RNN models with varied sequences are summarized 

in Table 1. 

 

Figure 3-8: MAPE ranking for RNN’s. 
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Figure 3-9: MAPE ranking for conventional methods. 

 
Figures 8 and 9 show MAPE values for RNN and conventional methods. All 

frameworks are built on a desktop PC with a 3.4 GHz Intel i7 processor and 16GB 

of memory using the Keras library [32] with tensor-flow backend [8][33]. 

 
 
 
  



58 

 

4 Optimal operation of smart home appliances using deep learning 

4.1 Summary  
 

This chapter discusses optimal operation and scheduling of smart home 

appliances using deep learning. One year of data sets were used that include 

price, demand, rating, and energy constraints.  Using deep neural network 

platform, the Mean Absolute Percentage Errors (MAPE) were computed for 9 

appliances using historical data sets. The preliminary results show promising 

improvement in forecasting accuracies coupled with Linear Programming suitable 

for demand response and scheduling loads. 

4.2 Background and related work 
 

The smart home system is envisioned to contain distributed renewable sources 

and smart appliances that able to participate in demand response. An important 

challenge faced by the power generation and distribution system is the sudden 

surge in energy demand during peak hours [34]. Power system companies are 

forced to install additional generating units, just to support the peak energy 

demand. The power transmission infrastructure also presents an additional 

bottleneck to support the ever-increasing growth in power demand. One way to 

overcome this surge in demand during peak hours is to encourage consumers to 

operate their equipment during off peak hours [35]. With advent of smart 

appliances, the consumers can take the advantage of time-of-use pricing scheme 

to reduce their electricity cost. This chapter presents a DNN based predictive 

model to forecast the next day energy consumption at an appliance level from a 
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one-year historical residential dataset. The forecasted consumption data along 

with the day-ahead energy price from MISO is used to model the smart home 

appliance management system. The concept of linear programming is used to do 

the optimization with the help of the AMPL (A Mathematical Programming 

Language) software. 

4.3 DNN based Day-Ahead energy forecast 
 

It is significant to forecast a particularly household daily consumption in order to 

design and size suitable renewable energy systems and battery storage. In this 

work, we did a Short-Term Load Forecasting (STLF) of household equipment. It is 

a challenge to forecast the household energy consumption in an appliance level 

because of its uncertainty [36]. Despite the uncertainty associated with household 

electric power consumption, we were able to forecast the energy consumption with 

a significant accuracy using DNN. 

 Designing Deep Neural Networks 
 

Selecting an appropriate design of deep neural network is the first step of DNN-

based forecasting system. In the current studies, the network architecture was built 

based on multilayer perceptron (MLP), full-connected, which is a feed-forward type 

of neural network, and the training task was performed through a backpropagation 

learning algorithm. 
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 Backpropagation learning algorithms 
 

The backpropagation learning algorithms, most common in use in feed-forward 

DNN, are based on steepest-descent methods that perform stochastic gradient 

descent on the error surface. Backpropagation is typically applied to multiple layers 

of neurons and works by calculating the overall error rate of an artificial neural 

network. The output layer is then analyzed to see the contribution of each of the 

neurons to that error. The neurons weights and threshold values are then adjusted, 

according to how much each neuron contributed to the error, to minimize the error 

in the next iteration. 

 DNN energy Forecasting Models 
 

The neural network model of this work is developed using the Tensor Flow deep 

learning platform. Tensor Flow is an open source software library for numerical 

computation using data flow graphs. The nodes in the graph represent 

mathematical operations, while the graph edges represent the multidimensional 

data arrays (tensors) communicating between the nodes. The flexible architecture 

of Tensor Flow allows one to deploy computations to one or more Central or 

Graphical Processing Units (CPUs or GPUs) on a desktop, server, or mobile 

device with a single Application Process Interface (API). Tensor Flow was 

originally developed by researchers and engineers working on the Google Brain 

Team within Google's Machine Intelligence research organization for the purposes 

of conducting machine learning and deep neural networks research. However, the 
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Tensor Flow system is general enough to be applicable to other domains as well 

[5]. The structure of load forecasting model of DNN is given below. 

 

Figure 4-1: DNN energy Forecasting Models[37]. 

 

One-year smart home appliance data with one-minute resolution was used to 

predict the next day[38].  The previous load consumption of different appliance 

along with weather data was used to train our neural network model. In this work, 

an ADAM optimizer inside Tensor-flow framework is used to train our model. It 



62 

 

uses gradient descent algorithm. This method is faster in convergence than 

Stochastic Gradient Descent (SGD) approach [28]. The simulation settings and 

parameters used are listed in Table 1. 

