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ABSTRACT 

In this study, supramolecular polymers from carbamates are studied. A number of 

three-fold symmetric carbamates have been synthesized, characterized and their self-

assembly structure are studied. The lamellar structures are detected and compared by 

using their melting points, NMR and FT-IR spectroscopy, and single crystal X-ray 

diffraction. The hydrogen-bond networks of each compound in crystalline state are 

examined. A new hydrogen bonded network self-assembles under mild conditions from 

benzene-1,3,5-triyl tris(butyl carbamate) (2), benzene-1,3,5-triyl tris(pentyl carbamate) 

(3), benzene-1,3,5-triyl tris(hexyl carbamate) (4), and benzene-1,3,5-triyl tris(heptyl 

carbamate) (5). One of the carbonyl groups in the molecules 2-4 does not form a 

C=O⋯H–N hydrogen bond in the sheet-like structure. Three different types of hydrogen 

bonding sites are observed. Although the building blocks only differ in the number of 

carbons in their side chains, this 2D unsaturated hydrogen bonded network is different 

from the saturated one which is self-assembled from benzene-1,3,5-triyl tris(propyl 

carbamate) 1. For compounds 2-5, the odd-even effect is also observed in terms of 

melting point, as well as the dihedral angle between the aromatic core and the arm with 

an oversaturated hydrogen bond. The inverted carbamates 7-11 are also synthesized and 

studied. An organic gel is found in triheptyl Nʹ,Nʹʹ,Nʹʹʹ-benzene-1,3,5-tricarbamate 11 

with a concentration of 20 g/L (2.6 ×10-2
 M) in n-dodecane.



 
 

xx 

 

A mirror-symmetric building block for linear polymer is designed. 3,4-Di(furan-

2-yl)cyclobutane-1,2-dicarboxylic acid (12) is synthesized from 3-(2-furyl)acrylic acid 

(12ʹ) through a solid-state [2+2] photocycloaddition by UV-A irradiation in quantitative 

yield. This building block molecule is derived from furfural and malonic acid. Thus, a 

novel 100% bio-based monomer has been successfully synthesized. For the first time, the 

single crystal is obtained in MeOH/DCM at room temperature. The thermal stability and 

acidic resistance of the cyclobutane ring of this building block is tested by thermal 

gravimetric analysis (GTA) and acid treatment. As a proof-of-concept, the condensation 

of 12 and 1,5-pentanediol is evaluated in this study. MS and NMR spectra of the product 

prove the formation of the target polymer.

A series of cyclic C2-symmetric building blocks for double-stranded polymers are 

designed. Our goal is to synthesize a linear polymer with double-stranded chains. The 

two strands are anchored by a C-C single bond so that the width is only extended by one 

covalent bond while the strength of the chain is enhanced. To achieve this polymer, a 

three-step strategy has been designed. The first step is to synthesize a cyclic monomer 

with a C=C bond at each end of the molecule. The second step is to apply intermolecular 

interactions for self-assembling the monomer. When desirable crystalline packing is 

obtained, the third step is to generate cyclobutane rings between each neighboring C=C 

bond by solid-state [2+2] photocycloaddition to form the double-stranded polymer. A 

series of lactone monomers have been successfully synthesized and their structures are 

confirmed by NMR spectroscopy. (3Z,14Z)-1,6,12,17-tetraoxacyclodocosa-3,14-diene-

2,5,13,16-tetraone (17) is synthesized from maleic anhydride and 1,5-pentanediol. Then 

isomerization of compound 17 afford (3E,14E)-1,6,12,17-tetraoxacyclodocosa-3,14-
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diene-2,5,13,16-tetraone (18). Crystalline structures of these two compounds are 

analyzed by SCXRD and their photoreactivity is examined. The photopolymerization of 

17 is supported by IR and solid state 13C NMR spectra. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

Polymers are defined as large molecules or macromolecules, which are composed 

of many repeated subunits.1 They play an essential part in our life. Vegetables and meat 

all contain natural polymers such as lignin, polysaccharides, nucleic acids, and protein. 

Almost all our clothes, CDs, paint oil, and plastic products contains man-made polymers 

such as polyethylene, polyester, and nylons.2 Among those factors that affect the property 

and applications of polymers, the monomers always play an important role. 

Researchers are pursuing monomers that are functionalized and easy to 

synthesize. For the most part, one needs to find a balance between these two aspects. In 

terms of the monomer candidates, the more complicated the synthesis is, the more time 

and resources are needed to explore the processing. If cost-efficient procedures are not 

developed, the commercial acceptability of this polymer may be limited.3 Due to ease of 

synthesis, symmetric molecules are one of the most popular candidates for monomers.  

There is an old saying that necessity is the mother of invention. Charles E. 

Carraher said “it has led to the sequence of chemical reactions where little is wasted and 

byproducts from one reaction are employed in another reaction as an integral starting 

material.”4 This can be used as an explanation for the rise of today’s sustainable 



 
 

2 

 

chemistry. It would be ideal if I make full use of the ‘waste’ produced by nature, and 

extract our starting materials from it.5 

In summary, developing monomers from readily available inexpensive feedstocks 

is our basic goal. Furthermore, exploring the synthesis of high performance polymers, 

which is built on renewable resources, is both an art and a science. Monomer and 

polymer synthesis continues to undergo change and improvement. 

1.1 Supramolecular Polymers 

Supramolecular polymers are polymeric arrays of monomeric units which are 

connected to each other by noncovalent bonds such as hydrogen bonds. These reversible 

and highly directional interactions give this class of polymers low viscosity that are easy 

to handle.6 Some of them can even self-heal their fractures in certain environments.7 

Organic sheets can be found in many natural applications such as the β-pleated sheet of 

polypeptides and the lipid bilayer in the cell membrane.8-10 Recently, our research group 

has discovered and studied a series of hydrogen bonded sheets that self-assembled from 

three-fold symmetric triamides or tricarbamates.11-13 These organic sheets have displayed 

chirality generated from achiral molecules with stereogenic axes (supramolecular 

atropisomers).11,12 By introducing cyclohexyl side chains onto the surface of the 

carbamate sheet, the derived two-dimensional (2D) hydrogen bonded framework has 

demonstrated applications in host–guest chemistry.13 Another significant characteristic of 

the hydrogen bonded sheets is structural adaptability and generality. To adapt the 

structural variations of the supramolecular building blocks, the hydrogen bonded 

networks were changed correspondingly while the lamellar structures remained unaltered. 
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Herein, I report two new unsaturated hydrogen bonded sheets obtained from three-fold 

symmetric carbamates.  

1.2 Bio-based Single-stranded Polymers 

Growing ecological and economic concerns have resulted in a global pursuit for 

renewable and bio-based materials.14-17 To achieve this goal, a vast amount of research 

has been conducted13-19 and also backed by both local and foreign governments.25,26 One 

promising bio-based building block is furfural.27,28 It can be derived from pentoses found 

within the hemicellulose of a variety of biomass sources,30 such as corncobs, rice hulls, 

and sugarcane bagasse.25-29 In addition to being used as a lubricating oil, fungicide and 

organic solvent, furfural can also be used to synthesize other furan-based chemicals.27,31-

34 Recently, furan-based monomers have been getting increasing attention.35  

3-(2-Furyl)acrylic acid (12ʹ) is a furan-based chemical and the starting material 

for a novel monomer studied in this paper. Compound 12ʹ can be readily obtained from 

furfural and malonic acid via Knoevenagel condensation.36 Malonic acid can be obtained 

directly from renewable sources as well, such as glucose or 3-hydroxypropionic acid.37,38 

Acid 12ʹ contains only one carboxyl group, which makes it unsuitable for classic 

polymerization. However, instead of synthesizing another carboxyl group on the furan 

ring, solid-state photoreaction provides an alternative to double the number of this 

functional group.39 G. Schmidt found that upon exposure to ultraviolet light, crystals of 

12ʹ underwent dimerization through [2+2] photocycloaddition. UV light excites the C=C 

bond in 12ʹ and forms a cyclobutane ring between the two neighboring molecules.39-41 
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Thus, 3,4-di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid (12) was obtained with the 

doubling of carboxyl groups in one simple step in a 51% yield. 42,43  

Since bio-based carboxylic acids are viewed as high-value chemicals,44 a 

monomer candidate was designed. Compound 12 is structurally similar to phthalic acid, 

the monomer of a widely versatile polymer Glyptal®.45 The cyclobutane ring in 12 

contains two carboxyl groups on adjacent carbons. These two groups can additionally be 

found on adjacent carbons on the benzene ring of phthalic acid. 

Previously, our research group shows how photoreactions can be used to 

synthesize polycyclobutanes (PCBs), a polymer species centered around the repetition of 

the cyclobutane ring in the main body.46,47 In this study, the easy, inexpensive, and green 

synthesis of the 100% bio-based monomer 12 and a proof-of-concept non-petroleum 

dependent polycyclobutane are explored. 

1.3 Double-stranded Polymers 

The hydrogen-bonded double-stranded polymer was first found in nature as the 

double helical structure of deoxyribonucleic acid (DNA).48 Then, a mimic of DNA was 

developed with peptide nucleic acid (PNA).49 Instead of using ribosephosphate as the 

backbone of nucleic acids, PNA has the backbone made of a polyamide. Adenine-

thymine and guanine-cytosine base pairs are used as hydrogen acceptors and donors to 

form the hydrogen bonds between two polyamide chains (Chart 1a). Other groups 

developed a similar double-stranded structure by coordinate bonds.50 In this case, 

coordinate bonds between nitrogen and metals act as the binding force between two 

polymer chains (Chart 1b). Researchers believe that the study of double-stranded 
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molecules may help to develop gene therapeutic (antisense and antigene) drugs, and 

genetic diagnostics. But from another perspective, if cost-efficient ways to synthesize 

covalently bonded double-stranded polymers can be developed, these compounds may 

become good candidates for light and strong materials.  
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Chart 1. General structure of non-covalently bonded double-stranded polymers. 1a) 

Hydrogen-bonded double-stranded polymers. 1b) Metal-coordination bonded double-

stranded polymers. 

In this study, the two strands are designed to be anchored by a C-C single bond so 

that the width of the polymer chain is only extended by one covalent bond while the 

strength of the chain is enhanced. Every monomer has one C=C double bond at each end. 

