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ABSTRACT 

 

 A Space suit that does not rely on gas pressurization is a multi-faceted problem 

that requires major stability controls to be incorporated during design and construction. 

The concept of Hybrid Epidermal Enhancement space suit integrates evolved human 

anthropomorphic and physiological adaptations into its functionality, using commercially 

available bio-medical technologies to address shortcomings of conventional gas pressure 

suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored 

integumentary homeostasis, thermal control and mobility using advanced bio-medical 

materials technology and construction concepts. The goal was a space suit that functions 

as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in 

attunement with the wearer rather than as a separate system. In addressing human 

physiological requirements for design and construction of the HEE suit, testing regimes 

were devised and integrated into the prototype which was then subject to a series of 

detailed tests using both anatomical reproduction methods and human subject.



1 
 

CHAPTER I 

INTRODUCTION 

From the earliest hominin Sahelanthropus tchadensis, to the loss of body hair 

and development of sweat glands in Homo ergaster and evolutionary Ice-age 

modifications of anatomical body surface are120a, the epidermis in particular plays a 

vital role for Homo sapiens. The human organism has evolved and has been 

continuously modified around a comparatively narrow set of planetary environmental 

conditions. Reduced to simplest form, Earth’s atmosphere provides the elements 

necessary for both aerobic respiration and evolved human thermal control in its own 

enclosed recirculating system of material flows. Habitable atmospheric pressure, 

temperatures and gas mixtures are primary design principals of conventional space suits. 

Contemporary space suits mimic these surrounding environmental conditions for the 

wearer, and these artificial environmental conditions are translated as tolerable by the 

human physiological system as a temporary analog of habitability.  

Space Suits in EVA 

In essence, the modern space suit is primarily a spacecraft, which in turn 

relegates mobility, and comfort to secondary design consideration. Sensory, kinesthetic 

and motor functions which are normally taken for granted become severely limited. 

Each multiple layer which serves its own independent and specific function (e.g. LCU 

layer for thermal control) can be considered multiple barriers to movement and the 
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human sensory experience. Although designed for comfort and habitability, ergonomics 

becomes the wild card in any space suit variant, and at best the differences in the 

fundamental design configurations are almost nil. The current U.S. space suit is 

comprised of 14 layers of various materials, with just the LCU comprising the first 3. 

Other layering includes multiple Mylar, bladder, shape retaining layers and protective 

outer shell. Even with mobility refinements focused on the arms and glove segments for 

EVA work related activities, current suit designs resist to varying degrees any 

movement from the wearer that deviates from its original manufactured geometry. 

 

 

 

 

 

 

 

 

Figure 1. Conventional material layers. 

Internal Gas Composition 

 Current space suit design utilizes atmospheric pressures down to 4.5 P.S.I with a 

100% oxygen atmosphere to both maximize flexibility and provide adequate amounts of 

breathable oxygen content. With lowered suit pressure for mobility advantages, also 

come trade-offs in pre-breathe time regime, and the lower limits of hypoxia in the 

instance of a suit malfunction or puncture on any part of the surface area. The difference 
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between life and death depends on maintaining atmospheric pressure through the entire 

suit from boots to helmet. A single leak can compromise the entire system, with 

inevitable blackout of the wearer occurring in a matter of seconds. Even a slow leak and 

partial depressurization can cause hypoxia, with symptoms that include loss of color 

vision, confusion and eventual loss of consciousness.1 

Thermal Control 

   Conventional space suits rely on a separate subsystem known as the Liquid 

Cooling Undergarment (LCU). Similar to knitted thermal underclothing, the LCU 

employs long continuous and parallel lengths of flexible tubing used to circulate coolant 

over skin surfaces. In space and low pressure atmosphere, thermal convection 

diminishes to the point of the human bodies’ own metabolism becoming a dangerous 

heat source, and potential for hyperthermia. To counter this problem, the LCU is the 

standard solution, though it carries its own risks. The recent near-drowning of Italian 

Astronaut Luca Parmitano demonstrates the inherent disadvantages of an unintegrated 

system. As the faulty LCU leaked coolant into the spacesuits pressure garment, water 

migrated into Parmitano’s helmet, eventually covering the nose and eyes. It was only 

from memory that Parmitano was able to make it back to the airlock after the EVA was  

terminated. Parmitano’s most ominous comment was that he was not sure when his next 

breath would fill his lungs with water instead of air.2 

 

1 Ment, Gilles. "Operational Space Medicine." In Fundamentals of Space Medicine, 283-284. El Segundo, 

Calif., CA: Springer, 20011. 

 2 Spotts, P. (2014, Feb 27). Near-drowning of astronaut tied to wrong diagnosis, slow response. The 

Christian Science Monitor Retrieved from 

http://ezproxy.library.und.edu/login?url=http://search.proquest.com/docview/1502915471?accountid=2826

7 
 

http://ezproxy.library.und.edu/login?url=http://search.proquest.com/docview/1502915471?accountid=28267
http://ezproxy.library.und.edu/login?url=http://search.proquest.com/docview/1502915471?accountid=28267
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Figure 2. Liquid cooling undergarment. 

 The disadvantages of a non-unified system become apparent with the potential 

injury or loss of a crewmember during what should be a relatively simple subsystem like 

the LCU. 

Operations and Habitability 

The average safe operational duration for a typical gas pressure space suit EVA 

is around 6 to 8.5 hours under normal working conditions3. The basic necessities for the 

three major life support functions, including thermal control and drinkable water are  

provided to the operator. EVA tasks are designed around the operability and limitations 

of the suit, rather than designing the suit around required tasks. Various design  

 3 HSF." HSF. April 7, 2002. Accessed November 26, 2015. 

http://spaceflight.nasa.gov/shuttle/reference/faq/eva.html. 
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proposals for improvements have been considered for mostly mobility and 

donning/doffing. With each new generation of conventional gas pressure suit, a certain 

amount of trade-off in functionality vs. bulk must be incorporated. A rear hatch for 

ingress/egress is made possible with reduced visibility of the helmet component. A hard 

torso allows simplification of design and assembly but with added weight. The quality 

of space suit habitability affects operations, and inversely, strenuous operations can 

greatly reduce habitability. 

Summary of Problems in Current Space Suit Design Approaches 

Current design concepts focus on improving existing concepts, with no real 

departures from basic design formula. Each unintegrated system component implies a 

separate system with its own separate weaknesses and identifiable points of failure. It 

has become evident that space suit habitability using standard design principals and 

construction methods has reached the apex of technology, therefore it is preferable that 

new design approaches and construction methods are utilized that exploit advancement 

in materials.  

 Since the introduction of the conventional gas space suit, functionality has 

remained unchanged. In most simple terms, the physical limits of human engineered 

mimic of Earths’ natural envelope has been reached. Air in the gaseous state required by 

humans cannot be engineered in any way to overcome the limitations of design and 

materials technology.  

Potential Solution and Prototype 

  Mechanical counter-pressure (MCP) space suits have been considered as an 

alternative to conventional gas pressure suits for several decades. In theory, MCP space 
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suits offer the possibility for increased mobility and decreased mass for the astronaut 

during planetary exploration. The objective of this concept offers many advantages, but 

in practice offers few workable results as a practical application given current TRL's. 

The concept of applying surface pressure through experimental woven, braided and 

knitted fabrics of Spandex and Elastic is the design driver behind the MIT Biosuit 

concept. Many attempts to create an evenly distributed surface counter pressure have 

increased complexities in the fundamental concept, and created stumbling blocks for 

other important systems vital to homeostasis in extreme environments.4  Mars’ mean 

surface atmospheric pressure of 600 Pascal’s (0.087 psia) implies that radiation rather 

than convection is the dominant heat exchange mechanism at average elevations. This 

raises serious problems that are currently only secondary considerations in current MCP 

design attempts given the metabolic heat generated by the human body even in a resting 

state in such low pressures.  Other technical uncertainties are durability of woven  

materials in dusty lunar or Martian environments, and maintaining proper tension on the 

popliteal fossa, antecubital fossa and axilla.  

A new approach to an old problem of space suit mass and mobility is essential. 

A design concept that works as an extension of the human integumentary system, rather 

than against it (literally the case with MCP) is needed. 

 

 

 

4 Patel, Samir S (October 20, 2005). "This suit is made for walking (on Mars)". The Christian Science 

Monitor. Retrieved 2015-10-14. 
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Integrated Thermal Control and Mechanical Counter Pressure 

Special attention was paid to thermal control, specifically body core and skin 

surface temperature. In considering Mars as just one example of prospective 

applications, convective cooling models indicated the need for forced body surface 

cooling for any variant of non-gas inflated space suit. Further research revealed the 

importance of active full body perspiration monitoring and countermeasures. Integrated 

multi-channel thermal control was designed specifically to address body temperature, 

suppression of perspiration for the wearer and reduced system mass. The prospective 

thermal transfer efficiency of the cooling system was calculated using test samples of 

HEE material with embedded cooling components, and then implemented and tested on 

the functional prototype test suit. The initial areas of interest were the suppression body 

perspiration and core body temperature stability.  

          Target body surface temperatures are regulated to a stable < 36-37C as a 

countermeasure to the production of skin surface perspiration5, a critical control 

function that current MCP suit proposals have not addressed. Movement by wearer  

would be far less restricted in the HEE concept, as the material hydrostatically shifts 

around joints while retaining vital surface tension on body surfaces. Physical and 

psychological stress factors can be expected to be reduced due to greater freedom of 

movement and reduced catastrophic decompression risks. The variety of different 

components and mass of the HEE design is far less than a conventional space suit, 

increasing reliability and functionality. Human-machine integration parameters would  

5 Nadel, Ethan, Robert Bullard, and J A Stolwijk. "Importance of Skin Temperature in the Regulation of 

Sweating." Journal of Applied Physiology 31, no. 1 (1971): 80-87. Accessed October 12, 2015. 

http://jap.physiology.org/content/31/1/80.long. 

http://jap.physiology.org/content/31/1/80.long
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be enhanced, control interface limitations greatly reduced and design functionality easily 

expanded during the fabrication layup process. In summary, the HEE design concept is 

based on the design philosophy that 4.5 P.S.I pressure will be achieved and maintained 

from the body’s own internal dissolved gas pressure, with the HEE layer being the semi-

flexible barrier that keeps epidermal surface geometric stability. This is a somewhat 

paradoxical answer to the MCP approach of external counter pressure to human body 

surfaces. 

Suit Materials and Functional Integration 

     The HEE concept represents a departure from conventional gas pressure suits not 

only in its design philosophy, but also the materials utilized in its construction. The 

foundation of the suit’s functionality is the HEE layer, which is an actively constricting 

artificial epidermal layer that combines microprocessor controlled thermal regulation 

and active/passive surface tension that mimics human skin through biotechnical 

polymers currently used for treatment of burn victims. Hybrid Epidermal Enhancement 

integrates multi-functionality into a single layer during the HEE layup and construction 

process. A microfiber layer borrowed from dry suit technology forms the wicking 

contact surface, and is laminated with Shore-A 00-10 Bioflex gel which serves as both a 

buffer to equalize and distribute applied pressure between body surfaces as a confining 

layer, and as a thermal conductor that enhances HEE suit’s convective cooling system.  

A thermal control mechanism in the form of 100m of surgical 1/16” PVC tubing 

is installed over the microfiber layer followed by a laminated Bioflex℗ layer. The 

outermost embedded layer is a polymer 1/8” weave micro-mesh that is bonded to 

pneumatic actuators, forming a floating compressional confinement layer. This layup 
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process creates a garment that allows easy donning and activation, causing the 

epidermal layer to constrict evenly and maintain geometry of the body surfaces. This 

concept is not MCP per se, as the HEE is designed to hydrostatically balance pressure 

over uneven body surfaces and conform to the wearer’s anatomy in response to the 

wearers own internal dissolved gas pressure. Hydrostatic balance is designed to be 

dynamically maintained during all motions of joints and limbs, as the attributes of the 

HEE gel limb joint segments are designed to seek voids (body surface depressions) 

through their semi-viscous physical nature.  The properties of HEE allow efficient 

thermal conduction through the material adjacent to the cooling tubing, and active 

thermal stability via embedded sensors controlling liquid cooling flow rates.  

Significant integration between helmet atmospheric pressure and the unconventional 

HEE layer was accomplished by utilizing a composite clamshell style hard torso. The 

HEE suit hard torso fulfills several roles. Most importantly, its potential to compress the 

transitional seal of the pressurized helmet neck liner to the HEE suit layer was 

immediately obvious. The next logical application was to utilize the hard torso as an 

additional abdominal pressure containment layer over the underlying HEE. garment, as 

well as providing the site for application of RST Demron radiation shielding.  As the 

fabrication of the composite torso progressed, further integration was achieved by 

directly mounting the LSS system backpack housing to the rear segment of the 

clamshell hard torso. This synthesis of design created a one piece unified hard torso and 

LSS unit that can be donned without assistance. Other important advantages of this 

configuration include excellent distribution of the backpack mass over the entire torso, 

and added protection for vital organs. Throughout the entire design and construction 
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process, multi-functionality was the foundation of HEE design.  Every material and 

component was designed to augment other materials or components wherever possible.  
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CHAPTER II  

METHODOLOGY 

Chapter II serves in part as an introduction to the concepts behind the design. 

The methodology used to design and construct the prototype Hybrid Epidermal 

Enhancement (HEE) space suit utilizes an approach oriented around enhancing the 

existing capabilities of humans as a species already evolved around 1 Earth atmosphere, 

but with complemented protective properties. A conventional gas pressure suit is 

designed to counter adverse environments by replicating Earth’s atmospheric 

conditions. HEE aims to enhance the human bodies existing resistance to adverse 

environments. The main design drivers that emerged were identifying critical points of 

human homeostatic control. Instead of a gas envelope for internal and external pressure 

equalization, HEE uses the body’s own internal pressure to achieve hydrostatic 

equilibrium against a semi-flexible augmented artificial skin based on an enhanced 

version of classic decompression theory modelling.6 Furthermore the countermeasure 

for ascertained perspiration and humidity is the through the direct suppression of  

perspiration activation by the eccrine and apocrine sweat glands, which are directly     

controlled hypothalamus, and stimulated by a combination of internal body temperature 

and mean skin temperature. 

 
6   Wienke, Bruce R. Basic decompression: theory and application. Best Pub Co, 2008. 
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Figure 3. In equilibrium the internal pressure in the bubble is equal to the sum of the 

ambient pressure. 
http://chemwiki.ucdavis.edu/Textbook_Maps/General_Chemistry_Textbook_Maps/Map%3A_Lower%27s_Chem1/07%3A_Solids_an

d_Liquids/7.4%3A_Liquids_and_their_Interfaces 

 

To keep within the scope and limits of a thesis, the primary focus of this study is 

human thermal stressors, and the effect of countermeasures within the broader context 

of such an operational body conforming system. The results are analyzed within the 

operational environment and limits of the suit constriction functionality, life support 

system, and anthropomorphic mobility.  The research and design process was iterative 

and in a constant state of flux as material research necessitated new and unorthodox 

construction techniques. Materials selection was an iterative process as well. The basic 

foundation of the HEE concept was the ability of a material to redistribute epidermal 

surface pressure against the epidermal layer in a manner that would cause a semi plastic 

state of hydrostatic balance in both actual pressure, and body surface geometry. This 

unique requirement mandated the need for unconventional materials. The basic design 

problem was not so much the ability to create a semi-immovable barrier against tissue 

expansion, as it was allowing the wearer to don the suit before functionality is 

implemented. With this in mind, it became apparent that the suit must have two separate 

http://chemwiki.ucdavis.edu/Textbook_Maps/General_Chemistry_Textbook_Maps/Map%3A_Lower%27s_Chem1/07%3A_Solids_and_Liquids/7.4%3A_Liquids_and_their_Interfaces
http://chemwiki.ucdavis.edu/Textbook_Maps/General_Chemistry_Textbook_Maps/Map%3A_Lower%27s_Chem1/07%3A_Solids_and_Liquids/7.4%3A_Liquids_and_their_Interfaces
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states; a relaxed state, as well as a tensional state. It was determined that the best 

combination of materials which could fill these requirements would be those based on 

prosthetic and bio- tensional state, reached through an integrated, 3-component design 

process. Pneumatic actuators placed longitudinally on the frontal plane of the suit 

constrict a layer of 1/8” polyester Micro-Mesh. The advantages of the Micro-Mesh is its 

ability to conform to the variable cross-sectional sizes of the human form through its 

hexagonal weave with minimal distension. The second mechanism of HEE is the 

Bioflex gel laminate layering. Its primary purpose is for further distribution of surface 

tensional pressure, but major integrational advantages were identified. The gel laminate 

consists of two different hardness levels of Bioflex gels based on the Durometer Shore 

Hardness Scale.7  When layered properly the laminate in conjunction with the base 

micro-weave skin contact layer tends to always pull inward without wrinkles or folds. 

The gel laminate layer provides increased thermal transfer efficiency as it conforms 

around the circular cross section of 1/16” PVC cooling tube matrix. Another advantage 

observed was the gel’s ability to contain water leaks that might arise in the coolant 

circulation tubing. 

 

 

 

 

 
7 A. W. Mix and A. J. Giacomin (2011), Standardized Polymer Durometry, Journal of Testing and 

Evaluation, 39(4), pp. 1–10.  
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Figure 4. Anatomical planes of the human body. 

 

 

 

Figure 5. Shore Durometer Scale of Hardness. 
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A mechanism was devised to address the problem of tension on anatomical areas 

of depression such as the popliteal fossa, antecubital fossa and axilla. Analysis and 

experimentation led to the development of gel filled cells consisting of Shore 00-00 

hardness gel in polyethylene liners resembling breast implants. These cells when placed 

snugly to the posterior of the knee or inside the elbow joint, flow in a semi fluid state 

seeking anatomical indentations and depressions. The flow increases in direct relation to 

the tension applied by the micro-mesh tensional layer. This design allows geometric 

variability and shape shifting that cannot be matched by 2-dimensional textiles or other 

types of materials currently being considered.   

Although liquid cooling thermal control is required for typical EVA scenario, the 

HEE space suit utilizes a more advanced version of body cooling through active sensor 

and pump loop feedback control on multiple channels. The main considerations in such 

a scenario besides simple core body temperature homeostasis are wearer comfort as well 

as hygiene, requiring special attention and made necessary by the close fitting epidermal 

layer. As described on previous pages the liquid cooling works under the same thermal 

transfer principals as a standard Liquid Cooling Undergarment (LCU), but with some 

major control differences. The nature of a gas pressure suit facilitates the need for a 

sublimator, because much of the body’s emitted humidity is circulated through the 

atmospheric pressure envelope as part of the oxygen circulation system.  

Because HEE uses surface tension, a solid state control system capable of 

monitoring and reacting to body temperature in one-second intervals is utilized. In 

designing the thermal regulation system, several enhancements were incorporated into 

the liquid cooling matrix. Cooling tubing diameters were decreased, and counter-
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directional coolant flow was introduced for increased thermal exchange and stability. 

Using a combination of sensor input and reactive pump control, the multi-channel 

microprocessor regulates body surface temperature similar to the human bodies own 

hypothalamus, in effect an enhancement of existing biological regulatory systems. The 

objective of this system was the minimization of perspiration and moisture, and body 

temperature regulation. Complete engineering and operational details are described in 

following sections of this document. 

The designation Hybrid Epidermal Enhancement (HEE) derives from the 

implementation of conventionally gas pressurized helmet and actuators, and the 

unconventional materials and engineering used to achieve internal physiological 

homeostasis. The technical challenge of integrating the transition between the HEE 

layer and helmet was addressed through the use of a fiberglass/carbon fiber clamshell 

hard torso. The torso is able to open to allow easy donning without assistance. The torso 

halves are lined with a hydrostatic compressional layer, and provide additional 

abdominal rigidity in conjunction with HEE actuation. This functionality provides 

stability in conjunction with the integrated Portable Life Support System (PLSS) 

backpack. The load to the wearer is evenly distributed over the torso, and serves as the 

interconnect between sensor wiring and liquid cooling tubing route directly through the 

backpack to the suit without the need for external cables or hose. A second important 

function of the hard torso is the transitional interface between HEE and the atmospheric 

pressure of the helmet. The donut seal located at the base of the pressurized neck liner is 

compressed to the shoulders and upper body when the hard torso is strapped down 

securely.  
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Two workable Helmet designs were tested with varied configurations. The first 

design consists of an accordion polymer material encased in a segmented flexible neck. 

The base of the neck seats into the hard torso the neck opening with the seal 

accomplished upon closure of the torso halves as described previously.  The second 

neck design uses the same pressure transition, but has a pleated layer of ballistic nylon 

combined with a latex rubber liner, and stationary bubble-style helmet configuration. 

The methodology of helmet design and construction was based on qualitatively 

determining the best helmet solution for such a suit. Additional technology in the form 

of color coded system status indicators were installed into the test helmets for evaluation 

as a simple HUD in peripheral vision.  

