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ABSTRACT

Passive longwave infrared radiometric satellite-based retrievals of sea surface

temperature (SST) at instrument nadir are investigated for cold bias caused by un-

screened optically-thin cirrus (OTC) clouds (cloud optical depth ≤ 0.3; COD). Level

2 split-window SST retrievals over tropical oceans (30◦ S - 30◦ N) from Moderate Res-

olution Imaging Spectroradiometer (MODIS) radiances collected aboard the NASA

Aqua satellite (Aqua-MODIS) are collocated with cloud profiles from the Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, mounted on the

independent NASA CALIPSO satellite. OTC are present in approximately 25% of

tropical quality-assured (QA) Aqua-MODIS Level-2 data, representing over 99% of

all contaminating cirrus found. This results in cold-biased SST retrievals using either

split- (MODIS, AVHRR and VIIRS) or triple-window (AVHRR and VIIRS only) re-

trieval methods. SST retrievals are modeled based on operational algorithms using

radiative transfer model simulations conducted with a hypothetical 1.5 km thick OTC

cloud placed incrementally from 10.0 - 18.0 km above mean sea level for cloud optical

depths (COD) between 0.0 - 0.3. Corresponding cold bias estimates for each sensor

are estimated using relative Aqua-MODIS cloud contamination frequencies as a func-

tion of cloud top height and COD (assuming them consistent across each platform)

integrated within each corresponding modeled cold bias matrix. Split-window relative

OTC cold biases, for any single observation, range from 0.40◦ - 0.49◦ C for the three

sensors, with an absolute (bulk mean) bias between 0.10◦ - 0.13◦ C. Triple-window

retrievals are more resilient, ranging from 0.03◦ - 0.04◦ C relative and 0.11◦ - 0.16◦

C absolute. Cold biases are constant across the Pacific and Indian Ocean domains.

ix



Absolute bias is smaller over the Atlantic, but relative bias is larger due to different

cloud properties indicating that this issue persists globally.
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CHAPTER I

INTRODUCTION

Sea surface temperature (SST) measurements are a core input for a host of

meteorological and oceanographic modeling systems (e.g., Kelley et al. 2002; Harris

and Maturi 2003; Tang et al. 2004; Donlon et al. 2007; Miyazawa et al. 2013). In

theory, errors in background, or first guess, model SSTs can be mitigated by assim-

ilating observed values, resulting in increased forecast skill. Tropical cyclone (TC)

intensity forecasting, for instance, represents one specific area of significance for SST

assimilation. Studies have shown exponential relationships between TC strength and

SST using both maximum wind (DeMaria and Kaplan 1994) and minimum pressure

(Miller 1958) as proxies for intensity. Thus, accurate SSTs are essential for accu-

rate TC prediction. Additionally, El Niño-Southern Oscillation (ENSO) forecasts are

highly dependent on SST values (Tang et al. 2004). The proper understanding and

prediction of the global weather implications of ENSO require correct SST fields at

model initialization.

While the spatial and temporal coverage of in-situ SST measurements are

improving with the deployment of buoy networks (e.g., Roemmich et al. 2009), global

daily measurements remain unavailable at resolutions finer than approximately 100

km. Thus, SSTs retrieved from passive radiometric remote sensors aboard earth-

orbiting satellites are the primary source of fine resolution global estimates.

Retrievals of SST are based fundamentally on Planck’s Law: the radiation

emitted by an object is based upon that object’s temperature and emissivity at the
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emission wavelength. By measuring the amount of energy, or radiance, emitted by

an object at a specific wavelength at an assumed known emissivity, the object’s tem-

perature can be retrieved through the equation:

T (λ, Iλ) = ε · hc
kλ

· 1

log[ 2hc
2

λ5Iλ
− 1]

, (1.1)

where T(λ,Iλ) is the retrieved temperature, ε is the object’s emissivity, h is the

Planck constant, c is the speed of light, k is the Boltzmann constant, and λ is the

wavelength at which the radiance (Iλ) is measured. If ε is assumed to be 1, the

resulting temperature is referred to as the brightness temperature. However, retrievals

based upon this equation are only valid when the atmosphere between the object

and the sensor measuring the radiance emitted by the object is transparent at the

wavelength of measurement. A transparent atmosphere would not absorb or emit any

radiation at a specific wavelength, and thus, all emitted radiance would be measured.

In reality, the atmosphere is never transparent, and atmospheric correction is required.

Satellite measured radiance is a function of surface emitted and reflected ra-

diance, the portion of that radiance that is extinguished by the atmosphere, atmo-

spheric emitted and reflected radiance, and extinction of atmospheric radiance by the

atmosphere. This relationship is given by the radiative transfer equation:

Iλ(measured) = Iλ(surface)e
−τ(surface,satellite)+∫ satellite

surface

Iλ(layer)e
−τ(layer,satellite)d(layer), (1.2)

where Iλ(measured) is the satellite measured radiance, I λ(surface) is the upward

radiance leaving the surface, τ(surface,satellite) is the optical depth between the

surface and the satellite, I λ(layer) is the upward radiance leaving an atmospheric
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layer, and τ(layer,satellite) is the optical depth between a layer and the satellite.

Atmospheric correction attempts to solve for I λ(surface) using only the I λ(measured)

term. If the atmosphere is transparent, τ(surface,satellite) and layer terms become

zero, and Iλ(measured)=Iλ(surface). In the case of SST retrieval, the atmospheric

correction terms are solved through regression with in-situ observations. Importantly,

the atmospheric correction is developed to account for only atmosphere as clouds are

supposedly screened. Any unscreened cloud will cause the atmospheric correction to

fail.

Satellite sensors launched in the 1960 - 1970s were only equipped with a short-

wave infrared (IR) channel to retrieve SST because the atmosphere is nearly trans-

parent at this wavelength (e.g., Deschamps and Phulpin 1980; Barton 1995). Atmo-

spheric transparency is desired as it results in a higher signal to noise ratio, or more

of the sensor retrieved signal being from the surface. However, shortwave channels

are highly susceptible to errors associated with solar reflection during daylight hours,

usually limiting the corresponding SST retrievals to nighttime only.

Beginning in 1979 with the launch of the NOAA-6 satellite, the Advanced Very

High Resolution Radiometer (AVHRR) instrument afforded longwave IR channels at

10.8 and 11.9 µm wavelengths. This made daytime SST retrievals more practical

though technique referred to as “split-window” because of the differences in water

vapor absorption between the two channels (Llewellyn-Jones et al. 1984; McClain

et al. 1985; Barton 1995; Davis 2007). While measurements at these longwave IR

wavelengths are more sensitive to atmospheric water vapor, solar signal is negligible.

The split-window technique is based upon the assumption that the difference between

the true SST and brightness temperature near 11 µm is proportional to the difference

between the true SST and brightness temperature near 12 µm due to their similar

3



atmospheric absorption characteristics (Merchant et al. 2009). This assumption is

used to correct for atmospheric water vapor biases.

Triple-window algorithms for nighttime SST retrieval have also been developed

that combine the 11 and 12 µm bands with the 3.9 µm shortwave band, thus using

three channels for retrieval. Because water vapor absorption is significantly weaker at

3.9 µm than 11 or 12 µm, triple-window retrievals are considered more accurate. The

addition of 3.9 µm measurements may also aid in cloud screening. Unfortunately, due

to solar contribution in the 3.9 µm band, these measurements are currently limited to

nighttime (Li et al. 2001). Uniquely, the Geostationary Operational Environmental

Satellite (GOES) - 12 has used the 3.9 µm band for daytime retrievals using a split-

window SST technique with the 11 µm band due to the instrument’s lack of a 12 µm

band. This retrieval is made possible by using radiative transfer model simulations to

estimate and correct the solar contribution to the signal. As a result, processing time

is increased and uncertainty in the solar contamination corrections result in lower

overall fidelity (Merchant et al. 2009; Koner et al. 2015).

Satellite-borne passive infrared (IR) radiometers in current use for SST re-

trievals include: AVHRR (Walton 1988), GOES (Wu et al. 1999), the Moderate

Resolution Imaging Spectroradiometer (MODIS; Brown and Minnett 1999), and the

Visible Infrared Imaging Radiometer Suite (VIIRS; Petrenko et al. 2014). SST re-

trieval algorithms designed for each sensor are based on the specific IR channels

available for each instrument.

Motivation

IR radiometers measure column-integrated radiances, and thus, the presence

of typically colder-than-surface cloud and large aerosol particles will result in SST

retrievals that are colder than in-situ. Retrievals are developed using the assump-
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tion of clear skies. Consequently, existing SST algorithms are designed to identify

and remove pixels containing cloud. Operational MODIS SST cloud screening, for in-

stance, is achieved through a series of threshold, spatial homogeneity, and climatology

tests (Brown and Minnett 1999). Despite efforts by other passive IR radiometer al-

gorithms to correct for cloud, contamination still remains—particularly with respect

to optically-thin cirrus (OTC) clouds. Sassen and Cho (1992) define these unique

clouds as exhibiting translucence with respect to blue sky above them, as evident

to a ground observer. Conversely, a nadir-viewing passive IR radiometric imager is

presumably dominated by the relatively warm ground below, making these clouds

difficult to distinguish respective to surrounding clear skies or background surface

features in terms of spatial and thermal contrast.