Then [2+2] photocycloaddition is applied to form a cyclobutane ring between each 

monomer (Chart 2). 
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Chart 2. General structure of the proposed covalently bonded double-stranded polymers. 
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CHAPTER 2 

STUDY OF THREE-FOLD SYMMETRIC CARBAMATES AS BULIDING BLOCKS 

FOR SUPRAMOLECULAR POLYMERS 

2.1 Goals of the Study 

Three-fold symmetric molecules with amide groups on each arm have been 

utilized as building blocks for column-like supramolecular polymers.51 As shown in 

Chart 3, many researchers believe that the hydrogen bonds on three arms of each 

molecule bind with a neighboring molecule to form a helix hydrogen-bonded network. 

However, in a previous study by our group, a sheet-like two dimensional supramolecular 

polymer was revealed.52 The goal of this research is to further explore other possible 

hydrogen-bonded networks and study the odd-even effect in some homologous series. 

Thus, a series of three-fold symmetric carbamates and inverted carbamates have been 

modified and synthesized. The general structure of these compounds is shown in Chart 4. 
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O        b.  

Chart 3. Column-like and sheet-like supramolecular polymers. a. The column-like 

supramolecular polymer and the generally proposed hydrogen-bonded network in other 

studies.51 3b. A sheet-like supramolecular polymer with 2D hydrogen-bonded network.13
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Chart 4. The general structure of the carbamates synthesized and studied in this work. 

2.2 Synthesis of Three-fold Symmetric Carbamates 

Carbamates 1-5 are readily synthesized from the reaction of phloroglucinol with 

1-isocyanatopropane, 1-isocyanatobutane, 1-isocyanatopentane, isocyanatohexane, and 1-

isocyanatoheptane, respectively (Scheme 1).53 Carbamates 7-11 are the inverted 

carbamates 1-5, which first require the synthesis of 1,3,5-triisocyanto-benzene.54 Then 

the inverted carbamates are readily synthesized in good yield by reacting the 

corresponding primary alcohol with 1,3,5-triisocyanatobenzene (Scheme 2). 
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Carbamates 1 to 5

90-93%  

Scheme 1. Synthesis of carbamates 1-5. 
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ClCH2CH2Cl
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R-OH
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Reflux

68%

H
N

HN
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O

O

O

O

R

R

R

O

Carbamates 7 to 11
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Scheme 2. Synthesis of carbamates 7-11. 

2.3 Self-assembly of Three-fold Symmetric Carbamates to Supramolecular Polymers 

Carbamates 1-5 are soluble in a variety of organic solvents such as chloroform, 

ethyl acetate, DCM, acetone, acetonitrile, THF, and DMSO. The self-assembly behavior 

of carbamate 4 is used as an example and examined in various solvents. Evidence of 

intermolecular H-bonding can be seen in the 1H NMR spectra (Figure 1). 

 
Figure 1. 1H NMR spectra of carbamate 4 in CDCl3 at different concentrations at room 

temperature. 

As the concentration of the solution increases from 3.0 to 200.0 mM, the chemical 

shift of the amide proton gradually shifts downfield. Hydrogen bonding decreases the 

 
R = C3H7 
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electron density around the amide proton, thus moving its peak downfield. The possibility 

of forming intermolecular amide hydrogen bonding, –N–H⋯O=C, is higher in a 

concentrated solution, and therefore the peak appears at downfield. 

2.4 Hydrogen-bonded Network of Supramolecular Polymers from Carbamates  

Since the inverted carbamates 7 to 11 do not form crystalline solids, only 

carbamates 1 to 5 are discussed in this section. A side-to-side comparison of the five 

carbamates reveals several interesting differences. The melting points (m.p.) of 2-5 are all 

around 130 °C, which is clearly lower than that of 1 (144 °C), although their molecular 

weights are higher. While the FT-IR spectra of 2-5 are nearly identical, they are different 

from that of 1, especially in the stretching wavenumbers of the amide C=O (around 1700 

cm−1) and N–H bonds (around 3300 cm−1). There are three peaks near 1700 cm−1 in the 

spectra of 2-5 but only two in the spectrum of 1 (Figure 2). Considering that the five 

carbamates contain the same functional groups, the IR spectral and m.p. differences 

indicate different types of hydrogen bonding patterns.  

 

Figure 2. IR spectra of carbamates 1-5. 
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Similar to 1, high quality single crystals of 2-5 were obtained by slowly 

evaporating their acetonitrile solutions. On the one hand, the X-ray crystal structures 

show that 2D hydrogen bonded networks are present in the crystals of all five 

carbamates. The polar amide hydrogen bonded networks are sandwiched by two layers of 

non-polar alkyl chains forming sheet structures in all five cases. On the other hand, 2-5 

adopt the same hydrogen bonding network but quite different from that of 1 (see Table 1 

and Figures 2)  

In Figure 3 left, the red dash lines represent the six hydrogens of each molecule 1 

in the sheet. In Figure 3 right, the red dash lines represent the six hydrogens of each 

molecule 2. Molecules 3-5 have similar pattern with molecule 2. The red arrow shows the 

C=O moiety with two hydrogen bonds and the blue arrow shows the C=O group without 

hydrogen bonds. 

Table 1. Crystal data of carbamates 1-5. 

Compound  1 2 3 4 5 

Formula  C18H27N3O6 C21H33N3O6 C24H39N3O6 C27H45N3O6 C30H51N3O6 

Formula weight  381.43 423.57 465.66 507.75 549.84 

Temperature/K  100 100 100 100 100 

Space group  Fdd2, 16 P 21/c P 21/c P 21/c P 21/c 

Cell lengths/ Å a 13.4049(4) 17.4350(4) 18.6662(16) 21.2940(14) 24.3371(16) 

 b 48.9616(14) 13.8312(3) 14.1499(10) 13.8436(10) 13.6183(8) 

 c 12.2121(4) 9.7128(2) 9.7258(7) 9.8230(7) 9.7561(5) 

Cell Angles/ ° α 90 90 90 90 90 

 β 90 96.5590(10) 94.940(5) 91.467(4) 99.505(4) 

 γ 90 90 90 90 90 

Cell volume  8015.11 2326.88 2559.28 2894.73 3189.07 

Density/g·cm-3  1.264 1.209 1.208 1.165 1.145 

The hydrogen bonded backbone sheet of 5 is used as an example in this section 

since sheets of 2-4 are very similar to that of compound 5. Carbamate 1 crystallizes in the 
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orthorhombic Fdd2 space group and each molecule is connected to five neighbors 

through six intermolecular hydrogen bonds between N–H and C=O groups of the three 

carbamate groups (Figures 4a and b). 

 

Figure 3. Comparison of the crystal structures of 1 and 2. 

           

Figure 4. Comparison of hydrogen-bond networks. in 1 and 5. a) Hydrogen bonded sheet 

backbone of 1. b) hydrogen bonded sheet backbone of 5 (a representative of 2-5). 

(Hydrogen atoms are omitted and the side chains are replaced with carbon atoms for 

simplicity. Neighboring hydrogen bonded ribbons are shown in two colors for clarity.) 

Specifically, each carbamate molecule is connected to the one closest neighbor by 

two hydrogen bonds, forming a cyclic supramolecular dimer. Each dimer is held together 

with four neighbouring dimers by eight hydrogen bonds. The crystal structures consist of 

a supramolecular sheet extended in the crystallographic ac plane through a fully saturated 

s 

a) b) 
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hydrogen bonded network. In contrast, carbamates 2-5 crystallize in the monoclinic P21/c 

space group and each molecule is connected to four neighbors through six intermolecular 

hydrogen bonds, between the N-H and C=O groups of the three carbamates. The crystal 

structures consist of a supramolecular sheet extended in the crystallographic bc plane 

through an unsaturated hydrogen bonded network (Figure 3 left and 4b). In other words, 

one of the C=O groups (marked by the red arrow in Figure 3 right) forms two hydrogen 

bonds with two N–H groups of the two neighboring molecules while another C=O group 

(marked by the blue arrow in Figure 3 right) does not form a C=O⋯H–N hydrogen bond. 

The second difference between the crystals 1 and 2-5 is the packing of the sheets. 

One of the three n-propyl arms in crystal 1 lies within the plane of the hydrogen bonded 

network to fill up the space between the supramolecular dimers. There are grooves on the 

surface of the sheet formed by molecule 1, so the neighboring sheets are packed like 

meshing gears to achieve close packing. In contrast, there is no space between the 

hydrogen bonded networks of the sheet formed by molecules 2-5 and all the non-polar 

alkyl chains point away from the polar hydrogen bonded networks. Although there are 

slightly periodic fluctuations, no gap or groove occurs on the surfaces of the sheets 

formed by molecule 2-5. 

A close examination of the sheets formed by molecules 2-5 reveals that each 

tricarbamate molecule connects with two neighbors by four amide hydrogen bonds 

leading to a supramolecular ribbon (Figure 5). The ribbons then are glued together side 

by side via the other two hydrogen bonds on each molecule. Evidently, the force holding 

the supramolecular ribbon together is stronger than that between the ribbons due to the 

number of hydrogen bonds being different. 
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Figure 5. Crystal packing for two supramolecular polymer layers of carbamates 1-5. 

To understand the packing of the tricarbamate molecules, one can regard this new 

organic lamellar polymer as a hierarchical structure: the primary structure – a hydrogen 

bonded ribbon; the secondary structure – a supramolecular polymer sheet held together 

2 3 

4 5 
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by hydrogen bonding and the hydrophobic effect between peripheral non-polar alkyl 

chains; and the tertiary structure – a lamellar crystal based on London forces between the 

sheets. 

2.5 Odd-even Effect of the Carbamates with a Similar H-bonded Network 

Since compounds 2-5 possess similar hydrogen-bonded networks, the odd-even 

effect of them has been studied. Although their hydrogen-bonded networks from 2 to 5 

are basically the same, there exists some conformational differences changing 

periodically. When one focuses on the unsaturated side chain, which is bound within the 

network through only one hydrogen bond, the shape of the side chain changes as the 

number change of sp3 carbons on the side chain changes. If the number of carbons is even 

(compounds 2 and 4), all the sp3 carbons are in all-trans (zigzag) conformation. But when 

the number is odd (compounds 3 and 5), the alkyl chain is twisted as shown in Figure 6. 

The twisted chain is derived from the gauche conformation of the carbon backbone. All 

four carbamates show gauche conformation when viewed along the α-β carbon axis (α 

carbon is the first sp3 carbon next to nitrogen). But for the rest of the carbons in this arm, 

the situation is different. Compounds 2 and 4 do not display gauche conformation while 3 

has two gauche conformations (Figure 6a and b) and 5 has one (Figure 6c). The 

difference in gauche count between 2 and 3 is two while that between 4 and 5 is one. 

