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ABSTRACT 

 Past researchers have suggested that elevated heat flow once existed in the Williston 

Basin during the Eocene Epoch or younger time frame, based on petroleum maturity indices 

data.  Further, they have argued that those attempting to computationally model the region have 

incorrectly assumed constant heat flow through time.  The present work attempts to address the 

different positions taken by updating geophysical modeling evidence concerning heat flow in the 

Williston Basin in which paleogeothermal conditions are variable over geologic time.  After 

conducting the investigation, present research demonstrates that elevated heat flow may have 

existed in the Williston Basin in the geologic past but did not necessarily have to occur during or 

after the time period suggested.  Furthermore, variable radioactivity in the crystalline basement 

rock demonstrated by the present models can explain the enhanced thermal maturity described 

by past researchers.  Only more detailed study will eventually lead the scientific community to a 

more precise explanation of the cause and time constraints of such paleogeothermal conditions. 
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CHAPTER I 

BACKGROUND 

Vitrinite reflectance (Ro) and ROCK-EVAL (Tmax) hydrocarbon (HC) maturity 

indices (MI), developed in petroleum geochemistry studies, can be used to estimate the 

maximum temperatures to which a rock has been buried, referred to as a hydrocarbon’s 

“rank.”  Prior scientific study of the Williston Basin (Scattolini, 1977; Majorowicz et al., 

1986, 1988; Price et al., 1984; Price 1996) all inferred or directly measured high 

paleogeothermal conditions.  The Scattolini and Majorowicz work used thermal 

conductivity estimates of 4 cal cm-1 deg-1 sec-1, or about 2.4 W m-1 K-1, for the Pierre 

Formation Shale (Combs and Simmons, 1973).  However, the value that should have 

been used was closer to 1.0 to 1.2 W m-1 K-1 (Gosnold, 1990).  Price et al. (1984) 

produced Ro profiles versus depth and Total Organic Carbon (TOC) data suggesting high 

to extreme temperatures once existed in the Williston Basin.  In addition to the argument 

that higher temperatures once existed in the basin, it has also been suggested by Price, 

based upon the same lines evidence, that the higher temperatures must have occurred in 

the Eocene or younger time frame.  It is also acknowledged that the present-day burial 

temperatures are lower than those that are postulated to have once existed.  As a result of 

these observations, some scientists have concluded that the previously existing conditions 

of the Williston Basin, i.e. the elevated temperature and heat flow conditions, are 

responsible for the volume of oil and gas resources existing, when compared to 



2 

reasonably similar basins with hydrocarbon source systems that have not experienced 

those same conditions.  A full discussion of how higher temperatures in the Williston 

Basin would result in a higher volume of HC resources being generated when compared 

to that observed in other similar sedimentary basins goes beyond the scope of the present 

study; those interested can read more in the work of Price and others. 

 However, as evidenced by the work available to date by those attempting to 

computationally model the Williston Basin, assumptions have been made that are not in 

congruence with the findings of other researchers.  Specifically, those modelers have 

assumed that heat flow in the Williston Basin was constant over geologic time (Gosnold 

and Huang, 1987; Gosnold, 1990; Burrus et al., 1995, 1996).  The findings of Burrus et 

al. (1995; 1996), particularly, led to the development of two potential heat flow 

conditions experienced by the Williston Basin in the past, both of which were much 

lower than the expectations of other investigators.  As such, objections have been raised 

about the work of the geophysicists attempting to create these previously simulated 

models.  Concession was made for the fact that, to date, the computational processing 

capability could not match the needed complexity for a model of the system of interest. 

 In summary, the findings of Price et al. (1984; 1996) and Majorowicz et al. (1986; 

1988) are in conflict with the findings of Burrus et al. (1995; 1996) and other previous 

works.  The obvious question arises of what geologic event took place to cause such 

conditions to result.  That particular question has been the source of as much speculation 

as the controversy concerning the resulting elevated heat flow conditions.  While some of 

the speculation will be addressed in the discussion of this project, the ability to answer 

such a question also extends beyond the scope of so simple a study.  More work will be 
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required to better address every parameter requiring study to the appropriate level of 

detail before any definitive statements can be made about such broad and encompassing 

topics.  
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CHAPTER II 

PROJECT INTRODUCTION 

Overview 

 The Williston Basin represents a unique opportunity for scientific investigation 

and economic development.  A large sample base of rocks drilled from every well within 

the North Dakota boundaries is housed by the North Dakota Geological Survey (NDGS) 

due to laws passed during the 1950s.  However, in spite of this enormous resource 

available for study and the impetus to understand the conditions present in a structurally 

simple sedimentary basin, science has still not yet developed a consensus message about 

the Basin’s paleogeothermal conditions, their causes, and the implications thereof.  

Controversy remains in the scientific literature concerning the paleogeothermal and heat 

flow conditions of the Williston Basin.  A full discussion of the implications of higher 

temperatures existing in the Williston Basin and how those conditions came about goes 

beyond the present study.  The intention of this study is to address the previous work 

done by geologists and geophysicists to perform simulation models of the region.  We 

intend to generate geophysical evidence that updates the work of previous researchers 

which addresses the specific grievances of other investigators concerning the assumption 

of constant heat flow through time. 
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Statement of Hypothesis 

It has been argued that previously attempted 1-D temperature models based on 

present day heat flow values do not explain the thermal maturity conditions experienced 

by the Williston Basin because those models have assumed constant heat flow through 

time.  The argument made also contends that a thermal event must have taken place in the 

Eocene Epoch or younger time period.  The present study will perform those suggested 

updates to computational models and combine those data with thermostratigraphy data.  

We hypothesize that our thermostratigraphy analysis and updated models and data will 

indicate that elevated heat flow could have existed in the Williston Basin at some time in 

the geologic past.  However, we further hypothesize that the time frame suggested is 

incorrect and anticipate that our models will show the time frame necessary for a 

successful model could be much older than the Eocene.  If the models are successful, 

they will indicate two things:  1) variable heat flow resulting from a thermal pulse event 

and allowed to equilibrate over time could have resulted in present day heat flow, and 2) 

the variable heat flow could be modeled to begin before the Eocene Epoch, such as the 

Cretaceous, and still result in present day heat flow. 

Study Setting 

The Williston Basin (WB), centered in the western half of North Dakota (ND) 

near the border with Montana, is an intracratonic basin that extends into parts of 

southwestern Saskatchewan, southeastern Manitoba, eastern Montana, and western North 

Dakota (Ricker, 2015).  Figure 1 (Ricker, 2017; modified from Gerhard et al., 1982) 

demonstrates the extent of the Basin as well as some of the major structural features in 

the region as well.  Beyond the extent of the Basin lie the Sioux Uplift, the Punnichy 
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Arch, and the Sweetgrass Arch.  Structurally, the Williston Basin is considered the 

simplest sedimentary basin the world, with little to no major and only minor faulting and 

mostly flat-lying sediments (Price, 1996).  Such conditions are, in fact, one of the major 

reasons why a deep understanding of the temperature and heat flow conditions in the 

Basin and the history thereof are of profound significance.  Within North Dakota are 

found the deepest and most economic elements of the Basin. 

 

Figure 1. Location and outline of the Williston Basin showing major basement structures. 
(used with permission of Faye Ricker, 2017; modified from Gerhard et al., 1982). 
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 Table 1 (modified from Murphy et al., 2009) shows the chronological order of the 

Basin’s sequence stratigraphic column with accompanying ages and approximate 

timespans.  Present day conditions show evidence for sedimentation occurring in the 

region from Cambrian to the Early Tertiary with the Fort Union Group (Price, 1996).  

Further, evidence also shows, in the form of unconformities, the occurrence of 

nondeposition and/or basin uplift and erosion (Price, 1996).  As such, it can be 

problematic to determine exactly what extent of sedimentation took place above the 

Cretaceous Pierre Formation Shale.  Heck et al. (2002) determined that the structure 

shows evidence of initial subsidence during the Ordovician.  A suite of transgressive and 

regressive sequences indicates shallow marine environment occurrence (Poter, Price, and 

McCrossan, 1982).  Generally, the Williston Basin contains 1 to 2 km of clastic rocks 

Cenezoic to Mesozoic in age overlying approximately 2 to 3 km of carbonates Paleozoic 

in age.  Sloss (1963) developed a set of sequence subdivisions that are still mostly used to 

this day when describing the sequence stratigraphy of the area.  Six major unconformities 

occur within the Basin, which would suggest times of regression maxima (Sloss, 1963).  