Holz et al. (2008) demonstrated how the lower threshold sensitivity of the

MODIS cloud product tends to occur very near a cloud optical depth (COD) of

0.30, approximately upper threshold of OTC presence advocated by Sassen and Cho

(1992). Similar bias has been identified in the MODIS aerosol product. Toth et

al. (2013) reported the presence of both cirrus and low-topped, near-surface clouds

in otherwise quality-assured MODIS aerosol optical depth retrievals. Huang et al.

(2013) also found the presence of cirrus causing contamination in MODIS aerosol

retrievals. Ground-based solar/near-IR radiometers used by the Aerosol Robotic

Network (AERONET) have been found to exhibit significant OTC contamination

(Chew et al. 2011; Huang et al. 2011). Although various satellite retrieved SST

products implement different cloud clearing algorithms, evidence within the cited

literature strongly suggests that passive IR radiometric algorithms exhibit limited

skill in detecting OTC due to sensor limitations.

Unlike passive radiometers that measure emitted or refelected solar energy,

active sensors emit a pulse of energy and measure the reflection of this energy off
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of objects. Ergo, an active sensor can easily measure thin clouds. Specifically, light

detection and ranging (LiDAR) sensors can observe OTC. The Cloud Aerosol LiDAR

with Orthogonal Polarization (CALIOP; Winker et al. 2010) aboard the Cloud-

Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO; Stephens

et al. 2002; Winker et al., 2009, 2010) satellite can be used to determine cloud

contamination in retrieved products from the MODIS sensor aboard the Aqua satellite

(e.g., Toth et al. 2013). Both CALIPSO and Aqua fly in the satellite constellation

referred to as the A-Train, and thus, virtually observe the scene at the same time.

Figure 1: The 5◦ x 5◦ occurrence frequency of a) cirrus and b) optically thin cir-
rus (OTC) over the tropics as retrieved from Cloud Aerosol Lidar with Orthogonal
Polarization.

Residual cirrus clouds present a significant concern for IR SST retrievals due

to their high effective altitude, cold cloud tops, and elevated relative occurrence.

CALIOP-observed (a) cirrus and (b) OTC frequency of occurrence in the tropics

are shown in Figure 1. Cirrus is present in approximately 50-90% of all equatorial

scenes, corresponding with the inter-tropical convergence zone. Specifically, over the

Maritime Continent of Southeast Asia, cirrus is present in 70-90% of all scenes. Cirrus
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occurrence decreases with increasing latitude, to a minimum of roughly 10% at ± 30◦

latitude. Compared to cirrus, OTC occurrence is similar in distribution, though less

frequent. Maximum OTC occurrence, again, occurs over the Maritime Continent at

a rate of approximately 40-60%. Equatorial regions exhibit OTC occurrence rates of

nearly 40%, dropping to roughly 10% with increasing latitude. Given the extremely

high occurrence and cold cloud tops, both cirrus and OTC have greater potential for

significant radiance contamination and aliasing at IR wavelengths than atmospheric

aerosols.

To date, the cold biasing of IR satellite-retrieved SSTs has only been discussed

quantitatively for unscreened dust and volcanic aerosols (e.g., Merchant et al. 1999;

Bogdanoff et al. 2015) and only qualitatively for cloud contamination (e.g., Merchant

and Le Borgne 2004; Vázquez-Cuervo and Armstrong 2004; Hosoda 2011; Merchant

et al. 2012). Similar to OTC, aerosols act as strong longwave absorption and emission

sources that contaminate sea surface emission signals and SST retrievals. Neverthe-

less, significant aerosol plumes, such as dense dust storms, occur less frequently and

over limited spatial and temporal domains compared to cirrus. However, aerosol

plumes are most prominent at significantly lower altitudes and warmer temperatures

than cirrus, which result in less thermal contrast with the sea surface and a relatively

weaker associated SST cold bias overall.

As mentioned, NASA’s A-Train presents a unique opportunity for the pairing

passive IR radiometric and active-based remote sensing instruments, using Aqua and

CALIPSO satellites, for investigating the cold biasing of IR SST retrievals by OTC.

This paper describes a series of such experiments using paired MODIS/CALIOP mea-

surements to, first, identify residual OTC contamination properties within the MODIS

SST retrieval product and, then, estimate corresponding SST cold biases for split-

window and triple-window IR algorithms developed for MODIS, VIIRS and AVHRR.
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Using techniques similar to Bogdanoff et al. (2015) for aerosols, a one-dimensional

radiative transfer model is used to simulate SST retrieval algorithm performance by

modeling OTC contamination for the different sensors, methodologies, and corre-

sponding channels. CALIOP/MODIS cloud contamination properties are assumed

consistent across VIIRS and AVHRR for the modeling experiments. The goal of this

work is a broad-scale assessment of the impact of OTC on operational IR radiometric

satellite oceanographic sensors.
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CHAPTER II

DATASETS

Passive IR Satellite SST Products and Retrieval Models

Examination of cloud contamination bias is performed for the MODIS, AVHRR,

and VIIRS sensors. Specifically, the MODIS sensor aboard the Aqua satellite, the

AVHRR sensor aboard MetOp-A, and the VIIRS sensor aboard the Suomi-NPP satel-

lite are used. Aqua is positioned in a sun-synchronous orbit in the satellite constella-

tion known as the A-Train, crossing the equator at approximately 1:30 (both AM and

PM) local solar time. MetOp-A and Suomi-NPP are also sun-synchronous crossing

the equator at approximately 9:30 and 1:30 AM and PM, respectively. While both

Aqua and Suomi-NPP cross the equator at similar local solar times, Aqua crosses

the equator in daylight while Suomi-NPP crosses the equator at night. Thus, Aqua

and Suomi-NPP are approximately at opposite ends of the globe at any given time.

To create high confidence cloud contamination results, only the MODIS retrieved

SST product is collocated with CALIOP cloud retrievals. Because CALIOP (aboard

CALIPSO) also flies in the A-Train, observations of from each sensor will be col-

lected within 5 minutes of each other. The methodology used for this collocation is

explained in the following chapter.

Daily 1-km 11 and 12 µm split-window retrieved SST values from the Level

2 Aqua-MODIS SST product (MOD28; available online1) from January through De-

cember of 2012 are used to collocate with CALIOP. To the author’s knowledge, at

1http://oceandata.sci.gsfc.nasa.gov/MODISA/L2/
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the time of this publication, there is not an operational MODIS triple-window re-

trieval. Each MODIS SST retrieval is assigned a quality level (QL) between 0 and

4 (0 indicating no quality flags or a perfect retrieval; 4 indicating a failed retrieval).

QL is determined through a series of tests. Specifically, these tests include spatial

homogeneity tests (i.e., pixel-by-pixel “buddy checks”), climatology-deviation tests

to remove unrealistic values, and baseline-deviation checks that look to filter values

that represent a clear deviation from the weekly Optimum Interpolation Sea Surface

Temperature (OISST; Reynolds and Smith 1994; Brown and Minnett 1999). The au-

thor is not aware of defined operational protocols for working with the MODIS SST

product. In this study, it is assumed that QL of 0 and 1 are of sufficient fidelity so as

to be referred to as quality assured (QA) data. In contrast, QL > 1 are considered to

represent retrievals with significant (>3◦ C) deviations from climatology or baseline

values that are sufficiently indicative of contamination (possibly cloud). A summary

of the MODIS SST product, QL flags, and tests is available online 2. Results described

below are shown for each of QL=0, QL=1, and QA for completeness.

Split-window MODIS IR SST retrievals are conducted using measured radi-

ances at the 11.03 and 12.02 µm bands, chosen as they exhibit significant differences

in water vapor absorption and proximity to the average planetary blackbody emis-

sion temperature (Brown and Minnett 1999). Retrievals are performed through the

following system of equations (Brown and Minnett 1999):

for∆TB ≤ 0.5 :

SST = a00 + (a01 · TB11) + (a02 · ∆TB · SST ) + (a03 · ∆TB · (
1.0

µ
− 1)), (2.1)

2http://oceancolor.gsfc.nasa.gov/cms/atbd/sst/
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for∆TB ≥ 0.9 :

SST = a10 + (a11 · TB11) + (a12 · ∆TB · SST ) + (a13 · ∆TB · (
1.0

µ
− 1)). (2.2)

Here, ∆TB is the difference between the brightness temperature at the 11 µm and 12

µm bands, TB11 is the brightness temperature at the 11 µm band, SST is a baseline

SST value created by bilinaear interpolation of the OISST product or a near-IR

retrieved SST value (from the previous night’s retrieval), µ is the cosine of the sensor

zenith angle, and each a coefficient is continuously tuned and optimized through

verification with in-situ buoy observations. For values of ∆TB greater than 0.5 and less

than 0.9, the retrieved SST is equal to the linear interpolation of the above equations

with respect to ∆TB. Uncertainties arise in the deriving of operational coefficients due

to ambiguities in relating buoy observations with satellite radiances and the possible

presence of OTC. For simulations of this retrieval described in Chapter III, the a

coefficients used are: a00=1.1010; a01=0.9470; a02=0.1710; a03=1.4210; a10=1.8820;

a11=0.9350; a12=0.1230; a13=1.3720.