The second type of odd-even effect is found in the dihedral angle between the 

aromatic core and carbamate plane in the arm with three hydrogen bonds. Binding into 

the network by three hydrogen bonds, this arm has the greatest connection within the 

supramolecular network. 
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a. b. c.  

Figure 6. Side chain conformations in carbamates 3 and 5. a) Gauche conformation in 

molecule 3, view along axis. b) Gauche conformation for molecule 3, view along 

axis. c) Gauche conformation for molecule 5, view along axis. 

The dihedral angles in 2, 3, 4 and 5 is 51.73°, 54.51°, 53.49° and 55.92°, 

respectively (Figure 7). The dihedral angle difference between 2 and 3 is 2.78° while that 

between 4 and 5 is 2.43° (Figure 8). For the other two arms, this effect is not observed, 

maybe partially due to the fact that the number of hydrogen bonds in either of these two 

arms is at least 30% weaker than that of the arm with three hydrogen bonds.  

 

Figure 7. Dihedral angles between the aromatic core and the arm with three hydrogen 

bonds in carbamates 2-5. 
 

The third odd-even effect is reflected in the melting point. The melting points of 

compounds 2-5 are 130-132, 124-125, 130-131 and 127-128 °C, respectively. The 

difference in melting points of 2 and 3 is 6.5 °C while that of 4 and 5 is 3.0 °C.  
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Figure 8. Melting points of carbamates 2-5.  

It is believed that as the length of alkyl chain increases, the odd-even effect is 

supposed to decrease because the flexibility enables long chains to adopt a configuration 

that avoid steric problems. Consequently, the overall energy difference between two 

neighboring numbered molecules is gradually decreasing.  

2.6 Organogelators Derived from Carbamates 7-11 

Compounds 7-11 have the inverted carbamate group when compared to 

carbamates 1-5. Although these inverted carbamates do not form good crystalline solid 

for single-crystal XRD analysis, some of them form organic gels. Their high solubility 

makes it easy to test the gelation properties. The gelation capability of this group of 

tricarbamates were tested with different solvents. The result of gelation is shown in Table 

2.  

Table 2. Gelation capability of carbamates 7-11 in n-dodecane (20 g/L).   
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In a typical concentration of 20 g/L (2.6 ×10-2 M) in n-dodecane, with the increase 

of the alkyl side chain length, their solubility in n-dodecane increases accordingly. The 

partial organogels of 9 and 10 show high viscosity, but cannot pass the vial inversion test. 

As the alkyl chain length is further increased, the solid gels form quickly and hold their 

positions when the vials are turned upside down. As shown in Figure 9, organogel 11 lose 

about 5% of n-dodecane solvent during the vial inversion test, it is able to immobilize the 

solvent. 

 

Figure 9. Carbamates 7-11 at 20 g/L (2.6 ×10-2 M) in n-dodecane.  

Supramolecular polymers can potentially be used as organogelators. The gelation 

process of organogelators is thermo-reversible: small molecules self-assemble into three-

dimensional supramolecular networks that entrap solvents by surface tension. Despite the 

fact that many efforts have been made to fully understand the mechanism and establish 

guidelines for the rationally design of organogelators, many novel organogelators have 

been found by serendipity rather than design.55-58 Models for supramolecular structures of 
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the aggregates have been proposed, but the true nature of the aggregation phenomenon is 

still under investigation.59-64 

2.7 Conclusions 

In this project, I study a new supramolecular polymer produced from three-fold 

symmetric tricarbamates with different alkyl side chains. A number of three-fold 

symmetric carbamates have been synthesized, characterized, and their self-assembly 

structures were examined. Their supramolecular structures are proved to be held together 

by hydrogen bonded network. Three different types of hydrogen bonded sites are found 

on these carbamate groups: unsaturated, saturated and oversaturated. Together with a 

number of our reported13,53 2D saturated hydrogen bonded networks, the discovery of the 

unsaturated hydrogen bonded sheet further demonstrates the variety and adaptability of 

the sheet structures. The odd-even effect of those carbamates with similar hydrogen 

bonded networks is also observed in terms of the conformation of alkyl side chain, 

crystalline melting temperature, and dihedral angle between aromatic core and the arm 

with oversaturated hydrogen bond. Organogelators have been successfully made from the 

inverted carbamates, which are originally designed to make column-like supramolecular 

polymers. It turns out that the inverted carbamates with longer alkyl chain have better 

solubility and are more likely to form organic gels in n-dodecane. 
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CHAPTER 3 

A POTENTIAL BUILDING BLOCK FOR FURFURAL-BASED POLYMERS 

3.1 Goals of the Study 

Since furfural is a commonly used bio-based chemical,65-67 I want to develop an 

easy, inexpensive, and green way to synthesize a dicarboxylic acid, which could be use as 

a polymer building block, from this aldehyde. The reaction to synthesize 12 was initially 

studied by Schmidt and provided a yield of 51% and reaction time was a month.34 

Besides the unreacted starting material, the main impurity was from the formation of 

oligomers. In the past decades, due to the low yield of 12 and long reaction time of this 

reaction,68,69 the follow-up development appeared to be impossible. Thus, few studies 

have been performed with 12.41-43 Our group recently developed the above-mentioned 

method to synthesize this 100% bio-based chemical with near quantitative yield.  

Besides simple filtration, no follow-up purification work is needed. This 

breakthrough makes it possible to use 12 in a relatively easy and low-cost way. 

Meanwhile, the structural similarity (Chart 5) to phthalic acid, the monomer of the widely 

versatile polymer Glyptal®, gave us a general idea about its applications.70,71 Thus, 

another furfural-based diol (1,5-pentanediol) and glycerol were chosen to combine with 

our monomer to make 100% bio-based polymers (Scheme 3). 
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Chart 5. The structure of 3,4-di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid 12, phthalic 

acid, and glyptal. 
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Scheme 3. General synthetic route about the furfural-based polymer in this study. 

3.2 Synthesis and Characterization of the Furfural-derived Monomer 

3.2.1 Synthesis of Monomer 12 and its Precursor 12ʹ 

The synthesis of 12ʹ is shown in Scheme 4. A modification of Knoevenagel 

condensation is employed in which malonic acid was treated with commercially available 

furfural in the presence of pyridine. Thus, compound 12ʹ can be synthesized directly form 

furfural with high yields (>90%).78 The distance between parallel C=C double bonds in 

3-(2-furyl)acrylic acid (12ʹ) crystals are 3.73 Å, which makes them good candidates for 

[2+2] photosynthesis (Figure 10).  
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Scheme 4. Synthesis of the furfural-based carboxylic acid 12ʹ. 

 

Figure 10. Crystal structure of 3-(2-furyl)acrylic acid 12ʹ. 

Compound 12 is readily synthesized in multi-gram scale in solid state. The 

wavelength of UV irradiation source is the key to obtaining a high yield. The UV-Vis 

(Figure 11) spectra shows that the major absorption lies in the UV-A range. In solid state, 

it shows a broader peak than it does in the solution, and the peak shifts to longer 

wavelength range.  

 

Figure 11. The UV-Vis spectra of 12 in the solid state and in MeOH solution. 
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When a mercury lamp is used as the irradiation resource, oligomers always occur. 

I assume that the C=C double bonds in the furan ring may absorb the low wavelength 

UV, which is emitted by the mercury lamp, then undergo [2+2] photoaddition between 

furan rings. Schmidt also observed this phenomenon when he applied irradiation from 

mercury lamp or sunlight to this crystalline solid.39 However, I find that this side reaction 

can be inhibited when a blacklight, which emits long-wave (UV-A) ultraviolet light, is 

applied (Scheme 5).  

O

O

OH
OH

OO

HO

OOBlacklight, 12 h

99%

3-(2-Furyl)acrylic acid 12'

Fine powder
dispersed in hexane

3,4-Di(uran-2-yl)-
cyclobutane-1,2-dicarboxylic acid

12  

Scheme 5. Synthesis of furfural-based monomer 12. 

Particle size is a key factor to the reaction time. While the dimerization within 

very fine powder of 12ʹ can be finished in a relatively short time (12 h), the ungrounded 

powder increases the reaction time dramatically. 

3.2.2 Crystalline Structure of 12 

For the first time, to the best of our knowledge, the single crystal of 12 was 

obtained. A sheet-like crystal was formed by evaporating the solution in MeOH/DCM at 

room temperature. The crystal structure is shown in Figure 12.  
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a. b. c.  

Figure 12. Image of 12 from single crystal X-ray diffraction. 

The cyclobutane ring of 12 in solid state is not flat (Figure 12a); instead a 26° 

puckered conformation is adopted. This non-planar structure has been confirmed by 1H 

NMR spectrum. Two peaks which are assigned to hydrogens on the cyclobutene ring at δ 

4.05 and 3.68 ppm are split by each other, giving doublet of doublets. Two furan rings 

and two carboxyl groups are on opposite sides of the ring as the outcome of the solid-

state [2+2] photoaddition. The front view of the repeating unit is presented in Figure 12b. 

Two carboxylic groups in a molecule are pointing to different directions, which forms a 

supramolecular helix supported by a hydrogen bond. The height of each spiro-circle is 

5.42 Å. When watched from the side view (Figure 12c), the helix is more clear to see.  

3.2.3 Photo, Thermal, and Chemical Stability of 12 

When I want to use 12 as a building block for polymers, researchers may have 

concerns on the ring strain of cyclobutanes. Particularly, is the ring stable enough to 

survive in polymerization or the working condition of its polymer? Theoretically, when a 
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cyclobutane ring is generated from two alkenes, the process is photo-allowed and 

thermally forbidden. The reversion process (ring opening) follows the same rule as well. 

Practically, after the examination, the cyclobutane ring is proved stable under sunlight 

and thermal condition. The ring formation usually happens at the longer wavelength UV 

due to the relatively large conjugated system. The ring opening usually occurs at lower 

wavelength UV range because of the disappearance of conjugation. Thus, when under the 

sunlight that contains all wavelength UV irradiation, no reverse reaction can happen.  

 

Figure 13. TGA curve of 12. 

As expected, the powder of 12 shows no change in 1H NMR spectrum after 

exposure for 1 month to sunlight irradiation. The TGA curve shows no degradation below 

200 °C (Figure 13). When monitored by 1H NMR spectroscopy, the powder sample 

shows no degradation after 30 days of heating in the air at 100 °C. Acidic resistance of 12 

is tested by adding 30 mg of fine powder of 12 to 30 mL of 6 M HCl aq. solution. The 

solution is stirred rapidly overnight. After filtration, the 1H NMR test remains the same 
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with that of the original starting material. (All spectra involved in photo, thermal, and 

chemical stability are attached in the appendix). 