The six subdivisions are described by Sloss (1963) in the following manner:  the late 

Precambrian Sauk Sequence, the early the early Middle Ordovician Tippecanoe 

sequence, the early Middle Devonian Kaskasia sequence, the "Post Elvira" Mississippian 

Absaroka sequence, the early Middle Jurassic Zuni Sequence, and the Late Paleocene 

Tejas sequence.  The Paleocene to Upper Cretaceous rocks are a series of lignites, 

siltstones, shales, and sandstones.  The Lower Cretaceous rocks are primarily shales with 

sandstones found in the Newcastle and Inyan Kara Formations.  Jurassic to Upper 

Mississippian rocks are comprised of marine-derived shales, siltstones, sandstones, 
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limestones, dolomites, and evaporites.  Dense, thick limestones make up the Middle to 

Lower Mississippian rocks.  Lower Mississippian to Middle-Upper Devonian rocks, 

comprised of shales, sandstones, siltstones, limestones, dolomites, and evaporates.  The 

strata at those particular depths have long been the subject of intense scientific 

investigation and economic development.  Middle-Upper Devonian to Cambrian rocks 

are composed primarily of dolomites and limestones, with lesser amounts of shales, 

sandstones, and evaporites.  Interestingly, the oils from these Lower Paleozoic rocks are 

compositionally different from Bakken shale oils, but such is not considered further in the 

current study (Price, 1996). 
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Table 1.  Formations of the North Dakota stratigraphic column with average thermal 
conductivity measurements (modified from Murphy, 2009; Gosnold, et al., 2010). 
 

 

 

Age Years	(mya) Formation Thermal	Conductivities
Quaternary 2.6 Surface N/A
Tertiary Brule	Fm 1.2
Tertiary Chadron	Fm 1
Tertiary Golden	Valley	Fm 1.1
Tertiary Tongue	R.	Fm 1.1
Tertiary Slope	Fm. 1.1
Tertiary Cannonball	Fm. 1.1
Tertiary 65 Ludlow	Fm 1.1
Cretaceous Hell	Creek	Fm 1.1
Cretaceous Fox	hills	Fm 1.2
Cretaceous Pierre	Fm 1.1
Cretaceous Niobrara	Fm 1.3
Cretaceous Carlille	Fm 1.2
Cretaceous Greenhorn	Fm 1.2
Cretaceous Belle	fourche	Fm 1.2
Cretaceous Mowry	Fm 1.2
Cretaceous Newcastle	Fm 1.3
Cretaceous Skull	Creek	Fm 1.2
Cretaceous 145 Inyan	Kara	Fm 1.6
Jurassic Swift	Fm 1.2
Jurassic Rierdon	Fm 1.6
Jurassic 201.6 Piper	Fm 1.6
Triassic/Permian 251 Spearfish	Fm 1.6
Permian Minnekahta	Fm 2.5
Permian 	Opeche	Fm 1.2
Permian 299 Broom	Creek	Fm 2.2
Pennsylvanian Amsden	Fm 4
Pennsylvanian 318 	Tyler	Fm 2.7
Mississippian Otter	Fm 2.7
Mississippian Kibbey	Fm 2.7
Mississippian Charles	Fm 2.49
Mississippian Mission	Canyon	Fm 2.49
Mississippian Lodgepole	Fm 2.49
Mississippian/Devonian 359 Bakken	Fm 1.1
Devonian Three	Forks	Fm 1.3
Devonian Bird	Bear	Fm 3.13
Devonian Duperow	Fm 3.19
Devonian Souris	R.	Fm 2.92
Devonian Dawson	Bay	Fm 2.75
Devonian Prairie	Fm 4
Devonian 416 Winnepegosis	Fm 2.99
Silurian Interlake	Fm 3.77
Silurian/Ordovician 444 Stonewall	Fm 3.89
Ordovician Stony	Mountain	Fm 3.79
Ordovician Red	River	Fm 3.28
Ordovician Winnipeg	Fm 4.07
Ordovician Erosion 3.5
Ordovician/Cambrian 488;	542 Deadwood	Fm 3.46
Precambrian 4600 N/A N/A
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Thermal Energy Generation and Flow in the Earth’s Crust 

Heat transfer is a branch of science and engineering concerned with the study and 

use of the generation and exchange of thermal energy, or heat, within and between 

physical systems.  One example of these principles commonly discussed is pictured as a 

person holding a pot of water, via a handle, over a fire.  The fire produces thermal 

radiation energy, which is transferred to the pot.  The water contained within the pot 

experiences convection as boiling occurs; thus, heat is transferred.  Finally, conduction 

takes place through the pot itself, as some of the radiated heat is transferred through the 

solid material of the pot, eventually reaching the handle that the person is holding.  The 

major mechanisms of heat transfer within the Earth are thermal conduction, thermal 

convection/advection, and thermal radiation.  These mechanisms often occur 

simultaneously throughout any physical system in question.   

Heat contained in the Earth develops from both internal and external sources.  

While some internal heat is the result of “original heat,” or heat trapped during Earth’s 

early formation stages, heat is derived primarily via convection and conduction of the 

mantle (approximately 60% contribution) and decay of unstable radiogenic isotopes 

232Th, 235U and 238U, and 40K (approximately 40% contribution) (Pollack, 1982; 

Beardsmore and Cull, 2001).  Early studies in radiogenic heat generation involved an 

attempt to determine a means of calculating its contribution to heat flow, which led 

scientists to develop the concept of “heat flow provinces” (Roy, Decker, Blackwell, and 

Birch, 1968).  Heat flow provinces are delineated areas that contain relatively uniform 

lower crust and upper mantle heat flow and consistent thickness of the radiogenic heat 

generation layer.  These areas are the result of a common tectonothermal geologic 
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history.  For instance, the Northern Great Plains, where the Williston Basin is located, is 

an area that is assigned to the “Eastern US” heat flow province (Roy, Blackwell, and 

Birch, 1968).  The work of both of these studies led to the understanding of a linear 

relationship between heat generation and heat flow (Lachenbruch, 1968; Roy, Blackwell, 

and Birch, 1968): 

                                                           𝑄 = 𝑞 +	𝐴5𝐷                               Equation 1. 

where: 
𝑄 is surface heat flow (W·m-2) 
𝑞 is a constant component of heat flow from the mantle (W·m-2) 
𝐴7 is radioactive heat generation or production (µW m-3) 
𝐷 is thickness of the radiogenic heat producing layer (m) 
 
Any further discussion of the Earth’s heat generation mechanisms is beyond the scope of 

the present work and better left to other such studies (see Ricker, 2015). 

The Earth’s internal surface (crustal) temperature increases with depth at a rate of 

approximately 30°C per kilometer (Lund et al., 2008).  "Terrestrial heat flow is defined as 

the quantity of heat escaping per unit time from the Earth's interior across each unit area 

of the Earth's solid surface (Pollack, 1982)."  Heat advection usually occurs in localized 

areas of the crust where significant fluid flow allows for such a transport process, either 

through porous and permeable lithologies or via secondary structural deformation 

processes such as faults.  While heat is moved through much of the earth by convection 

(i.e. in the mantle) (Beardsmore and Cull, 2001), heat conduction is the primary heat 

transport process at work in the Earth’s crust (Clauser, 2009). 

Thermal Conduction 

Heat conduction is the transfer of internal energy by progressive microscopic 

vibration and collision of particles within a body or through a boundary between two 
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bodies (Cengel and Ghajar, 2015).  The rate of heat transfer via conduction is a function 

of the temperature difference, or gradient, between the two bodies and the properties of 

the conductive medium through which the heat is transferred.  This principle is 

summarized by Fourier’s Law of Heat Conduction: 

                                                           𝑞 = 	 89
8:
	𝜆                                Equation 2. 

where: 
 𝑞 is the local heat flux density (W·m-2) 
89
8:

 is the temperature gradient (K·m-1) 
𝑘 or 𝜆 is the material’s conductivity (W·m-1·K-1) 
 
The present study makes use of the 𝜆 convention.  Thermal conduction is, thus, a form of 

diffusion, where heat spontaneously flows from hotter to colder regions, as described by 

the Second Law of Thermodynamics (Cengel and Ghajar, 2015). 

