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ABSTRACT 

 

This dissertation makes two contributions to the use of the Blackboard Architecture 

for command.  The use of boundary nodes for data abstraction is introduced and the use of 

a solver-based blackboard system with pruning is proposed.  It also makes contributions 

advancing the engineering design process in the area of command system selection for 

heterogeneous robotic systems.  It presents and analyzes data informing decision making 

between centralized and distributed command systems and also characterizes the efficacy 

of pruning across different experimental scenarios, demonstrating when it is effective or 

not.  Finally, it demonstrates the operations of the system, raising the technology readiness 

level (TRL) of the technology towards a level suitable for actual mission use. 

 The context for this work is a multi-tier mission architecture, based on prior work 

by Fink on a “tier scalable” architecture.  This work took a top-down approach where the 

superior tiers (in terms of scope of visibility) send specific commands to craft in lower 

tiers. While benefitting from the use of a large centralized processing center, this approach 

is limited in responding to failures and interference. 

The work presented herein has involved developing and comparatively 

characterizing centralized and decentralized (where superior nodes provide information 

and goals to the lower-level craft, but decisions are made locally) Blackboard Architecture 

based command systems.  Blackboard Architecture advancements (a solver, pruning, 

boundary nodes) have been made and tested under multiple experimental conditions.  



 

 

 

 

 

 

CHAPTER I 

INTRODUCTION1 

 

Fink [1, 2] and others [3, 4] have proposed the use of teams of multiple robots for 

exploring planets and other applications. These multi-robot teams generally require robots 

of multiple configurations. Under Fink’s mission architecture, robots are separated in to 

tiers based on their scope of influence and movement characteristics: specifically, orbital, 

flying and ground-based tiers. Each tier exerts influence over craft in tiers of lesser range.  

As part of the characterization of the benefits and drawbacks of distributed and centralized 

control, a distributed approach is proposed and analyzed herein.  Under this approach, 

control decisions are made locally, based on assigned goals.  The higher-range tiers also 

have a role in the transmission and prioritization of data from the lower-range tiers and 

may deploy (and re-deploy) the lower-tier vehicles.  This chapter provides an overview of 

this proposed control system, its control methodology, how it operates, the key planning 

and control module, and system intra-communications.  These topics are expanded upon 

in subsequent chapters. 

 

System Overview 

The multi-tier, multi-craft control system must be able to effectively delegate 

                                                 
1 This chapter is derived from: Straub, J. (2012), Multi-Tier Exploration Concept Demonstration Mission.  Proceedings 

of the 2012 Global Space Exploration Conference and Straub, J. (2013), Control of a Multi-Tier Robotic Network with 

Local Decision Making Capabilities.  Submitted to the Journal of Sensor and Actuator Networks.  
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decision making while ensuring craft coordination in working on complex goals. A multi-

tier distributed management system is proposed which incorporates the concept of 

decision-making delegation and management by exception. Like a well-implemented 

human management system, each role is not attached to a specific craft. A role is assigned 

to a craft but is automatically reassigned if the craft is unable to carry it out. Generally, 

leader roles are assigned to craft based on their computational capabilities, visibility of and 

visibility to the group of craft that they manage. However, aside from communications 

constraints, there is no requirement for any particular assignment. 

 

Multi-Tier Control Methodology 

The proposed control methodology combines four key principles.  First, the 

participating craft are organized hierarchically.  Each craft has one superior (the primary 

orbital craft’s superior is the ground controllers) and may have multiple subordinate craft.  

Second, goals are delegated from super craft to subordinate craft.  The subordinate craft 

are responsible for meeting the requirements encapsulated within the goal message and/or 

advising if a goal is not achievable or completion criteria (such as a required timeframe) 

will be violated.  Each individual craft, third, makes its own planning and scheduling 

decisions based on the combination of local constraints (e.g., power and other resource 

availability), local conditions (e.g., movement speed on local terrain) and delegated goals.  

Finally, a craft can task processing to (or request resources or assistance from) another craft 

that is better equipped, if needed.  Three of these elements, goal delegation, local decision 

making and the utilization of resources from other craft, are now discussed. 
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Goal Delegation  

High-level goals are assigned to the collection of craft by mission controllers.  The 

primary craft creates a plan for carrying out the mission by decomposing goals into sub-

goals which are delegated to collections of subordinate craft.  Figure 1 depicts this 

decomposition for a conceptually simple task of conducting an exhaustive survey of a 

region.  In this example, the craft are presumed to be homogeneous and equally distributed.  

A single orbital craft delegates the survey of three grid locations (that are part of region 

one) to three UAVs which each delegate the survey of six grid sectors (A-F) to their 

subordinate ground craft.  In this case, it is presumed that each grid sector must be surveyed 

by a ground craft.  This, however, is an atypical application for a multi-tier mission.  The 

value of the multi-tier architecture generally comes from the intelligent use of assets.  

Specifically, in this case, by avoiding surveying regions at higher resolutions that are 

deemed to be insufficiently interesting, based on lower-resolution data. 

