
University of North Dakota
UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2017

Training Convolutional Neural Networks Using An
Automated Feedback Loop To Estimate The
Population Of Avian Species
Connor Ryan Bowley

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact
zeineb.yousif@library.und.edu.

Recommended Citation
Bowley, Connor Ryan, "Training Convolutional Neural Networks Using An Automated Feedback Loop To Estimate The Population
Of Avian Species" (2017). Theses and Dissertations. 2173.
https://commons.und.edu/theses/2173

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2173&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2173?utm_source=commons.und.edu%2Ftheses%2F2173&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu


Training Convolutional Neural Networks Using an Automated
Feedback Loop to Estimate the Population of Avian Species

by

Connor Ryan Bowley
Bachelor of Science, University of North Dakota, 2016

A thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota
December

2017

http://und.edu




PERMISSION

Title Training Convolutional Neural Networks Using an Automated
Feedback Loop to Estimate the Population of Avian Species

Department Department of Computer Science

Degree Master of Science

In presenting this thesis in partial fulfillment of the requirements for a
graduate degree from the University of North Dakota, I agree that the library of
this University shall make it freely available for inspection. I further agree that
permission for extensive copying for scholarly purposes may be granted by the
professor who supervised my thesis work or, in his absence, by the Chairperson
of the department or the dean of the School of Graduate Studies. It is
understood that any copying or publication or other use of this thesis or part
thereof for financial gain shall not be allowed without my written permission. It
is also understood that due recognition shall be given to me and to the
University of North Dakota in any scholarly use which may be made of any
material in my thesis.

Connor Ryan Bowley
December 2017

iii

http://cs.und.edu
http://und.edu
http://und.edu


CONTENTS

List of Figures vi

List of Tables viii

Acknowledgements ix

Abstract x

1 Introduction 1

2 Background 4

I Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 4

II.I Training with Gradient Descent . . . . . . . . . . . . . . . . 7

II.II Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . 8

II.III Activation Layers/Functions . . . . . . . . . . . . . . . . . . 12

II.IV Max Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . 13

II.V Fully Connected Layers . . . . . . . . . . . . . . . . . . . . . 15

II.VI Softmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

II.VII L2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . 18

II.VIII Weight bounding . . . . . . . . . . . . . . . . . . . . . . . . 18

II.IX Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.X Adjusting the Learning Rate . . . . . . . . . . . . . . . . . . 20

III Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Related Work 23

I Citizen Science Projects . . . . . . . . . . . . . . . . . . . . . . . . 23

II Object Detection Techniques . . . . . . . . . . . . . . . . . . . . . . 24

III Object Detection in Ecological Research . . . . . . . . . . . . . . . 25

4 Wildlife@Home Image Dataset 27

I Wildlife@Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

I.I Ecological Implications . . . . . . . . . . . . . . . . . . . . . 28

II Gathering the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

III Labeling of the Data . . . . . . . . . . . . . . . . . . . . . . . . . . 30

IV Technical Issues and Corrections . . . . . . . . . . . . . . . . . . . . 32

5 Methodology 34

I Matching User Observations . . . . . . . . . . . . . . . . . . . . . . 34

II Analysis of Previous Work on Wildlife@Home . . . . . . . . . . . . 35

III Feedback Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

IV Sampling Amounts . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

V Counting objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iv



6 Implementation 45

I Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

I.I Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . 45

I.II Partitioning the Data . . . . . . . . . . . . . . . . . . . . . . 47

I.III Preprocessing Steps . . . . . . . . . . . . . . . . . . . . . . . 47

II Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . 49

III Feedback Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

IV CNN Architecture and Settings . . . . . . . . . . . . . . . . . . . . 51

IV.I Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

IV.II Feedback Loop . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.III Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.IV Sampling Rates . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.V Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

V Evaluation of the Results . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Results 55

8 Conclusion 62

I Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 64

v



LIST OF FIGURES

Figure Page

1 Example of a 2×2 max pool operation. For a 2×2 max pool, the
pool size is 2 and the stride is 2. The maximum values in each
input pool are bold faced. Note that the maximums are computed
separately at each depth. . . . . . . . . . . . . . . . . . . . . . . . . 14

2 A fully connected layer. The left side is the inputs to the layer,
which come from the previous layer. The right side is the nodes
contained in this layer, which will be the inputs of the next layer.
The lines between them are weighted connections. . . . . . . . . . . 16

3 Image of UAS takeoff . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 UAS Flight Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 The graphical user interface (GUI) of the web portal for identifying
objects in ecological imagery for the Wildlife@Home projects . . . . 31

6 An example of the blue-shift error on a 2015 UAS image with the
resultant image after RGB normalization to closely match the RGB
spectrum of the 2016 UAS imagery . . . . . . . . . . . . . . . . . . 32

7 Visual representation of algorithms used for matching two observa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 An example of an image and CNN prediction from previous work . 36

9 Basic Flowchart for Feedback Loop . . . . . . . . . . . . . . . . . . 40

10 Example of striding a CNN across an image. The red box denotes
which part of the image is being run through the CNN. When the
CNN reaches the right edge, it will move down and start again at
the left edge. The amount the CNN moves over each time is called
the stride. This can also be thought of as a sliding window. . . . . . 43

11 Screenshot of training interface. . . . . . . . . . . . . . . . . . . . . 49

12 Architecture of the CNNs used in this work . . . . . . . . . . . . . 52

vi



13 Average error based on iteration for each dataset and background
to foreground sampling ratio. The line is the average, with the filled
in portion showing the maximum and minimum values seen at each
iteration. A thinner filled in region has less variance than a thicker
one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

13 cont. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

13 cont. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

13 cont. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



LIST OF TABLES

Table Page

1 Architecture of the CNNs used in this work . . . . . . . . . . . . . . . 52

2 Blob Counter Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Comparison of feedback loop to baseline. . . . . . . . . . . . . . . . . 57

viii



ACKNOWLEDGEMENTS

I would like to thank my advisors for their feedback and support throughout

my time on this project. I also appreciate Jennifer Booth and all the citizen

scientists on Wildlife@Home who spent time reviewing and classifying images.

Funding was provided by North Dakota EPSCoR, the Hudson Bay Project,

Central and Mississippi Flyways, and the UND College of Arts and Sciences.

UAS data collection supported by the Hudson Bay Project. Permissions and

in-kind assistance were provided by Parks Canada, Wapusk National Park

Management Board, and the community of Churchill, Manitoba.

This work has been partially supported by the National Science Foundation

under Grant Number 1319700. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

ix



DEDICATION

Dedicated to my wife Kayla for all her support



ABSTRACT

Using automated processes to detect wildlife in uncontrolled outdoor imagery

in the field of wildlife ecology is challenging task. This is especially true in

imagery provided by an Unmanned Aerial System (UAS), where the relative size

of wildlife is small and visually similar to its background. In the UAS imagery

collected by the Wildlife@Home project, the data is also extremely unbalanced,

with less than 1% of area in the imagery being of wildlife. To tackle these

challenges, the Wildlife@Home project has employed citizen scientists and

trained experts to go through collected UAS imagery and classify it. Classified

data are used as inputs to convolutional neural networks (CNNs) which seek to

automatically mark which areas of the imagery contain wildlife. The output of

the CNN is then passed to a blob counter which returns a population estimate

for the image. A feedback loop was developed to help train the CNNs to better

differentiate between the wildlife and the the visually similar background and

deal with the disparate amount of wildlife training images versus background

training images. When using the feedback loop and citizen scientist provided

data, population estimates by the CNN and blob counter are within 3.93% of the

manual count by the field biologists. When expert provided data is used the

estimates are within 5.24%. This is improved from 150% and 88% error in

previous work which did not employ a feedback loop for the citizen science and

expert data, respectively. Citizen scientist data worked better than expert data

in the current work potentially because a matching algorithm was used on the

citizen scientist data but not the expert data.

x



CHAPTER 1

INTRODUCTION

Image classification is an important problem for wildlife ecology. Many of

today’s ecological projects use video or imagery for monitoring and tracking

species [1–7]. Learning ecological patterns becomes a problem of annotating

images and classifying the wildlife they contain. Due to the ease of obtaining

video and imagery and the often large geographic area that is covered, the

amount of data collected can quickly become too large for ecological researchers

to go through manually.

To overcome this problem, some projects [1–4] have turned to citizen

scientists to create a larger workforce that can more quickly examine large

amounts of data. This requires ordinary people to volunteer their time and brain

power to going through sometimes monotonous video and imagery. It is also

prone to human errors, such as fatigue, eye strain, or lack of domain knowledge.

Also, if a project is unable to gather enough volunteers, progress will advance

slowly. To deal with these problems, computer vision techniques can be used to

automate the classification of the data.

One such computer vision technique that has grown popular in recent years is

the Convolutional Neural Network (CNN). A CNN is a machine learning

technique that trains a set of weights using a labeled training dataset. The

training data is comprised of multiple classes of data that CNN is trained to

differentiate between. Many CNNs have achieved great accuracy on benchmark

datasets such as the MNIST handwritten digit dataset [8–12], ImageNet [13–16],

and the CIFAR 10 and CIFAR 100 datasets [17]. In general, most datasets used

with CNNs have fixed size images where the object of interest fills a large area in

the image. The labeled training data also tends to be fairly uniform in the

1



number of training examples for each class.

Wildlife@Home is a ecological project with over 100,000 hours of collected

video, over 65,000 images from unmanned aerial systems (UAS), and over

1,800,000 images from trail cameras. One of the end goals of the project is to

create an automated system that can classify the video and imagery and

differentiate among different species. To obtain labeled data that can be used to

train computer vision techniques and test their effectiveness, Wildlife@Home also

employs citizen scientists. This involves using a webpage that the citizen

scientists can visit to record their observations.

In the collected data, some species observed are visually similar to the their

surrounding background. In the UAS imagery, the wildlife takes up only a tiny

fraction of each image. For example, a typical lesser snow goose (Anser

caerulescens caerulescens : hereafter referred to as “snow geese” and the focus of

this work) takes up an area less than 18×18 pixels in UAS images that range

from 844×755 to over 2000×3000 pixels. It is common for multiple geese to be in

one image, and it is even more common that an image contains no geese at all.

For these images, the information needed about them is not only if they contain

snow geese, but also how many snow geese they contain. The difference in the

proportion of imagery containing snow geese relative to the background is great,

making Wildlife@Home’s UAS dataset extremely unbalanced. These features,

and the fact that the background can vary substantially in color and appearance,

begin to detail some of the challenges of image classification on the dataset.

Previous work on Wildlife@Home’s UAS imagery [18] sought to calculate the

population of the white phase lesser snow geese that were contained in the

imagery. This work used CNNs that were trained on a dataset labeled by the

citizen scientists, which was also labeled separately by expert wildlife ecologists.

The separate labellings allowed for the comparison of citizen scientists provided

data for training CNNs compared to expert provided data. The end result of

2



that work was a count that overestimated the population compared to a count

by experts. When using the expert dataset there was an 88% overestimate, and

when using a refined citizen scientist dataset (refined by matching [19], discussed

in more detail in Chapter 5) there was a 150% overestimate.

This work is a continuation of that previous work. An automated feedback

loop was developed and implemented, which caused a drastic decrease in error.

This feedback loop allowed the CNNs to examine the source of false positives

that caused the overestimated population count and learn from that information.

With this change, an average error of +5.24% was achieved when using the

expert provided data and an average error of -3.93% error was achieved when

using the citizen scientist provided data with corner-point/intersection

observation matching [19].

