
University of North Dakota
UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2016

Novelty Detection And Cluster Analysis In Time
Series Data Using Variational Autoencoder Feature
Maps
Sophine Clachar

Follow this and additional works at: https://commons.und.edu/theses

This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact
zeineb.yousif@library.und.edu.

Recommended Citation
Clachar, Sophine, "Novelty Detection And Cluster Analysis In Time Series Data Using Variational Autoencoder Feature Maps"
(2016). Theses and Dissertations. 2004.
https://commons.und.edu/theses/2004

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F2004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F2004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F2004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/2004?utm_source=commons.und.edu%2Ftheses%2F2004&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

NOVELTY DETECTION AND CLUSTER ANALYSIS IN TIME
SERIES DATA USING VARIATIONAL AUTOENCODER

FEATURE MAPS

by

Sophine A. Clachar
Bachelor of Science, University of Technology, Jamaica, 2007

Master of Science, University of North Dakota, 2011

A Dissertation

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Grand Forks, North Dakota
December

2016

mailto:sophine.clachar@und.edu
http://und.edu

c© 2016 Sophine A. Clachar

ii

PERMISSION
Title Novelty Detection and Cluster Analysis in Time Series Data using

Variational Autoencoder Feature Maps

Department Department of Computer Science

Degree Doctor of Philosophy

In presenting this dissertation in partial fulfillment of the requirements for a
graduate degree from the University of North Dakota, I agree that the library of
this University shall make it freely available for inspection. I further agree that
permission for extensive copying for scholarly purposes may be granted by the
professor who supervised my dissertation work or, in his absence, by the
Chairperson of the department or the dean of the School of Graduate Studies. It
is understood that any copying or publication or other use of this dissertation or
part thereof for financial gain shall not be allowed without my written
permission. It is also understood that due recognition shall be given to me and
to the University of North Dakota in any scholarly use which may be made of
any material in my dissertation.

Sophine A. Clachar
December 2016

iv

http://cs.und.edu
http://und.edu
http://und.edu

CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . xiii

ACKNOWLEDGEMENTS . xv

ABSTRACT . xvi

CHAPTER

I INTRODUCTION. 1

1 Scope & Objectives 4

2 Motivation & Contributions 5

II BACKGROUND . 7

1 K-Means Clustering 7

2 Density Based Spatial Clustering of Applications with Noise
(DBSCAN) . 8

2.1 Parallel DBSCAN 9

3 Artificial Neural Networks (ANN) 10

3.1 Kohonen Self-Organizing Map (SOM) 11

3.1.1 Parallel SOM . 12

3.2 Variational AutoEncoders (VAE) 13

4 Evaluating Distance/Similarity 16

4.1 Euclidean Distance 17

4.2 Mahalanobis Distance. 17

4.3 Dynamic Time Warping (DTW) 18

III RELATED RESEARCH 19

1 Clustering Time Series Data 19

1.1 Integrating Curve Similarity via Dynamic Time Warping. 19

v

2 Dimensionality Reduction using Machine Learning & Statisti-
cal Approaches . 21

IV THE DATA REPOSITORY 23

1 Overview & Architecture. 23

2 Data Preprocessing & Transformation 24

2.1 Phase of Flight Identification and Designation 25

V RESEARCH METHODOLOGY. 29

VI RESULTS & EVALUATION 32

1 Serial Clustering Results 32

1.1 K-Means . 32

1.2 DBSCAN . 33

1.3 SOM . 34

2 Distributed Clustering Results 37

2.1 DBSCAN . 37

2.2 SOM . 40

2.3 Variational Autoencoder Feature Map (VAEFM) 41

2.3.1 Performance Evaluation 44

2.3.2 Evaluation of the Data Manifold 46

2.3.3 Cluster Evaluation 47

2.3.4 Summary . 85

VII CONCLUSION & FUTURE WORK 87

1 Future Work . 88

APPENDIX

A PSEUDOCODE ALGORITHMS 89

1 K-Means . 89

2 Density Based Spatial Clustering of Applications with Noise
(DBSCAN) . 90

vi

3 Kohonen’s Self Organizing Map (SOM) 91

4 Parallel SOM . 92

5 Variational Autoencoder Feature Map 93

BIBLIOGRAPHY . 95

vii

LIST OF FIGURES

Figure Page

1 The DBSCAN algorithm (a) showing density-reachability and (b)
density-connectivity of data points p and q, as described by Ester
et. al. [1] . 8

2 The mathematical representation of a neuron, which is the building
block of a neural network. It has three inputs, and their respective
weight vector; the weighted sum of inputs and the bias are passed
into the activation function f , producing an output y. 10

3 An 8X8 SOM with input layer x0 - x5. The input data traverses the
entire network to identify the best matching unit (BMU). After the
BMU is identified, its weights and those of its neighboring neurons
N0 - N7, are updated during training. 12

4 The unfolding of the SOM’s lattice during training as the neurons
weight vectors are updated to model the data. 12

5 The basic autoencoder network which learn representations of its
input data by minimizing the reconstruction error between the en-
coder and decoder layers in an unsupervised manner. The use of
regularization, prevents overfitting and places constraints on the
number of hidden neurons that are required to learn useful features.
The bias has been excluded from the illustration. 14

6 Variational autoencoders further regularizes the basic autoencoder
by learning the joint distribution over the input data and its la-
tent representations. It calculates the weighted sum of its inputs
and bias terns – similar to the basic autoencoder. Assuming this
produces a gaussian distribution, a third layer is integrated which
samples µ and σ from the previous layer. The network then inte-
grates an auxiliary random variable ε to generate gaussian noise,
ε ∼ N (0, I) and computes µ+ σε. Training the VAE is the process
of measuring how much information is lost and minimizing that
using gradient descent. 15

7 The DTW alignment of two time-dependent sequences (the aligned
points are depicted by arrows) [2] 18

viii

8 Flight data is recorded using an airborne recording device which
may encrypt the data. At the end of each flight the data is manually
retrieved from the aircraft, decrypted and converted into a CSV
format before it is uploaded to the NGAFID. 24

9 A geometric fence, indicated in red, that was created around the
Grand Forks International Airport’s runway 35R. 26

10 A sample of flight trajectories, i.e. the approach configuration,
which made their final approach on runway 35R. 27

11 The temporal flight data was obtained from the NGAFID and un-
derwent preprocessing and transformation steps. The data was
saved into a text file which was transferred to the high performance
computing (HPC) center, where the various clustering algorithms
were performed; after which their respective results were gathered. . 29

12 Graphical illustration of three clusters identified in 1500 flights
when using the k-means algorithm. The choice of distance met-
ric or scale of the data did not influence the selection of intuitive
clusters; however it determined how the dataset was partitioned. . . 33

13 Graphical illustration of the one cluster and various outliers found
using DBSCAN. The choice of distance metric influenced the cluster
formations and the number of outliers that were detected. 34

14 The U-Matrix of a trained SOM, which is color coded; red indicates
regions of large dissimilarity and green shows cohesion between neu-
rons. 36

15 The computation time of the DBSCAN algorithm, as the number of
processors increased, and its serial counterpart. The performance
was assessed by executing the algorithm multiple times. The av-
erage runtime, i.e. the solid line, was calculated and the shaded
regions depicts variations in the computation time, which occurs
due to bottlenecks at the master processor. On average, the slow-
est computation time was 2060 minutes when using 2 processors
and the fastest was 1507 using 16 processors. 38

16 The computation time of the asynchronous SOM algorithm, as the
number of processors increased, and its serial counterpart. Multiple
runs were also performed for the asynchronous algorithm, however
variations in the computation time was miniscule. 41

ix

17 The computation time of the serial and asynchronous SOM al-
gorithm compared with DBSCAN’s serial and asynchronous algo-
rithms. The serial SOM performed slower than both serial and
async DBSCAN because the algorithm endures more computation,
when the data is compared to each node in the neural network.
However, the async SOM algorithm outperformed its serial coun-
terpart, as well as both the serial and async DBSCAN algorithms;
its fastest computation time was 239 minutes when using 16 pro-
cessors, as opposed to DBSCAN’s 1507 minutes. 42

18 Graphical illustration of the VAE (a) which accepts 9 flight param-
eters, and (b) depicts the block diagram of (a) which is stacked
sequentially to model each second in the temporal data. 44

19 The computation time of the VAEFM, Serial SOM, Async SOM,
Serial DBSCAN and Async DBSCAN algorithms as the number of
processors increased. VAEFM demonstrated an average speedup of
70%, and it scalability was demonstrated up to 256 processors –
where it analyzed over 2500 flights in under 5 minutes. 45

20 The manifold of the approach configurations which are color coded
based on their neuron mappings. 46

21 The color map for the neurons which shows the number of flights
that were mapped to each. 46

22 Cluster 1 - Aerial view of the trajectories for the excessively high
and fast approaches; 10% of these were aborted. 49

23 Cluster 1 - Line graph showing the changes in altitude, indicated
airspeed, vertical speed, position (left/right of centerline), roll and
pitch. This cluster contained flights with excessively high altitudes,
airspeeds and vertical speeds while on final approach. Approxi-
mately 10% of these flights performed a go-around maneuver. . . . 50

24 Cluster 1 - Pie Chart showing the validation metrics and their re-
spective percentages of occurrence. All 70 flights had unsafe events
which are contributory factors for unstabilized approaches. 51

25 Cluster 2 - Aerial view of approaches that were on average 7 knots
faster than UND’s SOP; however they were stabilized. 52

26 Cluster 2 - Line graph showing the changes in altitude, airspeed,
vertical speed, position (left/right of centerline), pitch and roll for
the stabilized approaches. 53

x

27 Cluster 2 - Pie chart showing the evaluated approach configurations
using the inter-cluster validation criteria. There were 69% of flights
with airspeeds greater than 65 knots (the maximum airspeed was
75 knots); 27% did not trigger any events and the remaining 3%
were slightly high/wide approaches. 54

28 Cluster 3 - Aerial view of the flight trajectories. 55

29 Cluster 3 - Line graph showing the altitude, airspeed, vertical speed,
position, roll and pitch while on final. These approaches were ap-
proximately 7 knots faster than UND’s SOP, however there were no
unusual deviations in the flight trajectories during their respective
descent. 56

30 Cluster 3 - Pie chart showing 55% of flights with high airspeeds
(which did not surpass 75 knots) and 1% of flights which initiated
their approach slightly wide. 57

31 Cluster 4 - Aerial view of the flight tracks showing 60 approaches,
some of which were not fully aligned with the runway when they
initiated their descent. 58

32 Cluster 4 - Line graph showing changes in altitude, airspeed, vertical
speed, position, pitch and roll. 59

33 Cluster 4 - Pie chart showing the frequency of occurrence for each
validation criteria. 60

34 Cluster 5 - Aerial view of the flight trajectories. 61

35 Cluster 5 - High altitude and airspeed, excessive vertical speed and
bank angle as contributing factors for these unstable approaches. . . 62

36 Cluster 5 - Pie chart showing the percentage of events that were
detected by the validation criteria. 63

37 Cluster 6 - Aerial view of the flight trajectories 64

38 Cluster 6 - Changes in altitude, airspeed, vertical speed, position,
pitch and roll while on final. These flights were not only high and
fast but also had huge changes in roll during their descent. 65

39 Cluster 6 - Pie chart showing a higher occurrence of excessive roll
events in approaches that were predominantly fast. 66

40 Cluster 7 - Aerial view of the approach trajectories which contains
a higher frequency of aborted approaches. 67

xi

41 Cluster 7 - Line graph showing changes in altitude, airspeed, vertical
speed, position, pitch and roll. This cluster had multiple aborted
approaches, possibly due to awareness of factors that would result
in an unstabilized approach. 68

42 Cluster 7 - Pie chart showing over 99 % of flights in this cluster
triggered multiple unsafe events from the validation criteria. 69

43 Cluster 8 - Aerial view of the flight trajectories. 70

44 Cluster 8 - Line graph showing changes in the altitude, airspeed,
vertical speed, position, pitch and roll for each approach configuration. 71

45 Cluster 8 - Pie chart showing airspeeds as high as 90 knots as unsafe
events in this cluster. 72

46 Cluster 9 - Aerial view of the flight tracks. 73

47 Cluster 9 - Line graph showing changes in the altitude, airspeed,
vertical speed, position, pitch and roll for the unstable approaches. . 74

48 Cluster 9 - Pie chart showing five contributory events for the un-
stable approaches. 75

49 Cluster 10 - 1274 densely populated approaches. 77

50 Cluster 11 - 34 high/fast approaches. 77

51 Cluster 12 - 41 high/fast approaches. 77

52 Cluster 10 - Line graph showing changes in altitude, airspeed, ver-
tical speed, position, pitch and roll while on final. 78

53 Cluster 11 - Line graph of the parameter values, while on final. . . . 79

54 Cluster 12 - Line graph showing changes in altitude, airspeed, ver-
tical speed, position, pitch and roll. 80

55 Pie charts for clusters 10, 11 and 12 which shows the evaluated
results using the validation metrics. 81

56 Outliers - Aerial view of the trajectories for the outlier approaches. 82

57 Outliers - Line graph showing changes in the altitude, airspeed,
vertical speed, position, pitch and roll for the outlier flights. 83

58 Outliers - Pie chart showing the outlier approaches that were eval-
uated based on the validation criteria. 84

xii

LIST OF TABLES

Table Page

1 An overview of the selected algorithms, their respective distance
functions and processing strategy. 31

2 The sample data contained approximately 38% of stabilized ap-
proaches, the remaining flights had contributory factors for unsta-
bilized approaches. 35

3 The silhouette coefficient of DBSCAN’s six clusters which revealed
overlapping cluster memberships. 39

4 The inter-cluster validation criteria for detecting unsafe practices. . 47

5 Cluster 1 - Summary statistics for each flight parameter. The high-
est altitude, airspeed and vertical speed during the descent was 401
ft, 95 kts and -2035 fpm respectively. 51

6 Cluster 2 - Summary statistics showing the respective range of pa-
rameter values. This cluster did not contain excessively high values
or unusual changes in the descent profile. 54

7 Cluster 3 - Summary statistics for the stable approaches, although
slightly fast, did not contain unusual deviations in their descent
profiles. 57

8 Cluster 4 - Summary statistics showing variations in flight param-
eters while on final . 60

9 Cluster 5 - Summary statistics for the unstable approaches showing
excessive Altitude, VSI, IAS and Roll as contributory factors. . . . 63

10 Cluster 6 - Summary statistics showing high and fast approaches
some of which had a maximum roll exceeding 30 degrees during the
descent. 66

11 Cluster 7 - Summary statistics showing the range of flight parame-
ters. This cluster had the fastest VSI at -2060.03 feet per minute. . 69

12 Cluster 8 - Summary statistics for the approach configurations;
which shows a wider range of values for gravitational forces on the
aircraft, i.e. vertical acceleration, than other clusters. 72

xiii

13 Cluster 9 - Summary statistics of flight parameters which shows the
highest mean, and maximum airspeed among all clusters. 75

14 Cluster 10 - Summary statistics for the densely populated high/fast
cluster which had 10+ degree changes in roll, and approaches that
were high, fast, and wide with rapid descent profiles. 78

15 Cluster 11 - Summary statistics showing the range of values for the
high/fast/long approaches. 79

16 Cluster 12 - Summary statistics showing the range of values for the
descent profiles. 80

17 Outliers - Summary statistics for the outlier flights, which contains
the highest altitude in the dataset; most of these approaches were
aborted. 84

18 The performance assessment of the various algorithms. 86

xiv

ACKNOWLEDGEMENTS

First and most importantly I am grateful to my biggest cheerleader. He has

been my rock, even when circumstances seemed unfavorable. Yet, words cannot

express my gratitude to the Almighty God. Thank you for giving me good

health, strength, inspiration and endurance to complete this research; and for

blessing me with an exceptional committee.

I would like to express my sincere gratitude to my advisors Dr. Travis Desell

and Prof. James Higgins. Dr. Travis Desell’s guidance and expertise shaped the

course of this research. I appreciate that he challenged me to explore new areas

in Computer Science, because this had a profound impact on the knowledge I

acquired during my studies.

I am forever grateful to Prof. James Higgins for the privilege of working on

his research project and for the invaluable experience that I gained. Most

importantly, thank you for your time, patience, encouragement and keen insight

throughout the course of my Ph.D. studies.