Survey Region 1

Survey Grid 1.1 Survey Grid 1.2 Survey Grid 1.3

Survey Grid 1.1A

Survey Grid 1.1B

Survey Grid 1.1C

Survey Grid 1.1D

Survey Grid 1.1E

Survey Grid 1.1F

Survey Grid 1.2A

Survey Grid 1.2B

Survey Grid 1.2C

Survey Grid 1.2D

Survey Grid 1.2E

Survey Grid 1.2F

Survey Grid 1.3A

Survey Grid 1.3B

Survey Grid 1.3C

Survey Grid 1.3D

Survey Grid 1.3E

Survey Grid 1.3F

 
Figure 1. Decomposition of an Exhaustive Survey Task. 

 

Another scenario is presented, in Figure 2, to illustrate this.  In this scenario, only 

areas with features of interest are explored to higher levels of resolution.  All three UAVs 

are dispatched, as the orbital spacecraft identified features of interest in three locations.  

However, the UAVs do not identify as many sub-goals for delegation to their subordinate 

craft, as certain regions are deemed insufficiently interesting to merit ground exploration. 
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This adaptive approach conserves resources and allows craft to be devoted to as 

high-value tasks as available.  Note that in the scenario presented in Figure 2, survey 

locations could be divided between craft or defined differently to assign work to all craft 

for faster completion.  The non-tasking shown in Figure 2 is designed to be illustrative of 

the difference as compared to Figure 1’s exhaustive search approach, instead of a typical 

approach to problem solving.  However, it would be indicative of a tasking scenario if the 

craft were assigned to other tasks or temporarily assigned to another group. 

 
Figure 2. Decomposition of an Interest-Based Survey Task. 

 

Local Decision Making 

Goals are assigned via the hierarchical structure, but planning and scheduling for 

each craft and its subordinates is performed locally.  This allows each craft to consider its 

local conditions and reported and derived (e.g., from task performance) subordinate 

conditions in determining how to best achieve delegated goals.  Figure 3 depicts the 

decision making process for a craft with subordinates.  First, it decomposes the assigned 

goal into component goals whose achievement results in the goal’s achievement.  For each, 

the craft determines whether it should work on the goal itself and/or delegate it.  For those 

it will perform, it decomposes the goal into tasks and orders them within the goal and 

relative to other pending tasks.  For sub-goals that are delegated, subordinate performance 

and condition information is used to determine goal assignment.   

Survey Region 1

Survey Grid 1.1 Survey Grid 1.2 Survey Grid 1.3

Survey Grid 1.1A

Survey Grid 1.1C

Survey Grid 1.1E Survey Grid 1.2B

Survey Grid 1.2C

Survey Grid 1.2D

Survey Grid 1.2E

Survey Grid 1.3A

Survey Grid 1.3E

Survey Grid 1.3F
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This process is continuous.  For example, in the survey described previously 

(Figure 2), the first sub-goal (for the UAV-level craft) was for the craft itself to conduct an 

initial survey.  From this, additional sub-goals (the ground surveys) were identified and 

tasked.  The craft also re-assesses task ordering and subordinate assignment when 

assumptions (relied upon information from local conditions, global knowledge, 

subordinate conditions and subordinate performance) are invalidated or violated.  The 

multi-tier model practices management by exception, where performance boundaries (both 

positive and negative) are identified.  Violation of these boundaries triggers an autonomous 

investigation into its cause (e.g., an invalidated or violated assumption). 

 

Utilization of Resources from Other Craft  

One key advantage of the top-down model proposed by [1, 2] is the fact that the 

majority of processing is carried out on the most capable computer in the collection of craft 

(generally, on the orbital spacecraft).  In the top-down model, this occurs because most 

decisions (and thus the supporting analysis) are made at this node.  However, in many cases 

the benefits of local decision making and the benefits of utilizing the highest-performance 

computer for computation can be enjoyed concurrently.   

Similarly, some tests require the coordination of several craft (e.g., lifting a heavy 

item or if multiple sensor capabilities are required).  To service these needs, a request 

message is used to ask other craft for assistance.  The sending craft provides a request 

prioritization, in terms of global evaluation metrics.  The receiving craft compares this 

prioritization to other items in its goals and tasks lists and prioritizes it appropriately 

(negotiating with the requestor regarding timing, if concurrent action is required). 
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Figure 3. Local Decision Making Process for Craft with Subordinate Craft. 

 

Combined Operations 

Each control program operates in a waiting loop state. Local and group control 

routines share the computational resources of the group leader craft. Action is driven by 

interrupts; each triggering condition is evaluated and either immediately acted upon or 

queued for later action. Each request (running and queued) is assigned a priority; any 

incoming request of higher priority overrides the current request being processed. Request 

priority is based on the combination of task priority and suitability metrics (closeness, 

equipment suitability), as determined by the analysis module. Modules commanding 

complex (and/or perilous) maneuvers can temporarily suspend interrupt processing to 

Order of Tasks?
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ensure that no intervening request causes maneuver failure. Additionally, running requests 

receive a priority boost to avoid the interruption of operations which would have to be 

reattempted later to process a marginally more important request.  