The rest of this paper proceeds as follows. Chapter 2 focuses on the

background information needed to use convolutional neural networks. This

includes how they work, what types of layers are used, how they are trained and

tested, and common training aids that are often used in practice, such as

regularization and batch normalization. Chapter 3 looks at some related works

from multiple areas related to this project, including using citizen scientists to

generate data, using CNNs for object detection, and case studies that use object

detection in ecological research. Chapter 4 examines Wildlife@Home and its

datasets in greater depth, such as how the data used for this project was

collected and how citizen scientists and experts labeled that data. Chapter 5

describes the work done in this project, including how it builds off of previous

work and how the feedback loop used was developed and the reasoning behind it.

Chapter 6 details how the project was implemented, such as what data formats

and CNN implementations were used. Chapter 7 discusses the particular

parameters used for the CNNs and feedback loop and the results obtained with

those parameters. Chapter 8 concludes and offers suggestions for future work.

3



CHAPTER 2

BACKGROUND

This chapter will introduce the classification problem and some of its

associated terminology. After this, CNNs will be explained in detail, including

the different types of layers, their formulas and derivatives, as well as some

common modifications. The chapter will end with an explanation of batch

normalization, which is used to enhance the CNNs used in this work.

Classification

A classification problem is a problem that requires data to be categorized into

different classes based on a labeled set of training data. In machine learning,

classification often corresponds to supervised learning. A classifier is an

algorithm that does the classification. When classifying data with a positive

class and a negative class, if a positive example is classified as positive, this is

known as a true positive. If a positive example is classified as negative, this

would then be known as a false negative. Should a negative example be classified

as negative, it would be a true negative, and if a negative example is classified as

positive, it is a false positive.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have become increasingly common for

image classification tasks. They work by having a set of weights and biases that

are tuned to create a function that one desires, such as classifying an image as

belonging to a particular class of images. Tuning these weights correctly, called

training, is an important part of using CNNs.

4



CNNs consist of many “hidden” layers stacked on top of each other in

between an input layer and output layer. The output values of one hidden layer

are the input values of the next layer. Each of these layers consists of a number

of nodes, called neurons, either in three or one dimensions.

A typical CNN contains four main types of hidden layers: convolutional

layers, activation layers, pooling layers, and fully connected layers.

Convolutional layers have some of the weights that are tuned during training.

Pooling layers have no weights, but instead are used to reduce the size of layers

by reducing the width and height. Activation layers typically come after

convolutional layers, and run the output of the convolutional layer through some

non-linear function. Often times, the activation layer is made to be a function

that is added onto the end of the convolutional layers, rather than a separate

layer in itself. The fully connected layers are the same as normal artificial neural

networks (NNs). These have the rest of the weights to be trained and are the

only layers that are 1-dimensional.

Most often, CNNs are trained through supervised learning, where there exists

a set of labeled training data that it can learn from. A training example is run

through the network, the network generates an predicted output, and that

output is compared to the actual value corresponding to that training example.

The error between the actual and the predicted output is then used to train the

network toward better weights. There are many different ways that the actual

weight updates can be done, but backpropagation using gradient descent is by

far the most common.

To calculate the gradient needed for backpropagation, an objective function is

used to define if an output is correct and/or how correct it is. One simple

objective function would be to minimize error in a system. Consider that if the

output from running one training example through a CNN (for the purpose of

determining which class of images the example belongs to) consists of n values

5



between 0 and 1, one for each of the n classes we are classifying. We can

normalize these n values such that they sum to one (as is done by the softmax

function, described in more detail below). Each value then represents the

confidence the CNN has that the image is of that class. The “true” values would

be a 1 for the class the image is actually of, and 0s for the others. By calculating

the difference between the true value and the predicted value for each class and

summing the absolute value of these differences, we an calculate an error in the

system for that image. By doing this over multiple images, we can calculate a

total error for all the images seen. The function describing the error we are

trying to minimize (the sum of the absolute value of the differences, in this case)

is the objective function. Once we have a function, we can derive a gradient for

it. Often times extra terms are added to this objective function, as is the case

with L2 regularization described below. These extra terms are intended to alter

the gradient in order for the result of the training to have some desirable

property, such as smaller weights in the case of regularization. It is also common

to see objective functions utilize cross entropy loss instead of just using the raw

error (some examples are [20–22]).

Feed Forward is the term most often used to describe running a image

through the neural network to get a prediction. This is done in both training

and inference (classifying a non-training example). Backpropagation, on the

other hand, is used to propagate the error “backward” through the network to

get the partial derivative at each weight and is done only during training. The

partial derivatives can then be used to update the weights so they move down

the gradient. Most often, the partial derivatives are calculated analytically using

calculus. An approximate can be generated using a numerical approach, but it is

slower and less accurate than the analytic approach.

Of great concern when training neural networks is generalization. That is,

how well can the network classify data it hasn’t seen before? One issue that can

6



hurt the generalization of a network is overfitting on the training data.

Overfitting is when the network can achieve very high accuracy on the training

data, but the features it picks up on are more specific to a particular training

image than the class of images as a whole. Much work has been done on how to

increase generalization and reduce overfitting, as large CNNs can easily overtrain

and “memorize” the training data. The relevant techniques used in this paper,

such as L2 Regularization, weight bounding, and batch normalization, are

described below.

Training with Gradient Descent

When training using backpropagation and gradient descent, there are few

different terms (some people use them interchangeably) that are often used.

These terms describe how often weight updates are applied by the

backpropagation.

Stochastic gradient descent (SGD) is a training scheme where weights are

updated every time a single training example is run through the network. This

means that when weights are being updated, one example is responsible for the

direction and magnitude of the update. That is, we are looking at the gradient

in respect to one example at a time. The advantage of this is that by doing a lot

of weight updates, updates are made quickly moving along the gradient. The

disadvantage is one example might not accurately represent the overall gradient

with respect to the entire training set or class of images.

Batch gradient descent (BGD) is the opposite of this. Weights are updated

only after the whole training set is run through network. The gradients are

computed (i.e. backpropagation is run) after every example and the computed

gradients are summed (or averaged). The summed (or averaged) gradient is then

used to perform one update on all the weights, after which the whole training set

is run through again and another weight update is performed. The advantage of

7



this is it should better represent the gradient with respect to the whole training

set. While this is good, that gradient might not be representative of the testing

set the network should generalize against, or of the class of images as a whole

(although a good training set should be). A disadvantage of this scheme is that

it has a greater computation cost per weight update than SGD, especially with

large numbers of training images. The hope is, however, that by moving down a

“more accurate” gradient, the network should take less updates to reach the

optimum.

Minibatch gradient descent (MGD) is a compromise between the SGD and

BGD. Instead of doing a weight update after one or all examples, a weight

update is done after N examples were N is referred to as the batch size. These

N examples are known as a minibatch. Similar to BGD, the gradients computed

at each on these N training examples is summed (or averaged) This way, weight

updates are done more frequently and the gradients used should be more

representative of the true gradient than if only one example was used. Often

times, people will use the term SGD when they really mean MGD. Certain

optimizations require or suggest the use of MGD, such as batch

normalization [23], which will be described later.

Convolutional Layers

Convolutional layers are the layers from which a convolutional neural network

derives its name. These layers contain weights to be trained, exist in three

dimensions, and go from R3 → R3. Each 2-dimensional plane (width by height)

is referred to as feature map. A convolutional layer with a depth of d would then

have d feature maps, regardless of width and height values.

The weights in these layers are grouped into filters. Every filter in a particular

convolutional layer has the same size, and the dimensions of the filters have the

following restrictions: The depth of the filter must be equal to the depth of the

8



input, and the width and height of the filter must be less than or equal to the

width and height of the input. A very typical filter size for width and height is

3× 3.

Convolutional layers work by striding the filters across the input, looking at

one part of the input at a time (the size of the part of the input being looked at

is the same size as the filter) and computing the dot product between the filter

and the input at each position. The distance the filters are moved across the

input each time is called the stride.

Each dot product between a filter and a part of the input will produce one

value. As a filter is strided across multiple locations on the input, the values can

be combined in a grid to create a 2-dimensional plane of outputs. The location

of a number in the grid corresponds to the location on the input that was used

to produce the number. The top left number in the grid will correspond to dot

product between the filter and the top left portion of the input. The next

number in the grid to the right will be from the next portion of the input after

moving one stride length to the right. Each filter produces a plane, and the

planes stacked on top of each other (so adding a plane increases depth) to make

the 3-dimensional output volume. For a visual showing a CNN structure and

connections between layers, see Figure 12.

The size of the 3-D output is dependent on the size of the input, the size of

the filter, the number of filters, and the stride. The equations to calculate the

output size are:

wo = (wi − wf )/s+ 1 (1)

ho = (hi − hf )/s+ 1 (2)

do = Nf (3)

where wo, ho, do are the width, height, and depth the output respectively, wi

9



and hi are the width and height of the input, wf and hf are the width and

height of the filters, s is the stride, and Nf is the number of filters. Note that the

terms (wi − wf )/s and (hi − hf )/s must return integers in order for the output

size to have a width and height that are whole numbers.

Zero padding is a technique commonly done to the input of convolutional

layers. This involves adding rows and columns of 0s on the outside edges of the

input. Doing this changes the equations for the width and height of the output

to:

wo = (wi − wf + 2p)/s+ 1 (4)

ho = (hi − hf + 2p)/s+ 1 (5)

where p is the padding amount on each side, and the other variables are the

same as above.

One advantage of zero padding is that it can alter the output size of the layer

in desirable ways. For example if one had a filter size (width and height) of 3, a

padding size of 1, and a stride of 1, the output would have the width and height

as the input. Also note that without zero padding, the output will always be

smaller than the input. Depending on the size of the input layer, the sizes of the

hidden layers might decrease too quickly without padding.

The feed forward equation, a dot product, for each node is given by the

following equation.

fj(x,w) = w0j +
n∑

i=1

wijxi (6)

In this equation, x is the portion of the input currently being looked at, wij is

the ith weight of the jth filter, w0j is the bias for the jth filter, and n is the

number of weights in a filter, which is the same as the number of inputs

currently being used. The bias is a learned parameter, just like the weights, and

10



is not affected by the input.

When doing backpropagation through convolutional layers, the partial

derivatives for the weights, inputs, and biases all need to be computed.

The partial derivative for the neuron, xi is

∂xi =
∑
k∈K

Nf∑
j=1

wij ∗ ∂ykj (7)

where wij is the ith weight in the jth filter, Nf is the number of filters, ∂ykj is

the partial derivative in the output neuron (as in the output neurons from feed

forward) at depth j and location k, and K is all locations in the output from

feed forward that had xi in their feed forward computation. If a layer had a filter

size of 3 and a stride of 1, the neuron just to the right of the top left neuron

would be used in two computations. The indexes of the outputs of these two

computations would be what is in the set K.

The partial derivative for the weight, wl is

∂wl =
∑
i∈I

xi∂yf(i) (8)

where x is the input to the feed forward, I is the set of locations of all input

neurons that were multiplied with wi in feed forward, and ∂yf(i) is the partial

derivative of output neuron whose value had wlxi as part of its dot product.

The partial derivative for the bias at filter j, ∂w0j is

∂w0j =
∑
y∈Yj

∂y (9)

where Yj is the set of neurons produced by filter j.

An important part of constructing convolutional (and fully connected) layers

11



is proper weight initialization. If weights are not properly initialized, it can cause

the CNN to train slowly or poorly. One strategy is to use small random

numbers. A better strategy when using ReLU is to use initialize weights based

on a Gaussian distribution with a mean of 0 and a variance of
√

2/n where n is

the number of inputs to the neuron [24].