I wholeheartedly would like to thank my committee members Dr. Ronald

Marsh, Dr. Hassan Reza, Dr. Emanuel Grant and Dr. Paul Lindseth for their

guidance throughout my graduate studies. I consider it an honor that they

agreed to work with me and their collective feedback was instrumental to the

overall success of this dissertation. I am also grateful to Brandon Wild and John

Walberg because their immense knowledge and expertise had a significant

impact on shaping my overall understanding of Flight Data Analysis.

Last but not the least, I would like to thank my family for their prayers,

support and encouragement throughout writing this dissertation and my life in

general.

To everyone who motivated me and believed that I possess the academic

acumen to achieve this milestone – a heartfelt thank you.

xv

ABSTRACT

The identification of atypical events and anomalies in complex data systems is

an essential yet challenging task. The dynamic nature of these systems produces

huge volumes of data that is often heterogeneous, and the failure to account for

this will impede the detection of anomalies. Time series data encompass these

issues and its high dimensional nature intensifies these challenges.

This research presents a framework for the identification of anomalies in

temporal data. A comparative analysis of Centroid, Density and Neural

Network-based clustering techniques was performed and their scalability was

assessed. This facilitated the development of a new algorithm called the

Variational Autoencoder Feature Map (VAEFM) which is an ensemble method

that is based on Kohonen’s Self-Organizing Maps (SOM) and Variational

Autoencoders. The VAEFM is an unsupervised learning algorithm that models

the distribution of temporal data without making a priori assumptions. It

incorporates principles of novelty detection to enhance the representational

capacity of SOMs neurons, which improves their ability to generalize with novel

data.

The VAEFM technique was demonstrated on a dataset of accumulated

aircraft sensor recordings, to detect atypical events that transpired in the

approach phase of flight. This is a proactive means of accident prevention and is

therefore advantageous to the Aviation industry. Furthermore, accumulated

aircraft data presents big data challenges, which requires scalable analytical

solutions.

The results indicated that VAEFM successfully identified temporal

dependencies in the flight data and produced several clusters and outliers. It

analyzed over 2500 flights in under 5 minutes and identified 12 clusters, two of

which contained stabilized approaches. The remaining comprised of aborted

xvi

approaches, excessively high/fast descent patterns and other contributory factors

for unstabilized approaches. Outliers were detected which revealed oscillations in

aircraft trajectories; some of which would have a lower detection rate using

traditional flight safety analytical techniques. The results further indicated that

VAEFM facilitates large-scale analysis and its scaling efficiency was

demonstrated on a High Performance Computing System, by using an increased

number of processors, where it achieved an average speedup of 70%.

xvii

CHAPTER I

INTRODUCTION

The exponential growth of data has presented several challenges in the

information era. One of which is the ability to perform large scale analysis on

high dimensional data while accounting for heterogeneity. Time series data

encompass these issues, and their analysis is prevalent in many disciplines

including: Finance & Economics, Medicine, Neuroscience, Aerospace, Hydrology

and Speech Processing [3, 4].

Definition 1 A time-series T is an ordered sequence of n real-valued

observations that are recorded based on a given sampling rate [3].

T = (t1, ..., tn), ti ∈ IR

Temporal observations are comprised of univariate or multivariate

measurements which span a given timeframe. Time series data mining is the

process of analyzing the shape of the data to identify similarities between

patterns on various time scales [3].

Temporal data has several characteristics which makes them difficult to

manipulate in their original structure; these include: high volume, high

dimensionality, heterogeneity and susceptibility to noise [3, 5, 6, 7]. Consequently,

transformation steps are often employed to reduce the dimensions and extract

salient features – while ensuring that the data integrity is unaffected [5, 6, 7].

Furthermore, identifying appropriate similarity measures between time series

data, is essential for pattern discovery and cluster analysis, as they rely on a

notion of distance to reflect underlying similarity within the data [3, 6, 7].

These challenges adds to the complexity of time series data mining, thereby

making dependencies difficult to model. This affects the representational

1

capacity of the trained models which limits their ability to learn meaningful

information [5, 8]. However, there is still an increased interest in pattern

detection techniques that effectively describe temporally varying phenomenon [9].

This dissertation entails the development of a new algorithm called the

Variational Autoencoder Feature Map (VAEFM) which is an ensemble method

that is based on Kohonen’s Self-Organizing Maps (SOM) and Variational

Autoencoders. VAEFM is an unsupervised learning algorithm which performs

dimensionality reduction and models the distribution of data without making a

priori assumptions. It is comprised of multiple stacked Variational Autoencoders

which are trained to learn the manifold of time series data. After which the

accuracy of the expected data is compared with the observed/predicted data.

This produces a score for novelty detection, which is then clustered in a

topologically preserving scheme that is based on the Self Organizing Map.

This research applied VAEFM to the analysis of flight data, which is temporal

by nature and encompass the aforementioned challenges. Aircraft that are

equipped with airborne flight data recorders (FDR) record flight and engine data

that were retrieved from various sensors that monitors its performance. The

volume of recorded data varies based on the number of observed parameters, the

duration of the flight, and the sampling rate. Flight data contains critical

information on the aircraft’s operation during flight and can be used to identify

unsafe practices, violations of standard operating procedures (SOP) and

maintenance issues.

The traditional approach to flight data analysis was predominantly reactive,

which by nature is performed after an accident or incident has occurred.

Industry experts have advocated for proactive and predictive methods which

routinely analyze flight data to identify accident precursors and mitigate risks

associated with unsafe practices [10, 11,12]. However, many approaches that are

currently employed rely on strict threshold criteria called exceedances ; which,

albeit useful, are rigid and incapable of detecting events that oscillate near their

2

thresholds. They are also unable to detect anomalies due to faulty sensors,

unpredictable flight patterns, or any criteria that is difficult to quantify

statistically/numerically.

Consequently, there is a demand for innovative and standardized tools that

are able to augment current analytical methods. Machine learning via data

mining is advantageous for anomaly detection due to their proficiency in

exploring data to predict new situations, discover meaningful patterns and detect

trends [13,14,15]. They are able to explore the intricacies of complex data and

explain underlying phenomena to promote the identification of anomalies that

would have been unidentified using traditional methods.

However, mining flight data presents several challenges, some of which include:

• The heterogeneous nature of flight data presents dimensionality concerns.

The volume of recorded data varies based on the FDR’s sampling rate, the

aircraft’s make/model and the duration of flight. Further, this data is an

amalgamation of continuous and categorical parameters which are recorded

in various units.

• Accumulated flight data requires scalable solutions. Historical flight data is

invaluable as they contain indicators on accident precursors which are

useful for predictive analysis. Therefore, its accumulation requires scalable

solutions to analyze large volumes of data and provide results in a feasible

amount of time.

• Data representation and feature extraction. Obtaining hand-engineered

features can be a tedious, and potentially error-prone process due to the

volume of data. Consequently, performing this task for several hundred, or

thousand, flights can be very challenging if done manually.

Due to the aforementioned concerns, unsupervised learning provides

techniques for addressing them to enhance the analysis of flight data beyond the

use of exceedance monitoring.

3

1 Scope & Objectives

This dissertation presents the development of a framework for novelty detection

in time series data – i.e. the identification of new/unknown atypical events. The

objective was to identify and designate types of unstabilized approaches that

transpired in the final approach phase of flight at the Grand Forks International

Airport (GFK).

Definition 2 A phase of flight refers to a period within a flight which begins

when a person boards the aircraft with the intention of flight and continues until

they have disembarked [16].

The elements of a stabilized approach involves: maintaining the correct lateral

and vertical flight path, adequate energy management and small deviations in

the aircraft’s orientation during its final descent. Failure to comply may result in

hard landings, loss of control, tail strikes or other unfavorable events [17,18].

Unstabilized approaches account for approximately 45% of approach and landing

accidents [17]; 66% of these events are as a result of high/fast or low/slow

approaches [17], which are preventable given the appropriate retraining efforts.

However, the elements of unstabilized approaches vary based on the aerodynamic

capability of the aircraft, the airport’s location and elevation, and external

phenomena such as weather are contributory factors for these occurrences.

Therefore, it is impractical to specify these criteria for every make/model

aircraft and runway configuration using traditional analytical techniques.

Consequently, unsupervised learning is used to develop representative models

of the problem and they are advantageous in cases where the volume of

accumulated data is beyond the scope of efficient human analytical capabilities.

The specific objectives of this research were to:

• Develop a framework for the extraction, preprocessing and transformation

of aircraft data.

4

• Perform a comparative analysis of unsupervised clustering algorithms to

assess their ability to identify patterns in the unlabeled data.

• Utilize the Message Passing Interface (MPI) to facilitate development of

the above algorithms for High Performance Computing Systems. After

which a comparative analysis of the serial and parallel algorithms

evaluated their scaling efficiency.

• Integrate weather data from the National Climatic Data Center’s (NCDC)

Automated Surface Observing Systems (ASOS) to determine if strong

tailwinds or crosswinds were contributory factors in the unstabilized

approaches.

2 Motivation & Contributions

The University of North Dakota’s (UND) flight training belongs to the General

Aviation (GA) sector. GA is one of two branches of civil aviation that pertains

to the operation of all non-scheduled and non-military aircraft [19, 20], and

comprises 63% of all civil aviation activity within the United

States [19, 20,21,22]. GA is an invaluable and lucrative industry; however it has

the highest accident rates within civil aviation [19,23].

As of 2009 GA accident and fatality rates were 7.2 and 1.33 per 100,000 flight

hours respectively; and eight out of ten accidents were caused by pilot

error [23, 24,25,26]. Pilot error can be attributed to poor human-system

integration and for GA operators, they are often unaware of certain risks,

incorrectly assess the gravity of the situation or underestimate the aerodynamic

capability of the aircraft. Therefore, pilot’s decisions are strongly determined by

their perception of the risk which influences their risk avoidance and mitigation

techniques [27,28]. Measures are needed to educate them on unsafe practices, as

unfavorable events are not random occurrences but a series of active failures

facilitated by latent conditions [29,30]. Consequently, one of the major aspects

5

in improving the accident and fatality rates requires educating pilots on their

unsafe practices.

This research performed a comparative analysis of the following unsupervised

machine learning algorithms: K-means, Density Based Spatial Clustering of

Applications with Noise (DBSCAN), and Kohonen Self Organizing Map (SOM).

The use of various distance functions was performed and the algorithm’s

scalability was assessed. This facilitated the development of the Variational

Autoencoder Feature Map (VAEFM) which was designed to address limitations

of the above algorithms. VAEFM facilitates dimensionality reduction and learns

the manifold of the aircraft data without making a priori assumptions.

VAEFM’s design addressed scalability concerns of temporal data by distributing

the workload across multiple processors during training, to facilitate parallel

processing. The derived model was useful for knowledge discovery on various

type of anomalous flight patterns. The results of which were presented using

graphical means that can be easily understood to facilitate awareness of unsafe

flight practices.

The VAEFM analyzed over 2500 flights, and its scalability was assessed up to

256 processors; where it produced results in under 5 minutes. The algorithm

identified correlations in the data, and produced 12 clusters which comprised of

stabilized approaches, missed/aborted approaches, excessively high/fast descent

profiles and other contributory factors for unstabilized approaches. Outliers were

detected which revealed oscillations in aircraft trajectories, some of which would

have a lower detection rate using traditional flight safety analytical techniques.

6

CHAPTER II

BACKGROUND

Unsupervised cluster analysis is the process of exploring data, which is often

unlabeled, to discover natural groupings, called clusters. Cluster membership is

determined by the use of a distance metric and the selection of an appropriate

metric is vital when performing analysis in high dimensional feature space as it

can influence the algorithm’s sensitivity to neighbors or outliers and skew hidden

correlations – the curse of dimensionality. This section contains the background

on clustering algorithms and distance metrics/measures that were used in this

research.

1 K-Means Clustering

K-means [31], is one of the oldest unsupervised learning algorithms that

partitions a dataset into a user specified number of clusters, denoted by

k [32, 33]. Given a set of data points and an integer k, the k-means algorithm

randomly selects k centroids and seeks to minimize an objective function

between each data point and its nearest centroid producing k clusters [32,34,35].

The advantages of k-means include its simplicity, ease of implementation and

applicability to a wide range of problems [32,36]. The disadvantages include: its

inability to detect outliers or the appropriate number of clusters, and

inefficiently selecting initial centroids. Research has shown that an adequate

choice of centroids can strongly influence both the quality of the solution and the

convergence time [32]. Applications of K-means in aerospace systems include

NASA’s Morning Report [37,38] and Gariel’s framework for trajectory

clustering [39]. The k-means algorithm can be found in Appendix 1.

7

2 Density Based Spatial Clustering of Applications with Noise

(DBSCAN)

Density Based Spatial Clustering of Applications with Noise (DBSCAN) is an

algorithm that clusters unlabeled data based on the density-reachability of each

item with respect to its neighbors [1]. The algorithm uses two hyper-parameters:

epsilon and minimum points. Epsilon is the radius within which density

reachable neighbors can be found; and minimum points is the minimum number

of data points that are required to form a cluster. Unlike k-means, DBSCAN

does not require the number of clusters to be specified a priori because it is

designed to discover clusters of arbitrary shapes and sizes; and unclustered

points are identified as outliers [40]. Figure 1 shows how DBSCAN identifies

density-reachable points.

Figure 1: The DBSCAN algorithm (a) showing density-
reachability and (b) density-connectivity of data points p and q,
as described by Ester et. al. [1]

The advantages of DBSCAN include its ability to: automatically detect the

number of clusters, identify clusters of arbitrary shapes and sizes, and detect

outliers. Disadvantages include: the quality of the clusters formed depends on

the distance measure employed [41], and finding appropriate values for epsilon is

very challenging [42]. The DBSCAN algorithm is very difficult to parallelize due

to the sequential nature that is used to identify density-reachability and

density-connectivity. The pseudocode for DBSCAN can be found in Appendix 2.

8

2.1 Parallel DBSCAN

Parallel clustering with DBSCAN has been the focus of many research

endeavors, as the algorithm’s efficacy is renowned; however its computation time

is expensive and the best method to improve its performance is via parallel

analysis [43]. The Master-Worker paradigm, MapReduce, and disjoint-sets are

some of the most prominent methods to achieve this [43, 44,45,46,47,48,49,50].

The master-worker model as described in [43,44,48], implements the

DBSCAN algorithm sequentially with the master acting as a central coordinator.

The master assigns tasks to each worker, performs dynamic load balancing, and

merge results from workers to determine cluster assignment. One of the most

computationally expensive task in DBSCAN is the region queries, requiring as

much as 95% of the computation time [44]. Consequently, the workers seek to

alleviate this problem by performing this task in isolation of each other, and

provides the cluster(s) and/or outlier(s) to the master. However, this approach

may result in bottlenecks at the master processor and incur high communication

overhead between the master and workers [51].

A disjoint set structure was implemented in [51], as a way to forgo the

sequential processing steps of DBSCAN by using a tree-based bottom-up

approach to identify cluster membership. The algorithm treats each datapoint as

a tree and merges those that belong to the same cluster until all clusters have

been identified. The disjoint set structure allows the algorithm to maintain

non-overlapping sets, to reveal cluster membership. Their approach is applicable

on shared and distributed memory. The results indicated they were able to

achieve improved computation time by using over 40 cores, on shared memory

architecture; and 8,192 cores on distributed memory [51].

9

3 Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are mathematical models that are inspired by

the structure and behavior of a biological neural network [52,53,54]. ANNs are

represented as a directed graph of interconnected neurons which are influenced

by weighted connections. ANNs can be effectively used for classification,

clustering, forecasting, pattern recognition and dimensionality reduction [55].

They possess several advantages, which include: high level of accuracy, efficiency,

adaptability, and noise tolerance [52,56]. Their disadvantages include: the

inability to determine the optimal number of neurons, and identifying adequate

training sets which encompass the problem domain [56]. Types of ANNs include:

Feed Forward Networks, Kohonen Self-Organizing Maps, Recurrent Neural

Networks, Restricted Boltzmann Machines, and Autoencoders. Figure 2 shows

the mathematical representation of a neuron.

x1 w1 Σ f y

Output

x0 w0

x2 w2

Weights

b

Inputs

Figure 2: The mathematical representation of a neuron, which is
the building block of a neural network. It has three inputs, and
their respective weight vector; the weighted sum of inputs and
the bias are passed into the activation function f , producing an
output y.