Steady State Thermal Conduction 

Steady state conduction is achieved when the temperature differences driving 

conduction are constant.  As the system is allowed proceed with the thermal 

equilibration, the spatial distribution of temperatures achieved, or temperature field, does 

not change.  The amount of heat entering any defined space of the system equals to 

amount of heat exiting the same space.  Mathematically, we say all partial derivatives of 

temperature at any point with respect to time must be zero, irrespective of partial 

derivatives with respect to space (Cengel and Ghajar, 2015). 

With respect to Fourier’s Law, steady state conduction can be thought of in two 

equivalent forms: the integral form, in which the system is considered as a whole, and the 

differential form, in which heat flow of the system can be considered locally (Cengel and 

Ghajar, 2015).  In the differential form, steady state heat conduction is described as in the 
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above equation and heat flow is occasionally referred to as local heat flux density, or 
=
→ 

in other disciplines of science and engineering.  Thermal conductivity is typically treated 

as a constant, although this is not always true in natural conditions.  For instance, the 

assigned thermal conductivity values typically vary with orientation in anisotropic 

materials (Dr. I-Hsuan Ho, personal communications) and spatially in non-uniform 

materials (Crowell, J, 2015). 

Factors of Elevated Geothermal Gradients and Heat Flow 

Various phenomena, such as crustal thickness, water advection, and localized 

radioactivity can affect regional heat flow values (Lachenbruch, 1970).  Heat production 

of plutonic rocks has been demonstrated to exponentially decrease with crustal depth 

(Lachenbruch, 1970).  Blackwell (1971) also argues "local variability of heat flow in 

crystalline terrain is due primarily to lateral variations in upper crustal heat production,” 

causing a linear relationship between heat flow and heat production to exist in plutonic 

rocks.  This relationship is demonstrated in Equation 1.  Thinner crusts tend to yield a 

higher heat flow, and a thermal boundary layer develops as crust ages and thickens 

(Crough, 1976).  Sclater et al. (1980) also detail how geologic history affects regional 

heat flow by arguing that surface heat flow is influenced by distribution of heat-

producing elements, as well as the last orogenic event in the area and possible erosion 

that occurred.  According to Morgan (1984), quantity and distribution of heat producing 

elements in the lithosphere are the main factor controlling temperature distribution and 

surface heat flow.  Furthermore, variations in lithospheric thickness also directly impact 

thermal regime (Morgan and Gosnold, 1989). 
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CHAPTER III 
 

METHODS 
 

Overview 

 In this chapter, an explanation for measuring temperature at depth is presented 

first.  Following an explanation of thermostratigraphy data generation, a brief explanation 

is provided for the use of the T-z projection plots for determination of geothermal 

gradient.  This chapter then concludes with the methods used to create the heat flow 

simulation models under steady-state conditions necessary for the present study. 

Thermostratigraphy 

A number of scientists have previously used thermostratigraphy in order to model 

geothermal conditions present in sedimentary basins (Lachenbruch; 1970; Gosnold, 1984, 

1991, 1999; Gosnold et al., 2010; Crowell and Gosnold, 2011; Crowell et al., 2011; 

Gosnold et al., 2012).  The studies conducted using thermostratigraphy demonstrate the 

constraining power of this methodology.  Initially, Lachenbruch (1970) was concerned 

with the linear heat flow relationship, where crustal temperature and heat production are 

concerned.  In 2011, Gosnold et al. used this methodology to argue that present day heat 

flow is underestimated in regions near the Pleistocene ice margin, due to a transient 

climate signal that disturbs the geothermal gradient.  Most importantly, the correlation of 

calculated projections to the correctly measured data of the same area shows that 



15 

thermostratigraphy is a methodology for determining the thermal structure of a region 

when certain types of data are available. 

Previously, Fourier’s Law of Heat Conduction has been discussed (Equation 2) 

which makes it possible to determine a value of heat flow, given the geothermal gradient 

and thermal conductivity are known.  If the expression is rewritten as 89
8:
= 	 =

?
 and solved 

for temperature, T, this simple rearrangement leads to the basic expression of 

thermostratigraphy.  The temperature at any depth, T(z), can be calculated (Gosnold, 

1984, 1991, 1999, 2012) by: 

                                               𝑇: = 𝑇5 +	
=:A
lA

                                Equation 3. 

where: 
𝑇7 is surface temperature (K) 
𝑞 is surface heat flow (W·m-2) 
𝑧C and lC are the thicknesses and thermal conductivities, respectively, of the ith 

Stratum (m; W·m-1·K-1) 
 

 However, in order to create a meaningful thermal profile that accounts for all 

depths and/or strata, it is important that the equation contain another term.  Thus, the 

equation can be slightly modified with a Sigma notation in order to indicate that the 

calculation must be iterated across all n preceding depth intervals: 

 

                                                           𝑇: = 𝑇5 +	∑
=:A
lA

D
C/E                       Equation 4. 

 

The resulting dataset is plotted as a temperature versus depth curve, or T-z plot, thus 

creating the desired thermal profile.  The equation has been referred to as TSTRAT by 

Gosnold (2012). 
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 It is possible to then use the resulting T-z plot profile in order to determine 

geothermal gradient at depth.  The geothermal gradient is simply the change in 

temperature, dT, divided by the change in depth, dz.  Applying the equation of a line to 

the profile will provide this information, and a simple hand calculation for any 

temperature-depth interval can do the same. 

 Well data gathered from the NDIC database of oil & gas industry drilling 

operations in North Dakota (Figures 2 and 3), data used in previous work, can be used to 

perform the TSTRAT analysis needed for this study.  NDGS wells #25, #527, #607, 

#2010, #2615, #6464, #6616, #7020, and #7783 were chosen for the present study, as 

these are the same wells used in previous study of the topics central to this issue (Price, 

1996). 

 

Figure 2. Location and outline of the study area within western North Dakota.  Map 
created using PETRA software. 
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Figure 3. Locations of wells used in the present study.  Map created using PETRA 
software. 
 
To begin, the process involves the simple input of formation top data into Microsoft 

Excel.  The depth information is then used to compute the remaining formation tops, 

employing a technique that involves extrapolation and any necessary depth adjustment.  

Once all formation tops, known and computed, are gathered, the thicknesses of each 

formation are known through a simple subtraction calculation.  After the complete 
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formation thickness dataset is determined, the TSTRAT equation is applied using 

previously determined thermal conductivity values for each formation, regional heat flow 

values obtained from previously published scientific literature, and surface temperatures 

in order to generate the desired T-z profiles.  For this study, the heat flow values were 

obtained from the recent results of Mark McDonald (2015), seen in Figure 4. 

 

Figure 4.  Mean heat flow values occurring within the area of study (used with 
permission of the NDGS; McDonald, 2015). 
 

Steady State Conductive Heat Flow Modeling 

In any heat flow modeling software solution, a high degree of control is 

administered by the user because individual values can be altered as needed.  Cengel and 

Ghajar (2015) argue that people are unlikely to write their own programs to solve such 

problems and should, instead, rely on more professional software packages that are “well-
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established,” meaning tested by many users.  They further argue that others are less likely 

to be skeptical of results obtained from such commercial software.  Despite the fact that a 

number of other software solutions exist to accomplish steady-state heat flow modeling, 

Dr. William Gosnold’s Finite Difference Heat Flow Simulation (v. 2.5.4), or “ARC,” 

software offers the advantages of being developed by the researchers performing the 

present study and is, thus, highly modifiable for the user’s needs.  The software was 

written in originally Fortran and converted to C++ programming language by David 

Apostal of the Department of Computer Science at the University of North Dakota.  

Based on another software solution developed by Charles Brott (1978), ARC was 

developed in order to perform finite difference determination of steady-state heat flow by 

calculating temperature and heat generation for a given system subdivided into cells and 

heat transfer to and from surrounding cells (Crowell, J, 2015).  The ARC modeling 

solution helps address questions relating to geothermal conditions of crustal evolution 

over some duration of geologic time, but others have demonstrated its usefulness for 

other systems requiring a modeling scheme as well, such as Crowell 2015.  Indeed, ARC 

allows for ease in modeling numerous heat transfer processes. 