The MetOp-A AVHRR split-window SST retrieval is performed using radi-

ances at the 10.8 and 11.9 µm bands, from Channels 4 and 5, using the following

equation from the Naval Oceanographic Office (NAVO) Nonlinear SST (NLSST) al-

gorithm (Walton et al. 1998):

SST = a0 + (a1 · TB4) + (a2 · ∆TB · SST ) + (a3 · ∆TB · (
1.0

µ
− 1)), (2.3)

where TB4 is the brightness temperature from Channel 4, ∆TB is the difference in

brightness temperatures between Channels 4 and 5, SST is a baseline or climatological

SST, µ is the cosine of the sensor zenith angle, and the coefficients, a1, a2, and a3,

are tuning constants again based on optimization between retrievals and observations
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from global drifting buoys. Note the similarity of this relation with the equations

used in the MODIS retrieval. To model this retrieval, a set of operational coefficients

provided by NAVO and used by Bogdanoff et al. are applied (2015; a0=-263.3489;

a1=0.9690; a2=0.0772; a3=1.0318).

The NPP-Suomi VIIRS split-window retrieval algorithm applies radiances at

the 10.80 and 12.05 µm bands from Channels 15 and 16 to retrieve SST (Brisson et

al. 2002; Merchant et al. 2008; Petrenko et al. 2014), using the following equation:

SST = a0 + (a1 · TB15) + (a2 · TB15 ·
1.0

µ
) + (a3 · ∆TB) + (a4 · ∆TB · SST )+

(a5 · ∆TB · 1.0

µ
) + (a6 ·

1.0

µ
), (2.4)

where TB15 is the brightness temperature from Channel 15, ∆TB is the difference in

brightness temperatures between Channels 15 and 16, µ is the cosine of the sensor

zenith angle, SST is the Level 4 SST provided from the Canadian Met Center (or

other Level 4 SST product if unavailable), and the coefficients, a0 through a6, are again

the optimized tuning constants. The set of coefficients used to model the retrieval

here come from the Advanced Clear-Sky Processor for Oceans (ACSPO) SST algo-

rithm as of July 2015 (Boris Petrenko, personal communication 2015; a0=5.623045;

a1=0.985192; a2=0.019775; a3=0.456758; a4=0.067732; a5=0.705117; a6=-4.714369).

Algorithms using triple-window retrieval techniques are also available for AVHRR

and VIIRS. The MetOp-A AVHRR triple-window SST is retrieved using:

SST = a0 + (a1 + [a2 · (
1.0

µ
− 1)]) · TB3.7 + (a3 + [a4 · (

1.0

µ
− 1)])) · ∆TB+

[a5 · (
1.0

µ
− 1)], (2.5)
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where TB3.7 is the brightness temperature from the 3.7 µm band, ∆TB is the dif-

ference in brightness temperatures between Channels 4 and 5, µ is the cosine of

the sensor zenith angle, and the coefficients, a0−5 are tuning constants. For mod-

elling the retrieval below, the set of coefficients applied are described by Météo-

France (a0=1.15351; a1=0.02109; a2=0.02109; a3=0.68858; a4=0.33056; a5=1.27303;

Le Borgne et al. 2007).

The operational NAVO NPP-Suomi VIIRS triple-window algorithm features

the equation:

SST = a0 + (a1 · TB3.7) + (a2 · SST · ∆TB) + [a3 · (
1.0

µ
− 1)] + (a4 · ∆TB)+

[a5 · (
1.0

µ
− 1)] + [a6 · SST · (

1.0

µ
− 1) · ∆TB], (2.6)

where TB3.7 is the brightness temperature from the 3.7 µm band, ∆TB is the difference

in brightness temperatures between Channels 15 and 16, µ is the cosine of the sensor

zenith angle, SST is a baseline SST, and the coefficients, a0−6, are tuning constants.

Here, the operational coefficients used in this study are provided by NAVO (a0=-

276.0353; a1=1.0139; a2=0.0027; a3=1.4069; a4=0.8880; a5=-0.4000; a6=0.0269).

3em Quality-testing and cloud clearing for the retrieval algorithms of each

sensor vary slightly and stem from the tests created for the AVHRR Pathfinder al-

gorithm described in Kilpatrick et al. (2001). Specifically, the MODIS cloud clear-

ing and quality control algorithm is based upon the use of brightness temperature

difference thresholds and spatial homogeneity from IR measurements within the at-

mospheric window region. If a pixel passes the previous tests, the retrieved SST is,

then, required to be within a specific range of the expected SST (from climatology or

previous retrieval; Brown and Minnett 1999). The VIIRS cloud algorithm is identical

to the MODIS algorithm based upon the Miami Decision Tree (Minnett et al. 2013).
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In contrast to the MODIS and VIIRS retrieval algorithms, the MetOp-A AVHRR

retrieval algorithm references both IR and visible channels for cloud clearing through

threshold and spatial homogeneity tests (Levanant et al. 2007).

Whereas collocation is possible only between CALIOP and MODIS due to

temporal constraints, VIIRS and AVHRR cloud clearing efficiency cannot be inde-

pendently characterized using the aformentioned methodolgy. Modeling of OTC bias

in those datasets, described in Chapters III and IV, requires some knowledge of con-

taminating OTC properties. Thus, as introduced above, this study assumes that OTC

contamination is consistent across the three radiometers. Contamination properties

relating cloud top heights and relative frequencies from MODIS/CALIOP are, thus,

extrapolated to VIIRS and AVHRR.

CALIOP Cirrus Cloud Products

CALIOP cirrus cloud observations considered in this study come from the

Version 3.02 Level 2 CALIPSO 5-km cloud layer product (available online3). This

product includes cloud top and base heights, corresponding temperatures, and cloud

optical depths (COD). Cloud temperatures come from Goddard Model Assimilation

Office (GMAO) Goddard Earth Observing Model-Version 5 data embedded within

the product. This product was chosen for its integration of resolved cloud layers at

multiple spatial resolutions (5, 20, and 80 km; Vaughan et al. 2009), which more

readily include OTC. Clouds resolved with CALIOP algorithms at finer resolution

(0.33 and 1.00 km) are not included in this product as they likely represent spatially-

inhomogeneous liquid water clouds and not cirrus.

Cirrus clouds are specifically distinguished in the CALIOP dataset by apply-

ing a maximum cloud top temperature of -37◦ C. The basis for applying this thermal

3https://eosweb.larc.nasa.gov/
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threshold is motivated by Campbell et al. (2015). Though conservative, significant

ambiguity arises from interpreting autonomous LiDAR signals, and distinguishing

warm cirrus (typically, sheared fallstreaks decoupled from their parent cloud that give

the appearance of a cirrus cloud with an apparent top height temperature warmer

than -37◦ C) from glaciated liquid water clouds that are mixed phase, and thus, not

cirrus in the phenomenological sense. These latter clouds feature ice microphysical

characteristics that are sufficiently different than traditional cirrus. Thereby, to con-

strain the radiative transfer simulations described in the next chapter, only clouds

with tops colder than -37◦ C are considered as cirrus.

COD is used as the dependent variable for estimating SST retrieval cold biases.

COD uncertainties in the CALIPSO 5-km cloud layer product used have recently been

characterized by Garnier et al. (2015). CALIOP COD algorithms perform either con-

strained retrievals, where COD is solved directly by comparing molecular atmospheric

backscatter returns above and below the cloud, or unconstrained ones, where molecu-

lar returns below the cloud cannot be estimated and an a-priori relationship between

cloud extinction and backscatter coefficients is applied based on cloud centroid tem-

perature to solve COD (Vaughan et al. 2009; Young and Vaughan 2009). Whereas we

are dealing almost exclusively with relatively low COD cases with OTC, our sample

compositions tend strongly toward constrained retrievals for which we anticipate low

relative error.
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CHAPTER III

METHODOLOGY

MODIS-CALIOP Collocation and Cloud Contamination

Collocation was performed for the year of 2012 over tropical oceans (30◦

S - 30◦ N). The tropical latitudes are investigated given the significant occurrence

frequencies for cirrus found there, causing presumably greater cold biasing of SST,

relative to global conditions (Mace et al. 2009). The tropics are also particularly

interesting due to the importance of accurate SST retrievals in this region. Namely,

this region is important to both ENSO and tropical cyclone forecasting. However, as

will be discussed in Chapter IV, assumptions about regions outside of the tropics can

be made given the results here.