Table 7: DNN simulation settings and parameters 

Parameters Values 

Total number of samples 236970 

Training samples 235530 

Validation samples 1440 

Shape of training input data set  (235530, 11) 

Shape of training target data set  (235530, 1) 

Shape of validation input data set  (1440, 11) 

Shape of validation target data set  (1440, 1) 

epochs  100 

Learning rate   0.001 

mini_batch_size  100 

Activation function  Linear  

Number of hidden layer  3 

Learning rate 0.001 

Training epochs 500000 

 

 Dataset 
 

The size of dataset impacts the accuracy, training, and transfer of learning within 

the deep neural network[37]. In this work, we used 1 year of 1-minute resolution 

data of UMass Smart Home Data Set. In this dataset contains data for 114 single-

family apartments for the period 2014-2016.  This data set includes a variety of 
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traces from three separate smart homes[38]. In our work, we used single smart 

home data of 2016 to predict next day different home appliance energy 

consumption. 

 Error Metrics for Evaluation: 
 

To assess the accuracy of the forecasting model, Mean absolute percentage error 

(MAPE) is used.  

 
 

1

1
100%
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t T

A F
MAPE

T A

=

=

−
=   

(22) 

where,   

TF =  Forecasted load 

TA =Actual load and 

 T =Test set size 

 Forecasting Evaluation of different home appliance  
 

The one day ahead predicted energy usage of different home appliance is given 

below (figure 2 to figure 10). 
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Figure 4-2: Predicted day ahead energy usage for Furnace HRV. 

 

 

 

Figure 4-3: Predicted day ahead energy usage for Cellar Outlets. 
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Figure 4-4: Predicted day ahead energy usage for Fridge Range. 

 

Figure 4-5: Predicted day ahead energy usage for Master Lights. 
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Figure 4-6: Predicted day ahead energy usage for Duct Heater HRV. 

 

 

Figure 4-7: Predicted day ahead energy usage for Kitchen Lights. 
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Figure 4-8: Predicted day ahead energy usage for Disposal Dishwasher. 

 

Table 8: MAPE evaluation for smart home appliance 

Sr. no Appliance MAPE value (%) 

AP1 Furnace HRV 1.575 

AP2 Cellar Outlets 3.23 

AP3 Fridge Range 5.24 

AP4 Master Lights 0.509 

AP5 Bedroom Outlets 1.7359 

AP6 Duct Heater HRV 10.8561 

AP7 Bedroom Lights 1.7359 

AP8 Kitchen Lights 2.23 

AP9 Disposal Dishwasher 3.2 

 

Table 2 and figure 11 shows the MAPE evaluation of different appliance. We got 

higher accuracy (MAPE of 0.509%) for masters’ lights (AP4) and lower accuracy 

(MAPE of 10.8561%) for Duct Heater (AP6). It can be explained by the actual 

energy consumption behavior of this appliance. Figure 12 and 13 shows the actual 
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load consumption of master lights and Duct heater. It shows the Master lights have 

more continuous energy consumption pattern compared to Duct Heater. 

 

Figure 4-9: Daily energy usage for Disposal Dishwasher. 

 

Figure 4-10: Daily energy usage for Duct Heater HRV. 
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4.4 Residential Appliance Scheduling 
 

 Smart Home Management System 
The introduction of distributed energy sources has necessitated the need for 

improved metering and home management systems. The new generation 

residential appliances are becoming smarter and energy efficient to reduce the 

energy cost and improve the convenience for the customer. 

 System Modeling 
 

 The objective of the proposed optimization model is to reduce the total electricity 

cost for a residential customer. In this chapter cost is calculated on 24-hour period 

(e.g. USD per Wh). Here, jC  denote the day-ahead energy price in each time 

period. ijP  represents the energy used by appliance i  in time period j   

 

1 1

M N

ij i

i j

Min E C
= =

  
(23) 

The optimization is performed subjected to several constraints [39]–[44]. They are 

listed below. 

4.4.2.1 Energy Constraint 
 

This constraint makes sure that the scheduling process allocates the required 

energy requirements for all the appliances in a residential home. 

 

1

M

ij j

i

E E
=

=  
(24) 

For each appliance j  , the total allocated energy in all the time-period should meet 

the predicted electricity usage for each appliance. 
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4.4.2.2 Power safety constraint 
 

The allotted energy in each time-period for each appliance should not cross a power 

limit. Residential appliance would not be able to use more the rated power of the 

appliance. If more power is allocated to the appliance, it won’t be able to use more 

than its rated power and will result not meeting the energy requirements for a day. 