In order to perform the analysis, a system is modeled using ASCII format input 

codes and desired values of system parameters in a Microsoft Excel file.  Thermal 

conductivity, radiogenic heat production, basal heat flow, heat capacity of rock and fluid, 

density, advection constraints, starting temperatures, velocity, direction and cell size and 

model dimensions can each be specified in the desired system model.  The model file is 

read, interpreted, and executed by the ARC software, demonstrated in Figure 5.  The 

software uses the mathematic principles it is written to perform to carry out a step-wise 
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determination of heat flow throughout the system, approximately once every two 

simulated minutes, over a specified period of model duration.  Post-simulation results are 

saved into a data file that can be visualized and reported using Golden Software’s Surfer 

and Voxler software application packages. 

 

Figure 5.  Computer screen capture of an ARC model simulation in progress. 
 

A model of a transect of the Williston Basin was developed for this study.  We 

developed a model that shows a 3650 km thick x 400 km wide section of the Earth, which 

accounts for the uppermost crust to a portion of the outer core.  The Earth’s uppermost 6 

km of crust was modeled using 8 harmonic mean thermal conductivity values calculated 

using data previously developed for NDGS well #2894.  Harmonic mean thermal 

conductivity values were used in order to simplify the model creation process.  The 

system was designed to use a base heat flow value of 27 mW m-2 entering the crust from 

the mantle, in congruence with previous study determinations of basement heat flow 

contribution values.  One variable heat flow zone, a 20 km thick x 200 km wide block 
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located 20 km below the surface, was established to simulate a magma lens intrusion 

resulting from a rifting event, such as that observed in the Rio Grande Rift event.  The 

simulation was designed to begin with present day heat flow conditions, as though the 

same conditions existing today also existed at the time period beginning each model.  The 

model developed was set to run for 35 my and 65 my, roughly correlating the beginning 

of the Eocene Epoch and the end of the Cretaceous Period, respectively. 

Once the model is generated in Excel, the ARC software is initiated and the 

prompts followed.  The software prompts for the user to input choice of whether or not to 

visualize the simulation, model file name, a file name(s) to use for results reporting, 

desired iteration time-steps, simulation duration, and screen update frequency. 

Any model of steady state heat conduction that results in a discrete, numerical 

formulation can be performed by multiple methods, such as finite difference, finite 

element, boundary element, and energy balance (Cengel and Ghajar, 2015).  The energy 

balance method and the finite difference method both result in the same set of algebraic 

equations being used.  In the finite difference method, differential equations are replaced 

with algebraic equations, thus replacing derivatives with differences (Cengel and Ghajar, 

2015).  The ability to establish and maintain boundary conditions before and during 

model simulation and resulting temperature values being established for discrete points 

for all selected points in the system ensures the veracity of the model. 
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CHAPTER IV 

RESULTS 

Overview 

 The result of developing T-z plots using the principles of thermostratigraphy is 

that a demonstration of geothermal gradients and paleogeothermal conditions in Williston 

Basin can be achieved.  The results also show the differences in the modeled basin when 

run for varying time durations. 

Thermostratigraphy  

 The results generated from applying thermostratigraphy to formation top data of 

NDGS wells #25, #527, #607, #2010, #2615, #6464, #6616, #7020, and #7783 are shown 

in the following figures.  The dots observed in each plot represent the temperature data 

calculated at each formation top.  After the temperature data was generated, it was plotted 

using depth data.  A simple fitting line was then applied, in order to more easily visualize 

the overall trend of the temperature profile. 
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Figure 6.  Plot of computed temperatures of NDGS #25.  Computed temperatures are 
from Eq. 4 and are shown with depth information in Table 2 of Appendix A. 
 

 
 
Figure 7.  Plot of computed temperatures of NDGS #527.  Computed temperatures are 
from Eq. 4 and are shown with depth information in Table 3 of Appendix A. 
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Figure 8.  Plot of computed temperatures of NDGS #607.  Computed temperatures are 
from Eq. 4 and are shown with depth information in Table 4 of Appendix A. 
 

 
 
Figure 9.  Plot of computed temperatures of NDGS #2010.  Computed temperatures are 
from Eq. 4 and are shown with depth information in Table 5 of Appendix A. 
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Figure 10.  Plot of computed temperatures of NDGS #2615.  Computed temperatures are 
from Eq. 4 and are shown with depth information in Table 6 of Appendix A. 
 

 
 
Figure 11.  Plot of computed temperatures of NDGS #6464.  Computed temperatures are 
from Eq. 4 and are shown with depth information in Table 7 of Appendix A. 
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Figure 12.  Plot of computed temperatures of NDGS #6616.  Computed temperatures are 
from Eq. 4 and are shown with depth information in Table 8 of Appendix A. 
 

 
 
Figure 13.  Plot of computed temperatures of NDGS #7020.  Computed temperatures are 
from Eq. 4 and are shown with depth information in Table 9 of Appendix A. 
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Figure 14.  Plot of computed temperatures of NDGS #7783.  Computed temperatures are 
from Eq. 4 and are shown with depth information in Table 10 of Appendix A. 
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Figure 15.  Plot of computed temperatures of all well used in this study.  Computed 
temperatures are from Eq. 4 and are shown with depth information in Tables 2 - 10 of 
Appendix A. 
 
 The data generated in the present study highlight the same interesting geothermal 

feature that has been seen in TSTRAT and equilibrium well log profiles of numerous 

previous studies.  The Williston Basin, generally, has a bimodal composition, with a 1 to 

2 km thick layer of clastic rocks Cenezoic and Mesozoic in age overlying 2 to 3 km of 

carbonates Paleozoic in age (Gosnold, 2012).  That feature is observable in the present 

datasets when, in each dataset at approximately 2km in depth, the gradient shown 

changes from a steep gradient to a shallow gradient.  This marked change makes clear the 
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profiles do not do so.  This would potentially indicate that heat flow input into the crust 

from the basement rocks must be variable across the basin or that the heat flow within the 

basin itself must be variable.  While this dataset does not conclusively indicate that the 

heat flow throughout the basin has been variable in the past, the data indeed mirrors the 

findings of other researchers, such as Scattolini (1977), Majorowicz (1986, 1988), and 

Price (1984). 

Steady State Conductive Heat Flow Modeling 

Finite difference heat flow simulation results of steady state conductive heat flow 

modeling are shown in the following figures.  The first figure shows the results of a 

simulation designed to run for a duration of 35 my is displayed first, followed by a figure 

showing the results of the same simulation run for a duration of 65 my.  Thermal 

conductivity, based on harmonic mean values calculated from NDGS well #2894 and 

others, is the vertical change parameter, and aerial distance in km is the horizontal change 

parameter. 

A few simple verification calculations were done in order to briefly verify that the 

results obtained made logical sense in comparison to what is known about sedimentary 

basin geothermal conditions.  For instance, the models run gave an output of values for 

basement heat flow that are consistent with those values demonstrated in previous 

scientific investigation. 

The results from both simulations were contoured in order to highlight the 

equilibration of temperature and dissipation of the thermal event throughout the system 

modeled.  Those results are shown in the following figure. 
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Figure 16.  Results of heat flow simulation model run for 35 my duration.  A 3650 km 
deep x 400 km wide section representing a slice through the Williston Basin was 
modeled. 
 

 In order to better visualize the crustal heating event that was simulated in the two 

model systems reported, a plot was generated in order to mathematically demonstrate the 

evolution of the temperature over time. 
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Figure 17.  Plot of simulated thermal event evolution taking place in heat flow models. 
 