If no other higher-priority action is tasked to the craft, random track exploration is 

performed. Exploration is only undertaken, however, subject to power usage and other 

operating constraints. Craft with a fixed and non-renewable fuel source (that would be 

consumed by this exploration) are generally excluded from random track exploration.  

 
Figure 4. Example mission architecture. 

Group Leaders 

The top of the hierarchy is filled by a leadership node (identified as ‘Orbiter’ in 

Figure 4). This node is a super group leader, as the scope of its group is the entire mission. 

Its upstream communications are with the human or automated controller. Aside from these 

two differences, the leadership node is simply a group leader. 

 
Figure 5. Local and group control diagrams. 
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The control module for group leader nodes (shown in Figure 5, right) has five 

component modules: executive, planning, evaluation, communications and analysis. The 

executive module is responsible for managing compliance with storage and other 

constraints. It is also responsible for assuming emergency control (based on rules, general 

objectives and assigned tasks) if upstream communications are disrupted. 

The planning module evaluates goals relative to data, assertions and rules on the 

local blackboard (some of which will have originated from the blackboards of superior and 

inferior nodes) and delegates sub-goals to group members or subgroups. Weighted 

proximity (based on the cost of the estimated path of travel), suitability (based on sensor 

configuration) and task compatibility (based on other currently assigned goals and craft 

sensor/actuator availability) are used to make delegation decisions. 

The evaluation module reviews progress. It identifies goals that have reached an 

exception condition (e.g., insufficient progress based on time or resources consumed) for 

review and resolution. It also identifies lessons learned from completed and in-progress 

tasks (e.g., updated cost and time values for task types) for use in future planning. 

The communications module is responsible for maintaining contact with upstream 

and downstream communications partners. The communications module is also 

responsible for scheduling communications based on relative priority and applicable 

constraints when requests upon the system exceed capacity. 

Worker Nodes 

A node that has no subordinates (e.g., ExBots 1 and 2 and SciBots 1 and 2 in Figure 

4) is a worker node. Worker nodes perform the tasks necessary to achieve their assigned 

goals autonomously and report upon completion or encountering an exception-condition. 
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The worker control module (Figure 5, left) has six component modules: executive, 

planning, execution, evaluation, communications and analysis. Worker component 

modules perform substantively the same as the group-level similarly named modules, 

except with a local scope. The execution module is responsible for generating commands 

and transmitting them to lower level hardware control systems.  

 

Craft Control 

A craft-specific control system translates each task in to a completion plan and 

commands to effect task completion, which are translated to low-level commands that are 

sent to hardware controllers.  Each craft also has a data analysis module to identify and 

prioritize data that should be placed on the blackboard of higher levels of the hierarchy. 

While low level control routines and action control systems vary considerably between 

craft types, the structure of the control system is consistent framework-wide.  

 

Analysis, Planning and Tasking 

The Central Analysis, Planning and Tasking (CAPaT) system is the overall director 

of the long-term operations of the mission group. It runs on the leadership node, but can 

run on alternate craft, if the original node is incapacitated.  

 

Analysis & Target Identification 

The leadership node CAPaT module creates sub-goals, based on mission goals, 

which are communicated to group leader and worker node planning modules.  Each goal 

is comprised of a priority and one or more rules which, if executed, constitute the goal’s 
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satisfaction.  Group leader planning modules store all active priorities for goals within their 

scope of command. Worker nodes store only goals that are applicable to the craft.  

The executive on each craft forwards sensed data to the analysis module for 

identification, rule matching and transmission prioritization. The analysis module supplies 

the executive with transmission priority (or unworthy of transmission classification) and 

data to send to the superior node’s blackboard. Collected data is placed on the local 

blackboard by analysis module, possibly triggering planning changes. 

 

Planning & Tasking 

The group leader planning module is responsible for plan generation for all 

subordinate groups and craft. It generates a long-range plan based on current mission goals 

and delegates sub-goals to each of its subordinates. Weighted task prioritization and cost 

minimization values are used for goal ordering. Planning and tasking threshold values 

determine how far in to the future the node plans and communicates plans to subordinates, 

respectively. At the worker node level, the planning module is responsible for generating 

plans for task completion. This includes determining the target visitation order, the travel 

path, and the sensing schedule. It has primary responsibility for constraint compliance and 

combines global task estimates (refined over time) and local correction values to generate 

an estimated schedule (inclusive of an error margin). 

 

Communications Control & Planning 

The communications control and planning module is responsible for scheduling and 

operating the communications subsystem based on upstream and downstream transmission 
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priorities. In group leaders, this system receives internal and subordinate requests for 

upstream communications and downstream requests directed at its own and subordinate 

control systems. The module calculates communications schedules (based on 

communications partner availability, see [5]) for transmissions. Further, it advises 

subordinate craft as to its availability for routine communications. It deals with both 

upstream and downstream emergency communications in real time and adjusts the 

communications schedule. At the worker level, the communications system maintains 

upstream node availability schedules and general priority level information (to prevent 

sending data that will be discarded due to its low priority). The communication system 

accepts prioritized data and other messages from the executive and generates and executes 

a transmission plan. 