 [ ]ijE Rating i  (25) 

Rating[i], stands for the rated power of each appliance in the scheduling problem. 

The scheduled power allocated to an appliance in each time period should be less 

than the maximum power for the appliance. 

4.4.2.3 Production capacity constraint 
 

The energy usage during peak hours creates a challenge for power companies to 

generate and transmit the required power. An important requirement of bringing 

forth the demand-response and time-of-use pricing scheme is to reduce the peak 

energy usage. This constraint prevents the allocation of all the appliance to the 

lowest price time slot. If all the house hold appliances are scheduled to the same 

time, it can create transmission constraints for the power companies. 

 
 

1 1

*
N N

ij j

j j

E K E
= =

=   
(26) 

Here, K percentage of total demand that can be scheduled in each hour. In this 

work, the percentage was assumed to be 10%. 

 



71 

 

4.4.2.4 Consumer Preference 
 

The user preference for the scheduling of the appliances is also considered in this 

optimization model. The consumer can specify the preferred time of use each 

individual appliance. The optimization model will not schedule appliances in other 

time-slots. 

4.4.2.5 Equipment Flexibility 
 

All the consumer residential appliances won’t be committed to do scheduling based 

on energy price. Consumers prefer some appliances to be keep running without 

interruption for their comfort. The residential appliance committed to the scheduling 

and those which are supposed to be run at customers preferred time can be 

achieved in this model.   

 Optimization Tool 
 

AMPL is an algebraic modeling language to solve large scale optimization and 

scheduling problems. It was developed at Bell Laboratories by Robert Fourer, 

David Gay, and Brian Kernighan. The software supports several open-source and 

commercial solvers.  The AMPL coding syntax is similar to mathematical notation 

of optimization problems, which helps developers to develop their model [45], [46]. 

The day-ahead energy price for the residential customer is shown in Table 9. The 

day-ahead energy price data for Minnesota hub region (MISO-Midwest 

Independent Transmission System Operator), was used as the residential energy 

price [47]. 
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Table 9: Residential day-ahead energy price ($/KWhr) 

Hours Energy Price Hours Energy Price 

0 0.01976 12 0.03376 

1 0.01828 13 0.02172 

2 0.01595 14 0.02297 

3 0.01545 15 0.02397 

4 0.0151 16 0.02611 

5 0.00778 17 0.03861 

6 0.01488 18 0.03391 

7 0.00725 19 0.02094 

8 0.01823 20 0.01891 

9 0.01655 21 0.01643 

10 0.0234 22 0.01885 

11 0.02247 23 0.0165 

 

Table 10 lists the equipment rating, flexibility, and preferred time of appliance 

usage. 

Table 10: Residential appliance rating and user preference 

Equipment Rating Flexibility Preference 

Furnace 12000 0 1AM:11AM 

Cellar Outlets 8000 1 12AM-12PM 

Fridge Range 1200 0 2AM-11PM 

Master Lights 2000 1 12AM-8AM 

4PM-11PM 

Bedroom Outlets 2500 1 12AM-8AM 

4PM-11PM 

Bedroom Lights 2000 1 12AM-8AM 

4PM-11PM 
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Duct Heater 

 

3000 

 

1 

3AM-8AM 

10AM-4PM 

6PM-8PM 

10PM-11PM 

Kitchen Lights 10 0 12AM-12PM 

Dishwasher 45 1 12AM-5AM 

 

The scheduling model developed in this work allows the consumer the flexibility to 

decide which appliances to commit for scheduling. If the flexibility parameter in the 

table is set to 0, the appliance will not be committed for scheduling and will be run 

at the costumer preferred timing without any interruption. The optimized appliance 

scheduling for the household appliances based on the consumer preferred timing 

and flexibility is shown in figure 11. 

 

Figure 4-11: Scheduled energy usage of individual appliance for the residential 

customer. 
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5 Residential load forecasting based on deep neural network(DNN) and k-
shape clustering 

 

5.1 Overview  
 

One of the most important tasks for utility companies is load forecasting in order 

to plan future demand for generation capacity and infrastructure. Improving load 

forecasting accuracy over a short period is a challenging open problem due to the 

variety of factors that influence the load. This chapter proposes a new approach 

for short term load forecasting using an effective new combination of clustering 

and deep learning methods. Our evaluation using 200 residential home demand 

data from a publicly available real-life dataset. 