Neural networks can be trained using supervised, unsupervised, and

reinforcement techniques. Supervised learning requires previously labeled,

hand-engineered data which accurately represent the problem space. However,

for many real-world tasks obtaining hand-engineered features can be a tedious,

and potentially error-prone process, especially for high dimensional and

disparate data [57]. Their unsupervised counterpart aim to learn labels directly

10

from the data by using distance metrics to identify cohesion within the data (i.e.

small distances which indicate similarity).

This research used unsupervised learning techniques, due to the limited

availability of labeled data. ANNs provide the added benefit that they can be

trained to model a problem and unlike their counterparts, DBSCAN and

k-means, the ANN model can be used to generalize about new or unseen cases –

which is essential for novelty detection.

3.1 Kohonen Self-Organizing Map (SOM)

The Kohonen Self Organizing Map (SOM), is a type of artificial neural network

that was developed by Teuvo Kohonen. SOMs consist of an input and an output

layer – which is organized in a lattice [52] and is based on an unsupervised

competitive learning technique which has proven effective for exploratory data

mining [52,58,59,60]. SOMs advantages include their ability to project high

dimensional data into low dimensional feature space [52,60]; and identifying

hidden correlations within the data while preserving their topological

relationships [55,61,62]. Therefore data with high similarity will be mapped

within close proximity and their neighboring neurons will be sensitive to similar

input data [62].

In the basic SOM algorithm, each neuron’s weights are randomly initialized

and during training, vectors of data are fed into the neural network. The

algorithm iteratively determines which neuron’s weights are more representative

of the data by minimizing and objective function; the Euclidean distance metric

(shown in equation 4) is often used in literature. The winning neuron is

identified and called the Best Matching Unit (BMU). After the BMU is found,

each neuron’s weight vector is updated based on its proximity to the BMU (see

figure 3) – which is based on a Gaussian function. This process is performed for

a maximum number of epochs, during which the neighborhood radius and the

learning rate monotonically decrease over time. Figure 4 shows changes to the

11

SOM’s architecture that occurs during training. After training completes, the

neural network will classify new/unseen data and clusters can be identified using

a U-Matrix [63]. The SOM algorithm can be found in Appendix 3.

x0 x1 x2 x3 x4 x5

BMUN3 N4

N0 N1 N2

N5 N6 N7

Figure 3: An 8X8 SOM with input layer x0 - x5. The input data
traverses the entire network to identify the best matching unit
(BMU). After the BMU is identified, its weights and those of its
neighboring neurons N0 - N7, are updated during training.

Figure 4: The unfolding of the SOM’s lattice during training as
the neurons weight vectors are updated to model the data.

3.1.1 Parallel SOM

Parallel implementations of self organizing maps are traditionally performed via

network partition or data partition. In network partition, the map is divided

among the number of processors, and each work independently to train the map.

However, in data partition, the dataset is distributed among the processors and

each work independently using different vectors of data to train identical copies

of the same map [64,65,66]. In both network and data partition, a master

processor is required to synchronize the results from each worker.

12

Network partition suffers from latency issues as each epoch requires

communication between processors to determine the best matching unit;

additionally much effort is needed to accurately join the map at the end of

training; thereby limiting the scalability of this technique [64,67,68]. However its

main advantage is that it uses the weight update rule from the basic SOM

algorithm which accurately preserves the topological ordering when compared to

its counterpart [64].

Data partition has the advantage of improved scalability because the parallel

granularity is determined by the volume of data [64], thereby allowing one to

scale up or down the number of processes when required. However, it often uses

the batch update algorithm which delays the weight updates until the end of

each epoch and requires that the entire dataset be available during

training [64,65,68]. Research has shown that delaying the weight updates is an

effective technique to improve the training time; the results are comparable and

it eliminates a source of potential bias and poor convergence because it does not

require the use of a learning rate parameter to be specified a priori [64].

3.2 Variational AutoEncoders (VAE)

The autoencoder is a type of unsupervised neural network which is useful for

learning the manifold of unlabeled data. It also performs dimensionality

reduction by enforcing a bottleneck on the size of the hidden layer and applies

various regularizers, such as tied weights, to prevent overfitting the data and

trivially learning the identity function [57,69,70]. The trained network, if it

appropriately models the structure of the data, are useful representations for

discriminative techniques [71]. Figure 5 shows the basic structure of an

autoencoder which consists of an encoder function, which maps input data to a

hidden representation and a decoder function which reconstructs the output

from the hidden representation [69,71,72].

Data is fed into the network in a feed-forward manner and the weighted

13

...

...
...

x1

x2

x3

xn

z1

zn

x′1

x′2

x′3

x′n

Encoder Decoder

Input Hidden Ouput

Figure 5: The basic autoencoder network which learn represen-
tations of its input data by minimizing the reconstruction error
between the encoder and decoder layers in an unsupervised man-
ner. The use of regularization, prevents overfitting and places
constraints on the number of hidden neurons that are required
to learn useful features. The bias has been excluded from the
illustration.

product of the data, its respective weights and biases are sought and a

non-linearity (i.e. activation function) is applied to restrict the range of the

outputs (the sigmoid function is depicted in equations 1). This is the encoding

process which produces vectors at the hidden layer, called latent variables.

z = σ

(
n∑
i=1

Wijx+ b

)
(1)

x′ = σ

(
n∑
i=1

W T
ij z + b

)
(2)

Unlike traditional feed-forward neural networks which are trained to map to a

target output, autoencoders are trained to reconstruct the input data; this is the

decoding process. The weighted sum of the hidden values and their respective

biases are applied to an activation function to produce an output (see equation

2). The decoder uses tied weights, which is the transpose of the encoders weight

matrix and is a form of regularization to prevent learning the identity function.

14

Training an autoencoder is the process of minimizing the reconstruction error

which is achieved by optimization methods, such as gradient descent, which

propagates the error through the network until the cost is minimized. After

which, the encoder should contain meaningful representations provided that the

decoder learned to output accurate reconstructions of the input.

Types of autoencoder networks include: Sparse, Denoising and Variational

techniques. This research used variational autoencoders which incorporates

probabilistic inference to further regularize the basic autoencoder so that its low

dimensional features extract factors of variations in the data [73,74,75].

Figure 6: Variational autoencoders further regularizes the basic autoencoder by
learning the joint distribution over the input data and its latent representations.
It calculates the weighted sum of its inputs and bias terns – similar to the basic
autoencoder. Assuming this produces a gaussian distribution, a third layer is
integrated which samples µ and σ from the previous layer. The network then
integrates an auxiliary random variable ε to generate gaussian noise, ε ∼ N (0, I)
and computes µ + σε. Training the VAE is the process of measuring how much
information is lost and minimizing that using gradient descent.

Variational Autoencoders (VAE), shown in figure 6, learns the joint

distribution over the input data and its latent representations by sampling from

15

a unit gaussian distribution. For a given input, the encoder derives the mean

and variance of the gaussian from which the latent variables are sampled. The

decoder then uses the latent variables to reconstruct the original data. VAEs

seek to minimize the cost function in equation 3 which is comprised of a

reconstruction loss and a latent loss. The reconstruction loss assesses the

similarity between the VAE’s generated data and the input data. The latent loss

is used to penalize latent variables that do not follow a unit gaussian; this is

based on the Kullback-Leibler Divergence [76] between the input distribution

and its approximation.

L(φ, θ;x) = Ez∼qφ(z|x)[log(pθ(x|z))]−DKL(qφ(z|x)||pθ(z)) (3)

VAEs are both inference (i.e. the encoder function) and generative (i.e. the

decoder function) models [77]; as the decoder can be used to generate new data

from the latent vector.

4 Evaluating Distance/Similarity

Cluster analysis relies on the use of distance functions that adequately measure

similarity to determine cluster memberships. However, the selection of an

appropriate distance function will enhance or deter the algorithm’s ability to

identify neighbors and/or outliers. Therefore this researched compared three

similarity measures to identify any improvements in the quality of the cluster

formations.

Definition 3 A distance function d(x,y) measures the distance between elements

x and y. A metric satisfies the following:

• d(x, y) ≥ 0

• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z)

16

• d(x, y) = 0 ⇐⇒ x = y.

If any of the above properties are not upheld, the distance function is not a

metric (and is referred to as a distance/similarity measure).

4.1 Euclidean Distance

The Euclidean distance metric [78] measures the similarity between two vectors

by calculating the sum of squared difference between one to one mappings of

their elements. Equation 4 represents the Euclidean distance between two

vectors x and y.

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 (4)

4.2 Mahalanobis Distance

The Mahalanobis [79] distance metric is a form of z-score which measure the

distance between vectors of data, while measuring the correlation of each

parameters and preserving their magnitude. The distance between two vectors x

and y is shown in equation 5, and S−1 is the inverse of the covariance matrix.

d(~x, ~y) =
√

(~x− ~y)TS−1(~x− ~y) (5)

17

4.3 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) [80] is a dynamic programming approach to the

problem of aligning time series data in such a way that an optimal path can be

detected which minimizes the distance between each data point. It produces a

cost, which represents the similarity between the two curves. Figure 7 shows how

DTW identifies time-independent similarity between two curves.

Figure 7: The DTW alignment of two time-dependent sequences (the
aligned points are depicted by arrows) [2]

18

CHAPTER III

RELATED RESEARCH

1 Clustering Time Series Data

Analyzing time series data is a complex task due to the temporal dependencies

in the data and the variability of their sampling rates. Identifying clusters in

temporal data requires normalizing the dataset to a fixed range, an appropriate

distance measure/metric and a clustering algorithm [3,4, 81]. Previous research

have explored many methods of analyzing time series data; some approaches

employ rigorous mathematical and statistical techniques to reduce the

dimensions of the data while others integrate curve similarity analysis. However,

their respective approaches often employ an amalgamation of various techniques

which often includes dimensionality reduction prior to machine learning. This is

an important preprocessing step because there is a need to identify appropriate

representations of the data as the success of machine learning algorithms depend

on such [82]. Subsequently, the derived features, if they appropriately model the

structure of the dataset, are useful for discriminative or predictive tasks [71].

However, the choice of data representation can potentially skew the variability in

the raw data [57,82]. Consequently, dimensionality reduction techniques are

often used meticulously to minimize loss of information so their predicted

classification will not be negatively affected.

1.1 Integrating Curve Similarity via Dynamic Time Warping

Many researchers have used Dynamic Time Warping (DTW) [80] (see section II

4.3) as a similarity measure for comparing temporal sequences of varying

lengths [4, 83, 84,85,86].

19

Rakthanmanon et. al. [4] used dynamic time warping as the similarity

measure to search trillions of electrocardiogram (ECG) data which was sampled

at 256Hz. Parshutin & Kuleshova analyzed time warping techniques for time

series clustering [83]. Their research analyzed the influence of DTW [80] and

Derivative Dynamic Time Warping (DDTW) [86] on the topological preservation

of the Self Organizing Map (SOM) [58,59]; SOM is a popular dimensionality

reduction algorithm (see section II 3.1). Their results indicated that the

topology of the neurons influence the precision of the SOM’s results; the use of

DTW produces results with lower Mean absolute Error and DDTW produces

results with lower logical error. However, their research only used the DTW cost

in the SOM algorithm which treated the time series data as a single data point,

which is not the most descriptive representation of such data. Romano &

Scepi [84] also used DTW and SOM to classify curves. However,their

experiments were on simulated data which do not contain any of the

irregularities of real-world temporal data.

Clachar [87] identified anomalies in flight data using DTW’s warp cost and

the average rate of change to obtain an overall cost for time series subsequences

which were then clustered using Self-Organizing Maps. Further analysis was

then performed to identify the effect of external factors, such as weather, on the

detected outliers. Somervuo & Kohonen [85] used DTW with SOM and Learning

Vector Quantization (LVQ) to analyze sequences of variable lengths and rates.

In their research each SOM’s node is a vector sequence which allows adaptation

during training to allow variable length sequences. They also use the DTW

warping path as a means of averaging the difference in updating the input

pattern with the weights. However, they mentioned that an invalid warping path

can strongly influence the results. The DTW algorithm attempts to find an

optimal warp path between two time series, however it has the potential to

provide unintuitive alignments [86], therefore directly integrating the warp path

into the weight update may provide misleading results during training.

20

Although DTW is a good distance measure, its performance is limited to

certain constraints and its results cannot be directly indexed as it does not obey

the triangular inequality [88]. For some time sequences it may produce

unintuitive alignments, by mapping one time series to a subsection of another

time series or it may not find obvious natural alignments between two sequences

because their axes are scaled differently [86].

Other researchers have employed dimensionality reduction techniques, to

obtain a low dimensional representation of the data prior to

clustering/classification.

2 Dimensionality Reduction using Machine Learning & Statistical

Approaches

Singular Value Decomposition (SVD) and Principal Component Analysis (PCA)

where used by [37,38] to identify atypical flights. These methods are geared

towards expert analysts to provide insight on parameters that contribute to

atypical behavior [38]. Their research indicated that analysis can be performed

in one of two ways:

1. Analyzing routine events: i.e. snapshots of data parameters at critical

phases of flight. This involves calculating an atypicality score using

Mahalanobis [79] distance metric (see section II 4.2). The scores were then

used to detect outliers – i.e. atypical flights.

2. Analyzing time intervals: this step transforms the time series data for a

given phase of flight into a mathematical signature using a quadratic least

squares model. A statistical summary was obtained for the least squares

coefficients and atypicality scores were calculated using Mahalanobis

distance [37,38].

The above calculations are then useful for cluster analysis; the k-means

algorithm was used by the authors.

21

Other approaches used classifiers to identify abnormalities in the descent

phase of commercial jet aircraft [89, 90]. Support Vector Machines and

combination rules, i.e. a statistical summary of the data, were used to rank the

level of abnormality at various heights during the descent. This approach was

performed on real and artificial data. Results indicated that their technique

worked well for the artificial data. However, real world data presented

unfavorable results because it is unlikely to have multiple abnormal descent

patterns at various heights.

The application of cluster analysis on flight data has been explored

by [39,42,87,91]. Their research focuses on density-based, hierarchical clustering

and neural network-based techniques. Li [42] applied PCA on the flight data and

used Density-based spatial clustering of applications with noise (DBSCAN) [1] to

cluster airline flight data from 365 flights. Their results indicated that the choice

for DBSCAN’s hyperparameters strongly affected the number of outliers

detected. Their results also showed that the algorithm was able to identify

clusters in the data and anomalies (which represent abnormal behavior).

However, their research did not mention any performance implications of using

DBSCAN on their dataset. One of the main disadvantages of the DBSCAN

algorithm is its poor convergence time when analyzing large volumes of data.

22

CHAPTER IV

THE DATA REPOSITORY

The University of North Dakota’s (UND) fleet of Cessna 172S model aircraft

are equipped with the Garmin G1000 system, which contains many integrated

features. One of which is its airborne flight data recorder (FDR) which has a 1

hertz frequency and records 64 flight and engine parameters from sensors

onboard the aircraft. On average, the duration of a typical flight is 80 minutes.

For the 1 hertz time frequency this produces a 64-dimensional vector size of

4800X64 (i.e. 4800 seconds, 64 flight parameters). Flight data holds key

information on the aircraft’s operation during various phases of flight; and can

be used to identify unsafe practices, violations of standard operating procedures

(SOP) and maintenance issues which are integral aspects of aviation safety

management. Consequently, at the end of each flight, the data is retrieved from

the aircraft and uploaded to a data repository for further analysis. Figure 8

depicts this process.

1 Overview & Architecture

The National General Aviation Flight Information Database (NGAFID) is a

joint university-industry-FAA initiative that is responsible for the curation,

dissemination and analysis of flight data for the General Aviation (GA) sector.

The NGAFID is supported by an Intel x86− 64 architecture with 12 physical

cores, 12 threads of execution, 284 GB of RAM and 24 CPUs. It uses a LAMP

software bundle with a MySQL relational database. As of December 2016, the

database contains de-identified data from over 370, 000 flights totaling 650, 000

flight hours. This produced over 1.5 billion database rows which accumulates

over 2 terabytes of storage. The University of North Dakota (UND) is the major

23

contributor to the NGAFID and their data comprises over 95% of the

aforementioned statistics.

Figure 8: Flight data is recorded using an airborne recording device which
may encrypt the data. At the end of each flight the data is manually
retrieved from the aircraft, decrypted and converted into a CSV format
before it is uploaded to the NGAFID.

UND has routinely contributed to the NGAFID since march 2011 to date.

Even though the NGAFID was designed for the GA sector, which UND flight

operations belong to, the methodology in this research is not confined to GA.