Activation Layers/Functions

After the neuron values are calculated by the convolutional or fully connected

layers, an activation function is typically applied to the calculated value.

Common activation functions include sigmoid and tanh, but recently Rectifier

Linear Units (ReLU) and Leaky Rectifier Linear Units (Leaky ReLU) [25] have

become popular.

ReLU has the following equation:

ReLU(x) =


x if x ≥ 0

0 otherwise

(10)

This is the same as saying ReLU(x) = max(0, x).

Leaky ReLU is similar, using the equation:

Leaky ReLU(x) =


x if x ≥ 0

αx otherwise

(11)

Where 0 ≤ α ≤ 1. A typical value for α is 0.01.

Backpropagation requires the derivatives of ReLU and Leaky ReLU, and the

12



local derivatives are described by the following equations.

dReLU(x) =


1 if x ≥ 0

0 otherwise

(12)

dLeaky ReLU(x) =


1 if x ≥ 0

α otherwise

(13)

To get the global partial derivative of the input to ReLU (or Leaky ReLU),

simply multiply dReLU(x) (or dLeaky ReLU(x)) by ∂y, which is the partial

derivative computed on the output of the activation.

Some previous research [26, 27] also put an upper bound on the value that

can come out of the ReLU function, sometimes called Clipped ReLU or ReLU

clipping. In the case of clipping with Leaky ReLU, there would be a lower bound

as well.

Max Pooling Layers

Pooling layers are generally used to reduce the size of the hidden layers of a

CNN. They have a 2-dimensional pool size and a stride length, and are strided

over their input similar to how convolutional layers are strided. The pool size

(width×height) must be less than or equal to the width and height of the input.

The output of the pooling layers always have the same depth as the input,

and the width and height can be computed by the following equations.

wo = (wi − wp)/s+ 1 (14)

ho = (hi − hp)/s+ 1 (15)

For these, wo, wi, and wp are the widths of the output, input, and pool,

13



Figure 1: Example of a 2×2 max pool operation. For a 2×2 max pool, the pool
size is 2 and the stride is 2. The maximum values in each input pool are bold
faced. Note that the maximums are computed separately at each depth.

respectively. Similarly, ho, hi, and hp are the heights of the output, input, and

pool, and s is the stride length.

The values of each output neuron is dependent on the type of pooling. Most

commonly used is max pooling. As said above, the pool is 2-dimensional, so it is

computed separately at each depth. The equation for the ith output neuron yi

for max pooling is

yi = max(x ∈ Xp) (16)

where Xp is the set of input neurons in the pool for output i. An example for

max pooling can be found in Figure 1.

Backpropagation through max pooling layers involves only routing the

derivative through the inputs that were the maximum in their respective pools.

If the numbers, 1, 3, 5, and 7 were the input numbers in a pool, changing the

values of 1, 3, or 5 by a little would not change the output of the max pooling

operation. Because of the this, the partial derivatives for these inputs are 0. The

local partial derivative for 7 would be 1, as any change done to that input would

have the same change done to the output. Then the global partial derivative at

14



the maximum input of a pool is 1× ∂o where ∂o is the derivative at the output

corresponding to the input. If the stride was smaller than the pool and an input

corresponded to multiple outputs, the partials at those outputs would be

summed.

Mathematically speaking the equation for the partial derivative going back

through a max pool layer is

∂mi =


∑

o∈Oi
∂o if mi is the maximum value for 1+ pools

0 otherwise

(17)

where ∂mi is the partial derivative at input i of the max pool layer and Oi is

the set of outputs which had mi as the maximum in their pools.

Fully Connected Layers

Fully connected layers typically comprise the last few layers of a CNN. These

layers are equivalent to the hidden layers in an artificial neural network. They

are called fully connected because every input of the layer has a weighted

connection to every output (Figure 2). These are the only layers that tend to be

1-dimensional. As such, if the previous layer is 3-dimensional, it is flattened

before becoming the input to the fully connected layer.

A fully connected layer applies the following function to calculate the value of

the jth node in the layer.

fj(x,w) = w0j +

||x||∑
i=1

wijxi (18)

In this equation, x is the input vector, w is the weights vector, and wij is the

weight connecting the ith input to the jth node.

15



Figure 2: A fully connected layer. The left side is the inputs to the layer, which
come from the previous layer. The right side is the nodes contained in this layer,
which will be the inputs of the next layer. The lines between them are weighted
connections.

In practice, it is easy to “fake” a fully connected layer using a convolutional

layer. If one sets the number of filters to the desired output size, sets the filter

size to 1 (a flat 1-D input of size N could be considered a 3-D input of size

1× 1×N to satisfy the needs of the convolutional layer), and does not use any

padding, the convolutional layer will have a separate weight connecting every

input and every output, thereby fully connecting the layer. This trick was used

for this project whenever a fully connected layer was needed.

16



Softmax

The softmax classifier is a classifier that gives normalized probabilities for each

class. Softmax is described by the following equation:

Softmax(x, i) =
exi∑n
j=1 e

xj
(19)

This gets the ith output of the softmax given the input vector X whose size is n.

While this equation for softmax is fine for mathematical purposes, it can

cause numerical instability when run on a computer, as the the denominator can

get very large. To deal with this problem, one can subtract the maximum value

in the vector from each value, causing all exponents of e to be 0 or negative,

increasing numerical stability. Because of the properties of exponents and

logarithms, this is does not change the value of the equation. Therefore, in

practice, the equation is often

Softmax(x, i) =
exi−max(x)∑n
j=1 e

xj−max(x)
(20)

The partial derivative for the softmax function is as follows, with j being the

index of the true classification:

∂Softmax(xi) =


1− xi if i = j

0− xi otherwise

(21)

Note that in both cases, the constant being subtracted from is the true value

of the output at that index.

17



L2 Regularization

Regularization is a common way to reduce overfitting in neural networks. L2

Regularization [28] works by adding

L2(W ) =
∑
w∈W

1

2
λw2 (22)

to the objective function, where W is the weights vector signifying all the

weights and λ is a (usually small) constant. For backpropagation, the derivative

of L2 regularization for each weight (applied separately) is

∂L2(w ∈ W ) = λw (23)

The effect of this is that every weight, w, is linearly decayed toward 0 by λw

after each weight update. This penalizes large weight values and encourages the

use of all weights and inputs rather than focusing mostly on inputs connected to

large weights.

Weight bounding

Weight bounding [29] can also be useful in reducing overfitting by preventing

large weights. Additionally, it can prevent numerical issues by not allowing

outputs to become large enough that they reach positive or negative infinity in a

computer. Individual weights are bounded such that |w| < C for some C > 0,

which is a hyperparameter chosen by the user.

Max norm regularization (introduced in [30], while [31] is one example of its

use with CNNs) is similar to weight bounding, but instead of bounding on a per

weight basis, max norm bounds the magnitude of the weight vector for each

neuron. For each neuron’s weight vector W , it bounds such that ||W ||2 < c for

some c > 0, which, again, is a hyperparameter.

18



Momentum

In order to speed up training of neural networks when using backpropagation,

several techniques have been developed. One commonly used technique is

momentum [32]. Momentum speeds up the movement of weights along the

gradient, which can allow the weights to move more quickly toward the

optimum. When using momentum, two new variables are created, V

representing the “velocity” vector of the gradient of the weights and µ

representing the velocity decay (essentially a coefficient of friction, if one

considers physics in the real world). All elements of the velocity vector typically

start at 0. The velocity vector is updated by the equation

V = µV − ηdW (24)

where η is the learning rate, dW is the derivative of the weights, and 0 ≤ µ ≤ 1.

The new weight update is then

W = W + V (25)

Nesterov momentum [33] is an adaption of standard momentum. Instead of

computing the gradient at the current position, we can instead look ahead to the

our future position (or an approximate of it). We know that the weight vector’s

position is about to be updated by µV , so our future position is W + µV . Our

new update is the result of the following three equations:

W ′ = W + µV (26)

V = µV − ηdW ′ (27)

W = W + V (28)

19



Another version of these equations that is a bit easier to implement is:

Vprev = V (29)

V = µV − ηdW (30)

W = W +−µVprev + (1 + µ)V (31)

Adjusting the Learning Rate

It is common to adjust the learning rate during training. At the beginning of

training, a larger learning rate is typically used to move quickly down the

gradient. Lowering the learning rate as training moves on, however, allows the

weights to move into valleys in the gradient that it would jump over with a large

learning rate.

One common way the learning rate is adjusted is using step decay [34]. Step

decay adjusts the learning rate, η such that every N epochs η ← αη, 0 < α < 1.

Both α and N are hyperparameters. Some adaptive methods for adjusting

learning rate have also been developed, such as Adagrad [35], RMSprop [36], and

Adam [37].

Batch Normalization

Batch Normalization [23] is a technique that seeks to reduce the internal

covariate shift in a neural network. Internal covariate shift is a term used by the

authors to describe how the distribution of the input values change at each new

layer. It is common to normalize the inputs to a network, and this technique

seeks to normalize the inputs at each layer of the network instead of just

normalizing the original inputs. Whereas the normalization on the inputs to a

network are typically done over the entire training set, the normalization at the

inner layers are done over each minibatch during training, hence the name.

20



Batch normalization can be treated as its own layer and placed between the

convolutional layer and its activation function (as done in [23]).

In addition to normalizing the inputs to a layer, batch normalization also

adds two new learned variables, γ and β which represent a scale and a shift

value, respectively, on the data. These values are trained to optimize the

distribution of the inputs, and can be set in such a way as to cause the batch

normalization to represent an identity function (i.e. not do anything) if that was

optimal. A separate γ and β are used for each dimension (neuron) when used

with fully connected layers. A separate γ and β are used for each feature map in

a convolutional layer.

Here are the equations needed to to calculate the output of the batch

normalization layer during training.

µB =
1

m

m∑
i=1

xi (32)

σ2
B =

1

m

m∑
i=1

(xi − µB)2 (33)

x̂i =
xi − µB√
σ2
B + ε

(34)

yi = γx̂i + β (35)

For these equations, m is the number of minibatch size, µB is the average

value of input x over minibatch B, σ2
B is the variance over minibatch B, x̂i is the

normalized value of the ith item in the minibatch, yi the output of the batch

normalization layer, and ε is small constant to prevent division by 0.

As said above, during training, minibatch statistics are used for normalization,

but minibatches are only used during training, not testing or inference. Thus a

21



new equation is needed to compute x̂ at run time. This equation is as follows.

x̂ =
x− E[x]√
V ar[x] + ε

(36)

E[x] and V ar[x] represent the population statistics over the training data for

mean and variance, respectively. [23] has equations to calculate these post

training, but keeping moving averages of µB and σ2
B during training can also be

used (and was used for this project). The running averages can be computed by

running the following equations at each computation of µ and σ2.

E[x] = αµB + (1− α)E[x] (37)

V ar[x] = ασ2
B + (1− α)V ar[x] (38)

For these equations, α describes how fast E and V ar change and 0 ≤ α ≤ 1.

To do backpropagation through the batch normalization layers, the partial

derivatives for each variable in the layer is needed. The derivatives are used to

train γ and β just like they are used to train the weights. If ∂yi is the partial

derivative at the ith output, the partial derivatives are as follows.