This work uses a two steps process: 

1) Apply the time-series clustering (K-shape) for 200 residential home 

2) Apply deep neural network method for short term load forecasting 

5.2 Background and related work 
 

Smart meter are the key components of smart grid technology. Smart meter 

provides fine-grained electric power consumption information at different sampling 

intervals (10,30,60 minutes). One of the most promising applications for such large 

volumes of data from smart meters is to improve the accuracy of electrical load 

forecasting. One of methods of improving load forecasts using the data generated 

from smart meters of individual customers is based on the use of clustering [48]. 

In this method, the knowledge about load consumption behavior of customers is 

used to improve the accuracy of forecasting. Instead of developing a single 
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forecasting model for the aggregated load consumption of all customers, clustering 

can be used to divide the customers into sub-class with similar demand profiles. 

Then, a forecasting model can be provided for each cluster of customers according 

to their load consumption profile. Thus, a more accurate model can be provided 

for each cluster and then the load forecast for all consumers can be obtained by 

combining the forecasts of these models. Applying clustering as an initial step in 

electric load forecasting has been the focus of several studies [49] [50]. The K-

means clustering method has been widely used in previous works for this purpose 

[51] [52]. However, little attention has been paid in previous studies to the choice 

of clustering method with the aim of improving the aggregate level of forecasting 

accuracy. In this chapter we show that the accuracy of load forecasting can be 

improved by clustering method on demand profile. 

5.3 Methodology for clustering based DNN forecast 
 

Deep learning techniques such as Recurrent neural network (RNN) has higher 

performance in solving STLF by treating STLF as a time-series forecasting 

problem [53], [54]. However, in this study, a novel method of combining DNN and 

clustering techniques for forecasting loads on an electricity big data is proposed. 

There are two phases in the procedure of creating the proposed method. In phase 

1, raw data is preprocessed by removing noises and numerical processing. And 

then related factor analysis on the clean data is performed for feature extraction 

and selection. Millions of load samples consist of the chosen features and target 

electricity loads to form a big data set. On the data set, we utilized the clustering 

technique to partition the set into subsets. Furthermore, these subsets are divided 
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into training sets and testing sets. On the training sets, the method is constructed 

based on DNN models. 

 

Figure 5-1: Framework of constructing the model. 

In phase 2, the method is adopted to forecast loads for 10 minutes interval on 

these testing sets. The framework of the presented method is shown in Figure 1. 

K-Means algorithm is utilized to divide the dataset into small clusters. Then, these 

clusters are segmented into training with the DNN Based Model. In 2nd phase we 

use the method to forecast loads on each testing subset so as to conduct results 

on each testing subset. Prediction loads are generated by these prediction results 

by these DNN models, which is shown in figure. 
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Figure 5-2: Flows of constructing the DNN based method with K-Means 

algorithm. 

5.4 Methods of network level clustering 
 

The smart meter records consist of a set of M consumers 1 2, ,......, Mx x x .The 

consumption history of consumer i   can be define 1 2{ , ,..... } {1,2,...., }T

i i i ix x x x M=   

where, 

M = the total number of consumers 

T = the total number of historical time periods 

In our work we have used three approaches of network level clustering- 

a) Completely aggregated method 

b) Completely disaggregated method 

c) Clustering based forecasting method 
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The brief description of this three networks level clustering is given below- 

 Completely aggregated method 
 

In completely aggregated method [3], the load consumption of all consumers that 

belong to the network into a vector, 1 2( , ,...., )T

aggr aggr aggr aggrX X X X=  and take this as 

the input feature vector for forecasting. 

 

Figure 5-3: Completely aggregated method. 

 Completely disaggregated method 
 

In completely disaggregated method load forecasting applies to individual 

consumers and then adds individual consumers prediction to prediction the 

aggregated level. 
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Figure 5-4: Completely disaggregated method. 

 Clustering based forecasting method 
 

In clustering-based forecasting method, consumer household demand are 

grouped into several clusters based on actual demand profile of the consumers. 

We consider that by applying a clustering algorithm, K   clusters 1 2{ , ,...., }kC c c c=

are obtained, so that each cluster of households in C   can then be used to train a 

neural network. Therefore, K  prediction models 1 2{ , ,... }c c c ckF F F F=  are generated 

from the k  groups of consumers. To calculate the final prediction for period of 

interest, we take the sum over the predictions from the clusters as follows: 

  
1

i k

aggr cii
F F

=

=
=  (27) 

 

 

 

 

 



80 

 

 

 

Figure 5-5: Clustering based forecasting method. 

5.5 Designing Deep Neural Networks 
 

Selecting an appropriate design is the first step of DNN-based forecasting system. 

In our work we utilized multilayer perception model and different recurrent neural 

such as simple RNN, long short term memory (LSTM) and gated recurrent unit 

(GRU) for designing forecasting model. 