Though not the central focus of research, boots and gloves were also designed 

and constructed using both conventional and unconventional materials. The design of 

the gloves incorporate a flexible liner, constricted joints, a segmented semi-flexible 

Cordura ballistic nylon exoskeleton around fingers, and back of hand. The gloves are 

lined with Bioflex and wicking liner. Compression is achieved when wrist ring is locked 

forward, forcing the Bioflex gel lining into hydrostatic equilibrium around the entire 

epidermal surface of the hand. A test glove and components underwent preliminary 

pressure testing in both sub-atmospheric pressures and a hard vacuum 

The Boots are a composite heavy rubber material layered with ballistic nylon 

and lined with inflation bladders similar to standard high altitude flying boots. The main 

difference is that instead of pressure being relieved from the internal bladders during 

ascent to altitudes, pressure is actually increased via connection fitting from suit leg 

actuators. The cell walls are reinforced to allow for ~300-315 Mb (4.5 p.s.i) inflation 
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without danger of rupture. An Ecoflex liner similar to the gloves is compressed by the 

bladders to achieve hydrostatic equilibrium within the boot, fully compressing all 

surfaces of the human foot and toes. The research regime was based on component 

testing in context of the fully constructed and integrated system. Although individual 

characteristics such as analysis of thermal cooling efficiencies and relative body surface 

pressure were tested as both individual component variables, quantitative and qualitative 

testing required design and construction of a fully functional and complete space suit. 

Movement under varying conditions in the confines of a fully fitted suit can create 

variations of surface tension (relative surface pressure). Surface tension can directly 

influence thermal cooling efficiencies. The mass of the backpack, hard torso and helmet 

add extra physiological stressors that can only be properly evaluated as part of the 

unified and assembled system.  

 The purpose of this thesis is to chronical phases of physical suit construction, 

electronics design configurations, sensor calibration and programming, as well as 

human test methodology and results. The project is documented step-by step with the 

inclusion of supported working assumptions, materials research and application, 

component fabrication details and testing methods. In an attempt to present information 

in a logical manner understandable by the reader, this document is categorizes the 

evolution of the project in both theory and application, considerations for integration, 

surface tension and thermal control concepts, and all subsystem design approaches and 

operational envelopes.  

Although a considerably complex project in pursuit of alternative mechanism for 

human homeostasis in open space, extensive effort was made to record and transliterate 
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operational theory put into practical working application within the bounds of a thesis 

document. When applicable, visual tools including diagrams and illustrations are 

included where pertinent text information requires the use of visuals for clarification. 

Testing and data collection for proof-of concept was implemented during initial 

materials research, active phases of suit construction, and human subject activity. Test 

data utilized pressure, thermal, humidity and galvanic sensors, as well as electronic 

scales for pressure sensor calibration. Complete details are discussed in Chapter III 

under section Experimental Approaches.
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CHAPTER III  

PROJECT DEVELOPMENT 

Multi-functional Integration into Single System 

The path to an experimental non-gas pressure space suit that also had largely 

unified system components emerged somewhat unintentionally during the initial phases 

of research in late 2013. The development of this project began by establishing several 

basic requirements for an unconventional non-pressurized space suit. The principal 

design driver was the realization of a workable non compressed gas space suit that (a) 

provides stability of internal gas pressure for the wearer, and (b) achieves this objective 

in a tangible manner that can be applied to real world applications outside of a research 

facility. This requirement implied that it must provide a mechanism to change geometry 

in order to be donned, as well as to provide the necessary surface tension for the user 

once it is in place. Ideally, such a system would also have to afford all of the protection 

parameters of a conventional suit, while increasing mobility several fold and decreasing 

system mass. This desire to devise a lightweight, low-profile design had significant 

influence on the evolution and final outcome of the finished suit.  

From its inception it was clear that the research and development would need to 

be fully realized from start to finish, as this was an entirely self-funded, with no 

solicitation of funds from any organizations public or private. Such a proposition would 

require results that were more than conceptual mockups based on research restricted to
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single components, and sometimes flawed or incomplete assumptions. Any viable 

alternative to a conventional gas pressure suit would have to provide the wearer with the 

full range of required functionality to maintain homeostasis in near or zero pressure 

space and planetary environments. Besides integumentary stability, thermal regulation 

for the wearer is a critical component of control that determines the success of any non-

gas pressurized space suit. This realization coalesced around the first major integration 

of components, which in the final analysis was serendipitously based findings of 

material component properties testing early in the project. The characteristics of the 

materials and textiles that were envisioned, necessitated integration of the surface 

compressional layer with embedded thermal regulation matrix during the fabrication 

process. Thus the component termed the HEE layer was the first product of 

multifunctional integration, and serves as the core component of uniform epidermal 

surface tension, humidity control and perspiration suppression.  

 

 

 

 

 

 

 

 

Figure 6. The Webb Space Activity Suit (SAS). 
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The next major integration in design emerged during the process of solving the 

problem of transition between the pressurized helmet and HEE tensional layer. This 

problem was researched and addressed to an extent with the Dr. Paul Webb Space 

Activity Suit (SAS) in the late 1960’s.8 On the Webb SAS, Positive pressure breathing 

was delivered by a helmet which was connected to a simple flow-through compressed 

air supply. The helmet sealed around the face and supplied pressure to the neck and 

most of the head by means of a bladder. Straps that looped under the arms held the 

helmet down snug to the shoulders. The air supply was worn using conventional straps, 

similar to a hiking backpack. The MIT Biosuit had minimal (nil) development toward 

resolution of the transition problem. There exists little or no documentation regarding a 

working helmet or seal, except for a mockup used for publicity photographs. Both the 

Webb SAS suit and the MIT BIOSUIT have a fixed bubble type helmet designs, with 

the Webb helmet functional and the MIT version a conceptual representation used for 

publicity photos.   

  Planning for the eventual construction of the PLSS backpack originally envisioned 

conventional straps similar to the Webb SAS design. As the HEE layer evolved it became 

apparent that in an environment affected by acceleration or gravitation forces, backpack 

straps had the potential to interfere with the HEE’s embedded liquid thermal control 

matrix. Upon further consideration it was recognized that if a similar bubble helmet would 

be used, a second set of straps similar to the Webb helmet design would have to be utilized 

in order to achieve a hermetic seal to the body, moreover, this would be only a partial  

solution considering the other complexities of shoulder movement and distortions to body  

8
 Webb, P. "The Space Activity Suit: An Elastic Leotard for Extravehicular Activity." Aerospace Medicine 

39, no. 4 (1968): 376-83. 
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surface geometry caused by the underlying muscle, tendons and skeletal structures during 

even the most simple body functions, such as a deep inhalation. 

The dilemma of a workable helmet seal was resolved by utilizing a two-piece 

clamshell style hard torso. The torso is hinged at the shoulders, slips over the wearers 

head, and fits snugly over the body, compressing the base of the flexible neck seal against 

the shoulders. The implementation of a hard torso also solved several additional 

engineering problems simultaneously. The straps for the PLSS backpack route through 

the posterior hard torso segment, follow over the shoulders, and are affixed to the inside 

of the anterior hard torso segment, pulling the torso halves together. Additionally, the 

entire PLSS backpack is rigidly mounted to the posterior segment of the hard torso. The 

result is an easily donnable, integrated one-piece unit that distributes the mass of the 

PLSS backpack over the abdomen, and seals the helmet’s pressurized neck segment.  

 

Figure 7. Design sketch of pressurized collar and compression. 
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Additional improvements were made by integrating torso radiation shielding, 

compressional Smart Foam to maintain abdominal geometric stability, and routing all 

sensor wiring and liquid thermal control tubes directly to the PLSS backpack. Another 

advantage of the torso to backpack integration was that it did away with the need for 

external cables and hoses. In summation, the clam shell hard torso option was the best 

choice to fulfil the roles of load-bearing, abdominal pressure stability, protection for vital 

organs as well as the solution for pressure to HEE tension transition.  

Anti-expansion and Stability of Body Geometry 

The approach of Hybrid Epidermal Enhancement (HEE) relates to the concept of 

the human integumentary systems evolved and inherent characteristics of astriction in the 

form of a protective external organ. Human skin by its very nature has a certain degree of 

surface tension that maintains stable body surface geometry. Numerous accounts 

documented in medical journals of skin distention as a symptom of edema, allergens, 

angioedema from anaphylaxis glean some insights into both elasticity and tensity of the 

human epidermis. A limited number of documented incidents regarding high altitude and 

decompression stress on humans are available in published academic sources, including 

NASA’s Bioastronautics Data Book9.  

 

Research on decompression effects on humans was documented extensively by 

Emanuel M Roth his publication Rapid (Explosive) Decompression Emergencies in 

Pressure-Suited Subjects. While its focus is on decompression, and not the effects of long 

term vacuum exposure, including the results of decompression events involving humans.  

 
9 Parker, J. F. Jr., and V. R. Eds West. Bioastronautics Data Book. Second Edition. N.p.: Government 

Printing Office, Washington, D.C., 1973. Print. 
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The effects of explosive decompression are devastating on human physiology, as the 

description appropriately implies. The physiology of rapid decompression is examined in 

detail as transitional phases, in which pressure change across the chest wall, impulsive  

loading of the structures result in shearing of tissues similar to that found in a blast injury. 

Maximal expansion of the lungs and chest wall, disruption of tissue as tensile strength is 

exceeded. This is exacerbated with closed airways. Pulmonary hemorrhaging, edema and 

penetration of bubbles into the bloodstream as a high pressure gradient forms between the 

alveoli and pulmonary veins. Gas emboli eventually reach the bloodstream, and through 

arterial circulation. Exposure to the vacuum for several minutes will lead to further lung 

damage, and is considered a direct trauma to the lungs preceding eventual death10. 

There are several cases of humans surviving exposure to vacuum worth noting.   

In 1966, Jim LeBlanc, a technician testing a space suit in a vacuum simulator, was 

subjected to a rapid loss of suit atmospheric pressure due to a faulty hose coupling 

failure, disconnecting the pressure line from his suit. He recalled the sensation of saliva 

boiling off of his tongue just before losing consciousness. The chamber was rapidly 

repressurized within less than a minute by supervising engineer Cliff Hess. At partial 

pressure restoration LeBlanc regained consciousness, and within minutes was walking 

normally, with aching ears from rapid repressurization being his only complaint. In 

another example, a man was accidentally exposed to vacuum in an industrial chamber; it 

was at least three minutes before he was repressurized. He required intensive medical 

care, but eventually regained full function. These accounts demonstrate that ebullism is  

 
 10 Roth, Emanuel M. Rapid (explosive) Decompression Emergencies in Pressure-suited Subjects,. Vol. 

1223. Washington: National Aeronautics and Space Administration; for Sale by the Clearinghouse for 

Federal Scientific and Technical Information, Springfield, Va., 1968. 
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not necessarily fatal, and in at least during early stages major organs of the human body 

remain intact and functional.  

 While many studies that focus on skin surface tension are primarily the research 

domains of pathology and dermatology, valuable findings have been gleaned from these 

research fields which imply workable solutions for a space suit that can essentially non 

gas pressurized. Hybrid epidermal enhancement is based on several working assumptions 

regarding the human body, deep diving, and space operations: 

1. The human body in relation to internal absorbed gas pressure is composed 

of several different (virtual) compartments which are subject to 

permeability, diffusion, and can be considered similar to reduced gradient 

bubble model (RGBM)11.  

2. In a state of equilibrium the internal pressure in the bubble is equal to the 

sum of the ambient pressure and the skin pressure due to the surface 

tension. 

                 3.  It is not decompression that kills; it is the rate of decompression. 

4. A certain amount of super saturation of a divers (or astronauts) tissue with 

dissolved inert gas is allowed in keeping with Haldane’s classic 

decompression model. Human tissue is divided in a number of 

hypothetical tissue compartments, with a certain limit (M-value) is 

 

11 Wienke, Bruce R; O’Leary, Timothy R (13 February 2002). "Reduced gradient bubble model: Diving 

algorithm, basis and comparisons" (PDF). Tampa, Florida: NAUI Technical Diving Operations. pp. 7–12. 

Retrieved 8 August, 2015. 
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associated with each compartment to super saturation levels of dissolved 

inert gas in the compartment (tissue tension). This theory suggests  

efficient decompression by pulling the diver as close to the surface as  

possible with constraint that in all tissue compartments the 

super saturated tissue tension remains within the limits. These same rules 

apply to space operations, as combined and ideal gas laws work the same, 

regardless of operational environment. Optimization of this theory has 

been demonstrated with customized decompression steps. 

5. The human integumentary system, including the epidermis and its various 

subcutaneous layers has its own degree of inherent surface tension similar 

to a bubble.  

6. With the introduction of thermal and humidity points of control, anti-

expansion mechanisms and a customized decompression schedule, the 

human body can not only tolerate, but maintain homeostasis without 

conventional gas pressure suits, or the current MCP spacesuit criterion of 

simulated 4.5 P.S.I counter pressure. 

The HEE concept combines several key functions designed to minimize risks by 

applying technologies that augment human performance in extreme space and low 

pressure planetary environments. The human body is already equipped with its own 

evolved integumentary system. This innate human physiological component provides 

protection against extreme terrestrial environments when augmented with compatible 

technologies, for example an Arctic parka or scuba diving wet suit. These are relatively 

simple technical solutions that enhance human body surfaces for resistance to adverse 
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conditions than might otherwise be fatal otherwise. The human body’s epidermal layers 

are capable of expanding over twice normal size in cases of edema, or shorter duration 

allergic reactions with few or no long term side effects due to properties of elasticity of 

the skin. The degree hydration, or moisture in the layers of skin has a direct relationship 

on the degree of elasticity. Dryer skin tends to have decreased ductility due to a 

combination of external environmental conditions, trans epidermal water loss and 

changes in density of the skin fiber system.  

Much of the physiological research that would be beneficial for the concept of 

HEE remains outside of the academic realm, and what is available and published 

pertains to pathology and surgery technique. Some ancillary knowledge regarding skin 

surface tension can be gleaned from the study of Langer’s lines, alternatively known as 

relaxed skin tension lines or cleavage lines. Langer’s lines are directional lines within 

specific regions of human skin that give an indication of underlying collagen fibers in 

relation to flexibility, but these directional lines are not always a precise indicator of  

tensile strength due to differences between individuals, and changes in direction of these 

lines had been known to occur in individuals. The subject of dynamic mechanical 

properties of skin is complex, and poorly researched, as most studies are done on human 

cadavers of advanced ages.  Adding to these complexities is the fact that skin is a 

multilayered material comprising three major layers, the epidermis, dermis and 

hypodermis. At rest, the fibers of skin appear orientated in a random configuration; 

however, once a load is applied, the fibers stretch parallel to the load direction. Initially, 

elastin fibers are thought to stretch in a linear fashion and, as the load further increases, 

the collagen fibers re‐orient in order to carry a greater proportion of the load. The 
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epidermis being the outermost layer is considered the dominant factor when determining 

the properties of the skin such as the tensile strength of skin, depending on the size and 

degree of crosslinking of the collagen framework12. Although currently applications 

using Langer’s lines data is mostly applied in the medical and pathology fields, progress 

continues in research and understanding of their implications for biotechnical 

applications. Although there are variations of factors including age, and individual 

differences that are not entirely understood, it is foreseeable that future research will 

create better physiological models that will have tangible value to future studies of 

humans in low or zero pressure atmospheres. Even in context of the currently narrow 

scope of understanding in the context of human space flight, it is clear that human skin 

has to a degree the ability to contain the force of internal dissolved gas pressures. This 

makes the application of enhancing these existing capabilities even more crucial in the 

pursuit of a better space suit that does not require a gas envelope, and works in concert 

with the human body. A workable HEE concept only requires a slight degree of 

balanced expansion against the constraint layer, as once again the concept works 

inversely from a standard MCP mechanism, with pressure and final stability deriving 

from internal gas pressure, not from an external garment. 

 

 

 

 

12 Gallagher, A J, Ni Annaidh, and Aisling; Bruyère, Karine; Et Al. "Dynamic Tensile Properties of 

Human Skin." 2012 IRCOBI Conference Proceedings, 2012.     

http://www.ircobi.org/downloads/irc12/pdf_files/59.pdf 

http://www.ircobi.org/downloads/irc12/pdf_files/59.pdf
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Figure 8. Lange’s lines of skin tension. 

Multi-channel Active Thermal Control 

The primary research focus of this thesis in relation to the HEE space suit 

prototype is thermal control. In considering the severe temperature variations between 

exposure to direct solar radiation and shade, or day compared to night on a planetary 

environment with a marginal atmosphere, thermal control will be a critical part of space 

suit functionality. In a low Earth orbit EVA, temperatures differences of nearly 275°F 

(135°C) between the sunward facing side and deep space side, thermal convection is 

non-existent. Mars’ average temperature is -80°F (-62°C), with great diurnal and 

seasonal temperature ranges, and a significant temperature gradient with altitude. The 

key thermal transfer component of convection is also severely diminished depending on 

atmospheric temperature and density at altitude. Radiation and conduction into regolith 
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or adjacent objects are the dominant heat transfer mechanisms on Mars. Typically on 

Earth or a gas pressurized space suit there are 3 mechanisms of heat transfer; 

1)  Radiation 

The metabolic heat generated from within the body is emitted at UV 

wavelengths into the surrounding atmosphere. 

2) Evaporation  

Perspiration generated by the sweat glands is transferred to the surface of 

the skin.  At normal atmospheric pressure a phase change transforms liquid 

into water vapor, while the liquid (perspiration) evaporative kinetic energy 

loss is felt as a decrease in skin surface temperature, and the natural result is 

a cooling effect, followed by subsidence of perspiration. 

3)   Convection 

Convection is the process of air flowing over the skin and transferring body 

heat. This principal can be easily demonstrated in water. Convective heat 

loss can be minimized by staying still as possible in the water, creating a 

heated boundary layer next to the skin surfaces. Rapid motion in water 

disrupts the boundary layer of warmer water, increasing heat loss. The same 

effect is demonstrated in everyday situations through the use of fans for 

cooling, or experienced as a breeze on a hot day, with its effectiveness 

increased in combination with perspiration.  

 In a vacuum, convection has been lost as an element for thermal control, with 

radiation, conduction being the primary avenue of heat dissipation. The Webb SAS suit  
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proposed the concept of flash evaporation for cooling13. The porosity of the suit material  

fibers in a near perfect vacuum allowed evaporation of the wearer’s body perspiration. 

The result was a near instantaneous cooling effect that removed large quantities of heat 

from the body. In flash evaporation, perspiration in its liquid form changed state directly 

into vapor while passing through the suit material, which would then have changed into 

ice crystals. It can be surmised that because a natural heat boundary layer between the 

suit elastic and skin surfaces (similar to a wetsuit), the phase change to vapor would be 

slow enough to inhibit the accumulation of ice crystals in the material. While this is a 

scientifically sound approach to cooling, the porosity of the suit material needed for this 

type of method cooling also leave the skin surfaces exposed the hard vacuum of space, 

particle bombardment, and potentially caustic or abrasive contaminants in a planetary 

EVA scenario.   

In the 1990’s Honeywell, Inc., in collaboration with Dr. Paul Webb and Clemson 

Apparel Research, has developed a modern prototype of the original Webb SAS 

pressure suit14. The team tested several configurations of breathable polymers for EMU 

(Extra-Vehicular Mobility Unit) applications. Among the characteristics being tested 

were water permeability as a function of temperature, O2 permeability as a function of  

temperature, pressure, and resistance to ultraviolet light15. The proposed dense polymer 

 
13 Woods, Michael. "Toledo Firm Develops Light-Weight Space Suit." The Blade, October 2, 1969, Second 

News Section sec. Accessed August 8, 2015.   

https://news.google.com/newspapers?nid=1350&dat=19691002&id=au1OAAAAIBAJ&sjid=tQEEAAAAI

BAJ&pg=5285,1040523&hl=en. 
14 Annis, J.F. and P. Webb. “Development of a Space Activity Suit.” NASA CR-1992, Washington DC: 

National Aeronautics and Space Administration, 1971 
15 Gorguinpour, Camron et. al (2001), LPI "Advanced Two-System Space Suit". University of California, 

Berkeley CB-1106. Retrieved 2012-09-23. 95 KB PDF 

 

https://news.google.com/newspapers?nid=1350&dat=19691002&id=au1OAAAAIBAJ&sjid=tQEEAAAAIBAJ&pg=5285,1040523&hl=en
https://news.google.com/newspapers?nid=1350&dat=19691002&id=au1OAAAAIBAJ&sjid=tQEEAAAAIBAJ&pg=5285,1040523&hl=en
http://www.lpi.usra.edu/publications/reports/CB-1106/ucb01.pdf
https://en.m.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.m.wikipedia.org/wiki/University_of_California,_Berkeley
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membrane had the advantage of transmitting perspiration in a gaseous state through 

diffusion, acting as a semi-permeable membrane. The side of the polymer film with the 

highest concentration gradient diffused through the film to establish equilibrium. The 

benefit of this property is that the rate of transmission for a specific density of these 

barrier films was a function of vapor pressure difference over film thickness, as 

sweat/gas arrived on the inner side of the membrane and exited as a vapor or gas16. 