MODIS retrieves SST at 1 km2 spatial resolution. Collocation between Aqua-

MODIS and the 5 km by 70 m CALIOP product was performed by identifying those

QA MODIS SST 1 km2 pixel centers within 1 km of the CALIOP LiDAR ground

track. Specifically, the ground track was found through linear interpolation of the

5 km CALIOP product center location. Once the linear ground track was found,

distance from the linear ground track to the center of each MODIS retrieved SST pixel

is determined. Pixel centers within 1 km of of the linear ground track were, then,

collocated with the nearest 5 km CALIOP center pixel. Frequency of contamination

is reported by cloud type (all cirrus, OTC, and other) and QA level. Residual cloud

top altitudes, temperatures, and COD are also examined. Contamination statistics

are described in Chapter IV.
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This collocation technique could result in a CALIOP cloud layer pixel being

collocated with a maximum of 14 MODIS retrieved SST pixels. However, because of

the spatial characteristics of the product only containing cloud information resolved

at 5 km, this should not induce a high bias in residual cirrus frequency. Conversely,

estimates of residual stratocumulus are expected to be low as these clouds are unlikely

resolved at 5 km. Because this study only focuses on cirrus due to the extreme differ-

ence in SST and cirrus cloud top temperature, in certain areas globally, stratocumulus

may be the dominate species of cloud. Thus, future examination into stratocumulus

bias should be completed.

OTC SST Bias Estimates Using SBDART

OTC cold bias estimates for each of the satellite retrievals were solved through

radiative transfer simulations using the Santa Barbara DISORT Atmospheric Radia-

tive Transfer model (SBDART; Ricchiazzi et al. 1998). Following the methodology

used by Bogdanoff et al. (2015), top-of-atmosphere radiance values for sensor nadir

were calculated using SBDART as equipped with a standard tropical atmosphere and

surface temperature of 26.85◦ C that is assumed the corresponding profile SST. A

two-dimensional SST cold bias array of solutions for MODIS, VIIRS and AVHRR

split-window and VIIRS and AVHRR triple-window retrievals is created by simulat-

ing a 1.5 km thick OTC layer present at varying top height altitudes (10.00 - 18.00

km in 0.25 km segments, all heights above mean sea level; MSL) and COD (0.00 -

0.30, in 0.01 segments from 0.01-0.06 and 0.02 segments above 0.06).

Mean OTC SST bias values were estimated by integrating the product of the

frequency of OTC-only occurrence for each altitude/COD bin and the corresponding

SST cold bias modeled with SBDART. Only single layer OTC is considered in these

frequencies. Residual multiple layer OTC, cirrus, non-cirrus cloud, or combination of
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would likely cause more bias as the column integrated COD is larger. Due to ambi-

guity in cloud positions, bias for these multiple layered clouds is not solved. Relative

bias, defined as the mean bias of all OTC-only contaminated retrievals, was calculated

using only the relative frequency of occurrence. Finally, the absolute bias is the mean

bias of all pixels assuming only OTC contamination (i.e., relative bias normalized by

the frequency of OTC occurrence) given by the absolute frequency of occurrence. As

a subsequent sensitivity test, the proportionality between the difference in the SST

and brightness temperatures from 11 µm and 12 µm channels is examined for each

sensor, given that the split-window technique is based upon the assumption that this

relationship is constant.

The core SBDART module simulates cirrus clouds as spherical ice grains (Ric-

chiazzi et al. 1998). Yang et al. (2005), however, reported that differing ice particle

structures result in significant variance in absorption efficiency at the wavelengths

used in the SST retrievals. Thus, a modified version of the SBDART ice micro-

physical scheme consistent with that of the ice particle structures defined in Yang

et al. (2005) was developed. For particles with effective radius smaller than 35 µm,

the augmented ice microphysical scheme assumes 50% bullet rosettes, 25% hollow

columns, and 25% plates. For particles with effective radius larger than 35 µm, the

scheme assumes 30% aggregates, 30% bullet rosettes, 20% hollow columns, and 20%

plates (Yang et al. 2005). Within cloud, SBDART features a method to adjust the

water vapor such that the atmosphere is saturated with respect to liquid water. This

method has been updated to saturate the layer with respect to ice if the temperature

is below -37◦ C, and with respect to liquid water above this temperature using the

Goff-Gratch equations and assuming water vapor to be an ideal gas. This provides a

more realistic intra-cloud enviroment.
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Cloud structure was designed within the simulations such that radiances from

both a cirrus cloud with a linearly-increasing extinction coefficient from cloud base

to top (i.e., a fallstreak) and a cloud with constant extinction coefficient (i.e., block

cloud) were solved independently. The block cloud and fallstreak structures are re-

ferred to as ‘infinite-gradient’ and ‘shelf-gradient’ in Bogdanoff et al. (2015), re-

spectively. The modified SBDART simulations showed sensitivity to cloud structure

was found to be negligible. Ergo, only results from the fallstreak simulations are

presented.

Sensitivity to ice crystal effective radius in SBDART was constrained using

the following equation:

De = αeβT where,

α = 3.084×102, β = 0.0152 for − 56◦ < T < 0◦C ,

α = 9.171×104, β = 0.1170 for − 71◦ < T < −56◦C ,

α = 8.330×101, β = 0.0184 for − 85◦ < T < −71◦C , (3.1)

which relates the ice crystal effective diameter (De) to cloud temperature (T ) as

seen in observations of midlatitude ice clouds (Heymsfield et al. 2014). The assump-

tion is made that midlatitude ice particles are identical to tropical ice particles at

a similar temperatures. Field experiments into tropical cirrus are difficult due to

the extreme altitudes required to sample such clouds, thus, there are no published

relationships indicating particle size specifically for tropical cirrus. Ultimately, this

equation provides a relationship between SBDART’s standard atmospheric temper-

ature, altitude, and effective radius. Ice crystal effective radius is approximately 95

µm at an altitude of 10 km dropping to near 10 µm by 16 km. Note that there is

no normalizing of the actual MODIS/CALIOP contaminated OTC observations as

19



a function of height/temperature to the temperature profile of the standard atmo-

sphere used to derive the bias values. This will induce some representativeness error

in the solutions, since the contaminated observations will not directly coincide with

the temperatures and heights of the standard atmosphere. Regardless, as shown in

Chapter IV, this error is likely reasonably negligible given that vertical SST bias does

not change significantly over scales of only a few hundred meters that this uncertainty

would otherwise be relevant.

Sensitivity of the SST error matrices to column water vapor concentrations

were tested by adjusting the water vapor mixing ratio profile in the SBDART standard

atmosphere during the simulations. Two tests were performed aside from the direct

solutions using the standard atmospheric water vapor profile. The first was conducted

with the water vapor mixing ratio set to zero everywhere except within the cloud. The

other test saturated the entire column with respect to liquid water at temperatures

above -37◦ C and with respect to ice below that temperature. The purpose of this

exercise was to provide ample context for considering the integrated bulk SST biases

solved from the error matrices, given that the impact of water vapor absorption and

column-integrated instrument sensitivities within the SST retrievals themselves can

be considerable (e.g., Brown and Minnett 1999).

Observational Representativeness

To characterize the representativeness of the SBDART simulations and cor-

responding cold bias estimates, an analysis of contaminated MODIS data points is

performed for examination of how the calculated bias relates in practice. It is as-

sumed that this is the most practical means to evaluate the skill of the estimates.

Advanced Microwave Scanning Radiometer (AMSR) microwave retrieved SSTs, for

instance, are not biased by OTC presence, given the much longer wavelength than
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IR. Unfortunately, AMSR data are not available for the 2012 study period. Further-

more, AMSR SSTs are retrieved at approximately 25km2 resolution, causing a lower

confidence collocation to finer resolution data from the IR radiometers. To illustrate,

single AMSR-retrieved SST pixel can correspond with as many as 625 MODIS pixels.

Buoy collocation with MODIS could also be attempted. However, the bias estimates

introduced in Chapter IV are, in fact, approximately equal to that found between

buoy subsurface temperature measurements and remotely-sensed skin temperature

retrievals (Brown and Minnett 1999).

Instead, linear regression is performed between Aqua-MODIS SST retrievals

and CALIOP COD for OTC-contaminated retrievals over the Southeast Asian Mar-

itime Continent (75◦E/15◦S - 135◦E/30◦N) for August - October 2012. Linear re-

gression over a constrained domain should provide a rough estimate of real world

bias imparted by OTC. Thus, a limited spatial and temporal domain was chosen to

mitigate any large spatial and seasonal variability, as sample spread limits the effec-

tiveness of the target regressions. This result is qualitatively compared to OTC SST

bias estimates derived from the SBDART simulations to gauge how representative

the bias estimates are in practice.
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CHAPTER IV

ANALYSIS

Collocation Statistics

Figure 2: Numbers of collocated Level 2 Aqua-MODIS sea surface temperature (SST)
and Level 2 CALIOP cloud-profiling pixels, for MODIS data Quality Levels (QL) 0
and 1, in 5◦ by 5◦ bins between 30◦ S and 30◦ N.

Although large spatial variation in pixel counts is evident, bins with relatively

low collocated Aqua-MODIS/CALIOP data points (such as the Southeast Asian Mar-

itime Continent) still correspond to nearly 10,000 collocated points (Fig. 2). The

spatial variability in valid collocations varies both with the availability of QA data,

which can be limited due to cloud or other forms of radiance contamination of the

MODIS retrieval and OTC occurrence. Comparing Fig. 1 and Fig 2., it is evident that

several areas of large OTC occurrence with relatively smaller Aqua-MODIS/CALIOP

collocated data counts.
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Figure 3: Relative frequencies of collocated Aqua-MODIS SST retrieval contamina-
tion, as identified by CALIOP, for a) all cloud, and b) all cirrus (defined as all clouds
with a top height temperature -37◦C).

