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ABSTRACT 

Tallgrass prairies are one of the rarest ecosystems on the planet as up to 99% of their historical 

extent has been converted to agriculture.  Once a prairie is converted there is often a loss of 

ecosystem services such as soil retention, carbon storage, water quality and a loss of biodiversity.  

It can take centuries to restore a native prairie after conversion has taken place.  The Sheyenne 

National Grassland is managed by the U.S. Forest Service and contains the largest publicly owned 

tract of tallgrass prairie remaining in North America making it a highly valuable for conservation.   

Ordinary least squares regression was implemented to evaluate statistically significant trends at a 

per pixel basis in selected Vegetation Indices (VI) between the years of 1984 and 2011 on the 

Sheyenne National Grassland.  VIs included NDVI, NDII RGR and SWIR32. Additionally, a 

Composite Index which sought to combine information from the original four indexes was created 

to evaluate the usefulness of combining indexes. A random forest regression model was also used 

to evaluate which independent variables were the most useful in predicting VI values through time. 

Between 1984 and 2011 the NDVI and NDII have increased while the RGR and SWIR32 have 

decreased. This indicates that greenness and wetness have increased through time while stress and 

non-photosynthetic vegetation have decreased. It is likely that the increase in NDVI is driven by a 

complex relationship between the influence of climate change and cattle grazing on the relative 

abundance of C3 and C4 plants. It is hypothesized that continuously stocked cattle grazing has 

reduced the vigor and competitive ability of native C4 grasses which competitively releases C3 

grasses that are more tolerant of grazing and are primarily invasive. In addition to the competitive 

release of cattle grazing, C3 establishment is promoted through increased spring precipitation 

which has increased over the last century. 
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CHAPTER I 

INTRODUCTION 

Tallgrass prairies are the most productive grasslands found in North America and once occupied 

up to 60 million ha of land in the U.S. However, now only 2.5 million ha remain largely because 

of agricultural expansion.  This makes the tallgrass prairie one of the most decimated ecosystems 

on the planet (Flores, 1996; Knapp & Seastedt, 1998). Once a prairie is converted to agriculture 

(or any other land use) it takes centuries to restore. Additionally, replacement of tallgrass prairie 

with agriculture often results in increased soil erosion, reduced water quality, loss of biodiversity, 

and reduced carbon storage. For example, 330 of the 435 species of birds which breed in the U.S. 

breed in the Great Plains. Between 1969 and 1991 declines of up to 48% have been estimated due 

to loss of habitat. Prairie dogs play a critical role in nutrient cycling and soil formation but 

populations are estimated to have declined by 98% since European settlement due to competition 

from cattle for forage (Samson and Knopf 1994). 

During the 1930’s when large areas of prairie were being converted to agriculture few recognized 

the ecological sensitivity of the Great Plains and the importance they played in holding soil 

together.  Without native grasses to keep the soil in place widespread wind erosion occurred which 

carried away top soil and reduced the ability of farmers to produce crops.
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Because so much of the original extent of tallgrass prairie has been lost, the conservation of the 

few remaining tracts has become increasingly important to conserve the ecosystems and the 

species they contain (Sampson and Knopf, 1994). 

The Sheyenne National Grassland (SNG), managed by the U.S. Forest service, is located in 

southeastern North Dakota, and at 28,000 ha it is the largest remaining publicly owned tract of 

tallgrass prairie and oak savannah in North America. The SNG is one of the most diverse 

landscapes in North Dakota and is home to numerous sensitive species and one endangered 

species. It is far from pristine though as invasive forbs and grasses are present, trees have expanded 

due to fire exclusion, and overgrazing has likely influenced species compositions. Major 

management issues on the SNG include infestation by leafy spurge (Euphorbia esula) and 

Kentucky bluegrass (Poa pratensis), reduction in native warm season grasses, invasion of trees 

and lack of residual vegetation for wildlife, prescribed fire and livestock forage (Svingen, Braun, 

and Gonzalez 2008). These changes are likely influencing ecosystem function and it is important 

for land managers to be able to identify locations where changes in ecosystem condition have taken 

place, and to determine why potential changes have occurred so that management action can be 

better informed and prioritized. 

Due to its large size it is expensive and difficult to assess the health of the SNG by conducting 

field surveys alone, but it is possible that satellite sensors (i.e. by remote sensing methods) can 

provide valuable information about ecosystem health to land managers. Remotely sensed 

vegetation indices (VI’s) have the potential to provide information about functional indicators of 

grassland states (Hill et al. 2013). For example, it has been shown that VI’s such as the Normalized 
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Differenced Vegetation Index (NDVI) which acts as an indicator of photosynthesis, the Caratenoid 

Reflectanc Index I (CRI1) which is sensitive to yellow pigments, the Anthocyanin Reflectance 

Index (ARI1) which is sensitive to stress, the Red Green Ratio (RGR) which is also sensitive to 

stress (but less than ARI1), the Normalized Difference Infrared Index (NDII) and Short Wave 

Infrared Ratio (SWIR32) which is sensitive to non-photosynthetic vegetation can be used to 

differentiate between grassland states across a number of prairie types in North America (Hill 

2013). 

Evaluation of VI’s from multi-temporal imagery may be particularly useful to evaluate how spatial 

variation in grassland quality has changed through time, and the release of the Landsat archive in 

2008 has made it easier to conduct analysis dating back as far as 1972 when the first Landsat sensor 

became operational. 

Numerous studies have evaluated temporal trends in VIs and band reflectance from time series of 

satellite imagery using ordinary least squares regression (Kennedy, Cohen, and Schroeder 2007; 

Kennedy, Yang, and Cohen 2010; J. E. Vogelmann, Tolk, and Zhu 2009; James E Vogelmann et 

al. 2012; Röder et al. 2008), but these studies have primarily focused on forested ecosystems and 

the evaluation of just one or two indices such as NDVI and SWIR32. These studies have also only 

examined how a VI might be changing through time, and not explored the relationship between 

VI signals and climatic factors such as precipitation and temperature. Additionally, these studies 

have not evaluated how regression results vary by segmenting images by different parts of the 

growing season (e.g. May vs. August) which may be useful to assess how spatial locations vary 

due to phenology. 
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One of the strengths of using regression of VIs against time as a change detection approach is that 

spatial evaluation of trends can be assessed by fitting regression models to each individual pixel 

in a study area over the desired time frame.  Significance of the regression fit can then be assessed 

by evaluating probability of the F-statistic (the p-value), overall fit by assessing R² values, and 

magnitude of change by assessing slopes (James E Vogelmann et al. 2012). Further insight can be 

drawn by incorporating ancillary data which describes the vegetative composition of individual 

pixels, and then stratifying regression results by the different vegetation communities and 

comparing differences (J. E. Vogelmann, Tolk, and Zhu 2009). 

More recently, decision trees such as random forest models have also been found to be useful in 

remotely sensed studies to classify land cover. A primary advantage in implementing random 

forest models is that differences in feature importance between many independent variables can 

be assessed by calculating which independent variable provided the most information to the model 

(Kulkarni and Lowe 2016; Rodriguez-Galiano et al. 2011). In this way, random forest models may 

also be useful in change detection studies by evaluating which independent variables may provide 

the most important information as to the cause of a change in a VI value.  When used in conjunction 

with a simple linear regression the feature importance should then theoretically align with R² 

values for specified independent variables. 

Study Objective 

Due to the uniqueness of the Sheyenne National Grassland as the largest publicly owned tallgrass 

prairie remaining in North America it has tremendous conservational value.  Despite its 

designation as a national grassland it faces numerous ecological threats from invasive species, fire 

exclusion and overgrazing. The large size of the grassland make it difficult to use field methods 
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alone to assess health, and remote sensing has potential to provide important insight.  Detailing 

specific locations which have undergone historic change, and continuing to analyze how 

conditions change in the future can provide important information to land managers to help 

prioritize field surveys.  The goal of this study was to evaluate a time series of remotely sensed 

images acquired from Landsat 5 between 1984 and 2011.  VI’s including NDVI, NDII, RGR and 

SWIR32 were calculated for all images in the time series (79 images in total) between the months 

of May and September. VI’s can be used as functional indicators of ecosystem health.  

Additionally, a fifth index which sought to combine all four original indexes was created to 

determine if VI’s could be integrated to simplify the process.  Simple linear regression was 

evaluated through the time series by using VI values per pixel as the dependent variable and time 

as the independent variable to determine if significant trends in VI values occurred.  Additionally, 

it was of interest to determine if climate and management were influencing VI trajectories, and 

therefore antecedent precipitation, antecedent growing degree days, and grazing pressure was also 

evaluated with simple linear regression as independent variables.  Regressions were evaluated 

through the entire time series, and three separate segmentations of the growing season such as 

images acquired in the Early Season, the Peak Summer and the Late Season. 

Multiple regression was also used to evaluate how much of the total variation per pixel could be 

explained with the selected independent variables by comparing adjusted R² values.  Additionally, 

random forest regressions were used to evaluate feature importance of independent variables.  

Lastly, comparisons of regression which were stratified by unique landforms and species 

compositions were compared to evaluate differences in trajectories. 
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Objectives of this research were to: 

1. Use simple image differencing to determine if a change in VI values have occurred through 

time. 

2. Implement simple linear regression models to determine how VI values may have changed 

due to independent variables such as time, climate, and grazing pressure. 

3. Determine if there is spatial variation in change across landforms and species compositions. 

4. Evaluate the capability of a random forest regression to predict index values based on the 

included independent variables. 

5. Explore the capability of combining original indexes into a single new index to act as an 

indicator of vegetative state. 
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CHAPTER II 

LITERATURE REVIEW 

Ecological Importance of Grasslands 

Grasslands occupy approximately 37% of Earth’s land surface (O’Mara 2012) are one of the most 

biologically productive of all ecosystems (Williams and Diebel 1996) and in North America are 

among the most at risk resources on the continent (Samson, Knopf, and Ostlie 2004). 

Due to the high productivity of their soils, land use change, and more specifically conversion to 

cultivated (on the most productive lands) or grazed land (on more marginal lands), has led to poor 

conditions and degradation for many of the world’s grasslands which threatens their ecosystem 

function (Sala and Paruelo 1997; Fore, Overmoe, and Hill 2013; O’Mara 2012). Ecosystem 

services provided by grasslands include soil conservation, nutrient retention, biochemical 

recycling, wildlife habitat, forage, maintenance of biodiversity, and food production (White, 

Rohweder, and Murray 2000). 

The world population is around seven billion people today, and is projected to eclipse 10 billion 

by the end of the century.  With this population growth demand for milk and dairy product are 

expected to grow by 22% between 2012 and 2022 (O’Mara 2012).  Grasslands are important to 

the global food supply as they contribute milk, meat production and a large genetic library for crop 

(Sala and Paruelo 1997; O’Mara 2012). In 2009 29% of the global meat supply came from cattle
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buffalo, sheep and goats, all of which use grasslands as a major component of their diets (O’Mara 

2012). 

 

North American Grasslands 

North American grasslands (also called the Great Plains) evolved under the rain shadow of the 

Rocky Mountains. They are characterized by seasonal precipitation occurring mostly in the spring 

and summer.  From the Rocky Mountains east to the Mississippi River precipitation increases and 

prairie types transition from short-grass prairie to mixed-grass prairie to tall-grass prairie (White, 

Rohweder, and Murray 2000; Pieper 2005). Historically (pre-European colonization) grasslands 

dominated central North America extending from central Canada (Alberta, Saskatchewan and 

Manitoba) south to Texas and from east of the Rocky Mountains in Montana all the way to Illinois 

and Ohio during warm interglacial periods, covering approximately 162 million ha (Samson and 

Knopf 1994; White, Rohweder, and Murray 2000). Soils developed from a variety of parent 

materials including lime-stone, sandstone, shale, metamorphic and igneous outwash and loess. In 

the southern extent of the Great Plains (between 30° and 42° N) C4 species dominate while north 

of 42°N C3 species become more prevalent (Pieper 2005). Physiologically, C3 and C4 plants differ 

in the photosynthetic pathway by which carbon is fixed into carbohydrate.  C3 species typically 

have lower light saturation, lower rates of photosynthesis, and higher transpiration rates than C4 

species. Due to these physiological differences, C3 and C4 plants respond differently to 

environmental conditions, and growth varies by season. Plants which utilize the C3 pathway reach 

peak growth earlier in the growing season as they are more active in the cooler spring and early 

fall temperatures.  In contrast, C4 species reach maximum growth later in the growing season as 
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they are more active under warmer and drier conditions of middle to late summer.  Additionally, 

in tallgrass prairies C3 species are usually non-native and C4 species are usually native (Goodin 

and Henebry 1996). 

Short-grass prairie is dominated by blue grama (Boutelou gracilis) and buffalo grass (Bouteloua 

dactyloides) and is the least decimated of the three prairie types in North America.  However, 

extensive areas of short-grass prairie have been invaded with invasive perennial and annual species 

which is primarily attributed to overgrazing by livestock and farming.  Mixed-grass prairie is 

characterized by warm-season grasses in the west and cool season grasses to in the east.  As a 

result of its location on an ecotone mix-grass prairies have higher diversity than the other prairie 

types (White, Rohweder, and Murray 2000). Tallgrass prairies, which will be the focus of the 

remainder of this study, are the most decimated of the three with declines since 1830 estimated to 

be between 82.6% and 99.9% for all states and provinces, which is greater than any other 

ecosystem found in North America (Samson and Knopf 1994). 

Tallgrass prairies are temperate, mesic grasslands primarily consisting of sod forming 

bunchgrasses and are the most productive of the three grasslands found in North America. 

Precipitation ranges from 60 cm in the northwest to 100 cm in the southeast and the climate is 

continental with temperature ranging from -35°C to 45°C. Vegetative composition typically 

consists of widely distributed core species of warm-season grasses, and secondary less abundant 

and less dominant grasses and forbs (Knapp and Seastedt 1998). Dominant C4 grasses include big 

bluestem (Andropogon gerardi), switchgrass (Panicum virgatum), and indian grass (Sorghastrum 

nutans).  C3 graminoids are also present in tallgrass prairies with species including Scribners 

panicum (Panicum oligosanthes), porcupine grass (Stipa spartea), junegrass (Koeleria 
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macrantha), Kentucky bluegrass (Poa pratensis) and a variety of sedge species.  While production 

comes largely from graminoids, forbs contribute the most to richness and diversity and are also 

more responsive to disturbances such and fire and grazing (Flores 1996). 

 

Fire Disturbance 

Primary disturbances in tallgrass prairie include fire, grazing and climate and they are integral 

factors in determining the shape and structure of plant life history, population dynamics, species 

interactions and community structure.  Plant community structure and composition in turn 

influence populations of birds, mammals and invertebrates. 