Liquid could not transfer through the polymers. 

There are obvious advantages to this type of cooling scenario, primarily its 

simplicity of design and the physical mechanisms at work are based on simple physics of 

pressure gradients and equilibrium similar to a cellular membrane. A higher level of 

protection against the hard vacuum of space, or adverse planetary environments is also 

afforded by such a system. This type of breathable polymer could be implemented into 

the HEE layer with the embedded liquid cooling system to give an even greater degree of 

control. With further research, the HEE’s cooling could be used to control the rate of 

diffusion between liquid to vapor. This would essentially make this type of “breathable” 

membrane system function more as a humidity control layer, while giving the HEE 

autonomous biofeedback thermal regulation system a broader and more responsive 

control algorithm. 

Experimental Approaches 

In consideration of the complexities of verifying the HEE concept as part of a 

technically feasible biomimic of the human integumentary system, the experimental  

 

16 Ward RS, White KA. “Barrier Films That Breathe”. Chemtech. Nov. 1991: 670 
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procedures to test the concept of HEE ultimately required design and construction of a  

prototype suit. The experimental approaches utilized humans-in-the-loop (HITL) design, 

engineering, fabrication, and testing procedures17. The inception of the design process 

began with identifying performance prerequisites of the suit to formulate the 

developmental steps of subsystems. A derivative objective was to ensure that with each 

revision of fabrication methodology or materials selection, functional parameters would 

be improved. Some academic research of Mechanical Counter Pressure suits including 

the Paul Webb Space Activity Suit (SAS) and the MIT Biosuit was considered, but 

eventually it was determined their operational theories, materials and functionality were 

substantially dissimilar to HEE. It must be noted that the while the SAS had the most 

useful and pertinent data in the context of HEE development, both aforementioned suit 

research programs helped to rule out functionality concepts, fabrication techniques and 

materials for HEE. 

The initial concept of body surface tension stability commenced with materials 

research, experimental construction techniques, and fabrication samples. With the 

development of a particular component came requirements necessary for its integration 

into other components of the suit, and eventually integration into a unified system. The 

experimental testing as well as design approaches were a multistep and iterative process, 

with each revision in material application, a modified construction method was required, 

and often testing methods were revised or redesigned. The focus of thermal control, 

epidermal stability and anthropometrics testing procedures were highly dependent on  

the iterations of suit evolution. This evolution was necessitated by the need to replicate 

17 "DoD Modeling and Simulation (M&S) Glossary", DoD 5000.59-M, DoD, January 1998 [1] 

https://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://www.dtic.mil/whs/directives/corres/pdf/500059m.pdf
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the functional characteristics of a human organ. The integumentary system as a multi-

functional barrier regulates temperature, protects the body from various kinds of 

damage, such as loss of water, and abrasion from outside18. These same elements of 

regulation and protection had to be replicated as a form of human enhancement by 

virtue of the laws of thermal exchange and mobility working as virtual analogs. Each 

one of the points of control had to be accounted for and implemented into the HEE layer 

suit design.  

 With each iteration or modification of a suit component, solutions to the original 

design prerequisites tended to improve, and in the instance of the suit’s skin surface 

contact layer, research findings necessitated a total redesign and an additional 4 months 

rebuild time.  The testing regime at each step went from conceptual to physical, with 

some instances leading to redesign of a subsystem (suit component). In summary, the 

modifications or additions to the original HEE space suit system include a total redesign 

of the HEE contact layer and glove mechanisms, addition of pneumatic actuators, 

addition of hard torso with integrated backpack and implementation of three different 

helmet configurations.   

 The project time line was strictly adhered to when possible during the design 

process. Any shortcomings or delays encountered in component prototyping entailed a 

modification or redesign. It was decided to fully solve all architectural dilemmas 

throughout the course of project development, as the later integration procedures 

required all technical problems to be resolved.  Let it be noted that the research  

 
18 Mclafferty, Ella, Charles Hendry, and Alistair Farley. "The Integumentary System: Anatomy, Physiology 

and Function of Skin." Nursing Standard 27.3 (2012): 35-42. Web.  Retrieved 28 Sept. 1015. 
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conducted was preliminary in context of the complexity of the project, research is 

ongoing, and all solutions are subject to later revision and modification.  While the HEE 

space suit prototype serves as a concept demonstrator, it is merely the first generation 

platform and at the time of this writing, design and construction revisions are being 

formulated. The following sections list materials types and manufacturing techniques of 

each component in step by step order of fabrication and assembly of the entire 

Generation-I HEE space suit. 

Materials and Manufacturing Techniques 

HEE layer 

The investigation into suitable materials for the epidermal contact layer began 

with the notion that the choice of textiles and materials would have a defining impact in 

determining design and fabrication methods that would be implemented. Several sample 

garments of various materials and purpose were analyzed and deconstructed as part of 

initial research, including a wet suit, dry suit, and various Nomex flight suits, including 

a Russian VKK anti-G high altitude suit. Each garment was tested for mobility, and 

individual manufacturing details noted for reference. To be considered as a possible 

basis of design, the epidermal layer had to have several unique characteristics to be 

viable: 

1) The foundational layer would need the ability to completely constrict 

over all body surfaces, including axilla, antecubital fossa and popliteal 

fossa. 
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2) The material used would have to both conform to the changing local 

topography of the epidermis, and equalize surface tension that would be 

introduced from a to-be-determined actuation mechanism. 

3) The material would have to be able to be able to integrate a cooling 

system in the form of flexible tubing, as well as have the ability to keep 

the surface of the skin relatively perspiration free.  

 The lack of gas pressurization precluded the use of a sublimator, which on a 

conventional space suit plays a role in helping to minimize perspiration19. 

 None of the test articles offered any of the characteristics needed to serve as 

even a minimum conceptual analog for the envisioned HEE layer. Both the wet-suit and 

dry suits lacked the structural integrity to be considered, and the Nomex based suits 

were deficient in their ability to conform to complex anatomical shapes, even when 

modified. While the VKK anti-G suit shared similar disadvantages of the basic Nomex 

flight suits, the compression actuators did offer potential for possible future integration 

into the HEE prototype. After an arduous search for a suitable foundational component, 

a microfiber bodysuit manufactured now defunct Australian company Easy-Therm was 

selected, and several of the last remaining examples procured from England. The Easy-

Therm suits met all criteria of a workable HEE foundation. These suits were developed 

as an all-purpose, unisex undersuit, originally designed to wear under scuba gear, 

wet/dry suits etc. as a wicking and thermal layer. They are manufactured in one piece, 

with a stretchable neck for ease of entry. The fabric used is a single weave 85%/70D A+  

 

 
19 Jones, Harry. "Spacesuit Cooling on the Moon and Mars." SAE Technical Paper Series (2009): n. pag.  

Web. 28 Dec. 2015. 



 
 

38 

Nylon and 15% 20D Elastane, which gives it stretch and durability. The most important  

characteristic about the Easy-Therm suit is that can completely conform to all contours 

of the human body, leaving no areas of body surface without contact. The suits conform 

to body contours in a way that no other material researched could come close to 

matching. 

 With the problem of a form fitting bodysuit resolved, research commenced for 

the purpose of adding the constituent materials that would comprise its functionality and 

structure. Following completion of testing several different types of silicon and urethane 

substances, a polymer was identified that had the characteristic required for such a 

unique application. Known as Bioflex, the material is available in several different types 

of hardness, and is used primarily for prosthetics and bio-medical applications20. For the 

purpose of HEE space suit construction, a similar material called Ecoflex was utilized, 

which is nearly identical, but lacks the medical use certifications. A technique was then 

developed that involved using a small rubber squeegee to apply the Ecoflex gel in 3 

layers onto the microfiber suit while it was mounted over a PVC mannequin. This 

method forced the gel into the microfiber weave while leaving exposed a thin embedded 

fibrous wicking layer exposed on the epidermal interior contact surface. Two additional 

coats provided additional strength, and served to embed the cooling tubing into the HEE 

bodysuit.  

 

 

 

 
20 Lamba, Nina M. K., Kimberly A. Woodhouse, Stuart L. Cooper, and Michael D. Lelah. Polyurethanes in 

Biomedical Applications. Boca Raton: CRC, 1998. Print. 
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 During the Ecoflex coating process, over 100 meters of 1/16” PVC tubing was 

embedded into the suit. It was determined longer runs of the 1/16” vs shorter runs of 1/8” 

cooling tubing was a better option for several reasons: 

 1) Using the smaller diameter in greater combined lengths added a greater 

degree of cooling control through the use of a greater number of 

individual cooling pump motors and isolated cooling loops.  

2) The smaller diameter allowed a thinner more flexible HEE bodysuit, 

cutting the weight factor by 50%.  

3) Smaller diameter tubing has a better interior diameter-to- wall thickness 

ration, thus minimizing the risk of crimping, or being crushed during 

compression mesh layer activation. 

The technically accurate term involving composite materials fabrication is layup 

process. An initial 24cm2 HEE layer test section was constructed using the impregnation 

of microfiber combined with a bonding process for the cooling tube integration. The 

layup process began by using a life-size polyethylene mannequin to create a generally 

correct anatomical form for the microfiber base and associated layers that would be 

applied. The Easy-Therm body suit was placed over the wet-sanded and prepared 

mannequin, with careful attention paid to correct centering and fitting of the garment. 

Using a flexible rubber squeegee, a thin layer of Ecoflex gel was pressed into the entire 

surface of the microfiber layer, causing the entire body suit to shrink down to the 

mannequin’s polyethylene surface. The next step was applying the roughly 100 meters 

(330 ft.) of cooling tubing using the thermal body mapping data described in Chapter III 

Testing Approaches. The tubing was routed in a redundant configuration, implementing 
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parallel lengths over targeted areas of the body that would allow counter-circulation to 

evenly distribute thermal transfer in the coolant contained within the entire liquid 

cooling matrix. Special attention was paid to ensuring that tubing would not interfere 

with mobility, or be compressed or subject to wall collapse during movement. Tubing 

application typically allowed a minimum of 3 independent directions of flow per 

anatomical cooling region. The tubing was then assigned a direction a flow by 

designating it to a particular cooling pump motor loop in the PLSS backpack. Ends of 

tubes were then numbered and labelled for future connectivity. Ethylene vinyl acetate 

and a second coat of Ecoflex was used for tubing installation, followed by a third coat 

over the entire body suit. All areas that were both major sources of heat radiation as well 

as responsive to surface cooling were considered part of the cooling matrix; primarily 

the abdominal anterior and posterior, arms, legs to the knee, and head via the helmet 

cooling loop.  Spacing between the parallel lengths of tubing was also taken into 

consideration to allow the most efficient heat transfer in regards to the thermal 

conductivity of the Ecoflex layers. The problems of surface tension behind the axilla, 

antecubital fossa and popliteal fossa were addressed primarily during the HEE layer 

fabrication. For each of these areas, a composite cell was created, incorporating 00 

hardness Ecoflex gel inside a flexible polyethylene plastic resin membrane. The size of 

the cells were dependent on the areas being applied, with each being installed by a layer 

of Ecoflex 00-10 gel, followed by compression mesh joints sewn over the cell. The 

compression mesh wraps tightly around each limb, and in the case of the elbow, is 

gathered and affixed to the olecranon (tip of elbow) This configuration takes advantage 

of the arms geometry during flexion, where the actual distance between the olecranon 
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(elbow) and cubital fossa increases, creating constriction. The semi viscous properties of 

the gel seeks hydrostatic equilibrium of pressure against what is commonly known as 

the inner elbow.  

 

 

 

 

 

 

 

 

 

Figure 9. Parallel counter flow cooling matrix for uniform thermal transfer of body heat. 

 

 

 

 

 

 

 

Figure 10. Cubital Fossa.                           Figure 11. Semi-Viscous compression insert. 
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Figure 12. Cooling tubing under constricting layer. 

 

 Following completion of gel cell installation, the entire HEE under suit layer was 

integrated with the Micro-Mesh compression layer. This mesh layer is woven in a 

configuration that allows the surface area to shift with body movement geometrically on 

the planer 2 dimensional surface with minimal stretching or increase in actual surface 

area.  Finally, the sensors for thermal, humidity and surface tension monitoring and 

control were embedded into the side of dominant laterality; which in this prototype is 

the left side of the body. The dominant side serves as the baseline for biometric readings 

responsible for controlling the HEE suit onboard cooling system.  Sensor wiring and 

leads were carefully secured and routed for later connectivity to the PLSS backpack. 
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Hard torso and PLSS Enclosure 

The core of the PLSS breathing apparatus consists of reengineered Soviet KIP-8 

and IDA-71 rebreather systems combined into a single unit retaining part of the KIP-8 

housing. Because the addition of pressurized counter lung, thermal control system and 

associated hardware would add extra weight and require more space, a lightweight 

polypropylene/polyethylene enclosure was selected to house the combined system. 

Serious consideration was given to the problem of supporting the mass of the backpack 

in both zero gravity and gravitational environments while avoiding the possible 

restrictions in the cooling system tubing matrix that might be incurred from 

conventional straps or harnesses. Integrating the backpack to the hard torso was the best 

solution to address the problem of load stability. The housing was fabricated from a 

commercially available enclosure with 3-1/4” bolts for direct attachment of the 

breathing apparatus to the rear segment of the torso. The remaining original straps of the 

rebreather were then routed through attachment point of the rear segment of the hard 

torso, and attached to the interiors of both anterior and posterior torso halves, which in 

effect distributes the backpack mass over the entire hard torso, minimizing the risk of  

restricting coolant circulation. The enclosure was then covered in a layer of Mylar and 

features a removable padded cover for protection. The hard torso was manufactured by 

hand using a form and fiberglass/epoxy laminate process, with metal added into the 

anterior half before final gel coat was applied. 
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Figure 13. PLSS housing fabrication.  Figure 14. Hard torso fabrication and  

                                                                        Lamination process. 

 

 

 

 

 

 

Figure 15. Hard torso ballistic Nylon coating.       Figure 16. Mating PLSS housing and  

                                                                                hard torso. 
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 An essential feature of the hard torso is its two-piece hinged design. The torso 

opens similar to a clamshell with the hinge point at the top of the shoulders. This 

configuration allows a wearer to step under the unit, placing their head though the neck 

opening, while pulling the helmet ring seal through, and closing the torso halves without 

assistance. The upper and side friction straps are easily tightened by the wearer, creating 

both the hermetic helmet seal as well as the constriction over the thorax. The torso 

features a fibrous Smart Foam compression liner, rather than conventional closed cell 

liner. This circumvents the problem of air expansion in a vacuum which would be a 

detriment to conventional foam. The hard torso can be lined with a number of different 

types of radiation shielding for at least a degree of protection for internal organs, with  

Demron being the preferred shielding because of its low mass21. Other features of the 

hard torso include an articulated abdominal component, actuator air-line and coolant 

interconnects, external atmospheric pressure sensors, and wiring junction board on the 

anterior segment. The composite surface is covered with a layer of Dupont 1050D 

Cordura ballistic nylon, similar to the outer shell of the space suit garment for extra 

protection against abrasive elements. When fitted and secured down to the wearer, the 

hard torso, backpack and helmet function as a single unit, with flexible helmet collar 

giving the ability for head rotation, upward and downward movement with both the 

composite Mars prototype helmet, as well as the modified GSh-4MS helmet. The hard 

torso also allows free movement of the head inside the prototype bubble helmet as well.  

 

 
21 Chae, Myeong-Seon, and Bum-Jin Chung. "Radiation Exposure of an Astronaut Subject to Various Space 

Radiation Environments and Shielding Conditions." Journal of the Korean Society for Aeronautical & 

Space Sciences 38.10 (2010): 1038-048. Web. 8 Aug. 2015. 
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The input and exhaust air hoses are secured to the torso shoulders by straps, while 

allowing mobility it the two versions of articulated helmets. 

Constriction Actuation 

 The basis of HEE operational design at first glance may seem similar to the 

Webb Space Activity Suit, or the MIT Biosuit, but there are fundamental differences in 

its functionality. The goal of HEE is to be several development steps ahead of the 

aforementioned MCP concepts through understanding of human physiological 

principals, and application of appropriate technological interactions. As stated 

previously, HEE operates with the human body in conjunction with internal dissolved 

gas pressure parameters, innate human homeostatic thermal regulation and the elastic  

properties of the human epidermal layers. The major differences in operations and 

functionality between HEE and mechanical counter pressure are as follows; 

1) MCP attempts to replicate a pressurized atmospheric gas envelope around the 

wearer using constricted fabrics to apply even counter-pressure to the body 

surfaces22. In contrast, HEE uses constriction as part of the donning process. 

Once the suit is in place on the wearer, the contact pressure between the skin 

surfaces is generated from within the body, not from without, limiting tissue 

expansion. 

2) While both MCP and HEE would use pre-breathing protocols, MCP is 

currently limited to the amount of surface tension that has been  

successfully applied; roughly 3.6 psi (190 mmHg)x.  HEE uses a 

 

22 Obropta, Edward W., and Dava J. Newman. "A Comparison of Human Skin Strain Fields of the Elbow 

Joint for Mechanical Counter Pressure Space Suit Development." 2015 IEEE Aerospace Conference 

(2015): n. pag. Web. 15 Nov. 2015. 
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multistep protocol that reduces internal tissue compartment pressure,  

and allows for some instances of negligible skin puffiness (comparable to zero 

g flight), and statically counterbalances and buffers internal gas pressure 

through its pneumatic actuator system. The Micro-Mesh constricting layer 

allows for very little geometric expansion, and any expansion of body tissue 

that might occur during movement is transferred and counteracted against 

other body surface areas by the pneumatic actuators closed loop design, greatly 

reducing the risk of embolism.     

3) HEE in combination with its accessory components is envisioned as a multi-

use system, with built-in points of control and capability to maintain 

homeostasis in a variety of different environments including planetary, and 

long durations flight. The first generation HEE space suit is considered a 

technological demonstrator using conventional and unconventional materials 

for a unified non-pressurized space suit. The second and third generation HEE 

space suits will incorporate improved actuation systems, enhanced bio-

monitoring, and remote tactile sensors transmitting spacecraft and life-support 

information directly to the wearer’s nervous system. This is envisioned as an 

enhanced form of sensory perception that would for example, allow a wearer 

to detect micrometeorite impacts on a spacecraft hull, or sense spacecraft 

navigational orientation via induced vestibular stimulation. This would be a 

preliminary step towards man-machine sensor integration and eventually 

making physical human control interfaces obsolete. 
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Because the HEE suit was entirely self-funded with no outside assistance, there 

were budget constraints placed on certain components which were specifically chosen 

so as not to affect the functionality concepts. Out of expediency, it was decided that the 

pneumatic actuators for the constriction layer testing would be fabricated from the 

Russian VKK anti-g suit bladders. The VKK suit was completely dismantled and the 

bladders pressure tested for 24 hours. An off the shelf digital sphygmomanometer was 

modified with an addition of a pressure sensor to raise actuator inflation pressure near 

3.8 psi (200mm Hg), though this is currently considered beyond minimal required 

pressure for the HEE concept. Materials research involved several months of testing 

different types of netting and meshes used in textiles and collapsible storage 

technologies.  

 

 

 

 

 

 

 

 

 

Figure 17. Compression netting preliminary design sketch. 

Two configurations of micro-mesh were deemed to be the optimum material for 

transfer of pressure from the suits pneumatic actuators to the HEE surfaces. Both 
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versions of Micro-Mesh are very low stretch geometrically woven fabrics that allow 

distortion without losing tension. The finer 75- Denier polyester weave was used for the 

major anatomical surface areas, and the larger weave offering greater tensile strength 

was used principally around joints as its properties allow conformity to extended 

contours. The Micro-Mesh was first measured, cut and sewn onto the pneumatic 

actuators, then fitted to the HEE layer to achieve a reasonably snug fit over all surface 

areas. This method allowed quick installation of both the actuators and Micro-Mesh 

constriction layer due to the ability to adjust fit and snugness to the individual by 

gathering any areas that needed tightening. The mesh constriction layer was then 

attached to the HEE layer at interspersed points using heavy duty nylon thread. The 

result is a free floating mesh layer with the ability to conform around body surfaces, 

while at the same time allowing very little distension from outward force. Care was 

taken during the fitting process to ensure that in the actuators relaxed state the suit was 

easy to don and doff, while in the activated state all surfaces of the body are taut. 