Total all-cloud contamination frequencies for the collocated data points bear

strong pattern resembalance to observed cirrus occurrence (c.f., Figs 3a and 1a). Of

particular interest is the Maritime Continent where cloud is present in upwards of

70% of all collocated data pairs. Comparison of cirrus contamination (Fig. 3b) with

all-cloud contamination (Fig. 3a) shows that the majority (> 90%) of all residual

cloud is cirrus, though this is likely influenced to some degree by the composition of

the Level 2 CALIOP dataset used (i.e., clouds smaller than 5 km are not resolved).

Furthermore, 99.4% of the cirrus sample is OTC (25.7% absolute frequency). These

distributions and percentages of cirrus contamination closely match expectation (see

Fig. 1 and Fig. 1 in Sassen et al. 2008).
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Figure 4: Spatial extent of oceanic basins used in this study, with corresponding 5◦

by 5◦ bins depicted from 30◦ S and 30◦ N.

Relative contamination characteristics were also investigated (every 5◦ by 5◦

bin) with its parent ocean (Fig. 4). Bins that overlap both the Atlantic and Pacific

basins, such as bins over Central America and South America, were excluded in the

basin investigation. All bins were included, however, between the Indian and Pacific

basins because that geographic boundary is not physically well defined and oceanic

mixing between those basins occurs in the tropics.

Figure 5: For collocated Aqua-MODIS SST and CALIOP cloud profile data pairs,
the absolute difference between the raw QA product and that after cloud screening.

Following in Fig. 5 is the corresponding difference between the cirrus contam-

inated QA MODIS SST retrievals and those retrievals verified to be clear-sky with

CALIOP, whereby the corresponding cold bias effect due to overwhelming OTC pres-

ence is first realized. While the majority of all 5◦ by 5◦ bins indicate colder cirrus

biased retrievals, a small portion of bins indicates that cirrus biased retrievals are

warmer than clear-sky retrievals. This discrepency is likely due to seasonality and
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data sampling. While these warm bins do occur in regions of high data count (see

Fig. 2), they overwhelmingly occur in regions of low cirrus contamination frequency

(see Fig. 3). This results in the mean cirrus contaminated bin SST being indicative

of only a few cirrus contaminated retrievals—likely in a localized region of the 5◦ by

5◦ bin. Hence, the difference provides a bias that is not indicative of actual retrieval

bias within the bin. Accordingly, bins that have high retrieval numbers and moderate

to high contamination frequency are all biased cold.

Figure 6: Relative frequencies of all residual cloud found in contaminated Level 2
Aqua-MODIS SST/CALIOP cloud profile data pairs as function of a) cloud top height
and b) cloud top temperature, plotted globally and respectively for the Atlantic,
Indian and Pacific Ocean basins (see insets).

Histograms of cloud top heights and temperatures for residual clouds identi-

fied with CALIOP from the collocated Aqua-MODIS data pairs in each basin are

presented in Figs. 6a and 6b, respectively. These plots exhibit a bi-modal distribu-

tion between high-altitude cold clouds and near-surface warm clouds, echoing Toth

et al. (2013). The Atlantic corresponds with, on average, warmer and lower cloud

tops, as well as more low-level cloud contamination than the other oceanic basins.

This is likely due to cooler SSTs in the Atlantic, causing lower tropopause heights

and lesser influence on ice particle nucleation from the tropical tropopause transition
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layer (TTL; Fueglistaler et al. 2009). The TTL is an isothermal layer between the

troposphere and the stratosphere. The altitude of this layer is highly dependent on

the surface temperature (Fueglistaler et al. 2009). Convective processes within the

tropics assist in the formation of TTL cirrus through two mechanisms. First, deep

convection can reach the stratosphere causing a cirrus anvil to form within the stable

TTL. While this anvil is likely to be optically thick, outflow from the anvil can cause

optically thin cloud formation (Jensen et al 1996; Virts 2009). Secondly, synoptic- or

planetary-scale waves can result in local ascent. As the air rises, it cools, reaching su-

persaturation with respect to ice, leading to cirrus formation (Jensen et al 1996; Virts

2009). The Pacific and Indian Oceans exhibit very similar residual cloud properties,

which is likely a reflection of both basins sharing the exceptionally warm waters in

and around the Maritime Continent.

All basins correspond with a relatively strong residual cirrus signal. Retrieval

contamination statistics are outlined in Table 1, distinguished by MODIS retrieval QL

and oceanic basin. Here, cirrus contamination refers only to cirrus with no underlying

cloud. Globally, the majority of collocations (>76%) were QL = 0. These best-quality

retrievals still experienced OTC cloud contamination at a rates of nearly 23%, while

the lower QL = 1 data experienced OTC contamination at approximately 36%. This

results in an overall QA dataset OTC contamination rate of roughly 26% throughout

the tropics. It is important to note that global analysis is not simply completed by

summing the data count for all basins. As previously mentioned, bins that overlapped

the Pacific and Atlantic basins are not considered in basin analysis. These bins are,

however, considered in the global analysis.
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Table 1: Collocated data counts, all-cloud, all-cirrus, and optically-thin cirrus (OTC)
contamination statistics calculated from Aqua-MODIS/CALIOP collocation globally
and for the Atlantic, Indian and Pacific Ocean basins. Quality control refers to the
MODIS Quality Level (QL) 0 and 1 Level 2 dataset used for collocation with CALIOP.

QUALITY GLOBAL ATLANTIC INDIAN PACIFIC

0

DATA COUNT 11,638,397 2,185,709 2,746,064 5,750,944

ALL CLOUD
CONTAMINATION

24.75% 40.45% 26.81% 27.64%

CIRRUS
CONTAMINATION

22.63% 17.66% 25.06% 25.64%

OPTICALLY THIN
(OTC) FRACTION

99.70% 99.70% 99.75% 99.66%

MEAN OTC COD 0.034 0.033 0.034 0.034

1

DATA COUNT 3,569,473 701,492 774,006 1,870,591
ALL CLOUD
CONTAMINATION

39.78% 35.62% 43.79% 41.48%

CIRRUS
CONTAMINATION

36.40% 31.47% 40.74% 38.41%

OPTICALLY THIN
(OTC) FRACTION

98.86% 99.15% 98.83% 98.75%

MEAN OTC COD 0.054 0.047 0.056 0.055

2

DATA COUNT 15,207,870 2,887,201 3,520,070 7,621,535
ALL CLOUD
CONTAMINATION

28.28% 24.14% 30.54% 31.04%

CIRRUS
CONTAMINATION

25.86% 21.01% 28.50% 28.77%

OPTICALLY THIN
(OTC) FRACTION

99.42% 99.50% 99.46% 99.37%

MEAN OTC COD 0.041 0.038 0.041 0.041
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Figure 7: Histograms of residual optically-thin cirrus (OTC) cloud optical depths for
Aqua-MODIS SST QL 0 and 1 (see insets) for a) global, b) Atlantic Ocean basin, c)
Indian Ocean basin, and d) Pacific Ocean basin.

OTC COD occurrence histograms for contaminated data pairs in each basin

are shown in Fig. 7. Similar to OTC distributions derived globally from CALIOP,

shown in Campbell et al. (2015), residual COD occurrence across all basins decreases

exponentially with increasing COD, with counts in the “sub-visual” range (COD <

0.03; Sassen and Cho 1992) occurring two orders of magnitude more often than those

approaching the upper-OTC COD threshold near 0.30. Mean contaminating OTC

COD globally is near 0.04. This near-sub-visual mean OTC COD is significant in

that it validates the assumption that contamination is consistent between MODIS,

AVHRR, and VIIRS sensors. Despite generally lower and warmer clouds, the Atlantic
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Basin coincides with the optically-thinnest clouds. Additionally, QL = 1 clouds were

optically thicker than QL = 0, as expected. This result is consistent with greater

expectation of cloud contamination that would more likely reflect the presence of

denser clouds.

Split-Window Bias Estimates

Figure 8: SBDART radiative transfer model simulations of potential SST retrieval
cold bias for an unscreened OTC as a function of cloud top height and optical depth
for a) MODIS, b) AVHRR, and c) VIIRS.Overlaid on each composite are relative
Aqua-MODIS/CALIOP collocated cirrus contamination occurrence frequencies (%).

Respective OTC-only split-window SST cold bias matrices are shown in Fig.

8 for (a) Aqua-MODIS, (b) AVHRR and (c) VIIRS. Overlaid on these data are
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relative occurrence percentages of cloud contamination from Aqua-MODIS/CALIOP.

As described in Chapter III, only single-layered OTC bias is solved. Therefore, the

range of cloud top altitudes (10 - 18 km) are only meant to simulate OTC. The 10 km

minimum altitude corresponds to -37◦ C, which is defined as the maximum cloud top

temperature for cirrus distinction. The magnitude of bias for each cloud type is given

by the color-filled contours. For example, a cloud with cloud top altitude of 14 km

and COD of 0.10 has a solved cold bias of approximately 3◦ C for all sensors. White

contours indicate the global relative frequency of occurance of each cloud type bin.