Historical fire frequency in tall grass prairie ranged from two to five years, but there was probably 

large year to year variation (Collins and Steinauer 1998; Steinauer and Collins 1996). Lightning 

ignited fires occurred from March through December, but were most common in mid-to late 

summer (Bragg 1982). Additionally, Native Americans ignited fires to attract herbivores and 

protect their camps (Steinauer and Collins 1996). Perhaps the most apparent effect of fire is the 

reduction of woody species associated with it.  In general, woody plant species decrease with 

annual spring burning and increase with longer fire-return intervals.  In the absence of fire detritus 

accumulates, woody plants establish, and altered competition leads to an increase in shrub cover 

and succession to woody-dominated communities (Briggs and Gibson 1992; Briggs, Nellis, and 

Turner 1998). 

Grass and forb response to fire are influenced by their morphologies and phenology’s.  In the 

dominant C4 grasses big bluestem and indian grass, fire stimulates rhizome development in the 
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early season leading to higher tiller densities and increased establishment. Most cool-season C3 

grasses show decreased flowering and tillering in response to frequent spring fires (Collins and 

Steinauer 1998). Species that begin growing early in the growing season are killed or damaged by 

fire so they are then unable to set seeds (Gibson 1988). Most forb species, for example, increase 

in abundance with decreasing fire frequency. Forbs that flower in the mid- to late summer have 

reduced growth and vegetative production in response to fire (Hartnett 1990), but this is likely an 

indirect effect due to increased competition from warm-season grasses (Hartnett 1991). The 

increase in abundance of most forbs as the fire return interval increases is due to competitive 

release from warm-season grasses, and therefore, fires reduce overall species richness by selecting 

for the dominant warm-season grasses (Collins 1992; Collins and Calabrese 2012). 

Many tallgrass prairies are managed using spring burns because the forage production of the C4 

grasses are favorable for livestock. Spring burning can increase species richness by opening space 

for seedling establishment, but summer fires reduce the abundance of C4 grasses and increase the 

abundance of C3 grasses (Howe 1994). Since C3 grasses have little biomass but there are a large 

number of species, summer burns can increase diversity but decrease overall productivity. 

Diversity is maximized several years post-fire, but eventually litter accumulation reduces the 

competitiveness of C4 grasses and diversity declines if the prairie is not re-burned (Gibson and 

Hulbert 1987). When the prairie goes unburned the accumulated litter reduces light levels which 

suppresses plant growth (Weaver and Rowland 1952), while high light availability and 

temperatures occur following fire which increases plant production (Knapp 1984). 
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Grazing Disturbance 

Grazing is another primary disturbance which moderates structure and composition in tallgrass 

prairies. Primary herbivores inhabiting tallgrass prairies before European settlement included 

bison, elk, white-tailed deer, mule deer, and numerous smaller vertebrate and invertebrates 

(Collins and Steinauer 1998). While precise knowledge of bison’s role in tallgrass prairie is lacking 

since the extent of the prairie has decreased so rapidly and in concordance with the decline of 

bison, it has been hypothesized that they played a keystone role in these ecosystems as they alter 

the competitive balance between many C4 and C3 plant species and therefore vegetative 

composition and structure (Knapp et al. 1999). Bison feed mostly on graminoids (Streuter et al. 

1995) while avoiding forbs and woody species which usually contribute to less than 10% of their 

diets (Damhoureyeh and Hartnett 1997). 

It is the forb component that accounts for the highest levels of biotic diversity in tallgrass prairies. 

Grazing on grasses releases forbs from competition with warm-season grasses thereby increasing 

levels of biodiversity (Collins 1998; E Gene Towne et al. 2005; Collins and Calabrese 2012). 

Effects of bison grazing on big bluestem grass differ short term versus long term.  Short term, 

growth enhancement occurs due to increased light availability and reduced water stress 

(Fahnestock and Knapp 1993). Long term however, the ability of tillers to compensate for the 

effects of grazing is reduced, and this is likely due to differences in the short and long-term stores 

in below ground carbon and carbohydrates (Vinton et al. 1993). 

While Bison were historically the primary herbivores on tallgrass prairies, they have largely been 

replaced by cattle, and there are differences in how the two influence prairie dynamics. A large 

difference between the two, is how they are managed.  Cattle grazing usually occurs during the 
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May-September growing season (E Gene Towne et al. 2005). Bison, however, traditionally remain 

on pastures year-round with no management.  Another difference is that bison body masses for all 

ages and sexes are lower than those in cattle, and consequently intake and grazing intensity differ 

(E. G. Towne 1999). A behavioral difference between bison and cattle is that bison create wallows 

which are depressions in the ground as they paw and roll in exposed soil.  These depressions can 

reach 3-5 m in diameter and 10-30 cm in depth, and vegetation is usually absent (England 1959).  

Wallows alter patch structure as the depressions can revegetate or remain bare depending on 

recurred use by bison and they retain rainwater in the spring which supports ephemeral wetland 

species and in the summer provide habitat to plants that are tolerant to drought (Polley and Collins 

1984).  Overall, grazed prairie that consists of bison wallows have higher diversity than without 

(Collins and Barber 1986). 

There are also differences in how bison and cattle grazing affect species composition.  It has been 

found that big bluestem cover increases under cattle grazing, but not bison.  Conversely, little 

bluestem cover can decline under bison grazing, but not cattle.  While forbs increase under both 

bison and cattle grazing, the increase is largest with bison. Additionally, species diversity and 

richness is highest under bison pastures, although only slightly higher than with cattle (Hartnett, 

Hickman, and Walter 1996; E Gene Towne et al. 2005). Regardless, both bison and cattle grazing 

have a large impact on tallgrass prairie composition and structure. 

Climate Disturbance 

A third major disturbance which influences tallgrass prairie structure is climate. Perhaps the largest 

influence of climate on tallgrass prairies is on aboveground net primary productivity (ANPP). 

Solar radiation and temperature have been found to be correlated with ANPP, but it is precipitation 
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that is the most influential (Sala et al. 1988). Both annual and seasonal precipitation have been 

found to be positively correlated with ANPP which highlights the importance of water as a limiting 

resource. At low fire frequencies, reductions in light availability probably outweighs moisture 

availability and water only limits production in extremely dry years, or dry locations (such as 

uplands). Additionally, just as fire and grazing influence relative abundance of C₃ and C₄ plants, 

so does climate.  C3 plants achieve peak growth earlier in the growing season and are most active 

in the cooler spring and early fall temperatures. C4 species reach maximum growth later in the 

growing season and are most active in the middle to late summer. As such, fluctuations in annual 

and seasonal temperature and precipitation are likely to shift the relative abundance of C₃ and C₄ 

plants as C₄ plants might begin expanding farther north due to increased temperatures. 

It has also been hypothesized that increasing atmospheric CO2 will result in increased coverage of 

C₃ plants (due to increased photosynthetic rates) at the expense of the dominant C₄ plants which 

would reduce the overall productivity of tallgrass prairies, but research on the Konza Prairie has 

shown that in order to understand the effects of increasing CO₂ on tallgrass prairie communities it 

is necessary to understand the interaction between CO₂ and plant water relations. By comparing 

ambient CO₂ levels to twice ambient levels over an eight year period Knapp et al. (1996) found 

that increased CO₂ led to improved water use efficiency due to reduced stomatal conductance for 

the dominant C₄ grass big bluestem in both wet and dry years. This suggests that in dry years 

increased water use efficiency of C₄ plants may buffer the effects of increased photosynthetic rates 

in C₃ plants.  This is confirmed by Knapp et al. (1993) where at elevated CO₂ levels in years where 

plants were not limited by precipitation and that big bluestem did not experience any enhancement 

in photosynthetic rates compared to ambient CO₂ levels.  In contrast, in dry years plants exposed 
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to ambient CO₂ levels had lower photosynthetic rates than those exposed to elevated levels, likely 

due to the increased water use efficiency at elevated CO₂.  Therefore, annual and seasonal 

precipitation may also moderate the influence of CO₂ when determining abundance of C₃ and C₄ 

plants. 

The Konza prairie will be referenced throughout this research as it a Long-Term Ecological 

Research (LTER) center located on a tallgrass prairie in Kansas which was established in 1980.  

This location offers an abundance of research which has examined how disturbances (among other 

topics) influence tallgrass prairie dynamics, and it is likely that processes operating at this location 

are also important on the SNG. 

Growing season temperatures have been found to be the most influential variable controlling C3 

and C4 compositions while summertime precipitation explains less, but still significant variance 

(Teeri and Stowe 1976). In general, increases in wintertime precipitation and lower annual 

temperatures increase abundance of C3 grasses while increases in mean annual temperature and 

increases in summertime precipitation increase abundance of C4 grasses. Additional studies have 

also found fire, grazing, soil properties and topography to be influential drivers in relative C3 and 

C4 abundance, although these factors are of secondary importance to climate (Paruelo et al. 1997). 

Physiologically, C3 and C4 plants differ in the photosynthetic pathway by which carbon is fixed 

into carbohydrate.  C3 species typically have lower light saturation, lower rates of photosynthesis, 

and higher transpiration rates than C4 species. Due to these physiological differences, C3 and C4 

plants respond differently to environmental conditions, and growth varies by season. Plants which 

utilize the C3 pathway reach peak growth earlier in the growing season as they are more active in 

the cooler spring and early fall temperatures.  In contrast, C4 species reach maximum growth later 
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in the growing season as they are more active under warmer and drier conditions of middle to late 

summer.  Additionally, in tallgrass prairies C3 species are usually non-native and C4 species are 

usually native (Goodin and Henebry 1996). 

State and Transition Models 

Understanding how tallgrass prairies respond to disturbances such as fire, grazing and climate, and 

predicting how future management and climate regimes may cause transitions in species 

compositions is critical to make appropriate management decisions and to evaluate how these 

transitions influence ecosystem functions. For instance, numerous catastrophic ecosystem 

transitions have been documented in arid and semi-arid regions of the world, and these transitions 

often involve the loss of perennial grasses and their replacement by trees/shrubs.  Transitions are 

accompanied by loss of soil fertility, plant community variability, biodiversity, and livestock 

production.  Often times these transitions are irreversible and simply reducing the cause of the 

change, will not revert the ecosystem back. Because of this, public and private resource managers 

are interested in predicting, halting and reversing vegetative state changes and transitions 

(Bestelmeyer et al. 2006). 

State and transition models (STM’s) have been developed which describe a set of discrete “states” 

of vegetation and a complementary set of discrete “transitions” that can occur between the states 

(Westoby, Walker, and Noy-Meir 1989; Briske, Fuhlendorf, and Smeins 2003; Stringham, 

Krueger, and Shaver 2003). A state is a persistent vegetative community, and “transitions” are 

trajectories between the states that are often the result of disturbances such as climate, fire or 

grazing. Transitions can occur quickly, such as when a large fire occurs, or they can be slow and 

gradual such as when there is a subtle shift in climate (Westoby, Walker, and Noy-Meir 1989; 
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Stringham, Krueger, and Shaver 2003).  In this way there can be multiple alterative stable states 

and multiple transitions that can cause an ecosystem to reach a particular state. 

In order for state changes to occur in a STM a threshold must be reached which causes the change. 

This does not mean that species composition within states are static, rather, there is a potential for 

large variation even within states, but when a state change occurs the primary ecological processes 

are changed and a different potential set of plant communities results.  The basis of rangeland and 

prairie ecosystems is the soils which have developed from specific parent materials, climate, and 

the interaction of soil and terrestrial organisms. These factors provide the basis for establishing a 

site’s ecological states (Stringham, Krueger, and Shaver 2003). 

The USDA Natural Resources Conservation Service (NRCS) has implemented the use of STM’s 

for rangeland ecological sites across public lands in the United States, and they are termed 

Ecological Site Descriptions (ESD).  ESD’s are based upon soil types, and more accurately soil 

complexes.  As an example, the state-and-transition model for the Limy Subbirigated site in the 

Red River Valley of North Dakota is shown in Figure 1.  Soils in the Limy Subbirigated ESD 

include loamy fine sands and silty clays which are very deep, relatively poorly drained and have a 

calcareous subsoil. There are four main states for this ESD, consisting of reference, native/invaded, 

shrub dominant and invaded state. The reference state represents the natural range of variability 

that dominated this ESD without human intervention, Native/Invaded is similar to reference in 

appearance and function but has a higher proportion of invasive or introduced species, the shrub 

dominant state is characterized by dominance of shrubs and a understory of cool-season sod 

forming grasses and the invaded state is complete dominance of introduced species, primarily 

Kentucky bluegrass (Poa pratensis) in this case.  Once the invaded state is established even 
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largescale events such as high intensity fire cannot reduce Kentucky bluegrass.  The variety of 

pathways that are hypothesized to lead to transitions between states are also highlighted within the 

figure. 

The description provided above represents just one state-and-transition model provided by the 

NRCS ESD’s, and each site which is based on different soil types has variation in the states and 

transitions that are present and the disturbances which trigger them.  By identifying which state 

prairies and rangelands are currently in land managers are better able to identify the health of the 

system they are trying to manage, and what the management options are that may transition the 

ecosystem into a desired state.  The drawback to this is that extensive field work is often required 

to collect information on species composition and the extent of invasion by non-natives which is 

expensive.  Because of these limitations in field sampling, remote sensing has the potential to be 

a powerful tool in assessing changes through time in grassland communities, and possibly to even 

differentiate between different grassland states and transitions (Hunt, Jr. et al. 2003; Hill 2013; 

Hill et al. 2013). These changes may relate to the transitions detailed in the ESD’s. Satellite sensors 

are also well suited to evaluate ecosystem change because they provide consistent and repeated 

observations over a spatial scale large enough to capture the effects of both natural and 

anthropogenic disturbances (Kennedy, Cohen, and Schroeder 2007; J. E. Vogelmann, Tolk, and 

Zhu 2009). 
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Figure 1. State and Transition Model for the Limy Subirrigated Site in the Red River 

Valley of North Dakota. 
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Remote Sensing Applications 

Remote sensing of grasslands is difficult because grasslands are heterogeneous and patchy, 

especially at the moderate spatial resolutions offered by most satellites (Hill 2013). Thus far most 

of the research using satellite remote sensing has proven most effective at examining temporal and 

regional trends in phenology and productivity rather than in discrete within state changes. 

Likely the most commonly used vegetative index to characterize biophysical parameters is the 

normalized difference vegetative index (NDVI) (Running, Loveland, and Pierce 1994) which is 

computed as the difference in reflected energy at the near-infrared (NIR) and red wavelengths 

which can be used to measure the photosynthetically active biomass in plants (Tucker 1979). The 

NIR constitutes wavelengths between 700-1100 nm and the red is between 600-690 nm.  NDVI 

has been found to be correlated to leaf area index (LAI), biomass, percent vegetation cover, and 

canopy nitrogen and chlorophyll content (Gamon et al. 1993). 