However, this data source is useful in demonstrating the utility of the analytical

techniques for identifying atypical flight patterns which contribute to unstable

approaches. Furthermore, the growing size of the repository presents several big

data challenges requiring scalable solutions. Consequently, any useful

algorithmic design should facilitate distributed analysis in order to provide

results in a feasible about of time to address scalability issues.

The NGAFID is used as the data source for this research and the analytical

process is initiated by extracting samples of the raw data and preprocessing

them prior to cluster analysis.

2 Data Preprocessing & Transformation

The preprocessing and transformation steps encompassed: sanitizing the data,

feature extraction, data transformation and phase of flight identification.

Samples of raw data were first obtained from the NGAFID and sanitized to

remove noise and invalid/incomplete data. After which the features that are

useful for the analysis are selected. There are approximately thirteen parameters

24

which contain useful indicators of the aircraft’s approach configuration; they are:

Mean Sea Level Altitude, Radio Altitude, Indicated Airspeed, Vertical Speed,

Course, Heading, Roll, Pitch, Vertical Acceleration, Lateral Acceleration, Engine

RPM, Latitude, and Longitude.

The extracted data undergoes transformation steps, which is an integral

aspect due to the various scales of flight parameters (e.g. knots, degrees, feet,

etc). This ensures that data has the same scale so that features which are orders

of magnitude larger than others do not thwart the analysis. The residuals of the

extracted data were derived, see equation (6), by obtaining estimates of the

population mean X using bootstrap resampling [92]. The residuals were then

divided by the range (equation 7) and rescaled to [0.01, 0.9]. The geographic

coordinates (e.g. latitude and longitude) were normalized in a different manner,

by creating a geometric fence (see figure 9) around the airport and applying

max-min normalization to rescale the coordinates within the specified region.

X ′ = X −X (6)

X ′

MAX(X ′)−MIN(X ′)
(7)

Subsequently, the data was preprocessed to extract the approach phase of

flight.

2.1 Phase of Flight Identification and Designation

Amidan & Ferryman [37,38] did pioneering research with developing

representative mathematical signatures of flight data and concluded that the

analysis requires preprocessing the raw data to extract the various phases of

flight, prior to performing any statistical or machine learning techniques. This

will reduce the dimension and allow fine-grained analysis; because analyzing the

entire duration could obscure anomalies. This research incorporates their

25

Figure 9: A geometric fence, indicated
in red, that was created around the
Grand Forks International Airport’s run-
way 35R.

suggestions on preprocessing flight data to extract the phases of flight and

analyzing each phase independently to exude a higher degree of accuracy.

Aircraft undergoes approximately ten distinct phases of flight, with each

phase having sub-phases [16]. This research focused on abnormal descent

patterns in the final approach phase.

UND’s fleet predominantly operates from the Grand Forks International

Airport (GFK). The flight data was preprocessed to identify the final approach

phase for GFK’s runway 35R as follows:

1. Obtain the geographic coordinates for the runway under analysis.

2. Create a search space of approximately 200 feet around the anticipated

descent point; the location of the Visual Approach Slope Indicator (VASI)

or Precision Approach Path Indicator (PAPI) can be used.

3. Identify when the aircraft has entered the airfield’s traffic pattern. This

occurs around 800 feet above ground level (AGL) and when the aircraft is

within a 5 mile radius from the centroid of the airport.

4. Verify if the aircraft is descending and its power is decreasing (i.e. the

vertical speed is less than zero and the engine’s power has reduced below

26

2000 revolutions per minute).

5. Calculate the course differential; this is the difference between the aircraft’s

course and the runway’s course. If the difference is ±15 degrees, the

aircraft has completed its turn and is in alignment with the runway; this is

indicative of an approach. At this point the altitude should be below 500

feet AGL.

6. Obtain the flight data starting from (5), until the aircraft has surpassed

the anticipated descent point, and/or the airspeed has decreased below 30

knots.

Figure 10: A sample of flight trajectories, i.e. the approach configuration,
which made their final approach on runway 35R.

The aforementioned steps reduced the vector space, extracting only the

27

approach from each flight and the average duration is 40 seconds. However, only

the first thirty seconds is needed, to prevent obtaining the landing/taxiing data.

From here on, this extracted data is referred to as the snapshot of the aircraft’s

approach configuration. Each snapshot will be analyzed to identify anomalous

descent patterns using machine learning techniques. Figure 10 shows an aerial

view of the extracted trajectories for each aircraft’s approach configuration.

28

CHAPTER V

RESEARCH METHODOLOGY

Flight data was obtained from the NGAFID and underwent several

preprocessing and transformation steps to identify and extract the approach

configurations from the data. The results were then normalized and saved to a

text file which was subsequently transferred to UND’s High Performance

Computing (HPC) center where the analysis was performed. Figure 11

illustrates the process flow.

Figure 11: The temporal flight data was obtained from the
NGAFID and underwent preprocessing and transformation steps.
The data was saved into a text file which was transferred to the
high performance computing (HPC) center, where the various
clustering algorithms were performed; after which their respec-
tive results were gathered.

The algorithm’s results were gathered using a Beowulf HPC cluster with 32

dual quad-core compute nodes (for a total of 256 processing cores). Each

compute node has 64GBs of 1600MHz RAM, two mirrored RAID 146GB 15K

RPM SAS drives, two quad-core E5-2643 Intel processors which operate at

3.3Ghz, and run the Red Hat Enterprise Linux (RHEL) 6.2 operating system.

All 32 nodes within the cluster are linked by a private 56 gigabit (Gb)

InfiniBand (IB) FDR 1-to-1 network. The code was compiled and run using

29

Python, Open MPI [93] and MPI4Py (MPI for Python) [94,95,96], to allow

highly optimized use of this network infrastructure.

The analysis was performed in two phases: 1) the preliminary data

exploration efforts and 2) the detailed analysis which includes the scalability

assessment. All flights were obtained from UND’s Cessna 172S model aircraft

which made their decent at the Grand Forks International Airport’s runway 35R.

In the preliminary analysis, a random sample of 1500 flights were selected and

their respective approach configurations were sought. Subsequently, the average

values for each parameter in the approach configurations were obtained, as the

preliminary efforts sought to analyze the efficacy of select algorithms and

distance functions for analyzing flight data. Consequently this is a form of

average case analysis which proved useful for visualizing clusters in the data in

lower dimensions. Three parameters were used: Mean Sea Level Altitude (MSL),

Vertical Speed (VSI) and Indicated Airspeed (IAS). The algorithms that were

useful for identifying clusters and outliers in the three dimensional data, were

then optimized for the detailed analysis in high dimensional feature space.

The detailed analysis sought to identify clusters and outliers in the time series

data (i.e. the entire approach configurations). A new sample of 2582 flights that

occurred in June 2015 was obtained from the NGAFID and the following 9 flight

parameters were used: radio altitude, indicated airspeed, vertical speed, pitch,

roll, engine RPM, vertical acceleration, latitude and longitude. A comparative

analysis was performed of the serial and asynchronous implementations of the

algorithms and their respective distance functions. However, unlike the

preliminary analysis, the Mahalanobis distance metric was not used because it is

very time-consuming; comparable results can be obtained by calculating a

z-score which standardizes the data. Dynamic Time Warping was integrated as

an alternative similarity measure and its results were compared with Euclidean

distance metric. Table 1 summarizes the various algorithms, their respective

distance functions and processing strategy.

30

Table 1: An overview of the selected algorithms, their respective distance functions
and processing strategy.

Algorithm
Distance
Function

Serial /
Parallel
Processing

Summary

K-Means
Euclidean Serial A random sample of 1500 flights

were selected. The average val-
ues of each parameter in the ap-
proach configurations were calcu-
lated. The average case analy-
sis was only performed in the ini-
tial data exploration attempts to
gain insight into the data. The
selected parameters were: Mean
Sea Level Altitude (MSL), Ver-
tical Speed (VSI) and Indicated
Airspeed (IAS).

Mahalanobis

DBSCAN
Euclidean
Mahalanobis

DBSCAN
Euclidean

Serial A sample of 2582 flights, which
occurred in June 2015 was ob-
tained. The detailed analysis
used 9 flight parameters: radio
altitude, indicated airspeed, ver-
tical speed, pitch, roll, engine
RPM, vertical acceleration, lati-
tude and longitude. The entire
sequence of time series data was
analyzed (not their averages).

Parallel

DTW
Serial

Parallel

SOM
Euclidean

SerialDTW & Avg.
Rate of Change

DTW
Parallel

VAEFM a Reconstruction-
based

Parallel

aVariational Autoencoder Feature Map

31

CHAPTER VI

RESULTS & EVALUATION

This section contains the results for the serial and distributed clustering

algorithms. The intent was to analyze their performance when the dimensions

increase and assess the scalability of their distributed implementations.

1 Serial Clustering Results

A random sample of 1500 flights was obtained from the NGAFID, for all

approaches that made their descent on runway 35R at the Grand Forks

International Airport (GFK). The preliminary analysis sought to compare the

efficacy of each algorithm and was performed in three dimensional feature space

(each dimension corresponds to a flight parameter). The selected parameters

were: Mean Sea Level Altitude (MSL), Vertical Speed (VSI) and Indicated

Airspeed (IAS); and the average values of each parameter in the approach

snapshots were calculated. Performing the analysis with the averages was only

done in the initial data exploration attempts to gain insight into the data and to

visualize the quality of the cluster formations.

1.1 K-Means

The k-means algorithm was used as one of the first data exploration efforts in

this research. Figure 12 shows the results from using this algorithm to identify

three clusters in the sample data. The analysis was performed using two distance

metrics: Euclidean distance [78] (equation 4), as recommended by the original

k-means algorithm, and Mahalanobis [79] distance metric (equation 5) to

determine which metric accurately represents distance in three dimensional data.

32

(a) Three clusters that were found using
the Euclidean distance metric.

(b) Three clusters that were found using
the Mahalanobis distance metric.

Figure 12: Graphical illustration of three clusters identified in 1500 flights when
using the k-means algorithm. The choice of distance metric or scale of the data
did not influence the selection of intuitive clusters; however it determined how the
dataset was partitioned.

The graphical illustrations in figure 12 reveals that k-means identified

k-clusters, even if the selected value for k was not optimal. The success or failure

of k-means relies strongly on choosing appropriate values for k, which is very

challenging in high dimensional data, unless one has the ability to visualize it.

Further, the distance metric and scale of the data can strongly influence the

outcome the data partitions. Due to this algorithm’s difficulty in detecting

meaningful clusters (without additional heuristics); and its inability to identify

outliers, which may be indicative of abnormal flights, the algorithm was not used

further nor was it optimized. The initial data exploration indicates that k-means

may perform poorly in high dimensional feature space (i.e. beyond the 3

dimensional case as depicted in this example).

1.2 DBSCAN

DBSCAN was subsequently used on the aforementioned sample of 1500 flights

and its results was compared to its centroid-based counterpart, k-means. Figure

13 shows the results of applying DBSCAN, and as with k-means, the

Mahalanobis and Euclidean distance metrics were used. The results illustrate

33

(a) The results from DBSCAN using
the Euclidean distance metric; one clus-
ter was identified and 355 outliers.

(b) The results from DBSCAN using
the Mahalanobis distance metric; one
cluster was identified and 84 outliers.

Figure 13: Graphical illustration of the one cluster and various outliers found
using DBSCAN. The choice of distance metric influenced the cluster formations
and the number of outliers that were detected.

that DBSCAN was able to identify one cluster of high density within the dataset

and several outliers. The total number of elements in the cluster and the number

of outliers was influenced by the scale of the data and the distance metric.

However, there was a consistent identification of one cluster irrespective of the

distance metric that was used.

From the initial analysis, the DBSCAN algorithm demonstrated improved

results over k-means. However, the algorithm’s computational time is very

demanding. Further use will require parallel analysis to produce results in a

feasible amount of time.

1.3 SOM

The self organizing map required two types of data: 1) a training set and 2) a

test set. The first is used to train the network so that it is able to generalize

about data that it was not trained with; and the latter is used to demonstrate

the predictive capability of the trained network. However, due to the limited

availability of labeled data, the training set was obtained by using bootstrap

sampling on the test set (i.e. the 1500 flights). Subsequently, the vectors of

34

Table 2: The sample data contained
approximately 38% of stabilized ap-
proaches, the remaining flights had
contributory factors for unstabilized
approaches.

Cluster % Occurrence

High 14.8
Long 8.5
Short 17.02
Steep 8.5
Fast 12.7

Stable/Normal 38.5

training data was fed into the network based on the steps outlined in algorithm

3. The network was trained until the average training error was less than 10−7.

After which, the test set was projected unto the network.

The preliminary results were manually validated by safety experts at UND

because, unlike DBSCAN and k-means, SOM produced mappings of flight data

that were highly correlated; therefore, it would be difficult to determine the

utility of the results or optimize the neural network without assistance from

experts. The initial validation detected flights with 10-15 degree changes in roll

just above touchdown, unsafe low-level maneuvers and exceptionally fast

approaches with rapid deceleration by touchdown.

However, the rate of false-positive flights were very high; false-positives are

flights that were considered normal and were mapped to neurons with anomalous

flights. The high rate of false positives could be as a result of obtaining a poor

selection of flights for the training set. Consequently, the neural network was

retrained and the validated flights were used to augment the new training set

and was used to fine-tune the network during the latter stages of training. The

results underwent a second round of human validation to identify improvements

in the SOM’s mappings. The results indicated that SOM’s rate of false positives

decreased to less than 5% of the dataset; which is a significant improvement from

the initial validation efforts.

35

Table 2 shows each anomaly with their respective occurrence; and the results

indicate that there were approximately 38.5% of stabilized approaches.

Figure 14 shows the Unified Distance Matrix (U-Matrix) of a trained SOM.

The U-Matrix is a visualization method that was suggested by Ultsch [63] as an

alternative method of identifying clusters of neurons based on their relative

distance to each other. The U-Matrix is a hexagonal lattice that displays high

dimensional data into a 2-dimensional manner that can be easily understood by

humans. It is color coded on a red-green scale, where red depicts a large distance

(high dissimilarity) and green is indicative of small distances.

Figure 14: The U-Matrix of a trained SOM, which is color coded;
red indicates regions of large dissimilarity and green shows cohe-
sion between neurons.

Training the Self-Organizing Map is a time consuming process, due to the

frequency that the training data is presented to the network. Also, the size of

the network adds to the computation time, as the data is presented to each

neuron for comparison. Consequently, SOMs computation time is a function of

the number of epochs, the size of the training set and the network size (each of

which varies based on the problem). Therefore, there is a need for parallel

analysis to train the neural network to facilitate the required scalability.

36

2 Distributed Clustering Results

The k-means algorithm did not produce effective quality clusters in lower

dimensions as it is very difficult to identify appropriate values for k. It was also

unable to identify outliers therefore it was not parallelized.

A new sample of 2582 flights, which occurred in June 2015, was selected and

preprocessed to obtain their respective approach configurations. The following

flight parameters were used in the analysis: radio altitude, indicated airspeed,

vertical speed, pitch, roll, engine RPM, vertical acceleration, latitude and

longitude. The previously used average case analysis was solely to demonstrate

preliminary research efforts in identifying clusters and visualizing the results.

However, from here on, the entire sequence of temporal data will be analyzed.

The Dynamic Time Warping, which is advantageous in comparing the alignment

of time series data, was used as an alternative to Euclidean or Mahalanobis

distance metrics.

This section evaluates the scalability of the asynchronous algorithms on the

actual approach configuration (not the averages).

2.1 DBSCAN

The parallel DBSCAN algorithm, as described in [46], was implemented and its

computation time was compared to the serial algorithm.

The serial DBSCAN algorithm had an average runtime of 2013 minutes (33

hours), whereas its asynchronous equivalent, i.e. the master worker model with

two processors, had an average runtime of 2060 minutes (34 hours). Therefore,

the serial algorithm is 3% faster than its asynchronous counterpart on a single

processors. However this time difference is expected due to additional overhead

for the MPI communication calls and the master process synchronizing the

results.