 

Figure 18. Polyester weave micromeshes.          Figure 19.  Air actuator installation.         
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Helmet variants 

Helmet development for the HEE space suit consisted of 2 custom built 

conceptual helmets, and a heavily modified Russian GSh-4 pressurized helmet for initial 

pressurized neck seal testing. The rationale behind testing three variations was 

evaluating mobility and comfort of fixed bubble designs vs. floating helmets that move 

with motion of the head. These experiments also aided in refining the union between the 

helmets and the non- gas pressurized HEE suit layer. 

The first project was to rebuild the GSh-4 helmet. An unissued helmet was 

purchased and completely dismantled for modification and adaptation for suit testing 

purposes. The major pressure components were discarded, and the modification and 

upgrade process included; 

1) Disassembly of outer liner, latex rubber pressure bladder, as well as visor 

glass and seals. A new heavy duty latex and neoprene full hood was bonded 

to the existing visor pressure gasket, with a bellows neck seal added to the 

neck opening. Pliobond P-612-LV cement was used for all bonding of 

rubberized materials. The visor and new components were inflated to 4.5 psi 

and leak tested for 24 hours. 

2) The oxygen hoses as well as exhaust and purge valves were removed from 

the helmet. The chin area was modified to accept one-way diaphragm valves 

for the checked flow of oxygen into the helmet, and exhaled carbon dioxide. 

A return line and quick disconnect housing was added for exhaust gas flow 

back to the PLSS system scrubber and recirculation system. 
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3) The visor was coated with a 15% gold Mylar film, and it was determined 

that the defogger system embedded inside the visor was rated at 28 volts 

DC, and left in place for possible future use.  

 

 

 

 

 

 

 

 

Figure 20. Pressure sensor and diagnostic LED’s. 

 

Figure 21. Closed loop breathing circuit and check valve assembly. 

Monitoring of vital functions done via microcontroller built into hard torso, and 

include blood oximeter, CO2 monitoring and humidity sensors. Information is displayed 

in a straightforward manner; colored LED indicators placed just in peripheral vision 
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blink in a fashion similar to automotive trouble-code light. This configuration provides a 

simple “HUD” and no near-focus is required by the wearer for status information. For 

internal helmet cooling, a simple cooling cap was constructed using a knit stocking cap 

with 3 meters of 1/16” flexible tubing in two parallel channels of circulation in 

continuous flow. For initial testing, both the status display system and the cooling cap 

are used interchangeably between the 2 test helmets. 

The second helmet variant was patterned from a standard motorcycle helmet 

built up and contoured with modelling clay, from which a silicon mold was created. The 

helmet was cast from fiberglass, inlaid epoxy weave cloth, and slow curing aviation 

epoxy used for the construction of experimental aircraft. The slope of the visor while 

envisioned to give considerable visibility for the wearer, presented challenges in 

forming and attaching it to the helmet itself. Because of the possible risks of the visor 

being damaged during pressure testing, a set of aluminum frames with a removable 

rubber seal was constructed for mounting the clear acrylic visor. The neck seal was 

construction from a neoprene and latex rubber composite, and bonded on to the opening. 

Hose adapters and one-way check valves of the same type as the GSh-4 helmet were 

installed on the sides of the helmet for closed loop respiration. 
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Figure 22. Floating helmet construction. 

 

In practical application this type of helmet while having superior visibility, also had 

some major disadvantages. The headband needed to secure the helmet to the wearer was 

essentially a complex suspension device mounted to the rear, and never worked 

acceptably as there tended to be slippage when turning the head with the pressurized 

collar and neck seal in place. A second technical concern was the shape of the sloped 

visor seemed to be a weak point. The original acrylic visor blew out during testing. A 

second visor made from polycarbonate was installed which also failed during pressure 

testing. Visor fragments were examined under a microscope, and it was discovered that 

in the vacuum forming process the heat was causing a chemical reaction in the 

polycarbonate that formed microscopic gas bubbles embedded within the transparent 

material.  
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Figure 23. Chemical reaction (gas bubbles) in acrylic causing visor failure under 

pressure. 

 

 

Figure 24. Completed floating helmet. 

This unwanted chemical reaction caused not only minor visual distortion, but 

weakened the visor itself. A third visor was constructed using lower temperatures during 

the forming process, and this attempt was successful. The visor was transparent, was 

reasonably free of visual distortion and passed pressure testing. The second pending 

redesign of the upper portion has potential for its low weight and visibility, but the 

suspension mechanism for the head and transparent visor will need further development. 
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Thermal Control System 

Because the HEE layer and associated components lack an air pocket 

surrounding the body, and need to remove metabolic heat from the wearer, an active 

thermal controller was developed specifically for the HEE space suit. The design 

considerations had to take into account the lack of convective heat transfer and humidity 

controls through air circulation and the sublimator common in conventional space suits. 

A design for simple closed loop liquid cooling evolved into a multi-channel computer 

controlled temperature regulation system, capable of both cooling and heating. Because 

of the increased complexity of the architecture, the HEE space suit outer shell had to be 

modified, adding an extra layer of Polyfill and Mylar reflective thermal blanket to 

stabilize both skin surface and core body temperatures. For an active feedback loop 

system, it was critical to limit the effects of external temperatures on the suit in order to 

for the microprocessors to establish a baseline stable temperature baseline. The suits 

intended role as a planetary surface system gained additional features that likened it 

closer to an open space EVA suit.  

 

Figure 25. Langer’s lines. 
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Figure 26. Assembled controller and test pump motors. 

 

The Amtel ATmega328 running at 16 MHz was selected as the standard core 

processor for the 3 controllers that would be implemented in various control systems in 

the HEE suit. The ATmega328 uses simple C++ coding, utilizes flash memory boot 

loader and can be easily reconfigured by a simple power reset. All circuits were designed 

through Fritzing PCB design software, then bread boarded and tested before the circuit 

boards were assembled and soldered. The basic design of the thermal controller is a 4 

channel feedback loop system consisting of 4 waterproof DS18B20 digital temperature 

Probes, a NO (Normally Open) relay board, four 7-12V DC pump motors, wiring loom 

and battery pack. 4 additional channels are enabled for future testing under higher 

thermal loads, for a total of eight possible coolant circulation loops. Each thermal probe 

is embedded into the HEE contacting the skin surfaces, and provides real time 

measurements to the microcontroller. The order of thermal control sensor and feedback 

operations are as follows: 
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1) The digital thermal sensors are assigned numeric values one through 

four. Every second the microprocessor polls a sensor in order, for a total 

of four seconds to transmit temperature data from all four sensors. 

Temperature changes are sensed instantaneously, and the sensitivity of 

the DS18B20 sensor is limited only by the conduction rate of its 

aluminum probe housing. 

2)   The microcontroller programming interprets the digital signal as both 

Celsius and Fahrenheit temperatures, with a motor activation threshold 

set to ~33° C., with the target body temperature programmed as a stable 

~36/37 °C. The temperature settings can be adjusted to the individual’s 

preference. 

3)   As the skin surface temperature rises and crosses the programmed 33° 

C. setting, the microcontroller activates the cooling pump motor that is 

associated with that particular sensor. The pump motor circulates 

coolant to the assigned anatomical area to cool the skin temperature, as 

the DS18B20 sensor keeps polling at regular intervals.  

4)   When the skin surface temperature reaches below 33° C, the coolant 

pump motor automatically switches off. The cooling channel remains at 

a resting state until the digital temperature sensor again detects elevated 

skin surface temperature, and the process repeats. 
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Figure 27. Terminal console data with descriptors. 

Flow testing through 1/8” and 1/16” flexible tubing was performed using one of 

the DC pump motors to confirm quality control and determine an average flow rate. 

First using a test sample of HEE material, water with blue dye (food coloring) was   

circulated through the embedded cooling tubes to ensure the radii of the tubing bends 

were not restrictive, and that fluid freely flowed. Next, the test sample of HEE material 

with a dual cooling loop was connected to the DC motor with a one gallon water 

reservoir, and a one gallon transfer container from which the transferred water was 

measured. Several tests of two identical pump motors were implemented at both 6 volts 

and 12 volts DC power. A stopwatch was used to time fluid transfer on each one minute 

test, the measurements noted in liters, and the transfer container carefully emptied and 

dried before each new test was performed.  



 
 

59 

 

 

Figure 28. Flow rate testing. 

Table 1. Flow Rate Tests of 6-12 Volt DC Fluid Pumping Motor. 

 Voltage Test #1 Test #1 Test #1 

6v 0.595 L 0.582 L 0.598 L 

12v 0.951 L 0.959 L 0.948 L 

 

 The system was tested with water at different temperatures, and each channel 

calibrated accordingly. After complete motor, relay and thermal sensor testing, the unit 

was encased in a housing and mounted in a padded prototype case which is worn as a 

waist pack. The sensor probe wiring harness is routed through the side of the outer suit 

shell, and connects to the HEE layer with a multi-pin connector. The heart of the cooling 

system for test purposes consists of 3 cooling cartridges built into case which perform 

the function of a thermal phase change reactor. 1/8” tubing coiled in each cartridge for a 

total of ~16’ circulate the coolant in a closed loop between the suit’s cooling matrix and 

pump control motors. Some specialized research in coolant technology for this method 
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was also performed. A cooling medium consisting of an alginate polymer in a 99.5% 

water solution was developed, and injected into each cooling cartridge before sealing. In 

very early testing, the alginate augmented water attained solid and liquid forms more 

evenly than water, and retained its shape in gel form after a complete thaw. At this point 

it can only be speculated that the polymer chains in the alginate mixture distribute 

thermal phase changes at a more even rate in the cartridges, but at present there is only 

anecdotal evidence, and research into this cartridge technology in ongoing. While it was 

entirely possible to mount the thermal control system housing in the backpack, in the 

prototype suit the decision to create its own separate waist pack was based on ease of 

configuration and repair, as more space for debugging and calibration was afforded. 

Additional independently controlled cooling loops may be added into the system 

depending on effectiveness of current configuration in future testing regimes. The 

DS18B20 leads were routed into the outer space suit shell, and placed according to 

figure 42 (page 81) “Thermal sensors placement”.  Special care was taken to ensure 

there was no binding between the leads and the HEE layer.  The leads from the waist 

pack control box to the suit were bundled together and wrapped in protective flexible 

conduit.   

 

Figure 29. “Solid water” 96% by wt alginate augmented water coolant. 
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Figure 30. Wiring the controller, relays and pumps into enclosure. 
 

 

 In summation the purpose of the cooling system in context of the HEE is to cool 

the wearer’s body temperature in non-convective environments, minimize adverse 

sanitary problems associated with perspiration and to reduce fatigue. Details of the test 

results are located in Chapter IV, under sections “Thermal Control. 

Epidermal Pressure Sensors 

 Although the purview of the preliminary research pertaining to the HEE space 

suit and this thesis is primarily thermal control, this section will describe the design and 

implementation of the digital pressure sensor system that will be implemented for future 

testing in later publications. Initially, the pressure testing system is a series of force 

sensitive resistive (FSR) pressure sensors that use a dielectric material which translate 

compression into an electrically resistive digital value. These sensors can be calibrated 

and measured using both a digital multi-meter and a computer for more complex 

readings. The pressure sensor consists of a 0.5 diameter sensing area, and the FSR will 

vary its resistance reading depending on how much pressure is being applied to the 
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circular sensing area. The harder the applied force, the lower the resistance. When no 

pressure is being applied to the FSR its resistance will be larger than 1MΩ. The FSR can 

sense applied force anywhere in the range of 100g-10kg. Because of sensitivity, and 

each FSR varying slightly from production, each had to be carefully calibrated and 

evaluated before any further testing could be implemented. The calibration method is 

described as follows. 

 

Figure 31. Padded waist pack                        Figure 32. Force Sensitive Registor (FSR). 

thermal controller with 

activation switches. 

 

The first step was to test each resistor individually on a flat aluminum plate to 

examine the properties of each. An electronic scale was zeroed out with the empty 

weight of a water bottle. A table of digital resistance scales was created by filling the 

water bottle with weights between 28oz to 40oz in 2 inch increments. A digital interface 

was constructed to read the data on a Windows 8 computer via USB-Serial emulation. 

Each resistor was tested 3 times, and the weight applied for 1 full minute to allow 

settling of the dielectric material, as well as an accurate reading. Each resistors 

calibration reading varied within only one or two digital pulse values, but the values 

generally matched if a few extra seconds were added to the test. This is most likely due 
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to microscopic variations in each resistor, even though they are manufactured in a 

controlled factory environment. These minor variations had to be documented and 

accounted for. The digital pulse values were non-linear, and each resistor was assigned a 

number and its own data sheet. 

Table 2. Preliminary Calibration Table Results for Five FSR Sensors (Note each 

Resistor has Unique Digital Pulse Incremental Values Per Force Applied). 

 
Oz. per/0.5” Diameter Sensor 1 Rval Sensor 2 Rval Sensor 3 Rval Sensor 4 Rval Sensor 5 Rval 

28 913 902 905 890 911 

30 921 918 923 912 920 

32 924 922 931 915 923 

34 927 928 934 921 927 

36 933 930 943 932 935 
38 934 933 946 935 940 

40 937 936 949 938 943 

 

It was deemed critical to create a contact surface to match the sensor area. A 0.5” 

diameter vinyl disk was implemented to ensure exacting contact of the test mass (bottle) 

within only the active sensor area of the FSR pad. Each sensor was again pressure tested 

using the same methodology, and digital pulse values assigned to each. It was observed 

that with the 0.5” diameter disk, the overall pulse value to applied pressure went down 

on each sensor. The disk was removed and each sensor tested using the original method. 

All values returned to the higher levels. It was determined that the non-sensing part 

bordering the sensor area of each FSR pad changed the quality of the digital pulses. The 

disk was reinstalled to the sensors, and readings successfully repeated with a new series 

of tests. The digital pulse values were transcribed to a table with the equivalent 

lbs./inch2 ratios. 
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Figure 33. FSR sensor calibration with aluminum contact plate and interface. 

 

Table 3. FSR Sensor Digital Pulse Values Per LBS./Inch2
. 

Lbs./inch2 Sensor 1 

Rval 

Sensor 2 

Rval 

Sensor 3 

Rval 

Sensor 4 

Rval 

Sensor 5 

Rval 

Sensor 6 

Rval 

4.5 805 784 850 810 812 843 

5.0 816 798 858 838 839 865 

 

Outer Shell 

While the HEE Spacesuit serves as a protective layer for the HEE constriction 

and cooling layer, it also serves as an important part of the thermal regulation system, 

helmet to HEE transition, and as impact protection for the wearer. The original concept 

of the outer shell envisioned integrating the HEE layer with its cooling and constriction 

functions mechanism into a single garment complete with outer the outer shell. 

Following initial design inception, several changes were deemed necessary during 

fabrication.  The HEE layer in relation to the outer shell was no exception, and this was 

due mainly to translating a design on paper into the realities of physical construction and 

practicalities of interrelation between the HEE layer and outer shell.  The criteria for the 

outer shell consisted of:  
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1)  An emphasis on protection for the underlying HEE layer, including its 

cooling, constriction and associated components.  

2) The outer shell would be required to offer a limited degree of open space 

EVA  protection in an emergency situation, puncture and impact resistance, 

as well as resistance to high speed abrasive particles.  

3) The outer shell would be required to serve as an envelope of thermal 

stability for increased effectiveness of the liquid cooling system, while  

isolating the wearer and interior components from extreme temperature 

variations.  

4)  The ability to don and doff without assistance. 

The HEE suit outer shell pattern was creating by completely dismantling various 

commercially made garments to create a workable paper pattern, and constructing an 

entirely new garment from suitable materials. The outer shell was designed and 

patterned around Dupont 1050D Cordura ballistic nylon as the primary material. Other 

composites such as Kevlar or epoxy weaves are also perfectly suitable, but for the first 

prototype suit version, Dupont ballistic nylon was deemed acceptable for ease of 

construction, while still providing adequate durability for a Mars surface environment.  

The suit was assembled using an inexpensive Brother sewing machine, but also 

many hours of hand sewing where the sewing machine was incapable of penetrating 

multiple layers. The rational for choosing a quilted Polyfill construction method was to 

provide cushion and for the liquid cooling tubing minimizing crimped tubing in 

transitional and accelerated gravitational environments. The inner shell liner is 
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temporarily basted in, and the addition of Mylar layers can be easily accomplished with 

minimal work if required. 

        The layers were arranged from innermost to outermost in the following order: 

1) Liner 

2) Cotton/polyester foundation 

3) Mylar layer 

4) Polyfill layer 

5) Mylar layer 

6) Polyfill layer            

7) Dupont 1050D Cordura ballistic nylon 

 

Figure 34. Alternating layers of Polyfill and Mylar thermal blanket. 

 

The basic forms of the arm and leg portions of the suit were assembled in a 

conventional manner, with special attention being paid to the areas of knee and elbow 

movement. Several configurations of perpendicular stitching patterns were tested on 

fully layered mockup sections of material formed into cylindrical shapes to simulate the 
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sleeves with all material layers included.  All quilted lines on the outer shell were 

created by temporarily applying painter’s masking tape in the appropriate patterns to be 

used as a stitching guide. This same technique was used to test different types of 

perpendicular stitching patterns. The process was repeated using varying geometrical 

patterns until the best flex was determined, and implemented on the sleeves. The criteria 

used to select the best pattern was ease of flex at the elbow joints, the least binding of 

layers on the inner elbow and minimal crimping of material that might interfere with the 

HEE layer cooling matrix. 

 

 

 

Figure 35. The basic sleeve pattern, including the quilted lateral lines, and the arc-

stitched patterns implemented for maximum elbow flexibility. 
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Figure 36: Stitch pattern layout with low adhesion masking tape. 

 

The arm and leg parts of the suit are equipped with full length zippers that 

correspond to placement of the pneumatic actuators. This configuration allows ease of 

donning the outer shell over the HEE layer, with zippers that close downward towards 

wrists and ankles, allowing easy closure without assistance. Another advantage of the 

zippered limbs is the geometry of the actuators remains correct while donning the suit; 

there is no binding between the outer shell and HEE layer. It was decided the final outer 

shell would be a one piece jumpsuit with full length zipper from neck to crotch to 

facilitate ease of wear. The upper and lower parts of the outer shell were integrated 

together into the aforementioned jumpsuit configuration with a full length zipper from 

neck to crotch. 
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Figure 37. A) Perpendicular arc-stitched patterns for mobility. B) zippered sleeves for 

ease of donning/doffing. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Completed outer shell with individually fitted lower abdominal compression. 
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           The Outer shell weighs a total of 2.5 kg. (5.5 lbs), features impermeable weave 

impregnated with polyurethane, is resistant to punctures and abrasives and can be easily 

cleaned. The garment can be donned and closed in less than 30 seconds without 

assistance, is flexible and lightweight. The Polyfill liner provides a degree of extra 

comfort when flexing limbs, and distributes the bulk of the hard torso around the upper 

abdomen. Future design considerations include integration with the underlying HEE 

layer, the use of carbon fiber laminates and boots and gloves as an integral part of the 

outer shell. It is also possible that a simplified neck seal will be included as part of the 

unified HEE/outer shell layer. More research into improving the actuating system as 

well as maintaining suit serviceability will be needed to achieve these type of 

improvements. 

Gloves 

The design and execution of a non-gas pressurized glove suitable for extra 

vehicular use on a space suit presents several problems that at first glance appear to be 

only engineering considerations that are overcame. However optimistic this seems on 

the surface, there are several key physiological traits of the human hand that must be 

recognized when designing an alternative type of glove along the lines of the HEE 

concept: 

1) The very nature of the human hand as an evolved appendage in terms of 

functional requirements for fine motor coordination is constrained by 

the need for the same level of protection as the rest of the body creating 

a dilemma of mobility vs. protection. 



 
 

71 

2) Primary drivers for a non-gas pressurized glove are mobility for 

decreased stress to the user, and safety, which would require resistance 

to puncturing and catastrophic failure.  

3) An alternative to a gas pressurized will require some method to 

constrain swelling of the hand and digits, this is a critical function due to 

exposed surface area of the fingers. Ambient tissue pressure must match 

blood pressure, or circulating blood will rush into low pressure areas. 

The aforementioned research conducted in the 1990’s by Honeywell, Inc., in 

collaboration with Dr. Paul Webb and Clemson Apparel advanced later iterations of the 

ECP Glove (Elastic Counter Pressure) produced substantial improvements in the 

utilization of semipermeable polymers and testing protocols for practical homeostasis, as 

well as thermal transfer of metabolic heat through evaporation. In keeping with the scope 

of this thesis The HEE space suit utilizes conceptual prototype mockup gloves. The 

impetus of this section of study was applying HEE suit construction methods and 

materials to a workable glove design that would benefit from the Honeywell research. 

Key differences originate in the types of materials used, and fabrication methods to 

achieve similar performance of the very successful Honeywell / Webb ECP glove study. 