Many studies have also examined how phenology has varied through time using NDVI (Zhang et 

al. 2003). Monitoring of phenology is characterized by four key characteristics: (1) greenup, which 

marks the beginning of photosynthetic activity; (2) plant maturity which is when maximum plant 

leaf area is reached; (3) senescence which marks a sharp reduction in photosynthetic activity; (4) 

and dormancy which is when photosynthetic activity is near zero. By analyzing time series 

composites of AVHRR or moderate resolution imaging spectroradiometer (MODIS), changes in 

phenology over time can be evaluated in relation to factors such as climate and human intervention. 
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Applications of Vegetation Indices 

While parameters such as biomass and phenology do provide important insights into ecosystem 

status and function, by themselves they are not capable of predicting the subtle within state changes 

which are so important for grassland management. A major challenge in remote sensing thus far 

is that satellite imagery is not capable of determining individual species, even when small pixel 

sizes are used (high resolution imagery) (Hunt, Jr. et al. 2003). However, the reflectance spectrum 

from remote sensing can provide information about chlorophyll content, water content and leaf 

and canopy structure which can provide insights into the functional characteristics of ecosystems 

(Gates et al. 1960; Knipling 1970). 

Suites of vegetative indices (VI) have the potential to be useful indicators of rangeland status, but 

little research has examined the capability so far (Hill 2013; Hill et al. 2013). Hill (2013) evaluated 

a suite of VI’s across a range of prairies including xeric mixed, mesic mixed, mixed grass, saline 

tallgrass, tall grass prairie/oak savanna and Post oak savanna.  Additionally, VI’s were evaluated 

across different land cover classes, and vegetative states which were essentially simplified versions 

of the ESD’s did show that VI’s can be useful indicators of vegetative states in grasslands as 

savannas.  Vegetative indices used included the NDVI which is used as an indicator of 

photosynthetic pigment and biomass; the Carotenoid Reflectance Index I (CRI1) which is sensitive 

to yellow pigments; the Anthocyanin reflectance Index I (ARI1) which is sensitive to red pigments 

and stress; the Red Green Ratio (RGR) which is sensitive to red pigments and stress as well (but 

less sensitive than ARI1); the Normalized Difference Infrared Index (NDII) which is sensitive to 

vegetative moisture and correlated to biomass; the Soil Adjusted Total Vegetation Index (SATVI) 

which is sensitive to grassland biomass under senescent conditions;  and the Short Wave Infrared 
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Ratio (SWIR32) which is sensitive to non-photosynthetic vegetation.  Of these VI’s, the NDVI, 

NDII, RGR and SWIR32 are readily calculated from multispectral sensors such as Landsat. While 

this study only examined VI’s over a single date image, multi-date analysis could offer 

improvements as phenological and spatial variation would be better captured and could help 

characterize changes in grassland ecosystems. 

Many studies have employed remote sensing to detect and map change, but often times these 

studies focus on abrupt changes such as logging, agriculture expansion, or fires which are much 

easier to detect than the subtle within-state changes which often occur in grasslands (Coppin et al. 

2004; Hansen et al. 2008). Within-state changes often happen very gradually, but nevertheless still 

have important impacts of ecosystem processes which influence the carbon balance, biochemical 

cycles and patterns of biodiversity (Perry and Millington 2008). Further obstacles which have 

made detection of subtle ecosystem change difficult is the necessity to have access to calibrated 

multi-temporal imagery and access to adequate field data, but despite these limitations there have 

been a number of successful studies which have utilized remote sensing to detect and monitor 

gradual state changes within ecosystems (Beck et al. 2007; Röder et al. 2008; J. E. Vogelmann, 

Tolk, and Zhu 2009). 

Detecting Ecosystem Changes with Regression 

Initially many change detection studies focused on simply subtracting two images from each other 

over a specified time frame to evaluate changes in spectra, but this method prevents evaluation of 

long term trends and is more appropriate for abrupt change than subtle change (Coppin et al. 2004). 

More recently trend analysis through regression has proven to be particularly useful for evaluating 

both abrupt and subtle changes in forests, particularly when using long term datasets such as those 
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provided by the Landsat sensors. Trend analysis is based on the premise that if a change in an 

ecosystem has occurred there will be a distinct shift in the spectral signature over a specified time 

period. In contrast to two date image differencing, trend analysis allows for evaluation of change 

over much broader temporal trajectories.  Simple linear regression has been employed to assess 

change because if a specific pixel is shown to fit a particular change trajectory it is likely that that 

pixel has experienced the trajectory described.  Assessing change with linear regression provides 

insight into locations of change, the magnitude of change, which vegetation communities have 

been most impacted, and potentially what the cause of the change is itself. An inherent difficulty 

of time series analysis is the lack of ancillary data needed to validate findings which is often needed 

on an almost yearly temporal scale (Kennedy, Cohen, and Schroeder 2007; Röder et al. 2008; J. 

E. Vogelmann, Tolk, and Zhu 2009). 

Vogelmann et al. (2009) evaluated per pixel trajectories of forested ecosystems in New Mexico 

with 10 Landsat images acquired between 1988 and 2006 to determine if dieback of forest had 

occurred due to insect damage.  Analysis focused solely on the Shortwave Infrared/Near Infrared 

(SWIR/NIR) index and the NDVI, both acquired from Landsat. To map change linear regression 

was used whereby VI value per pixel was used as the dependent variable and time was used as the 

independent variable. Images which differentiated pixels with significant change at p-values of 

0.01 and 0.05 levels of confidence were then mapped in conjunction with whether slopes were 

increasing or decreasing per pixel.  To assist in interpreting how regression models varied by forest 

type a classified image from the LANDFIRE project (https://www.landfire.gov/) was used to 

assign membership of forest type (e.g. Spruce –Fir, Mixed Conifer, deciduous forest) to each pixel. 

Based on this analysis it was found that the spruce/fir forests had many more pixels which showed 

https://www.landfire.gov/
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a statistically significant trend compared to deciduous and mixed conifer forests, and thus were 

likely most influenced by dieback. 

Building on this study, Vogelmann et al. (2012) conducted a study which implemented linear 

regression per pixel with NDVI and SWIR/NIR across four separate ecosystems in four different 

regions of the U.S.: (1) forest and rangelands in the southwestern U.S.; (2) sagebrush rangelands 

in Wyoming; (3) woodland/prairie in Nebraska; and (4) forests in New Hampshire.  Overall it was 

found that conifer forests in the southwest were experiencing decreasing NDVI (increasing 

SWIR/NIR) due to insects and drought; sagebrush communities were decreasing in NDVI and 

increasing in SWIR/NIR due to fire, mining and drought; forest communities in Nebraska were 

expanding into the prairie and increasing in NDVI and forests at high elevation in New Hampshire 

were increasing in NDVI likely due to understory species moving to higher elevations with time. 

The studies described above have only used regression to evaluate change by using time as the 

dependent variable and in forested ecosystems, but it may also be useful to evaluate how climate 

and management influence VI response and in ecosystems other than forests.  Roder et al. (2008) 

examined the effect of grazing in Mediterranean grasslands in Greece by implementing regression 

per pixel after applying spectral mixture analysis (SMA), which estimates fractional cover of 

vegetation, soil, and shade. In this way grazing pressure was used as the independent variable and 

fractional cover of vegetation the dependent variable, but results were highly variable with some 

plant communities having decreased vegetative cover with increased stocking rate, some having 

increased cover and some having no relation at all. 

Simple linear regression has been shown to be an effective tool to characterize subtle change 

trajectories of individual pixels through time, but most research using this methodology has been 
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limited to forested ecosystems, and has only focused on evaluating change in VI values through 

time, not in relation to climate variables or management decisions.  The remainder of this study 

will focus on implementing the regression based change detections previously described on the 

SNG.  Additionally, a variety of VI’s will be evaluated including the NDVI, NDII, RGR and 

SWIR32 and multiple independent variables will be evaluated including time, precipitation, 

growing degree days and grazing pressure to determine how each influence VI values. Lastly, 

multiple regression will be used to determine how multiple independent variables at once influence 

overall model fits and random forest regressions will be used to evaluate feature importance of VI 

values. 
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CHAPTER III 

METHODS 

Study Area 

The Sheyenne National Grassland (SNG) is managed by the U.S. Forest Service within the U.S. 

Department of Agriculture (USDA) and is located in southeastern North Dakota. Average 

precipitation is 530 mm per year (USDA Forest Service 2001).  At 28,000 ha, the SNG represents 

the largest publicly owned tract of eastern deciduous forest, oak savannah and northern tallgrass 

prairie in the state.  The tallgrass prairie and oak savannah ecosystems represent the largest publicly 

owned tracts remaining in all of North America. The tallgrass prairie is one of the rarest ecosystems 

left on Earth, and the bur oak savannah is considered a regionally threatened ecosystem.  As such, 

the grassland has high conservation value and is home to numerous sensitive species, and one 

endangered species.  The grassland is far from pristine though, and suffers problems including 

invasive forb and grass invasion, expansion of trees and shrubs, and overgrazing (Svingen, Braun, 

and Gonzalez 2008). 

To fully understand the SNG’s vegetative composition, it is important to first review the areas 

geologic past which was of critical importance in soil formation.  10,000 to 15,000 years ago 

southeastern North Dakota was covered by glacial ice which deposited crushed rock (called glacial 

till) across the landscape.  Around 13,000 years ago the climate warmed, and the glaciers began to 

recede.  As the ice melted rivers began transporting large volumes of meltwater, but the Red River 
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was blocked by glacial ice farther north which had not melted.  This water then began accumulating 

forming what is known as glacial Lake Agassiz, which at one point covered approximately 900,000 

square km across portions of North Dakota, Minnesota, Manitoba, Saskatchewan and Ontario 

(Fritz 2001). Streams such as the Sheyenne River (which flows through the SNG) deposited 

sediments with their meltwater into Lake Agassiz.  The area where these sediments were deposited 

is known as the Sheyenne Delta.  Since fine sediments such as silt and clay are lighter, they were 

transported further into Lake Agassiz than were coarse sediments such as sand and gravel.  As 

such, sand and gravel was deposited at the Sheyenne Delta while the clay and silt particles were 

deposited onto the lake floor.  The area where the clay and silt particles were deposited is now 

known as the Red River Valley and represents extremely fertile land which is productive for 

agriculture. 

As the climate continued to warm and the glaciers melted, Lake Agassiz disappeared and the 

Sheyenne Delta become exposed to wind which worked the sediments into eolian landforms which 

are present on the SNG today.  These landforms (Figure 2) include the deltaic plains (DP), sand 

dunes (SD) and hummock and swale (HS).  Additionally, the Sheyenne River continued to drain 

central North Dakota, and through time it meandered back and forth carving out the last landform, 

which is the Sheyenne river bottom (Svingen, Braun, and Gonzalez 2008). 

The choppy sand hills landform consists of ridges of sand that reach up to nine meters high and 

has vegetation which prefers dry sandy soils such as bur oak (Quercus macrocarpa) smooth sumac 

(Rhus glabra), sand bluestem (Andropogon hallii), and needle and thread grass (Stipa comata).  

This landform is primarily found within 5 km of the Sheyenne River. 
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The hummock and swale landform has parabolic dunes (hummocks) which also typically have a 

depression (swale) on the upwind side which support wetland plants.  Vegetation includes blue 

grama (Bouteloua gracilis), switchgrass (Panicum virgatum), and sedges (Carex spp.) on the 

hummocks, and northern reed canary grass (Calamogrostis stricta), sloughgrass (Beckmannia 

syzigachne), and Baltic rush (Juncus balticus) in the swales. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Location and landforms of the SNG. 
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The deltaic plains landform is relatively flat and has sandy soils which can reach up to 3 meters 

thick.  Well drained areas support tallgrass prairie and depressions support sedges.  Typical 

vegetation includes big bluestem (Andropogon gerardii), and Indiangrass (Sorghastrum nutans). 

The Sheyenne River valley landform is shaped by the meandering of the Sheyenne River and 

includes flat flood plains, wetlands and sloping terraces.  On the terraces eastern hardwood forest, 

woodland and wetland plants can be found with many of the plants being rare in North Dakota. 

Vegetation includes American elm (Ulmus americana), basswood (Tilia Americana), green ash 

(Fraxinus pennsylvanica), boxelder (Acer negundo), and hackberry (Celtis occidentalis) (Svingen, 

Braun, and Gonzalez 2008). The River Bottom landform occupies only a small area of the SNG 

and therefore will not be further discussed in this analysis. 

In addition to the landforms, there are many hundreds of plant species occurring in a number of 

major species associations on the SNG, but only limited data are available describing the 

geographical patterns of botanical composition and individual dominant species gradients. The 

most detailed and accurate survey to date comes from a USDA National Gap Analysis Program 

(GAP) (https://gapanalysis.usgs.gov/data/) survey completed between 1992 and 1999 (Figure 3). 

The GAP was created by integrating spectral response from Landsat 5 images with training data 

acquired from ground plots.  Training data for tallgrass prairie ecosystems was provided by the 

North Dakota National Heritage Program (NDNHP).  NDNHP completed surveys in Ransom and 

Richland County, which is where the SNG is located, and some inventory locations were on the 

SNG itself. Additionally, the NDNHP surveys classified vegetation at the National Vegetation 

Classification Standard (NVCS) level 8, which is the most detailed level of classification in the 

https://gapanalysis.usgs.gov/data/)
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program. As such, GAP classes used in this study were not derived by the author, but are instead 

based on the NVCS classification system. 

GAP grassland communities found on the SNG include bluestem-needlestem-wheatgrass (BNW), 

planted herbaceous perennials (PHP), wheatgrass prairie (WGP), wet-mesic tallgrass prairie 

(WMTGP), mesic tallgrass prairie (MTGP), sand prairie (SP) and wetlands. WGP and 

forest/shrubland have very low spatial cover, and therefore will not be used as a basis for 

evaluation when comparing temporal trends and spatial patterns by vegetation community.  

BNW represents transitional prairie that is representative of mixed-grass prairies. Common species 

include Schizachyrium scoparium, Hesperostipa spartea, Nassella viridula, Andropogon gerardii, 

Panicum virgatum, Pascopyrum smithii, Elymus trachycaulus,stipa comata, Bouteloua gracilis, 

Poa prantensis and Bromus inermis. PHP represents planted perennial grasses and forbs and often 

includes invasive species such as smooth brome (Bromus inermis), leafy spurge (Euphorbia esula) 

crested wheat grass (Agropyron cristatum) and Kentucky bluegrass (Poa prantensis). WMTGP 

represents vegetation on low lying lands with high water availability.  Common species include 

Spartina pectina, Calamagrostis canadensis, Calamagrostis stricta, Carex lanuginosa, 

Andropogon gerardii and Panicum virgatum. MTGP is very similar to WMTGP as the soils have 

high water availability and often receive runoff from adjacent land, but with slightly different 

indicator species which include Andropogon gerardii, Sorghastrum nutans, Panicum virgatum and 

Schizachyrium scoparium.  The WMTGP and MTGP are the most representative classes provided 

by GAP of what the species composition on a native tallgrass prairie would look like. Lastly, SP 

represents vegetation on poorly to moderately well-developed soils with low water availability and 

excessive drainage. Species with deep roots are favored as there is high water availability deeper 
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in the soil profile than the surface. Common species include Calamovilfa longifolia, Andropogon 

hallii, Hesperostipa comata, and Bouteloua gracilis (Strong, Sklebar, and Kermes 2005). 