 

Table 11: Deep learning tensor-flow parameter 

Parameters Values 

Total number of samples 52560 

Training samples 52416 

Validation samples 1440 

Epochs 100 

Learning rate 0.001 

Mini batch size 100 

Activation function Linear  
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5.6 Evaluation Metrics: 
 

Mean absolute percentage error (MAPE), root-mean-square error (RMSE), 

normalized mean absolute error (NMAE), and normalized root-mean-square error 

(NRMSE) are the commonly used evaluation metrics to measure performance of 

models. We choose MAPE to measure the accuracy of our model. The MAPE is a 

measure of prediction accuracy in statistics. It defines accuracy as a percentage, 

and is defined by the following equation. 
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5.7 MAPE evaluation 
 

MAPE value of different individual house and for clusters is presented. We get 

better MAPE value with clustering then without clustering based forecasting. The 

MAPE evaluation for different scenario is given below- 

Table 12: MAPE evaluations of residential home dataset using RNN 

Cluster1 

(28 household) 

0.352 (LSTM) 

0.375(GRU) 

0.320(SimpleRNN) 

Cluster2 

(14 household) 

0.133(LSTM) 

0.118(GRU) 

0.153(SimpleRNN) 

Cluster3 

(80 household) 

1.086(LSTM) 

1.168(GRU) 

2.409(SimpleRNN) 

Cluster4 

(41 household) 

0.756(LSTM) 

0.463(GRU) 

0.479(SimpleRNN) 

Cluster5 0.007(LSTM) 
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(37 household) 0.418(GRU) 

0.458(SimpleRNN) 

Whole 200 household 8.544(SimpleRNN) 

7.305(LSTM) 

4.096(GRU) 
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6 Conclusion and future work 
 

6.1 Conclusion 
 

This work investigated the performance of different DNNs to forecast short term 

electricity. We used different dataset such as Iberian electricity markets data, 

AMPds smart meter data, NREL residential home dataset to evaluate the 

accuracies of DNN. It is observed that deep neural networks are powerful forecasts 

that can provide better individual forecasts over conventional forecasting models.  

Here, the state-of-the-art tool named TensorFlow and keras based deep 

learning library utilized to develop the forecasting models. The key findings of this 

research are as follows: 

1. The first part of research investigated the application of DNN’s in electric 

power system analysis. This part uses a 90-day Iberian market dataset to 

predict the day-ahead loads. Multiple combinations of activation functions 

were trained, and tested on single and double-layer neural networks. The 

MAPE results indicate that the combination of ELU with ELU perform better 

than other combinations. On weekend data sets, the ReLU-ReLU 

combination outperform other combinations.  

2. The second part of this research investigated the performance of recurrent 

neural network in load forecasting for a single residential customer. Load 

forecasting for a single residential customer at a 1-minute interval using 

recurrent neural networks for smart-metering data sets are investigated 

using DNN and conventional methods. 
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3. The third part of this research investigated a smart home management to 

schedule the appliances. A deep learning based (DNN) forecasting model 

was used to predict the consumer pattern and a linear programming based 

optimization model was formulated to develop a day-ahead scheduling 

scheme based on price, demand, rating, and energy constraints.   

 

6.2 Future work 

 

1. Convolutional neural networks (CNN) can be utilized for the short-term 

load forecasting problem.  

2. Further exploration is required to determine the reliability of DNN based load 

forecasting. The following questions are crucials for effectiveness on the 

applicability of DNN’s:  

  a) How large should a DNN be and which configurations should be 

considered? 

b) What is the right sample size and data intervals are required for 

sufficient training for short term forecasts? 

c) How can a deep neural network be adopted for a real-time market 

operation. 

One possible solution is using hybrid combination of DNN and fuzzy systems. 
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                                         APPENDIX A 

                          FORECASTING OF ELECTRICAL DEMAND 

#CODE FOR IMPLEMENTION OF MULTI LAYER PERCEPTION DEEP 

NEURAL NETWORK USING TENSORFLOW: 

import numpy as np 

import tensorflow as tf 

import pandas as pd 

import matplotlib.pyplot as plt 

%matplotlib inline 

data_dir ="C:/Users/tareq.hossen/Desktop/load_predict/data/" 

model_dir ="C:/Users/tareq.hossen/Desktop/load_predict/model/" 

summaries_dir = 

"C:/Users/tareq.hossen/Desktop/load_predict/summaries" 

 

 

#Extract data from CSV 

df1=pd.read_csv(data_dir+"PJM LOAD.csv") 

col1 = df1[['P.DD-1','P.DD-6','Temp','irradiance','windspeed']] 

col2 = df1[['Actual']] 