 

System Communications 

System communications are based on the philosophy of management by exception 

[6, 7] and data transmission by priority [8-10]. Downstream messages include goal 

delegation, task time estimate updates and blackboard updates. Upstream operational 

messages include blackboard data, completion and exception notifications. Upstream 

communications also include responses to poll requests for task time average calculation.  

 

Summary 

The remainder of this document provides more details on the above presented 

topics.  Chapter II provides an overview of prior work.  Chapter III discusses system 

implementation and operations in greater detail.  Chapter IV presents the experimental 



12 

 

design and methodology utilized.  Chapter V presents and analyzes the experimental 

results.  Finally, Chapter VI concludes the paper and discusses directions for future work.  
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CHAPTER II 

 BACKGROUND2 

  

The work presented herein draws from multiple research areas.  Fink’s work [1, 2] 

defines the concept of a multi-tier mission providing craft-role and tier-level definitions. It 

[1] also discusses data collection prioritization in a multi-tier environment.  Sensor-web 

research (e.g., [11-14]) suggests multiple ways of coordinating sensing element collections 

to achieve science goals. Centralized control, bidding-based decentralized control, and 

collaborative team-based approaches are discussed.  Work on robotic control (e.g., [15-

18]) provides a basis for group organization and craft operation. Ground position 

identification techniques, without using positioning satellites, are discussed by [19-21] and 

remain an active research topic.  UAV autonomous navigation work (e.g., [22, 23]) 

provides a foundation for aerial tier autonomous flight control. 

 

Autonomous Robotics 

An understanding of the types of robots that would be controlled as part of a multi-

tier system informs control decisions.  Applications of orbital robot autonomy include 

spacecraft docking (the Soviets with IGLA and KURS [24] and the United States with 

ASTRO and NextSat [25]).  Planning for orbital craft was demonstrated by DS-1’s Remote 

                                                 
2 This chapter is derived from: Straub, Jeremy. 2011. A Review of Spacecraft AI Control Systems. In the Proceedings 

of the 15th World Multi-Conference on Systemics, Cybernetics and Informatics. 
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Agent Experiment [26] and EO-1’s CASPER mission planning software [27].  Health 

status assessment and repair was demonstrated with DS-1’s MIR system [28] and EO-1’s 

Livingstone Version 2 software [29].    Command software (AutoNav on DS-1 [30] and 

software on Hayabusa [31], Rosetta [32] and Deep Impact’s impactor [33, 34]) has also 

been demonstrated.  These systems have lowered human staff requirements: DS-1 required 

significantly less than the 100 to 300 staff required for Cassini [35], for example, using a 

beacon methodology [30] (requesting aid only when required) freeing the Deep Space 

Network [36] or allowing more science data to be transmitted [35]. 

Significant prior work has been performed on the control of unmanned aerial 

vehicles. Schlecht, et al. [37] show how it can be done using only localized commuications.  

Lua, et al. [38] discuss swarm-style techniques for performing a task with minimal 

communications.  Schesvold, et al. [39] use a partially observable Markov process for 

planning, pitting short term against possible longer-term greater gain.  Control of very 

small UAVs, micro-aerial vehicles (MAVs) in a lozalized environment is discussed by 

Michael, Stump and Mohta [40], who utilize a central system manager and solver, which 

implements blackboard-like principles. 

 In surface robotics, a variety of control techniques have been considered.  Punzo, 

et al. [41] present a swarm-based small autonomous robot planetary exploration approach.  

Ambler used terrain maps including elevation and uncertainty data [42, 43] and made 

decisions based on goal comparison and craft capability self-awareness [43]. The Self-

Mobile Space Manipulator (a robotic service arm) used neural networks for control [44].  

Dante I’s autonomous control software operated by sensing, planning and then acting [45]: 

an operator supplied trajectory was validated and then executed.  Dante II, instead of 
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relying on terrain data, used servo mechanism feedback to control its walking motion [46, 

47].  Rocky 7 demonstrated autonomous navigation based on controller-supplied 

waypoints [48].  NOMAD used image processing of onboard camera data for obstacle 

detection and terrain classification [49], creating its own traversal suitability map for both 

desert [49] and polar [50] traversals.  Hyperion demonstrated sun-synchronous navigation 

with sliding autonomy ranging from teleoperation to full autonomy [51]: 90% of its travel 

was able to be conducted autonomously [52].   

Zoe’s [53, 54] science planner, science observer, instrument manager and 

instrument controller components and combined satellite and local imagery [55], using an 

optimistic planning approach. Scarab [56] demonstrated autonomous navigation based on 

a static three-dimensional point cloud model.  For Sojourner [57], on the other hand, control 

was autonomous but planning was done on Earth [58].  The Spirit and Opportunity rovers’ 

use of autonomous driving significantly increased their movement speed [59], by allowing 

the rover to navigate based on a wide-area terrain map [60].  Imagery is also used to 

determine travel distance and to correct for slippage [59].  Human rover ground planning 

is done with MAPGEN software [61]. 