In relation to ecological site descriptions’s, BNW represents native/invaded sites, PHP represents 

invaded sites, and WMTGP and MTGP represent reference sites. Since the GAP vegetation was 

created with Landsat 5, it has the same spatial resolution as the images used in this studies analysis. 

Therefore, it was possible to stratify each pixel on the SNG as a specific GAP community class. 

The GAP grassland classes described above along with the three landforms are referenced 

throughout this analysis as they are the primary data sources to evaluate changes in distinct edaphic 

locations and in species composition. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Spatial location of GAP community classes on the SNG 

and grazing allotments. Numbers identify distinct grazing 

allotments. 
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Conceptual Framework 

Figure 4 provides a flow chart which details the steps taken (aside from image processing) to 

analyze how conditions have changed on the SNG throughout the time series and what variables 

will be evaluated as possible drivers of change. Once all the images were downloaded and 

processed the first step was to evaluate how VI responses differ spatially.  Pearson correlation 

coefficients were used to evaluate resemblance of VI response to one another on a per pixel basis. 

This is referred to as Stage 1 in Figure 4.  It is hypothesized that a pixel with a large NDVI value 

will also have a large NDII value because higher photosynthesis should be coupled with higher 

vegetation moisture, and therefore a strong positive correlation.  It is also hypothesized that a pixel 

which has a strong NDVI or NDII value will also have a smaller RGR or SWIR32 value and 

therefore a strong negative correlation because high photosynthesis and high moisture should be 

coupled with low stress and low non-photosynthetic material.  RGR and SWIR32 should also have 

a strong positive correlation with each other as more stress should be coupled with more non-

photosynthetic material. Lastly, the composite index (CI) (see later methods for calculation of this 

VI) should have a strong positive correlation with NDVI and NDII and a strong negative 

correlation with RGR and SWIR32.  By examining the relationships in the remotely sensed 

response on a per pixel basis between VI’s it should be possible to identify locations where certain 

VI’s detect unique ecosystem attributes. 
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Figure 4. Conceptual Framework. 
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It was also of interest to determine how correlation coefficients vary between VI’s through the 

entire time series stack as well as different parts of the growing season.  This is referred to as Stage 

2 in Figure 4. Correlation coefficients were evaluated for all VI’s for the following combinations 

of dates: 

1. A ‘Complete Time Series’ (TS) model whereby all images in the time series are included 

in the regression. 

2. An ‘Early Season’ (ES) model where only images acquired in May and June are included. 

3. A ‘Peak Summer’ (PS) model where only images acquired between July 1st and August 

20th are included 

4. A ‘Late Season’ (LS) model where only images acquired between August 21’st and 

September 30th are included. 

For instance, when evaluating coefficients for the Complete Time Series all 79 images were used 

in analysis. When evaluating the Early Season, only images which were acquired within May and 

June were included. 

Having assessed spatial inconsistencies in VI values by season, the third step was to determine if 

a change in index response had taken place through the time series. This is referred to as Stage 3 

in Figure 4. To determine if change had taken place the time series was split into images acquired 

between 1984 and 1995 (time period one) and images acquired between 2004 and 2011 (time 

period two).  Equal number of images in each of the two new time periods were then selected, and 

the mean (per pixel) of the images in each time period were calculated. The date ranges selected 

in each of these two time periods was selected to ensure that the exact number of images from any 
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unique month were compared in each time period. Lastly, these images were simply differenced 

by subtracting time period two by time period one to determine if index values had increased or 

decreased per pixel. 

Once it was determined if pixel values had changed, regression models were implemented to 

determine the magnitude and significance of change. For four of the independent variables 

(precipitation, growing degree days, grazing pressure and number of days elapsed in the time 

series) simple linear regression models were explored for each index, and multiple regression was 

used to include additional variables such as soil properties, species composition and landforms. 

Independent variables included in simple linear regression are referred to in Stage 4 in Figure 4 

while independent variables included in multiple regression are referred to in Stage 5. Independent 

variables in Stage 4 are hypothesized to be those most influential on VI values. 

To determine if VI values had changed through time, the ‘Running Days’ regression was used 

whereby change in VI value per day is estimated.  Using time as an independent variable is a 

mechanism to determine if subtle ecosystem changes have taken place through time itself.  These 

changes may have substantial impacts on ecosystem processes such as carbon storage, biochemical 

cycling and biodiversity (James E Vogelmann et al. 2012). 

Due to the variability in C3 and C4 response to climate, antecedent growing degree days (AGDD) 

and antecedent precipitation (APRCP) were evaluated as independent variables.  By evaluating 

response of each pixel to AGDD and APRCP through different time segments (Stage 2) it may be 

possible to identify locations which have a larger relative abundance of C3 or C4 grasses. Since 

winter precipitation increased C3 grass abundance and summer precipitation and temperature 

increased C4 abundance at the Konza tallgrass prairie in Kansas (Paruelo and Lauenroth 1996) it 
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is hypothesized that increases in APRCP in the winter / spring will also lead to increasing 

abundances of C3 grasses while increases in AGDD and APRCP in the summer will lead to 

increasing abundance of C4 grasses.  Accumulations in AGDD and APRCP begin on February 1st 

for images acquired in May to incorporate winter precipitation (which drives C3 abundance) while 

for all other images AGDD and APRCP accumulations begin two months prior to image 

acquisition.  In this way the influence of relatively recent climatic events can be evaluated on VI 

response. 

Grazing is also expected to influence C3 and C4 plant communities differently, and to be a driving 

factor on vegetative condition in general. It has been found that by decreasing the cool season C3 

grasses that nutrient availability increases for warm season C4 grasses later in the growing season, 

and increases their biomass (Hartnett, Hickman, and Walter 1996; E Gene Towne et al. 2005).    

Although cattle selectively graze live and green vegetation, which may decrease the amount of 

aboveground biomass, this is less important in mesic environments where soil moisture is seldom 

limiting.  In more xeric environments this exposes non-photosynthetic material closer to the 

ground and should increase SWIR32 in all seasons (Numata et al., 2007). 

Since grazing physically interferes with the herbaceous canopy that contributes reflected radiation 

to the sensor for derivation of vegetation indices, only the individual VIs (not the CI) are used in 

this analysis to tease out component effects, and to avoid the aggregation of effects represented by 

the CI. It was hypothesized that increases in grazing pressure resulting from introduction of 

livestock early in the season will reduce the vigor of any tussocky C3 grasses but aid in the spread 

of sod-forming C3 grasses tolerant of defoliation such as Kentucky bluegrass and deep rooted 

colonizing weeds such as leafy spurge (termed the Early Season in this study). It was further 
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hypothesized that maintaining continuous stocking into the Peak Summer season would suppress 

the growth and vigor of C4 grasses since the main species have large tillers and crown structures 

and add biomass by vertical growth.  Since C4 grasses do not commence to grow until frost has 

completely ended and night temperatures generally exceed 10°C, they do not compete at all in the 

Early Season. If stocking is maintained into their main summer growth season, their vigor and 

competitiveness is reduced, and their fractional composition of the sward will decline year by year. 

In terms of VI responses, an increase in invasive C3 species would be expected to result in higher 

NDVI and lower SWIR32 early in the growing season. In addition, these species are favored by 

higher moisture levels. Areas that are rested and have good stands of native tall grass prairie with 

C4 grasses would be expected to exhibit lower Early Season NDVI, and lower NDVI in late 

summer since the C4 grasses move rapidly into reproductive growth resulting in tall stands with 

high levels of cellulose and lignin. Continuous grazing favors short stature, sod-forming and 

annual grasses that may hay off completely in mid-summer since they do not grow well at high 

temperatures. However, this behavior may be moderated by presence of sub-soil moisture 

throughout the growing season. 

Regressions were executed on a per pixel basis so that variation in R², slopes and p-values could 

be compared spatially. Boxplots of slopes and R² for significant pixels were also stratified by 

landform and GAP to evaluate differences in regression results.  Box plots of slopes are only shown 

for significant pixels (α <= 0.05) from the regression results. Box plots allow for easy comparison 

of median and interquartile ranges among landforms and vegetation types. Exploration of slopes 

and R² values with boxplots is referred to in Stage 6. 
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To compare results found from simple regression and multiple regression, a random forest 

regression model was used to evaluate feature importance among independent variables.  Feature 

importance was evaluated for all VI’s and across the same four time periods shown in Stage 2.  

Random forest regressions are referred to in Stage 7. 

 

Image Processing 

Landsat TM 5 data were downloaded for all cloud free, or nearly cloud free dates ranging from 

1984-2011 and for the months of May, June, July, August, and September.  This resulted in 79 

images available for study. Figure 5 shows a scatter plot of Landsat scenes by image date which 

were used in this analysis. Images were downloaded from the U.S. Geological Survey (USGS) 

earth explorer (http://earthexplorer.usgs.gov/), and constitute atmospherically corrected surface 

reflectance. Any remaining clouds in the images were masked out with the provided cloud mask 

using ESRI’s ArcGIS™. 

http://earthexplorer.usgs.gov/)
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Since grassland were the target of interest for the remotely sensed data, trees were masked out of 

all images.  A 1 m LiDAR digital elevation model (DEM) collected in the spring of 2008, along 

with the first return point cloud was downloaded from the International Water Institute (IWI) 

(http://www.iwinst.org/).  Using ArcGIS the point cloud was turned into a digital surface model 

(DSM), and then by subtracting the DSM by the DEM feature heights were acquired.  Any pixel 

with a height above or equal to 1.83 meters was then extracted and were used as a mask to remove 

trees from all images.  

 

Vegetation Indices 

Four vegetation indices were calculated:  NDVI, NDII, RGR and SWIR32. These were chosen as 

functional indicators as follows: NDVI is a measure of photosynthetic potential; NDII is a measure 

Figure 5. Dates of Landsat scenes used for analysis.  

http://www.iwinst.org/
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of vegetation water content; RGR is a measure of vegetative stress; and SWIR32 is a measure of 

bare soil.  Table 1 shows the band math implemented to calculate each index for the Landsat 5 

band combinations. Trajectories of mean VI values through all pixels for each image are shown in 

Figure 6.  

Table 1. Vegetative indices and associated formulas. 

 

 

 

 

 

 

Index Formula 

NDVI (Normalized Difference 

Vegetation Index) 

𝑅830 − 𝑅660

𝑅830 + 𝑅660
 

NDII (Normalized Difference Infrared 

Index; Hardisnky and Smart 1983) 

𝑅830 − 𝑅1650

𝑅830 + 𝑅1650
 

RGR (Red-Green Ratio; Sims and Gamon 

2002) 

𝑅660

𝑅560
 

SWIR32 (Short Wave Infrared 

Reflectance 3/2 Ratio; Guershman et al., 

2009) 

𝑅2215

𝑅660
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Figure 6. Mean VI values per image for NDVI, NDII, RGR and SWIR32. Grey shading shows 

95% confidence intervals. 

 

Climate 

Daily climate data from McLeod, ND which is approximately 5 km from the center of the SNG 

was downloaded from the weather warehouse (https://weather-warehouse.com/).  For each year 

over the study period precipitation and growing degree days (GDD) were aggregated into annual 

sums, and seasonal sums.  Winter included December, January and February; spring included 

March, April and May; summer included June, July and August; and fall included September, 

October and November. All precipitation is measured is liquid water, therefore snowfall is reported 

as mm of liquid water. Years that were missing more than 10% of the daily values were excluded 

https://weather-warehouse.com/
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from analysis, which amounted to two years removed from analysis. To examine significant trends 

in precipitation and GDD both annually and seasonally, linear regression was used. 

Composite Index 

A composite index (CI) that combined NDVI, NDII, RGR and SWIR32 in a logical functional 

relationship was created. Figure 7 shows a flowchart detailing how the CI was created and the 

rationale behind it. First, all the data from the original indices was normalized with the following 

equation: 

                                             𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                      (1) 

 

where 𝑥𝑛𝑜𝑟𝑚 is the normalized pixel value, 𝑥 is the original pixel value, 𝑥𝑚𝑖𝑛 is the minimum 

index value across the entire time series and 𝑥𝑚𝑎𝑥 is the maximum index value across the entire 

time series. It was important to normalize pixel values so that all data were scaled from 0 to 1 and 

no negative values occurred. 

Second, a logical functional basis for combining the individual normalized VIs was defined based 

on known response of individual indices to vegetation properties and behavior (Figure 7). 

The NDVI is positively correlated with photosynthetic capacity; the NDII is positively correlated 

with vegetation moisture content, which is also predominantly correlated with photosynthetic 

capacity; the RGR is positively correlated with stress and negatively correlated with 

photosynthetic capacity; while the SWIR32 is negatively correlated with high levels of non-

photosynthetic vegetation, and high values tend to indicate more bare soil. 
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Based on these responses, it is possible to formulate a composite index that combines normalized 

NDVIn and NDIIn with inverse normalized iRGRn and iSWIR32n such that this index is positively 

correlated with good grassland condition and growth capacity. 

The CI is calculated by a simple sum of the normalized NDVIn, NDIIn and inverse normalized 

iRGRn and iSWIR32n. 

CI = NDVIn + NDIIn + iRGRn + iSWIR32n                                                                             (2) 

CI values that are larger should now represent preferable growing conditions than values that are 

smaller. It is important to note that best growing conditions does not necessarily mean a healthy 

ecosystem as invasive species may also have a large CI value.  To evaluate the effectiveness of the 

CI to simulate the original four indexes correlation coefficients were evaluated as described in 

Stage 1 of the conceptual framework. 
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Figure 7. Flowchart diagraming the conceptual model used to combine the four 

original indices    together into the CI. 
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Pearson’s Correlation Coefficients 

As previously described, Pearson’s correlation coefficients were evaluated on a per pixel basis 

between all possible VI combinations. Coefficients were evaluated over the Complete Time Series, 

the Early Season, Peak Summer and Late Season.  Maps which display coefficients for each VI 

combination are shown for each of the four time segments.  Additionally, to highlight locations 

where correlations between certain VI’s are low, National Agriculture Imagery (NAIP) 

(https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-

imagery/) imagery and a 1-meter resolution LiDAR digital elevation model (DEM) are utilized to 

offer insights. 

Differenced Conditions 

In order to establish the initial basis for the analysis of potential change in grassland properties on 

the SNG, a simple comparison of VI values between two time periods was evaluated.  Two time 

periods were selected to evaluate differenced conditions per index, 1984 – 1995 (time period one) 

and 2004-2011 (time period two).  The time periods were separated by a gap in order to make the 

comparison as independent of short term annual climate fluctuations as possible. Images taken 

from the same time of year were used for comparison in order to remove seasonal variation as 

much as possible. Only the months of May, July and August were used for the comparison due to 

lower image availability in June and September in the two periods. For each time period 13 images 

were compared in total, 4 images from May, 5 images from July and 4 images from August.  The 

mean value per pixel for all 13 images per time period was then calculated to determine average 

conditions per time period, and then the average conditions per time period were differenced by 

https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/
https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/
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subtracting time period one from time period two.  Variation in the differenced values by landform 

and GAP class were then explored by comparing box plots of differenced values. 