∂x̂i = ∂yi · γ (39)

∂σ2
B =

m∑
i=1

∂x̂i(xi − µB) · −1

2
(σ2

B + ε)−
3
2 (40)

∂µB =
m∑
i=1

∂x̂
−1√
σ2
B + ε

(41)

∂xi = ∂x̂i
1√

σ2
B + ε

+ ∂σ2
B

2(xi − µB)

m
+
∂µB

m
(42)

∂γ =
m∑
i=1

∂yi · x̂i (43)

∂β =
m∑
i=1

∂yi (44)

22



CHAPTER 3

RELATED WORK

Citizen Science Projects

There are a number of projects in many disciplines that have used citizen

scientists to examine data and generate results. PlanetHunters [38] is a project

that had citizen scientists inspect the NASA Kepler public data release to

identify potential planets. To reach citizen scientists, they used the Zooniverse

tool set [39]. To help ensure consistency and accuracy, each image had 10

separate citizen scientists classify it. Instead of classifying an image directly, the

users are asked specific questions about each image, and a decision tree uses

their answers to make the actual classification. In the end, the citizen scientists

helped identify two new planet candidates.

GalaxyZoo [40], which includes a data release [41], is a project that has citizen

scientists classify galaxies in images from the Sloan Digital Sky Survey [42]. The

project had more than 100,000 volunteers make over 40 million classifications.

The researchers found that the overall results of the citizen scientists were

consistent with results from professional astronomers. They also used a website

to allow access for citizen scientists, although in order to gain access to the

project, users were required to go through a tutorial and correctly identify 11 of

15 galaxies from a standard set. Some classification tasks were not asked of users

(such as classifying between different classes of spiral galaxies) so as not to

require people to have a high domain knowledge in order to work on the project.

While both of the previous projects use citizen scientists to aid in

astronomical research, Snapshot Serengeti [1] employs the use of citizen scientists

to aid ecological research by having them classify wildlife in data from camera

23



traps in Serengeti National Park. Like PlanetHunters, Snapshot Serengeti also

uses Zooniverse. There are over 50 species that are listed and the user can

describe animal features (color, patterns on skin, shape of horns, etc.) to narrow

down species that the image might contain.

Cornell has produced multiple projects that employed citizen scientists, such

as NestWatch [2, 3] and FeederWatch [2], both of which used citizen scientists to

help answer questions about avian species and their population sizes. NestWatch

has citizen scientists make observations about common birds at nests usually

near their homes, and it uses more experienced users and experts to find and

observe more elusive and rare birds. eBird [4] uses citizen scientists not only for

classifying data, but also for gathering data, as users are able to upload images

of avian observations taken from mobile devices. CamClickr is another citizen

scientist project that is used to create a record of nesting behavior and has been

used in a university biology class to teach identification of objects to

students [43].

Object Detection Techniques

Automated object detection is a popular topic in today’s research. Two of the

challenges for ImageNet’s Large Scale Visual Recognition Challenge for the past

few years is object detection from images on 200 fully labeled classes and object

detection on 30 fully labeled classes from video [13]. Many techniques have been

developed for these challenges and others. Among them are Region-based

Convolutional Neural Network(R-CNN) [14], Fast R-CNN [15] and Faster

R-CNN [16], which are region based CNNs. These use a region proposal method

to identify areas of interest that can be run through the CNN to get a

prediction. Fast R-CNN uses a region of interest (RoI) pooling layer to put

features from some variable sized region of interest into a fixed size feature map.

To increase efficiency in training, different RoIs from the same image share some

24



computation and memory, preventing redoing of the same computations. Faster

R-CNN adds a Region Proposal Network that shared convolutional features with

the detection network, which greatly reduces the computation needed for

generating proposal regions.

Another technique developed for object detection was YOLO [44] which was

refined into YOLOv2 [45]. Instead of trying to identify regions of interest to run

through the CNN, YOLO runs the whole image through a CNN. The CNN then

splits the image into regions and predicts a bounding box and a probability for

each region. It does this in a single pass through the CNN, unlike R-CNNs which

run many sub-images of the whole image through the CNN.

Object Detection in Ecological Research

Xu and Zhu [5] worked on automatically finding and identifying seabirds with

complex and uncontrolled backgrounds. They use a method called Grabcut [46]

to find and segment the seabirds. After segmentation, features are extracted and

run through three models (k-Nearest Neighbor [47], Logistic Boost [48, 49], and

Random Forest [50]) which then voted on the final classification. When their

system was run over 900 samples of 6 species of seabirds, their recognition

accuracy was 88.1%.

Villa et al. [51] used the data gathered from the Snapshot Serengeti project

and trained CNNs over that data. From the Snapshot Serengeti data they

created four datasets, a raw unbalanced dataset, a raw balanced dataset, a

balanced dataset that only includes animals that are present in the foreground of

an image, and a final dataset that included segmented images that contained

parts of an animal in them (meant to simulate a segmentation algorithm).

Different CNN architectures were tried with each dataset. The CNNs trained on

the unbalanced dataset were the worst, with the Top-1 accuracy around 58%

25



(the worst architecture tried for the unbalanced set had a 35% Top-1 accuracy).

The best results were with the final dataset at 88.9% Top-1 accuracy.

Abd-Elrahman et al. [6] used feature-based analysis (with color and shape as

the features) to detect birds in video recorded from a UAS. They manually

selected the input objects needed for feature-testing. In the end, their system

missed less than 20% of the objects and also had a false positive rate that was

less than 20%.

Another project by Chrétien et al. [7] used UAS images of white-tailed deer

that used both the visible light (RGB) spectrum and the thermal infrared (TIR)

spectrum. They were unsuccessful in using supervised and unsupervised

pixel-based detection methods to accurately find the deer, but they were able to

use object-based image analysis (OBIA) on the RGB and TIR data to achieve

50% detection results with no false positives. This matches manned aerial

surveys. However, when using only RGB imagery which contained 4 deer, OBIA

detected 1,946 deer. This drastic change in results emphasizes some of the

difficulty in using RGB analysis alone in certain project domains.

26



CHAPTER 4

WILDLIFE@HOME IMAGE DATASET

Wildlife@Home

Wildlife@Home is a citizen science project that seeks to combine crowd sourcing

and volunteer computing. Users on their website, which is hosted by the Citizen

Science Grid [52], can look through and classify collected data. There are three

main types of data that Wildlife@Home uses.

First, there is video that comes from nest cameras. These cameras are placed

near the nests of such species as Mallard ducks (Anas platyrhynchos),

Sharp-Tailed Grouse (Tympanuchus phasianellus), Interior Lest Tern (Sterna

antillarum athalassos), Blue Winged Teal (Anas discors), and Piping Plover

(Charadrius melodus). Between all these species there is over 100,000 hours of

video. Users are able to go through the video and annotate what is happening at

what times in the video. Examples of events could be a bird on the nest, a bird

off the nest and in/out of frame, or a bird preening. Previous work has run

background subtraction algorithms across the video dataset [53], as well as

training CNNs on the data [54].

Second, there are images that come from trail cameras. These cameras are set

up to take an image every 2 minutes and 1 image per second for 30 seconds if

motion is detected. As of this writing, there are over 1,800,000 trail camera

images. For the trail camera images, users are able to draw bounding boxes

around different species that appear in the images, and label them appropriately.

Lastly, there are images taken from UAS. Like the trail cameras, users are

able to put bounding boxes around the wildlife and label them. As this is the

data used for the work for this thesis, this data is described in more detail below.

27



In addition to annotating video and imagery, users can also volunteer their

computer. The Citizen Science Grid uses the Berkeley Open Infrastructure for

Network Computing (BOINC) [55], to allow users to run work for different

projects on their computer. This was used to speed up running background

subtractions algorithms over the video dataset [53].

Ecological Implications

The UAS images used in this work were taken in Wapusk National Park in

Manitoba, Canada. According to Peterson et al. [56], an overabundance of lesser

snow geese is causing the destruction of habitat in that area. In order for

recovery of the habitat, Peterson et al. [56] says there must be a reduction in the

lesser snow goose population. To determine the population trends, the lesser

snow geese in the area are counted annually. Ground counts of nesting snow

geese are typically used to base reproductive estimates, but the spatial extent

that can be reasonably surveyed by a ground count is limited. By using a UAS,

a larger area can be covered. However, this creates the downside of needing to go

through all the created imagery and count what amounts to small dots in large

images. This takes time, effort, and is prone to human error, so an automated

detection process could reduce the time from flight to population estimate.

While it is possible to do manned flights and have teams in the air counting

the geese directly (rather than through imagery), this is usually more expensive,

less safe, and likely more disturbing to the nesting birds. Safety is an issue due

to the speed and altitude one must fly at to accurately count birds from an

aircraft. Using a UAS has been considered to be a cheaper and safer alternative

to manned aircraft [57, 58].

28



Figure 3: Image of UAS takeoff

Gathering the Data

The UAS imagery used in this project was collected using a Trimble UX51 fixed

wing UAS (see Figure 3). The images were collected in Wapusk National Park in

Manitoba, Canada in 2015 and 2016. Two survey periods were conducted each

year, once during the lesser snow geese nesting season and once a month after

the nesting season in the post-hatch time frame. Flights were flown at altitudes

of 75m, 100m, and 120m above ground level. A 16 megapixel Sony camera

placed in the nadir position recorded the images with an 80% overlap between

consecutive images. Figure 4 is example of the flight path over an area. Over

65,000 images were taken in total, which reached over 3TB in size.

The images taken were then used to create mosaics for each flight. The

Trimble Business Center2 (version 3.51) was used for the 2015 data and Pix4D3

(version 3.2.23) was used for the 2016 data. In total, 36 distinct mosaics were

created that were over 50GB in size. Each mosaic was then split down into

mosaic split images (MSIs) that could be shown to experts and citizen scientists

1http://uas.trimble.com/ux5
2http://www.trimble.com/Survey/trimble-business-center.aspx
3https://pix4d.com/

29



Figure 4: UAS Flight Path

through a web portal. From the 36 mosaics, 8,759 MSIs were created.

Labeling of the Data

Wildlife@Home uses a web portal (Figure 5), to allow experts and citizen

scientists (collectively known as users) to go through collected imagery and make

observations. Users are shown an image and instructed to draw a box around all

observed wildlife. They are instructed to draw their boxes around the wildlife in

such as way as to completely envelop the wildlife while minimizing the amount of

negative space (background) in the box. The users then label the box according

to the species and coloration they believe the wildlife to be. Documentation is

available for them to compare against. Should they find no wildlife in an image,

they can declare there is “nothing here”. The boxes and labels gathered by the

users are recorded in a database for further usage.

30



Figure 5: The graphical user interface (GUI) of the web portal for identifying
objects in ecological imagery for the Wildlife@Home projects. This screenshot
shows a UAS image with two white snow geese identified by the user.

The raw data generated through the web portal is given one of two

designations, expert or unmatched. Unmatched observations are the raw

observations from the citizen scientists and can then be matched against each

other to help increase the accuracy of the data. The matching algorithm used

was the 10 pixel corner point method found in [19]. This brings the total number

of designations to three, described below.

Designations:

1. Expert - if the recording user is a trained expert. This data is considered

to be true without fault (although in reality there are errors) and is

considered the baseline by which all others (citizen scientists and CNN

predictions) are judged against.

2. Unmatched - if the recording user is a citizen scientist with no training by

the project leaders. Considered the least reliable data as if one untrained

31



(a) Original image from
2015 with blue-shift error

(b) Same image from 2015
after the normalizing algo-
rithm

(c) Example image from
2016

Figure 6: An example of the blue-shift error on a 2015 UAS image with the
resultant image after RGB normalization to closely match the RGB spectrum of
the 2016 UAS imagery. The white snow geese are actually white and the ground
is correctly brown in the normalized image.

user was wrong, data is mislabeled.