The glove designed and built for this thesis is intended only to be a feasibility study in 

materials and fabrication, but basic  tests in a hypobaric chamber were performed to 

evaluate the performance of the materials in conjunction with an air filled prosthetic 

hand. The test results and implications are listed in this chapter in the section  
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Prototype Glove construction was a multiple step process which made use of 

several different materials in several processes. Of primary importance was finding a 

suitable form that would serve as an anatomically correct representation of an average 

sized hand that would be the basis for glove construction. Among other criteria that 

needed to be satisfied was the form would need to easily separate from the materials 

application, as well as have the ability to be reusable for improved prototypes in the 

future. After searching several sources for a proper form, a rigid plastic hand that was 

slightly smaller than a male adults hand was chosen. The rationale behind choosing a 

slightly smaller size for construction is that the glove would have a fairly consistent 

tensional state already built into the Bioflex liner, which is the basis of most HEE suit 

components. The rigid plastic hand was wiped down in alcohol and sprayed with a silicon 

mold release. 

 A primary thin coat of Bioflex 010 was brushed on carefully, followed by a 

second coat after 1 hour. It is important that each new coat is applied before the gel is 

fully cured for best molecular adhesion. Between the second and third coats, there were 

two important steps that had to be taken. Firstly was the installation of the 1/16 inch 

flexible tubing that consisted of a dial pass counter flow array on the back of the hand 

from the knuckle area down to the wrist. Moisture suppression though thermal control 

was a consideration in such a confining type of material, and was applied in the same 

methods as the body suit HEE layer. The second step taken was the addition of 

constrictive bands between the joints of the fingers, and a supporting layer under the 

metacarpus (palm). As the second layer of Bioflex cured, bands were measured, cut and 

applied around each finger in segments, leaving several millimeters gap around each 
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joint. Each band was secured with two sets of fine thread, which was then cut after the 

third layer of Bioflex was brushed on, incorporating a very constrictive, yet flexible layer 

over the hand. A 00 hardness self-contained gel cell was formed to fit into the metacarpus 

in a shape that would ensure positive pressure into the palm area when the hand was 

relaxed. The 00 hardness gel allowed a plastic flow of material into depressions such as 

the palm of the hand, when clenching or grasping.  

 

 

 

 

 

 

 

 

Figure 39: Completed inner liner with cooling. 

 

It is important to note that because of differing materials characteristics between 

the HEE glove and the Honeywell/Webb ECP glove, the compressional glove inserts 

required fewer sections, as the 00 Bioflex had the capability to seek and conform to  areas 

of lower pressure due to plasticity and flow of the gel. Finally, the final layer of Bioflex 

embedded another layer of constricting weave micro-mesh in areas of the hand which 

were subject to deformities during flexion (palmarflexion) or extension (dorsiflexion) of 

the hand and wrist. After curing, the inner HEE glove liner was removed from the plastic 
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hand that served as the form, and the liner placed onto the prosthetic hand with FSR force 

sensors placed into areas that were to be tested in the Paragon  EHF hypobaric chamber. 

The prototype outer glove liner was then constructed from a PVC coated layer, with 

micromesh, ballistic nylon and elastic bands at each finger joint.  

 

 

 

 

 

 

 

 

 

 

Figure 40. FSR pressure sensors placement.  

 

Boots 

For purposes of future research considerations, a boot design implementing 

existing and available technology was chosen as a starting point for applying the HEE 

concept into footwear that would be non-gas pressurized and puncture resistant, with 

characteristics that would make integration into the suit uncomplicated. While boot 

research and construction was a peripheral study of a concept prototype for the purposes 

of this thesis, a feasible design was developed. After careful consideration it was 

decided to use existing Bata Type I Extreme Cold Vapor Barrier Boots as the foundation 

https://en.wikipedia.org/wiki/Boots
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of the HEE prototype boot. There were several obvious advantages in the Bata Type I, 

one being the heavy vulcanized insulated rubber construction, making modification 

rather simple with dry suit adhesives, and most valuable component being the internal 

air bladders with manually operated relief valves. The Bata boots were designed with air 

bladders integrated into the construction during manufacture that function as an air filled 

insulating barrier heated from body warmth. At high altitudes, the atmospheric pressure 

differential between the internal boot pressure and ambient external pressure at altitude 

would cause the bladders to swell up, squeezing tight around the foot, especially during 

airborne and high altitude operations. The solution to the problem is the incorporation of 

a relief valve similar in appearance to an inner tube valve stem that is opened by turning 

the tip for equalization of pressure.  

Two factory new pairs were purchased for testing and modification. The first 

objective was to reverse engineer the functional qualities of the boot by testing how 

reliably it could hold a workable amount of air pressure inside the bladders. A hose and 

clamp fashioned from wire were attached to the relief valve, and the boot coated with a 

water/detergent mixture to visually identify leaks in the form of air bubbles. Using an air 

pump with a built-in gauge, the boot was inflated to 5 P.S.I. (~35 Pascal’s) atmospheric 

pressure, and checked for leaks. The boot successfully held the pressure for 1 hour of 

initial testing before air was purged from the bladders with no visual leakage or pressure 

loss. The boot pressure is fed from the suit actuators through a pressure line which 

compresses a custom molded Bioflex sheath around the entire foot. The footwear 

component of the HEE suit represents only a secondary area of research and design in 

the scope of this thesis, but further research and development is ongoing. 
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Testing Approaches 

Thermal Control Testing Approaches 

 The testing procedures for the HEE layers thermoregulation abilities are 

composed of both qualitative and quantitative data sets. The testing is straightforward 

and redundant. The HEE layer is equipped with thermal sensors on the dominant limbs 

and torso contacting the skin surfaces, with digital signals fed to a computer which 

converts the digital signals into collated terminal readouts which display the 

temperatures of each area of the body in 1 second increments synchronously. The 

geometric layout of the cooling matrix is based on intensive research done by Prof. 

George Havenith of Loughborough University in the United Kingdom23. Under 

conditions of high ambient temperature and exercise, evaporation of sweat is typically 

the greatest avenue of heat loss from the body, and therefore important in maintaining 

body core temperature. Even in low temperatures, when protective clothing is worn, the 

body depends upon this mechanism to prevent overheating. Sweat production under 

different circumstances forms the basis for the body’s ability to transfer heat via 

convection, which in turn is regulated by aerobic fitness, acclimatization, and efficiency 

of thermal transfer through evaporative processes. Numerous studies are available on 

global sweating, but studies on regional sweating rates are limited. The work by Dr. 

Havenith is one of the most concise studies on regional sweat rates, and body mapping  

 

 

 
23 Smith, CJ, and G. Havenith. "Body Mapping of Sweating Patterns in Male Athletes in Mild Exercise-in." 

Induced Hyperthermia. U.S. National Library of Medicine, 12 Dec. 2012. Web. 23 Nov. 2015. 
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of thermal transfer processes available in published academia.  Design and construction 

of the HEE cooling matrix pattern and flow was influenced by the Havenith studies.  

One of the primary areas of focus for this thesis is the suppression of 

perspiration by means of artificial cooling of body surfaces through conduction of heat 

in a confining garment instead of convection in a typical atmospheric environment of a 

conventional space suit. Because the HEE concept relies on hydrostatically equalized 

surface pressure in a confining garment, several key components found in conventional 

space suits would be considered extraneous for the HEE concept. As with a 

conventional space suit, the breathable circulating oxygen of the pressurized helmet is 

closed loop, but the exhaled air is returned directly to the PLSS system with each 

exhale, rather than circulating into the rest of the suit as part of ventilation and humidity 

control. One obvious advantage of returning exhaled air from the helmet directly to the 

PLSS is the reduced system mass required for environmental control. A second 

advantage is that the oxygen circulated throughout the suit is not used as part of the 

thermal control loop, thus not subject to perspiration and humidity contaminants  

 as would be the case on a conventional suit. This means increased efficiency for the 

PLSS scrubber and filtration components, as well as a simpler design.  
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Figure 41. Surface area sweat rates calculated in grams per meter square per hour. 

[Havenith-Smith] 

 

The HEE space suit’s concept of a constricted garment as well as protection for 

skin means that there are certain trade-offs in technical approaches. Condensate and 

feedwater circuits are eliminated, as well as the sublimator, heat exchanger and 

centrifugal fan24. While reducing the reliability and complexity of the system, a non-gas 

pressurized space suit introduces new problems regarding thermal regulation of the 

human body. No longer is the conventional system of air circulation and atmospheric 

convection a major mechanism of humidity and perspiration control. While it is within  

the realm of technical and physiological possibility to employ limited evaporative 

 

24 Jones, Eric M. "Apollo Lunar Surface Journal : Apollo PLSS Images." Apollo Lunar Surface Journal : 

Apollo PLSS Images. Apollo Lunar Surface Journal, 31 Aug. 2008. Web. 06 Dec. 2015. 
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cooling in an open space environment through the use of knitted MCP materials, the 

risks and associated hazards would certainly preclude an EVA on Mars for example, 

where perchlorates constitute a chemical hazard to humans. 

 Such extravehicular activities will require extensive protection against caustic 

environments that would be damaging to organic tissues including skin and respiratory 

systems. The HEE layer replicates an artificial layer with the protective, self-healing, 

and thermo-stabilizing characteristics analogous to human skin. The form fitting and 

non-breathable qualities such a garment imply a high degree of thermal regulation for 

temperature stability, comfort and hygiene for the wearer. As previously stated, the 

tradeoff for a non-gas pressurized suit and its various components means the necessity 

of a biofeedback controlled multi-channel system capable of suppressing the tendency 

of perspiration via magnification of conduction and deterrence of vasodilation by both 

proactive cooling, and the introduction of an artificial secondary negative feedback 

system in an attempt to modify communication to the hypothalamus and minimize skin 

surface perspiration. 

 In summation, protective and constrictive qualities of the HEE space suit 

necessitate the need for developing an autonomous multi-channel thermal control 

system to;  

1) Control core body and skin surface temperature across a broad range    

  of temperatures and conditions, enabling the ability to both cool and heat 

the spacesuit for flexibility and adaptation to various operational 

environments.   
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2) Suppress skin perspiration in a garment that mechanically confines body 

surface geometry as a mimic of atmospheric pressure. 

3) Add a point of control for Hygiene and personal comfort, which can 

greatly affect individual performance in extra vehicular activities of 

varying temperatures and other environmental conditions.  

After samples of the HEE suit material with embedded cooling matrix was tested in a 

hypobaric chamber for fluid circulation efficiency and leaks under reduced pressures, it 

was decided to use a live human subject for thermal stability testing in normal 

atmospheric pressures. Because the HEE layer with embedded cooling is essentially a 

closed circuit system, normal ambient atmospheric pressure was deemed acceptable for 

initial physiological evaluations. The rationale behind a live subject was the ability to 

actively monitor real-time quantitative data of the 4 channel digital thermal sensors 

under various physical loads while monitoring humidity levels with the adjacent 

humidity sensors. A live human test subject also has the ability to report qualitative data 

regarding stamina, comfort, fatigue, and anecdotal reporting of performance details not 

available through quantitative methods. Appraisal of stressors included breathing rate, 

muscle fatigue, ability to talk normally and gradual increases in perspiration with 

elevated exertion levels. 
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Figure 42. Thermal sensors placement. 

 

The combined skin temperatures, sweat loss, and ratings of perceived exertion 

(RPE), were monitored and recorded. The reporting form consisted of a simplified Borg 

6-20 Rate of Perceived Exertion (RPE) Scale25. While the Borg Scale was originally 

devised as a way to assess an individual’s fitness level, by quantitatively matching 

perceived stressors to a numbered reporting system that includes descriptors ranging  

 
25 Borg G.A. Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise. 

1982; 14:377-381. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7154893
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from 6 to 20; thus, a “relative” scale. The scale starts with “No exertion,” rated as a 6, 

and ending with “very, very hard,” which rates a 20. Moderate exertion registers 11 to 

14 on the Borg scale (“fairly light” to “somewhat hard”), while more strenuous activity 

rates from 15 and higher (“hard” to “very, very hard”). Created by Dr. Gunnar Borg, the 

scale is a simple way to estimate heart rate—multiplying the Borg score by 10 gives an 

approximate heart rate for a particular level of activity. When this scale is applied to 

testing the HEE layers thermal control, special attention is paid to the reported perceived 

perspiration as well as actual measured sweat rates detected through the humidity 

sensors embedded in the suit.  

Table 4.  Original Borg Rating of Perceived Exertion (RPE) Example for General 

Perceived Exertion. 

BORG 6-20 Rate of Perceived Exertion Scale (RPE) 

No Exertion 6 Little to no movement, very relaxed 

Extremely Light 7 Able to maintain pace 

  8 Increased breathing rate  

Very Light 9 Comfortable and breathing harder 

  10 Sweating perceived by wearer 

Light 11 Minimal sweating, can talk easily 

  12   

Somewhat Hard 13 Slight breathlessness, can talk 

  14 Increased sweating, still able to hold 

conversation but with difficulty 

Hard 15 Sweating, able to push and still 

maintain proper form 

  16   

Very Hard 17 Can keep a fast pace for a short time 

period 

  18   

Extremely Hard 19 Difficulty breathing, near muscle 

exhaustion 

Maximally Hard 20 STOP exercising, total exhaustion 
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The experimental procedure outline developed to test the thermal control system 

underwent several changes as exertive tasks were executed with the system and 

difficulties ascertained. Initially a simple treadmill regime was prepared for testing 

perspiration rates through varying speeds of stride. Walking up an incline and scaling an 

aluminum ladder in succession were then added to analyze the effects of compound 

movements as a load on the cooling system controller and coolant circulation channels. 

The controller underwent several programming modifications intended to calibrate pump 

motor controller response as part of the cooling feedback loop. These programming 

modifications consisted of changing the skin temperature trigger signals by a degree or 

two, and changing pump motor run times after decreases in skin surface temperatures for 

optimal individual cooling efficiency.  

The test methodology was designed to construct a procedure for both the 

individualized cooling calibration in the controller software, and as a general barometer 

of the HEE cooling matrix thermal regulation capabilities. Testing protocols, procedures 

and results are discussed later in this chapter in section Testing Protocols, and in Chapter 

IV under section Prototype Results. 

Thermal Control Testing Procedure 

Thermal control evaluations proceeded using a higher-end Lifestyle 

programmable treadmill that was capable of multiple speed and distance regimes, 

recording calories burned, time, distance and heartrate. The main purpose of the initial 

testing was to: 
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1) Establish positive circulation through the cooling channels being evaluated, 

including purging of any air in the cooling tubing that might affect 

effectiveness. 

2) Identify areas of the body which would have the most cogent datasets for 

development of future tests. 

3) Record and log real time thermal control data for preliminary evaluation, 

including temperatures of inlet and outlet sides of the coolant flow, actual 

skin surface temperature, and finally estimate and record skin surface 

perspiration through perceived and observed methods. 

The waist pack thermal control unit was removed from the suit and interfaced 

with a laptop computer and diagnostic cable to take readings from the 4 DS18B20 

thermal probes during walking and jogging routines. The first live tests bypassed the 

cooling cartridges built into the thermal control unit used an external cooling source for 

simplicity of testing, and priming of the cooling channels to be tested, specifically the 

right thigh, shoulder, side of ribcage, and back. The opposite areas of the body served as 

the control variable, which would not be subject to coolant flow and allowed to perspire 

inside the confines of the HEE layer. In this scheme, unchecked perspiration would be 

greatly increased in such a confined non-breathable garment, but observability of cooling 

effectiveness would also be easily observable on the functioning side. The external 

cooling unit consisted of a simple cylindrical igloo cooler with 20 pounds if ice that had 

been allowed to melt into a slurry. Each of the 4 HEE test cooling channels were supplied 

by independent sets of cooling tubing both to and from the external cooling reservoir, and 

connected to the HEE Thermal control unit pump motor array. The premise behind this 
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configuration was to allow easier priming of the HEE cooling channels for testing, as air 

had to be purged from the dozens of meters of cooling tubing. Each cooling channel had 

approximately 20 feet of extra tubing wound around scrap pieces of PVC pipe and 

submerged in the ice slurry.  

Table 5. Perceived Motor State, Perceived Perspiration and Average Skin Surface 

Temperature. 

 
 Thigh Shoulder Side Back 

 Channel 1 Channel 2 Channel 3 Channel 

Treadmill Speed Perspiration Perspiration Perspiration Perspiration 

    1      Slow stride Motor off 

None 

Motor off 

Minimal 

Motor off 

Minimal 

Motor off 

Minimal 

    2      Average stride Motor active 

None 

Motor off 

None 

Motor on 

None 

Motor active 

Slight increase 

    3      Fast walk Motor off 

Increase 

Motor active 

Increase 

Motor on 

None 

Motor off 

No Change 

    4      Moderate Jog Motor active 

Decrease 

Motor active 

Increase 

Motor off 

Slight increase 

Motor active 

Increase 

Mean skin surface  

     Temperature 

33.20   °C 32.66 °C 32.92   °C 34.23  °C 

 

The perspiration tests required 4 complete treadmill testing cycles to adjust the 

motor activation trigger points (temperature thresholds) for activation. Each channel was 

adjusted in the software by changing the temperature for motor activation, motor run 

time, and motor delay. Perspiration was based qualitative perceived humidity as well as 

examination of inner microfiber bodysuit upon completion of final test.  The 4th treadmill 

test recorded a definite window of temperature stabilization, but more refinement on the 

software control will be required as part of future research. Proposals of these future 

refinements are discussed in section “Analysis and Discussion”. 
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Figure 43. Cooling system testing on treadmill. 

HEE Components Hypobaric Testing Approaches 

Construction of the composite and Bioflex suit materials took into consideration 

the effects of low/zero atmospheric pressure environments. During the mixing and 

application of the Bioflex and other composite materials, special care was taken to 

ensure minimal gas bubbles would be present in the gels and other compounds during 

mixing molding and layup. The absence of trapped air bubbles meant a stronger 

component, with less risk of expansion or rupture in lowered pressure. The testing 

regime was designed to replicate decompression (depress/repress) of a realistic EVA 

and emergency scenario, with evaluation of composite materials and the suit’s helmet 

neck transitional seal, gloves, and several other structural components. Initial live  
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testing was carried in the EHF hypobaric chamber at Paragon Space Development Corp. 

of Tucson Arizona under the supervision of Test Engineering Technical Lead Walter 

Harrington. Data Acquisition was accomplished through isolated conduits that were 

specially designed to house data cables though the walls of the pressure vessel, and 

interface with USB and standard RS-232 serial communications. 

 

Figure 44. Paragon SDC EHF hypobaric testing chamber. 

 

Figure 45. Paragon SDC EHF hypobaric testing chamber internal configuration. 



 
 

88 

Initial HEE layers testing consisted of both HEE individual materials component 

samples, and performance of an integrated HEE concept component: a complete glove 

with outer shell and integrated liquid cooling matrix. For sub atmospheric evaluation of 

materials and components, both a hard vacuum benchtop vacuum chamber and the 

Paragon SCD EHF testing chamber were utilized. The rational of two testing stages 

being that it was important to determine any off gassing by isolated HEE Bioflex 

materials as individual components first, and then in conjunction with Bioflex 

performance as part of a finished component. The proposed testing would first test 

exposed Bioflex materials to hard vacuum, with the before and after weights measured 

to the nearest thousands decimal with an Adam Equipment ACB 300 Electronic scale. 

  

 

Figure 46. Partially constructed glove with exposed Bioflex and cooling matrix readied 

for hard vacuum testing at Paragon SDC. 
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 The second stage of materials testing would expose a HEE suit test glove 

complete with functioning liquid cooling system, and FSR 402 pressure sensors in the 

glove. For stress testing the motor under working load, a DS18B20 thermal sensor was 

attached to the liquid cooling pump motor housing with surplus NASA Therma-Gap 

G579 thermal conducting putty. Colored water with a reservoir was al so circulated 

during lowered pressure sub atmospheric tests.  FSR 402 pressure sensors were located 

according to spots that corresponded to natural surface depressions in the human hand 

which are subject to further distortion through movement and flexing. The pressure 

sensors were placed between the inner Bioflex layer and the artificial arm limb. The 

artificial limb was constructed of closed cell flexible foam core, with a latex skin and 

fitted with a PVC end cap and Schrader valve for ambient atmospheric pressurization 

levels. 

 

 

 

 

 

 

 

Figure 47. Initial placement of FSR 402 pressure sensors in prototype glove. 
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Figure 48. Pressurized test arm with glove prototype and pressure sensors (note Schrader 

valve left). 