Regression Analysis 

To examine trends in VI’s regression analysis was implemented in three ways: 1) simple linear 

regression; 2) multiple regression; and 3) a random forest regression.  Simple regression was relied 

upon to determine how slopes and R² values vary in association with a variety of independent 

variables, and through different times of the growing season.  Multiple regression was 

implemented to determine overall model fits by evaluating R² values, and random forest regression 

was used to evaluate the importance of different independent variables to predict VI values. 

Simple Linear Regression 

Four independent variables are hypothesized to be the most influential for causing VI change, and 

they include the amount of days elapsed within the time series itself, termed  ‘Running Days’, 

antecedent precipitation (APRCP), antecedent growing degree days (AGDD) and grazing pressure. 

In order to assess changes which have taken place for each of the five indices through time linear 

regression was used with the index value (for each pixel) as the dependent variable and time as the 

independent variable.  Time in this case is expressed as the amount of days which has elapsed 

between the start of the time series (05/17/1984) and the last day of the time series (07/31/2011).  

In total there were 9,199 days in the time series. Regression models were fit over four time periods: 

1. A ‘Complete Time Series’ model whereby all 79 images in the time series are included in 

the regression. 

2. An ‘Early Season’ model where only images acquired in May or June are included. 
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3. A ‘Peak Summer’ model where only images acquired between July 1st and August 20th are 

included. 

4. A ‘Late Season’ model where only images acquired between August 21st and September 

30th are included. 

Since the SNG is a mixture of cool season C₃ grasses which are most productive in the early 

growing season and C₄ grasses which are most productive in the peak of summer, models which 

are segmented by time should help elucidate locations where (VI) response varies by season. Three 

specific areas will be utilized to explore this: (1) the Viking prairie (Figure 3) which is ungrazed 

and consists primarily of native C4 plants such as big bluestem and Indian grass; (2) the East Durler 

unit which is also ungrazed and consists of native C4 plants, but with a larger mix of C3 forbs than 

the Viking prairie; (3) the West Durler unit which has historically been grazed and is infested with 

leafy spurge and Kentucky bluegrass. How these three locations vary temporarily in VI change 

will be assessed. Slopes for the Running Days regression are expressed as change over the 

Complete Time Series, or slopes per 9,199 days. 

Similar to how regression was used with time as the independent variable, regressions which 

implement APRCP as the independent variable were also completed.  APRCP is defined as the 

accumulated precipitation in mm from February 1st to the image acquisition date for images 

acquired in May, and accumulated precipitation two months prior to image acquisition for all other 

months.  February 1st was used as the start of accumulation for May images so that snowpack from 

the winter would be included.  Regressions were once again run for all four time periods. Slopes 

are expressed in change per pixel per index value per 200 mm of APRCP. 
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In addition to APRCP, the influence of AGDD was also explored.  AGDD’s were calculated for 

each day as: 

                                               (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)/2 − 𝐵𝑎𝑠𝑒 𝑇                                                       (3) 

where 𝐵𝑎𝑠𝑒 𝑇 is 0°C, 𝑇𝑚𝑎𝑥 is the maximum temperature recorded in a day and 𝑇𝑚𝑖𝑛 is the 

minimum temperature recorded in a day.  Base temperatures are usually calculated from 

physiological thresholds associated with differences in thermal response among plant species 

having different photosynthetic pathways. The base temperature for C3 species is usually around 

0 degrees C. The base temperature for C4 grasses and crops is usually around 8 - 10 degrees C and 

these species are usually intolerant of frost or freezing. However, in this highly seasonal 

continental climate with growth confined to a 110-120 day warm period it was not necessary to 

make any distinction so 0 degrees C was used for all species. The C4 species would not start 

growing until their real base T was met.  

In order to assess grazing pressure on index values regressions were implemented with grazing 

pressure, expressed as ha/number of cattle, as the independent variable.  Historical grazing records 

were provided by the SNG as the pressure per allotment per year. Allotments are distinct 

management units (Figure 3) on the SNG which are fenced off and have different grazing 

pressures. Pixels within each individual allotment were extracted, and the appropriate grazing 

pressure depending on the year of image acquisition assigned. Mean grazing pressure per year 

across all allotments has been highly variable in the first half of the time series, but relatively 

consistent in the second half (Figure 8). 
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Maps which display significant pixels (α <= 0.05), slopes and adjusted R² (for all independent 

variables) per pixel are used throughout this analysis to highlight how individual pixels have 

changed for all four time periods. For the rest of this analysis whenever R² values are shown it is 

adjusted-R² values that are being presented. To further analyze spatial variation across landforms 

and species compositions, box plots of slopes and R² values were evaluated. 

Multiple Regression 

Figure 8. Mean grazing pressure per year (ha/Animal Units) across 

all allotments on the SNG. Grey shading indicates 95% confidence. 
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In addition to analysis involving simple linear regression, multiple regression was used to evaluate 

how multiple independent variables may be interacting to influence VI response through time. 

Variables in the multiple regression included Running Days, APRCP, AGDD, grazing pressure, 

available water storage (AWS) in the top 150 cm of the soil profile, soil organic carbon (SOC) in 

the top 150 cm of the soil profile, percent of soil which is sand (mineral particles 0.5 to 2 mm 

expressed as a percentage weight of soil fraction), percent of soil which is silt (mineral particles 

0.002 to 0.05 mm), percent of soil which is clay (mineral particles < 0.002 mm), soil drainage, 

landform and GAP vegetation class. 

Of all the independent variables, soil drainage, landform and the GAP vegetation class are dummy 

variables.  Soil drainage ranges from excessively well drained to poorly drained.  All soil data 

were provided by SSURGO 

(https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053627), and 

soil types per pixel were determined by intersecting the centroid of a pixel to SSURGO polygons. 

Multiple regressions were run sequentially to determine how R² values varied as more variables 

were included, and to determine which variables were the most important.  On the first sequence, 

Running Days, APRCP, AGDD and grazing pressure were included in the model.  On the second 

sequence all variables which were not dummy variables were included (everything but soil 

drainage, landform and GAP class). On the third sequence all variables were included. 

Multiple regressions were also run per pixel and variation in R² values by landform and GAP class 

were again compared with box plots. 

Random Forest Regression Model 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053627
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Decision tree models have not been widely used within the remote sensing field despite their non-

parametric approach (Kulkarni and Lowe 2016).  Decision trees are predictive models which 

attempt to identify a target value based on predictor values.  Target values are the decision trees 

“leaves” and predictor values are the “branches”.  Decision trees attempt to determine a target 

value based on the predictor values by evaluating a series of ‘Yes’ and ‘No’ questions to dictate 

how to reach a conclusion about what target value may be. 

There are two types of decision trees: decision tree regressions, and decision tree classifiers.  For 

decision tree regressions the target value is a continuous variable (such as a vegetation index) and 

for decision tree classifiers the target value is discrete (such as a land cover type).  In order to 

determine if a question is a ‘Yes’ or a ‘No’ in a decision tree regression a linear regression model 

is fit to the target from independent variables in the model.  The variable with the lowest mean 

square error (MSE) is used to ‘split’ the tree. In a decision classifier a tree is split based on the 

information gain (the feature which provides the model the most information) rather than MSE 

among the independent variables.  In both cases, decision trees will continue splitting until the 

correct classification is predicted, or the user predefines the stopping criteria.   

A random forest model is a type of decision tree which injects randomness into the dataset in two 

ways.  The first is by removing random samples from the dataset to build multiple decision trees 

(forests), and then averaging across all trees to determine the best split option.  The second way 

randomness is included is by bootstrapping the independent variables themselves, which is to say 

the individual trees are built with different independent variables. When using decision trees it is 

important to split the dataset into a training and testing set.  It is common to train the model on 

70% of the data and test on 30%.  If R² are not similar between the training and testing the model 
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is either overfitting or under fitting and parameters need to be tuned.  To learn more about how a 

decision tree and random forest model operates see Kulkarni and Lowe (2016). 

This study uses a random forest regression to evaluate how well the same independent variables 

used in the multiple regression (with the exception of Running Days) can predict VI values.  In 

other words, the target variable was the VI value and the predictor variables were the independent 

variables already discussed.  Note that target variables are the VI value for every pixel, and every 

image within the time series. For example, when evaluating the capability of the random forest 

model to predict NDVI values, the target variable was the NDVI value for every single pixel across 

all images, and the associated independent variables for the respective pixel.  The same was 

completed for NDII, RGR, SWIR32 and the CI. Random forest models were evaluated over all 

four time segments previously discussed. 

One advantage of random forest models to linear or multiple regression models is that not only are 

R² values provided for model fits, but the importance of each independent variable relative to the 

others is also calculated.  Feature importance’s always sum to 1, and the independent variable with 

the largest importance is the feature that provided the most information to the model. This allowed 

for comparison between indices as to which variables were the most influential. 

Table 2 provides a list of all acronyms that are used throughout this study. 
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Table 2. Acronyms used throughout the study. 

Acronym Meaning 

VI Vegetation Index 

APRCP Antecedent Precipitation 

AGDD Antecedent Growing Degree Days 

NDVI Normalized Differenced Vegetation Index 

NDII Normalized Differenced Infrared Index 

RGR Red-Green Ratio 

SWIR32 Shortwave infrared 3/2 Index 

CI Composite Index 

TS Time Series 

ES Early Season 

PS Peak Summer 

LS Late Season 

DP Deltaic Plain 

HS Hummock and Swale 

SD Sand Dunes 

MTGP Mesic Tallgrass Prairie 

WMTGP Wet Mesic Tallgrass Prairie 

BNW Bluestem-Needlestem-Wheatgrass 

PHP Planted Herbaceous Perennial 

SP Sand Prairie 
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CHAPTER IV 

RESULTS 

Climate 

Linear regression was used to evaluate trends in precipitation and growing degree days (GDD) 

between 1984 – 2011 based on the McLeod weather station data, both annually and seasonally.  

For precipitation, trends were only significant annually and in the summer. Figure 9 shows scatter 

plots of regression results for significant precipitation trends with the line of best fit drawn through 

and 95% confidence intervals shown in the shaded areas.  Precipitation has increased by 7.05 mm 

between 1984 and 2011 annually and 3.8 mm in the summer months. For GDD, the only significant 

trend was for spring (Figure 10). In the spring, there has been a decrease of 7.39 GDD between 

1984 – 2011. Annually, GDD decreased by 12.12 GDD per year but this trend was not significant.

Figure 9.  Annual and summer precipitation regression results. Significant slopes are 

expressed with a *. 
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Correlation between Indexes 

Pearson’s correlation coefficients were evaluated on a per pixel basis for all VI combinations to 

determine if spatial variation existed between any two particular VI’s. Based on the previously 

outlined ‘conceptual framework’, positive correlations were expected between the CI and all other 

VI’s. Positive correlations were also expected between NDVI and NDII, and RGR and SWIR32, 

and negative correlations are expected when comparing either NDVI or NDII to RGR or SWIR32. 

There were strong positive correlations between NDVI and NDII across the SNG (> 0.8), but lower 

correlations (0 – 0.6) in specific locations (Figure 11).  NAIP imagery was used to examine this 

variation in the spatial pattern and distribution of correlation coefficients of the three specific 

Figure 10.  Spring GDD regression results. Significant slopes are expressed with a *. 
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locations, labeled by the subpanels ‘A’, ‘B’, and ‘C’ in Figure 11. Figure 12 compares NAIP 

imagery to the correlation coefficients for NDVI and NDII in the locations of each subpanel 

denoted in Figure 11.  In Figure 12 NAIP imagery is shown on the left and correlation coefficients 

in the Peak Summer are shown on the right. Subpanel relation in Figure 12 to Figure 11 are 

indicated in each row. Each location comparison is focused on wetland areas with surrounding 

oaks where correlation coefficients are low (>0.4). This is likely due to high NDII values coupled 

with low NDVI values because standing water is suppressing vegetative growth. 

There was very strong negative correlation between NDVI and RGR (Figure 13). In select 

locations correlation is weaker (>0 - -0.4) and these locations are highlighted by the subpanels 

denoted by the letters ‘A’, ‘B’ and ‘C’.  The spatial patterns in the locations of these subpanels are 

explored in detail in Figure 14 in relation to  a 1-meter resolution LiDAR DEM. Correlation 

coefficients are often weakest for the NDVI – RGR comparison when elevations are highest, 

although coefficients were still negative. 

NDVI – SWIR32 correlation coefficients exhibit a similar spatial pattern to the NDVI – RGR 

correlations with an association between lower correlation coefficients and higher elevations. 

Coefficients are also very similar to NDVI – RGR, which is that on the high elevations NDVI – 

SWIR32 coefficients are between -0.4 – -0.8 and usually between -0.8 - -1.0 on the lowlands. 

NDII – RGR (not shown) and NDII – SWIR32 (not shown) correlation maps show very similar 

results to NDVI –RGR and NDVI – SWIR32. 
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Figure 11. Correlation coefficients for NDVI and NDII. Subpanels denoted by the letters 

‘A’, ‘B’ and ‘C’ are the locations selected for detailed comparison in Figure 12.  
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Figure 12. NAIP imagery comparisons with NDVI – NDII correlation coefficients for the 

Peak Summer. NAIP imagery is shown on the left and correlation coefficients on the right 

in the same location. Rows marked with the letters ‘A’, ‘B’ and ‘C’ relate to the locations 

on the SNG shown in Figure 11.  
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Figure 13. Correlation coefficients for NDVI and RGR. Subpanels denoted by the letters 

‘A’, ‘B’ and ‘C’ are the locations selected for detailed comparison in Figure 14. 
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Figure 14. DEM imagery comparisons with NDVI – RGR correlation coefficients for the Late 

Season. DEM imagery is shown on the left and correlation coefficients on the right in the same 

location. Rows marked with the letters ‘A’, ‘B’ and ‘C’ relate to the locations on the SNG 

shown in Figure 13.  
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RGR and SWIR32 exhibited strong positive correlations across most of the SNG with lower values 

in the Peak Summer and the Late Season across the sand dunes and hummock and swale (Figure 

15). Subpanels highlight where patches of weak positive and weak negative correlations for RGR 

– SWIR32 were associated with elevation (Figure 16). 

 

 

Figure 15. Correlation coefficients for RGR and SWIR32. Subpanels denoted by the letters 

‘A’, ‘B’ and ‘C’ are the locations selected for detailed comparison in Figure 16. 
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Figure 16. DEM imagery comparisons with RGR – SWIR32 correlation coefficients for the 

Late Season. DEM imagery is shown on the left and correlation coefficients on the right in the 

same location. Rows marked with the letters ‘A’, ‘B’ and ‘C’ relate to the locations on the 

SNG shown in Figure 15.  
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Correlations between CI and its constituent VI’s (not shown) produced values between 0.8 and 1.0 

for NDVI and NDII and -0.8 and -1.0 for RGR and SWIR32 for the Complete Time Series, Early 

Season and Peak Summer. In the Late Season coefficients drop to -0.6 – 0.8 in small areas in the 

hummock and swale and sand dunes.  Spatial patterns where this occurs are nearly identical for 

the CI – RGR and the CI - SWIR32 comparison (not shown).  In general, the correlations between 

indices match expectations in that they respond as hypothesized, but also show deviations from 

the typical response which may be helpful in discrimination of local changes in vegetation 

condition. 