 Two plots were also generated in order to better demonstrate any difference that 
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Figure 18.  Plot of surface heat flow change over geologic time in the 35 my heat flow 
model. 
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Figure 19.  Plot of surface heat flow change over geologic time in the 65 my heat flow 
model. 
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Cretaceous through the Tertiary times and accumulated approximately 700 m of 

sediments from the Eocene through the Tertiary.  There was no uplift, faulting, and 

erosion of the magnitude necessary, and there is no remnant thermal signal that might 

exist from whole crustal heating.  As such, other geologic processes may account for the 

variable heat flow throughout the Basin.  
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CHAPTER IV 

 
DISCUSSION 

Thermostratigraphy 

 A significant amount of TSTRAT data has been collected for the North Dakota 

section of the Williston Basin to date.  However, despite the amount of data that has been 

generated thus far, there still exists areas of the North Dakota map for which we have 

very little to no information concerning temperature and heat flow.  It would be highly 

desirable for researchers to continue collecting such data for any existing wells not yet 

studied as well as new wells that are entered into the NDGS database.  A systematic 

study of thermal conductivity measurements of rock samples stored in the Wilson Laird 

Core and Sample Library, temperature logs for wells located throughout the Williston 

Basin, and thermal modeling analysis with high precision and detail of several possible 

scenarios for basin evolution would be important aspects of such an investigation.  By 

generating these datasets, it may be possible for the State of North Dakota to begin filling 

the gaps in knowledge of regional heat flow and maps created, such as those in 

McDonald (2015), that display such data.  As the Williston Basin is one of the simpler 

sedimentary basin systems found anywhere in the world, the ramifications of having 

extensive temperature, heat flow, kinetics, and thermal maturation datasets on such an 

area, and the resulting insights that might be made from such study, would surely be of 

value to the global community and a major step forward for North Dakota.  The effective 
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extent of drilling operations in the Williston Basin, known in the industry as the “magic 

line,” likely results not from any major structural constraining feature but, instead, from 

the extent of temperature and heat flow conditions.  The results of these combined studies 

could possibly provide answers to many important temperature, heat flow, and thermal 

maturation questions raised but not yet satisfied. 

Collecting vitrinite reflectance data for the shallow upper crust coals of the region 

may also help in constraint of the model system developed in this study.  Since the 

maturation of vitrinite particles in sedimentary rocks is a kinetic process, the study of 

values obtained in such experiments can be useful in determinations involving 

temperature.  Also, as so little data exists about the sediments above the Pierre Formation 

Shale, obtaining %Ro measurements at these depths could be helpful to make 

determinations about previously speculated erosion amounts at those depths. 

The Time-Temperature Index (TTI) approach, based on the Lopatin (1970) 

method, may provide another valuable dataset to help constrain the temperature models.  

The temperature history of source rock influences the chemical reactions that generate oil 

and gas.  The TTI used by Nordeng (2008) helped determine the oil generation capacity 

of source rock for a particular interval under given time-temperature limits.  However, 

the method might be reworked in order to provide the information sought in this study. 

Steady State Heat Flow Conduction Modeling 
 

 One useful exercise to add more data for study on the present topic would be to 

create acutely detailed models with respect to thicknesses and thermal conductivity 

values within the Basin in order to provide the foundation to incorporate previously 

suggested erosion amounts that are speculated to have occurred at each well.  Price 
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(1996) developed a set of values that were determined from vitrinite reflectance data, and 

those values could be used to construct stratigraphic columns for each wellsite that could 

be modeled under the same conditions imposed in this study.  As the elevated heat flow 

phenomenon of the Williston Basin is suspected to be basin-wide, the same elevated 

condition could be imposed on each wellsite model.  Temperature conditions present in 

the resulting heat flow models could, then, be extrapolated and compared with the results 

of thermostratigraphy projections of temperature at depth in order to cross-validate 

datasets and present a compelling argument on the topic. 
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CHAPTER VI 

CONCLUSIONS 

 Thermostratigraphy and updated simulation model data indicates that elevated 

heat flow may have existed in the Williston Basin at some time in the geologic past.  

However, there is no present or existing evidence that elevated heat flow in the Williston 

Basin was the result of rifting and uplifting in the Eocene Epoch or younger time frame.  

The data generated also indicates that the time frame necessary for an event that could 

have elevated the thermal regime of the Williston Basin and subsequently dissipated to 

allow for basin cooling could be much older than the Eocene Epoch.  Only more 

dedicated and detailed study of numerous lines of geologic and geophysical evidence will 

allow for a rigorous explanation of the processes involved in these elevated heat flow 

conditions once existing throughout the Basin.  As the Williston Basin is one of the 

simpler sedimentary basin systems found anywhere in the world, the ramifications of 

having extensive temperature, heat flow, kinetics, and thermal maturation datasets on 

such an area, and the resulting insights that might be made from such study, would surely 

be of value to the global research community and a major step forward for North Dakota. 
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Appendix A 
 

Thermostratigraphy Datasets 
 
Table 2. TSTRAT calculations for NDGS #25.  Heat flow used for calculations is 62 
mW m-2 (McDonald, 2015). 
 

 

Age Formation Temperature	(°C) Depth	(m)
Tertiary Brule	Fm 10 16.5133387
Tertiary Chadron	Fm 10.60142843 28.15388893
Tertiary Golden	Valley	Fm 12.64908243 61.18056633
Tertiary Tongue	R.	Fm 18.69134013 168.3819126
Tertiary Slope	Fm. 19.9425147 190.5801712
Tertiary Cannonball	Fm. 21.13265637 211.6955879
Tertiary Ludlow	Fm 22.52115498 236.3302407
Cretaceous Hell	Creek	Fm 24.06223586 263.6719982
Cretaceous Fox	hills	Fm 25.9237395 296.6986756
Cretaceous Pierre	Fm 34.37407708 460.2535967
Cretaceous Niobrara	Fm 46.98126715 683.9295494
Cretaceous Carlille	Fm 64.1056083 1042.988316
Cretaceous Greenhorn	Fm 71.100387 1178.371129
Cretaceous Belle	fourche	Fm 73.96838718 1233.88081
Cretaceous Mowry	Fm 76.40752753 1281.089978
Cretaceous Newcastle	Fm 78.502037 1321.628871
Cretaceous Skull	Creek	Fm 79.0870497 1333.895266
Cretaceous Inyan	Kara	Fm 81.90213988 1388.380883
Jurassic Swift	Fm 87.08723193 1522.18971
Jurassic Rierdon	Fm 93.73296874 1650.816874
Jurassic Piper	Fm 96.97720868 1734.539195
Triassic/Permian Spearfish	Fm 100.8668995 1834.918313
Permian Minnekahta	Fm 105.3905675 1951.658132
Permian 	Opeche	Fm 105.4661588 1954.706169
Permian Broom	Creek	Fm 108.000057 2003.74936
Pennsylvanian Amsden	Fm 109.6610333 2062.68723
Pennsylvanian 	Tyler	Fm 110.2078219 2097.963911
Mississippian Otter	Fm 111.8666314 2170.20239
Mississippian Kibbey	Fm 114.4843308 2284.198976
Mississippian Charles	Fm 115.5482086 2330.529139
Mississippian Mission	Canyon	Fm 125.3812848 2725.438164
Mississippian Lodgepole	Fm 130.3961536 2926.841767
Mississippian/Devonian Bakken	Fm 132.0022227 2991.343575
Devonian Three	Forks	Fm 133.7373871 3022.128749
Devonian Bird	Bear	Fm 136.5720615 3081.565472
Devonian Duperow	Fm 137.1033743 3108.388198
Devonian Souris	R.	Fm 139.7040474 3242.197025
Devonian Dawson	Bay	Fm 141.4061465 3322.3604
Devonian Prairie	Fm 142.3269862 3363.204097
Devonian Winnepegosis	Fm 143.6214875 3446.720312
Silurian Interlake	Fm 145.4859891 3536.637406

NDGS	#25
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Table 3. TSTRAT calculations for NDGS #527.  Heat flow used for calculations	is 56 
mW m-2 (McDonald, 2015). 
 