As the number of processors increased, to 4 processors, the asynchronous

DBSCAN algorithm demonstrated a 23% improvement in computation time over

37

Figure 15: The computation time of the DBSCAN algorithm, as the num-
ber of processors increased, and its serial counterpart. The performance
was assessed by executing the algorithm multiple times. The average run-
time, i.e. the solid line, was calculated and the shaded regions depicts
variations in the computation time, which occurs due to bottlenecks at
the master processor. On average, the slowest computation time was 2060
minutes when using 2 processors and the fastest was 1507 using 16 pro-
cessors.

its two process counterpart and it gained a 21% improvement over the serial

algorithm. When using 8 and 16 processors, there was a 23% and 25% respective

improvement over the serial algorithm. Figure 15 shows there is a decrease in

processing time as the number of processors increased. However, on average, the

speedup is sluggish as it is very difficult to perform DBSCAN in parallel because

the workload became imbalanced when the master synchronizes the data.

Consequently, it is very challenging to adjust the parallel granularity to achieve

paramount speedup with this technique. The slowest computation time achieved

was 2060 minutes, when using 2 processors (i.e. one master and one worker) and

the fastest was 1507, using 16 processors. The mean and standard deviation of

the computation time across all processors was 1625 ad 215 minutes respectively.

38

Table 3: The silhouette coefficient of DBSCAN’s six clusters which revealed over-
lapping cluster memberships.

Cluster Average Cohesion Average Separation

1 0.009 0.008
2 -0.054 -0.001
3 0.248 0.001
4 0.206 0.001
5 0.587 0.003
6 0.126 0.0006

Figure 15 shows that the best computation time occurs around 14 and 18

processors; beyond that, there would not be a significant improvement in

computation time based on the resource utilization/overhead. For example, 64

processors took an average of 1514 minutes which is not a significant

improvement when compared to 16 processors as it is using 4 times the number

of processors.

However, both the serial and asynchronous algorithms consistently identified

six clusters and 1669 outliers. Due to the high dimensions of the data,

visualizing the clusters was very challenging. They were instead validated by

using an internal cluster validation metric called the silhouette coefficient [97]

(see equation 8). The silhouette values range between -1 and 1; values that

approach 1 are indicative of good inter-cluster membership or intra-cluster

separation. Table 3 shows that the average cohesion and separation are centered

around 0 which indicate overlapping cluster memberships. Cluster 5, contained

the best inter-cluster results.

s(i) =
b(i)− a(i)

max(a(i), b(i))
(8)

As the number of dimensions increased, it was very challenging to find

appropriate values for DBSCAN’s hyperparameters. Consequently, the clusters

that were identified were not fully separable.

39

2.2 SOM

The data partition based SOM algorithm was used and it can be found in

appendix 4. The objective function, which was previously based on the

Euclidean distance metric, was replaced with Dynamic Time Warping due to its

innate ability to identify similarity in temporal data.

Figure 16 shows the performance of the algorithm’s scalability as the number

of processors increased. The asynchronous algorithm running on two processors

took approximately 27 hours, as opposed to its serial counterpart which took

approximately 39 hours. Using twice the number of processors resulted in an

average computation time of 10 hours, which is a 75% speedup over the serial

algorithm; and 62% improvement over the asynchronous 2 processor version.

Further increasing the number of processors to 8 and 16 reduced the average

computation time by 55%. However, when the number of processors surpassed

16, the computation time increased due to the bottleneck at the master. On

average, the fastest computation time was 239 minutes when using 16 processors

and the slowest was 1627 minutes using 2 processors. The mean and standard

deviation across all processors were 572 and 530 respectively. The standard

deviation is fairly high, due to huge variations in the computation time across

processors.

The async SOM algorithm demonstrated the fastest computation time when

compared with async DBSCAN (see figure 17), and its performance is over 6

times faster. The evaluated results indicated that SOM identified strong

correlations in the data. However, one of its disadvantages lie in the possibility

of overfitting and overtraining the data which may occur when the neighborhood

radius decreases [98,99]; and adjusting the size of the network does not alleviate

this issue.

Consequently, additional heuristics are needed to reduce the bottleneck at the

master processor and prevent overfitting the training set. A new algorithm was

developed which is based on Self Organizing Maps and Stacked Variational

40

Figure 16: The computation time of the asynchronous SOM algorithm,
as the number of processors increased, and its serial counterpart. Mul-
tiple runs were also performed for the asynchronous algorithm, however
variations in the computation time was miniscule.

Autoencoders; together they learn the data manifold to prevent overfitting.

They also facilitate improved scalability by merging the benefits of both data

partition and network partition to train the neural network.

2.3 Variational Autoencoder Feature Map (VAEFM)

The new Variational Autoencoder Feature Map algorithm, is the combination of

two neural networks: 1) the variational autoencoder, and 2) the self-organizing

map. This methodology seeks to leverage the weights of trained variational

autoencoders to pre-train a self-organizing map. MPI was used to facilitate the

development of an asynchronous implementation and the computation time was

compared with that of SOM to identify any improvements in scalability, because

the parallel SOM algorithm was not scalable beyond 16 processors. The steps of

the algorithm are outlined below and the pseudocode can be found in Appendix

5.

41

Figure 17: The computation time of the serial and asynchronous SOM
algorithm compared with DBSCAN’s serial and asynchronous algorithms.
The serial SOM performed slower than both serial and async DBSCAN
because the algorithm endures more computation, when the data is com-
pared to each node in the neural network. However, the async SOM algo-
rithm outperformed its serial counterpart, as well as both the serial and
async DBSCAN algorithms; its fastest computation time was 239 minutes
when using 16 processors, as opposed to DBSCAN’s 1507 minutes.

1. Initialize the architecture of a SOM network; excluding the weight vectors.

2. Obtain samples of approach configurations which have been preprocessed

and normalized.

3. Derive a training set from the above data by using random sampling

techniques. Previously validated/labeled flights can also be used. This

research used the previously validated SOM results.

4. Generate stacked variational autoencoder networks to model each flight in

the training set; each layer in the stack is indicative of one time step in the

flight’s approach configuration. Therefore, if an approach spans 30 seconds,

there will be 30 autoencoders which are stacked sequentially to model each

42

second in the approach (see figure 18). Furthermore if the training set is

comprised of 100 flights/approaches, there will be 100 autoencoder

networks; each of which is a stacked VAE to model each respective

approach.

5. Train each stacked autoencoder network in a layer-wise manner using

gradient descent, with momentum, to minimize the reconstruction error.

6. After training is completed, and the error is minimized, extract the weight

vectors from each layer in the stacked VAE. These weights will be used to

pre-train the SOM.

7. Assign the aforementioned weight vector to one neuron in the uninitialized

network (in step 1 above). Apply the neighborhood function of the SOM

algorithm to ensure that neighboring neurons update their weights based

on their proximity to the selected neuron.

8. Perform steps 5 - 7 for all flights in the training set.

9. A test set is fed into the trained SOM network and the data traverses all

neurons to identify which has the smallest prediction error (i.e. the BMU).

Each flight in the test set is mapped to their respective BMUs.

The steps outlined above was applied to each approach configuration in the

training set. This new algorithm allows for improved scalability as each stacked

autoencoder network can be trained independently which allows the algorithm to

scale the number of processors to the size of the training set. After which the

weight vectors are obtained from each autoencoder and undergoes an adaptation

step to integrate their weights into the uninitialized self organizing map.

When adaptation is completed, copies of the trained VAEFM is shared with

all processors and the test set is distributed evenly among them. Each process

works independently to identify the BMU for each approach in the test set.

43

Figure 18: Graphical illustration of the VAE (a) which accepts 9 flight parameters,
and (b) depicts the block diagram of (a) which is stacked sequentially to model
each second in the temporal data.

After which, the results are sent to the master process which merges them and

creates visualizations of the data manifold.

The above steps are major enhancements over the original SOM algorithm

which only maps inputs to outputs. Also, the new architecture is representative

of a deep network, and the depth is based on the duration of the approach

configurations.

2.3.1 Performance Evaluation

The purpose of VAEFM was twofold: 1) improve the scalability of async SOM

beyond 16 processors and 2) enhance the training algorithm to minimize

overfitting. Figure 19 shows the computation time of the VAEFM algorithm as

the number of processors increased to 256. The computation times of serial and

44

async SOM were superimposed to demonstrate the point at which VAEFM

outperformed the algorithms. Initially VAEFM performs slower than async SOM

because its algorithm contains longer analytical steps. Consequently, when using

8 and 16 processors, the respective computation time was approximately 85%

and 58% slower than async SOM. However, VAEFM demonstrates improved

computation time as the number of processors increased (even though it has not

surpassed SOM at this point).

VAEFM outperformed SOM when using 32 processors and had an average

computation time of 214 minutes as opposed to async SOM’s 278 minutes; this is

a 23% improvement. Furthermore, as the number of processors increased to 64,

128, 256, VAEFM demonstrated an average speedup of 70%.

Figure 19: The computation time of the VAEFM, Serial SOM, Async
SOM, Serial DBSCAN and Async DBSCAN algorithms as the number
of processors increased. VAEFM demonstrated an average speedup of
70%, and it scalability was demonstrated up to 256 processors – where it
analyzed over 2500 flights in under 5 minutes.

VAEFM’s maximum computation time was 2106 minutes and its fastest was 5

minutes when using 8 and 256 processors respectively. There were major

45

improvements in performance, as the number of processors increased, when

compared with the computation time of SOM and DBSCAN. This algorithm has

demonstrated improved computation time, beyond 16 processors. The results will

be validated in the subsequent section to verify its utility for novelty detection.

2.3.2 Evaluation of the Data Manifold

Figure 20 shows the data manifold of the approach configurations that was

produced by VAEFM, and figure 21 shows the color scheme for each neuron and

the number of approaches that were mapped to each1. The graphical illustration

of the manifold shows that there are clusters present in the data; some of which

were densely populated.

Figure 20: The manifold of the ap-
proach configurations which are color
coded based on their neuron mappings.

Figure 21: The color map for the
neurons which shows the number of
flights that were mapped to each.

Further evaluations revealed that, flights that are mapped to adjacent

neurons had similar approach configurations and their levels of dissimilarity

increased based on their distance in the grid. Consequently, factors that

distinguish one cluster of flights from another is often a very subtle change in a

few flight parameters, unless they were mapped further away from each other.

Each neuron will be analyzed independently in the subsequent sections and the

results will be displayed graphically with accompanying tabular information on

1The color scheme for the neuron mapping is not related to the color-coding for the validation
criteria

46

Table 4: The inter-cluster validation criteria for detecting unsafe practices.

Legend
Name Definition Red Yellow Green

Rapid
VSI

Vertical acceleration (VSI),
greater than 1000 feet per
minute (fpm).

≤ −1000 ≤ −900 > −900

High/Low
IAS

Airspeed greater than 61
knots (or less than 55 knots
for low airspeed).

> 75
or
< 50

> 65
or
< 55

∼ 61± 5

High/Low
Altitude

Derived radio altitude
above 200 feet AGL (or
less than 120 feet for low
altitudes).

≥ 230
or
≤ 120

> 200
or
≤ 140

≤ 200
&
> 140

Excessive
Roll

10+ degree change in roll
attitude while on final.

≥ 10◦ n/a < 10◦

Excessive
Pitch

10+ degree change in pitch
while on final.

≥ 10◦ n/a < 10◦

the range of parameter values.

2.3.3 Cluster Evaluation

This section automates the manual validation efforts by using UND’s SOP

criteria to identify the frequency of violations that occur in each cluster. This

seeks to demonstrate the forensic capability of the VAEFM algorithm for

identifying correlated flight parameters that contribute to atypical descent

patterns. Table 4 shows the criteria, which are not exclusive means of validation.

However, they serve as guidelines for comparing the results in each cluster, and

will be used to color code line graphs to show excessively high/low values in the

approach configuration.

Weather conditions, such as precipitation and wind velocity, are contributory

factors for unstabilized approaches. Therefore, weather data will be obtained to

identify the presence of strong tailwinds and/or crosswinds.

The National Climatic Data Center (NCDC) provides information on weather

47

conditions across the USA by obtaining data from Automated Surface Observing

Systems (ASOS) [100]. The system provides weather data from the automated

sensors, at participating airports, and publishes them in 1-minute, 5-minute, and

hourly observations. The dataset contains reporting on wind speed and

direction, visibility, runway visual range, obstructions and various weather

phenomena. It also includes sky conditions and cloud coverage, temperature, due

point, and the altimeter setting (i.e. pressure) [100,101].

Weather data is reported using the METAR format, which collectively

describes the above conditions for a given airport. This research obtained the

1-minute ASOS data and calculated the wind components (see equation 9), for

GFK 35R to identify correlations in tailwinds or crosswinds for the selected

approaches.

Angle = winddirection − runwaydirection · π/180

Left/Right Crosswind = sin(Angle) · windspeed

Tailwind/Headwind = cos(Angle) · windspeed

(9)

Cluster One

Cluster one comprised of 70 approaches which were excessively high and fast.

There were approximately 36% with airspeeds exceeding 65 knots; the maximum

detected was 95 knots. 33 % of the approaches were high (i.e. above 200 feet

AGL); and 17% had rapid decelerations of 1000 fpm or more. Approximately

10% of these flights aborted their approach, possibly due to conditions that

would result in it being unstabilized. These high, fast and rapid decelerations

comprised over 87% of this cluster. Further analysis of the wind velocity shows

15% of these approaches had left or right crosswinds greater than 5 knots, which

were contributory factors in the variation in roll during the descent.

Figure 22 shows an aerial view of the aircraft trajectories and figure 23 shows

changes in flight parameters during their respective descent.

48

Figure 22: Cluster 1 - Aerial view of the trajectories for the excessively
high and fast approaches; 10% of these were aborted.

The clustered results were further analyzed using the inter-cluster validation

criteria, and figure 24 shows the pie chart of the percentage of occurrences; table

5 contains summary statistics for this cluster.

49

Figure 23: Cluster 1 - Line graph showing the changes in altitude, indi-
cated airspeed, vertical speed, position (left/right of centerline), roll and
pitch. This cluster contained flights with excessively high altitudes, air-
speeds and vertical speeds while on final approach. Approximately 10%
of these flights performed a go-around maneuver.

50

Figure 24: Cluster 1 - Pie Chart showing the validation metrics and their
respective percentages of occurrence. All 70 flights had unsafe events
which are contributory factors for unstabilized approaches.

Table 5: Cluster 1 - Summary statistics for each flight parameter. The highest
altitude, airspeed and vertical speed during the descent was 401 ft, 95 kts and
-2035 fpm respectively.

Parameter Max Min Mean Standard Deviation

Altitude 401.0 1.0 136.02 96.86
Airspeed 95.40 30.99 69.95 9.78

Vertical Speed 1446.84 -2035.17 -591.27 409.77
Pitch 15.96 -15.84 -2.15 4.31
Roll 26.03 -14.77 0.42 4.58

Eng RPM 2561.60 0.00 1284.47 457.70
Vertical Acceleration 0.59 -0.65 0.009 0.096

Position 222.26 0.31 21.07 27.25

51

Cluster Two

Cluster two contained 60 flights, 69% of which had high airspeed with the

highest being 75 knots, which was triggered by one flight (depicted in red in

figure 26). The remaining IAS were on average 7 knots faster than UND’s

standard operating procedures (SOPs) for IAS on final approach. However, the

approaches in this cluster were considered stable as there were no unusual

changes in each aircraft’s descent profile.

Figure 25: Cluster 2 - Aerial view of approaches that were on average 7
knots faster than UND’s SOP; however they were stabilized.

52

Figure 26: Cluster 2 - Line graph showing the changes in altitude, air-
speed, vertical speed, position (left/right of centerline), pitch and roll for
the stabilized approaches.

53

Figure 27: Cluster 2 - Pie chart showing the evaluated approach con-
figurations using the inter-cluster validation criteria. There were 69% of
flights with airspeeds greater than 65 knots (the maximum airspeed was
75 knots); 27% did not trigger any events and the remaining 3% were
slightly high/wide approaches.

Table 6: Cluster 2 - Summary statistics showing the respective range of parameter
values. This cluster did not contain excessively high values or unusual changes in
the descent profile.

Parameter Max Min Mean Standard Deviation

Altitude 206.0 1.0 77.83 43.13
Airspeed 75.38 22.10 59.00 7.20

Vertical Speed 154.12 -918.47 -279.78 151.81
Pitch 10.34 -5.16 0.92 2.25
Roll 17.64 -14.62 0.07 2.68

Eng RPM 2348.10 668.50 1561.36 278.10
Vertical Acceleration 0.49 -0.40 0.0008 0.082

Position 154.92 0.31 12.96 12.55

54

Cluster Three

Cluster three comprised of 90 flights, 55% of which had slightly fast airspeeds.