3.3  Polymerization and Detection of 12 

Compound 12 contains two carboxyl groups that makes it a potential starting 

material for polyesters and polyamides. In particular, if bio-based diols or glycerol are 

introduced into the polymerization, then 100% bio-derived polymers can be made by this 

method. As a proof-of-concept, the condensation of 12 and 1,5-pentanediol was evaluated 

in this study. The Steglich esterification was carried out in DMF (Scheme 6).  

O

OO

O

OO

n

OH

OO

HO

OO

HO OH
3

DCC/DMAP

DMF, overnight, r.t.

70%  

Scheme 6. Synthesis of the polymer from 12 and 1,5-pentanediol.  

1H NMR (Figure 39) and 13C{1H} NMR spectra (Figure 40) in the appendix show 

the formation of the target polymer. Broad peaks occur at the position where the original 

peaks were located, indicating that the hydrogens or carbons now are still in a similar yet 

slightly different chemical environment. This may be due to the formation of polymer 

chains with different length or even the formation of some macrocyclic molecules.  

3.4 Conclusions 

In this study, a relatively inexpensive and green synthesis for a 100% bio-based 

monomer 3,4-di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid has been developed. For 
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the first time its crystal structure is revealed. The monomer is photo, chemically and 

thermally stable. The monomer is stable under sunlight irradiation, after 1-month heating 

at 100 °C, and in 6 M HCl aq. solution. At last, a proof-of-concept non-petroleum 

dependent polymer is successfully synthesized. 
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CHAPTER 4 

BUILDING BLOCKS FOR DOUBLE-STRANDED POLYMERS 

4.1 Goals of the Study 

Strong and light materials (SLIM) are highly desirable in engineering plastics.72-74 

However, the challenge lies in enhancing the strength of a polymer without simply 

increasing the physical dimension or sacrificing its flexibility.75,76 

 Our goal is to synthesize a linear polymer with double-stranded chains. The two 

strands will be linked by a C-C single bond so that the strength of the polymer is 

enhanced. To achieve this goal, a three-step strategy has been proposed (Chart 6).  

 

Chart 6. The proposed three-step preparation for double-stranded polymers. 
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The goal of the first step is to synthesize a cyclic monomer with a C=C bond at 

each end of the molecule. The second step is to apply intermolecular interactions for self-

assembling the monomer. When desirable crystalline packing is obtained, the third step is 

to generate cyclobutane rings between each neighboring C=C bond by solid-state [2+2] 

photocycloaddition to form the target polymer.  

4.2 Synthesis of the Monomers 

Since our target molecule is symmetric, three possible synthetic routes have been 

proposed (Chart 7). The first one is to cut the target molecule horizontally (Route A). 

Then the next step is to synthesize a linear molecule with two terminal alkenes. 

Following this, an alkene metathesis reaction is needed to form the cyclic target 

molecule. 

     

Chart 7. General designs of the monomer synthesis for the double-stranded polymers. 

Route A 

Route B 

Route C 
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The second route is to cut the target vertically (Route B). The two identical pieces 

should be capable of reacting with each other to form the target cyclic monomer.  C-C 

coupling is also an option.  

The third plan is to cut the target molecule vertically into three parts (Route C). In 

this plan, a symmetric diacid with a C=C bond in the middle can be used as one of the 

starting materials. A diol molecule can be used as the other. Thus, a simple condensation 

reaction is all that is needed to assemble the target polymer. Considering the cost of raw 

materials and ease of implementation, Route C was chosen.  
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Chart 8. The starting materials chosen for monomers. 

As shown in Chart 8, maleic acid or maleic anhydride are selected as the starting 

diacids. 1,3-Propanediol, 1,4-butanediol, and 1,5-pentanediol are chosen as the starting 

diols for monomer synthesis. 

To synthesize the monomer, three different synthetic routes have been tried. In 

Route 1 (Scheme 7), maleic anhydride reacts with article diol to get the cis,cis-diacids 13-

15, which are different in alkyl chain length in the middle. One of the two hydroxy 

groups in 1,4-butanediol needs to be protected with a TBS group. Then the 

monoprotected 1,4-butanediol is reacted with 14 by Steglich esterification to afford 
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compound 14ʹ with 10% yield. Considering that a deprotection and a ring closure reaction 

are needed, and the yield is not satisfying, this synthetic route has been abandoned. 
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Scheme 7. Synthetic Route 1 of double-stranded polymers from cyclic monomers. 

The second route (Scheme 8) develops the synthesis of 13-15. Instead of using 

TEA as a catalyst and base, maleic anhydride and diols are reacted directly with reflux in 

benzene overnight. With this modification, the yield increases by 5% and the process is 

simplified. The diols are replaced with 5-bromopentan-1-ol. It reacts with 15 to give (Z)-

4-{5-[(Z)-4-(5-bromopentyloxy)-4-oxobut-2-enoyloxy]pentyloxy}-4-oxobut-2-enoic acid 

(15ʹ) in 10% yield. Compound 15ʹ undergoes the ring closure reaction by losing a 

molecule of water. MsOH is used as the catalyst and a Dean-Stark apparatus is applied to 

remove water. The key to this reaction is to maintain a low concentration of 15ʹ. 

13-15 

14ʹ 
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Otherwise, a linear polymer would form in a large amount and significantly lower the 

yield for our target molecule. After refluxing the mixture for 24 h, compound 17 is 

isolated in 85% yield.  
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Scheme 8. Synthetic Route 2 of double-stranded polymers from cyclic monomers. 

The synthetic route has been further explored in another attempt (Scheme 9).  The 

synthesis of 17 from 15 is successfully simplified to a single step. When starting 

materials are added into the reaction every hour, compound 17 can be synthesized during 

a period of six days. Recrystallization is used to purify the product 17 with a 70% yield. 

Each oxygen atom connected to the alkyl chain in compound 17 has two lone pairs of 

electrons, when the two oxygen atoms are close to each other, they may encounter steric 

problems preventing them from staying in the same plane. This may cause problems in 

15 

15ʹ 17 
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the self-assembly process, so its trans-trans isomer 18 was synthesized. The isomerization 

can be performed in a single step as shown in Scheme 9. 
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Scheme 9. Synthetic Route 3 of double-stranded polymers from cyclic monomers. 

4.3 Self-assembly of the Monomers 

The next step after the synthesis of 17 is to obtain the desirable crystal packing of 

the monomers. Based on Schmidt’s rule,77 if two C=C bonds are expected to react in 

solid state, they should be parallel and within a distance of 4.2 Å. In our case, if a 

polymer chain is expected to form, the C=C bond on the ‘beginning’ side should match 

the rule with the C=C bond on the ‘ending’ side in the neighboring molecule as shown in 

Chart 9. 

15 
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Chart 9. The crystal packing expected to form a polymer. 

Both crystalline compounds 17 and 18 are obtained in good quality from a series 

of solvents by evaporation. The single crystal structure of 17 was examined by SCXRD. 

Evaporating the solution of 17 in THF, ethyl acetate, CH3CN, and CH2Cl2/MeOH affords 

crystals with the same packing (Figure 14). 

 

Figure 14. Single crystal structure of 17. 
 

The distance between two neighboring C=C bonds is 5.025 Å, which is too far 

away for the [2+2] photocycloaddition to occur. The staircase overlap does not match the 

 Expected features 

 between two neighboring C=C bonds: 

1. Parallel 

2. ≤ 4.2 Å 

3. Staircase-overlapped 
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criteria either. As predicted, the two oxygen atoms connected to the alkyl chain face a 

steric problem staying on the same plane. Consequently, one of the alkyl chains in the 

molecule is tilted. Given these facts, the molecule 17 in this packing is not suitable for 

our designed polymerization. 

Samples for powder XRD tests are obtained from recrystallization in ethyl acetate 

and used directly without further treatment. This spectrum basically matches the powder 

pattern calculated by the Mercury software based on the data of the single crystal 

structure of 17 (Figure 15). The unmatched peaks around 10.3° and 14.3° may belong to 

other crystalline forms of this compound. 

 

Figure 15. Powder XRD of 17.  

The single crystal structure of 18 was examined by SCXRD and solved (Figure 

16). The same packing has been found in the crystals that are grown from the solution of 

THF, EA, and CH2Cl2/MeOH. 
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 Figure 16. Single crystal structure of 18. 

The distance between two neighboring C=C bonds is 6.329 Å, which is greater 

than 4.2 Å. Although the two double bonds are parallel to each other, their orbitals do not 

have overlap. As predicted, there are no longer any steric problems associated with the 

oxygen atoms because of their trans position. Due to the large conjugation, the C=C bond 

lies in a planar environment. Usually, a flat section is required for two molecules to get 

close in crystalline form. Thus, at least this is a good sign for further modification. 

However, the molecule 18 in this packing is not suitable for our designed polymerization. 

The sample for powder XRD test was obtained by cooling down 2-propanol in the 

cis-trans isomerization step. The powder was detected directly without further treatment. 

The spectrum matches the theoretical prediction very well, which also indicates that the 

crystal form shown above is the dominating form for compound 18. The powder XRD 

spectrum is shown in Figure 17. 
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Figure 17. Powder XRD of 18.  

4.4 Cis-trans Isomerization of the Monomers 

The cis-trans isomerization has been found in both our monomers and their 

precursors. The reaction of 14 is shown in Scheme 10. I2 is used as a catalyst to convert 

the cis conformation to trans. Xylene is used as the solvent for reflux. It has a relatively 

high boiling point at 138 °C, which allows the isomerization to occur. When benzene is 

used with reflux overnight, there is no reaction. Different from the thermoreaction in 

solution, the backward reaction in the solid state from 16 to 14 is observed after mercury 

lamp UV irradiation for 6 h. 
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Scheme 10. Cis-trans isomerization of 14. 
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The cis to trans isomerization is clean and provides a quantitative yield. All the 

peaks of the hydrogens in the cis isomer shift downfield when it is converted to the trans 

isomer (Figure 18). The trans to cis isomerization happens under photo-condition. An 

approximate yield of 90% was obtained (Figure 19). The main impurity is identified to be 

the unreacted cis isomer 14. 

  

Figure 18. 1H NMR (CDCl3) spectra of 14 and 16. 

 

Figure 19. 1H NMR (CDCl3) spectrum of 16 after UV irradiation. 
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Similar to the result of 14 and 16, the isomerization between 17 and 18 is 

achieved in a very good yield (Scheme 11 and Figure 20). More than 90% of 17 can be 

recovered from a single cis to trans and trans to cis cycle. In this case, the combination of 

I2 and xylene does not work. Instead, piperidine and 2-propanol should be used. 