 

The GSh-4 helmet with transitional neck seal was fitted to the hard torso 

and upper mannequin assembly, which had been partially dismantled by removing 

the legs to allow it to fit into the Paragon EHF hypobaric chamber. The inflatable 

seal surrounding the base of the neck seal was inflated to 0.05 psi to allow a natural 

bend over the shoulders, and contact that resulted in a satisfactory seal at ambient 

atmospheric pressure. A Schrader valve with a pressure line to an Omega PX419-

050A10V-EH pressure sensor and multi-meter read the helmet pressure, while an 

Omega PX309-030A5V read the EHF chamber pressure. The Paragon EHF facility 

offered several important advantages over simply testing the transitional seal in 

ambient atmospheric pressure.  One primary asset of hypobaric testing was the 

lowered atmospheric pressure outside of the internal neck seal pressure identified 

key points of control that are to be integrated into the next iteration of transitional 

neck seal development. Notable specifics of neck seal deficiencies in lowered 

hypobaric pressure were identified, and are being addressed at the time of writing 
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through modification of construction and materials selection  Details of testing and 

data logs are documented in the HEE testing procedure section. 

 

 

Figure 49. Transitional neck seal in EHF chamber being readied for testing. 

 

 

 

 

 

 

 

 

 

Figure 50.  Multi-meters for hypobaric chamber and helmet pressure sensor readings. 
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HEE Testing Procedure 

Initial Testing Procedures List 

TASK 1. HEE Bioflex glove liner test   

• Raw Bioflex glove liner with cooling matrix to be tested on rigid mannequin hand 

• Bioflex glove liner to be tested in stages to close as possible to total vacuum for 

outgassing, materials breakdown deformities in differential pressures, and 

recovery state after repress.   

      Micro-mesh components to be observed for tensional qualities in the design 

• Webcam Monitoring of glove during depressurization 

• Testing will require depress from 13.4 p.s.i.a to ~0 p.s.i.a, followed by hold time 

(TBD by Paragon), then repress, removal from chamber, and inspection. 

Materials of construction; PVC, Bioflex orthotic gel, polyurethane 

tubing,Micro-mesh components on 3 fingers.   

Possible SPOF: swelling or leakage of cured non-toxic Bioflex gel from faulty 

application 

 

 

 

  

 

 

 

Figure 51. Bioflex glove liner in benchtop vacuum chamber. 
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The rigid plastic hand with HEE Bioflex liner and microfiber glove components 

was weighed on the Adam Equipment ACB 300 Electronic scale, with the total weight 

recorded at 147.02g The test was repeated with the scale being reset, the rigid plastic 

hand with HEE Bioflex liner and microfiber glove components reweighed, with a repeat 

reading of 147.02g with initial weight confirmed, the test article was place inside the 

benchtop vacuum chamber the multi-meter and pressure sensors activated, and video 

recording device started. Using a vacuum pump, pressure was reduced from ambient 

atmospheric pressure of 13.47 psia (2.245 V) to 12.156 psia (2.026 V) and held steady for 

a 5 minute observation. No effects were apparent. Pressure was then reduced from 12.156 

psig to 10.5 psig (1.75V) with a 5 minute hold for continued observation, no changes 

were noted. Two more repress and observation cycles were completed, reducing 

pressures to 9 psig (1.503V) and 7.5 psig (1.255V) respectively. 

The test article was removed from the benchtop vacuum chamber, and weighed 

twice on the Adam Equipment ACB 300 Electronic scale, with a result of 1.4701g; or 

virtually no change after a partial atmosphere depressurization. After being placed back 

into the benchtop vacuum chamber, vacuum testing of the material continued with 

decompression back down to 7.5 psia with a brief hold, and then down to 6.26 psig 

(1.043V) with no visible changes to the materials comprising the glove liner. 

Decompression continued to 4.2 psig  (0.7V) with a brief hold for observation, and then 

further down to 2.1psia (0.353 V) and a hold for observation.  Two small bubbles 

appeared between the rigid plastic hand, and the Bioflex layer on fingers #4 and #5, most 

likely due to a small amount of trapped air. Fingers #1 and #2 with the micro-mesh 

tensional layer showed no bubbles, but more importantly the Bioflex layer showed no 
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signs of materials degradation or reaction to lowered pressures. The final steps of 

decompression brought pressures down to 0.594 psig (0.099 V) with a brief hold, and 

then to the lowest achievable pressure of 0.048 psig (0.008 V) and longer hold time for 

~10 minute observation. No outgassing of any kind was observed, and the Bioflex liner 

retained the same visual appearance as in normal atmospheric pressure levels. In most 

areas of the mock-up hand, the liner retained a drawn down surface tension against the 

rigid plastic where air had not been trapped while fitting the test material over the hand 

and fingers. The areas under the micro-mesh constricting components remained form 

fitted.  

 

 

Figure 52. Partially completed glove liner in hard vacuum. 
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The benchtop vacuum chamber was repressurized and the test article place back 

onto the electronic scale, and weighed twice to detect any loss of volatiles that might 

indicate stress to the liner due to extreme low pressure environments. The final reading 

was measured at 146.9, for a total loss of 0.04g (40mg) with no evidence of outgassing 

from the Bioflex material. The glove liner was examined with a magnifier, and no signs 

of surface pores or openings that might have developed were found, and the original 

elasticity remained. Analysis and evaluation of Bioflex is discussed in section IV.  

Table 6. Depress/Repress Steps with beginning and End Weights. 

 Voltage (V*6=psia) psia 

1                   2.245 V                               13.47 (ambient) 

2                   2.026 V                               12.156 

3                   1.75 V                               10.5 

4                   1.503 V                                 9 

5                   1.255 V                                 7.5 

 Repress and weigh 1.4701 g. 

6                   1.043 V                                 6.26 

7                   0.7 V                                 4.2 

8                   0.353 V                                 2.1 

9                   0.099 V                                 0.594 

10                   0.008 V                                 0.048 

 Repress and weigh                                 1.4698 g. 

 PRE WEIGHT                             147.02g 

 POST WEIGHT                             146.98g 

 

 TASK 2 Cooling pump motor stress test in sub atmospheric pressure  

 RS-360SH Micro Water Pump (DC 1.5V-12V) to be tested for flow in relation to 

voltage and thermal loads under reduced atmospheric pressure of 9.4 psi.  

 Temperature readings of motor to be logged using Glove to be attached to 

cooling pump motor and fluid circulating at 6V DC for duration of test to 

observe any adverse effects of vacuum on the DC motor and coolant tubing wall 

integrity.  
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 Webcam monitoring of glove during depressurization 

 Testing will require going from 13.4 psi to 9.4 psi , followed by hold time for 

observation, then repress and removal from chamber. 

Materials of construction; PVC, Bioflex orthotic gel, aluminum, micro-mesh, 

elastic bands and DuPont Cordura 1050D. 

It was imperative a cooling system motor be evaluated for its thermal properties 

under a load at sub-atmospheric pressures for reliability and safety before further tests on 

integrated HEE suit components could progress. The ability of the pump to resist 

overheating was the primary focus of task #2, with tuning of DC power voltages and flow 

rates critical to ensuring the pump was effective while operating within its limits.  A 

single RS-360SH Micro Water Pump motor attached to the closed circuit glove cooling 

loop, circulating blue dyed liquid from a Pyrex beaker. The first test involved running the 

pump at 6V DC though a dual circuit glove cooling loop at the ambient atmospheric 

pressure of 13.4 psi (or 92.38 kPa). The battery pack was protected with a 1A inline fuse 

to protect the rechargeable battery pack from possible damage from overheating. Pump 

temperature was monitored through a DS18B20 temperature sensor attached to the motor 

casing with Therma-Gap G579 putty, with temperature data displayed through a terminal 

emulator and logged to a laptop computer. After 10 minutes of pump operation at 6V 

with simulated coolant, motor temperatures rose to over 130°F, after which the pump 

motor was powered off. DC power was reduced from 12V to 6V, and an extra loop of 

1/6” cooling tubing introduced into the pump flow, for a total diameter of 1/8” cross-

sectional flow between cooling pump input and output. The cooling pump test was 

repeated at a reduced voltage of 3V, and temperatures peaked and leveled off to 39.81 °C 
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(103.65 °F) after ~11 minutes of continuous operation. It was determined that 3V per 

1/8” dia. cross-sectional flow area provided a minimum flow rate that kept the motor and 

battery pack from overloading. With the motor protected with an in-line fuse and flow 

rate improved, the cooling system was ready to be tested with the prototype glove at sub-

atmospheric pressures.  

 

 

 

 

 

Figure 53. RS-360SH Micro Water Pump. 

 

 

 

Figure 54. Cooling fluid loop for motor test. 
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Figure 55. Motor operating temperature. 

 

TASK 3. Prototype glove test  

 Bio-flex prototype glove to be tested on prosthetic air filled hand. 

 Glove will be tested for deformities in differential pressures, with surface tension 

logged via FSR-402 pressure sensitive resistors and data logger 

  Glove to be attached to cooling pump motor and fluid circulating at 7-12V DC for 

duration of test to observe any adverse effects of vacuum on the DC motor and 

coolant tubing wall integrity.  

 Webcam Monitoring of glove during depressurization 

 Testing will require going from 13.4 psi to 9.4 psi, followed by hold time for 

observation, then repress and removal from chamber. 

Materials of construction; PVC, Bioflex orthotic gel, aluminum, DuPont 

Cordura 1050D. 
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Possible SPOF: swelling or leakage of cured non-toxic Bioflex gel from faulty 

application.  

Testing of the prototype glove proceeded under conditions that both attempted to 

measure glove constriction and replicate internal body pressure using a pressurized 

closed cell foam limb with latex skin as a simplistic analog for a human tissue surface in 

vivo, but lacking its isometric elastomechanical properties. The purpose of the test was to 

gather preliminary data on the prototype gloves ability to limit expansion of the 

prosthetic hand in relation to the aforementioned hypothetical bubble model of 

decompression. This phase of testing is considered a starting point for future research into 

the HEE concept, and was designed to evaluate construction techniques, and provide data 

for potential future development. While the hard vacuum test of the glove liner provided 

indices of materials suitability, the sub-atmospheric test of the integrated prototype 

provided a chance to inspect the assembled gloves characteristics with the cooling system 

operational and outer shell in place. 

The artificial limb with glove was placed into the EHF hypobaric chamber along 

with a beaker of green dyed water, CMOS digital capture cameras and absorbent pads to 

contain any liquids should a cooling tube in the glove break. The cooling pump motor 

was started, along with the video capture camera and data logging software on the laptop. 

The prosthetic limb internal pressure was monitored using a pressure line from the 

Schrader valve on the prosthetic limbs endcap that led to an externally mounted pressure 

sensor with 3 way valve that allowed control and adjustment of simulated human 

dissolved gas pressure. The EHF internal pressure was incrementally reduced from 13.4 

psi to 9.4 psi, with pressure of both the EHF and the limb’s internal pressure being 
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verified and logged. The FSR-402 sensors also measured the glove at ambient 

atmospheric pressure, or the resting state of the fit around the hand, which is the 

compression caused by the elastic properties is the HEE glove liner’s Bioflex materials.  

 

 

Figure 56. Pressurized limb with glove being readied in EHF chamber (note pressure line 

in foreground). 

 

 

As pressure was reduced, it was observed that the sensors recorded increases in 

pressures at different rates from different sensor positions, i.e.; the palm sensor recorded 

little variance until sensors on the thumb area and back of hand started to rise, with the 

sensor on back of the hand situated near the 5th finger showing a dramatic increase on 

pressure with palm sensor readings increasing. It was determined that this was due to the 

prosthetic hand gaining relative pressure against the test chambers dropping atmospheric 

pressure. Although the prosthetic limb lacked the actual thicknesses and elasticity of 

actual human skin, the test did give some insight into how different parts of the glove 
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constrain the hand as pressure differentials increase at varying rates. Cooling pump motor 

temperatures were observed and recorded throughout depress and repress cycles, and 

there was no change in operating temperatures. Coolant flow rates were also monitored 

during the testing procedure, and there was no visible restriction of liquid flow in the 

closed circuit loop during lowered atmospheric pressures and glove constriction. The 

prosthetic test limb successfully held 13.4 psi (92.38 kPa) in the areas served by the FS-

402 sensors through the duration of test period, as confirmed by the Omega pressure 

sensor. With the completion of lowered pressure testing, the EHF chamber was repressed 

back to normal atmospheric pressure at altitude, and the glove along with cooling system 

inspected for deformities or coolant leaks. No changes in original condition of the glove 

or liquid leaks on the absorbent pad were detected.  

TASK 4. Neck transition seal testing 

 Flexible neck transitional seal to be tested using converted Gsh-1 helmet with 

composite hard torso on mannequin mock-up. 

 Transitional seal will be equipped with external hose, and internal pressure 

read with instrumentation from outside of hypobaric chamber. 

 Pressure will be reduced from 13.4 psia to 9..4 psi followed by a hold TBD by 

Paragon, then repress and removal.  

 Web cam monitoring of seal 

 Decompression rate and test duration is solely at the discretion of Paragon 

Engineering Department. 
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 Pre-testing at 4.5 psi over normal atm pressure will be done to ensure integrity 

of helmet and neck seal before testing low pressure effects on materials in 

actual chamber. 

 O2 bottles and LiOH scrubbers will be removed from backpack, and helmet 

plugged. 

 Materials  of construction;  PVC, Bioflex orthotic gel, aluminum, steel, tempered 

glass, vulcanized rubber, epoxy and fiberglass laminates, smart foam, DuPont Cordura 

1050D 

 Possible SPOF: compression donut-seal leakage under composite hard torso. 

The transitional neck seal testing required assembling the hard torso and helmet 

components mounted over the torso of a mannequin. As mentioned in the previous 

section, an upright orientation of the mock-up was necessary for tests, and due to limited 

interior height of the chamber, only the upper half of the suit was utilized. The assembled 

test components were placed in the EHF chamber, the sensors for both internal neck seal 

pressure and EHF atmospheric pressure attached to the pressure lines, and a video camera 

installed for live monitoring and recording of tests. Prior to EHF measurements, the neck 

seal was pressure tested on the fully assembled suit and mannequin with a hand pump 

and digital pressure gauge at an ambient atmospheric pressure of 14.45 psia (99.62 kPa) 

at an altitude of 480 ft (146.3 m). The neck seal successfully held 3.0 psi and 4.2 psi 

respectively. To achieve a hermetic seal, it was necessary to apply a layer of the 00 gel 

around the contact area of the neck seal, as well as on the HEE suit layer. This layer of 00 

gel is only considered a temporary, and was applied to a circular felt ring which measured 

about 1” width. The configuration of the neck seal was considered a first design, and one 
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of its important design goals was the ability to follow the contours of the human 

shoulders, with an air filled ring that could compensate for geometric changes in anatomy 

(shoulder movement for example) through the cushion of air pressure inside the ring seal 

itself. The EHF sub-atmospheric tests were performed in two sessions, with an actual 

removal of the of the entire upper torso assembly from the chamber required to diagnose 

a helmet pressure drop that occurred less than 10 seconds after the start of the first 

depress cycle. The hard torso was opened, and the seal repositioned, the torso tightened 

back down over the transitional seal compression ring and the suit assembly placed back 

into the EHF chamber for a second depress/repress cycle. As with the previous test, the 

same voltage operated sensor in combination with multi-meters logged the pressures 

during the testing procedures.  The Paragon tests revealed a problem with the design of 

the air filled compression ring at the base of the neck seal. The nature of the problem of 

the prototype is the internal pressure of the compression ring causes it to tend to go into a 

more rigid state incapable of bending absent of a crease, and this problem is discussed in 

length along with current design changes that substitute open cell composite foam 

compression ring for the prototype air filled ring. The Paragon SDC EHF chamber tests 

were critical in evaluation and redesign and construction of the second prototype 

transitional neck seal.  



 
 

104 

 

 

 

 

 

 

 

Figure57. Helmet internal pressure             Figure 58. Transitional neck seal in EHF 

monitoring line detail.                                     Hypobaric chamber as captured from video 

                                                                      camera during depress cycle. 

 

 

 

 

 

 

 

 

Figure 59. Gel seal ring on prototype transitional seal (note Schrader valve for ring 

inflation.). 
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CHAPTER IV 

 

ANALYSIS AND DISCUSSION 

 

    Prototype Testing Summary 

In initial evaluations, the testing regimes of the HEE space suit took into account 

materials, technological concepts and technical applications with the goals of 

improvements on existing MCP or proposed MCP type planetary suit designs. The entire 

process of HEE design, from conceptualization to fabrication, construction and testing 

was based addressing key limitations, shortcomings and assumptions in the so called 

Mechanical Counter Pressure space suit concept. Considerations took into account 

fundamental MCP design considerations, but more importantly expanded the criteria for a 

workable MCP concept. These criteria included: 

                     1) Required total pressure level consistent with respiratory homeostasis 

applied to human body, rather than an attempt at replicating the exacting 

physical characteristics of gas pressure as it applies to humans on Earth. 

                     2) Minimal reduction in mobility envelope under modified gravity 

conditions. 

                     3) Thermal regulations for human body under diminished heat transfer 

conditions. 
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                     4)  Enhanced protection from adverse environmental conditions including 

toxic localized chemistry, dust from pulverized impact glass, 

caustic/abrasive combinations. 

                     5)  Anything else that can directly affect the health of the wearer or 

performance of a suit and its associated components.  

The HEE suit testing protocols were based the application of materials and 

techniques that were very different from the knitted fabric examples of the Web SAS 

prototype and the MIT conceptual Biosuit.  The HEE suit actively constricting artificial 

epidermal layer through biomedical materials required thorough evaluation to determine 

suitability of Bioflex and other associated materials. Initial controlled tests at Paragon 

SDC’s hypobaric facilities demonstrated that the HEE Bioflex materials skin contact liner 

will withstand a hard vacuum with no detectable materials degradation. In repeated hard 

vacuum exposures, the Bioflex displayed resistance to extreme low pressures with no 

observable release of volatiles from the materials, or formation of bubbles within its 

structure due to any defects in application. The minute post recompression weight loss of 

only 0.04g after repeated depress/repress cycles can reasonably be attributed to loss of 

surface humidity on the exterior of the Bioflex material, as well as the contact surface 

between the glove interior and plastic test hand. Future improvements to HEE layer 

construction with Bioflex include the addition of a fibrous flocking material or microfiber 

weave embedded in multiple layers within the Bioflex during suit fabrication for added 

strength.  

The thermal control testing indicate that the biofeedback controlled liquid cooling 

system when put into application, workable, and with further improvements in pumping 
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motor selection, as well as liquid cooling resolution; i.e., variable speed motors and even 

tighter patterns of cooling circulation tubing embedded in the HEE layer. The cooling 

circulation potentially has applications for adaptation to both hot and cold environments. 

With the evaluation of materials which constitute the glove liners suggesting viability of 

materials, the sub atmospheric glove prototype testing gave promising results during 

initial testing, which is discussed further in this section. 

In principal, with some refinement in materials construction and design, the 

flexible neck seal offers enhanced visual mobility through the use of a smaller and more 

mobile helmet that can fit snug around the head.  For practical purposes of discussion, 

this type of design is referred to as a floating helmet throughout this paper. The helmet is 

not rigidly attached to the upper abdomen through use of a locking ring or other type of 

hardware typically seen on conventional gas pressurized suits. Other advantages are 

lighter weight, smaller profile around the head, and better visibility.   

Bio-sensors embedded in contact layer allows automatic control as an artificial 

extension of the autonomic nervous system 

Fiberglass hard torso clamshell (placed outside the epidermal layer) with 

constriction functionality working in conjunction with epidermal layer 

Segmented neck interface transitions helmet pressure to hard torso clamshell and 

underlying artificial epidermal layer. Closing the torso unit seals the segmented neck over 

the HEE layer. 

Thermal Control 

The primary objective of the human stress testing of the HEE garment was 

to characterize the flow rates and skin temperature characteristics of a suited 
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subject in the HEE cooling garment under various workloads. The data collected from the 

test was used as for initial calibration of the suits liquid cooling pump array goal of 

defining acceptable workloads and flow rates for further stress human factors testing with 

the integrated HEE/Cooling layer. The data will also be used toward the on-going effort 

to design, build and test a second prototype thermal cooling matrix with the goals of be 

used to validate analysis models, as well the creation of a second generation prototype 

with variable that features, among other things, variable speed motors and a higher 

resolution cooling gradient. The subsystems testing included motor loads under varying 

voltages, sub atmospheric pressures, tubing diameters and flow rates. The Paragon EHF 

chamber facility was an important factor in determining robustness and operating 

temperatures of the circulation pump motors. The next step in the process was integrating 

the motor array to several specific cooling loops, in the case of this paper, the right thigh, 

shoulder, back and side.  

Testing of Liquid cooling system involved an exercise regime on a treadmill using 

the preprogrammed walking and running modes. Currently the thermal control system is 

being tuned, and evaluated for minor changes in trigger points in the software. The 

testing reveals the need for a priming bulb which is currently being installed inline on the 

cold side of the coolant flow at the pump motor outputs. The 100 meters of cooling 

tubing needed priming at each individual cooling channel due to the use of 1/8” supply 

tubing feeding the 1/16” HEE circulation tubing. A solution is currently being worked out 

that uses a small reservoir of a few ounces situated at the pump inlets. Testing and tuning 

of suit is ongoing, and more cooling channels can be added if finer degrees of control are 

needed. The initial data compiled from the live trials indicated a need for thermal probes 
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which are able to react to temperature changes faster. The current DS18B90 

sensors are housed in a miniature aluminum tube and sealed for moisture 

resistance, which is conducting skin surface heat to the thermal sensor housed 

internally slower than required, but this was compensated with programming 

changes by adding a longer motor activation and cutoff durations.  