 

Control of Robotic Systems 

Individual components have been discussed.  Now, focus turns to various methods 

for controlling collections of robots.  Prior work in this area is now presented. 

The Automated Scheduling and Planning Environment (ASPEN), an artificial 

intelligence-based scheduling and planning system, breaks down goals in to a sequence of 

commands to send to a spacecraft [62].  It models spacecraft in terms of activities, 
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parameters and associated dependencies, temporal, resource, state variable and 

reservations constraints [63].  It looks at scheduling from a repair perspective: identifying 

and fixing constraint violations.  An iterative repair algorithm, which uses heuristics with 

associated confidence levels to order violation correction attempts, is used [63].   

The Distributed Robotic Architectures (DIRA) project created a framework for 

coordinating collections of robots [64].  A three-layer system where each layer 

communicates with its corresponding layer in other robots was developed.  The planner 

breaks down goals, creates plans and coordinates teams and commitments.  The executive 

layer runs plans and communicates with other executive layers for coordination.  The 

behavior layer provides reactive control and coordinates group physical interaction. 

The CASPER continuous planning system [65] extends ASPEN, adding dynamic 

planning and scheduling capabilities [66].  It has a modeling language, constraint 

management system, search and repair heuristics, and a temporal constraint management 

system.  It continuously updates plans based on real-time activity, system state and resource 

information, making the system responsive to changing conditions [67]. 

The Closed Loop Execution and Recovery framework combines a planner’s global 

perspective with a reactive executive’s responsiveness.  It strikes a balance between non-

replenishable resource management and reactiveness [68]. 

OASIS [69] autonomously analyzes rover data, prioritizing it by interest level.  It 

also identifies exploration opportunities and has planning and scheduling components. 

The Modified Antarctic Mapping Mission [70] had a four step planning process 

consisting of selecting swaths which provide coverage of the desired area, creating a 

collection schedule, creating a downlink schedule and validating the schedule’s constraint 
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and goal compliance.  The mission demonstrated “overwhelmingly successful” 

automation, lowered costs and increased science return. 

The TEMPEST planning system uses terrain, solar visibility, Earth visibility and 

vehicle state information for planning [51].  It is able to replan using an algorithm which 

by propagates changes to only affected areas.  It has deliberative and functional layers. 

Unmanned air, ground and surface vehicles are being developed by the U.S. Army 

and Navy MDARS program, the U.S. Army’s Future Combat System (FCS) program, the 

DARPA’s PerceptOR program, the COUGAR program, and the U.S. Army and Navy 

SPARTAN Advanced Concept Technology Demonstration program [71].   

MDARS and PerceptOR are ground vehicles which can serve as a mobile launch, 

landing and support platform for UAV units.  SPARTAN is a water-based vehicle which 

can serve as a UAV base.  The FCS program incorporates UAVs as part of a network-

centric combat system.  The COUGAR system has a command vehicle, long range 

weapons robot, and UAV.  The UAV surveys targets and confirms the missile strike.  All 

of these currently require some level of human control.   

The Hetereogeneous Agricultural Research Via Interactive, Scalable Technology 

project (HARVIST) is an intelligent system for combining multiple data sources to make 

predictions about crop yield.  These include satellite imagery and weather data used [72].   

Sensorwebs, node networks which take action based on the detection of an event-

of-interest [73], are being implemented for various purposes [74].  For example, a volcano 

sensorweb may detect an eruption with an in-volcano sensor or low resolution orbital 

satellite.  Based on this, the sensorweb requests observation from a planning service which 

evaluates it and forwards it to a satellite for high-resolution imagery.  The onboard planner 
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evaluates the request and takes the requested actions, if possible [75].   

Blackboard Architecture 

The MTAMA utilizes a Blackboard-style architecture.  The Blackboard 

Architecture utilizes a set of rules, facts and actions for decision making.  Facts represent 

knowledge (and can either be asserted or not) about the environment (or other matters).  

Actions are, as the name suggests, activities that the system can perform or have performed.  

Rules interconnect the system.  A rule is triggered by having its pre-conditions met and it 

can assert one or more facts and/or trigger one or more actions. Focus now turns to prior 

work on Blackboard architectures and their use in robotic control. 

In [76], Hayes-Roth presents the Blackboard architecture, an enhancement of the 

Hearsay-II system [77].  The architecture functions like an expert system (e.g., [78, 79]) 

which triggers actions instead of making recommendations.  It is comprised of two 

blackboards (for domain and control problems).  Problem solutions are arrived at by 

triggering rules on the blackboard.  When new information is added to the blackboard, all 

rules whose activation conditions are satisfied are placed in the “Invocable-List”.   

An activated rule is selected based on its rating and priority.  It can create events or 

modify the system state triggering other rules and/or actions. Once a rule has executed, a 

cycle of assessing and selecting an activated rule continues until a solution is found or no 

activated rules exist.  The architecture provides documentation capabilities, as each rule 

created, activated or modified and each action is recorded. 

Numerous applications have demonstrated the Blackboard concept.  The 

PROTEAN system [80] models protein structures.  It operates on top of ACCORD which 
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provides a conceptual network creation mechanism, vocabulary, a hierarchy representation 

mechanism and template set for representing actions, states and events. 