 

Scheme 11. Cis-trans isomerization of 17. 

This isomerization happens in both solution (cis to trans) and solid state (trans to 

cis). In the solid-state reaction, I find the product half-melted after UV irradiation even 

though the reaction temperature is significantly lower than its melting point. 

 

Figure 20. 1H NMR spectra of the compounds 17 and 18 in cis to trans and trans to cis 

isomerization. a) The cis isomer 17. b) The crude product of the trans isomer 18 obtained 

after cis to trans isomerization in solution. c) The crude product of cis isomer 17 from 

trans to cis isomerization in the solid state. 
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A possible explanation is that when some trans molecules on the surface are 

converted to cis molecules, the crystal is no longer pure. The appearance of cis isomers in 

the crystalline lattice disrupts the repeating pattern of forces that hold the solid together. 

This allows for part of the solid to melt at temperature in the photoreactors. The melted 

mixture of cis and trans isomers possibly further react to form a cross-linked polymer.  

4.5 Synthesis of the Polymers 

The polymerization has been tried in solution. The selection of solvent relies on 

the UV spectra of the cis isomer 17 and trans isomer 18 (Figure 21). A solvent is usually 

preferred when it does not absorb UV light within the range that the isomers do. Based on 

the UV absorbance spectra of common solvents, hexane is selected.  

 

Figure 21. UV spectra of the cis isomer 17 and trans isomer 18 in hexane. 

A saturated hexane solution of 17 was left under mercury lamp UV irradiation 

overnight with argon protection. A white solid formed at the bottom of the flask. The 

fluffy solid was not soluble in common organic solvents including acetone, acetonitrile, 
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benzene, MeOH, EtOH, chloroform, DCM, diethyl ether, hexane, EA, THF, DMSO, 

DMF and water. There is no peak in the NMR spectrum due to the poor solubility. To 

increase the productivity, a 5 g scale reaction was performed by making a slurry of 17 in 

hexane. The product image is shown in Figure 22.  

 

Figure 22. The image of product obtained from polymerization trial. 

 

Figure 23. IR spectra of monomer 17 and its polymer 17ʹ. 

After polymerization, the peak at 3051 cm-1, which is assigned to vinylic C-H 

stretching in molecule 17, is not shown in the spectrum of 17ʹ (Figure 23). Meanwhile,  
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peaks from alkane C-H stretching (2870-2960 cm-1) become broader and the peaks from 

C=C bond stretching at 1632 cm-1 become smaller than those in the spectrum of 17. 

These changes indicate the disappearance of C=C bond and the formation of new C-C 

bonds. 

 

Figure 24. Solid state 13C{1H} NMR spectra of monomer 17 and polymer 17ʹ. a) The 

spectrum of polymer 17ʹ. b) The spectrum of monomer 17. 

The result from solid state 13C{1H} NMR spectra further support the conclusion 

drawn from IR spectra. The peaks from the carbons in C=O bonds, which are adjacent to 

C=C bonds, shift downfield from 165-167 ppm to around 173 ppm after polymerization. 

This change signifies a loss of conjugation, in this case, due to the [2+2] photoaddition. 

The rise of a new peak in Figure 24a around 40 ppm suggests the creation of sp3 carbons. 

It agrees with the formation of cyclobutane rings during the polymerization. 

4.6 Conclusions 

1,6,12,17-Tetraoxacyclodocosa-3,14-diene-2,5,13,16-tetraone 17, a functional 

symmetric building block for a double-strand polymer is successfully synthesized. The 
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key for reaction is to maintain a low concentration for the ring closure step. This cis 

isomer can be easily converted to the trans isomer with a yield of 99%. These novel 

building blocks and their intermediates have been thoroughly characterized by UV-Vis, 

FT-IR, NMR, powder XRD, and single crystal XRD. The proof-of-concept 

polymerization has been tried and the formation of a double-strand polymer is confirmed 

by IR and solid-state 13C{1H} NMR spectra. 
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CHAPTER 5 

EXPERIMENTAL SECTION 

5.1 General Procedure and Instrumentation 

All starting materials were obtained commercially and used as received. All 

moisture-sensitive reactions were run under argon. THF was distilled from CaH2 before 

use. Analytical TLC was performed on silica G TLC plates w/UV254 (Sorbent 

Technologies). Column chromatography was carried out on silica with 230-400 mesh 

particle size. 1H and 13C{1H} NMR data were collected on a Bruker ADVANCE 500 

MHz spectrometer and processed with its self-bond software. Proton and carbon chemical 

shifts were reported in ppm downfield from tetramethylsilane (TMS) or using the 

resonance of corresponding deuterated solvent as an internal standard. 1H NMR data 

were reported as follows: chemical shift (ppm), s = singlet, d = doublet, t = triplet, q = 

quartet, dd = doublet of doublets, m = multiplet, coupling constant (Hz), and integration. 

IR spectra were acquired on a Thermo Scientific Nicolet iS5 FT-IR spectrometer. 

Electrospray ionization mass spectra (ESI-MS) were obtained on a Time-of-Flight MS 

SYNAPT G2/Si spectrometer (Waters Co., USA). UV-Vis spectra were recorded on a 

Beckman DU400 UV/vis spectrometer. Calorimetric curves were recorded on a Perkin 

Elmer Jade DSC at a ramping rate 10 °C/min. Heat flow was recorded from both the first 

heating and cooling curve. X-ray powder diffraction spectra were collected at room 

temperature in a 2 range of 3°~35° at a scanning rate of 3° min-1.  

a) 
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5.2 Synthetic Procedures 

5.2.1 Synthesis of Benzene-1,3,5-triyl tris(propylcarbamate) 1 

A flame-dried 50 mL round bottom flask equipped 

with a magnetic stir bar was charged with 1-

isocyanatopropane (1.06 g, 12.5 mmol) and 5 drops of 

triethylamine (catalyst) in 10 mL of THF. The mixture 

was stirred at room temperature for 5 minutes. 

Phloroglucinol (470 mg, 3.75 mmol) in 5 mL of THF was added from a dropping funnel 

with a rough rate of 1 drop/s. Then the solution was refluxed overnight. The mixture was 

concentrated in a rotavapor and precipitated in 100 mL of ice cold water. The solid 

product was filtered and air-dried.53 The titled compound 1 (m.p. 96-98 °C) was obtained 

as a white solid (1.35 g, 94%). 1H NMR (CDCl3, 500 MHz) δ 0.95 (t, J = 7.0 Hz, 9H), 

1.59 (m, 8H), 3.22 (m, 8H), 5.06 (t, J = 6.5 Hz 3H), 6.86 (s, 3H); 13C{1H} NMR (CDCl3, 

125 MHz) δ 11.6, 23.4, 43.3, 112.3, 151.8, 154.2; IR (Nujol, ν, cm-1) 3306, 3108, 2960, 

2934, 2875, 1734, 1705, 1612, 1520, 1455, 1385, 1301, 1232, 1141, 1035, 1000, 955, 

896, 866, 759, 668. 

5.2.2 Synthesis of Benzene-1,3,5-triyl tris(butylcarbamate) 2 

A flame-dried 50 mL round bottom flask equipped 

with a magnetic stir bar was charged with 1-

isocyanatobutane (1.19 g, 12 mmol) and 5 drops of 

triethylamine (catalyst) in 10 mL of THF. The mixture 

was stirred at room temperature for 5 minutes. 
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Phloroglucinol (500 mg, 4 mmol) in 5 mL of THF was added from a dropping funnel 

with a rough rate of 1 drop/s. Then the solution was refluxed overnight. The mixture was 

concentrated in a rotavapor and precipitated in 100 mL of ice cold water. The solid 

product was filtered and air-dried.53 The titled compound 2 (m.p. 118-120 °C) was 

obtained as a white solid (1.60 g, 93%). 1H NMR(CDCl3, δ, ppm): 0.95 (t, J = 

7.4 Hz, 9H), 1.38 (m, 6H), 1.54 (m, 6H), 3.24 (m, 6H), 5.04 (s, 3H), 6.85 (s, 3H); 

13C{1H} NMR (CDCl3, δ, ppm): 14.1, 20.2, 32.2, 41.3, 112.2, 151.8. 154.1; IR (Nujol, ν, 

cm-1) 3331, 3289, 2955, 2931, 2871, 2231, 2020, 1744, 1720, 1693, 1607, 1530, 1455, 

1375, 1355, 1317, 1283, 1241, 1137, 1042, 1015, 920, 865, 767, 745, 669. 

5.2.3 Synthesis of Benzene-1,3,5-triyl tris(pentylcarbamate) 3 

A flame-dried 50 mL round bottom flask equipped 

with a magnetic stir bar was charged with 1-

isocyanatopentane (1.36 g, 12 mmol) and 5 drops of 

triethylamine (catalyst) in 10 mL of THF. The mixture was 

stirred at room temperature for 5 minutes. Phloroglucinol 

(500 mg, 4 mmol) in 5 mL of THF was added from a dropping funnel with a rough rate 

of 1 drop/s. Then the solution was refluxed overnight. The mixture was concentrated in a 

rotavapor and precipitated in 100 mL of ice cold water. The solid product was filtered 

and air-dried. The titled compound 3 (m.p. 124-125 °C) was obtained as a white solid 

(1.73 g, 93%). 1H NMR (CDCl3, 500 MHz) δ 0.91 (t, J = 6.5 Hz 9H), 1.34 (m, 12H), 

1.58 (m, 6H), 3.24 (m, 6H), 5.01 (t, J = 6.5 Hz 3H), 6.85 (s, 3H); 13C{1H} NMR (CDCl3, 

125 MHz) δ 14.4, 22.7, 29.3, 29.8, 41.6, 112.5, 151.8, 154.2; IR (Nujol, ν, cm-1) 3334, 
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3291, 2958, 2929, 2859, 1745, 1719, 1693, 1606, 1530, 1456, 1377, 1320, 1237, 1140, 

1063, 1025, 1002, 930, 867, 763, 731, 670. 