#Convert to Numpy array 

InputX1 = col1.as_matrix() 

InputY1 = col2.as_matrix() 

InputX1.astype(float, copy=False); 

InputY1.astype(float, copy=False); 

print("Input:",InputX1) 

print("Output:",InputY1) 

#print("Samples:",InputX1.shape[0]) 

 

#Min-max Normalization 

X1_min = np.amin(InputX1,0)      

X1_max = np.amax(InputX1,0)    

print("Mininum values:",X1_min) 

print("Maximum values:",X1_max) 

Y1_min = np.amin(InputY1)      

Y1_max = np.amax(InputY1)  

InputX1_norm = (InputX1-X1_min)/(X1_max-X1_min) 

InputY1_norm = InputY1  #No normalization in output 

#InputY1_norm = (InputY1-Y1_min)/(Y1_max-Y1_min) 

 

#Reshape 

Xfeatures = 5 #Number of input features 

Yfeatures = 1 #Number of output features 

samples = InputX1.shape[0] # Number of samples 

print("Total Samples:",samples) 

InputX1_reshape = np.resize(InputX1_norm,(samples,Xfeatures)) 



90 

 

InputY1_reshape = np.resize(InputY1_norm,(samples,Yfeatures)) 

print("X1 normalized:",InputX1_reshape) 

#print("Y1 normalized:",InputY1_reshape) 

 

 

#Training data 

batch_size = 2000 

InputX1train = InputX1_reshape[0:batch_size,:] 

InputY1train = InputY1_reshape[0:batch_size,:] 

#Validation data 

v_size = samples-batch_size 

InputX1v = InputX1_reshape[batch_size:batch_size+v_size,:] 

InputY1v = InputY1_reshape[batch_size:batch_size+v_size,:] 

print("Training Samples:",batch_size) 

print("Validation Samples:",v_size) 

#print(InputX1v) 

print(InputY1v) 

 

#Network hyper parametres 

learning_rate0 = 0.001 

training_epochs = 500000 

display_epoch= 50000 

summarize_epoch = 500 

 

# reset everything to rerun in jupyter 

tf.reset_default_graph() 

#Input 

X = 

tf.placeholder(tf.float32,shape=(None,Xfeatures),name="X")#[batch 

size, input_features] 

#Output 

Y = 

tf.placeholder(tf.float32,shape=(None,Yfeatures),name="Labels") 

 

#Neurons 

L1 = 6 #Number of neurons in 1st layer 

#Layer1 weights 

with tf.device('/cpu:0'): 

    with tf.name_scope('Layer_1'): 

        W_fc1 = 

tf.Variable(tf.random_uniform([Xfeatures,L1]),name="W") # 

[input_features,Number of neurons])  

        b_fc1 = tf.Variable(tf.random_uniform([L1]),name="bias") 

        matmul_fc1=tf.matmul(X, W_fc1) + b_fc1  #Weights * Inputs 

        tf.summary.histogram("Layer1_Weights",W_fc1) 

        tf.summary.histogram("Layer1_biases",b_fc1) 

    with tf.name_scope('ReLU'): 

        h_fc1 = tf.nn.relu(matmul_fc1)   #ReLU activation 

        #h_fc1=tf.sigmoid(matmul_fc1)     #Sigmoid activation 

         

#Output layer 

    with tf.name_scope('Output_Layer') as scope: 
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        W_fO= 

tf.Variable(tf.random_uniform([L1,Yfeatures]),name="W") #  [Number 

of neurons in preceding layer,output_features])  

        b_fO = 

tf.Variable(tf.random_uniform([Yfeatures]),name="bias") 

        matmul_fco= tf.matmul(h_fc1, W_fO) + b_fO 

        output_layer = matmul_fco  #linear activation 

        tf.summary.histogram("Output_Layer_Weights",W_fO) 

        tf.summary.histogram("Output_Layer_biases",b_fO) 

    with tf.name_scope('Softmax') as scope: 

        output_layer_prob = tf.nn.softmax(output_layer)  #Applying 

softmax activation to find probabilities for each class 

with tf.device('/cpu:0'): 

 

    #Loss/cost function 

    with tf.name_scope('MSE'): 

        mean_squared_error = tf.losses.mean_squared_error(Y, 

output_layer) 

        tf.summary.scalar('mean_squared_error', 

mean_squared_error) 

 