3. Matched - if two citizen scientist observations are matched, the intersection

of their bounding boxes is considered a matched observation [19].

For this project, only expert and matched data were considered. The

unmatched data was used only to generate the matched data. As Mattingly et

al. [19] determined that matched citizen scientist data tends to be better than

unmatched data, the unmatched data was not used directly. Thus, for the rest of

the paper when user designations are discussed, only the expert and matched

designations are being considered.

Technical Issues and Corrections

When the 2015 imagery was collected, there was a mechanical error in the RGB

camera used to take the images that resulted in the images having a strong blue

tint. To deal with this, the 2015 images were compared and normalized against

the 2016 images. Each of the red, green, and blue channels were multiplied by

233.0/150.0, 255.0/189.0, and 236.0/190.0, respectively, and then floored and

32



each channel was capped at 255. These numbers were chosen by sampling several

images from both 2015 and 2016 data and comparing the RGB values of white

phase snow geese in both datasets. The numerators describe the average integer

value of the white phase snow geese color in the 2016 data and the denominators

describe the average integer value of them in the 2015 data. Manual inspection

of the normalized data appeared to be correct (Figure 6).

33



CHAPTER 5

METHODOLOGY

The purpose of this work is to not only identify lesser snow geese in UAS

imagery, but also to count them. In this respect it is different than some

applications of CNNs which only seek to classify images. Also, in contrast to

many benchmark datasets used with CNNs, the objects of interest are relatively

small compared to the whole image. These goals and characteristics of the data,

as well as the fact that it is an unbalanced dataset, influenced the decisions made

below in regard to how to best train CNNs on this data.

Matching User Observations

Before any training can be done with the CNNs, accurate training data is

needed. Previously, matched user designation was defined and required that at

least two separate users have a matched observation. The matching algorithm

used was developed and used by Mattingly et al. [19] to compare citizen scientist

observations to expert observations. The matching algorithm they determined

worked best was a 10 pixel corner-point distance algorithm for matching

observations and an intersection method for extracting the matched observation.

The N pixel corner point distance algorithm is as follows: if the euclidean

distance between the top left corners of two observations is less than or equal to

N pixels, the top left corners match. If all four corners between two observations

match, the two observations are considered matched (Figure 7a).

The intersection extraction method defines the matched observation to have

the corner points of the box describing the intersection of the two user

observations. Because of this, the bounding box for the resultant matched

34



(a) Corner-point distance algorithm (b) Intersection extraction algorithm

Figure 7: Visual representation of algorithms used for matching two observations

observation will never be larger than either of the users observations and should

be a tighter fit around the object of interest (Figure 7b).

Analysis of Previous Work on Wildlife@Home

Previous work on the Wildlife@Home dataset in [18] has promising, albeit not

ideal, results. The results of that work had the CNNs trained producing a fair

number of false positives, ending with an 88% overestimation of the total

population in the best case when training data generated by experts was used.

This led to the questions of what was being misclassified as snow geese and why.

As seen in Figure 8, there appears to be certain areas of background, such as

some of the rocks, that have similar features to white phase snow geese.

In general, CNNs tend to be good at learning and discerning differences

between similar images. Consider the MNIST dataset [8] and that CNNs have

been trained on it with very high accuracy (e.g. [10][59] amongst many others).

This is despite the fact some of the images between classes can look very similar,

such as a handwritten 5 looking like a 6 or a 4 looking similar to a 9. So why

does the CNN in [18] not always do a good job at discerning between rocks and

35



(a) Part of an image containing white phase snow geese

(b) A CNN prediction over the image

Figure 8: An example of an image and CNN prediction from previous work [18].
Note that it correctly identifies the white phase snow geese, but it also mis-classifies
background that have similar features to the snow geese. The boxes in the pre-
diction were manually placed and show the actual locations of the snow geese.

white phase snow geese? One possible reason is that many of the networks that

hold or have held near world record accuracies on benchmark datasets are often

very deep and large (e.g. VGGNet with its 140 million weights [60]) compared

to the network used in [18].

Another possible reason is it has to do with the nature of the data. The

MNIST dataset has roughly the same amount of data for each class. In the

Wildlife@Home dataset, the per pixel ratio of foreground to background is

incredibly small with over 99% of pixels being background. The unbalanced

dataset problem is well defined with many solutions such as undersampling the

majority class (used in [18]), oversampling the minority class, and SMOTE [61].

However, it is also important to note that the per pixel percentage of

background with similar features to the snow geese is quite small compared to

the rest of the background. This can be seen in image shown in Figure 8 (and it

holds true in other images in the Wildlife@Home dataset). This brings up

36



another difference in Wildlife@Home data compared to some other datasets.

While the images in the MNIST dataset have a fairly similar look between

images of the same class (not perfect similarity by any means, but fairly similar),

if one wants to classify snow geese versus background, the class of “background”

can vary substantially in color and features. As it happens, a small portion of

this background class looks more like a snow goose (a different class) than it

looks like the rest of background (the same class).

The small subset of background data, thus, is of primary interest. Let us

consider defining two subclasses of the background class, the “hard background”

consisting of background similar to the foreground, and the “easy background”

which consists of everything else. For now, let us define “background similar to

the foreground” as “background data that might be marked as a false positive by

an arbitrary, trained CNN”, and leave the definition somewhat open-ended.

Now, if the majority class is undersampled (to deal with the imbalance) and

images are taken from the whole background class randomly, the ratio of hard to

easy background that the CNN would train on would be small and few hard

background images would be used.

So, in a sense, the Wildlife@Home dataset has an unbalanced dataset inside

another unbalanced dataset. Background is a strong majority over foreground,

and easy background is a strong majority over hard background. One solution,

and the one explored in this work, would be to present more hard background

images to the CNN, i.e. potentially undersample the easy background and/or

oversample the hard background.

One way to do this would be to split the background into two separately

labeled classes, hard and easy, and have the CNN consider them separately. The

largest inhibitor to this method, however, is labeling of the hard and easy

background. Currently, the Wildlife@Home dataset is labeled by the drawing of

bounding boxes around wildlife by experts and citizen scientists. It seems

37



infeasible to ask users to also label the open ended “background similar to snow

geese” using bounding boxes or any other method. Even if it was a feasible

request, what if their definition of “similar” is too strict for the CNN, or too

loose?. It could be some of the labeled hard background is actually easy for the

CNN to classify, and vice versa. It also leads to the question, should the CNN be

penalized in terms of error for misclassifying hard data as easy (or vice versa)?

Should the error only consider background vs foreground even though its training

on hard background vs easy background vs foreground (how would one even train

like this)? These questions and infeasibilities suggest a need for another method.

Another (similar) method could be ensuring that hard background is included

in the background shown to the CNN at a higher ratio than found in the dataset

(essentially oversampling the minority sub-class, or undersampling the majority

sub-class). This runs into the same problem of trying to identify hard and easy

background as the previous method, although it alleviates some of the questions

of how to train it. While manual labeling of hard and easy background seems

infeasible, what about an automated solution? Consider in the next section, an

automated feedback loop.

Feedback Loop

Let us consider the definition of “similar data” developed in the previous section,

which led to the definitions of hard and easy background. Also, let us change

definition slightly from an arbitrary CNN to a particular CNN. Thus, the

definition of “background similar to the foreground” now reads “background

data that might be marked as a false positive by a particular, trained CNN”.

This implies that for different CNNs trained on the same dataset, what is hard

background and what is easy background might be different, although it seems

likely that they will contain similarities. Note that, through this change, hard

background and easy background take on firmer definitions. By running the

38



trained CNN over examples from the dataset, one can look at the false positives

and define those areas as hard and the rest as easy.

This idea is the basis of the feedback loop. By the definition above, a CNN

must already be trained in order to determine hard and easy background. In the

feedback loop, a CNN is given feedback by identifying hard background and

retraining the CNN over the same overall dataset with care taken to sample

more hard background during this retraining. Ideally, after the retraining, the

CNN should do better on the data that was “hard” for it before (i.e. less false

positives). Also, after the first retraining, what is “hard” for the CNN will most

likely change. Some of the data that was hard should no longer be and some

data that was not hard before might be. Going through multiple iterations of

retraining should help the CNN get better at correctly classifying the hard data

and ideally do better overall.

To retrain a CNN at iteration t of the feedback loop, the starting weights will

be the weights from the CNN at iteration t− 1. For the starting weights at

iteration 0, which will be the iteration number representing the initial training,

they can be initialized however one would choose to typically initialize weights

(random, pre-trained on a similar dataset, etc).

One major downside to this algorithm, though, is that for N iterations, it

needs to run over the data N times. This factor of N added to the complexity

greatly increases the computational cost of training compared to not using the

feedback loop. While the linear increase in complexity and computational cost is

not ideal, the feedback loop does prevent the need to present all possible

background images while training the CNN, which could potentially have even

larger computational costs in some extremely unbalanced datasets based on

factors such as amount of data in the majority class and the number of epochs

trained for.

While it may not be possible to reduce the complexity of the feedback loop

39



Figure 9: Basic flowchart for feedback loop.

from linear, it is possible to reduce its computational cost. Consider an ideal

world where retraining the CNN had the possibility of making it better at

classifying the training examples it was getting wrong, but the retraining could

not cause the CNN to do worse on the examples it was correctly classifying. In

such an ideal world, once a CNN at iteration t correctly classified a training

example, a CNN at iteration t+ n, n > 0 would not need to look at that

particular example. If, at each iteration, all training examples that were

correctly identified were removed, the number of examples to train on would go

down in size through continued iterations, decreasing overall computational cost.

So then, the following assumption is made. If the network correctly predicted

an image at iteration t of the feedback loop, it will probably predict that same

image correctly at iteration t+ 1. There is, of course, no guarantee of this. So to

decrease computational cost, the following change can be made to the feedback

loop. If the CNN at iteration t incorrectly classifies a training example, then the

trained CNN at iteration t+ 1 will be forced to run over that example to see if

40



the new training fixed it. However, if the CNN at iteration t correctly classified

the training example or did not run over that example, then the CNN at

iteration t+ 1 has some probability, p, of running over that example. This is for

the purpose of making sure the retraining did not cause a previously correct

classification to become incorrect. While this does not completely negate the

increased computational cost of the feedback loop, it does decrease it. Also, for

the initial training before the feedback loop is employed, all examples are to be

used.

Sampling Amounts

When dealing with an unbalanced dataset and the decision is made to

undersample a class, a natural question that arises is how much should the class

be sampled? In many cases, a 1:1 ratio is chosen so each class is presented the

same number of times. When dealing with an extremely unbalanced dataset like

Wildlife@Home, should each class be presented the same number of times, or

should the extreme majority class be presented more often? If one class is

presented much more often while training a CNN than another class, the

resulting CNN will usually have a bias toward the class presented more. Is this

bias acceptable or even desirable in a situation where one class has a strong

majority? And how exactly does this bias in training affect the overall results?

To attempt to answer some of these questions and improve results, this

project will use different sampling rates and compare them. When a class is

undersampled during training of the CNN, the amount of images of that class

used each epoch will be fixed, and each epoch the images used will be taken from

the given examples at random. This should help increase the diversity of images

shown to the CNN.

41



Counting objects

The process of training and running the CNNs in such a way that the detected

objects can be counted is the same as in [18, 54]. CNNs will be trained on fixed

size images which have relatively small dimensions. The fixed size images will be

comprised of sub-images of larger images (the MSIs). Experts and citizen

scientists have placed bounding boxes around snow geese in the imagery, and

these bounding boxes are used to label the sub-images with their appropriate

class.