The SRI Procedural Reasoning System [81] is designed to solve the dual need of 

attaining larger goals while reacting to environmental changes in real time.  The primary 

contribution of this work is the notion of running multiple blackboard-like structures 

concurrently (running asynchronously and utilizing message passing to communicate).   

Rice [82] presents Poligon, a language for implementing applications which follow 

the Blackboard problem-solving model.  It provides a syntax and framework for the 

creation of a Blackboard-architecture-based system.  Corkill, Gallagher and Johnson [83] 

created an abstraction model to resolve the issue of implementations either being 

haphazard, maximizing efficiency at the expense of flexibility or maximizing flexibility at 

the expense of efficiency.  Le Mentec and Brunessaux [84] modified Atome to create the 

Lisp-based Atome-tr, which reacts quickly to changes via parallel processing, an interrupt 

system and dynamic planning.  It is comprised of the overall strategy, tasks, specialists and 

multiple blackboards with state information.  Asynchronous updating and summary 

blackboards (containing subsets of relevant information) are also utilized. 

Hewett and Hewett [85] contend that prior work on the Blackboard architectural 

approach had suffered due to a lack of a common language to facilitate comparison. They 

define a language comprised of four categories: actions, events conditions, state conditions 

and “context generators.”  All elements of the language are human-readable statements, 

generally resembling “ADD <object name> to <level-name>”.  To improve efficiency, 

they utilize a technique for knowledge computation, a network based on RETE for 

triggering and a “demon architecture” for task list maintenance.  They claim to have 
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enjoyed a 52% to 65% performance enhancement in some areas.   

Brzykcy, et al. [86] present an application of a Blackboard architecture to 

autonomous robotics which focused on updating a perception network which acts as a 

processing engine and storage mechanism for environmental features.  It consisted of a 

blackboard for problem solving, processing modules and control modules.  The blackboard 

stored a grid and vector-based maps, robot position and movement information and robots’ 

sensor data.  Data is collected from and returned to the blackboard.  Each module requires 

no information about other modules to operate.   

The use of a Blackboard Architecture for robotic learning is presented by Yang, 

Tian and Mei [87].  The robots query the blackboard for an action to perform and return 

the result back for storage in the shared database.  This approach allows the robots to bypass 

having to determine how to perform maneuvers that have already been explored.   

Fayek, Liscano and Karam [88] present work on the use of a Blackboard 

Architecture to control a ground robot.  Sensors collect environmental data and a feature 

extraction module translates this data into facts that are placed on the blackboard.  Based 

on the blackboard knowledge, user specifications, and a task decomposition routine, the 

robot is commanded to perform actions which impact the environment.   

De Campos and de Macedo [89] present work on the use of a Blackboard-style 

architecture for autonomous navigation and vehicle control.  A “parallel blackboard” 

approach, with a shared memory blackboard and area-based communications approach, 

was utilized.  Twelve concurrent processes update and trigger off of the blackboard.  The 

utility of a Blackboard Architecture and a geographical information system for controlling 

a group of UAVs in a multi-agent data integration and control system is considered by [90].  
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Shahbazian, Duquet and Valin [91] show how a Blackboard Architecture can be used for 

data fusion.  They present a naval command system and a maritime surveillance system 

which combine data from numerous sensors to provide situational awareness.   

Goldin and Chesnokov [92] present the use of a Blackboard-like architecture for 

spacecraft control.  They divide the problem into two parts: control and information.  A 

hierarchy is utilized for control with the system communicating with the operator and the 

spacecraft and communication between the information module and the spacecraft.   

Deficiencies of Prior Work 

The prior work presented provides a firm foundation on which to base a new 

system.  It however, has serious deficiencies which limit system utility for planetary 

science purposes or in a terrestrial communications-denied environment.  The Blackboard 

work, if it was even implemented (many papers related to this topic present theoretical and 

untested improvements), was generally limited by the need to have a shared memory area.  

Various ways of attempting to circumvent this (and the issues it created) were tried.  These 

included asynchronous updating and triggering and the use of summary blackboards.  The 

notion of a distributed blackboard has even been suggested.   

Other work, including most of the space robotic missions, is constrained by the 

significant involvement of humans in the moment-to-moment control process.  While this 

approach may be suitable for a single-large-craft mission, communications and staffing 

limitations are quickly reached when trying to use this approach for a multiple craft 

mission.  Even Fink’s work, which solves many of the foregoing, suffers from a single 

point of failure (the central control node) and numerous points of mission degradation 

(communications links and intermediaries).  To maximize mission performance in an 
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environment where access is not feasible and repair is cost prohibitive, a distributed and 

link-loss-survivable control approach is required.  
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CHAPTER III 

SYSTEM IMPLEMENTATION AND OPERATIONS3 

 

This chapter provides an overview of a proposed multi-tier system which serves as 

the basis for the results, analysis and conclusions presented in subsequent chapters.  It 

presents an algorithm for the autonomous decomposition of mission tasks, based on a 

controller-provided goal.  This goal, which is stated as an assertion (e.g., ‘a given element 

is present in a region’ or ‘enemy forces are not present along a given route’) is decomposed 

by the autonomous control software into an initial set of sub-goals assigned to group 

leaders.  These sub-goals may be further sub-divided and refined based on craft state and 

environmental conditions. 