5.2.4 Synthesis of Benzene-1,3,5-triyl tris(hexylcarbamate) 4 

A flame-dried 50 mL round bottom flask equipped 

with a magnetic stir bar was charged with 1-

isocyanatohexane (1.13 g, 9 mmol) and 5 drops of 

triethylamine (catalyst) in 10 mL of THF. The mixture was 

stirred at room temperature for 5 minutes. Phloroglucinol 

(380 mg, 3 mmol) in 5 mL of THF was added from a dropping funnel with a rough rate 

of 1 drop/s. Then the solution was refluxed overnight. The mixture was concentrated in a 

rotavapor and precipitated in 100 mL of ice cold water. The solid product was filtered 

and air-dried.55 The titled compound 4 (m.p. 130-131 °C) was obtained as a white solid 

(1.4 g, 93%). 1H NMR(CDCl3, δ, ppm): 0.90 (t, J = 7.0 Hz, 9H), 1.28 – 1.44 (m, 18H), 

1.65 (t, J = 7.1, 6H), 3.23 (m, 6H), 5.05 (s, 3H), 6.85 (s, 3H). 13C{1H} NMR (CDCl3, δ, 

ppm): 14.4, 23.0, 26.8, 30.2, 31.8, 41.6, 112.2, 151.8, 154.2. IR (Nujol, υ, cm-1) 3332, 

3290, 2954, 2927, 2858, 1745, 1719, 1693, 1613, 1578, 1534, 1458, 1240, 1167, 1142, 

1021, 940, 888, 866, 767, 727, 670, 635, 565. 

5.2.5 Synthesis of Benzene-1,3,5-triyl tris(heptylcarbamate) 5 

A flame-dried 50 mL round bottom flask equipped 

with a magnetic stir bar was charged with 1-

isocyanatoheptane (1.27 g, 9 mmol) and 5 drops of 

triethylamine (catalyst) in 10 mL of THF. The mixture was 
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stirred at room temperature for 5 minutes. Phloroglucinol (380 mg, 3 mmol) in 5 mL of 

THF was added from a dropping funnel with a rough rate of 1 drop/s. Then the solution 

was refluxed overnight. The mixture was concentrated in a rotavapor and precipitated in 

100 mL of ice cold water. The solid product was filtered and air-dried. The titled 

compound 5 (m.p. 127-128 °C) was obtained as a white solid (1.5 g, 91%). 1H NMR 

(CDCl3, 500 MHz) δ 0.90 (t, J = 7.0 Hz 9H), 1.32 (m, 24H), 1.56 (m, 6H), 3.25 (m, 6H), 

5.01 (t, J = 5.5 Hz 3H), 6.86 (s, 3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 14.5, 23.0, 

27.1, 29.3, 30.2, 30.6, 32.2, 41.7, 112.4, 151.8, 154.3; IR (Nujol, ν, cm-1) 3329, 3290, 

3058, 2956, 2924, 2873, 2853, 1745, 1718, 1693, 1608, 1531, 1457, 1377, 1308, 1238, 

1142, 1027, 1002, 909, 867, 765, 723, 670, 630. 

5.2.6 Synthesis of 1,3,5-Triisocyantobenzene 6 

1,3,5-Triisocyantobenzene was synthesized by following 

the procedure of M. C. Davis with modification.64 A 500-mL 

round bottomed flask equipped with magnetic stirbar was charged 

with 35 mL of H2O and 10.73 g sodium azide (165 mmol, 3.3 

equiv). The mixture was stirred at room temperature until all solid dissolved. The flask 

was stirred in an ice bath while a solution of 13.2 g 1,3,5-tribenzenecarbonyl chloride (50 

mmol, 1.0 equiv) in 150 mL of 1, 2-dichloroethane was added by addition funnel over 30 

min. The cooling bath was removed, and the mixture was stirred at room temperature. 

After 2.5 hours, the formation of 1,3,5-benzenetricarbonyl triazide was completed. The 

organic phase was washed once with 25 mL of 1, 2-dichloroethane. The organic phase 

was dried over anhydrous MgSO4 for 15 min. The drying agent was removed by filtration 

through filter paper into a 500 mL round-bottomed flask equipped a magnetic stir bar. 

NCO

OCN NCO
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The mixture was refluxed for 2.5 h. The solvent was rotary evaporated, leaving 7.5 g 

(77%) of white solid as a crude product. The crude was recrystallized in n-hexane to give 

the title compound as needle white crystal 5.1 g (68%). 1H NMR (CDCl3, 500 MHz) δ 

6.68 (s, 3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 135.9, 125.7, 118.8. 

5.2.7 Synthesis of Tripropanyl Nʹ,Nʹʹ,Nʹʹʹ-benzene-1,3,5-tricarbamate 7 

A flame-dried 100 mL round-bottomed flask equipped 

with a magnetic stir bar was charged n-propanol 0.8 g (13.2 

mmol, 3.3 equiv.) and 1,3,5-triisocyantobenzene 0.80 g (4 

mmol, 1.0 equiv.) in 25 mL of dry toluene. Three drops of 

Et3N was added to the above solution as a catalyst. The reaction mixture was refluxed 

overnight and monitored by TLC. Evaporation of solvent afforded a yellowish oil, which 

was then purified by column chromatography with an eluent of ethyl acetate/hexane = 1/9 

to afford the titled compound 7 (1.36 g, yield: 85 %, m.p.: 93-94 °C) as white powder. 1H 

NMR (acetone-d6, 500 MHz) δ 0.95 (t, 9H), 1.65 (m, 6H), 4.04 (q, 6H), 7.32 (s, 3H), 9.52 

(s, 3H); 13C{1H} NMR (acetone-d6, 125 MHz) δ 10.5, 22.3, 40.0, 65.8, 104.0, 139.9, 

154.0; IR (Nujol, ν, cm-1): 3293, 3108, 2967, 1696, 1621, 1550, 1461, 1437, 1277, 1234, 

1216, 1099, 854, 770; [M+H+] calculated for C18H27O6N3, 382.1973, Found, 382.1978. 

5.2.8 Synthesis of Tributyl Nʹ,Nʹʹ,Nʹʹʹ-benzene-1,3,5-tricarbamate 8 

A flame-dried 100 mL round-bottomed flask 

equipped with a magnetic stir bar was charged n-butanol 0.98 

g (13.2 mmol, 3.3 equiv.) and 1,3,5-triisocyantobenzene 0.80 

g (4 mmol, 1.0 equiv.) in 25 mL of dry toluene. Three drops 
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of Et3N was added to the above solution as a catalyst. The reaction mixture was refluxed 

overnight and monitored by TLC. Evaporation of solvent afforded a yellowish honey, 

which was further purified by silica gel column chromatography with an eluent of ethyl 

acetate/hexane gradient = 1/9 to afford the titled compound 8 (1.6 g, yield: 90 %, m.p.: 

83-84 °C) as white powder. 1H NMR (acetone-d6, 500 MHz) δ 0.93 (t, 9H), 1.39 (m, 6H), 

1.60 (m, 6H), 4.05 (q, 3H), 7.29 (s, 3H), 9.51 (s, 3H); 13C{1H} NMR (acetone-d6, 125 

MHz) δ 14.0, 19.0, 31.1, 64.1, 104.2, 140.0, 154.1; IR (Nujol, ν, cm-1): 3296, 3108, 2959, 

2873, 1694, 1618, 1552, 1433, 1235, 1092, 98, 853, 770. [M+H+] calculated for 

C21H33O6N3, 424.2442, Found, 424.2448. 

5.2.9 Synthesis of Tripentyl Nʹ,Nʹʹ,Nʹʹʹ-benzene-1,3,5-tricarbamate 9 

A flame-dried 100 mL round-bottomed flask 

equipped with a magnetic stir bar was charged n-pentanol 

1.16 g (13.2 mmol, 3.3 equiv.) and 1,3,5-

triisocyantobenzene 0.80 g (4 mmol, 1.0 equiv.) in 25 mL of 

dry toluene. Three drops of Et3N was added to the above solution as a catalyst. The 

reaction mixture was refluxed overnight and monitored by TLC. Evaporation of solvent 

afforded a yellowish oil, which was further purified by silica gel column chromatography 

with an eluent of ethyl acetate/hexane gradient = 1/9 to afford the titled compound 9 

(1.76 g, yield: 90 %, m.p.: 103-104 °C) as white powder. 1H NMR (CDCl3, 500 MHz) δ 

0.91-0.93 (t, 9H), 1.35-1.37 (m, 12H), 1.65-1.68 (m, 6H), 4.13-4.15 (q, 6H), 6.73 (s, 3H), 

7.28 (s, 3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 14.4, 22.7, 28.4, 28.9, 65.9, 103.5, 

139.7, 153.9; IR (Nujol, ν, cm-1): 3312, 2956, 2932, 2871, 1686, 1615, 1546, 1501, 1274, 
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1238, 1216, 1093, 766, 680; [M+H+] calculated for C24H39O6N3, 466.2912, Found, 

466.2917. 

5.2.10 Synthesis of Trihexyl Nʹ,Nʹʹ,Nʹʹʹ-benzene-1,3,5-tricarbamate 10 

 A flame-dried 100 mL round-bottomed flask 

equipped with a magnetic stir bar was charged n-

hexanol 1.35 g (13.2 mmol, 3.3 equiv.) and 1,3,5-

triisocyantobenzene 0.80 g (4 mmol, 1.0 equiv.) in 25 

mL of dry toluene. Three drops of Et3N was added to 

the above solution as a catalyst. The reaction mixture 

was refluxed overnight and monitored by TLC. Evaporation of solvent afforded a 

yellowish honey, which was further purified by silica gel column chromatography with 

an eluent of ethyl acetate/hexane gradient = 1/9 to afford the titled compound 10 (2.0 g, 

yield: 94 %, m.p.: 103-104 °C) as white powder. 1H NMR (CDCl3, 500 MHz) δ 0.89 (t, 

9H), 1.30-1.38 (m, 18H), 1.61-1.66 (m, 6H), 4.11-4.14 (q, 6H), 6.92 (s, 3H), 7.30 (s, 3H); 

13C{1H} NMR (CDCl3, 125 MHz) δ 14.0, 22.6, 25.5, 28.9, 31.5, 65.5, 103.2, 139.4, 

153.7; IR (Nujol, ν, cm-1) 3299, 2927, 2859, 1685, 1613, 1544, 1433, 1215, 1092, 985, 

863, 767, 678; [M+H+] calculated for C27H45O6N3, 508.3381, Found, 508.3387.  