Once a CNN is trained (or retrained) on these fixed size images, it will be run

over full size images. To run the CNN over the full size images, the CNN is first

run over its sub-image of appropriate size in the top left-hand corner of the

image, then it is strided across the image, generating predictions on the

sub-images as it goes. Another way to think of this would be to consider a

sliding window that is the input size of the CNN. It starts at the top left of the

image and slides to right until it hits the right edge, then it moves down and

starts again from the left side. It continues to move right and down until it has

seen the whole image. The distance the CNN moves over the input each time is

called the stride, and, after each movement, the image that can be seen through

the window is run through the CNN. See Figure 10 for an example.

The outputs from each of the sub-images are then reconstructed back into a

prediction for the whole image. When a sub-image is run through the CNN, a

number between 0 and 1 is returned for each class signifying the confidence the

CNN has that the sub-image is of that class (as described in Chapter 2). Each

pixel in the prediction image also has a vector of confidences that the particular

pixel is of a given class. The formula for calculating this vector is as follows:

42



Figure 10: Example of striding a CNN across an image. The red box denotes
which part of the image is being run through the CNN. When the CNN reaches
the right edge, it will move down and start again at the left edge. The amount
the CNN moves over each time is called the stride. This can also be thought of as
a sliding window.

C0(pj) =
∑

s∈S(pj)

CNN(s) (45)

where pj is the jth pixel in the image, C0(pj) is a function returning an

intermediate vector of confidences that pixel j is of each class, S(pj) is the set of

all sub-images containing pixel j, and CNN(s) returns the output vector from

running the CNN on sub-image s. As the sums may total to greater than one for

a particular class, they can be normalized. The normalization used for this in

this work is the square of the value over the sum of squares for all values in the

particular vector. The equation for the confidences for each class, c in the set of

all classes C, for pixel j is:

43



C(pjc) =
p2jc∑
i∈C p

2
ji

(46)

Each class is assigned a color, and by finding and counting blobs of the color

assigned to the snow geese, a predicted population count can be obtained.

44



CHAPTER 6

IMPLEMENTATION

Data

Data Formats

Multiple data formats were used to represent the data and its meta-data. The

main formats used were IDX, PNG, a custom binary format, and CSV.

IDX files are a type of binary file used in the MNIST dataset [8]. They are

able to store multi-dimensional matrices. Their format is as such: the first 4

bytes are what is known as the “magic” number. The first 2 bytes of the magic

number are always 0, the 3rd byte encodes the data type, and the fourth byte is

the number of dimensions. Following the magic number is the size of each

dimension stored as Big Endian Integers (4 bytes each). Following the

dimensions is the data. For datasets generated and used in this project, the data

is always stored in Little Endian Order, while the dimensions are in Big Endian

Order. This allows compatibility with the MNIST dataset while trying to be

consistent with the fact that most processors (including the ones used for this

project) are Little Endian.

In this project, IDX files are used to store data of a fixed size that is to be fed

to the CNN as training data. For a dataset stored as IDX files, two files are

used, a data file that stores the image data, and a label file that stores what

class each image belongs to. They are stored in a similar way to parallel arrays,

where the ith element in the data file matches up to the ith element in the label

file. The data file is encoded as unsigned bytes (represented by a 0x08 as the

third byte of the magic number) and is of 4 dimensions (a vector of 3

45



dimensional images). The label file is encoded as signed integers (represented by

a 0x0C in the magic number) and has one dimension. How the IDX files were

generated is described in the preprocessing steps below. Separate pairs of IDXs

were created for each user designation.

PNG files were used to store both the MSIs and CNN predictions on those

MSIs.

A custom binary format was used to store user observations. These files will

be referred to as “location files”. The location files store the number of

observations, as well as the location, species, and a hash of the user id of each

observation for each MSI. All numbers are 32 bit integers stored in Little Endian

Order except for the user id hash which is 128 bit. The format of the files is as

follows: the first integer is the MSI number, followed by the number of

observations for that MSI. Then for each observation is the species, x location in

pixels, y location in pixels, width in pixels, height in pixels of the observation,

and then the user id hash, in that order. This is the format for each MSI and is

repeated for each MSI in the file.

A separate locations file was created for each designation of users. For images

that had multiple users within the same designation look at the image, the

observations from each are unioned. That is, if user A had 3 observations and

user B had 3 observations, there would be 6 observations in the locations file,

even if they were of the same object1. These locations files are used in the

feedback loop to find misclassified background areas (described below).

CSV files were used to store the count of white phase snow geese for each

MSI. The format of each line was “MSI number, white count, blue count” (blue

count was not used for this project) and each line had a different MSI number.

All of the CNNs were compared against the same count file for consistency. The

1Even if two observations are of the same object, it is unlikely that the bounding boxes drawn
by the users are in exactly the same location, so the observations are still in some sense distinct

46



count file used was from the experts only, as this is considered the “most true”

count. In the event that a particular MSI had multiple experts look at it who

disagreed on the count, an average was taken that was then rounded to the

nearest whole number.

Partitioning the Data

One goal of this project was to compare CNNs trained by expert data to CNNs

trained by citizen scientist data. Thus, in order to directly compare expert users

and matched users against each other, only MSIs that had both expert

observations and matched observations (i.e. the intersection of the expert and

matched data) was used. This data was then further split into a training set and

a testing set. Approximately 20% of the MSIs were reserved for testing and the

rest was used for training. Because there are considerably more MSIs that have

no observed wildlife in them than MSIs that do (2803 compared to 1351), the

20% for the test set was created by combining 20% of the MSIs with observations

in them (262 MSIs) and 20% of the MSIs that did not have observations in them

(558 MSIs). The total dataset had 3334 training MSIs and 820 test MSIs.

Preprocessing Steps

Three preprocessing steps were applied to the MSI data. The first involved

choosing which MSIs would be used, and how those used were split into training

and testing sets, as described above. The second preprocessing step was the

normalization of the blue-shifted 2015 data, described in Chapter 4. The third

was the conversion from the MSIs as PNGs to the IDX files. Only MSIs from the

training set were used to create the initial training IDXs and the retraining

IDXs. The testing MSIs were never made into IDXs.

The observations from the users are contained in bounding boxes of various

47



sizes, and the MSIs themselves are not of a consistent size. However, CNNs take

in fixed size input for training and running. Also, a label for each piece of

training data is needed for supervised learning. This disparity is what caused the

conversion from PNGs and locations to the IDXs. A fixed image size was chosen

for the IDX data, which is the same as the input size of the CNN. The

foreground images (images of snow geese) were obtained separately for each user

designation, while the background images were shared amongst the different

designations. For each designation, then, the initial training IDXs were created

by combining the unique foreground set with the shared background set.

To get the foreground images, all observations from the location data were

extracted and sized to be the given input size. For observations of a size different

than the input size, the center of the observation became the center of a new

bounding box of the input size, which was then extracted and added to the IDX

file2. For the expert designation there were 2054 foreground observations, while

for the matched designation there were 6560. The reason there is so much

difference between the two classes is that more citizen scientists looked at the

data than experts. This matters because increasing the number of citizen

scientists looking at an MSI can cause an increase in 2-way matched observations

that is greater than linear. For instance if 4 citizen scientists looked at an MSI

and marked the same bird, 6 two-way matched observations would be created

(4C2, in this case, nC2 in general). On the other hand, if 4 experts marked the

same bird, only 4 observations would be made, as the experts are not matched.

There were 8 input sized background images grabbed from each training MSI

for a total of 26,672 background examples. The locations within the MSIs were

chosen at random while taking care to ensure that they did not overlap with an

observation from any user designation.

2Care was taken to ensure the new box did not run off any of the edges of the image. In
this case, the new box was shifted the appropriate direction to ensure that it was entirely on the
image.

48



Figure 11: Screenshot of training interface.

Convolutional Neural Network

The CNN was implemented using C++ and OpenCL. Each type of layer

(including batch normalization) had their feed forward and backpropagation

functions computed using OpenCL, while the C++ code preprocessed the data

and made the appropriate OpenCL calls. The OpenCV library was used for

reading and writing images. Separate command line programs were developed

for training and testing the CNNs. All code is available at

https://github.com/Connor-Bowley/neuralNetwork.

49

https://github.com/Connor-Bowley/ neuralNetwork


Feedback Loop

The feedback loop was implemented using C++ and Qt. It comprised of a

simple interface to get the needed inputs (see Figure 11) and called the C++

programs for training and running the CNNs. As it ran, it showed preliminary

results, including the best epoch of each training or retraining, and the blob

counts for CNNs at each completed iteration.

The purpose of the feedback loop is to give the CNN feedback on what it is

doing wrong by identifying misclassified training data and feeding it back into

the CNN. Because the CNNs are trained on IDX files and tested against PNG

images, the feedback loop needed to search through the PNGs for areas that

were misclassified and convert those areas into IDX files.

Once a trained (or retrained) CNN had generated its prediction image over a

training MSI, that prediction was run through another program which strided

across it (just like the CNN strided over the training MSI) looking for

sub-images that were misclassified. A sub-image was deemed misclassified if it

was a false positive. Areas close to a bounding box were exempt from this

process because the area predicted to be a snow goose by the CNN was often a

little larger than the goose itself (as the CNN predicts the whole sub-image to be

of a goose if a goose is contained within it). The definition of “close” was set to

be: any sub-image with a pixel contained in a box that extends from a user

supplied bounding box by N pixels in each direction is exempt from being

marked as misclassified. In this work, N was set to be the same size as the CNN

input size. All misclassified sub-images were then appended onto the previous

iteration’s training IDXs.

Reading closely, one will note that false negatives are not included in this

implementation of the feedback loop. Early trials (over expert data) did include

this, but results improved somewhat when it was taken out. The reason for this

50



is that the expert data was not perfect. Even at the first iteration of retraining,

most of the images the feedback loop found to be false negatives were actually

true negatives. Thus, by the feedback loop returning examples that were

background but labeled geese, the CNN was being given mislabeled training

data.

CNN Architecture and Settings

The size of the fixed size training sub-images in the IDX files was decided to be

18×18 pixels. This size was chosen because most of the bounding boxes around

the snow geese were within this size. Given the 18×18 input, the CNN

architecture was created. The architecture can be seen in Figure 12 and Table 1.

This architecture is the same as used in [18]. After each convolutional layer, a

batch normalization layer and an activation layer was placed, in that order. For

batch normalization, all γs were initialized at 1 and βs were initialized at 0. The

activation function used was Leaky ReLU with an α of 0.01. The output of the

Leaky ReLU was bounded to [-5000.0,5000.0].

Weights for the neurons in the convolutional and fully connected layers were

initialized using a normal distribution with mean of 0 and a standard deviation

of
√

2/n where n is the number of inputs to the neuron. After each weight

update, the value was bounded such that |w| ≤ 50.0 for each weight w. The

bound here and for Leaky ReLU were to prevent outputs from reaching NaN or

positive or negative infinity.

Prior to training or prediction, all data was normalized. When training, the

normalization done was to subtract each pixel by the mean and divide by the

standard deviation with respect to all pixels from all training images. The mean

and standard deviation calculated during training was then used for

preprocessing at run time, rather than using the mean and standard deviation of

51



Figure 12: Architecture of the CNNs used in this work

Table 1: Architecture of the CNNs used in this work

Layer Type Layer Dims Filter / Stride Filters Padding
Pool Size

Input 18 x 18 x 3

Convolutional 18 x 18 x 32 3 1 32 1

Max Pooling 9 x 9 x 32 2 2

Convolutional 9 x 9 x 64 3 1 64 1

Max Pooling 3 x 3 x 64 3 3

Fully Connected 1 x 1 x 128 128

Fully Connected 1 x 1 x 3 3

the test set. For instances of retraining, the mean and standard deviation was

from all images ever trained on, including images from previous iterations.