A utility-maximization, as a function of cost, metric is applied to assign follow-on 

tasks.  The utility value is computed based upon heuristics that are utilized to estimate the 

value of each task that could be performed.  The heuristic considers the value of previous 

task-type performance, the value of exploring unexplored areas and the potential that 

change has occurred.  Cost is estimated based on historical localized movement cost and 

task performance estimates.  This decision making process is performed at every applicable 

level of the hierarchy, decomposing large-scale needs into progressively smaller 

                                                 
3 This chapter is derived from: Straub, J. (2011), A Modular, Application-Agnostic Distributed Control Framework for 

Robotic Applications.   Proceedings of the International Conference on Information and Communication Technologies 

and Applications, Straub, J. (2013), A Data Collection Decision-Making Framework for a Multi-Tier Collaboration of 

Heterogeneous Orbital, Aerial and Ground Craft. Proceedings of the SPIE Defense, Security + Sensing Conference, 

and Straub, J. (2012), Multi-Tier Exploration Concept Demonstration Mission.  Proceedings of the 2012 Global Space 

Exploration Conference 
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assignments.   

 

Goal Definition 

High-level goals are defined by mission controllers based on required mission 

outcomes.  Analysis of the blackboard’s rule set is used to determine what rules must be 

triggered to reach these goals.  Tasking instructions are generated to trigger the rule that is 

determined to be the best candidate to advance the system towards triggering a final fact.  

Figure 1 shows high-level process used for system operations. 

 

Controller-Supplied 
High-Level Goals

Identify ‘Final’ Rules 
Required for Goals

Data on 
Blackboard

Are rules 
triggered?

Choose ‘Best’ Rule
Determine What 

Data is Needed for 
‘Best’ Rule

Yes
No

Run Rule

No

Can This Data 
Be Obtained?

Task Data Collection

Yes

Choose Next Best 
Rule

NoRule Identified

End

No More Rules

Has ‘End’ 
Rule Run?

End

Yes

 
Figure 6. High-level Diagram of System Operations. 
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This process starts with the determination of final facts based on controller-supplied 

goals.  Final facts are facts that, if asserted, mean that the goal has been satisfied.  While 

multiple final facts can be identified, the assertion of any one is taken to indicate successful 

completion of the mission goal.  Thus, the selection of multiple final facts means that there 

are multiple possible success conditions.  If multiple facts must be triggered to indicate 

completion, a rule that has this combination as a precondition and asserts a final combined 

fact must be created. 

With the final facts identified, the system begins by determining if any rules are 

triggered.  The system will run all triggered rules before creating data collection tasks.  This 

is based on the assumption that data collection is a comparatively expensive action; 

however, if some rules are similarly expensive, they can be placed into a class that require 

utility evaluation prior to being run. 

If multiple rules are triggered, the best rule (the one that will advance the system 

furthest towards a final fact) is selected and run.  This process iterates until either a final 

fact is asserted or no more rules are triggered. 

If no rules are triggered, the best un-triggered rule is selected.  Selection is based 

on a combination of three estimations: the value of triggering the rule (i.e., advancement 

towards final facts), the cost of data collection and the likelihood of the collected data 

triggering the rule.  Data collection activities that satisfy multiple rules’ inputs have their 

cost split between these rules.  Figure 7 depicts the best rule determination process. 

All data collection activities required to trigger the selected rule are tasked at the 

same time.  If some required data cannot currently be collected the rule is not considered 

and the next-best is selected.  If no rule is identified whose pre-conditions’ data can be 
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collected, the system enters a waiting state.  Once tasked data collection is complete, the 

system evaluates whether rules are triggered and begins the process again.  Note that data 

collection may not trigger the identified rule if the data collected indicated a different-than-

predicted fact; an alternate rule may be triggered, however. 

The best rule is the one that has the highest score: the likelihood-adjusted value-

units produced by the rule running divided by the cost of data collection.  This process 

begins by computing the value of the rule running: the percentage advanced towards a final 

rule triggering.  This percentage is a function of the number of facts required for the lowest-

cost chain incorporating the rule being evaluated.  For example, a chain requiring five facts 

of which two could be asserted by a successful run of the rule would generate a value of 

40%.  The projected value is determined by adjusting this based on the likelihood of data 

collection actually triggering the rule.  This likelihood is based on the results of previous 

data collection and the difference between the current collection task and previous tasks. 

Projected Value

CostLikelihoodValue

Results of 
Previous Similar 

Actions

Attributed Cost

Cost of Previous 
Similar Actions

Difference 
Current vs. 

Previous 

Difference 
Current vs. 