 

 

 

 

 

Figure 60.  Color coded temperature sensor placement (L) with the four areas of skin 

temperature variations reacting according to motor activation. This graph indicates a 

period of thermal control between 10 and 90 seconds, but the variations are too great, and 

beyond the limits of program code changes. 
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Figure 61.  A flatter temperature gradient is the goal of using variable speed pump motors 

in place of fixed speed motors using only on/off states. 

 

 

Calibration and treadmill data retrieved from a 10 minute fast walk did manage to 

stabilize skin surface temperature to a more suitable range, but the temperature variations 

between peaks and valleys need to be narrowed into a flatter profile during extended 

durations. This will be addressed with the addition of variable speed pumping motors and 

the same type of thermal sensor with a sealed silicon membrane in place of the aluminum 

housing. 

Neck Seal 

 The paragon EHF hypobaric testing of the flexible neck seal in its current 

configuration revealed several potential advantages over traditional ringed type seals, but 

also indicated the need for an added point of control in the air filled variant, or a 

compressible donut seal of radically different material. Principally, in a static external 

atmospheric pressure condition, the neck seal when compressed by the torso against the 
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 HEE constrictive layer will hold 4.5 PSI. When exposed to a reduction in external 

ambient atmospheric pressure, the pneumatic donut seal expands in size due to its own 

relative increase of air pressure, thus becoming more rigid, and unable to form a natural 

arc over the shoulders and maintain a hermetic seal.  The design changes currently being 

considered as well as implemented are more a matter of simple modifications of the 

original concept than complete re-engineering. These iterations in the forthcoming 

prototypes include: 

 1) An added point of control with the introduction of an extra pneumatic line from 

the donut seal to a micro solenoid pressure valve routed into the exhaust side of 

the helmet pressurization line in the PLSS. This would allow an automatic 

regulation of the donut seal internal pressure based on a detected helmet seal 

leak,  and react accordingly to create a more rigid or pliable contact surface the 

HEE layer under the hard torso. 

 2) A compound curve in the shape of the donut seal to better conform to the  

  geometry of the shoulder region of contact. This type of shape would allow for  

  further refinement in suit integration, as the helmet, neck seal and torso with  

  PLSS backpack would be unified into a single donnable component of the suit. 

  Other advantages of the further refinement would be the introduction of a  

  greater hermetic seal contact area, allowing the inner surface of the hard torso  

  to work in unison with the donut seal in maintaining an air tight seal. In this  

  scenario, the seal contact would be enlarged inside the hard torso creating a  

  greater surface area for added reliability and less shifting during a wearers  

  movements. 
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 3) Investigations into different type of material in place of an air regulated 

  donut seal, which include preliminary research into compressed polymers  

  taking the place of air pressure. One disadvantage to this possibility is that  

  there would be a possibility of component swelling in lowered atmospheric  

  pressure with no method of control depending on what type of material used.  

  Heat dissipation might be another concern in this design.  

 

 

Figure 61. Flexible neck seal in two different conditions. Sketch A represents static 

ambient air pressure with effective hermetic seal. Sketch B represents increased donut 

seal relative pressure resulting in a stiffer seal, less conformity to shoulder curvature, and 

resulting leak indicated by red circle. 

 

Glove 

   The prototype glove testing was done in two stages; analysis of the Bioflex 

glove liner in a hard vacuum, and sub atmospheric testing of the glove liner with outer 

shell installed and liquid cooling operational to observe epidermal counter pressure 

characteristics. The HHE liner testing indicated its ability to keep its shape, and the 
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prototype glove shell was built around it. The placement of the force sensitive resistors in 

the palm, the area between the thumb and forefinger, and under the 4th knuckle, was 

designed to collect initial data of surface pressure between the pressurized prosthetic had 

assembly and the gloves liner on the recessed areas of the hand which would require the 

most attention, the palm being the primary focus. Several depress/repress cycles were 

accomplished with the DC pump cooling motors running and active cooling fluid 

circulation. Decompression to 4.5 psi below local atmospheric pressure (9.4 psi) was 

accomplished and log files taken in the form of digital resistance readings were compiled 

while the coolant flow, hypobaric pressure and prosthetic arm internal pressure were 

observed. 

Table 7. Recalibrated Digital Values to Pressure. The Elongated Wire Leads of Different 

Lengths on the Pressure Sensors Required Manual Recalibration for Correct Glove 

Pressure Readings. Readings Starting with Anything Other than 0 Indicate Glove 

Existing Glove Tension to the Hand Before a Reduction in External Atmospheric 

Pressure.  

Palm Dorsal Thumb Korsal Knuckle 

0                             no force 844                         13.1 oz. 300                      9.800 oz. 

25                               .5 oz. 875                         16.8 oz. 313                        9.87 oz. 

50                             .11 oz. 900                         17.0 oz.  325                        9.93 oz. 

75                                8 oz. 925                        28.7 oz. 350                           11 oz. 

100                         17.5 oz. 950                        31.8 oz. 375                        11.9 oz. 

125                         26.2 oz. 1000                     31.90 oz. 400                        12.5 oz. 

150                            33 oz. 1022                     31.98 oz. 425                        12.6 oz. 
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Depress times averaged 4-5 minutes to achieve a 5 psi reduction in hypobaric 

chamber pressure, and various pressure holds of were conducted between changes in 

atmospheric pressure to verify integrity of the prosthetic test arms ability to hold a greater 

atmospheric pressure, in this case 13.4 psi (92.38 kPa) for glove constraint analysis. It 

should be noted that prosthetic hand was in a neutral (resting) configuration, and this 

served as only a rough approximation of an actual human hand for this type of 

preliminary testing.  As pressure dropped during decompression, it was observed that 

slight drops in one sensors recorded surface pressure often corresponded to increases in a 

sensors pressure reading in a different area of the glove mock up. These minor changes in 

pressure correlated between the Palm and Dorsal (knuckle) sensors consistently during 

depress cycles. Examination of the log files shows a consistent slight loss of pressure on 

one sensor always being compensated for by a nearly equal amount of increased pressure 

by its counterpart, as internal relative pressure inside the prosthetic hand increases 

resistance against the HEE glove liner. This implies both the glove conforming to the 

prosthetic hand by pulling more elastic areas taut, thereby settling into a natural 

envelopment on the prosthetic hand, as well as a constraining effect as the mock-up hand 

swells slightly to limits imposed by the glove. 
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Figure 63. Consistent pressure decreases compensated by an opposing sensor during 

depress. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64. Typical profile of sensor values through a 4 minute period of pressure 

reduction. 
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The consistent compensation of sensor pressure decreases between sensors 

embedded in the HEE layer and prosthetic limb indicate that a type of hydrostatic 

equilibrium is at work. In this model, the ability to create exacting atmospheric pressure 

analog over all body surface areas as pursued by the classic definition of MCP Space Suit 

is relegated to a secondary consideration.  The potential to achieve hydrostatic 

equilibrium in context of the Buehlmann ZH L16  algorithm, which splits the body into 

16 tissues (compartments) and gives them a range of half-times, from several minutes to 

several hours of decompression durations. These tissues do not represent any specific 

physiological tissues in the body, and the half-times are simply chosen to give a 

representative spread of likely values of perfusion, diffusion in relation to off gassing and 

fast tissues, which accumulate gas loads quickly26.  

The HEE decompression development model proposes all theoretical ZH L16 

compartments are encompassed by a 17th unifying virtual compartment consisting of the 

epidermis, or whole body skin surface. This concept, while outside the scope of this 

thesis, is currently being developed as an extension of modified decompression theory 

adapted specifically to HEE principals of homeostasis. 

 

 

 

 

 

 

 

 
26 

Bühlmann, Albert A (1984). Decompression-Decompression Sickness. Berlin New York: Springer-  

     Verlag. ISBN 0-387-13308-9. 

https://en.wikipedia.org/wiki/Albert_A._B%C3%BChlmann
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-13308-9
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CHAPTER V 

CONCLUSIONS 

1. Initial hypobaric testing demonstrate that these alternative materials and 

methods of construction are resistant to damage or deformations through a 

wide range of altered pressure environments. No adverse effects on the test 

glove HEE layer or associated components (compression mesh embedded in 

the digits was observed noted. With further refinement, the HEE garment 

comprised of microfiber suit, Bioflex, cooling tubing, and floating 

compression netting can be integrated into a single layer. The technique for an 

improved version has already been formulated, which will cut fabrication time 

in half. This new method involves laminating the micromesh and Bioflex into 

a unified material before HEE layer fabrication The addition of skin surface 

contact layer for further perspiration suppression (or/and potential minimal 

sweat absorption) in the form of a neoprene membrane liner has been 

determined to the be a possible solution for higher efficiency through an 

added boundary layer. The HEE layer garment has potential applications for 

medical emergency uses as well, including treatment of hypothermia and 

heatstroke victims. 
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2. Added points of control to flexible neck seal in the form of compression ring 

pressure regulation in relation to external atmospheric pressure, as well as the 

other design improvements discussed in section IV merit further research.  

3. Further investigation into tension actuation, hydrostatic equilibrium, and 

modified decompression protocols are recommended, which fall into the 

category of design considerations not discussed in detail within the scope of 

this thesis. Also more research is needed into skin surface tensional properties 

and epidermal tissue expansion, which are areas of research not easily 

academically accessed at present. 

4. Research into a greater resolution and control for suit cooling is being 

considered. This increase in control resolution would most likely involve 

replacing the 1/16” cooling tubing with some kind of thermal layer that can 

perform a similar function in multiple temperature gradients with solid state 

controllers. This type of material most likely will be unavailable for some 

time. 

5. Funding efforts have to be extended further toward governmental and non-

governmental funding sources, including private industry materials 

technology and medical sectors.
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APPENDIX A 

ARDUINO CODE 

Arduino Code 
 

     Thermal control code  

//The relays will be plugged in onto digital IO Pins: 2, 3, 4, 5 

 

#include <OneWire.h> //Include the OneWire Library 

 

OneWire ds(2); // on pin 10 (a 4.7K resistor is necessary) 

//Declare a byte variable to know which thermometer reading are we taking 

byte Thermometer; 

//Declare the 4 relays 

int relay1=6; 

int relay2=7; 

int relay3=8; 

int relay4=9; 

 

void setup(void) { 

  //define the baud rate at which you are going to communicate with your serial monitor 

  Serial.begin(9600); 

    // set the digital pin as output for the relays: 

  pinMode(relay1, OUTPUT); 

  pinMode(relay2, OUTPUT); 

  pinMode(relay3, OUTPUT); 

  pinMode(relay4, OUTPUT); 

} 

 

void loop(void) { 

    byte i; 

    byte present = 0; 

    byte type_s; 

    byte data[12]; 

    byte addr[8]; 

    float celsius, fahrenheit; 

     

    if ( !ds.search(addr)) { 

      Serial.println("No more addresses.");
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      Serial.println(); 

      ds.reset_search(); 

      delay(250); 

      return; 

    } 

     

    Serial.print("ROM ="); //Save the Hardware address of the thermometer 

    for ( i = 0; i < 8; i++) { 

      Serial.write(' '); 

      Serial.print(addr[i], HEX); 

    } 

     

    if (OneWire::crc8(addr, 7) != addr[7]) {  

      Serial.println("CRC is not valid!"); 

      return; 

    } 

    Serial.println(); 

     

    //The last ROM Byte indicates the thermometer 

    Thermometer=addr[7]; 

    // the first ROM byte indicates which chip 

    switch (addr[0]) { 

    case 0x10: 

    Serial.println(" Chip = DS18S20"); // or old DS1820 

    type_s = 1; 

    break; 

    case 0x28: 

    Serial.println(" Chip = DS18B20"); 

    type_s = 0; 

    break; 

    case 0x22: 

    Serial.println(" Chip = DS1822"); 

    type_s = 0; 

    break; 

    default: 

    Serial.println("Device is not a DS18x20 family device."); 

    return; 

    } 

     

    ds.reset(); 

    ds.select(addr); 

    ds.write(0x44, 1); // start conversion, with parasite power on at the end 

     

    delay(2000); // maybe 750ms is enough, maybe not 

    // we might do a ds.depower() here, but the reset will take care of it. 
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    present = ds.reset(); 

    ds.select(addr); 

    ds.write(0xBE); // Read Scratchpad 

     

    Serial.print(" Data = "); 

    Serial.print(present, HEX); 

    Serial.print(" "); 

    for ( i = 0; i < 9; i++) { // we need 9 bytes 

    data[i] = ds.read(); 

    Serial.print(data[i], HEX); 

    Serial.print(" "); 

    } 

    Serial.print(" CRC="); 

    Serial.print(OneWire::crc8(data, 8), HEX); 

    Serial.print(" Thermometer="); 

    Serial.print(Thermometer); 

    Serial.println(); 

     

    // Convert the data to actual temperature 

    // because the result is a 16 bit signed integer, it should 

    // be stored to an "int16_t" type, which is always 16 bits 

    // even when compiled on a 32 bit processor. 

    int16_t raw = (data[1] << 8) | data[0]; 

    if (type_s) { 

    raw = raw << 3; // 9 bit resolution default 

    if (data[7] == 0x10) { 

    // "count remain" gives full 12 bit resolution 

    raw = (raw & 0xFFF0) + 12 - data[6]; 

    } 

    } else { 

    byte cfg = (data[4] & 0x60); 

    // at lower res, the low bits are undefined, so let's zero them 

    if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms 

    else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms 

    else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms 

    //// default is 12 bit resolution, 750 ms conversion time 

    } 

    celsius = (float)raw / 16.0; 

    fahrenheit = celsius * 1.8 + 32.0; 

    Serial.print(" Temperature = "); 

    Serial.print(celsius); 

    Serial.print(" Celsius, "); 

    Serial.print(fahrenheit); 

    Serial.println(" Fahrenheit"); 
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    //---------------------------------------------------------------------------- 

    if (Thermometer==0xEA) //EA is the last byte of your ROM on your first 

Thermometer 

    { 

      if (celsius>=33) 

      { 

        digitalWrite(relay1, LOW); 

        Serial.println(" Relay1 is turned ON"); 

      } 

      else if (celsius<=30) 

      { 

        digitalWrite(relay1, HIGH); 

        Serial.println(" Relay1 is turned OFF"); 

      } 

    } 

    //---------------------------------------------------------------------------- 

    if (Thermometer==0x46) 

    { 

      if (celsius>=33) 

      { 

        digitalWrite(relay2, LOW); 

        Serial.println(" Relay2 is turned ON"); 

      } 

      else if (celsius<=30) 

      { 

        digitalWrite(relay2, HIGH); 

        Serial.println(" Relay2 is turned OFF"); 

      } 

    } 

    //---------------------------------------------------------------------------- 

    if (Thermometer==0x49) 

    { 

      if (celsius>=33) 

      { 

        digitalWrite(relay3, LOW); 

        Serial.println(" Relay3 is turned ON"); 

      } 

      else if (celsius<=30) 

      { 

        digitalWrite(relay3, HIGH); 

        Serial.println(" Relay3 is turned OFF"); 

      } 

    } 

    //---------------------------------------------------------------------------- 

    if (Thermometer==0x2D) 

    { 
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      if (celsius>=33) 

      { 

        digitalWrite(relay4, LOW); 

        Serial.println(" Relay4 is turned ON"); 

      } 

      else if (celsius<=30) 

      { 

        digitalWrite(relay4, HIGH); 

        Serial.println(" Relay4 is turned OFF"); 

      } 

    } 

} 

 

 

Glove pressure sensor control code 

 

//HEE FSR 3 Channel Config 

 

int FSR_Pin = A0; //analog pin 0 

int FSR_Pin1 = A1; //analog pin 1 

int FSR_Pin2 = A2; //analog pin 2 

 

void setup(){ 

  Serial.begin(9600); 

} 

 

void loop(){ 

  int FSRReading = analogRead(FSR_Pin);  

  int FSRReading1 = analogRead(FSR_Pin1);  

  int FSRReading2 = analogRead(FSR_Pin2);  

  Serial.println("FS402 Sensor 0"); 

  Serial.println(FSRReading); 

  delay(5000); 

  Serial.println("FS402 Sensor 1"); 

  Serial.println(FSRReading1); 

  delay(5000); 

  Serial.println("FS402 Sensor 2"); 

  Serial.println(FSRReading2); 

  delay(5000); //just here to slow down the output for easier reading 

} 
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Data Log Files 

 

 

Raw glove data capture 

 
FS402 Sensor Palm 
0 
FS402 Sensor Dorsal 
331 
FS402 Dorsal Thumb 
966 
FS402 Sensor Palm 
0 
FS402 Sensor Dorsal 
328 
FS402 Dorsal Thumb 
981 
FS402 Sensor Palm 
0 
FS402 Sensor Dorsal 
355 
FS402 Dorsal Thumb 
981 
FS402 Sensor Palm 
23 
FS402 Sensor Dorsal 
322 
FS402 Dorsal Thumb 
988 
FS402 Sensor Palm 
21 
FS402 Sensor Dorsal 
340 
FS402 Dorsal Thumb 
979 
FS402 Sensor Palm 
29 
FS402 Sensor Dorsal 
344 
FS402 Dorsal Thumb 
992 
FS402 Sensor Palm 
39 
FS402 Sensor Dorsal 
345 
FS402 Dorsal Thumb 
1003 



 
 