Training

Minibatch gradient descent was used, with minibatch size of 64. The learning

rate started at 1× 10−3 and was multiplied by 0.75 each epoch. L2

Regularization was used with a λ of 0.05. Training was done for 30 epochs, and

the epoch whose weights had the best accuracy on the training data was chosen

as the final output. Nesterov Momentum was used with a momentum constant

of 0.9.

52



Feedback Loop

For the feedback loop, each dataset and sampling rate pair had 3 separate trials

run. Each trial had 5 iterations, consisting of 1 base training and 4 retraining

iterations. Each retraining iteration had its initial weights (as well as γs and βs

for batch normalization) set to the output of the previous iteration’s training.

Other than that, the parameters, such as number of epochs, were the same.

Prediction

For predictions over the training and test MSIs, the stride used for striding the

CNN across the MSIs was 9 pixels in each direction.

Sampling Rates

To test the effects of sampling rates with this unbalanced dataset, four different

ratios of background to foreground were used, 1:1, 3:1, 5:1, and 7:1. In general

an N:M ratio would say that the CNN trained on N background examples each

epoch for every M foreground examples it trained on that epoch. Because the

amount of background to foreground is greater than even 7:1, the subset of

background used each epoch was chosen at random from the background in the

IDXs and differed each epoch.

Hardware

The CNNs were trained and run on a Mac Pro using a 3.5 GHz 6-Core Intel

Xeon E5 processor.

53



Evaluation of the Results

For the evaluation of the results, the main quantifier used was the difference

between the population estimate by the CNNs and the population estimate by

the experts. All CNNs, even those trained on data from the matched citizen

scientists, were compared against the expert count. This allows a comparison of

expert produced data and citizen scientist produced data as training data for

neural networks.

How the CNNs performed after the feedback loop compared to before was

also examined. The base training iteration, named iteration 0, happens before

any retraining and therefore serves as a baseline.

The estimates generated by the CNNs were graphically represented at each

iteration. These include the summary statistics of min, mean, and max error for

each CNN.

54



CHAPTER 7

RESULTS

Three runs were conducted for each configuration of training set and

background to foreground ratio. The results of the blob counter over the

prediction images were averaged (Table 2). CNNs trained on the expert dataset

and the CNNs trained on the matched dataset both had low error. Interestingly,

the CNNs trained on the matched data performed better under higher

background to foreground ratios than the ones trained with expert data. One

possible reason for this is that the citizen scientist data is matched while the

expert data is not. There was not enough expert data to do matching over it,

and there are confirmed cases of expert misclassification.

CNNs that went through the feedback loop were compared to their respective

baselines (Table 3). Even one iteration of the feedback loop dropped errors

significantly. The decrease in error after one training iteration was larger than

the decrease in error that happened when the sampling rates were changed

(compare the first two lines in a cell to the first line in two different cells that

used the same training set).

As far as sampling rates go, while increasing the sampling of background did

reduce error in the baseline, it actually seemed to increase the overall error after

using the feedback loop. The exception to this was going from a 1:1 ratio to a

3:1 ratio when using the matched dataset. This suggests that the bias introduced

from the large ratios caused too many false negatives in the retraining, as seen

by the fact that the population predictions after the feedback loop are

consistently low for all ratios other than 1:1.

The estimates generated by the CNNs for each configuration of training set

55



Table 2: Blob Counter Results

Training set BG:FG Predict Actual Error |%Error|

Expert 1:1 348.33 331 17.33 5.24
Expert 3:1 288.67 331 -42.33 12.79
Expert 5:1 255.00 331 -76.00 22.96
Expert 7:1 218.00 331 -113.00 34.14

Matched 1:1 398.67 331 67.67 20.44
Matched 3:1 318.00 331 -13.00 3.93
Matched 5:1 301.33 331 -29.67 8.96
Matched 7:1 271.33 331 -59.67 18.03

CNNs were trained using given training set and the background to foreground
sampling ratio given by BG:FG. The Predict column is the population prediction
on the test set. The Actual column is the actual count over the test set by our
expert users. The numbers given are the average of the best iteration results of
each run. Bold face rows are best for their training set. Italicized row is best
overall.

and background to foreground ratio were graphically represented at each

iteration. The worst error obtained by any CNN that had been through the

feedback loop at all, did better than the very best baseline (Figure 13; a 215

goose under-estimate for the worst feedback CNN over expert 7:1 compared to

273 over-estimate for the best baseline run over matched 7:1).

56



Table 3: Comparison of feedback loop to baseline.

Training set BG:FG Iteration Predict Actual |%Error|

Expert 1:1 0 2518.33 331 660.83
Expert 1:1 1 468.67 331 41.59
Expert 1:1 best (3.67) 348.33 331 5.24

Expert 3:1 0 850.00 331 156.80
Expert 3:1 1 279.00 331 15.71
Expert 3:1 best (3.00) 288.67 331 12.79

Expert 5:1 0 699.00 331 111.18
Expert 5:1 1 224.00 331 32.33
Expert 5:1 best (1.67) 288.67 331 22.96

Expert 7:1 0 626.33 331 89.22
Expert 7:1 1 203.33 331 38.57
Expert 7:1 best (1.33) 218.00 331 34.14

Matched 1:1 0 1878.33 331 467.47
Matched 1:1 1 461.67 331 39.48
Matched 1:1 best (3.67) 398.67 331 20.44

Matched 3:1 0 1054.33 331 218.53
Matched 3:1 1 330.00 331 0.30*

Matched 3:1 best (2.67) 318 331 3.93

Matched 5:1 0 856.00 331 151.61
Matched 5:1 1 272.33 331 17.72
Matched 5:1 best (2.67) 301.33 331 8.96

Matched 7:1 0 708.00 331 113.90
Matched 7:1 1 251.00 331 24.17
Matched 7:1 best (2.67) 271.33 331 18.03

* While these numbers averaged to a very low amount of error from the
actual, the individual numbers themselves were not the best in their re-
spective runs.

At iteration 0, the feedback loop has not yet been employed, which makes it an
effective baseline. It can be seen that even one iteration of retraining drastically
cuts the error. The best iteration varied between trials. The average best iteration
for each CNN is given in parentheses.

57



(a) Expert 1:1

(b) Expert 3:1

Figure 13: Average error based on iteration for each dataset and background to
foreground sampling ratio. The line is the average, with the filled in portion
showing the maximum and minimum values seen at each iteration. A thinner
filled in region has less variance than a thicker one.

58



Figure 13: cont.

(c) Expert 5:1

(d) Expert 7:1

59



Figure 13: cont.

(e) Matched 1:1

(f) Matched 3:1

60



Figure 13: cont.

(g) Matched 5:1

(h) Matched 7:1

61



CHAPTER 8

CONCLUSION

This paper used data gathered from citizen scientists and experts to train

convolutional neural networks. These networks were able to provide estimates of

the population of white phase snow geese collected from from UAS imagery.

While previous work yielded a large number of false positives [18], the addition

of a feedback loop in this work drastically reduced the error and yielded runs

whose population estimates were not always overestimates.

The feedback loop introduced is simple, yet effective, way to increase accuracy

on massively unbalanced datasets. It provided an automated approach to

choosing which examples from the majority class were most important to include

in training. As the focus of the feedback loop was more the data itself than the

CNNs, any new improvements in CNN training techniques could be easily

applied to system. In fact, any image classification method that uses supervised

training could most likely be used with the feedback loop.

The best results for CNNs trained on the data provided by the citizen

scientists had an average error of only 3.93% for their population estimates, down

from 150% in previous work. Similarly, CNNs trained on expert provided data

had an average error of 5.24% down from 88% in previous work. The low error

for both datasets shows both the viability of using citizen scientists to produce

training data for CNNs and the viability of using CNNs in ecological research.

Future Work

This project focused on white phase lesser snow geese collected from UAS

imagery. In these same images are blue phase lesser snow geese. These blue

62



phase geese are less in number (approximately 1/3 of the population) and more

camouflaged than their white phase brethren. As the feedback loop did well on

the white phase geese, applying it to the more difficult blue phase geese would be

an obvious first step for future work.

Further improvements to accuracy could be made on the predictions for the

white phase snow geese. The CNNs used in this work were fairly small and

shallow compared to other works. This is good as far as speed goes, but there is

the possibility it harmed accuracy. Training deeper networks with more filters

could be a way to further improve accuracy. Another potential improvement

could be to combine the feedback loop with a system like EXACT [9] which

would generate an ideal CNN architecture in an automated fashion.

One of the largest downsides to the feedback loop is the increase in

computational cost. The computational cost can never be as low as normal

training. This is because the 0th iteration of the feedback loop is simply a

normal training, and everything else is then extra. Thus, future work could look

into advancements for dealing with datasets such as Wildlife@Home’s which is

not only unbalanced, but also has a majority class that contains examples which

are visually similar to the minority class. The feedback loop makes the

assumption that some examples of the majority class are “harder” to identify

than others, and seeks to find these hard examples. While what is misclassified

by one CNN might not be the same as what is misclassified by another, there are

likely similarities. If one could identify the “hard” background prior to the initial

training, the feedback loop could possibly be eliminated. Even if it wasn’t

eliminated entirely, it could “jump start” and need fewer iterations.

Other improvements could be made by applying region based CNNs or a

system like YOLOv2 to the Wildlife@Home dataset and seeing if and how those

systems could be integrated into the feedback loop.

63



BIBLIOGRAPHY

[1] Lion Research Center, University of Minnesota, [Accessed Online, 2012]

http://www.snapshotserengeti.org/.

[2] R. Bonney, C. B. Cooper, J. Dickinson, S. Kelling, T. Phillips, K. V.

Rosenberg, and J. Shirk, “Citizen science: a developing tool for expanding

science knowledge and scientific literacy,” BioScience, vol. 59, no. 11, pp.

977–984, 2009.

[3] T. Phillips and J. Dickinson, “Tracking the nesting success of north

america’s breeding birds through public participation in nestwatch,” 01

2008.

[4] C. Wood, B. Sullivan, M. Iliff, D. Fink, and S. Kelling, “ebird: engaging

birders in science and conservation,” PLoS biology, vol. 9, no. 12, p.

e1001220, 2011.

[5] S. Xu and Q. Zhu, “Seabird image identification in natural scenes using

grabcut and combined features,” Ecological Informatics, vol. 33, pp. 24–31,

2016.

[6] A. Abd-Elrahman, L. Pearlstine, and F. Percival, “Development of pattern

recognition algorithm for automatic bird detection from unmanned aerial

vehicle imagery,” Surveying and Land Information Science, vol. 65, no. 1,

p. 37, 2005.

[7] L.-P. Chrétien, J. Théau, and P. Ménard, “Visible and thermal infrared

remote sensing for the detection of white-tailed deer using an unmanned

aerial system,” Wildlife Society Bulletin, vol. 40, no. 1, pp. 181–191, 2016.

64



[8] Y. LeCun and C. Cortes, “Mnist handwritten digit database,” AT&T Labs

[Online]. Available: http://yann. lecun. com/exdb/mnist, 2010.