 

Age Formation Temperature	(°C) Depth	(m)
Tertiary Brule	Fm 10 16.5133387
Tertiary Chadron	Fm 10.54322568 28.15388893
Tertiary Golden	Valley	Fm 12.39271961 61.18056633
Tertiary Tongue	R.	Fm 17.8502427 168.3819126
Tertiary Slope	Fm. 18.98033586 190.5801712
Tertiary Cannonball	Fm. 20.05530253 211.6955879
Tertiary Ludlow	Fm 21.30943031 236.3302407
Cretaceous Hell	Creek	Fm 22.70137433 263.6719982
Cretaceous Fox	hills	Fm 24.38273245 296.6986756
Cretaceous Pierre	Fm 41.46014628 662.6432577
Cretaceous Niobrara	Fm 54.17159647 912.3324579
Cretaceous Carlille	Fm 71.43755412 1313.149332
Cretaceous Greenhorn	Fm 78.49017889 1464.277006
Cretaceous Belle	fourche	Fm 81.88774473 1537.081988
Cretaceous Mowry	Fm 84.77726334 1599.000244
Cretaceous Newcastle	Fm 85.63955303 1617.47788
Cretaceous Skull	Creek	Fm 86.38360232 1634.750453
Cretaceous Inyan	Kara	Fm 89.96397906 1711.472812
Jurassic Swift	Fm 93.6018113 1815.410875
Jurassic Rierdon	Fm 102.2358843 2000.426725
Jurassic Piper	Fm 104.8217119 2074.307515
Triassic/Permian Spearfish	Fm 107.9219974 2162.887101
Permian Minnekahta	Fm 112.3599394 2289.685443
Permian 	Opeche	Fm 112.6398711 2302.182395
Permian Broom	Creek	Fm 117.0778131 2397.281151
Pennsylvanian Amsden	Fm 118.4902044 2452.767952
Pennsylvanian 	Tyler	Fm 118.9551595 2485.97903
Mississippian Otter	Fm 120.7735464 2573.651255
Mississippian Kibbey	Fm 123.0390776 2682.882224
Mississippian Charles	Fm 123.9114935 2724.945135
Mississippian Mission	Canyon	Fm 130.2898428 3008.553882
Mississippian Lodgepole	Fm 133.542801 3153.194343
Mississippian/Devonian Bakken	Fm 139.3764257 3412.582297
Devonian Three	Forks	Fm 140.8040154 3440.624238
Devonian Bird	Bear	Fm 143.9552168 3513.777128
Devonian Duperow	Fm 144.4569256 3541.819069

NDGS	#527
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Table 4. TSTRAT calculations for NDGS #607.  Heat flow used for calculations	is 52 
mW m-2 (McDonald, 2015). 
 

 

Age Formation Temperature	(°C) Depth	(m)
Tertiary Brule	Fm 10 16.5133387
Tertiary Chadron	Fm 10.50442384 28.15388893
Tertiary Golden	Valley	Fm 12.22181107 61.18056633
Tertiary Tongue	R.	Fm 17.28951108 168.3819126
Tertiary Slope	Fm. 18.3388833 190.5801712
Tertiary Cannonball	Fm. 19.33706663 211.6955879
Tertiary Ludlow	Fm 20.50161386 236.3302407
Cretaceous Hell	Creek	Fm 21.7941333 263.6719982
Cretaceous Fox	hills	Fm 23.35539442 296.6986756
Cretaceous Pierre	Fm 34.35238987 550.4754938
Cretaceous Niobrara	Fm 46.15587933 800.1646939
Cretaceous Carlille	Fm 62.18855429 1200.981568
Cretaceous Greenhorn	Fm 66.51844917 1300.902219
Cretaceous Belle	fourche	Fm 69.67333174 1373.707201
Cretaceous Mowry	Fm 72.30362352 1434.406242
Cretaceous Newcastle	Fm 73.10432108 1452.883878
Cretaceous Skull	Creek	Fm 73.795224 1470.156451
Cretaceous Inyan	Kara	Fm 76.72361472 1537.734699
Jurassic Swift	Fm 80.56718946 1655.998537
Jurassic Rierdon	Fm 86.69577598 1797.427457
Jurassic Piper	Fm 89.09690165 1871.308247
Triassic/Permian Spearfish	Fm 92.10451775 1963.85028
Permian Minnekahta	Fm 94.74945192 2045.23287
Permian 	Opeche	Fm 95.0030486 2057.425018
Permian Broom	Creek	Fm 101.2373004 2201.292368
Pennsylvanian Amsden	Fm 102.5488066 2256.779168
Pennsylvanian 	Tyler	Fm 103.6581293 2342.11168
Mississippian Otter	Fm 104.6149871 2391.794684
Mississippian Kibbey	Fm 106.4817405 2488.722263
Mississippian Charles	Fm 107.6616695 2549.987808
Mississippian Mission	Canyon	Fm 115.8098613 2940.160839
Mississippian Lodgepole	Fm 119.9654391 3139.149085
Mississippian/Devonian Bakken	Fm 121.2963105 3202.877347
Devonian Three	Forks	Fm 122.6219295 3230.919288
Devonian Bird	Bear	Fm 125.621198 3305.901
Devonian Duperow	Fm 126.1478365 3337.600585

NDGS	#607
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Table 5. TSTRAT calculations for NDGS #2010.  Heat flow used for calculations	is 48 
mW m-2 (McDonald, 2015). 
 

 

Age Formation Temperature	(°C) Depth	(m)
Tertiary Brule	Fm 10 16.5133387
Tertiary Chadron	Fm 10.46562201 28.15388893
Tertiary Golden	Valley	Fm 12.05090252 61.18056633
Tertiary Tongue	R.	Fm 16.72877945 168.3819126
Tertiary Slope	Fm. 17.69743074 190.5801712
Tertiary Cannonball	Fm. 18.61883074 211.6955879
Tertiary Ludlow	Fm 19.69379741 236.3302407
Cretaceous Hell	Creek	Fm 20.88689228 263.6719982
Cretaceous Fox	hills	Fm 22.32805639 296.6986756
Cretaceous Pierre	Fm 21.79880724 283.467447
Cretaceous Niobrara	Fm 32.69433597 533.1566471
Cretaceous Carlille	Fm 47.49372824 933.9735211
Cretaceous Greenhorn	Fm 52.85607489 1068.032187
Cretaceous Belle	fourche	Fm 54.3780614 1106.08185
Cretaceous Mowry	Fm 55.67246114 1138.441843
Cretaceous Newcastle	Fm 57.73293419 1189.95367
Cretaceous Skull	Creek	Fm 58.29132015 1205.076623
Cretaceous Inyan	Kara	Fm 60.97828206 1272.250671
Jurassic Swift	Fm 63.45633619 1354.852475
Jurassic Rierdon	Fm 70.34489996 1527.066569
Jurassic Piper	Fm 72.9106287 1612.590861
Triassic/Permian Spearfish	Fm 75.98681656 1715.130456
Permian Minnekahta	Fm 76.06826994 1717.845569
Permian 	Opeche	Fm 76.44559301 1737.497812
Permian Broom	Creek	Fm 77.0351603 1752.236994
Pennsylvanian Amsden	Fm 77.42162308 1769.949871
Pennsylvanian 	Tyler	Fm 77.54884549 1780.551739
Mississippian Otter	Fm 77.68905448 1788.438495
Mississippian Kibbey	Fm 77.86374109 1798.264616
Mississippian Charles	Fm 78.55329348 1837.051939
Mississippian Mission	Canyon	Fm 84.5753357 2149.445379
Mississippian Lodgepole	Fm 87.64657723 2308.766033
Mississippian/Devonian Bakken	Fm 88.63017746 2359.790295
Devonian Three	Forks	Fm 89.77402264 2386.003414
Devonian Bird	Bear	Fm 91.6422349 2436.600829
Devonian Duperow	Fm 92.12368842 2467.995611
Devonian Souris	R.	Fm 94.44898717 2622.53109
Devonian Dawson	Bay	Fm 96.28281988 2734.089247
Devonian Prairie	Fm 96.9744472 2773.713728
Devonian Winnepegosis	Fm 98.1010017 2867.59327
Silurian Interlake	Fm 99.08452884 2928.858815
Silurian/Ordovician Stonewall	Fm 99.42852634 2955.876952
Ordovician Stony	Mountain	Fm 100.1133187 3011.373666
Ordovician Red	River	Fm 102.0831785 3166.91051
Ordovician Winnipeg	Fm 103.9922905 3297.366496

NDGS	#2010
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Table 6. TSTRAT calculations for NDGS #2615.  Heat flow used for calculations	is 54 
mW m-2 (McDonald, 2015). 
 