127 

FS402 Sensor Palm 
78 
FS402 Sensor Dorsal 
360 
FS402 Dorsal Thumb 
1005 
FS402 Sensor Palm 
119 
FS402 Sensor Dorsal 
359 
FS402 Dorsal Thumb 
1001 
FS402 Sensor Palm 
100 
FS402 Sensor Dorsal 
361 
FS402 Dorsal Thumb 
1008 
FS402 Sensor Palm 
109 
FS402 Sensor Dorsal 
356 
FS402 Dorsal Thumb 
1004 
FS402 Sensor Palm 
101 
FS402 Sensor Dorsal 
362 
FS402 Dorsal Thumb 
1012 
FS402 Sensor Palm 
108 
FS402 Sensor Dorsal 
359 
FS402 Dorsal Thumb 
1015 
FS402 Sensor Palm 
112 
FS402 Sensor Dorsal 
368 
FS402 Dorsal Thumb 
1013 
FS402 Sensor Palm 
123 
FS402 Sensor Dorsal 
364 
FS402 Dorsal Thumb 
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1017 
FS402 Sensor Palm 
135 
FS402 Sensor Dorsal 
376 
FS402 Dorsal Thumb 
1016 
FS402 Sensor Palm 
112 
FS402 Sensor Dorsal 
365 
FS402 Dorsal Thumb 
1013 
FS402 Sensor Palm 
106 
FS402 Sensor Dorsal 
365 
FS402 Dorsal Thumb 
1013 
FS402 Sensor Palm 
108 
FS402 Sensor Dorsal 
362 
FS402 Dorsal Thumb 
1012 
FS402 Sensor Palm 
118 
FS402 Sensor Dorsal 
366 
FS402 Dorsal Thumb 
1015 
FS402 Sensor Palm 
103 
FS402 Sensor Dorsal 
366 
FS402 Dorsal Thumb 
1012 
FS402 Sensor Palm 
88 
FS402 Sensor Dorsal 
361 
FS402 Dorsal Thumb 
1012 
FS402 Sensor Palm 
102 
FS402 Sensor Dorsal 
369 
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FS402 Dorsal Thumb 
1011 
FS402 Sensor Palm 
107 
FS402 Sensor Dorsal 
361 
FS402 Dorsal Thumb 
1015 
FS402 Sensor Palm 
84 
FS402 Sensor Dorsal 
365 
FS402 Dorsal Thumb 
1010 
FS402 Sensor Palm 
84 
FS402 Sensor Dorsal 
359 
FS402 Dorsal Thumb 
1016 
FS402 Sensor Palm 
95 
FS402 Sensor Dorsal 
362 
FS402 Dorsal Thumb 
1016 
FS402 Sensor Palm 
115 
FS402 Sensor Dorsal 
365 
FS402 Dorsal Thumb 
1014 
FS402 Sensor Palm 
119 
FS402 Sensor Dorsal 
366 
FS402 Dorsal Thumb 
1016 
FS402 Sensor Palm 
117 
FS402 Sensor Dorsal 
372 
FS402 Dorsal Thumb 
1017 
FS402 Sensor Palm 
122 
FS402 Sensor Dorsal 
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367 
FS402 Dorsal Thumb 
1018 
FS402 Sensor Palm 
116 
FS402 Sensor Dorsal 
372 
FS402 Dorsal Thumb 
1019 
FS402 Sensor Palm 
124 
FS402 Sensor Dorsal 
372 
FS402 Dorsal Thumb 
1020 
FS402 Sensor Palm 
126 
FS402 Sensor Dorsal 
374 
FS402 Dorsal Thumb 
1021 
FS402 Sensor Palm 
116 
FS402 Sensor Dorsal 
370 
FS402 Dorsal Thumb 
1021 
FS402 Sensor Palm 
122 
FS402 Sensor Dorsal 
370 
FS402 Dorsal Thumb 
1021 
FS402 Sensor Palm 
120 
FS402 Sensor Dorsal 
374 
FS402 Dorsal Thumb 
1021 
FS402 Sensor Palm 
117 
FS402 Sensor Dorsal 
370 
FS402 Dorsal Thumb 
1021 
FS402 Sensor Palm 
122 
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FS402 Sensor Dorsal 
376 
FS402 Dorsal Thumb 
1021 
FS402 Sensor Palm 
131 
FS402 Sensor Dorsal 
371 
FS402 Dorsal Thumb 
1020 
FS402 Sensor Palm 
139 
FS402 Sensor Dorsal 
380 
FS402 Dorsal Thumb 
1021 
FS402 Sensor Palm 
126 
FS402 Sensor Dorsal 
373 
FS402 Dorsal Thumb 
1020 
FS402 Sensor Palm 
82 
FS402 Sensor Dorsal 
368 
FS402 Dorsal Thumb 
1018 
FS402 Sensor Palm 
102 
FS402 Sensor Dorsal 
365 
FS402 Dorsal Thumb 
1022 
FS402 Sensor Palm 
120 
FS402 Sensor Dorsal 
376 
FS402 Dorsal Thumb 
1022 
FS402 Sensor Palm 
142 
FS402 Sensor Dorsal 
375 
FS402 Dorsal Thumb 
1022 
FS402 Sensor Palm 
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153 
FS402 Sensor Dorsal 
378 
FS402 Dorsal Thumb 
1020 
FS402 Sensor Palm 
146 
FS402 Sensor Dorsal 
379 
FS402 Dorsal Thumb 
1022 
FS402 Sensor Palm 
146 
FS402 Sensor Dorsal 
378 
FS402 Dorsal Thumb 
1021 
FS402 Sensor Palm 
145 
FS402 Sensor Dorsal 
380 
FS402 Dorsal Thumb 
1023 
FS402 Sensor Palm 
149 
FS402 Sensor Dorsal 
380 
FS402 Dorsal Thumb 
1022 
FS402 Sensor Palm 
165 
FS402 Sensor Dorsal 
389 
FS402 Dorsal Thumb 
1023 
FS402 Sensor Palm 
180 
FS402 Sensor Dorsal 
389 
FS402 Dorsal Thumb 
1022 
FS402 Sensor Palm 
180 
FS402 Sensor Dorsal 
394 
FS402 Dorsal Thumb 
1023 
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FS402 Sensor Palm 
150 
FS402 Sensor Dorsal 
377 
FS402 Dorsal Thumb 
1023 
FS402 Sensor Palm 
146 
FS402 Sensor Dorsal 
385 
FS402 Dorsal Thumb 
1023 
FS402 Sensor Palm 
143 
FS402 Sensor Dorsal 
377 
FS402 Dorsal Thumb 
1023 
 
FS402 Sensor Palm 
148 
FS402 Sensor Dorsal 
386 
FS402 Dorsal Thumb 
1023 
FS402 Sensor Palm 
152                                             
FS402 Sensor Dorsal 
382                                              
FS402 Dorsal Thumb 
1023 
FS402 Sensor Palm 
156                                             
FS402 Sensor Dorsal 
387                                             
FS402 Dorsal Thumb 
1023 
FS402 Sensor Palm 
161                                             
FS402 Sensor Dorsal 
385                                             
FS402 Dorsal Thumb 
1023 
FS402 Sensor Palm 
152 
FS402 Sensor Dorsal 
388 
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FS402 Dorsal Thumb 
1023 
FS402 Sensor Palm 
142 
 

 

 

Raw thermal data capture and relay actuation 

 

Data = 1 E8 1 4B 46 7F FF 8 10 97  CRC=97 Thermometer=234 

 Temperature = 30.50 Celsius, 86.90 Fahrenheit 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 E5 1 4B 46 7F FF B 10 BE  CRC=BE Thermometer=70 

 Temperature = 30.31 Celsius, 86.56 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 3 2 4B 46 7F FF D 10 B3  CRC=B3 Thermometer=73 

 Temperature = 32.19 Celsius, 89.94 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 2E 2 4B 46 7F FF 2 10 7F  CRC=7F Thermometer=45 

 Temperature = 34.88 Celsius, 94.77 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

OOOOOOOOOOOO 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 FD 1 4B 46 7F FF 3 10 B6  CRC=B6 Thermometer=234 

 Temperature = 31.81 Celsius, 89.26 Fahrenheit 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 F3 1 4B 46 7F FF D 10 D3  CRC=D3 Thermometer=70 

 Temperature = 31.19 Celsius, 88.14 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 9 2 4B 46 7F FF 7 10 F8  CRC=F8 Thermometer=73 

 Temperature = 32.56 Celsius, 90.61 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 34 2 4B 46 7F FF C 10 5B  CRC=5B Thermometer=45 

 Temperature = 35.25 Celsius, 95.45 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 
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oooooooooooo 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 9 2 4B 46 7F FF 7 10 F8  CRC=F8 Thermometer=234 

 Temperature = 32.56 Celsius, 90.61 Fahrenheit 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 FD 1 4B 46 7F FF 3 10 B6  CRC=B6 Thermometer=70 

 Temperature = 31.81 Celsius, 89.26 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 E 2 4B 46 7F FF 2 10 D7  CRC=D7 Thermometer=73 

 Temperature = 32.88 Celsius, 91.18 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 37 2 4B 46 7F FF 9 10 61  CRC=61 Thermometer=45 

 Temperature = 35.44 Celsius, 95.79 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 10 2 4B 46 7F FF 10 10 47  CRC=47 Thermometer=234 

 Temperature = 33.00 Celsius, 91.40 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 4 2 4B 46 7F FF C 10 A7  CRC=A7 Thermometer=70 

 Temperature = 32.25 Celsius, 90.05 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 11 2 4B 46 7F FF F 10 F0  CRC=F0 Thermometer=73 

 Temperature = 33.06 Celsius, 91.51 Fahrenheit 

 Relay3 is turned ON 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 2C 2 4B 46 7F FF 4 10 53  CRC=53 Thermometer=45 

 Temperature = 34.75 Celsius, 94.55 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

 Chip = DS18B20 

 Data = 1 14 2 4B 46 7F FF C 10 F3  CRC=F3 Thermometer=234 

 Temperature = 33.25 Celsius, 91.85 Fahrenheit 

 Relay1 is turned ON 
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ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 8 2 4B 46 7F FF 8 10 A3  CRC=A3 Thermometer=70 

 Temperature = 32.50 Celsius, 90.50 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 13 2 4B 46 7F FF D 10 E7  CRC=E7 Thermometer=73 

 Temperature = 33.19 Celsius, 91.74 Fahrenheit 

 Relay3 is turned ON 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 23 2 4B 46 7F FF D 10 1B  CRC=1B Thermometer=45 

 Temperature = 34.19 Celsius, 93.54 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

00000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 10 2 4B 46 7F FF 10 10 47  CRC=47 Thermometer=234 

 Temperature = 33.00 Celsius, 91.40 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 1 2 4B 46 7F FF F 10 A4  CRC=A4 Thermometer=70 

 Temperature = 32.06 Celsius, 89.71 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 15 2 4B 46 7F FF B 10 DE  CRC=DE Thermometer=73 

 Temperature = 33.31 Celsius, 91.96 Fahrenheit 

 Relay3 is turned ON 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 19 2 4B 46 7F FF 7 10 AC  CRC=AC Thermometer=45 

 Temperature = 33.56 Celsius, 92.41 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

0000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 F 2 4B 46 7F FF 1 10 C1  CRC=C1 Thermometer=234 

 Temperature = 32.94 Celsius, 91.29 Fahrenheit 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 F8 1 4B 46 7F FF 8 10 C3  CRC=C3 Thermometer=70 
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 Temperature = 31.50 Celsius, 88.70 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 F 2 4B 46 7F FF 1 10 C1  CRC=C1 Thermometer=73 

 Temperature = 32.94 Celsius, 91.29 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 15 2 4B 46 7F FF B 10 DE  CRC=DE Thermometer=45 

 Temperature = 33.31 Celsius, 91.96 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

00000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 D 2 4B 46 7F FF 3 10 D6  CRC=D6 Thermometer=234 

 Temperature = 32.81 Celsius, 91.06 Fahrenheit 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 F3 1 4B 46 7F FF D 10 D3  CRC=D3 Thermometer=70 

 Temperature = 31.19 Celsius, 88.14 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 8 2 4B 46 7F FF 8 10 A3  CRC=A3 Thermometer=73 

 Temperature = 32.50 Celsius, 90.50 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 D 2 4B 46 7F FF 3 10 D6  CRC=D6 Thermometer=45 

 Temperature = 32.81 Celsius, 91.06 Fahrenheit 

No more addresses. 

 

00000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 2D 2 4B 46 7F FF 3 10 7E  CRC=7E Thermometer=234 

 Temperature = 34.81 Celsius, 94.66 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 F6 1 4B 46 7F FF A 10 EB  CRC=EB Thermometer=70 

 Temperature = 31.37 Celsius, 88.47 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 A 2 4B 46 7F FF 6 10 F9  CRC=F9 Thermometer=73 

 Temperature = 32.63 Celsius, 90.72 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 
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 Chip = DS18B20 

 Data = 1 12 2 4B 46 7F FF E 10 F1  CRC=F1 Thermometer=45 

 Temperature = 33.13 Celsius, 91.62 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 36 2 4B 46 7F FF A 10 77  CRC=77 Thermometer=234 

 Temperature = 35.38 Celsius, 95.68 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 7 2 4B 46 7F FF 9 10 9D  CRC=9D Thermometer=70 

 Temperature = 32.44 Celsius, 90.39 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 10 2 4B 46 7F FF 10 10 47  CRC=47 Thermometer=73 

 Temperature = 33.00 Celsius, 91.40 Fahrenheit 

 Relay3 is turned ON 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 2B 2 4B 46 7F FF 5 10 47  CRC=47 Thermometer=45 

 Temperature = 34.69 Celsius, 94.44 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

00000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 23 2 4B 46 7F FF D 10 1B  CRC=1B Thermometer=234 

 Temperature = 34.19 Celsius, 93.54 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 8 2 4B 46 7F FF 8 10 A3  CRC=A3 Thermometer=70 

 Temperature = 32.50 Celsius, 90.50 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 D 2 4B 46 7F FF 3 10 D6  CRC=D6 Thermometer=73 

 Temperature = 32.81 Celsius, 91.06 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 3B 2 4B 46 7F FF 5 10 13  CRC=13 Thermometer=45 

 Temperature = 35.69 Celsius, 96.24 Fahrenheit 
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 Relay4 is turned ON 

No more addresses. 

 

000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 18 2 4B 46 7F FF 8 10 F7  CRC=F7 Thermometer=234 

 Temperature = 33.50 Celsius, 92.30 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 4 2 4B 46 7F FF C 10 A7  CRC=A7 Thermometer=70 

 Temperature = 32.25 Celsius, 90.05 Fahrenheit 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 6 2 4B 46 7F FF A 10 8B  CRC=8B Thermometer=73 

 Temperature = 32.38 Celsius, 90.27 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 3F 2 4B 46 7F FF 1 10 3D  CRC=3D Thermometer=45 

 Temperature = 35.94 Celsius, 96.69 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

0000000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 15 2 4B 46 7F FF B 10 DE  CRC=DE Thermometer=234 

 Temperature = 33.31 Celsius, 91.96 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 10 2 4B 46 7F FF 10 10 47  CRC=47 Thermometer=70 

 Temperature = 33.00 Celsius, 91.40 Fahrenheit 

 Relay2 is turned ON 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 B 2 4B 46 7F FF 5 10 EF  CRC=EF Thermometer=73 

 Temperature = 32.69 Celsius, 90.84 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 41 2 4B 46 7F FF F 10 ED  CRC=ED Thermometer=45 

 Temperature = 36.06 Celsius, 96.91 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 
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000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 1B 2 4B 46 7F FF 5 10 BB  CRC=BB Thermometer=234 

 Temperature = 33.69 Celsius, 92.64 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 17 2 4B 46 7F FF 9 10 C9  CRC=C9 Thermometer=70 

 Temperature = 33.44 Celsius, 92.19 Fahrenheit 

 Relay2 is turned ON 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 15 2 4B 46 7F FF B 10 DE  CRC=DE Thermometer=73 

 Temperature = 33.31 Celsius, 91.96 Fahrenheit 

 Relay3 is turned ON 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 42 2 4B 46 7F FF E 10 EC  CRC=EC Thermometer=45 

 Temperature = 36.13 Celsius, 97.02 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 20 2 4B 46 7F FF 10 10 BB  CRC=BB Thermometer=234 

 Temperature = 34.00 Celsius, 93.20 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 19 2 4B 46 7F FF 7 10 AC  CRC=AC Thermometer=70 

 Temperature = 33.56 Celsius, 92.41 Fahrenheit 

 Relay2 is turned ON 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 1A 2 4B 46 7F FF 6 10 AD  CRC=AD Thermometer=73 

 Temperature = 33.63 Celsius, 92.52 Fahrenheit 

 Relay3 is turned ON 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 42 2 4B 46 7F FF E 10 EC  CRC=EC Thermometer=45 

 Temperature = 36.13 Celsius, 97.02 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 
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000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 23 2 4B 46 7F FF D 10 1B  CRC=1B Thermometer=234 

 Temperature = 34.19 Celsius, 93.54 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 1B 2 4B 46 7F FF 5 10 BB  CRC=BB Thermometer=70 

 Temperature = 33.69 Celsius, 92.64 Fahrenheit 

 Relay2 is turned ON 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 1C 2 4B 46 7F FF 4 10 AF  CRC=AF Thermometer=73 

 Temperature = 33.75 Celsius, 92.75 Fahrenheit 

 Relay3 is turned ON 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 38 2 4B 46 7F FF 8 10 5F  CRC=5F Thermometer=45 

 Temperature = 35.50 Celsius, 95.90 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

0000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 20 2 4B 46 7F FF 10 10 BB  CRC=BB Thermometer=234 

 Temperature = 34.00 Celsius, 93.20 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 1D 2 4B 46 7F FF 3 10 82  CRC=82 Thermometer=70 

 Temperature = 33.81 Celsius, 92.86 Fahrenheit 

 Relay2 is turned ON 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 18 2 4B 46 7F FF 8 10 F7  CRC=F7 Thermometer=73 

 Temperature = 33.50 Celsius, 92.30 Fahrenheit 

 Relay3 is turned ON 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 23 2 4B 46 7F FF D 10 1B  CRC=1B Thermometer=45 

 Temperature = 34.19 Celsius, 93.54 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 
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00000000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 18 2 4B 46 7F FF 8 10 F7  CRC=F7 Thermometer=234 

 Temperature = 33.50 Celsius, 92.30 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 1D 2 4B 46 7F FF 3 10 82  CRC=82 Thermometer=70 

 Temperature = 33.81 Celsius, 92.86 Fahrenheit 

 Relay2 is turned ON 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 14 2 4B 46 7F FF C 10 F3  CRC=F3 Thermometer=73 

 Temperature = 33.25 Celsius, 91.85 Fahrenheit 

 Relay3 is turned ON 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 16 2 4B 46 7F FF A 10 DF  CRC=DF Thermometer=45 

 Temperature = 33.38 Celsius, 92.07 Fahrenheit 

 Relay4 is turned ON 

No more addresses. 

 

000000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 12 2 4B 46 7F FF E 10 F1  CRC=F1 Thermometer=234 

 Temperature = 33.13 Celsius, 91.62 Fahrenheit 

 Relay1 is turned ON 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 1F 2 4B 46 7F FF 1 10 95  CRC=95 Thermometer=70 

 Temperature = 33.94 Celsius, 93.09 Fahrenheit 

 Relay2 is turned ON 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 F 2 4B 46 7F FF 1 10 C1  CRC=C1 Thermometer=73 

 Temperature = 32.94 Celsius, 91.29 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 C 2 4B 46 7F FF 4 10 FB  CRC=FB Thermometer=45 

 Temperature = 32.75 Celsius, 90.95 Fahrenheit 

No more addresses. 

 

0000000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 
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 Chip = DS18B20 

 Data = 1 B 2 4B 46 7F FF 5 10 EF  CRC=EF Thermometer=234 

 Temperature = 32.69 Celsius, 90.84 Fahrenheit 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 1F 2 4B 46 7F FF 1 10 95  CRC=95 Thermometer=70 

 Temperature = 33.94 Celsius, 93.09 Fahrenheit 

 Relay2 is turned ON 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 C 2 4B 46 7F FF 4 10 FB  CRC=FB Thermometer=73 

 Temperature = 32.75 Celsius, 90.95 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 3 2 4B 46 7F FF D 10 B3  CRC=B3 Thermometer=45 

 Temperature = 32.19 Celsius, 89.94 Fahrenheit 

No more addresses. 

 

00000000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 5 2 4B 46 7F FF B 10 8A  CRC=8A Thermometer=234 

 Temperature = 32.31 Celsius, 90.16 Fahrenheit 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 20 2 4B 46 7F FF 10 10 BB  CRC=BB Thermometer=70 

 Temperature = 34.00 Celsius, 93.20 Fahrenheit 

 Relay2 is turned ON 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 9 2 4B 46 7F FF 7 10 F8  CRC=F8 Thermometer=73 

 Temperature = 32.56 Celsius, 90.61 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 FC 1 4B 46 7F FF 4 10 9B  CRC=9B Thermometer=45 

 Temperature = 31.75 Celsius, 89.15 Fahrenheit 

No more addresses. 

 

0000000000000000000000000 

ROM = 28 CA 84 76 6 0 0 EA 

 Chip = DS18B20 

 Data = 1 FF 1 4B 46 7F FF 1 10 A1  CRC=A1 Thermometer=234 

 Temperature = 31.94 Celsius, 89.49 Fahrenheit 

ROM = 28 E1 ED 76 6 0 0 46 

 Chip = DS18B20 

 Data = 1 21 2 4B 46 7F FF F 10 C  CRC=C Thermometer=70 
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 Temperature = 34.06 Celsius, 93.31 Fahrenheit 

 Relay2 is turned ON 

ROM = 28 9 8 77 6 0 0 49 

 Chip = DS18B20 

 Data = 1 7 2 4B 46 7F FF 9 10 9D  CRC=9D Thermometer=73 

 Temperature = 32.44 Celsius, 90.39 Fahrenheit 

ROM = 28 3F 54 76 6 0 0 2D 

 Chip = DS18B20 

 Data = 1 F6 1 4B 46 7F FF A 10 EB  CRC=EB Thermometer=45 

 Temperature = 31.37 Celsius, 88.47 Fahrenheit 

No more addresses. 

 

 

 

Dataset Temperatures 

 

Data Set: 1 
30.50, 31.81, 32.56, 33.00, 33.25, 33.00, 32.94, 32.81, 34.81, 35.38, 34.19, 33.50, 33.31, 

33.69, 34.00, 34.19, 34.00, 33.50, 33.13, 32.69, 32.31, 31.94 

 

Average (Mean): 

Count:  22 

Sum:  730.51 

Average:  730.51 / 22 = 33.205 

 

Data Set: 2 
30.31, 31.19, 31.81, 32.25, 32.50, 32.06, 31.50, 31.19, 31.37, 32.44, 32.50, 32.25, 33.00, 

33.44, 33.56, 33.69, 33.81, 33.81, 33.94, 33.94, 34.00, 34.06 

 

Average (Mean): 

Count: 22 

Sum: 718.62 

Average: 718.62 / 22 = 32.664 
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Data Set: 3 
32.19, 32.56, 32.88, 33.06, 33.19, 33.31, 32.94, 32.50, 32.63, 33.00, 32.81, 32.38, 32.69, 

33.31, 33.63, 33.75, 33.50, 33.25, 32.94, 32.75, 32.56, 32.44 

 

Average (Mean): 

Count: 22 

Sum: 724.27 

Average: 724.27 / 22 = 32.921363636364 

 

Data Set: 4 

34.88, 35.25, 35.44, 34.75, 34.19, 33.56, 33.31, 32.81, 33.13, 34.69, 35.69, 35.94, 36.06, 

36.13, 36.13, 35.50, 34.19, 33.38, 32.75, 32.19, 31.75, 31.37 

 

Average (Mean): 

Count: 22 

Sum: 753.09 

Average: 753.09 / 22 = 34.231363636364 
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