Differenced Conditions 

Image differencing compared VI values for two time periods: 1984 – 1995 (time period one) and 

2004 – 2011 (time period two) for each of the five indexes in order to determine if changes in VIs 

had occurred over the time frame of the study. The majority of pixels across the SNG show 

significant change in values between period 1 and period 2 for constituent VIs (Figure 17) and the 

CI (Figure 18).   It is important to note that as NDVI and NDII increase, greenness and vegetation 

moisture content increase respectively.  When RGR and SWIR32 decrease, stress and bare soil 

decrease respectively.  Therefore, more negative values for RGR and SWIR32 are actually ‘better 

conditions’. Areas identified by the author as wetlands exhibit small or even negative differences 

between periods for NDVI but mostly positive differences between periods one and two for NDII 

(Figure 17).    

The differences in CI between the two time periods include locations where individual VI 

differences have the same direction of change which enhances the change in CI, and where 

individual VI differences occur in opposite directions the differenced CI values are diminished. 
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Figure 17. NDVI, NDII, RGR and SWIR32 differenced images. 
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Comparisons of differenced images across landforms and GAP classes using boxplots show that 

differences are relatively small except for in outlier pixels (Figure 19, 20). In general, the deltaic 

plain and hummock and swale landforms have larger median differenced values between periods 

one and two than the sand dunes landform for the CI, NDVI and NDII.  For RGR and SWIR32 the 

deltaic plain and hummock and swale landforms have smaller median values than the sand dunes 

(Figure 19). 

Figure 18. Composite Index (CI) differenced image. 
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Comparison of the difference images by GAP class shows that the MTGP, WMTGP and wetlands 

have slightly larger median values than the BNW, PHP and SP for the CI (Figure 19).  For NDVI, 

there is little variation in GAP class. For NDII the same trends as the CI are reflected, but they are 

more exaggerated. It is particularly interesting that NDII slopes are so large in wetlands but rather 

small in wetlands for NDVI. This coupling of a low NDVI and larger NDII also occurred when 

comparing correlation coefficients.  For RGR, the same trends as the CI and NDII again occur (but 

with opposite direction). There is little variation in differenced values by GAP class for SWIR32. 

 

 

 

 

 

 

 

 
Figure 19. Boxplots of differenced values by landform for each VI.  DP = Deltaic 

Plain; HS = Hummock and Swale and SD = Sand Dunes. 
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Overall, the results of the comparison of VIs between periods one and two show larger increases 

in  NDVI, NDII and CI, and larger decreases in RGR and SWIR32 for the deltaic plain and 

hummock and swale landforms than the sand dunes.  Variation in differences values between 

NDVI and NDII occurs only in wetland areas. However, the results also indicate that the CI is 

capturing the remotely sensed response from the original four VI’s as desired. 

This analysis confirms that there are consistent differences in individual and composite VIs 

between the two time periods. This suggests that there is scope for further detailed analysis of 

trends and drivers of these differences in subsequent sections. The similarity in responses between 

NDVI and NDII, and RGR and SWIR32 mean that there is some redundancy among these VI’s.  

Figure 20. Boxplots of differenced values by GAP class for each VI.  MTGP = Mesic 

Tallgrass Prairie; WMTGP = Wet Mesic Tallgrass Prairie; BNW = Bluestem-

Needlestem-Wheatgrass; PHP = Planted Herbaceous Perennial and SP = Sand Prairie. 



 

68 
 

As a result, except for specific seasonal and geographical situations, subsequent analysis will focus 

only on NDVI, SWIR32 and CI. 

Running Days Regression 

Simple linear regression was used to examine the trends in NDVI, SWIR32 and CI for the all four 

time segments. Scatter plots of VI versus time in days illustrate the variation in the slope and 

quality of regression line of best fit for the pixel for the largest R² values through the Complete 

Time Series for the CI, NDVI and SWIR32 (Figure 21).  Table 3 shows regression results for each 

pixel and VI from the scatter plots. 

Figure 21. Scatterplots and lines of best fits for the pixel with the largest R² values through 

the Complete Time Series for the CI, NDVI and SWIR32. 
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Table 3. Regression results for each pixel and VI from the largest R² comparisons in 

 Figure 21. 

 

 

 

Maps which express slopes per pixel for each of the four time series segments were also evaluated 

for the CI, NDVI and SWIR32.  After maps are presented, select box plots of regression results 

are compared. Lastly, temporal response of NDVI over the Viking prairie and Durler Unit are also 

compared. 

For the CI (Figure 22) and NDVI (Figure 23) slopes are largest in the Peak Summer, for SWIR32 

(Figure 24) slopes are smallest in the Peak Summer. In the Early Season many pixels are negative 

for CI and NDVI and positive for SWIR32. R² values are not shown for CI and NDVI over the 

Complete Time Series and Early Season as most values are between 0 – 0.1, but are for the Peak 

Summer and Late Season (Figure 25, 26). R² values are largest in the Peak Summer for CI and 

NDVI, and the CI has slightly larger values in the late season than NDVI.  SWIR32 has the largest 

R² values in the Peak Summer and Late Season (Figure 27). 

 

 

 

 

Index  R² Slope RMSE p-value 

CI  0.59 0.69 0.16 0 

NDVI  0.58 0.31 0.08 0 

SWIR32  0.79 -0.31 0.05 0 
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Figure 22. Running Days slopes for the CI through the Complete Time Series, Early Season, 

Peak Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. Insets show 

locations of the Viking Prairie and Durler Units which are used for later analysis 
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Figure 23. Running Days slopes for the NDVI through the Complete Time Series, Early 

Season,  Peak Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. 
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Figure 24. Running Days slopes for the SWIR32 through the Complete Time Series, Early 

Season, Peak Summer, and Late Season. Only significant pixels at α <= 0.05 are shown. 
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Figure 25. Running Days R² values for the CI through the Peak Summer and Late Season. 

Only significant pixels at α <= 0.05 are shown. 

 

Figure 26. Running Days R² values for the NDVI through the Peak Summer and Late 

Season. Only significant pixels at α <= 0.05 are shown. 
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 Figure 27. Running Days R² values for the SWIR32 through the Complete Time Series, 

Early Season, Peak summer, and Late Season.  Only significant pixels at α <= 0.05 are 

shown. 
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Box pots for the Running Days regressions for the CI (Figure 28) and NDVI (not shown) were 

very similar with the deltaic plain and hummock and swale having larger slopes than the sand 

dunes, particularly in the Peak Summer and Late Season. This same trend was true when 

comparing R² values by landform (not shown).  By GAP class for both the CI (Figure 29) and 

NDVI (not shown) the WMTGP and wetlands had the smallest slopes in the Early Season and Late 

Season but large slopes in the Peak Summer. This is highlighted by examining temporal 

trajectories for slopes in the inset labeled ‘wetland’ in Figure 22. Overall, variation for all VI’s 

across GAP classes and landforms by both slope and R² values was small, and therefore only the 

CI is shown.  

 

 

 

 

 

 

 

 

 Figure 28. Boxplots of slopes by landform and for each of the four time 

segments for the CI.  DP = Deltaic Plain; HS = Hummock and Swale and SD = 

Sand Dunes. TS = Time Series; ES = Early Season; PS = Peak Summer; LS = 

Late Season. 
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The Viking prairie which is ungrazed and is primarily native C4 grass, the East Durler which is 

ungrazed and primarily C4 grass and the West Durler which is invaded by Kentucky bluegrass and 

leafy spurge (C3) were also compared to evaluate temporal differences in NDVI trajectories 

(Figure 30). Figure 22 highlights the location of these units.  The Viking prairie has small NDVI 

slopes (mean of -0.05) in the Early Season, and so does the East Durler unit (mean -0.02).  In 

contrast, the West Durler unit has larger NDVI slopes in the Early Season (0.06) (Figure 30).  In 

the Peak Summer slopes increase on all three units, but more so on the Viking prairie (mean 0.15) 

and East Durler (mean 0.12) than the West Durler (0.10). 

 

Figure 29. Boxplots of slopes by GAP class and for each of the four time segments 

for the CI.  MTGP = Mesic Tallgrass Prairie; WMTGP = Wet Mesic Tallgrass 

Prairie; BNW = Bluestem-Needlestem-Wheatgrass; PHP = Planted Herbaceous 

Perennial; SP = Sand Prairie. TS = Time Series; ES = Early Season; PS = Peak 

Summer; LS = Late Season. 
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Figure 30. Comparison of NDVI slopes on the Viking prairie and Durler unit 

through the Early Season, Peak Summer and Late Season. The Viking Prairie is 

native C4, West Durler is infested with Poa Pratensis while East Durler is native 

C3 and C4 grass.  
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While variation by GAP class and landform was small when compared with boxplots, there does 

appear to be differences in slopes in lowland locations (e.g. wetlands) and uplands when 

compared visually over the Early Season.  Wetland locations have negative Running Days slopes 

in the Early Season while upland locations of have positive slopes.  By comparing locations with 

this variation in NDVI slopes to elevation and NAIP imagery it is apparent that lower elevations 

contain wetland communities, and have negative Running Days slopes for NDVI and upland 

locations have positive Running Days slopes for NDVI (Figure 31). 

Figure 31. Location of inset (A) for comparison of Running Days NDVI slopes in the Early 

Season (B) on locations with lowlands which are associated with wetlands, and uplands with 

drier soils. Elevation from 1m Lidar (C) and true color NAIP imagery (D) are also shown. 

A 

B 
C 

D 
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Antecedent Precipitation regressions 

Given the trends observed in VIs in the previous section, the next logical step was to explore the 

relationships between the VIs and APRCP as a major driver of vegetation dynamics. The 

regression results for APRCP are presented in the same format as the Running Days regression 

results, with per pixels regressions compared for the CI, NDVI and SWIR32 for pixels with the 

best R² values over the Complete Time Series shown first, and then maps which compare slopes 

and R² values for each of the three VI’s are presented.  When applicable, boxplots which detail 

variation in slopes and R² values by landform and GAP class are shown. In addition, a summary 

of the significance of regressions between APRCP and NDII is examined since it would be 

expected that NDII would be sensitive to trends in precipitation. 

The scatter plots with the line of best fit for the pixel regressions between VIs and APRCP for the 

largest R² values through the Complete Time Series show relatively strong relationships for the 

CI, NDVI, and SWIR32 (Figure 32).  Table 4 shows regression results for each pixel and VI from 

the scatter plots. 
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Table 4. Regression results for each pixel and VI from the largest R² comparisons  

in Figure 32. 

 

 

 

The spatial patterns of regression slope values and R² values for NDVI (not shown) were very 

similar to those for the CI (Figure 33, 34). Slopes and R² values were largest in the Early Season 

and smallest in the Peak Summer where numerous pixels with negative slopes are present.  The 

same is true for SWIR32 except the direction of change in slopes is opposite (Figure 35, 36). 

Index R2 Slope RMSE p-value 

CI 0.58 0.68 0.29 0 

NDVI 0.6 0.18 0.07 0 

SWIR32 0.6 -0.11 0.05 0 

Figure 32. Scatter plots and lines of best fits for the pixel with the largest R² values through 

the complete time series the CI, NDVI and SWIR32. 
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For the APRCP regressions differences in slopes by landforms are not shown as the results are the 

same as those for the Running Days regression, which is that for the CI and NDVI slopes were 

slightly larger on the deltaic plain and hummock and swale than on the sand dunes in the Complete 

Time Series, Early Season and Late Season. There was little variation in the Peak Summer. 

SWIR32 had very little variation in slope. 

For the CI and NDVI there was little variation in R² by landform in the Peak Summer and Complete 

Time Series, but in the Early Season the deltaic plain had smaller values than the hummock and 

swale and sand dunes, and in the Late Season the sand dunes had smaller values than the deltaic 

plain and hummock and swale (not shown). 

The CI (Figure 37) and NDVI (not shown) had similar trends in slopes across GAP classes, and 

there was little variation overall. 

In summary, R² values for the regressions between APRCP and all VI’s are largest in the Early 

Season and smallest in the Peak Summer.  There is little variation in slope by landform or GAP 

class for any VI. Lastly, while NDII was not shown in this assessment, it is important to note that 

very few pixels are significant for NDII in the Peak Summer, and that in the Late Season only 31% 

of wetland and only 40% of WMTGP pixels are significant which is much less than for any other 

GAP class. 
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Figure 33. APRCP slopes for the CI through the Complete Time Series, Early Season, Peak 

Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. 

 



 

83 
 

 

 

 

 

 

Figure 34. APRCP R² values for the CI through Complete Time Series, Early Season, 

Peak Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. 
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Figure 35. APRCP slopes for SWIR32 through the Complete Time Series, Early Season, 

Peak Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. 
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Figure 36. APRCP R² values for SWIR32 through the Complete Time Series, Early Season, 

Peak Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. 
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Antecedent growing degree days regression 

Presentation of results of regression between AGDD and VIs follows the same as the previous 

sections. Scatter plots showing the regression line of best fit for the pixel with the largest R² values 

show more scatter in the point distribution than APRCP (Figure 38). This scatter suggests that 

AGDD may have less influence on the VI signals than APRCP. Table 5 shows regression results 

for each scatter plot. 

 

 

 

Figure 37. Boxplots of slopes by GAP class and for each of the four time segments 

for the CI.  MTGP = Mesic Tallgrass Prairie; WMTGP = Wet Mesic Tallgrass 

Prairie; BNW = Bluestem-Needlestem-Wheatgrass; PHP = Planted Herbaceous 

Perennial; SP = Sand Prairie. TS = Time Series; ES = Early Season; PS = Peak 

Summer; LS = Late Season. 
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Table 5. Regression results for each pixel and VI from the largest R² comparisons for 

 the AGDD regressions in Figure 38. 

 

 

 

 

 

 

 

Index R2 Slope RMSE p-value 

CI 0.34 0.2 0.33 0 

NDVI 0.34 0.0.06 0.1 0 

SWIR32 0.5 -0.08 0.1 0 

Figure 38. Scatter plots and lines of best fits for the pixel with the largest R² values through 

the complete time series the CI, NDVI and SWIR32. 
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Per pixel regression results comparing slope values and R² values for the CI (Figure 39, 41) and 

SWIR32 (Figure 40, 42) indicate that there is little variation in slopes between seasons for both 

VI’s compared to the Running Days and APRCP results.  There was little spatial or temporal 

variation in AGDD slopes for NDVI or SWIR32, although the amount of negative pixels increases 

from the Early Season to Late season for CI (positive pixels for SWIR32). R² values for the CI are 

largest in the Peak Summer and smallest in the Early Season while for SWIR32 they are small 

differences between seasons. The spatial pattern in R² values did show some evidence of 

association with underlying structure such as allotments or landforms. 