 

Age Formation Temperature	(°C) Depth	(m)
Tertiary Brule	Fm 10 16.5133387
Tertiary Chadron	Fm 10.52382476 28.15388893
Tertiary Golden	Valley	Fm 12.30726534 61.18056633
Tertiary Tongue	R.	Fm 17.56987689 168.3819126
Tertiary Slope	Fm. 18.65960958 190.5801712
Tertiary Cannonball	Fm. 19.69618458 211.6955879
Tertiary Ludlow	Fm 20.90552208 236.3302407
Cretaceous Hell	Creek	Fm 22.24775382 263.6719982
Cretaceous Fox	hills	Fm 23.86906343 296.6986756
Cretaceous Pierre	Fm 48.2782302 839.1246038
Cretaceous Niobrara	Fm 60.33529272 1084.731433
Cretaceous Carlille	Fm 76.71239587 1478.995027
Cretaceous Greenhorn	Fm 83.4019503 1627.651792
Cretaceous Belle	fourche	Fm 86.93760402 1706.221875
Cretaceous Mowry	Fm 89.94456185 1773.04316
Cretaceous Newcastle	Fm 90.77380211 1791.470721
Cretaceous Skull	Creek	Fm 91.48933383 1808.696485
Cretaceous Inyan	Kara	Fm 94.93248359 1885.210924
Jurassic Swift	Fm 98.7078585 1997.073884
Jurassic Rierdon	Fm 105.7031036 2152.523775
Jurassic Piper	Fm 107.9860615 2220.166974
Triassic/Permian Spearfish	Fm 110.7232206 2301.267983
Permian Minnekahta	Fm 114.9820904 2427.456718
Permian 	Opeche	Fm 115.2322733 2439.039259
Permian Broom	Creek	Fm 120.554146 2557.303097
Pennsylvanian Amsden	Fm 123.0674328 2659.696265
Pennsylvanian 	Tyler	Fm 123.8947995 2720.982687
Mississippian Otter	Fm 125.1976685 2786.126136
Mississippian Kibbey	Fm 126.8209151 2867.288466
Mississippian Charles	Fm 127.6987498 2911.1802
Mississippian Mission	Canyon	Fm 133.1707704 3163.501149
Mississippian Lodgepole	Fm 135.9615009 3292.184833
Mississippian/Devonian Bakken	Fm 141.7123756 3557.364058
Devonian Three	Forks	Fm 142.7448289 3578.395513
Devonian Bird	Bear	Fm 145.8974371 3654.291636
Devonian Duperow	Fm 146.3864864 3682.638381

NDGS	#2615
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Table 7. TSTRAT calculations for NDGS #6464.  Heat flow used for calculations	is 55 
mW m-2 (McDonald, 2015). 
 

 

Age Formation Temperature	(°C) Depth	(m)
Tertiary Brule	Fm 10 16.5133387
Tertiary Chadron	Fm 10.53352522 28.15388893
Tertiary Golden	Valley	Fm 12.34999248 61.18056633
Tertiary Tongue	R.	Fm 17.71005979 168.3819126
Tertiary Slope	Fm. 18.81997272 190.5801712
Tertiary Cannonball	Fm. 19.87574355 211.6955879
Tertiary Ludlow	Fm 21.1074762 236.3302407
Cretaceous Hell	Creek	Fm 22.47456407 263.6719982
Cretaceous Fox	hills	Fm 24.12589794 296.6986756
Cretaceous Pierre	Fm 41.68068747 679.7122653
Cretaceous Niobrara	Fm 53.73792261 920.8569681
Cretaceous Carlille	Fm 70.11526022 1307.957675
Cretaceous Greenhorn	Fm 76.80491042 1453.91368
Cretaceous Belle	fourche	Fm 80.39094013 1532.154328
Cretaceous Mowry	Fm 83.44074111 1598.69544
Cretaceous Newcastle	Fm 85.159072 1636.186296
Cretaceous Skull	Creek	Fm 85.73490753 1649.796954
Cretaceous Inyan	Kara	Fm 88.50583699 1710.253597
Jurassic Swift	Fm 92.63402219 1830.346257
Jurassic Rierdon	Fm 99.68895798 1984.272129
Jurassic Piper	Fm 102.1428433 2055.657883
Triassic/Permian Spearfish	Fm 105.0849361 2141.246038
Permian Minnekahta	Fm 109.2759871 2263.16752
Permian 	Opeche	Fm 109.55092 2275.664472
Permian Broom	Creek	Fm 114.4963601 2383.564984
Pennsylvanian Amsden	Fm 117.022821 2484.623419
Pennsylvanian 	Tyler	Fm 117.8545245 2545.110949
Mississippian Otter	Fm 118.4940479 2576.50573
Mississippian Kibbey	Fm 120.6485585 2682.272616
Mississippian Charles	Fm 121.5799032 2727.993172
Mississippian Mission	Canyon	Fm 127.8443534 3011.601919
Mississippian Lodgepole	Fm 130.1976465 3118.141917
Mississippian/Devonian Bakken	Fm 136.0280885 3382.101926
Devonian Three	Forks	Fm 137.1253818 3404.047793
Devonian Bird	Bear	Fm 140.0526697 3473.238235
Devonian Duperow	Fm 140.4972157 3498.536942
Devonian Souris	R.	Fm 142.4206322 3610.095099
Devonian Dawson	Bay	Fm 143.9248176 3689.95367
Devonian Prairie	Fm 144.6502504 3726.225311
Devonian Winnepegosis	Fm 145.1447945 3762.192148
Silurian Interlake	Fm 146.8436419 3854.547671
Silurian/Ordovician Stonewall	Fm 147.5285078 3901.492117
Ordovician Stony	Mountain	Fm 148.8918635 3997.918546
Ordovician Red	River	Fm 152.8136647 4268.166301

NDGS	#6464
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Table 8. TSTRAT calculations for NDGS #6616.  Heat flow used for calculations	is 50 
mW m-2 (McDonald, 2015). 
 

 

Age Formation Temperature	(°C) Depth	(m)
Tertiary Brule	Fm 10 41.04859165
Tertiary Chadron	Fm 11.20566219 69.98448413
Tertiary Golden	Valley	Fm 15.31052135 152.0816674
Tertiary Tongue	R.	Fm 27.42322053 418.5610493
Tertiary Slope	Fm. 29.93140571 473.7411234
Tertiary Cannonball	Fm. 32.3172404 526.2294865
Tertiary Ludlow	Fm 35.1007142 587.4659101
Cretaceous Hell	Creek	Fm 38.19006424 655.431611
Cretaceous Fox	hills	Fm 41.92175439 737.5287943
Cretaceous Pierre	Fm 61.5768519 1209.251134
Cretaceous Niobrara	Fm 63.90151134 1260.393642
Cretaceous Carlille	Fm 67.05909531 1342.490825
Cretaceous Greenhorn	Fm 68.34887346 1373.445501
Cretaceous Belle	fourche	Fm 71.08729616 1439.167646
Cretaceous Mowry	Fm 73.41623508 1495.06218
Cretaceous Newcastle	Fm 75.38475902 1542.306754
Cretaceous Skull	Creek	Fm 75.85438919 1554.517139
Cretaceous Inyan	Kara	Fm 78.11425684 1608.753962
Jurassic Swift	Fm 83.15304311 1769.995123
Jurassic Rierdon	Fm 89.16021616 1914.167276
Jurassic Piper	Fm 91.73322209 1996.503466
Triassic/Permian Spearfish	Fm 94.81813496 2095.220678
Permian Minnekahta	Fm 98.55198036 2214.703731
Permian 	Opeche	Fm 98.73486259 2223.847842
Permian Broom	Creek	Fm 101.7352335 2295.856745
Pennsylvanian Amsden	Fm 103.7019839 2382.39376
Pennsylvanian 	Tyler	Fm 104.3494323 2434.189637
Mississippian Otter	Fm 105.0629709 2472.720717
Mississippian Kibbey	Fm 105.9519697 2520.726652
Mississippian Charles	Fm 106.759135 2564.313582
Mississippian Mission	Canyon	Fm 112.7621443 2863.263442
Mississippian Lodgepole	Fm 115.823679 3015.727871
Mississippian/Devonian Bakken	Fm 120.169274 3232.138503
Devonian Three	Forks	Fm 120.9867021 3250.121921
Devonian Bird	Bear	Fm 123.3899621 3312.606681
Devonian Duperow	Fm 123.8379164 3340.648622
Devonian Souris	R.	Fm 125.9591209 3475.981468
Devonian Dawson	Bay	Fm 127.2169581 3549.439161
Devonian Prairie	Fm 127.8764425 3585.710802
Devonian Winnepegosis	Fm 128.5660609 3640.880273
Silurian Interlake	Fm 130.0544001 3729.882955
Silurian/Ordovician Stonewall	Fm 130.5467034 3767.002624
Ordovician Stony	Mountain	Fm 131.5267266 3843.24843
Ordovician Red	River	Fm 134.3458414 4056.937332
Ordovician Winnipeg	Fm 132.2389778 3918.727081
Ordovician Erosion 133.7744986 4043.718477
Ordovician Deadwood	Fm 133.7744986 4043.718477

NDGS	#6616
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Table 9. TSTRAT calculations for NDGS #7020.  Heat flow used for calculations	is 48 
mW m-2 (McDonald, 2015). 
 