    #Decreasing learning rate 

    with tf.name_scope('Learning_rate'): 

        global_step = tf.Variable(0, trainable=False) 

        starter_learning_rate = learning_rate0 

        learning_rate = 

tf.train.exponential_decay(starter_learning_rate, 

global_step,1000000, 0.96, staircase=True) 

 

    #Training step 

    with tf.name_scope('Optimizer'): 

        #train_step= 

tf.train.GradientDescentOptimizer(learning_rate).minimize(mean_sq

uared_error,global_step=global_step) 

        train_step= 

tf.train.AdamOptimizer(learning_rate).minimize(mean_squared_error

,global_step=global_step) 

        #train_step= 

tf.train.AdagradOptimizer(learning_rate).minimize(mean_squared_er

ror,global_step=global_step) 

    

 #Merge all the summaries 

merged = tf.summary.merge_all() 

     

#Operation to save variables 

saver = tf.train.Saver() 

#tensorboard --

logdir=C:\Users\tareq.hossen\Desktop\load_predict\summaries 

 

#Initialization and session 

init = tf.global_variables_initializer() 

init_local = tf.local_variables_initializer() 
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with tf.Session() as sess: 

    train_writer = 

tf.summary.FileWriter(summaries_dir+"/1/",sess.graph)  #For 

writing summaries 

    sess.run([init,init_local])  #Initializes all variables 

    print("Initial Training 

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train})) 

     

    for i in range(training_epochs): 

        train_size = np.random.randint(low=5,high=batch_size) 

        Xtrain = InputX1train[0:train_size,:] 

        Ytrain = InputY1train[0:train_size,:] 

         

        if i%display_epoch ==0: 

            print("Iteration:",i) 

            print("Batch size:",train_size) 

            print("Training 

loss:",sess.run([mean_squared_error],feed_dict={X:Xtrain,Y:Ytrain

})) 

            print("Validation 

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1v,Y:Inpu

tY1v})) 

            print("Learning rate:",sess.run([learning_rate]))    

        if i%summarize_epoch ==0: 

            summary,_ = 

sess.run([merged,train_step],feed_dict={X:Xtrain,Y:Ytrain}) 

            train_writer.add_summary(summary, i) 

        else: 

            sess.run([train_step],feed_dict={X:Xtrain,Y:Ytrain}) 

             

    #Close summary writer 

    train_writer.close() 

    # Save the variables to disk. 

    save_path = saver.save(sess, model_dir+"Load_predict.ckpt") 

    #/tmp/Load_predict.ckpt 

    print("Model saved in file: %s" % save_path) 

 

    print("Final training 

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train})) 

    print("Final validation 

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1v,Y:Inpu

tY1v})) 

    print("Labels:",sess.run([Y],feed_dict={Y:InputY1train})) 

    

print("Prediction:",sess.run([output_layer],feed_dict={X:InputX1t

rain})) 

with tf.Session() as sess: 

    # Restore variables from disk. 

    saver.restore(sess, model_dir+"Load_predict.ckpt") 

    print("Model restored.") 
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    print("Training 

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train})) 

    

print("Output:",sess.run([output_layer],feed_dict={X:InputX1train

}))  

    print("Validation 

Output:",sess.run([output_layer],feed_dict={X:InputX1v})) 

    print("Validation Acutual:",InputY1v) 

 

 

# Recover model and re-run training session 

with tf.Session() as sess: 

    train_writer = 

tf.summary.FileWriter(summaries_dir+"/2/",sess.graph)  #For 

writing summaries 

    # Restore variables from disk. 

    saver.restore(sess, model_dir+"Load_predict.ckpt") 

    print("Model restored.") 

     

    print("Training 

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train})) 

    for i in range(training_iterations): 

        summary,_ = 

sess.run([merged,train_step],feed_dict={X:InputX1train,Y:InputY1t

rain}) 

        train_writer.add_summary(summary, i) 

         

        if i%display_iterations ==0: 

            print("Iteration:",i) 

            print("Training 

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train})) 

            print("Training 

accuracy:",sess.run([accuracy],feed_dict={X:InputX1train,Y:InputY

1train})) 

            print("Validation 

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1v,Y:Inpu

tY1v})) 

            print("Learning rate:",sess.run([learning_rate]))  

   

    # Save the variables to disk. 

    save_path = saver.save(sess, model_dir+"Load_predict.ckpt") 

    #/tmp/RC_classifier.ckpt 

    print("Model saved in file: %s" % save_path) 

 

    print("Final training 

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1train,Y:

InputY1train})) 
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    print("Final Training 

accuracy:",sess.run([accuracy],feed_dict={X:InputX1train,Y:InputY

1train})) 

    print("Final validation 

loss:",sess.run([mean_squared_error],feed_dict={X:InputX1v,Y:Inpu

tY1v})) 