[9] T. Desell, “Developing a volunteer computing project to evolve

convolutional neural networks and their hyperparameters,” in e-Science

(e-Science), 2017 IEEE 12th International Conference on. IEEE, 2017.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[11] P. Y. Simard, D. Steinkraus, J. C. Platt et al., “Best practices for

convolutional neural networks applied to visual document analysis.” in

ICDAR, vol. 3, 2003, pp. 958–962.

[12] D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and

J. Schmidhuber, “Flexible, high performance convolutional neural networks

for image classification,” in IJCAI Proceedings-International Joint

Conference on Artificial Intelligence, vol. 22, no. 1. Barcelona, Spain, 2011,

p. 1237.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,

“ImageNet Large Scale Visual Recognition Challenge,” International

Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[14] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature

hierarchies for accurate object detection and semantic segmentation,”

CoRR, vol. abs/1311.2524, 2013. [Online]. Available:

http://arxiv.org/abs/1311.2524

[15] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 1440–1448.

65

http://arxiv.org/abs/1311.2524


[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” in Advances in neural

information processing systems, 2015, pp. 91–99.

[17] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” 2009.

[18] C. Bowley, M. Mattingly, S. Ellis-Felege, and T. Desell, “Toward using

citizen scientists to drive automated ecological object detection in aerial

imagery,” in e-Science (e-Science), 2017 IEEE 12th International

Conference on. IEEE, 2017.

[19] M. Mattingly, A. Barnas, S. Ellis-Felege, R. Newman, D. Iles, and T. Desell,

“Developing a citizen science web portal for manual and automated

ecological image detection,” in e-Science (e-Science), 2016 IEEE 12th

International Conference on. IEEE, 2016, pp. 223–232.

[20] J. C. Fernández, C. Hervás, F. J. Mart́ınez, P. A. Gutiérrez, and M. Cruz,

“Memetic pareto differential evolution for designing artificial neural

networks in multiclassification problems using cross-entropy versus

sensitivity,” in International Conference on Hybrid Artificial Intelligence

Systems. Springer Berlin Heidelberg, 2009, pp. 433–441.

[21] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization of

neural networks using dropconnect,” in Proceedings of the 30th

International Conference on Machine Learning (ICML-13), S. Dasgupta

and D. Mcallester, Eds., vol. 28, no. 3. JMLR Workshop and Conference

Proceedings, May 2013, pp. 1058–1066. [Online]. Available:

http://jmlr.org/proceedings/papers/v28/wan13.pdf

[22] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,

“Stacked denoising autoencoders: Learning useful representations in a deep

66

http://jmlr.org/proceedings/papers/v28/wan13.pdf


network with a local denoising criterion,” Journal of Machine Learning

Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in International Conference

on Machine Learning, 2015, pp. 448–456.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification,” in

Proceedings of the IEEE international conference on computer vision, 2015,

pp. 1026–1034.

[25] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve

neural network acoustic models,” in Proc. ICML, vol. 30, 2013, p. 1.

[26] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,

R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep speech:

Scaling up end-to-end speech recognition,” arXiv preprint arXiv:1412.5567,

2014.

[27] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low precision

by half-wave gaussian quantization,” arXiv preprint arXiv:1702.00953, 2017.

[28] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational

invariance,” in Proceedings of the twenty-first international conference on

Machine learning. ACM, 2004, p. 78.

[29] Y. Liao, S.-C. Fang, and H. L. Nuttle, “A neural network model with

bounded-weights for pattern classification,” Computers & Operations

Research, vol. 31, no. 9, pp. 1411 – 1426, 2004. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0305054803000972

[30] N. Srebro, J. Rennie, and T. S. Jaakkola, “Maximum-margin matrix

factorization,” in Advances in neural information processing systems, 2005,

pp. 1329–1336.

67

http://www.sciencedirect.com/science/article/pii/S0305054803000972


[31] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from

overfitting.” Journal of machine learning research, vol. 15, no. 1, pp.

1929–1958, 2014.

[32] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning

representations by back-propagating errors,” Cognitive modeling, vol. 5,

no. 3, p. 1, 1988.

[33] Y. Nesterov, “A method of solving a convex programming problem with

convergence rate o (1/k2),” in Soviet Mathematics Doklady, vol. 27, no. 2,

1983, pp. 372–376.

[34] A. Karpathy, “Stanford University CS231n: Convolutional Neural Networks

for Visual Recognition.” [Online]. Available: http://cs231n.github.io/

[35] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for

online learning and stochastic optimization,” Journal of Machine Learning

Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[36] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient

by a running average of its recent magnitude,” COURSERA: Neural

Networks for Machine Learning, 2012.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

CoRR, vol. abs/1412.6980, 2014. [Online]. Available:

http://arxiv.org/abs/1412.6980

[38] D. A. Fischer, M. E. Schwamb, K. Schawinski, C. Lintott, J. Brewer,

M. Giguere, S. Lynn, M. Parrish, T. Sartori, R. Simpson, A. Smith,

J. Spronck, N. Batalha, J. Rowe, J. Jenkins, S. Bryson, A. Prsa,

P. Tenenbaum, J. Crepp, T. Morton, A. Howard, M. Beleu, Z. Kaplan,

N. vanNispen, C. Sharzer, J. DeFouw, A. Hajduk, J. P. Neal, A. Nemec,

N. Schuepbach, and V. Zimmermann, “Planet hunters: the first two planet

68

http://cs231n.github.io/
http://arxiv.org/abs/1412.6980


candidates identified by the public using the kepler public archive data,”

Monthly Notices of the Royal Astronomical Society, vol. 419, no. 4, pp.

2900–2911, 2012.

[39] R. Simpson, K. R. Page, and D. De Roure, “Zooniverse: observing the

world’s largest citizen science platform,” in Proceedings of the 23rd

international conference on world wide web. ACM, 2014, pp. 1049–1054.

[40] C. J. Lintott, K. Schawinski, A. Slosar, K. Land, S. Bamford, D. Thomas,

M. J. Raddick, R. C. Nichol, A. Szalay, D. Andreescu, P. Murray, and

J. Vandenberg, “Galaxy zoo: morphologies derived from visual inspection of

galaxies from the sloan digital sky survey,” Monthly Notices of the Royal

Astronomical Society, vol. 389, no. 3, pp. 1179–1189, 2008.

[41] C. Lintott, K. Schawinski, S. Bamford, A. Slosar, K. Land, D. Thomas,

E. Edmondson, K. Masters, R. C. Nichol, M. J. Raddick, A. Szalay,

D. Andreescu, P. Murray, and J. Vandenberg, “Galaxy zoo 1: data release of

morphological classifications for nearly 900,000 galaxies,” Monthly Notices

of the Royal Astronomical Society, vol. 410, no. 1, pp. 166–178, 2011.

[42] D. G. York, J. Adelman, J. E. Anderson Jr, S. F. Anderson, J. Annis, N. A.

Bahcall, J. Bakken, R. Barkhouser, S. Bastian, E. Berman et al., “The sloan

digital sky survey: Technical summary,” The Astronomical Journal, vol.

120, no. 3, p. 1579, 2000.

[43] M. A. Voss and C. B. Cooper, “Using a free online citizen-science project to

teach observation & quantification of animal behavior,” The american

biology Teacher, vol. 72, no. 7, pp. 437–443, 2010.

[44] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:

Unified, real-time object detection,” in The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016.

69



[45] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,

vol. abs/1612.08242, 2016. [Online]. Available:

http://arxiv.org/abs/1612.08242

[46] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive foreground

extraction using iterated graph cuts,” in ACM transactions on graphics

(TOG), vol. 23, no. 3. ACM, 2004, pp. 309–314.

[47] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE

transactions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[48] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting

algorithm,” in Icml, vol. 96, 1996, pp. 148–156.

[49] J. H. Friedman, “Additive logistic regression: a statistical view of boosting,”

Ann. Statist., vol. 28, pp. 337–407, 2000.

[50] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,

2001.

[51] A. Gomez, A. Salazar, and F. Vargas, “Towards automatic wild animal

monitoring: identification of animal species in camera-trap images using

very deep convolutional neural networks,” arXiv preprint arXiv:1603.06169,

2016.

[52] T. Desell, “Citizen science grid,” 2017, [Accessed Online 2017]

https://csgrid.org/csg/.

[53] K. A. Goehner, “Using computer vision and volunteer computing to analyze

avian nesting patterns and reduce scientist workload,” Master’s thesis,

University of North Dakota, 2015.

[54] C. Bowley, A. Andes, S. Ellis-Felege, and T. Desell, “Detecting wildlife in

uncontrolled outdoor video using convolutional neural networks,” in

70

http://arxiv.org/abs/1612.08242


e-Science (e-Science), 2016 IEEE 12th International Conference on. IEEE,

2016, pp. 251–259.

[55] D. P. Anderson, “Boinc: A system for public-resource computing and

storage,” in Grid Computing, 2004. Proceedings. Fifth IEEE/ACM

International Workshop on. IEEE, 2004, pp. 4–10.

[56] S. L. Peterson, R. F. Rockwell, C. R. Witte, and D. N. Koons, “The legacy

of destructive snow goose foraging on supratidal marsh habitat in the

hudson bay lowlands,” Arctic, Antarctic, and Alpine Research, vol. 45,

no. 4, pp. 575–583, 2013.

[57] G. P. Jones IV, L. G. Pearlstine, and H. F. Percival, “An assessment of

small unmanned aerial vehicles for wildlife research,” Wildlife Society

Bulletin, vol. 34, no. 3, pp. 750–758, 2006.

[58] K. S. Christie, S. L. Gilbert, C. L. Brown, M. Hatfield, and L. Hanson,

“Unmanned aircraft systems in wildlife research: current and future

applications of a transformative technology,” Frontiers in Ecology and the

Environment, vol. 14, no. 5, pp. 241–251, 2016.

[59] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural

networks for image classification,” in Computer Vision and Pattern

Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012, pp.

3642–3649.

[60] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[61] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” Journal of artificial

intelligence research, vol. 16, pp. 321–357, 2002.

71


	University of North Dakota
	UND Scholarly Commons
	January 2017

	Training Convolutional Neural Networks Using An Automated Feedback Loop To Estimate The Population Of Avian Species
	Connor Ryan Bowley
	Recommended Citation


	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	1 Introduction
	2 Background
	I Classification
	II Convolutional Neural Networks
	II.I Training with Gradient Descent
	II.II Convolutional Layers
	II.III Activation Layers/Functions
	II.IV Max Pooling Layers
	II.V Fully Connected Layers
	II.VI Softmax
	II.VII L2 Regularization
	II.VIII Weight bounding
	II.IX Momentum
	II.X Adjusting the Learning Rate

	III Batch Normalization

	3 Related Work
	I Citizen Science Projects
	II Object Detection Techniques
	III Object Detection in Ecological Research

	4 Wildlife@Home Image Dataset
	I Wildlife@Home
	I.I Ecological Implications

	II Gathering the Data
	III Labeling of the Data
	IV Technical Issues and Corrections

	5 Methodology
	I Matching User Observations
	II Analysis of Previous Work on Wildlife@Home
	III Feedback Loop
	IV Sampling Amounts
	V Counting objects

	6 Implementation
	I Data
	I.I Data Formats
	I.II Partitioning the Data
	I.III Preprocessing Steps

	II Convolutional Neural Network
	III Feedback Loop
	IV CNN Architecture and Settings
	IV.I Training
	IV.II Feedback Loop
	IV.III Prediction
	IV.IV Sampling Rates
	IV.V Hardware

	V Evaluation of the Results

	7 Results
	8 Conclusion
	I Future Work

	Bibliography