Trends in slopes across landforms were the same as previous results. The deltaic plain and 

hummock and swale had larger slopes than the sand dunes for the CI, and smaller slopes for 

SWIR32 (not shown). R² values were also largest for both VI’s on the deltaic plain and hummock 

and swale. 

There was little variation in GAP class by season for any VI and therefore they are not shown.  



 

89 
 

 

 

  

Figure 39. AGDD slopes for the CI through the Complete Time Series, Early Season, Peak 

Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. 
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Figure 40. AGDD slopes for SWIR32 through Complete Time Series, Early Season, Peak 

Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. 

 



 

91 
 

 

 

 

 

  

Figure 41. AGDD R² values for the CI through the Complete Time Series, Early Season, 

Peak Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. 
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Since AGDD should influence the behavior of major vegetation groups such as C3 and C4 grasses, 

the variation in R2 values by GAP should be important, although there was little variation in R² 

values for the CI (Figure 43) or any of the other VI’s.  

 

 

Figure 42. AGDD R² values for SWIR32 through the Complete Time 

Series, Early Season, Peak Summer, and Late Season.  Only significant 

pixels at α <= 0.05 are shown. 
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Additionally, while maps of NDII in relation to AGDD are not shown it is interesting to note that 

many locations had insignificant pixels – a pattern that did not occur for any other VI. A 

disproportionate number of these pixels are within the MTGP, WMTGP and wetland communities, 

particularly in the Early Season and Late Season (Table 6). In the Peak Summer BNW and SP 

have the fewest significant pixels. 

 

 

 

Figure 43. Boxplots of R² values by GAP class and for each of the four time segments 

for the CI.  MTGP = Mesic Tallgrass Prairie; WMTGP = Wet Mesic Tallgrass Prairie; 

BNW = Bluestem-Needlestem-Wheatgrass; PHP = Planted Herbaceous Perennial; SP 

= Sand Prairie. TS = Time Series; ES = Early Season; PS = Peak Summer; LS = Late 

Season. 
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Table 6.  Percent of significant pixels per GAP community through the early season, peak summer, 

late season and complete time series for the NDII APRCP regressions. MTGP = Mesic Tallgrass 

Prairie; WMTGP = Wet Mesic Tallgrass Prairie; BNW = Bluestem-Needlestem-Wheatgrass; PHP 

= Planted Herbaceous Perennial; SP = Sand Prairie. 

 

Overall, R² values for the AGDD regression are largest in the Peak Summer and Late Season for 

all VI’s except SWIR32, but there was little variation in slopes or R² values by GAP class. While 

NDII was not shown, it is interesting that the MTG, WMTGP and wetlands have the fewest 

significant pixels in the Early Season and Late Season, but that in the Peak Summer BNW and SP 

had the fewest significant pixels. 

Grazing Regression 

For the grazing regressions the CI will not be evaluated because the relationship between grazing 

pressure, VI response, and the functional properties of the vegetation were of interest.  The CI 

represents not just one functional property of vegetation but multiple, and therefore separating 

which function is responsible for a change in the CI as a whole would be difficult.  It is important 

to note that the Viking prairie is not assessed in the grazing analysis because there is no grazing 

present, and that allotment number 933 (Figure 2) is also not assessed because no historical records 

GAP Community Percent 

Significant 

Early season 

Percent 

Significant 

Peak Summer 

Percent 

Significant 

Late Season 

Percent 

Significant 

Complete Time 

Series 

MTGP 46% 49% 23% 20% 

WMTGP 46% 55% 23% 21% 

Wetland 34% 60% 19% 23% 

BNW 64% 36% 36% 33% 

PHP 54% 51% 38% 37% 

SP 76% 39% 56% 53% 
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were available. Grazing follows similar formats to previous regression results, with the exception 

that regression results from three distinct allotment with separate GAP coverages are compared. 

The scatterplots showing the regression relationships for the largest R² values show that even the 

best relationships are highly variable with the NDVI and NDII showing a reasonable negative 

trend with grazing pressure, but high variability for SWIR32 and RGR (Figure 44). Since grazing 

is locally patchy, and these analyses are aggregated over many pixels in an allotment it is likely 

that variation will be much higher than for climate variables. Table 7 compares regression results 

for each VI for each pixel in the scatterplots. 

 

 

Figure 44. Scatter plots and lines of best fits for the pixel with the largest R² values through 

the complete time series the CI, NDVI, RGR and SWIR32. 
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Table 7. Regression results for each pixel and VI from the largest and smallest R² comparisons for 

the grazing regressions in Figure 44. 

 

Many areas had insignificant regression responses for relationships between grazing and NDVI 

both for the Early Season and Late Season.  However, in the Peak Summer nearly all pixels are 

significant (Figure 45). NDVI grazing pressure primarily had a negative slope in the Early Season 

and Late Season in response to reduced grazing pressure, but in the Late Season positive slopes 

become more prevalent. 

NDII (not shown) had few significant pixels in response to grazing except in the Peak Summer 

when slopes were primarily negative, but pixels that were significant in the Peak Summer had 

primarily positive slopes in the Late Season.  RGR (not shown) and SWIR32 (Figure 46) had very 

similar spatiotemporal responses to grazing and the majority of pixels were significant for both. 

Temporally, RGR and SWIR32 had a mixed response in the Early Season with patches exhibiting 

both positive and negative slopes, in the Peak Summer slopes were mostly positive, and in the Late 

Season response was mostly negative. 

R² values for NDVI (not shown), RGR (not shown) and SWIR32 (Figure 47) were also similar 

spatially and temporally. R² values were very small in the Early Season (0 – 0.1) but in the Peak 

Summer and Late Season many patches with values between 0.2 and 0.4 are present. 

There was little variation by landform for slopes or R² values for any VI in relation to grazing 

pressure.  There was also little variation in slope by GAP class for RGR (not shown) and SWIR32 

Index Association R2 Slope RMSE p-value 

NDVI Largest R2 0.18 -1.94 0.1 0 

NDII Largest R2 0.22 -1.94 0.12 0 

RGR Largest R2 0.2 0.10 0.1 0 

SWIR32 Largest R2 0.34 0.44 0.06 0 
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(not shown) in the Early Season and Peak Summer, but in the Late Season the MTGP had smaller 

slopes than any other class. There was little variation in slopes by GAP class for NDVI (not 

shown). 

Since the analysis showed spatial patterns in slope and R2 that corresponded to allotment 

boundaries it was important to examine the results for allotments with particular responses. 

Allotments could be assigned to predominant association with species composition. Three 

allotments were chosen for close examination which represent mixes of different GAP classes, 

specifically, one allotment which has the highest percentage (in area) of BNW/SP, one which is 

has the highest percentage of WMTGP/wetland and one which has the highest percentage of  

MTGP.   
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Figure 45. Grazing slopes for NDVI through the Complete Time Series, Early Season, Peak 

Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. Numbers 

indicate three allotments which have variation in species composition. 
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Figure 46. Grazing slopes for SWIR32 through the Complete Time Series, Early Season, 

Peak Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. 
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Figure 47. Grazing R² values for SWIR32 through the Complete Time Series, Early Season, 

Peak Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown. 
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Allotment 891 has the largest percentage of SP and BNW (83%), allotment 884 has the largest 

percentage of WMTGP/wetland (40%) and allotment 907 has the largest percentage of MTGP 

(43%).  Refer to Figure 45 for allotment locations. NDII is not evaluated for this analysis as many 

pixels were non-significant. 

In all three allotments there is separation in histograms of slopes (Figure 48) when comparing the 

Early Season and Late Season for the NDVI, RGR and SWIR32.  For NDVI, except for in 

allotment 884, the Late Season always has a histogram of slopes which are shifted to the right  

 

Figure 48. Histograms of slopes for NDVI, RGR and SWIR32 and for allotments 

884, 891 and 907 
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(more positive) than the Early Season.  The Late Season always exhibits a histogram of slopes 

shifted to the left (more negative) compared to the Early Season for RGR and SWIR32. 

In summary, examining trends using simple regression is useful to evaluate how a single 

independent variable influences VI response, and how this response varies temporally.  This simple 

regression analysis has shown that, in general, all VI’s have changed the most for the Running 

Days regression in the Peak Summer, the most with APRCP in the Early Season and Late Season, 

the most with AGDD in the Peak Summer, and that all VI’s have a variable response to grazing 

depending on the season.  There is also variation in landforms and GAP classes, as the deltaic plain 

and hummock and swale have larger slopes and R² values than the sand dunes, regardless of 

independent variable, for the CI, NDVI and NDII.  Slopes are more negative on the deltaic plain 

and hummock and swale for the RGR and SWIR32.  By GAP class there is no consistent response 

when comparing classes and results are similar. 

To evaluate how time, APRCP, AGDD, grazing and additional variables such as soil 

characteristics may be interacting to influence change in VIs with time multiple regression was 

implemented. 

 

Multiple Regression 

Presentation of multiple regression results is similar to that of simple regression, but with slight 

variation. Before results are shown on a per pixel basis variation in R² values per season and across 

all VI’s is evaluated over all pixels on the SNG in one regression model.  Maps of R² values on a 

per pixel basis for NDVI and SWIR32 are then shown followed by boxplots of slopes by landform 

and GAP class. 
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The methods section detailed how regressions were run sequentially to determine if R² values 

increased by adding more variables. Based on this analysis it was found that R² values increased 

minimally between sequence one to sequence two and three, and therefore only Running Days, 

APRCP, AGDD and grazing pressure are included in the following results for the multiple 

regression analysis. 

The Early Season has the largest R² values across all VI’s (Figure 49). The CI and NDVI have the 

largest R² while SWIR32 has the smallest. Except for the Peak Summer, where NDII has the largest 

R² value, the CI has the best model fits for all time segments.  In the Early Season, Running Days, 

APRCP, AGDD and grazing pressure can explain about 45% of the variation for the CI values, 

but in the Peak Summer and Late Season the same variables only explain 20% and 18% of the 

variation respectively.  Over the Complete Time Series these four independent variables explain 

Figure 49. Comparison of multiple regression R² values by VI and time through all 

pixels on the SNG. All results are significant at α <= 0.01.  
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22% of the variation for the CI.  RGR has low R² values compared to the other VI’s in all seasons 

except the ES. 

Spatial patterns of R² values for NDVI (Figure 50) and SWIR32 (Figure 51) are similar.  In the 

Early Season R² values are slightly larger for NDVI, but for both VI’s there are patches of R² 

values between 0.5 and 0.7.  The Early Season has the largest R² values of any season for both 

NDVI and SWIR32.  In the Peak Summer and Late Season patches of insignificant pixels are 

present, and R² values drop compared to the Early Season. Across landforms R² values for both 

NDVI and SWIR32 are largest on the deltaic plain and hummock and swale and smaller on the 

sand dunes.  Across GAP class there is little variation for both VI’s by class or season (Figure 52).  

The combination of Running Days, APRCP, AGDD and grazing explain variation in VI values on 

SNG differently depending on season, and separate vegetative communities have variable 

response. However, these variables explained much more variation in multiple regression 

relationships in the Early Season when compared to the Complete Time Series and other seasons.  

While simple regression has provided insight into which independent variable drive this response, 

a random forest regression may offer further insight as feature importance for independent 

variables in relation to one another can be assessed. 
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Figure 50. R² values for NDVI through the Complete Time Series, Early Season, Peak 

Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown.  
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Figure 51. Adjusted R² values for SWIR32 through the Complete Time Series, Early Season, 

Peak Summer, and Late Season.  Only significant pixels at α <= 0.05 are shown.  
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Random Forest Regression 

To evaluate the importance of independent variables on VI values random forest regression was 

used.  Feature importance with random forest regression should be associated with R² values for 

each VI from the simple linear regressions.  For example, if APRCP has the largest R² values 

during the Early Season compared to all other independent variables, APRCP should also have the 

largest feature importance score in the Early Season for the random forest regression. 

Random forest regression models were evaluated for each VI and for all four time segments just 

as they were for simple regression and multiple regression. Initially, random forest regressions 

were executed using all independent variables utilized in the third sequence of multiple regression 

which included APRCP, AGDD, grazing pressure, landforms, and soil characteristics.  It was 

found that besides APRCP, AGDD, grazing pressure, AWS and SOC all other independent 

variables had very low feature importance and were thus excluded from the assessment. 

Figure 52. Boxplots of R² values by GAP class for the multiple regression results for both 

NDVI and SWIR32.  
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Over the Complete Time Series, Early Season and Late Summer APRCP is the most important 

feature for all VI’s except for SWIR32 (Figure 53). The most important feature for SWIR32 over 

the Complete Time Series and the Late Season is APRCP, but in the Early Season and Peak 

Summer AGDD is the most important. In the Peak Summer AGDD is the most important feature 

for all VI’s. While APRCP and AGDD dominate the feature importance for all time segments, the 

importance of grazing and available soil water rise in the Peak Summer and Late Season for all 

VI’s. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53. Feature importance for each VI for all pixels on the SNG 

through all four time segments.  APRCP = antecedent precipitation; 

AGDD = antecedent growing degree days; AWS = Available Water 

Storage; and SOC = Soil Organic Carbon 
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R² values in the training and test set indicate that the models generally perform best for the CI and 

NDVI and worst for SWIR32 (Table 8).  In the Early Season R² values are large for all VI’s, and 

drop slightly in the Peak Summer and Late Season.  Differences between the training and testing 

set R² values are always small. 

There should be associations with feature importance in the random forest regressions, and the R² 

values from simple regression and multiple regression. The multiple regression results showed that 

R² values were largest in the Early Season for both NDVI and SWIR32.  The results for the simple 

linear regression also showed that NDVI and SWIR32 had the largest R² values in the Early Season 

in response to APRCP.  The random forest results supports this for NDVI, but not for SWIR32. 

The random forest results show that AGDD is more important in the Early Season than APRCP 

for SWIR32, but the simple linear regression results show larger R² values in the Early Season in 

response to APRCP than AGDD. Still though, simple linear regression results showed that R² 

values were larger in the Early Season in response to AGDD for SWIR32 compared to NDVI. 

R² values in the Peak Summer and Late Season were similar based on the multiple regression 

results, and the random forest indicates that AGDD is the most influential in the Peak Summer 

while APRCP is the most influential in the Early Season and Late Season.   The simple linear 

regression results support this as both NDVI and SWIR32 have larger R² values in response to 

APRCP in the Early Season and Late Season than the Peak Summer. Although, the results from 

the random forest and multiple regression are generally in agreement, the random forest method 

provides a more robust assessment of the importance of the independent variables in determining 

the trend in VIs, and enables better discrimination of differences associated with vegetation types 

within allotments. 
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Table 8. Comparison of the training and testing set R² values for each Index across all time 

 

Index Time Segment Train R² Test R² 

CI Complete Time Series 0.70 0.67 

CI Early Season 0.85 0.84 

CI Peak Summer 0.64 0.63 

CI Late Season 0.67 0.65 

NDVI Complete Time Series 0.69 0.63 

NDVI Early Season 0.85 0.85 

NDVI Peak Summer 0.61 0.59 

NDVI Late Season 0.66 0.64 

NDII Complete Time Series 0.63 0.57 

NDII Early Season 0.79 0.78 

NDII Peak Summer 0.67 0.65 

NDII Late Season 0.67 0.65 

RGR Complete Time Series 0.60 0.53 

RGR Early Season 0.79 0.78 

RGR Peak Summer 0.59 0.57 

RGR Late Season 0.58 0.56 

SWIR32 Complete Time Series 0.55 0.47 

SWIR32 Early Season 0.72 0.70 

SWIR32 Peak Summer 0.61 0.58 

SWIR32 Late Season 0.58 0.56 
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CHAPTER V 

DISCUSSION 

The analysis of changes in VIs on the SNG based on linear regression over a 28 year time period 

from 1984 - 2011 showed that NDVI and NDII increased and RGR and SWIR32 decreased. 