To demonstrate, a cloud with cloud top altitude at 16.5 km and COD of 0.01 occurs

in approximately 2% of all OTC contaminated retrievals. Thus, net OTC cold bias

estimates are solved by integrating the product of relative and absolute frequencies

of cloud type occurance and corresponding bias at each bin as functions of cloud

top height and COD. Again, it is emphasized for AVHRR and VIIRS that this step

assumes OTC cloud clearing algorithm infidelities are reasonably consistent across

each sensor.

The SBDART simulations, and thus all corresponding bias estimates, were

only conducted for the nadir view of either sensor. Assuming that OTC contamina-

tion occurrence rates are relatively consistent at all viewing angles as a function of

COD, an expanded study could take into account varying passive sensor response to

viewing angle. However, given the complexities of passive cloud screening algorithms,

such as “buddy check” pixel comparisons, the assumption that occurrence rates are

consistent at all viewing angles is likely a poor assumption. Furthermore, relative

COD effectively increases with greater viewing angle due to increased optical path

length, clouds of lower absolute COD may be better screened at non-nadir viewing

angles. With that said, most of the residual cloud was approaching sub-visual dis-

tinction. Given the increases in relative COD due to viewing geometry, these clouds

30



may still be indetectable. In that case, cold bias may increase at non-nadir viewing

angles.

Evident in the cold bias simulations is sensitivity to both altitude, and, thus,

cloud temperature and ice effective radius. Despite this, there is arguably larger

sensitivity to COD (i.e., ice water path). Each sensor retrieval algorithm exhibits

generally negligible bias at sub-visual COD (COD ≤ 0.03; Sassen and Cho 1992).

All sensors exhibit maximum bias at CODs approaching 0.3 and cloud top altitudes

below 15 km, corresponding with effective cloud particle radii greater than 25 µm.

This maximum indicates bias greater than 8◦ C for MODIS retrievals and greater

than 6◦ C for AVHRR and VIIRS retrievals. Above 15 km (ice effective radius < 25

µm), both MODIS and AVHRR exhibit smaller retrieval biases, near approximately

4◦ C and 2◦ C respectively. VIIRS, however, exhibits a secondary maximum above

16 km, approaching 6◦ C. This secondary maximum is presumably due to VIIRS

exhibiting increased sensitivity to smaller effective radii near 10 µm than the other

sensors, reflecting slight differences in sensor spectral response, retrieval wavelength,

and retrieval algorithms themselves.

Cold bias estimates are reported in Tables 2 and 3 for each sensor, based upon

Aqua-MODIS QL and oceanic basin. Ranges of bias associated with water vapor

sensitivity are also reported according to the supplemental experiments described in

Chapter III. The mean absolute global QA OTC-only SST cold bias estimated across

the three platforms from these simulations without varying the relative humidity

profile from that of the standard atmosphere is between 0.10 and 0.13◦ C. This range

reflects the absolute aggregate cold bias estimated for each sensor in bulk-average

tropical SST, given OTC-only contamination occurrence rates on the order of 25%.

The corresponding relative bias ranges from 0.40 - 0.49◦ C, reflecting the mean cold

bias specifically for OTC-contaminated single observations. AVHRR and MODIS
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Table 2: Mean absolute, or bulk mean, OTC cold biases in MODIS, AVHRR, and
VIIRS SST split-window retrievals from SBDART simulations and assuming Aqua-
MODIS/CALIOP collocated contamination frequencies, segregated as function of QL,
global and Atlantic, Indian and Pacific Ocean basins. Absolute OTC cold biases for
atmospheric profile with no water vapor and saturated column are given in parenthe-
ses, respectively.

SENSOR QL
GLOBAL

(◦ C)
ATLANTIC

(◦ C)
INDIAN

(◦ C)
PACIFIC

(◦ C)

MODIS
0

0.09
(0.06 - 0.13)

0.08
(0.06 - 0.11)

0.10
(0.06 - 0.15)

0.10
(0.06 - 0.15)

1
0.24

(0.18 - 0.34)
0.21

(0.17 - 0.28)
0.28

(0.20 - 0.39)
0.13

(0.09 - 0.19)

QA
0.13

(0.09 - 0.18)
0.08

(0.08 - 0.10)
0.10

(0.09 - 0.13)
0.10

(0.09 - 0.13)

AVHRR
0

0.09
(0.09 - 0.11)

0.08
(0.08 - 0.10)

0.10
(0.09 - 0.13)

0.10
(0.09 - 0.13)

1
0.24

(0.23 - 0.29)
0.21

(0.20 - 0.25)
0.28

(0.26 - 0.34)
0.24

(0.22 - 0.30)

QA
0.13

(0.12 - 0.16)
0.11

(0.11 - 0.13)
0.14

(0.13 - 0.17)
0.13

(0.12 - 0.17)

VIIRS
0

0.07
(0.25 - 0.22)

0.07
(0.19 - 0.17)

0.08
(0.29 - 0.24)

0.08
(0.29 - 0.25)

1
0.21

(0.56 - 0.54)
0.18

(0.45 - 0.44)
0.23

(0.66 - 0.60)
0.20

(0.60 - 0.57)

QA
0.10

(0.32 - 0.30)
0.09

(0.25 - 0.24)
0.11

(0.37 - 0.32)
0.11

(0.36 - 0.33)
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Table 3: As in Table 2, but for mean relative, or per contaminated observation, cold
biases.

SENSOR QL
GLOBAL

(◦ C)
ATLANTIC

(◦ C)
INDIAN

(◦ C)
PACIFIC

(◦ C)

MODIS
0

0.40
(0.27 - 0.59)

0.45
(0.33 - 0.62)

0.40
(0.26 - 0.60)

0.38
(0.34 - 0.57)

1
0.66

(0.48 - 0.92)
0.68

(0.53 - 0.90)
0.68

(0.49 - 0.96)
0.62

(0.44 - 0.90)

QA
0.49

(0.34 - 0.70)
0.53

(0.40 - 0.72)
0.49

(0.33 - 0.71)
0.46

(0.30 - 0.67)

AVHRR
0

0.40
(0.38 - 0.51)

0.45
(0.42 - 0.54)

0.40
(0.38 - 0.51)

0.68
(0.35 - 0.49)

1
0.66

(0.62 - 0.80)
0.68

(0.65 - 0.79)
0.68

(0.64 - 0.83)
0.62

(0.59 - 0.78)

QA
0.49

(0.45 - 0.60)
0.53

(0.51 - 0.63)
0.49

(0.46 - 0.61)
0.46

(0.43 - 0.58)

VIIRS
0

0.32
(1.11 - 0.97)

0.37
(1.08 - 0.97)

0.31
(1.14 - 0.96)

0.29
(1.11 - 0.97)

1
0.57

(1.55 - 1.49)
0.59

(1.44 - 1.40)
0.57

(1.62 - 1.48)
0.53

(1.56 - 1.50)

QA
0.40

(1.25 - 1.14)
0.44

(1.21 - 1.13)
0.39

(1.29 - 1.12)
0.37

(1.26 - 1.15)

33



biases are identical and approximately 20% greater than VIIRS. Relative cold biases

are, of course, greater, reflecting the impact of a single event as opposed to an event

normalized by its absolute occurrence rates.

Water vapor sensitivity is relatively stable across MODIS and AVHRR, with

AVHRR exhibiting slightly less variance than MODIS. Values derived for the per-

turbed water vapor mixing ratio profiles relative to the standard atmosphere en-

compass the two sets simulations as lower and upper bounds, respectively (0.09◦ -

0.18◦ C and 0.12◦ - 0.16◦ C absolute and 0.34◦ - 0.70◦ and 0.45◦ - 0.60◦ C relative,

respectively). VIIRS results differ significantly, exhibiting a range of values much

greater than the unperturbed case (0.32◦ - 0.30◦ C absolute and 1.25◦ - 1.14◦ C rel-

ative, respectively). This result indicates that the VIIRS algorithm has undergone

some specific tuning that limits skill in the event that OTC presence corresponds

with a relatively unnatural water vapor profile. This unusual result requires further

investigation.
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Figure 9: As in Fig. 8, now for MODIS only over the a) Atlantic, b) Indian and c)
Pacific Ocean basins.

Figure 9 features MODIS-only cold bias composites and relative OTC contami-

nation rates for the (a) Atlantic, (b) Indian, and (c) Pacific Ocean basins, respectively

(see basins in Fig. 4). Again, the Indian and Pacific Ocean basins exhibit relatively

similar distributions, with the Atlantic Ocean profile being much more broadly dis-

tributed in terms of relative percentage frequency with height. Note that some under-

sampling in the absolute/relative OTC cold bias estimates derived from these data

arises, and is apparent in both Figs. 8a-c and 9a-c with occurance contours showing

clouds present above 18 km. SBDART simulations were only conducted between 10.0

and 18.0 km. The lower threshold coincides approximately with -37◦ C on the tropical
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standard atmospheric profile used in SBDART, which is the thermal threshold used

to distinguish cirrus clouds in the CALIOP sample (described in Chapter II). The

upper threshold (18 km) is actually 0.5 km above the cold-point tropopause height in

the standard atmospheric profile used—meaning clouds above 17.5 km occur within

the tropopause in the standard atmosphere used for the simulations. Nonetheless,

it is relatively common to see cirrus clouds in the tropics, particularly TTL cirrus,

to and above 18.0 km (e.g., Campbell et al 2015, among many others). This upper

threshold was adjusted slightly from the standard atmosphere cold-point tropopause

accordingly. Reality, however, causes some cirrus (specifically OTC) to be observed

by CALIOP outside of this range within the tropics, which are included in the OTC-

contaminated Aqua-MODIS/CALIOP sample. Ultimately, 1.07% of the tropical OTC

sample is not accounted for when integrating the cold bias matrices and deriving fi-

nal estimates because it falls outside of the 10 - 18 km bounds of the simulation.