5.2.11 Synthesis of Triheptyl Nʹ,Nʹʹ,Nʹʹʹ-benzene-1,3,5-tricarbamate 11 

A flame-dried 100 mL round-bottomed flask 

equipped with a magnetic stir bar was charged n-heptanol 

1.53 g (13.2 mmol, 3.3 equiv.) and 1,3,5-

triisocyantobenzene 0.80 g (4 mmol, 1.0 equiv.) in 25 mL of 
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dry toluene. Three drops of Et3N was added to the above solution as a catalyst. The 

reaction mixture was refluxed overnight and monitored by TLC. Evaporation of solvent 

afforded a yellowish honey color, which was further purified by silica gel column 

chromatography with an eluent of ethyl acetate/hexane gradient = 1/9 to afford the titled 

compound 11 (2.2 g, yield: 95 %, m.p.: 100-101 °C) as white powder. 1H NMR (CDCl3, 

500 MHz) δ 0.91 (t, 9H), 1.32(m, 24H), 1.68 (m, 6H), 4.16(q, 6H), 6.71 (s, 3H), 7.29 (s, 

3H); 13C{1H} NMR (CDCl3, 125 MHz) δ 14.5, 23.0, 26.2, 29.3, 29.4, 32.1, 65.9, 103.5, 

139.7, 153.9; IR (Nujol, ν, cm-1) 3302, 2954, 2921, 2853, 1685, 1613, 1544, 1454, 1433, 

1214, 1093, 766, 680; [M+H+] calculated for C30H51O6N3, 550.3851, Found, 550.3856. 

5.2.12 Synthesis of 3,4-di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid 12 

The photosynthesis was carried out in an open top 

quartz tube. 2 g of crystalline 3-(2-furyl)acrylic acid (Alfa 

Aesar, 99%) was grinded to fine power. The acid was 

suspended in 100 mL of hexane in the flask with 

magnetic stirring. The continuously stirred suspension was under UV irradiation of eight 

11-watt black lights for 12 hours. The powder clustered on the inside wall of the tube was 

cleaned occasionally during the reaction. The slurry was then filtered and the white solid 

(1.9 g, m.p. 170-171 °C) was obtained. The crude product was determined as the titled 

compound. 1H NMR (DMSO-d6, 500 MHz) δ 3.68 (dd, 2H), 4.05 (dd, 2H), 6.11 (d, J = 

3.5 Hz 2H), 6.26 (dd, 2H), 7.41 (d, J = 2.5 Hz H), 12.56 (s, 2H); 13C{1H} NMR (DMSO-

d6, 125 MHz) δ 38.0, 43.0, 107.3, 110.8, 142.4, 153.5, 173.6; IR (Nujol, ν, cm-1) 2960, 

2922, 2853, 2162, 2050, 1695, 1596, 1504, 1417, 1350, 1319, 1281, 1259, 1224, 1198, 
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1183, 1167, 1147, 1129, 1075, 1012, 996, 959, 883, 862, 822, 799, 728, 687, 666, 618, 

597. 

5.2.13 Preparation of Polymer from 12 and 1,5-Pentanediol 

12 (1.9 g, 6.88mmol), N′, N-dicyclohexyl-carbodiimide 

(3.14 g, 15.12 mmol, 2.2 equiv), and 4-(N, Nʹ-

dimethylamino)pyridine (80 mg) were added to a solution 

of 1,5-pentanediol (715.5 mg, 6.88 mmol, 1 equiv) in 40 

mL of dry DMF at room temperature with magnetic stirring for 3 hours. The solution was 

filtrated. 100 mL of water was added into the filtrate and collected the precipitate as a 

paste. The paste was dissolved in 50 mL of DCM. By adding diethyl ether to the DCM 

solution, dicyclohexylurea can be further removed as precipitate by following filtration. 

After removing solvent, the sticky oil-like liquid was obtained and tested by NMR. 

5.2.14 Synthesis of (2Z,2ʹZ)-4,4ʹ-[propane-1,3-diylbis(oxy)]bis(4-oxobut-2-enoic 

acid) 13 

 A flame-dried 250 mL round bottom flask 

equipped with a magnetic stir bar was charged with 

maleic anhydride (9.8 g, 100 mmol) and 1,3-

propanediol (3.8 g, 50 mmol) in 200 mL of toluene. 

The mixture was stirred and refluxed overnight. The 

solution was cooled down and recrystallized in ice bath. The solid product was filtered 

and dried. The titled compound 13 (m.p. 93.0-94.6 °C) was obtained as a white solid 

(13.5 g, 99%). 1H NMR (DMSO-d6, 500 MHz) δ 1.95 (m, 2H), 4.17 (t, J = 6.5 Hz 4H), 

O

OO

O

OO

n

O

O

O

HO

O

O

O

OH



 
 

53 

 

6.38 (s, 2H) 6.39 (s, 2H), 13.05 (s, 2H); IR (Nujol, ν, cm-1) 3054, 2977, 2944, 2905, 

2606, 1721, 1695, 1642, 1474, 1440, 1380, 1365, 1323, 1262, 1233, 1207, 1169, 1134, 

1101, 1029, 993, 965, 919, 879, 853, 811, 777, 723, 709, 682, 668, 614, 593. 

5.2.15 Synthesis of (2Z,2ʹZ)-4,4ʹ-[butane-1,4-diylbis(oxy)]bis(4-oxobut-2-enoic 

acid) 14 

A dry 250 mL round bottom flask equipped with a 

magnetic stir bar was charged with maleic anhydride (9.8 g, 

100 mmol) and 1,3-butanediol (4.5 g, 50 mmol) in 200 mL 

of toluene. The mixture was stirred and refluxed overnight. 

The solution was cooled down in ice bath. The solid product was filtered and dried. The 

titled compound 14 (m.p. 119.5-120.4 °C) was obtained as a white solid (14.1 g, 99%). 

1H NMR (DMSO-d6, 500 MHz) δ 1.67 (m, 4H), 4.12 (t, J = 5.0 Hz H), 6.37 (s, 2H), 6.38 

(s, 2H) 13.02 (s, 2H); 1H NMR (CDCl3, 500 MHz) δ 1.80 (m, 4H), 4.25 (m, 4H), 6.25 (d, 

J = 12.5 Hz 2H), 6.42(d, J = 12.5 Hz 2H);13C{1H} NMR (DMSO-d6, 125 MHz) δ 24.9, 

64.3, 129.3, 131.9, 165.6, 167; IR (Nujol, ν, cm-1) 3045, 2969, 2866, 2780, 2578, 1948, 

1714, 1695, 1644, 1474, 1450, 1431, 1393, 1358, 1327, 1309, 1273, 1254, 1225, 1168, 

1049, 1029, 1009, 983, 920, 860, 813, 760, 709, 668, 610. 

5.2.16 Synthesis of (2Z,2ʹZ)-4,4ʹ-[pentane-1,5-diylbis(oxy)]bis(4-oxobut-2-enoic acid) 15 

A dry 250 mL round bottom flask equipped with a 

magnetic stir bar was charged with maleic anhydride (9.8 g, 

100 mmol) and 1,3-pentanediol (5.2 g, 50 mmol) in 200 mL 

of toluene. The mixture was stirred and refluxed overnight. 
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The solution was cooled down and recrystallized in ice bath. The solid product was 

filtered and dried. The titled compound 15 (m.p. 86.1-87.2 °C) was obtained as a white 

solid (15.2 g, 99%). 1H NMR (DMSO-d6, 500 MHz) δ 1.38 (t, J = 8.0 Hz 2H), 1.62 (m, 

4H), 4.09 (t, J = 6.0 Hz 4H), 6.37 (s, 2H), 6.38 (s, 2H), 13.00 (s, 2H); 13C{1H} NMR 

(DMSO-d6, 125 MHz) δ 20.6, 26.3, 63.2, 127.7, 130.2, 164.2, 165.4; IR (Nujol, ν, cm-1) 

3059, 2940, 2900, 2876, 2858, 2619, 2530, 1717, 1700, 1643, 1479, 1430, 1372, 1357, 

1271, 1252, 1206, 1170, 1067, 1042, 976, 916, 886, 819, 738, 685, 595, 576. 

5.2.17 Synthesis of (2E,2ʹE)-4,4ʹ-[butane-1,4-diylbis(oxy)]bis(4-oxobut-2-enoic 

acid) 16 

A flame-dried 50 mL round 

bottom flask equipped with a magnetic 

stir bar was charged with 14 (0.7 g) and 

I2 (0.1 g) in 35 mL of xylene. The mixture was stirred and refluxed overnight with N2 

protection. The solution was cooled down and recrystallized in an ice bath. The solid 

product was filtered and dried. The titled compound (m.p. 179.2-180.1 °C) was obtained 

as a white solid (0.7 g, 100%). 1H NMR (DMSO-d6, 500 MHz) δ 1.72 (m, 4H), 4.19 (t, J 

= 5.5 Hz 4H), 6.698 (s, 2H) 6.700 (s, 2H), 13.24 (s, 2H); 13C{1H} NMR (DMSO-d6, 125 

MHz) δ 25.0, 64.8, 132.9, 135.0, 164.9, 166.1; IR (Nujol, ν, cm-1) 3079, 2962, 2878, 

2675, 2542, 1712, 1682, 1632, 1557, 1466, 1428, 1306, 1281, 1263, 1218, 1168, 1042, 

992, 955, 934, 914, 900, 889, 777, 755, 735, 659. 
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5.2.18 Synthesis of (3Z,14Z)-1,6,12,17-tetraoxacyclodocosa-3,14-diene-2,5,13,16-

tetraone 17 

A flame-dried 4 L round bottom flask equipped 

with a magnetic stir bar was charged with 15 (200 mg, 

0.67 mmol) and 1,5-pentanediol (70 mg, 0.67 mmol) in 

3 L of benzene. The mixture was stirred and refluxed 

with a Dean-Stark apparatus to remove water. The same amount of 15 and 1,5-

pentanediol was added to the solution every hour (there’s a no-operation gap of 8 hours 

between each day). The water was removed from Dean-Stark apparatus every 4 hours. 