As with cluster 2, they were on average 7 knots faster than UND’s SOP. The

descent rate, roll and pitch did not indicate any unexpected changes in the

approach configuration (see figure 29).

Both clusters 2 and 3 did not contain major deviations in their flight

trajectories (see figure 25 and 28); The most distinguishing factors between them

are very subtle (see tables 6 and 7). All approaches in cluster 3 were initiated

below 200 feet, their respective sink rates did not surpass 750 feet per minute,

and there was less variability in roll and pitch during these descent. However,

both clusters 2 and 3 are considered stabilized approaches, with cluster 2 being

slightly faster, but not excessive.

Figure 28: Cluster 3 - Aerial view of the flight trajectories.

55

Figure 29: Cluster 3 - Line graph showing the altitude, airspeed, vertical
speed, position, roll and pitch while on final. These approaches were
approximately 7 knots faster than UND’s SOP, however there were no
unusual deviations in the flight trajectories during their respective descent.

56

Figure 30: Cluster 3 - Pie chart showing 55% of flights with high airspeeds
(which did not surpass 75 knots) and 1% of flights which initiated their
approach slightly wide.

Table 7: Cluster 3 - Summary statistics for the stable approaches, although slightly
fast, did not contain unusual deviations in their descent profiles.

Parameter Max Min Mean Standard Deviation

Altitude 192.0 1.0 81.21 42.64
Airspeed 72.63 31.41 60.19 5.33

Vertical Speed 156.78 -745.51 -276.60 107.24
Pitch 9.93 -5.43 0.49 1.78
Roll 10.70 -7.93 -0.038 1.89

Eng RPM 2291.30 654.40 1611.65 234.90
Vertical Acceleration 0.32 -0.38 0.00072 0.064

Position 219.13 0.31 9.50 10.56

57

Cluster Four

Cluster Four comprised of 60 flights, 47% were fast, 36% high and 10 % had

rapid descent rates. This cluster also included flights that were not fully aligned

with the runway when they initiated their descent, consequently they were

identified as wide.

2% of these flights had right crosswinds greater than 10 knots. However, there

was no relationship between crosswinds and wide approaches in this cluster.

Figure 31: Cluster 4 - Aerial view of the flight tracks showing 60 ap-
proaches, some of which were not fully aligned with the runway when
they initiated their descent.

58

Figure 32: Cluster 4 - Line graph showing changes in altitude, airspeed,
vertical speed, position, pitch and roll.

59

Figure 33: Cluster 4 - Pie chart showing the frequency of occurrence for
each validation criteria.

Table 8: Cluster 4 - Summary statistics showing variations in flight parameters
while on final

Parameter Max Min Mean Standard Deviation

Altitude 347.0 1.0 93.31 67.36
Airspeed 81.41 32.25 61.92 7.69

Vertical Speed 1005.21 -1738.48 -454.04 278.02
Pitch 11.89 -13.38 -0.59 3.49
Roll 19.69 -16.57 0.37 3.53

Eng RPM 2449.20 683.50 1322.51 327.58
Vertical Acceleration 0.86 -0.47 0.010 0.087

Position 211.66 0.31 17.44 25.95

60

Cluster Five

Cluster five contained 12 flights and figure 34 shows that each aircraft’s line of

descent had oscillations; this is a cluster of unstabilized approaches. All

approaches were excessively high (i.e. between 300 and 450 feet AGL). They

were all fast, with the exception of one flight. Their descent rates were rapid,

possibly due to their high altitude. The remaining 15% of these approaches were

misaligned or still attempting to position the aircraft, just 30 seconds before

touchdown (see figure 35).

Figure 34: Cluster 5 - Aerial view of the flight trajectories.

The wind component analysis indicated that there was no tailwind greater

than 5 knots, however 8% of flights had right crosswinds greater than 10 knots.

Further analysis revealed that the crosswind effect was not a strong indicator for

the unstable approaches.

61

Figure 35: Cluster 5 - High altitude and airspeed, excessive vertical speed and
bank angle as contributing factors for these unstable approaches.

62

Figure 36: Cluster 5 - Pie chart showing the percentage of events that
were detected by the validation criteria.

Table 9: Cluster 5 - Summary statistics for the unstable approaches showing
excessive Altitude, VSI, IAS and Roll as contributory factors.

Parameter Max Min Mean Standard Deviation

Altitude 434.0 1.0 144.33 118.57
Airspeed 81.65 40.52 64.46 7.15

Vertical Speed 111.56 -1892.77 -761.38 351.77
Pitch 10.12 -11.54 -3.25 4.55
Roll 29.16 -17.75 0.91 6.88

Eng RPM 2384.40 763.40 1009.74 145.62
Vertical Acceleration 0.30 -0.30 0.0075 0.089

Position 192.95 0.31 21.29 31.12

63

Cluster Six

Cluster Six comprised of 91 flights, which were also high and fast. However,

this cluster also contained a higher frequency of flights with unsafe low-level

turning maneuvers and wide approaches.

Figure 37: Cluster 6 - Aerial view of the flight trajectories

Further analysis revealed that 5% of these approaches had a tailwind greater

than 5 knots, and 7% with left or right crosswinds that were greater than 10

knots. The wind component analysis was performed again only using the flights

with unsafe low-level turns and the results indicated that wind was a direct

factor for approximately 20% of the excessive roll events.

64

Figure 38: Cluster 6 - Changes in altitude, airspeed, vertical speed, posi-
tion, pitch and roll while on final. These flights were not only high and
fast but also had huge changes in roll during their descent.

65

Figure 39: Cluster 6 - Pie chart showing a higher occurrence of excessive
roll events in approaches that were predominantly fast.

Table 10: Cluster 6 - Summary statistics showing high and fast approaches some
of which had a maximum roll exceeding 30 degrees during the descent.

Parameter Max Min Mean Standard Deviation

Altitude 353.0 1.0 110.75 75.98
Airspeed 88.68 27.09 65.41 7.53

Vertical Speed 836.07 -1457.49 -477.23 260.85
Pitch 11.46 -11.09 -1.39 3.50
Roll 30.51 -17.36 1.28 6.57

Eng RPM 2486.30 668.20 1363.65 306.72
Vertical Acceleration 0.72 -0.33 0.017 0.086

Position 340.70 0.31 25.13 35.38

66

Cluster Seven

Cluster seven contained 183 approaches which were shorter than previous

clusters; they were either very high and fast, or very low and fast. This cluster

had a higher frequency of aborted approaches which indicates that pilots may

have performed a go around due to conditions that would result in unstabilized

approaches or other unsafe events.

Figure 40: Cluster 7 - Aerial view of the approach trajectories which
contains a higher frequency of aborted approaches.

Approximately 4% of the approaches had tailwinds greater than 5 knots and

12% had crosswinds greater than 10 knots. There was a direct correlation

between wide approaches and strong crosswinds; some of which exceeded 20

knots.

67

Figure 41: Cluster 7 - Line graph showing changes in altitude, airspeed,
vertical speed, position, pitch and roll. This cluster had multiple aborted
approaches, possibly due to awareness of factors that would result in an
unstabilized approach.

68

Figure 42: Cluster 7 - Pie chart showing over 99 % of flights in this cluster
triggered multiple unsafe events from the validation criteria.

Table 11: Cluster 7 - Summary statistics showing the range of flight parameters.
This cluster had the fastest VSI at -2060.03 feet per minute.

Parameter Max Min Mean Standard Deviation

Altitude 326.0 1.0 74.27 69.81
Airspeed 94.32 22.51 60.28 9.87

Vertical Speed 1256.24 -2060.03 -502.98 387.02
Pitch 15.51 -13.33 0.40 4.497
Roll 28.42 -16.69 1.10 4.32

Eng RPM 2530.50 655.70 1016.02 332.08
Vertical Acceleration 0.96 -0.38 0.018 0.096

Position 250.92 0.31 17.86 28.52

69

Cluster Eight

Cluster eight comprised of 722 approaches, 70% of which had predominantly

high airspeeds, 7% high altitudes and 20% did not trigger any unsafe events from

the validation metrics. There were 2% and 3% of approaches with left and right

crosswind exceeding 10 knots, and 1% with tailwinds greater than 5 knots.

Consequently, the wind velocity had a minuscule effect in this cluster of fast

approaches.

Figure 43: Cluster 8 - Aerial view of the flight trajectories.

70

Figure 44: Cluster 8 - Line graph showing changes in the altitude, air-
speed, vertical speed, position, pitch and roll for each approach configu-
ration.

71

Figure 45: Cluster 8 - Pie chart showing airspeeds as high as 90 knots as
unsafe events in this cluster.

Table 12: Cluster 8 - Summary statistics for the approach configurations; which
shows a wider range of values for gravitational forces on the aircraft, i.e. vertical
acceleration, than other clusters.

Parameter Max Min Mean Standard Deviation

Altitude 249.0 1.0 92.81 45.01
Airspeed 90.29 22.68 62.95 5.29

Vertical Speed 567.40 -1122.90 -288.14 136.49
Pitch 11.78 -8.36 -0.004 1.901
Roll 17.60 -14.94 -0.18 2.74

Eng RPM 2502.80 618.00 1704.18 266.86
Vertical Acceleration 1.20 -0.44 -0.0003 0.08

Position 224.73 0.31 12.14 12.93

72

Cluster Nine

Cluster nine comprised of another group of unstable approaches. These 9

flights had excessive altitudes and airspeeds, and fluctuations in the rate of

descent. Strong right crosswind components were evident in 40% of the

approaches with 10+ degree changes in roll.

Figure 46: Cluster 9 - Aerial view of the flight tracks.

73

Figure 47: Cluster 9 - Line graph showing changes in the altitude, air-
speed, vertical speed, position, pitch and roll for the unstable approaches.

74

Figure 48: Cluster 9 - Pie chart showing five contributory events for the
unstable approaches.

Table 13: Cluster 9 - Summary statistics of flight parameters which shows the
highest mean, and maximum airspeed among all clusters.

Parameter Max Min Mean Standard Deviation

Altitude 341.0 1.0 111.90 78.45
Airspeed 98.32 48.40 81.54 8.21

Vertical Speed 26.93 -1808.61 -561.66 300.34
Pitch 7.43 -13.04 -1.20 3.10
Roll 21.80 -6.93 1.57 5.11

Eng RPM 2615.60 891.10 1931.86 439.17
Vertical Acceleration 0.21 -0.27 0.012 0.07

Position 214.78 0.31 22.77 32.76

75

Clusters Ten to Twelve

Clusters ten to twelve are neighboring neurons, consequently their results had

many similarities and indistinct dissimilarities. Due to the level of cohesion

between these three neurons, their results will be presented contiguously to

highlight the subtle differences between them.

Cluster ten is the most densely populated neuron, and comprised of 1274

approaches; whereas clusters eleven and twelve contained 34 and 41 respectively.

All three clusters had a considerable occurrence of high/fast approaches.

However, the excessive roll events in cluster ten had strong right crosswinds with

a maximum of 24 knots and tailwinds greater than 11 knots. These are

contributory factors for the 10+ degree changes in roll shown in figure 52. Wind

velocity were not causal factors in cluster 11, however 11% of the approaches in

cluster 12 had tailwinds and crosswinds exceeding 5 and 10 knots respectively.

All three clusters had small changes in pitch as shown in figures 52, 53, and

54, similar engine RPM settings and rapid decelerations of 1100 fpm or greater.

Cluster ten contained approaches with the widest distance from the runway

centerline, and maximum altitude and airspeed of 347 feet and 86 knots. Cluster

eleven represented higher altitudes with the maximum being 365 feet, minimum

of 6 feet, and airspeeds up to 78 knots. Cluster twelve represented slightly lower

altitudes and airspeed, 337 feet AGL, and 77 knots (see tables 14, 15 and 16).

76

Figure 49: Cluster 10 - 1274 densely populated approaches.

Figure 50: Cluster 11 - 34 high/fast approaches.

Figure 51: Cluster 12 - 41 high/fast approaches.

77

Figure 52: Cluster 10 - Line graph showing changes in altitude, airspeed,
vertical speed, position, pitch and roll while on final.

Table 14: Cluster 10 - Summary statistics for the densely populated high/fast
cluster which had 10+ degree changes in roll, and approaches that were high, fast,
and wide with rapid descent profiles.

Parameter Max Min Mean Standard Deviation

Altitude 347.0 1.0 107.46 56.58
Airspeed 86.41 29.81 63.48 4.83

Vertical Speed 445.97 -1445.40 -366.34 145.14
Pitch 10.38 -10.03 -0.65 1.97
Roll 25.83 -23.79 -0.039 2.90

Eng RPM 2472.40 606.00 1574.02 204.12
Vertical Acceleration 0.72 -0.46 0.0016 0.072

Position 356.92 0.31 14.08 16.73

78

Figure 53: Cluster 11 - Line graph of the parameter values, while on final.

Table 15: Cluster 11 - Summary statistics showing the range of values for the
high/fast/long approaches.

Parameter Max Min Mean Standard Deviation

Altitude 365.0 6.0 136.05 85.54
Airspeed 78.65 45.65 64.75 5.59

Vertical Speed 33.41 -1169.85 -550.02 176.26
Pitch 6.22 -8.34 -2.31 2.59
Roll 20.72 -9.33 0.54 3.19

Eng RPM 2416.60 856.00 1286.04 223.95
Vertical Acceleration 0.45 -0.36 0.0038 0.072

Position 211.05 0.31 14.71 20.76

79

Figure 54: Cluster 12 - Line graph showing changes in altitude, airspeed,
vertical speed, position, pitch and roll.

Table 16: Cluster 12 - Summary statistics showing the range of values for the
descent profiles.

Parameter Max Min Mean Standard Deviation

Altitude 337.0 1.0 129.0 79.46
Airspeed 77.32 23.86 63.10 6.30

Vertical Speed 343.38 -1383.33 -481.51 199.53
Pitch 9.67 -11.62 -1.06 2.48
Roll 14.78 -13.75 0.07 2.89

Eng RPM 2459.70 624.10 1332.16 320.06
Vertical Acceleration 0.81 -0.38 0.003 0.078

Position 264.03 0.31 18.65 27.09

80

Figure 55: Pie charts for clusters 10, 11 and 12 which shows the evaluated results
using the validation metrics.

81

Outliers

Figure 21 shows various densely populated neurons with similar

characteristics, hence they were identified as clusters. Therefore, sparsely

populated neurons are identified as outlier flights. Figure 56 shows the aerial

view of their trajectories 80% of which were aborted between 50 and 100 feet

AGL.

Figure 56: Outliers - Aerial view of the trajectories for the outlier ap-
proaches.

82

Figure 57: Outliers - Line graph showing changes in the altitude, airspeed,
vertical speed, position, pitch and roll for the outlier flights.

83

Figure 58: Outliers - Pie chart showing the outlier approaches that were
evaluated based on the validation criteria.

Parameter Max Min Mean Standard Deviation

Altitude 425.0 5.0 153.39 91.82
Airspeed 79.31 56.92 69.50 4.70

Vertical Speed 810.43 -1460.21 -410.65 666.85
Pitch 10.49 -12.34 -0.79 6.12
Roll 22.96 -17.89 1.88 6.77

Eng RPM 2480.40 935.70 1613.84 622.29
Vertical Acceleration 0.37 -0.34 0.019 0.115

Position 310.17 0.31 27.96 50.03

Table 17: Outliers - Summary statistics for the outlier flights, which contains the
highest altitude in the dataset; most of these approaches were aborted.

84

2.3.4 Summary

The evaluation of the above clusters demonstrated that VAEFM identified

clusters of correlated approach configurations. The results indicate that for the

month of June 2015, the approaches were predominately fast, some of which were

beyond 10 knots of UND’s mandated 61 knots, and were initiated around 250

feet AGL (which is also higher than expected). The wind component analysis

did not indicate strong tailwinds as contributory factors for the excessively fast

approaches. However, strong crosswinds or tailwinds are often present in

approaches with significant deviations in roll in their descent. Excessive VSI is

another issue and the maximum reported sink rate was over 2000 feet per minute.

There were several contributory factors for unstabilized approaches that were

present. However, only two clusters were identified as unstable, and there were

several outliers revealing fluctuations in aircraft trajectories and missed/aborted

approaches. Clusters 1 and 7 contained a high number of aborted approaches,

which are indications that some pilots took the necessary precaution, and

performed a go-around maneuver; on average this decision occurs at 70 feet AGL.

Table 18 contains a summary of the results obtained from the various

algorithms.