Therefore, the resulting biases may be slightly low. Combined with the assumptions

discussed in Chapter III, it is reiterated that these solutions are strictly estimates.

Absolute/relative cold bias estimates for the Indian and Pacific Ocean basins

are relatively constant across the three sensors, as seen in Tables 2 and 3. In contrast,

the absolute cold bias is smaller over the Atlantic Ocean due to less frequent OTC

occurrence. It is important to note that, while having lower absolute bias, the Atlantic

basin exhibits the largest relative bias. This is a direct result of the lower and warmer

OTC in this basin. As previously mentioned, these differences in OTC properties are

likely due to cooler surface temperatures and a lower TTL. Thus, the results from

the Atlantic may also be indicative of the expected results outside of the tropics.

At higher latitudes, cirrus frequency will drop, yet, the bias associated with each

cirrus cloud will be greater. This presents not only a problem for SST retrieval in the

tropics, but at all latitudes globally.
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Figure 10: SBDART radiative transfer model simulations of the ratio of the differ-
ence between the clear sky retrieved SST and the OTC-contaminated 11 and 12 µm
brightness temperatures as a function of cloud top height and optical depth for a)
MODIS, b) AVHRR, and c) VIIRS split-window algorithms.

Figure 10 depicts the ratio of the difference between the retrieved clear-sky

SST and the OTC-contaminated brightness temperatures modeled for each sensor in

SBDART from the corresponding near-11 and near-12 µm bands. Since split-window

algorithms are based upon the assumption that these differences are proportional and

constant, Figure 10 should theoretically show no change for different cloud properties

(i.e., the figures should be a solid color). However, the significant variance depicted

in each sensor illustrates a failure of the developmental assumptions of split-window

algorithms in the presence of cloud. A similar response was illustrated by Merchant

et al. (1999) for stratospheric volcanic aerosols. MODIS exhibits the least vari-
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ance here, with proportionality ranging from approximately 0.8 to 0.9, while AVHRR

ranges from approximately 0.7 to 0.9. The largest variance is seen in the VIIRS

simulations, with the ratio of proportionality ranging from 0.7 to 1.0. The ratio in

VIIRS also exhibits a minimum at CODs approaching 0.3 above 15 km. This mini-

mum corresponds to the secondary maximum in SST retrieval bias caused by sensor

sensitivity to relatively small effective cloud particle radii.

Triple-Window Bias Estimates

Figure 11: SBDART radiative transfer model simulations of potential triple-window
SST retrieval cold bias for an unscreened OTC as a function of cloud top height and
optical depth for a) AVHRR, and b) VIIRS. Overlaid on each composite are rela-
tive Aqua-MODIS/CALIOP collocated cirrus contamination percentage occurrence
frequencies (%).

Triple-window OTC cold bias matrices and absolute and relative bias esti-

mates for AVHRR and VIIRS are presented in Figure 11 and Table 4. Again, to

the author‘s knowledge, there is no operational MODIS triple-window product pub-

licly available. Bias structure is similar to the split-window for both sensors, though

the AVHRR simulations now exhibit the secondary maximum in bias above 15 km,

similar to VIIRS split-window (albeit at lower magnitudes). The triple-window al-
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Table 4: Mean absolute (relative) OTC cold biases in MODIS, AVHRR, and VI-
IRS SST triple-window retrievals from SBDART simulations and assuming Aqua-
MODIS/CALIOP collocated contamination frequencies, segregated as function of QL,
global and Atlantic, Indian and Pacific Ocean basins.

SENSOR QL
GLOBAL

(◦ C)
ATLANTIC

(◦ C)
INDIAN

(◦ C)
PACIFIC

(◦ C)

AVHRR
0

0.02
(0.09)

0.02
(0.10)

0.02
(0.08)

0.02
(0.08)

1
0.05

(0.15)
0.05

(0.16)
0.06

(0.15)
0.05

(0.14)

QA
0.03

(0.11)
0.03

(0.12)
0.03

(0.10)
0.03

(0.10)

VIIRS
0

0.03
(0.14)

0.02
(0.14)

0.03
(0.13)

0.03
(0.14)

1
0.07

(0.21)
0.06

(0.20)
0.08

(0.21)
0.08

(0.21)

QA
0.04

(0.16)
0.03

(0.16)
0.04

(0.16)
0.05

(0.16)

gorithms are less susceptible to cirrus contamination than split-window in terms of

bias magnitude. This may be due to the algorithms basing more weight upon the 3.7

µm observation, or basically, the use of more information for retrieval (3 bands vs. 2

bands in split-window retrievals).

Global AVHRR absolute and relative biases are estimated at 0.03◦ C and 0.11◦

C, respectively. Unlike split-window, these global biases are smaller than VIIRS (0.04◦

C absolute and 0.16◦ C relative). Bias estimates drop > 60% for VIIRS and > 75%

for AVHRR, overall. Thus, triple-window techniques exhibit much greater resilience

to OTC, in spite of operational limitations to nighttime use only in all practical

circumstances. This is due to solar reflectance contaminating the 3.7 µm retrieval

during daylight, as explained in Chapter II. With relative bias ranging from 0.10◦

to 0.16◦ C across all basins and sensors, the triple-window product is significantly

more stable for operational use than split-window. Due to the relatively small bias
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estimates solved, and considering issues encountered with VIIRS above, a water vapor

sensitivity analysis was not performed.

Verification

Figure 12: Scatter plot of CALIOP cloud optical depth versus Aqua-MODIS SST from
OTC-contaminated retrievals for August - October 2012 over the Maritime Continent
(75◦W/15◦S 135◦W/30◦N).

To gauge the representativeness of the SBDART-modeled OTC cold bias

estimates, comparison with available observations was performed. Figure 12 depicts a

scatter plot of OTC-contaminated SST vs. COD over the Southeast Asian Maritime

Continent (75◦E/15◦S - 135◦E/30◦N) for August - October 2012. This area was

selected specifically due to extremely high frequency of OTC occurance compared

to the rest of the tropics. Thus, sample variance could be constrained with the

least amount of data lost. The premise is that the slope of a linear regression fit to
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these data should approximately equal the relationship between cold bias and OTC

COD estimated from Fig. 8. The slope solved from these data is -6◦ C per COD,

or approximately 1.8◦ C per 0.30 COD. Conversely, Figure 8 depicts a range of cold

biases with height varying between 8◦ C to 4◦ C at 0.30 COD, with 4◦ C corresponding

to the altitude where most OTC are present.

Though the observational bias seen in the regression is approximately 50%

smaller than the modeled bias, there is reason to believe that this is a wholly practi-

cable comparison. First, there is significant SST variance within the sample, despite

efforts to constrain the variance in time and space. The primary mode of points are

aggregated near 29◦ C approaching 0.00 COD, though values range between 24◦ and

31◦ C overall. Further, effects of MODIS QL and data rejection are present at the

high COD end of the sample. MODIS QL is based on deviation from a background/a

priori temperature. In other words, while the upper bound of observations has a defi-

nite slope of approximately 3 - 4◦ C per 0.30 COD, the lower bound of observations is

flat or sloping slightly upwards. The reason for this upward slope in the lower bound

is likely background temperature deviation tests used in determination of the QL.

While warm retrievals biased cold will pass the less than 3◦ C distinction between

background and retrieved SST required to be QL < 2, cold retrievals biased colder

will not pass. Thus, both effects are contributing to the regression slope, in opposing

ways (biased low on cool SST end and high on warm end), which are acting to reduce

its relative value compared with the model. At any rate, distinguishable evidence of

the effect in these data alone is encouraging.
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CHAPTER V

CONCLUSIONS

Unscreened cloud contamination within the Level 2 Aqua Moderate Reso-

lution Imaging Spectroradiometer (MODIS) split-window infrared (IR) sea surface

temperature (SST) retrievals at instrument nadir in the tropics (MOD28; 30◦S -

30◦N) during 2012 is characterized through collocation with Version 3 Level 2 5-km

cloud profiles from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP)

instrument. Specifically, optically-thin cirrus (OTC; cloud optical depths ≤ 0.30;

COD) cloud contamination is highlighted for its predominant contribution to total

cloud contamination of passive IR radiometric retrievals corresponding with previous

findings (e.g., Holz et al. 2008). Clouds of any type were found in approximately 28%

of all Level 2 Aqua-MODIS data characterized as Quality Level (QL) 0 or 1 (denoted

as QA), used for quality control dataset characterization. These estimates may be bi-

ased low given that the specific 5-km cloud product used from CALIOP ignores cloud

samples resolved at finer resolutions. Of the contaminating cloud, greater than 90%

is cirrus (25.96% absolute) and 99.4% of the contaminating cirrus (25.7% absolute)

is OTC, with the remaining clouds being mostly low and warm near-surface liquid

water clouds. Such a bi-modal residual cirrus/low cloud distribution was also found

to contaminate the MODIS aerosol optical depth product (Toth et al. 2013).