After 6 days, the solution was cooled down and solvent was removed under vacuum. 200 

mL of ethyl ether was added to the residue and the mixture was stirred then sonicated for 

20 min. The solid product was filtered and dried. After recrystallization in EA, the titled 

compound 17 (m.p. 122.9-124.7°C) was obtained as a white solid (18 g, 71%). 1H NMR 

(CDCl3, 500 MHz) δ 1.48 (m, 4H), 1.73 (m, 8H), 4.21 (t, J = 6.5 Hz H), 6.24(s, 4H); 1H 

NMR (DMSO-d6, 500 MHz) δ 1.35 (m, 4H), 1.62 (m, 8H), 4.10 (d, J = 4.5 Hz 8H), 6.46 

(d, J = 4.5 Hz 4H); 13C{1H} NMR (CDCl3, 125 MHz) δ 21.9, 28.0, 64.9, 129.7, 165.3; IR 

(Nujol, ν, cm-1) 3051, 2956, 2893, 2871, 2357, 2210, 2158, 1964, 1726, 1708, 1633, 

1476, 1438, 1402, 1378, 1301, 1285, 1222, 1168, 1143, 1118, 1071, 1060, 1036, 1006, 

996, 976, 949, 904, 894, 879, 850, 836, 823, 783, 750, 736, 652, 621, 608, 591. 
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5.2.19 Synthesis of (3E,14E)-1,6,12,17-tetraoxacyclodocosa-3,14-diene-2,5,13,16-

tetraone 18 

A flame-dried 50 mL round bottom flask equipped with a 

magnetic stir bar was charged with 17 (0.51 g) and 

piperidine (0.5 mL, catalyst) in 20 mL of 2-propanol. The 

mixture was stirred and refluxed for 1.5 h. The solution 

was cooled down in ice bath. The solid product was 

filtered and dried. The titled compound 18 (m.p. 98.7-

100.0 °C) was obtained as a white solid (0.5 g, 99%). CDCl3: 
1H NMR (CDCl3, 500 

MHz) δ 1.59 (m, 4H), 1.74 (m, 8H), 4.27 (t, J = 6.0 Hz 8H), 6.83 (s, 4H); 13C{1H} NMR 

(CDCl3, 125 MHz) δ 23.9, 28.8, 65.3, 134.2, 165.3; IR (Nujol, ν, cm-1) 3073, 3000, 2964, 

2923, 2867, 2844, 1714, 1645, 1469, 1456, 1432, 1385, 1357, 1304, 1266, 1255, 1237, 

1196, 1177, 1098, 1069, 1043, 990, 976, 960, 907, 871, 842, 804, 770, 748, 731, 655, 

607, 583. 

5.2.20 Synthesis of a Double-stranded Polymer from 17 

A flame-dried 500 mL quartz tube equipped with a magnetic stir bar was charged 

with 17 (5 g) in 400 mL of hexane. The mixture was stirred under mercury lamp UV 

irradiation with argon protection overnight. The fluffy white solid was scraped off the 

inside surface of the tube. It was dried under vacuum. The product of this reaction was 

obtained as a white solid (4.9 g, 98%). IR (Nujol, ν, cm-1) 2955, 2870,1725, 1633, 1458, 

1392, 1165, 1058, 1006, 975, 879, 850, 823, 736, 652, 608, 585. 
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APPENDIX  

SELECTED SPECTRA 
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Figure 25. 1H NMR spectrum of benzene-1,3,5-triyl tris(propylcarbamate) 1 in CDCl3. 
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Figure 26. 13C{1H} NMR spectrum of benzene-1,3,5-triyl tris(propylcarbamate) 1 in 

CDCl3. 
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Figure 27. IR spectrum of benzene-1,3,5-triyl tris(propylcarbamate) 1. 
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Figure 28. IR spectrum of benzene-1,3,5-triyl tris(butylcarbamate) 2. 
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Figure 29. 1H NMR spectrum of benzene-1,3,5-triyl tris(pentylcarbamate) 3 in CDCl3. 
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Figure 30. 13C{1H} NMR spectrum of benzene-1,3,5-triyl tris(pentylcarbamate) 3 in 

CDCl3. 
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Figure 31. IR spectrum of benzene-1,3,5-triyl tris(pentylcarbamate) 3. 
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Figure 32. 1H NMR spectrum of benzene-1,3,5-triyl tris(heptylcarbamate) 5 in CDCl3. 
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Figure 33. 13C{1H} NMR spectrum of benzene-1,3,5-triyl tris(heptylcarbamate) 5 in 

CDCl3. 
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Figure 34. IR spectrum of benzene-1,3,5-triyl tris(heptylcarbamate) 5. 
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Figure 35. 1H NMR spectrum of 3,4-di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid 12 

in DMSO-d6. 
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Figure 36. 13C{1H} NMR spectrum of 3,4-di(furan-2-yl)cyclobutane-1,2-dicarboxylic 

acid 12 in DMSO-d6. 
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Figure 37. IR spectrum of 3,4-di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid 12. 
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Figure 38. IR spectrum of 3-(2-furyl)acrylic acid 12ʹ. 
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Figure 39. 1H NMR (DMSO-d6) spectrum of 3,4-di(furan-2-yl)cyclobutane-1,2-

dicarboxylic acid 12 after 6 M HCl (aq.) treatment overnight. 
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Figure 40. 1H NMR (DMSO-d6) spectrum of 3,4-di(furan-2-yl)cyclobutane-1,2-

dicarboxylic acid 12 after 1 month heat treatment at 100 °C. 
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Figure 41. 1H NMR (DMSO-d6) spectrum of the polymer product obtained from 3,4-

di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid 12 and 1,5-pentanediol. 
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Figure 42. 13C{1H} NMR (DMSO-d6) spectrum of the polymer product from 3,4-

di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid 12 and 1,5-pentanediol. 
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Figure 43. 1H NMR (CDCl3) spectrum of the polymer product prepared from 3,4-

di(furan-2-yl)cyclobutane-1,2-dicarboxylic acid 12 and glycerol. 
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Figure 44. IR spectrum of the polymer product from 3,4-di(furan-2-yl)cyclobutane-1,2-

dicarboxylic acid 12 and glycerol. 
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Figure 45. 1H NMR spectrum of (2Z,2ʹZ)-4,4ʹ-[propane-1,3-diylbis(oxy)]bis(4-oxobut-2-

enoic acid) 13 in DMSO-d6. 
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Figure 46. IR spectrum of (2Z,2ʹZ)-4,4ʹ-[propane-1,3-diylbis(oxy)]bis(4-oxobut-2-enoic 

acid) 13. 
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Figure 47. 1H NMR spectrum of (2Z,2ʹZ)-4,4ʹ-[butane-1,4-diylbis(oxy)]bis(4-oxobut-2-

enoic acid) 14 in DMSO-d6. 
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Figure 48. 13C{1H} NMR spectrum of (2Z,2ʹZ)-4,4ʹ-[butane-1,4-diylbis(oxy)]bis(4-

oxobut-2-enoic acid) 14 in DMSO-d6. 
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Figure 49. IR spectrum of (2Z,2ʹZ)-4,4ʹ-[butane-1,4-diylbis(oxy)]bis(4-oxobut-2-enoic 

acid) 14. 
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Figure 50. 1H NMR spectrum of (2Z,2ʹZ)-4,4ʹ-[pentane-1,5-diylbis(oxy)]bis(4-oxobut-2-

enoic acid) 15 in DMSO-d6. 
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Figure 51. 13C{1H} NMR spectrum of (2Z,2ʹZ)-4,4ʹ-[pentane-1,5-diylbis(oxy)]bis(4-

oxobut-2-enoic acid) 15 in DMSO-d6. 
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Figure 52. IR spectrum of (2Z,2ʹZ)-4,4ʹ-[pentane-1,5-diylbis(oxy)]bis(4-oxobut-2-enoic 

acid) 15. 
 



 
 

86 

 

 

Figure 53. 1H NMR spectrum of (2E,2ʹE)-4,4ʹ-[butane-1,4-diylbis(oxy)]bis(4-oxobut-2-

enoic acid) 16 in DMSO-d6.  
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Figure 54. 13C{1H} NMR spectrum of (2E,2ʹE)-4,4ʹ-[butane-1,4-diylbis(oxy)]bis(4-

oxobut-2-enoic acid) 16 in DMSO-d6. 
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Figure 55. IR spectrum of (2E,2ʹE)-4,4ʹ-[butane-1,4-diylbis(oxy)]bis(4-oxobut-2-enoic 

acid) 16. 
 

O

O

O

O

OH

O

HO

O



 
 

89 

 

 

Figure 56. 1H NMR spectrum of (3Z,14Z)-1,6,12,17-tetraoxacyclodocosa-3,14-diene-

2,5,13,16-tetraone 17 in DMSO-d6. 
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Figure 57. 1H NMR spectrum of (3Z,14Z)-1,6,12,17-tetraoxacyclodocosa-3,14-diene-

2,5,13,16-tetraone 17 in CDCl3. 
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Figure 58. 13C{1H} NMR spectrum of (3Z,14Z)-1,6,12,17-tetraoxacyclodocosa-3,14-

diene-2,5,13,16-tetraone 17 in CDCl3. 
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Figure 59. IR spectrum of (3Z,14Z)-1,6,12,17-tetraoxacyclodocosa-3,14-diene-2,5,13,16-

tetraone 17. 
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Figure 60. 1H NMR spectrum of (3E,14E)-1,6,12,17-tetraoxacyclodocosa-3,14-diene-

2,5,13,16-tetraone 18 in CDCl3. 
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Figure 61. 13C{1H} NMR spectrum of (3E,14E)-1,6,12,17-tetraoxacyclodocosa-3,14-

diene-2,5,13,16-tetraone 18 in CDCl3. 
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Figure 62. IR spectrum of (3E,14E)-1,6,12,17-tetraoxacyclodocosa-3,14-diene-2,5,13,16-

tetraone 18. 
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Figure 63. IR spectrum of (2Z,2ʹZ)-4,4ʹ-[propane-1,3-diylbis(oxy)]bis(4-oxobut-2-enoic 

acid) 14 after 27 h mercury lamp UV irradiation. 
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Figure 64. IR spectrum of (2Z,2ʹZ)-4,4ʹ-[butane-1,3-diylbis(oxy)]bis(4-oxobut-2-enoic 

acid) 14 after 27 h mercury lamp UV irradiation. 
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Figure 65. IR spectrum of (2Z,2ʹZ)-4,4ʹ-[pentane-1,3-diylbis(oxy)]bis(4-oxobut-2-enoic 

acid) 15 after 27 h mercury lamp UV irradiation. 
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Figure 66. 1H NMR (DMSO-d6) spectrum of (2E,2ʹE)-4,4ʹ-[butane-1,3-

diylbis(oxy)]bis(4-oxobut-2-enoic acid) 16 after 72 h mercury lamp UV irradiation. 
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Figure 67. IR spectrum of (3Z,14Z)-1,6,12,17-tetraoxacyclodocosa-3,14-diene-2,5,13,16-

tetraone 17 after 2-day mercury lamp UV irradiation. 
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Figure 68. 1H NMR (CDCl3) spectrum of (3E,14E)-1,6,12,17-tetraoxacyclodocosa-3,14-

diene-2,5,13,16-tetraone 18 after 12 h mercury lamp UV irradiation. 
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Figure 69. IR spectrum of the product obtained from the solution of (3Z,14Z)-1,6,12,17-

tetraoxacyclodocosa-3,14-diene-2,5,13,16-tetraone 17 in hexane after 12 h mercury lamp 

UV irradiation. 
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