 

Age Formation Temperature	(°C) Depth	(m)
Tertiary Brule	Fm 10 31.93882875
Tertiary Chadron	Fm 10.90057025 54.45308508
Tertiary Golden	Valley	Fm 13.96669781 118.3307426
Tertiary Tongue	R.	Fm 23.01428733 325.6713358
Tertiary Slope	Fm. 24.88777809 368.605499
Tertiary Cannonball	Fm. 26.66987906 409.4453128
Tertiary Ludlow	Fm 28.74899685 457.0917623
Cretaceous Hell	Creek	Fm 31.05658913 509.9740853
Cretaceous Fox	hills	Fm 33.84397782 573.8517428
Cretaceous Pierre	Fm 48.5253673 940.8864797
Cretaceous Niobrara	Fm 50.26177337 980.6791188
Cretaceous Carlille	Fm 52.62033303 1044.556776
Cretaceous Greenhorn	Fm 53.58373377 1068.641795
Cretaceous Belle	fourche	Fm 56.2389743 1135.022808
Cretaceous Mowry	Fm 58.49716951 1191.477688
Cretaceous Newcastle	Fm 59.78953723 1223.786881
Cretaceous Skull	Creek	Fm 60.29622079 1237.509561
Cretaceous Inyan	Kara	Fm 62.73438992 1298.463789
Jurassic Swift	Fm 65.53248795 1391.733723
Jurassic Rierdon	Fm 70.61661377 1518.836869
Jurassic Piper	Fm 72.07205147 1567.351459
Triassic/Permian Spearfish	Fm 73.81705269 1625.518166
Permian Minnekahta	Fm 74.30169058 1641.672763
Permian 	Opeche	Fm 74.54748429 1654.474518
Permian Broom	Creek	Fm 76.08369497 1692.879785
Pennsylvanian Amsden	Fm 77.77274022 1770.29436
Pennsylvanian 	Tyler	Fm 78.32876899 1816.63009
Mississippian Otter	Fm 79.2552536 1868.744849
Mississippian Kibbey	Fm 80.40956229 1933.674713
Mississippian Charles	Fm 81.0760664 1971.165569
Mississippian Mission	Canyon	Fm 84.18514689 2132.44912
Mississippian Lodgepole	Fm 85.77077794 2214.703731
Mississippian/Devonian Bakken	Fm 87.2784644 2292.914966
Devonian Three	Forks	Fm 92.98977091 2423.799073
Devonian Bird	Bear	Fm 95.11683186 2481.406974
Devonian Duperow	Fm 95.43468467 2502.133626
Devonian Souris	R.	Fm 96.64549112 2582.601804
Devonian Dawson	Bay	Fm 96.78464962 2591.06728
Devonian Prairie	Fm 97.28907522 2619.966664
Devonian Winnepegosis	Fm 97.53778507 2640.692484
Silurian Interlake	Fm 98.32272829 2689.587905
Silurian/Ordovician Stonewall	Fm 98.62708459 2713.492557
Ordovician Stony	Mountain	Fm 99.23296362 2762.594003
Ordovician Red	River	Fm 100.9758229 2900.207267
Ordovician Winnipeg	Fm 103.9197806 3101.377713
Ordovician Erosion 104.4661806 3147.707876
Ordovician Deadwood	Fm 107.1122251 3340.648622

NDGS	#7020
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Table 10. TSTRAT calculations for NDGS #7783.  Heat flow used for calculations	is 40 
mW m-2 (McDonald, 2015). 
 

 

Age Formation Temperature	(°C) Depth	(m)
Tertiary Brule	Fm 10 38.78026069
Tertiary Chadron	Fm 10.91123017 66.11716577
Tertiary Golden	Valley	Fm 14.01365102 143.6776872
Tertiary Tongue	R.	Fm 23.16833552 395.4315107
Tertiary Slope	Fm. 25.06400251 447.5623529
Tertiary Cannonball	Fm. 26.86719794 497.1502272
Tertiary Ludlow	Fm 28.97092594 555.0027473
Cretaceous Hell	Creek	Fm 31.30583284 619.2126871
Cretaceous Fox	hills	Fm 34.12621544 696.7732085
Cretaceous Pierre	Fm 48.98138634 1142.428335
Cretaceous Niobrara	Fm 50.73834598 1190.744726
Cretaceous Carlille	Fm 53.12482357 1268.305247
Cretaceous Greenhorn	Fm 54.09962793 1297.549378
Cretaceous Belle	fourche	Fm 56.22447923 1361.294917
Cretaceous Mowry	Fm 58.03159575 1415.508413
Cretaceous Newcastle	Fm 58.58241959 1432.033128
Cretaceous Skull	Creek	Fm 59.0577124 1447.480144
Cretaceous Inyan	Kara	Fm 61.34482878 1516.093636
Jurassic Swift	Fm 64.28618455 1633.747866
Jurassic Rierdon	Fm 68.69567817 1766.032675
Jurassic Piper	Fm 70.47339136 1837.141202
Triassic/Permian Spearfish	Fm 72.6047857 1922.396976
Permian Minnekahta	Fm 72.81753164 1930.906814
Permian 	Opeche	Fm 73.80305188 1992.501829
Permian Broom	Creek	Fm 74.76826362 2021.458181
Pennsylvanian Amsden	Fm 76.21740343 2101.160871
Pennsylvanian 	Tyler	Fm 76.69445603 2148.86613
Mississippian Otter	Fm 77.49065374 2202.609476
Mississippian Kibbey	Fm 78.48263777 2269.568398
Mississippian Charles	Fm 79.12385446 2312.850524
Mississippian Mission	Canyon	Fm 82.97291427 2552.454497
Mississippian Lodgepole	Fm 84.93593477 2674.652524
Mississippian/Devonian Bakken	Fm 88.7943335 2914.837844
Devonian Three	Forks	Fm 89.60344879 2937.088515
Devonian Bird	Bear	Fm 91.64797827 3003.535723
Devonian Duperow	Fm 92.03750377 3034.016094
Devonian Souris	R.	Fm 93.58923173 3157.766398
Devonian Dawson	Bay	Fm 94.62472925 3233.357718
Devonian Prairie	Fm 95.31635657 3280.907096
Devonian Winnepegosis	Fm 95.87109932 3336.38137
Silurian Interlake	Fm 97.31458443 3444.281882
Silurian/Ordovician Stonewall	Fm 97.78183669 3488.320408
Ordovician Stony	Mountain	Fm 98.71199106 3578.77792
Ordovician Red	River	Fm 101.3876542 3832.297001
Ordovician Winnipeg	Fm 103.926446 4040.477932
Ordovician Erosion 104.8910337 4138.624726

NDGS	#7783
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Appendix B 
 

Heat Flow Profile Datasets 
 
Table 11.  Surface heat flow profile calculations for 35 my heat flow model. 
 

Age (years) HF (mW m-2) 

0 38 

1000 39 

250000 40 

1.00E+06 58 

7.50E+06 66 

1.50E+07 56 

2.25E+07 49 

3.00E+07 44 

3.50E+07 42 
 
Table 12.  Surface heat flow profile calculations for 65 my heat flow model. 
 

Age (years) HF (mW m-2) 

0 38 

1000 39 

250000 40 

1.00E+06 58 

7.50E+06 66 

1.50E+07 56 

2.25E+07 49 

3.00E+07 44 

3.50E+07 42 

4.00E+07 39 

6.50E+07 38 
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