    

print("Labels:",sess.run([class_labels],feed_dict={Y:InputY1train

})) 

    

print("Prediction:",sess.run([class_pred],feed_dict={X:InputX1tra

in})) 
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#CODE FOR IMPLEMENTION OF RECURRENT NEURAL NETWORK USING 

KERAS WITH TENSOR-FLOW BACKEND: 

 

from __future__ import print_function 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from keras.layers.core import Dense, Activation, Dropout 

from keras.layers.recurrent import LSTM 

from keras.layers.recurrent import GRU 

from keras.layers.recurrent import SimpleRNN 

from keras.models import Sequential 

 

# random seed 

np.random.seed(1234) 

df_raw = pd.read_csv('C:\data\hourly_load_2010.csv', header=None) 

# load raw data 

df_raw_array = df_raw.values 

# daily load 

list_daily_load = [df_raw_array[i,:] for i in range(0, len(df_raw)) 

if i % 24 == 0] 

# hourly load (23 loads for each day) 

list_hourly_load = [df_raw_array[i,1]/100000 for i in range(0, 

len(df_raw)) if i % 24 != 0] 

# the length of the sequnce for predicting the future value 

sequence_length = 23 

 

# define a function to convert a vector of time series into a 2D 

matrix 

def convertSeriesToMatrix(vectorSeries, sequence_length): 

    matrix=[] 

    for i in range(len(vectorSeries)-sequence_length+1): 

        matrix.append(vectorSeries[i:i+sequence_length]) 

    return matrix 

 

# convert the vector to a 2D matrix 

matrix_load = convertSeriesToMatrix(list_hourly_load, 

sequence_length) 

 

# shift all data by mean 

matrix_load = np.array(matrix_load) 

shifted_value = matrix_load.mean() 

matrix_load -= shifted_value 

print ("Data  shape: ", matrix_load.shape) 

 

# split dataset: 90% for training and 10% for testing 

train_row = int(round(0.9 * matrix_load.shape[0])) 

train_set = matrix_load[:train_row, :] 

 

# shuffle the training set (but do not shuffle the test set) 
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np.random.shuffle(train_set) 

# the training set 

X_train = train_set[:, :-1] 

# the last column is the true value to compute the mean-squared-

error loss 

y_train = train_set[:, -1]  

# the test set 

X_test = matrix_load[train_row:, :-1] 

y_test = matrix_load[train_row:, -1] 

 

# the input to LSTM layer needs to have the shape of (number of 

samples, the dimension of each element) 

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 

1)) 

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) 

 

# build the model 

model = Sequential() 

# layer 1: LSTM 

model.add(GRU(input_dim=1, output_dim=150, 

return_sequences=True)) 

model.add(Dropout(0.2)) 

# layer 2: LSTM 

model.add(GRU(output_dim=150, return_sequences=True)) 

model.add(Dropout(0.2)) 

model.add(GRU(output_dim=150, return_sequences=True)) 

model.add(Dropout(0.2)) 

model.add(GRU(output_dim=150, return_sequences=False)) 

model.add(Dropout(0.2)) 

# layer 3: dense 

# linear activation: a(x) = x 

model.add(Dense(output_dim=1, activation='linear')) 

 

# compile the model 

model.compile(loss="mse", optimizer="adam") 

 

# train the model 

model.fit(X_train, y_train, batch_size=512, nb_epoch=1, 

validation_split=0.05, verbose=1) 

 

# evaluate the result 

test_mse = model.evaluate(X_test, y_test, verbose=1) 

test_mape = model.evaluate(X_test, y_test, verbose=1) 

print ('\nThe mean squared error (MSE) on the test data set is %.3f 

over %d test samples.' % (test_mse, len(y_test))) 

print ('\nThe mean absolute percentage error (MAPE) on the test 

data set is %.3f over %d test samples.' % (test_mape*100, 

len(y_test))) 

 

# get the predicted values 

predicted_values = model.predict(X_test) 

num_test_samples = len(predicted_values) 
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predicted_values = np.reshape(predicted_values, 

(num_test_samples,1)) 

 

# plot the results 

fig = plt.figure() 

plt.plot(y_test + shifted_value) 

plt.plot(predicted_values + shifted_value) 

plt.xlabel('Hour') 

plt.ylabel('Electricity load (*1e5)') 

plt.show() 

 

fig = plt.figure() 

ax = fig.add_subplot(111) 

ax.plot(y_test[:150]) 

plt.plot(predicted_values[:150]) 

plt.show() 
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