OTC contamination characteristics from collocated Aqua-MODIS/CALIOP

data pairs are used to estimate corresponding split-window IR SST retrieval cold

biases for MODIS, Advanced Very High Resolution Radiometer (AVHRR), and the
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Visible Infrared Imaging Radiometer Suite (VIIRS), as well as triple-window retrievals

in AVHRR and VIIRS. Respective SST retrievals are modeled using the Santa Bar-

bara DISORT Atmospheric Radiative Transfer model (SBDART), equipped with an

advanced ice crystal microphysical parameterization and optical scattering properties

(Yang et al. 2005; Heymsfield et al. 2014).

Two-dimensional OTC-contaminated SST retrieval cold bias matrices are solved

for both the split- and triple-window IR algorithms after simulating the retrievals us-

ing a tropical standard atmosphere and the presence of a hypothetical OTC layer (1.5

km thick) between 10.0 and 18.0 km cloud top height above mean sea level (solved

in 0.25 km segments) and COD between 0.00 and 0.30 (in 0.01 segments from 0.01 -

0.06 and 0.02 segments above 0.06). Simulations were performed using both a cloud

structured with a constant optical extinction coefficient (“block cloud”) and one with

a linearly-decreasing extinction coefficient value from cloud top to cloud base of five-

to-one (“fallstreak”). Having found very little difference in the results, only fallstreak

results are presented in this study. Relative and absolute OTC SST cold biases were,

then, estimated by multiplying the corresponding instrument matrix by the corre-

sponding occurrence frequency of OTC occurrence as a function of height and COD

estimated from the Aqua-MODIS/CALIOP comparisons.

The mean absolute global split-window OTC SST cold bias estimated across

the MODIS, AVHRR, and VIIRS platforms from these simulations using a standard

atmosphere profile is between 0.10◦ and 0.13◦ C using QA Aqua-MODIS/CALIOP

contamination characteristics, with a corresponding global contamination occurrence

rate near 25%. The relative bias ranges from 0.40◦ to 0.49◦ C from OTC alone. Rel-

ative cold biases are greater, reflecting the impact of a single contamination event as

opposed to one normalized by its absolute occurrence rates. AVHRR and MODIS

biases are nearly identical and significantly greater than VIIRS. After varying the
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water vapor mixing ratio profile between completely dry (except within the modeled

OTC cloud) to liquid water and ice saturated, MODIS varies from 0.09◦ - 0.18◦ C

absolute and 0.34◦ - 0.70◦ relative. AVHRR varies from 0.12◦ - 0.16◦ C absolute

and 0.45◦ 0.60◦ C relative, respectively. In VIIRS, however, the result was signifi-

cantly different—0.32◦ - 0.30◦ C absolute and 1.25◦ - 1.14◦ C relative, which requires

subsequent reconciliation.

Triple-window simulations show an improved response to OTC presence, though

these retrievals may only be performed with reasonable expectation during night due

to the increased potential for contamination of the shortwave IR band used. AVHRR

global QA OTC SST bias is estimated at 0.03◦ C absolute and 0.11◦ C relative, while

VIIRS exhibits slightly degraded performance at 0.04◦ C absolute and 0.16◦ C rel-

ative. The triple-window algorithm is significantly more resilient to OTC presence

than split-window, in spite of its limited diurnal use.

Both split-window and triple-window results are relatively constant across the

Indian and Pacific Ocean basins, owing to relatively common cirrus cloud macro-

physical properties. Absolute cold biases are smallest over the Atlantic Ocean, corre-

sponding with lower overall cirrus frequency. However, relative cold biases are actu-

ally greater in the Atlantic, owing to lower-topped OTC regionally that correspond

with larger effective cloud top ice crystal radii that are increasingly more active IR

emitters compared with smaller/colder/higher OTC elsewhere. This result leads to

the conclusion that OTC SST bias is likely to persist significantly moving poleward

from the tropics, despite lower regional occurrence frequencies. Consistency of the

difference between the clear-sky split-window SST and OTC-contaminated brightness

temperature from the near-11 and near-12 µm bands in MODIS, AVHRR, and VIIRS

is also presented in this study, depicting the failure of developmental assumptions in

the presence of OTC.
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Sources of uncertainty relating to these OTC SST cold bias modeling estimates

are described. First, cloud contamination characteristics are uniquely extrapolated

from Aqua-MODIS/CALIOP data pairs to AVHRR and VIIRS. Cold bias estimates

for these latter two sensors are, thus, practical estimates based on this assumption of

continuity in OTC contamination between the three passive IR radiometric sensors.

Second, the SBDART simulations were conducted only between 10.0 and 18.0 km.

The 10.0 km altitude coincides with the -37◦ C level in the standard atmosphere profile

used by the model that helps discriminate cloud tops in the Aqua-MODIS/CALIOP

collocated dataset for cirrus cloud presence (Campbell et al. 2015). The 18.0 km

altitude is 0.5 km above the corresponding cold point tropopause in the standard

atmosphere profile—extended slightly to account for tropical tropopause transition

layer (TTL) cirrus cloud presence. In reality, 98.93% OTC cloud top heights found

from the Aqua-MODIS/CALIOP data pairs fell within this altitude range, meaning

that the integrated absolute/relative cold bias estimates are slightly low.

Further uncertainty arises from the use of a static tropical standard atmo-

sphere and static surface SST in deriving the cold bias matrices utilizing the SBDART

radiative transfer model. Importantly, the Aqua-MODIS/CALIOP-contaminated ob-

servations were not normalized for height/temperature to the standard atmosphere

before integrating the absolute/relative cold bias estimates for simplicity. Since there

is little relative variability in OTC SST cold bias with height, for which we consider

this effect relevant, this uncertainty is expected to be relatively small. Finally, there

is slight underestimation of bias due to multilayered cloud scenes. Bias was solved

using only single-layered OTC scenes. Scenes with multiple layers of cloud would re-

sult in more bias due to the higher column COD, which is shown in this study to have

higher effect on bias than cloud top altitude. The impact of uncertainties in the base

CALIOP Level 2 COD product are also described, and the effect is believed negligible
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given that the accuracy of these values is typically optimal within optically-thinner

clouds.

The community faces a continuing issue with respect to the use of passive re-

mote sensors for operational meteorological and oceanographic measurements: cirrus

clouds are the most common cloud genus in the atmosphere and cloud detection al-

gorithms built off of passive radiances struggle to find OTC that make up roughly

half of all cirrus clouds. With global occurrence rates of 40-60% (Mace et al. 2009),

cirrus, and particularly OTC clouds, represent a significant and binding “noise” to

passive retrievals that require careful and considerate error characterization for a host

of ongoing applications.

This paper provides a reasonable and novel set of guidelines for more accurately

constraining relative uncertainties in operational SST retrieval products. In the bigger

picture, as new missions are planned and gradually come on line, it is becoming

increasingly incumbent upon the scientific community to find practical solutions for

suppressing OTC contamination of passive IR radiometric Level 2 datasets. Whether

that means pairing passive satellite sensors with simple/inexpensive lidar profilers,

adding of additional infrared bands, or finding advanced spectral analysis methods

(e.g., Gao et al. 1998) for improved OTC discrimination, unless the community is

willing to accept an uncertainty that cannot effectively be seen passively from space,

this problem will continue to persist (e.g., Huang et al. 2016).
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APPENDICES



Appendix A
List of Abbreviations

Table 5: List of Abbreviations

Abbreviation Full Text

AC-SPO Advanced Clear-Sky Processor for Oceans

AERONET AErosol RObotic NETwork

AMSR Advanced Microwave Scanning Radiometer

AVHRR Advanced Very High Resolution Radiometer

CALIPSO Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observation

CALIOP Cloud-Aerosol LiDAR with Orthogonal Polarization

COD Cloud Optical Depth

ENSO El Niño-Southern Oscillation

GMAO Goddard Model Assimilation Office

GOES Geostationary Operational Environmental Satellite

IR Infrared

LiDAR Light Detection and Ranging

MODIS MODerate resolution Imaging Spectroradiomter

NASA National Aeronautics and Space Administration

NAVO Naval Oceanographic Office

NLSST Nonlinear SST

NOAA National Oceanographic and Atmospheric Administration

NPP National Polar-orbiting Partnership

OISST Optimum Interpolation Sea Surface Temperature

OTC Optically Thin Cirrus

QA Quality Assured

QL Quality Level

SBDART Santa Barbara DISORT Atmospheric Radiative Transfer

SST Sea Surface Temperature

TC Tropical Cyclone

TTL Tropical Tropopause Layer

VIIRS Visible-Infrared Imaging Spectroradiometer
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