85

Table 18: The performance assessment of the various algorithms.

Algorithm Distance Metric
/ Measure

Serial / Parallel
Processing

Summary

K-Means
Euclidean

Serial
Average case analysis; identified
k user-defined clusters. The dis-
tance metric did not produce in-
tuitive cluster formations.

Mahalanobis

DBSCAN
Euclidean

Serial
Average case analysis; identified
one cluster of high density. The
distance metric influenced the
cluster shape and the number of
outliers.

Mahalanobis

DBSCAN
Euclidean

Serial Detailed analysis; very fast run-
time. Finding appropriate val-
ues for the hyperparameters was
challenging. Poor quality clus-
ters; most of the data was iden-
tified as outliers.

Parallel Encountered the same challenges
as its serial counterpart. How-
ever, parallel DBSCAN’s work-
load became imbalanced after 8
processors.

DTW
Serial Average runtime: 33 hours,

poorly separated clusters.
Parallel Worst runtime: 34 hours (2 pro-

cessors), best runtime 25 hours
(16 processors); the performance
gained was sluggish. There was
a bottleneck after 16 proces-
sors. Hyperparameters produced
poorly separated clusters.

SOM
Euclidean

Serial
Initial rate of false-positive flights
were very high. Retraining im-
proved the results.

DTW & Avg.
Rate of Change

Created an atypicality score using
DTW warp cost and the average
rate of change [87].

DTW
Average runtime: 39 hours; clus-
ters improved. DTW occasion-
ally produced ineffective align-
ments. SOM’s topological preser-
vation was not upheld.

Parallel Faster computation time than
DBSCAN, however it did not
scale beyond 16 processors. Best
runtime: 4 hours (16 processors),
worst runtime: 27 hours (2 pro-
cessors).

VAEFM Reconstruction-
based

Parallel Scalable; Identified 12 clusters,
several outliers with fluctuating
trajectories and unstabilized ap-
proaches. High density regions
can be problematic. Best run-
time: < 5 minutes (256 proces-
sors), worst runtime: 35 hours (8
processors).

86

CHAPTER VII

CONCLUSION & FUTURE WORK

This dissertation entailed the analysis of time series data which presents

many challenges due to its high dimensional nature. Therefore, the accumulation

of temporal data makes its beyond the scope of efficient human analytical

capabilities – hence the need for data mining techniques. However, the

fundamental issue is representing temporal data in a manner where algorithms

can detect patterns, extract useful features and establish correlations using

appropriate similarity measures.

This research presented a framework for the analysis of time series data and a

comparative analysis of serial and parallel implementations of various

unsupervised machine learning algorithms were performed. The results indicated

that the centroid-based and density-based algorithms’ ability to identify clusters

was affected by the high dimensional nature of the data. Additionally, their

sequential nature made parallel implementations challenging, and the workload

became imbalanced when the number of processors increased. The neural

network-based clustering algorithm, i.e. the Self Organizing Map (SOM),

identified correlations in the data, however it also suffered from scalability issues

and potentially overfitting the data.

A new algorithm was developed, called the Variational Autoencoder Feature

Map (VAEFM), which was designed to improve the scalability of SOM, enhance

its training algorithm and minimize overfitting the data. VAEFM’s design

addresses two essential issues for effectively and efficiently analyzing time series –

data representation and similarity assessment [6, 7]. The VAEFM achieved an

average improvement in computation time of 70%, which demonstrate its

scalability for high performance computing systems; and its parallel granularity

87

is determined by the volume of data.

The VAEFM analyzed 2582 flights that transpired at the Grand Forks

International Airport (GFK) in June 2015. It identified 12 clusters, two of which

contained stabilized approaches. The remaining results comprised of unstabilized

approaches, and other contributory factors such as steep changes in roll,

excessively high altitudes and/or fast airspeed, and rapid descent rates. Outlier

approaches with unstable flight trajectories and missed/aborted approaches were

also detected. The analysis of the wind components revealed that tailwinds of 5

knots or greater was not a contributory factor for excessively fast approaches.

However, strong crosswinds or tailwinds were often present in approaches with

unsafe low-level maneuvers.

The technique successfully identified clusters and outliers, some of which

would have a lower detection rate using current flight safety analysis techniques.

Furthermore, it identified anomalies with limited human intervention which is

crucial for flight training institutions that conduct thousands of approaches each

month.

1 Future Work

A limitation in the current methodology is the occurrence of densely populated

neurons, which could potentially obscure anomalies due to the volume of data.

Consequently, optimization methods can be applied to encourage the training

algorithm to distribute densely populated data to neighboring neurons.

The focus of this research was on the identification of atypical descent

patterns, however future efforts can extend the methodology to analyze: 1) other

phases of flight, e.g. take-off, and 2) aircraft maintenance issues.

88

APPENDIX

Appendix A
Pseudocode Algorithms

1 K-Means

Algorithm 1: K-Means Algorithm

Input : k, x1, x2, ...xn . k - number of clusters, x - training set data
Output: k clusters

1 Initialize k random cluster centers (centroids) µ1, µ2, ...µk

2 repeat
3 For each data point xi, assign it to the nearest centroid by minimizing hj

hj =
∑k

j=1

∑n
i=1 ‖ x

j
i − µj ‖2

4 for k = 1→ K do
5 µk = the mean of all data in cluster k
6 end

7 until convergence criteria

89

2 Density Based Spatial Clustering of Applications with Noise
(DBSCAN)

Algorithm 2: The DBSCAN Algorithm

Input : Data, Eps, MinPts
1 ClusterId := 0
2 for i = 1→ Data.size do
3 Point := datai
4 if Point is UNCLASSIFIED then
5 ExpandCluster(Data, Point, ClusterId)

6 ClusterId := ClusterId + 1

7 end

8 end
9 Procedure ExpandCluster(Data, Point, cID)

10 result := regionQuery(Point, Eps)
11 if result.size < MinPts then
12 Point = NOISE
13 else
14 for j = 1→ result.size do
15 Mark resultj as CLASSIFIED

16 neighbors := regionQuery(resultj, Eps)

17 if neighbors.size ≥ MinPts then
18 Merge neighbors with result
19 end
20 Assign result to cID

21 end

22 end

90

3 Kohonen’s Self Organizing Map (SOM)

Algorithm 3: The Serial Self Organizing Map Algorithm

1: Initialize SOM
2: Normalize input vectors for t← 1→ Nepochs do

for i← 1 to Mdata do
I ← data(i)

Present I to each neuron to find the BMU(I), using eq. 10

D =

√√√√ n∑
i=1

(Ii −Wi)2

BMU = argmin||D||

(10)

update the weights of the BMU and the neighboring neurons,
using eq. 11:

Wt+1 = Wt + Θt ∗ αt ∗ (Ii −Wi)

. αt eq. 12

. Θt eq. 13

(11)

t← t+ 1

αt = α0 ∗ exp(−t/N) (12)

Θt = exp(− dist2

2 ∗ σ2
t

)

σt = SOMsize ∗ exp(−t/λ)

λ = N/SOMsize

(13)

In the DTW variant of the SOM, equation 10 is replaced with Dynamic Time
Warping (DTW) (see equation 14) to identify: 1) the distance between each
Neuron’s weight vector and the time series data. The DTW heuristic calculates a
similarity score between the neuron’s weight vectors and and the input data,
called the warp cost.

D =

√√√√ n∑
i=1

DTWcost(Ii −Wi)2

BMU = argmin||D||

(14)

91

4 Parallel SOM

Algorithm 4: Async SOM Algorithm

1 Initialize MPI variables

2 Initialize SOM for all processors

3 Assign training data to the master process

4 if process is MASTER then
5 masterProcessing()

6 else
7 workerProcessing()

8 MPI.Finalize()

9 Procedure masterProcessing()
10 for t← 1→ Nepochs do

11 for i← 1→Mdata do
12 I ← data(i)

13 MPI SEND(I, workers)

14 MPI RECEIVE(weight matrix, workers)

15 Accumulate weight matrix

16 update master’s SOM weights using eq 15

17 updatedSOM ← masterSOM

18 MPI SEND(updatedSOM , workers)

19 MPI SEND(I, workers)

20 Procedure workerProcessing()
21 bmu← calculateBMU(data(I))

22 for i← 1→ NsomLength do
23 for j ← 1→MsomWidth do
24 nf ← calculate neighborhood(bmu) eg. 13

25 weight matrixij ← eq. 16

26 MPI SEND(weight matrix, master)

Wi+1 =

n∑
i=0

masterWeights(i) + weight matrix(i)

n∑
i=0

weight matrix(i) ∗ numData
(15)

W = worker weight+

n∑
i=0

nf ∗
√
||I −W ||2

n∑
i=0

nf
(16)

92

5 Variational Autoencoder Feature Map

Algorithm 5: Asynchronous Variational Autoencoder Feature Map Algo-
rithm
Input : s, x, y . s - SOM size, x - training set, y - test set

1 Initialize MPI variables

2 Initialize SOM ← w, h

3 if process is master then
4 masterProcessing()

5 else
6 workerProcessing()

7 Procedure masterProcessing()
8 for i = 1→ numdata do
9 for s = 1→ commsize do

10 MPI SEND(xi, workers)

11 i← i+ 1

12 for s = 1→ commsize do
13 MPI RECEIVE(weights, workers)

14 Select Best Matching Unit

15 Identify BMU’s neighbors

16 Update SOM Weights (eq 17)

17 Divide test set into n equal partitions

18 for s = 1→ commsize do
19 MPI SEND([SOM, datapartition], workers)

20 MPI RECEIVE(flight Mappings, workers)

21 Merge mappings from all workers

22 Procedure workerProcessing()
23 Initialize d variational autoencoders (VAE) . d - duration of flight

24 for i = 0→ d do
25 Train V AEi ← xi

26 MPI SEND(V AEweights, master)

93

Weights = Weightsold +
(
α ∗BMUweights ∗Θi

)
. α - learning rate

Θi = exp

(
− dist2

2 ∗ region2
i

)
σ = SOMsize/2

λ = maxiterations/σ

regioni = σ ∗ exp

(
− 1 ∗ (curIteration/λ)

)
(17)

94

BIBLIOGRAPHY
[1] M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based algorithm

for discovering clusters in large spatial databases with noise.” AAAI
Press, 1996, pp. 226–231.

[2] M. Müller, “Dynamic time warping,” Information retrieval for music and
motion, pp. 69–84, 2007.

[3] P. Esling and C. Agon, “Time-series data mining,” ACM Comput. Surv.,
vol. 45, no. 1, pp. 12:1–12:34, Dec. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2379776.2379788

[4] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, and E. Keogh, “Searching and mining trillions of time
series subsequences under dynamic time warping,” in Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’12. New York, NY, USA: ACM, 2012, pp.
262–270. [Online]. Available: http://doi.acm.org/10.1145/2339530.2339576

[5] Q. Yang and X. Wu, “10 challenging problems in data mining research,”
International Journal of Information Technology & Decision Making,
vol. 5, no. 04, pp. 597–604, 2006.

[6] T.-c. Fu, “A review on time series data mining,” Engineering Applications
of Artificial Intelligence, vol. 24, no. 1, pp. 164–181, 2011.

[7] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh,
“Querying and mining of time series data: experimental comparison of
representations and distance measures,” Proceedings of the VLDB
Endowment, vol. 1, no. 2, pp. 1542–1552, 2008.

[8] M. Längkvist and A. Loutfi, “Not all signals are created equal: Dynamic
objective auto-encoder for multivariate data,” in NIPS workshop on Deep
Learning and Unsupervised Feature Learning, 2012.

[9] V. Guralnik and J. Srivastava, “Event detection from time series data,” in
Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1999, pp. 33–42.

[10] T. R. Chidester, “Understanding normal and atypical operations through
analysis of flight data,” in Proceedings of the 12th International Symposium
on Aviation Psychology, Dayton, OH. Citeseer, 2003, pp. 239–242.

[11] S. Mahendran et al., “Enhancing flight data monitoring and analysis can
increase flight safety,” Journal of Aeronautics & Aerospace Engineering,
vol. 2015, 2015.

[12] L. Li, “Anomaly detection in airline routine operations using flight data
recorder data,” Ph.D. dissertation, Massachusetts Institute of Technology,
2013.

95

http://doi.acm.org/10.1145/2379776.2379788
http://doi.acm.org/10.1145/2339530.2339576

[13] L. Rokach and O. Maimon, Data Mining with Decision Trees: Theroy and
Applications, ser. Series in Machine Perception and Artificial Intelligence.
World Scientific, 2008. [Online]. Available:
http://books.google.com/books?id=GlKIIR78OxkC

[14] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data
Management Systems). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2005.

[15] T. N. Phyu, “Survey of Classification Techniques in Data Mining,”
Proceedings of the International MultiConference of Engineers and
Computer Scientists 2009 IMECS, vol. I, 2009.

[16] CAST/ICAO, “Phase of flight definitions and usage notes,” 04/2013.
[Online]. Available: http:
//www.intlaviationstandards.org/Documents/PhaseofFlightDefinitions.pdf

[17] (FSF) Flight Safety Foundation, “FSF ALAR Briefing Note 7.1, Stabilized
approach,” 2009. [Online]. Available:
http://www.skybrary.aero/bookshelf/books/864.pdf

[18] Airbus - Flight Operations Briefing Notes, “Aircraft Energy Management
during Approach,” 2005. [Online]. Available:
http://www.airbus.com/fileadmin/media gallery/files/safety library items/
AirbusSafetyLib -FLT OPS-APPR-SEQ03.pdf

[19] AOPA, “What is General Aviation,” 2009. [Online]. Available:
http://www.aopa.org/info/what ga.pdf

[20] W. Allen, D. Blond, A. Gellman, G. A. M. Association, N. A. of State
Aviation Officials (U.S.), and I. MergeGlobal, General Aviation’s
Contribution to the U.S. Economy. General Aviation Manufacturers
Association, 2009.

[21] B. Elias, Securing General Aviation. DIANE Publishing Company, 2009.

[22] K. Shetty, “Current and Historical Trends in General Aviation in the
United States,” MIT International Center for Air Transportation (ICAT)
Department of Aeronautics & Astronautics Massachusetts Institute of
Technology, Tech. Rep., Aug. 2012. [Online]. Available:
http://dspace.mit.edu/handle/1721.1/72392

[23] NTSB, “General aviation safety.” [Online]. Available:
http://www.ntsb.gov/safety/mwl-2.html

[24] NTSB, “Annual Aviation Statistics for 2012 Released: General aviation
accidents continue upward trend, no fatalities on US airlines or
commuters.” [Online]. Available:
http://www.ntsb.gov/news/2013/130806b.html

96

http://books.google.com/books?id=GlKIIR78OxkC
http://www.intlaviationstandards.org/Documents/PhaseofFlightDefinitions.pdf
http://www.intlaviationstandards.org/Documents/PhaseofFlightDefinitions.pdf
http://www.skybrary.aero/bookshelf/books/864.pdf
http://www.airbus.com/fileadmin/media_gallery/files/ safety_library_items/AirbusSafetyLib_-FLT_OPS-APPR-SEQ03.pdf
http://www.airbus.com/fileadmin/media_gallery/files/ safety_library_items/AirbusSafetyLib_-FLT_OPS-APPR-SEQ03.pdf
http://www.aopa.org/info/what_ga.pdf
http://dspace.mit.edu/handle/1721.1/72392
http://www.ntsb.gov/safety/mwl-2.html
http://www.ntsb.gov/news/2013/130806b.html

[25] S. K. Lau, “General Aviation Flight Data Monitoring Fly with Intelligence
– Best Practices to Improve the Safety and Efficiency of Flight
Operations,” CAPACG, LLC., Tech. Rep., 2007. [Online]. Available:
http://www.ihst.org/portals/54/
AttachmentH GeneralAviationFlightDataMonitoring.pdf

[26] AOPA, “General Aviation Information and Statistics,” 2011. [Online].
Available: http://www.aopa.org/whatsnew/stats/safety.html

[27] D. R. Hunter and U. States., Risk perception and risk tolerance in aircraft
pilots [electronic resource] / David R. Hunter. U.S. Dept. of
Transportation, Federal Aviation Administration, Office of Aerospace
Medicine Washington, DC, 2002.

[28] D. R. Hunter, “Risk perception among general aviation pilots,” The
International Journal of Aviation Psychology, vol. 16, no. 2, pp. 135–144,
Apr 2006. [Online]. Available:
http://dx.doi.org/10.1207/s15327108ijap1602 1

[29] J. Reason, Human Error. Cambridge [England] ; New York : Cambridge
University Press, 1990. xv, 302 p., 1990.