Regression relationships also exhibited significant spatial variation in slope and coefficient of 

variation. The results suggest that both vegetation greenness (photosynthetic capacity) and 

landscape and vegetation moisture on the SNG have increased.  When potential driving factors for 

these changes were explored in a random forest analysis, the most important factors by rank were 

antecedent precipitation (APRCP), growing degree days (AGDD), grazing pressure and available 

water storage (AWS).  The analysis suggests a strong response to a shift in climate, and significant 

interaction between climate and grazing affecting the balance between C3 invasive species and 

native C4 tall grasses. 

The VIs used in this study are functionally-related indicators of biochemical properties of the 

vegetation (Hill 2013). However, they are not equally amenable to interpretation in different 

landscapes. The NDVI is a proven indicator of photosynthetic capacity (Tucker 1979) and 

therefore the SNG has clearly become more photosynthetically capable over time, especially in 

the post-thaw spring period. The NDII is a proven indicator of moisture in vegetation (Hardisky 

and Smart 1983) since it roughly samples a major absorption feature, and the results show 

significant increases in NDII overtime as well.  Hence, the SNG has become wetter over time. 



 

112 
 

However, the RGR is only a rough indicator of stress (Hill 2013) and generally behaved as a mirror 

of the NDVI. The SWIR32 is more difficult to interpret since it is best used in a two-way analysis 

with NDVI (Guerschman et al. 2009). It is sensitive to cellulose in dry vegetation though (Asner, 

Borghi, and Ojeda 2003), hence the increased greenness and wetness of SNG and reduction of 

vigor of C4 grasses (discussed later) correlates with decreased values of SWIR32 over time. The 

composite indicator, CI, increased over time and acts as an overall aggregate response from the 

combined VI’s. However, interpretation of this composite indicator is difficult since landscape 

sensitivity to the individual indices is highly unequal as indicated above, and it is not recommended 

that the approach used by this study to create a composite index is used. 

If the GAP classification (Strong, Sklebar, and Kermes 2005) is considered an approximate, if not 

highly spatially explicit representation of the vegetation composition of SNG in the early 1990s, 

and the descriptive material on SNG from around 2010 (Svingen, Braun, and Gonzalez 2008) can 

be considered to be a reasonable general assessment of the vegetation composition around 15 years 

later, then some broad statements about the trends in composition can be made.  Native tall grass 

species were more abundant/dominant on SNG at the time of the GAP classification but Kentucky 

blue grass and leafy spurge infestation has increased over recent decades (leafy spurge has be 

subject to controlled spraying and removal). The grazing pressure in allotments on SNG has varied 

over time but has generally remained high, and generally exceeds the recommended rates for these 

grasslands in ha/AU  (Svingen, Braun, and Gonzalez 2008). In general, tall grass prairie and tall 

grass species are unsuited to set-stocking and continuous grazing. They evolved under migratory 

grazing by bison and periodic burning by natural grass fires. The common native C3 mid grasses 

such as Pascopyrum spp, Elymus spp., Heterostipa spp. and Koeleria spp. are more tolerant of 

grazing than tall grass species such as Andropogon gerardii, Sorghastrum nutans and Panicum 
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virgatum. However, these grasslands were already contaminated with exotic cool season C3 

grasses such as Kentucky bluegrass (Poa pratense) and smooth bromegrass (Bromus inermis), 

along with the persistent weed leafy spurge (Euphorbia esula).  

In particular, Kentucky bluegrass is a mesic, sod –forming, grazing-tolerant species. It is active 

early in the growing season at post-thaw low temperatures, and thrives where water tables are high 

and moisture is seldom limiting. The increased precipitation trend on SNG combined with 

continuous set-stocking over the growing season provides an ideal environment to favor ingress 

and spread of Kentucky bluegrass.  The set stocking suppresses growth and crown development in 

native tall grasses that don’t become active until soil temperatures exceed 8-10 °C, and frosts are 

absent, and rely on peak summer temperatures for optimum growth and subsequent reproductive 

and over-wintering crown development. 

The contrasting trends in VIs by season observed here support the above scenario for change in 

vegetation composition. There are several major points: 

a) The strong trend in NDVI with increased grazing pressure in the Early Season supports the 

increase in C3 plant abundance from both native grasses and invasive species. 

b) The negative trend in NDVI with increased grazing pressure in the Late Season supports 

the reduction in vigor of the native tall grasses, and is consistent with higher cover of native 

and invasive C3 species which have already become reproductive and ceased growth. 

c) The increased precipitation makes the SNG environment more suitable for all mesic 

species, but the grazing regime advantages the C3 grasses and weeds, and disadvantages 

the C4 tall grasses meaning they gain relatively less benefit from the additional soil 

moisture. 
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If it is accepted from this analysis that the changes to SNG detected by VIs are based on a 

combination of increased wetness and shifts in species composition away from C4 dominance and 

towards C3 invasive species, then there are important implications for ecosystem function 

associated with changes in photosynthetic potential, carbon storage, landscape water content, bare 

ground, and biomass (Hill et al. 2013).  For instance, an increase in NDVI is likely to alter carbon 

storage dynamics as NDVI is closely associated with biomass and leaf area index (LAI), and 

increases in both NDVI and NDII is likely to alter moisture fluxes. Carbon has been found to be 

nearly-linearly related to carbon assimilation and transpiration on the Konza tallgrass prairie in 

Kansas (Hall and Scurlock 1991).  While field measurements would be needed to confirm this 

finding on the SNG, it is likely that the association between NDVI, carbon assimilation and 

transpiration is similar on the SNG due to similarities in species composition. Numerous studies 

have evaluated the positive association of NDVI with LAI, which is a key variable related to 

biomass production, biochemical processes and water and carbon exchange, all of which are 

important characteristics in global change models (Asner, Scurlock, and Hicke 2003; Glenn et al. 

2008; Fan et al. 2009).  

Since so many of the C3 species on the SNG are considered invasive, it would be useful for land 

managers to be able to detect when C3 species invade locations which have historically been C4 

dominant.   This analysis showed that there are large differences in trajectories of areas dominated 

by separate relative abundances of C3 and C4 plants.  The Viking prairie and East Durler units, 

with many C4 species, had negative mean NDVI slopes in the Early Season, but in the Peak 

Summer slopes were primarily positive.  In contrast, the West Durler unit, heavily infested with 
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invasive C3’s Kentucky bluegrass and leafy spurge, had positive slopes in the Early Season and 

Peak Summer, but the increase in slope values between the two seasons was not as large as the 

Viking prairie or East Durler.  Therefore, further monitoring of locations which experience a 

transition of negative to positive slopes, particularly in the Early Season, may help identify if 

transitions between C3 and C4 communities are occurring. For example, if the Viking prairie begins 

to transition to larger NDVI values in the Early Season, it is likely that C3 plants have begun to 

invade and management may better consider their actions. 

It is also possible that lowland elevations, which consist of wetland communities, and upland 

communities which consist of plants adapted to more xeric soils have experienced different NDVI 

trajectories through time, specifically in the Early Season.  

 Lowland locations primarily have negative Running Days slopes for NDVI while upland locations 

primarily have positive slopes.  Spring precipitation in southeastern North Dakota has increased 

in the past century (Karl and Knight 1998), and this increase could be suppressing vegetation in 

lowland areas by saturating plant roots.  In upland areas, with lower water holding capacity, 

addition soil water from increased precipitation could be occurring which should result in an 

increased NDVI.  Therefore, micro-topographic gradients on the SNG may be highly influential 

in determining trajectories of specific VI’s. 
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Uncertainty and Future Research 

One of the largest difficulties in any time series analysis with remote sensing data is the lack of 

available ancillary data to validate findings which are often needed at a yearly scale over long 

periods of time (Cohen, Yang, and Kennedy 2010; J. E. Vogelmann et al. 2016).  This study is no 

different as there is only once source of information indicating what the vegetation composition 

was on the ground – the mid 1990’s GAP survey.  This is particularly problematic for studies 

attempting to identify gradual ecosystem change as more labor intensive data regarding spatial 

density of plants, plant vigor/health and soil moisture availability is needed over fine temporal 

scales (J. E. Vogelmann et al. 2016).  Due to this lack of ancillary data, comparisons of median 

slopes and R² values by GAP classes may be misleading as it is not ensured a specific pixel has 

remained the same vegetative composition through time. Additionally, there is the possibility that 

a GAP class was misclassified in the survey itself.  For example, the East Durler unit which should 

be classified as MTGP has a large portion classified as PHP, and therefore any evaluation of trends 

for certain pixels that should be considered MTGP are reflected in trends evaluating PHP which is 

incorrect. Results from this study showed very little variation in median slopes or R² values when 

stratified by GAP classes, regardless of the independent variable being evaluated.  It is likely this 

occurred because individual pixel locations shifted in composition over time.  

To help alleviate this problem, future research should choose a study area with ample ancillary 

data, such as a long term ecological research station.  By applying the same methodology in this 

study to a location with a large availability of ancillary data it should be possible to evaluate how 

VI responses have changed in specific locations and if changes in species compositions are truly 

influencing regression trends, or if it is alternative factors operating.  In this way basic rules for 
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how changes in parameters such as species composition, soil moisture, plant health and biomass 

could be evaluated in relation to changes in VI response and trends. Once these rules are 

established, it may be possible that alternate locations in similar ecosystems that experience the 

same trends in any given pixel may be undergoing the same changes on the ground, and less field 

data would be needed to validate findings. 

Additionally, while this study has showed it is useful to segment the time series by season, it may 

also be useful to segment groups of years within the time series itself.  For example, it is possible 

that a specific causal mechanism occurs at the very beginning of the time series (or some specific 

time step), and trajectories throughout the rest are influenced as a result.  It is difficult to ascertain 

if these specific changes occur with the methods used here, but if analysis was segmented in five 

or ten year time steps which were evaluated separately then it would be easier to isolate when 

changes truly occurred. 

It was hypothesized that topographic gradients were influential in determining trajectories of VI’s 

due to their influence on soil water holding capacities, yet elevation was never analyzed as an 

independent variable.  The reason for this is that in relatively flat environments elevation models 

need to have fine scale resolution (i.e. 1-meter), but this fine scale resolution does not match with 

the moderate resolution of the Landsat sensor. Therefore, to match the Landsat pixel size, 30-meter 

digital elevation models would need to be used to evaluate the influence of elevation on 

trajectories.  On the SNG, 30-meter resolution elevation models are not accurate at capturing the 

fine scale variation, and therefore are inappropriate.  To accurately capture the influence of 

elevation a satellite or airborne sensor with finer resolution would be required. 
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Lastly, there is uncertainty regarding the appropriateness of using linear models to assess 

temporal trends in VI’s, which may not be exhibiting linear responses to particular independent 

variables.  It is possible that non-parametric approaches would be more useful.  To evaluate this, 

theil-sen regression was evaluated over the Complete Time Series using Running Days as the 

independent variable, and results were compared to those from ordinary least squares.  Through 

this analysis it was found that results were nearly identical, and therefore non-parametric 

approaches and linear approaches perform similar
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CHAPTER VI 

CONCLUSION 

The Sheyenne National Grassland is ecologically important for conservation because it represents 

the largest publicly owned tract of tallgrass prairie remaining in North America.  Despite its 

designation as a National Grassland it is at risk from invasive species such as smooth brome, 

Kentucky bluegrass and leafy spurge, is likely effected by overgrazing, and there is uncertainty 

regarding how changes in climate will influence species composition.  Because of these risks it is 

important for land managers to be able to identify threats to the health of the SNG, and to prioritize 

management actions.  It is difficult for land managers to rely on field surveys alone to gather 

information about the health of the SNG because it is time consuming and expensive. 

Remote sensing offers the ability to study ecosystem health across landscapes, and the release of 

the Landsat archive has enabled the characterization of Earths conditions dating back to 1972, and 

at a moderate spatial resolution.  The use of vegetation indices such as NDVI have long been used 

to assess conditions of Earth’s surface.  Using suites of VI’s can provide further insight into 

ecosystem conditions, and these suites may be especially important in grassland ecosystems which 

have patchy and heterogeneous structures characterized by subtle transitions which require 

continuous monitoring. 
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Regression has been effective at monitoring subtle ecosystem changes in forested ecosystems, and 

this study has employed the same methods in a grassland ecosystem where significant trajectories

were found.  NDVI and NDII have increased between 1984 and 2011 on the SNG while RGR and 

SWIR32 have decreased.  This indicates that greenness and vegetative moisture have increased 

while stress and non-photosynthetic vegetation have decreased.   

For instance, it is likely that this increase in NDVI is associated with increases in spring 

precipitation acting in conjunction with cattle grazing which is selecting for the establishment of 

C3 grasses, many of which are invasive.  By reducing the vigor of native C4 species which are less 

tolerant to grazing C3 species have been competitively released.  Additionally, C3 species prefer 

wet springs which may be further encouraging their establishment. 

In general, whenever one VI exhibited a specific temporal response, the rest of the VI’s exhibited 

a similar response in the same predictable direction, and therefore trajectories could be assessed 

by solely evaluating the NDVI.   

Significant changes occurred for all VI’s through not only the Complete Time Series, but also 

through three different time segments throughout the growing season.  Separating the growing 

seasons into individual regression models was useful to evaluate how locations which were known 

to consist of different compositions of C3 and C4 grasses have changed.  For example, locations 

with larger compositions of C4 grasses had smaller slopes in the Early Season which gradually 

became larger in the Peak Summer and Late Season.  In contrast, locations with C3 grasses had 

larger slopes in the Early Season which increased at a smaller rate in the Peak Summer and Late 

Season. Continuing to monitor how specific locations change throughout specific times of the 

growing season may be useful to identify when abundances of C3 and C4 grasses are shifting.  Since 
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many of the invasive species on the SNG are C3, this may also enable identification of locations 

most in need of invasive species removal by land managers. 

Characterizing gradual ecosystem changes is essential to evaluate grasslands, and this study has 

shown the regression can be effectively used to quantify the direction and magnitude of change.  

Additionally, evaluation of p-values is useful to determine if change is significant or not.  

Continued monitoring of grasslands with remote sensing will be useful for land managers to 

determine locations where actions should be prioritized, and as additional sensors, such as 

Sentitnal-2 become available the temporal coverage and spatial and spectral resolutions for this 

type of analysis will improve the ability to monitor these ecosystems. 
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