[30] D. A. Wiegmann, A. Boquet, C. Detwiler, K. Holcomb, T. Faaborg, D. A.
Wiegmann, P. D, P. D, A. Boquet, P. D, C. Detwiler, K. Holcomb, and
T. Faaborg, “Human error and general aviation accidents: A
comprehensive, fine-grained analysis using hfacs,” in DOT/FAA/
AM-05/24, 2005.

[31] J. Macqueen, “Some methods for classification and analysis of multivariate
observations,” in In 5-th Berkeley Symposium on Mathematical Statistics
and Probability, 1967, pp. 281–297.

[32] G. Fung, “A comprehensive overview of basic clustering algorithms,” 2001.

[33] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand,
and D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst.,
vol. 14, no. 1, pp. 1–37, Dec. 2007. [Online]. Available:
http://dx.doi.org/10.1007/s10115-007-0114-2

[34] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 881–892, Jul. 2002. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2002.1017616

[35] K. G. Derpanis, “K-Means Clustering,” no. 1995, pp. 1–2, 2006.

[36] R. Xu and Ii, “Survey of clustering algorithms,” vol. 16, no. 3, pp.
645–678, May 2005.

97

http://www.ihst.org/portals/54/Attachment H_General Aviation Flight Data Monitoring.pdf
http://www.ihst.org/portals/54/Attachment H_General Aviation Flight Data Monitoring.pdf
http://www.aopa.org/whatsnew/stats/safety.html
http://dx.doi.org/10.1207/s15327108ijap1602_1
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1109/TPAMI.2002.1017616

[37] B. Amidan and T. Ferryman, “Atypical event and typical pattern
detection within complex systems,” in 2005 IEEE Aerospace Conference.
IEEE, 2005, pp. 3620–3631. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1559667

[38] Amidan, B.G. and Ferryman, T.A., “APMS SVD Methodology and
Implementation,” Pacific Northwest National Laboratory, Tech. Rep., 2000.

[39] M. Gariel, A. Srivastava, and E. Feron, “Trajectory clustering and an
application to airspace monitoring,” Intelligent Transportation Systems,
IEEE Transactions on, vol. 12, no. 4, pp. 1511–1524, 2011.

[40] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering in
spatial databases: The algorithm gdbscan and its applications,” Data Min.
Knowl. Discov., vol. 2, no. 2, pp. 169–194, Jun. 1998. [Online]. Available:
http://dx.doi.org/10.1023/A:1009745219419

[41] K. Mumtaz, M. Studies, and T. Nadu, “An Analysis on Density Based
Clustering of Multi Dimensional Spatial Data,” Indian Journal of
Computer Science and Engineering, vol. 1, no. 1, pp. 8–12.

[42] L. Li, M. Gariel, R. J. Hansman, and R. Palacios, “Anomaly detection in
onboard-recorded flight data using cluster analysis,” in 2011 IEEE/AIAA
30th Digital Avionics Systems Conference. IEEE, Oct. 2011, pp.
4A4–1–4A4–11. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6096068

[43] M. Coppola and M. Vanneschi, “High-performance data mining with
skeleton-based structured parallel programming,” Parallel Computing,
vol. 28, no. 5, pp. 793–813, 2002.

[44] D. Arlia and M. Coppola, “Experiments in parallel clustering with
dbscan,” in European Conference on Parallel Processing. Springer, 2001,
pp. 326–331.

[45] M. Chen, X. Gao, and H. Li, “Parallel dbscan with priority r-tree,” in
Information Management and Engineering (ICIME), 2010 The 2nd IEEE
International Conference on, April 2010, pp. 508–511.

[46] S. Brecheisen, H.-P. Kriegel, and M. Pfeifle, “Parallel density-based
clustering of complex objects,” in Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 2006, pp. 179–188.

[47] Y. X. Fu, W. Z. Zhao, and H. F. Ma, “Research on parallel dbscan
algorithm design based on mapreduce,” in Advanced Materials Research,
vol. 301. Trans Tech Publ, 2011, pp. 1133–1138.

[48] Y. Guo and R. Grossman, “A fast parallel clustering algorithm for large
spatial databases, high performance data mining,” 2002.

[49] A. Zhou, S. Zhou, J. Cao, Y. Fan, and Y. Hu, “Approaches for scaling
dbscan algorithm to large spatial databases,” Journal of computer science
and technology, vol. 15, no. 6, pp. 509–526, 2000.

98

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1559667
http://dx.doi.org/10.1023/A:1009745219419
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6096068

[50] A. C. A. Neto, T. L. C. da Silva, V. A. E. de Farias, J. A. F. Macêdo, and
J. de Castro Machado, “G2p: A partitioning approach for processing
dbscan with mapreduce,” in International Symposium on Web and
Wireless Geographical Information Systems. Springer, 2015, pp. 191–202.

[51] M. M. A. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao, F. Manne, and
A. Choudhary, “A new scalable parallel dbscan algorithm using the
disjoint-set data structure,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2012 International Conference for. IEEE,
2012, pp. 1–11.

[52] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1998.

[53] J. A. Freeman and D. M. Skapura, Neural networks: algorithms,
applications, and programming techniques. Redwood City, CA, USA:
Addison Wesley Longman Publishing Co., Inc., 1991.

[54] P. Sydenham and R. Thorn, Handbook of measuring system design, ser.
Handbook of Measuring System Design. Wiley, 2005, no. v. 2.

[55] P. Stefanovič and O. Kurasova, “Visual analysis of self-organizing maps,”
Nonlinear Analysis: Modelling and Control, vol. 16, no. 4, pp. 488–504,
2011.

[56] Y. Singh and A. S. Chauhan, “Neural networks in data mining,” Journal
of Theoretical and Applied Information Technology, vol. 5, no. 6, pp. 37–42,
2009.

[57] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised
feature learning and deep learning for time-series modeling,” Pattern
Recognition Letters, vol. 42, pp. 11–24, 2014.

[58] T. Kohonen, “Neurocomputing: foundations of research,” J. A. Anderson
and E. Rosenfeld, Eds. Cambridge, MA, USA: MIT Press, 1988, ch.
Self-organized formation of topologically correct feature maps, pp. 509–521.
[Online]. Available: http://dl.acm.org/citation.cfm?id=65669.104428

[59] Kohonen, Teuvo, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[60] G. Cabanes and Y. Bennani, “Learning the Number of Clusters in Self
Organizing Map,” in Self-Organizing Maps, G. K. Matsopoulos, Ed., 2010.

[61] J. Vesanto, E. Alhoniemi, and S. Member, “Clustering of the
Self-Organizing Map,” IEEE TRANSACTIONS ON NEURAL
NETWORKS, vol. 11, no. 3, pp. 586–600, 2000.

[62] E. Turban, R. Sharda, D. Delen, D. King, and J. E. Aronson, “Neural
Networks for Data Mining,” in Business Intelligence: A Managerial
Approach, 2nd ed. Prentice Hall, Inc., 2010, ch. 6.

99

http://dl.acm.org/citation.cfm?id=65669.104428

[63] A. Ultsch, Self-organizing neural networks for visualisation and
classification. Springer, 1993.

[64] R. D. Lawrence, G. S. Almasi, and H. E. Rushmeier, “A scalable parallel
algorithm for self-organizing maps with applications to sparse data mining
problems,” Data Mining and Knowledge Discovery, vol. 3, no. 2, pp.
171–195, 1999.

[65] C. Garcıa, M. Prieto, and A. Pascual-Montano, “A speculative parallel
algorithm for self-organizing maps,” Proceedings of Parallel Computing
2005 (ParCo 2005), pp. 615–622, 2005.

[66] A. Rauber, P. Tomsich, and D. Merkl, “parsom: A parallel implementation
of the self-organizing map exploiting cache effects: making the som fit for
interactive high-performance data analysis,” in Neural Networks, 2000.
IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint
Conference on, vol. 6. IEEE, 2000, pp. 177–182.

[67] P. Ozdzynski, A. Lin, M. Liljeholm, and J. Beatty, “A parallel general
implementation of kohonen’s self-organizing map algorithm: performance
and scalability,” Neurocomputing, vol. 44, pp. 567–571, 2002.

[68] B. Silva and N. Marques, “A hybrid parallel som algorithm for large maps
in data-mining,” New Trends in Artificial Intelligence, 2007.

[69] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising
auto-encoders as generative models,” in Advances in Neural Information
Processing Systems, 2013, pp. 899–907.

[70] S. Takaki and J. Yamagishi, “Constructing a deep neural network based
spectral model for statistical speech synthesis,” in Recent Advances in
Nonlinear Speech Processing. Springer, 2016, pp. 117–125.

[71] C. Häusler, A. Susemihl, M. P. Nawrot, and M. Opper, “Temporal
autoencoding improves generative models of time series,” arXiv preprint
arXiv:1309.3103, 2013.

[72] G. Alain and Y. Bengio, “What regularized auto-encoders learn from the
data-generating distribution,” The Journal of Machine Learning Research,
vol. 15, no. 1, pp. 3563–3593, 2014.

[73] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[74] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation
and approximate inference in deep generative models,” arXiv preprint
arXiv:1401.4082, 2014.

[75] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and
S. Bengio, “Generating sentences from a continuous space,” arXiv preprint
arXiv:1511.06349, 2015.

100

[76] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 03 1951. [Online]. Available:
http://dx.doi.org/10.1214/aoms/1177729694

[77] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther,
“How to train deep variational autoencoders and probabilistic ladder
networks,” arXiv preprint arXiv:1602.02282, 2016.

[78] P. Danielsson, “Euclidean distance mapping,” Computer Graphics and
Image Processing, vol. 14, no. 3, pp. 227–248, Nov. 1980. [Online].
Available: http://dx.doi.org/10.1016/0146-664X(80)90054-4

[79] P. C. Mahalanobis, “On the generalised distance in statistics,” in
Proceedings National Institute of Science, India, vol. 2, no. 1, Apr. 1936,
pp. 49–55. [Online]. Available: http://ir.isical.ac.in/dspace/handle/1/1268

[80] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns
in time series.” in KDD workshop, vol. 10, no. 16. Seattle, WA, 1994, pp.
359–370.

[81] E. Keogh and S. Kasetty, “On the need for time series data mining
benchmarks: A survey and empirical demonstration,” Data Min. Knowl.
Discov., vol. 7, no. 4, pp. 349–371, Oct. 2003. [Online]. Available:
http://dx.doi.org/10.1023/A:1024988512476

[82] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 35, no. 8, pp. 1798–1828, 2013.

[83] S. Parshutin and G. Kuleshova, “Time warping techniques in clustering
time series,” in Proceedings of 14th International Conference on Soft
Computing MENDEL, 2008, pp. 175–180.

[84] E. Romano and G. Scepi, “Integrating time alignment and self-organizing
maps for classifying curves,” Electronic Proceedings of Knowledge
Extraction and Modeling, 2006.

[85] P. Somervuo and T. Kohonen, “Self-organizing maps and learning vector
quantization for feature sequences,” Neural Processing Letters, vol. 10,
no. 2, pp. 151–159, 1999.

[86] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping.” in
SDM, vol. 1. SIAM, 2001, pp. 5–7.

[87] S. A. Clachar, “Identifying and analyzing atypical flights by using
supervised and unsupervised approaches,” Transportation Research Record:
Journal of the Transportation Research Board, no. 2471, pp. 10–18, 2015.

[88] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time
warping,” Knowledge and information systems, vol. 7, no. 3, pp. 358–386,
2005.

101

http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1016/0146-664X(80)90054-4
http://ir.isical.ac.in/dspace/handle/1/1268
http://dx.doi.org/10.1023/A:1024988512476

[89] E. Smart and D. Brown, “A two-phase method of detecting abnormalities
in aircraft flight data and ranking their impact on individual flights,”
Intelligent Transportation Systems, IEEE Transactions on, vol. 13, no. 3,
pp. 1253–1265, 2012.

[90] E. Smart, D. Brown, and J. Denman, “Combining multiple classifiers to
quantitatively rank the impact of abnormalities in flight data,” Applied
Soft Computing, 2012.

[91] C. Jesse, H. Liu, E. Smart, and D. Brown, “Analysing flight data using
clustering methods,” in Knowledge-Based Intelligent Information and
Engineering Systems, ser. Lecture Notes in Computer Science, I. Lovrek,
R. Howlett, and L. Jain, Eds. Springer Berlin Heidelberg, 2008, vol. 5177,
pp. 733–740.

[92] B. Efron, “Bootstrap methods: another look at the jackknife,” in
Breakthroughs in Statistics. Springer, 1992, pp. 569–593.

[93] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,” in
Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, September 2004, pp. 97–104.

[94] L. Dalćın, R. Paz, and M. Storti, “Mpi for python,” Journal of Parallel and
Distributed Computing, vol. 65, no. 9, pp. 1108 – 1115, 2005. [Online].
Available:
http://www.sciencedirect.com/science/article/pii/S0743731505000560

[95] L. Dalćın, R. Paz, M. Storti, and J. D’Eĺıa, “Mpi for python: Performance
improvements and mpi-2 extensions,” J. Parallel Distrib. Comput., vol. 68,
no. 5, pp. 655–662, May 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2007.09.005

[96] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel distributed
computing using python,” Advances in Water Resources, vol. 34, no. 9, pp.
1124 – 1139, 2011, new Computational Methods and Software Tools.
[Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0309170811000777

[97] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[98] J. Lampinen and T. Kostiainen, “Overtraining and model selection with
the self-organizing map,” in Neural Networks, 1999. IJCNN’99.
International Joint Conference on, vol. 3. IEEE, 1999, pp. 1911–1915.

[99] S. Sinha, T. Singh, V. Singh, and A. Verma, “Epoch determination for
neural network by self-organized map (som),” Computational Geosciences,
vol. 14, no. 1, pp. 199–206, 2010.

102

http://www.sciencedirect.com/science/article/pii/S0743731505000560
http://dx.doi.org/10.1016/j.jpdc.2007.09.005
http://www.sciencedirect.com/science/article/pii/S0309170811000777

[100] L. Nadalski, “Automated surface observing system (asos) user’s guide,”
Natl. Oceanic and Atmos. Admin., Silver Spring, Md.(Available at
http://www. nws. noaa. gov/asos/pdfs/aum-toc. pdf), 1998.

[101] F. M. H. No, “Surface weather observations and reports,” 2005.

103

	University of North Dakota
	UND Scholarly Commons
	January 2016

	Novelty Detection And Cluster Analysis In Time Series Data Using Variational Autoencoder Feature Maps
	Sophine Clachar
	Recommended Citation

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Chapter
	I Introduction
	1 Scope & Objectives
	2 Motivation & Contributions

	II Background
	1 K-Means Clustering
	2 Density Based Spatial Clustering of Applications with Noise (DBSCAN)
	2.1 Parallel DBSCAN

	3 Artificial Neural Networks (ANN)
	3.1 Kohonen Self-Organizing Map (SOM)
	3.1.1 Parallel SOM

	3.2 Variational AutoEncoders (VAE)

	4 Evaluating Distance/Similarity
	4.1 Euclidean Distance
	4.2 Mahalanobis Distance
	4.3 Dynamic Time Warping (DTW)

	III Related Research
	1 Clustering Time Series Data
	1.1 Integrating Curve Similarity via Dynamic Time Warping

	2 Dimensionality Reduction using Machine Learning & Statistical Approaches

	IV The Data Repository
	1 Overview & Architecture
	2 Data Preprocessing & Transformation
	2.1 Phase of Flight Identification and Designation

	V Research Methodology
	VI Results & Evaluation
	1 Serial Clustering Results
	1.1 K-Means
	1.2 DBSCAN
	1.3 SOM

	2 Distributed Clustering Results
	2.1 DBSCAN
	2.2 SOM
	2.3 Variational Autoencoder Feature Map (VAEFM)
	2.3.1 Performance Evaluation
	2.3.2 Evaluation of the Data Manifold
	2.3.3 Cluster Evaluation
	2.3.4 Summary

	VII Conclusion & Future Work
	1 Future Work
	Appendix
	A Pseudocode Algorithms
	1 K-Means
	2 Density Based Spatial Clustering of Applications with Noise (DBSCAN)
	3 Kohonen's Self Organizing Map (SOM)
	4 Parallel SOM
	5 Variational Autoencoder Feature Map

	Bibliography