Previous 

Other Rules 
That Can Use 

Data

Summed Cost of All 
Data Collection for 

Rule

Value as Function of 
Cost Units

For Each Data Element (Fact) 
Required

 
Figure 7. Depiction of the Score Determination for Each Rule. 
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The cost of each data collection task is determined based on the cost of similar data 

collection and the differences between the current and previous tasks.  The attributed cost 

is based on dividing the cost between multiple rules to whose preconditions the data may 

apply.  For example, if three rules could potentially use the data, one-third of the cost is 

attributed to each rule.  The cost of all data collection required to potentially trigger the 

rule is summed.  The score is computed by dividing the value by the cost. 

 

Rule 1

Fact 1

Rule 2

Fact 2

Rule 3

Fact 3 Fact 4

Rule 4

Fact 5

Rule 5

Fact 6

Rule 6

Fact 7

Rule 7

End

Rule 7

End

 
Figure 8. Rule Chain Leading to Final Rules. 

 

Decomposition 

In many cases, the execution of a chain of rules is required to cause a final rule to 

run.  Figure 8 shows an example of a chain of rules and facts.  The projected value 

determination approach causes rules to run in the lowest-cost path towards a final rule.  

Presuming that the rules had equal data collection costs, the data needed for rule 3 would 

be collected, as it is the first member of the lowest-cost chain (rule 3 > fact 4 > rule 6 > 

fact 7 > rule 7). 



28 

 

Data Application to Trigger Conditions 

A key part of system operations is determining how to collect the data required for 

asserting a fact required to trigger a desired rule.  Approaching the process from this 

direction is problematic as it requires inference without supporting data.  Instead, the 

system assembles a catalog of collectable data and potentially assert-able facts.  This 

database and is augmented as craft explore.  For example, once a region is identified as 

existing, the possibility of performing appropriate types of data collection activities in the 

region is inserted into the database.  The fact (or facts) that could be produced by each 

possible outcome of each prospective test is noted.  For example, testing for a type of 

bacteria in region 5 might result in several possible outcomes: no bacteria, low-level of 

bacteria, medium-level of bacteria, high-level of bacteria and very-high-level of bacteria 

present.  The produced fact may satisfy conditions requiring a particular level or conditions 

requiring above or below a given level. 

 

Choosing How To Collect The Data And What Data To Collect 

Multiple collection approaches can, in some cases, be used to collect the data 

required to assert a fact.  In these cases, a collection approach must be selected.  Three 

factors are considered: the extent to which the assertion conditions will be satisfied (and 

the likelihood of this occurring), ensuring that collection is balanced and comparing the 

utility and cost of collection. 

 

Assertion Condition Satisfaction 

Collection approaches may satisfy assertion conditions in different ways.  For 
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example, bacteria presence may be asserted by directly testing for or observing symptoms 

of its presence.  Both approaches could satisfy the assertion conditions; however, they may 

have different levels of likelihood of being successful.  For example, symptoms may not 

be present immediately but presence may be able to be immediately detected.  Alternately, 

the testing process for symptoms may be more robust and/or require fewer tasks.  Figure 9 

depicts how multiple collection approaches may be utilized to collect the data required to 

assert a fact. 

Fact 1

Collection Approach 1 Collection Approach 2

Successful? Successful?

Yes Yes

Applicable Data?

Yes

Applicable Data?

Yes

Collection Approach 2

Successful?

Yes

Applicable Data?

Yes

 

Figure 9. Multiple Collection Approaches to Assert a Fact. 

 

Balanced Collection 

Because data collection adds to the database of data available for collection and 

data in addition to what is specifically sought may be collected, the collection process 

should be balanced.  It is desirable to collect data from unexplored regions and to utilize 

previously unused tests.  Exploration benefits must be offset by the greater likelihood of 

greater fact assertion when utilizing known techniques and/or working in known areas. 
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Utility and Cost 

The utility and cost of each collection approach must be compared.  The utility 

value includes the likelihood-adjusted utility of fact assertion and the ancillary benefits 

produced.  This is divided by the cost of collection and the method with the highest value 

is selected.  Figure 10 depicts this process. 

Value of Collection 
Approach 1

Probability Successful

Probability Desired 
Data

Fact Assertion Utility

Exploration Utility

Likelihood

Other Data Product 
Utility

Likelihood

Collection Cost

Score

 
Figure 10. Data Collection Approach Score Generation Process. 

 

Evolving Cost & Utility Heuristics 

The cost and utility heuristics discussed in the previous sections are too simple for 

some applications.  For example, different facts may have different levels of collection 

time and cost.  Because of this, choosing a rule based upon the percentage that it moves 

the system down the shortest path with all facts being treated equally may be unsuitable.  

The selection of the shortest path may also be inaccurate because of this.  Two approaches 

exist to solving this: a value can be assigned to each fact to characterize its relative time 

and resource consumption or facts could be decomposed to the point where they are 

approximately equivalent in terms of collection time and resource use costs.  Evaluating 

these approaches is a subject for future work. 
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Delegation Across Tiers 

The collection of some data may require coordinating multiple craft from multiple 

system tiers.  For example, a UAV may be needed to assess paths for ground rovers to 

travel to perform data collection.  In this case, a decomposed goal is assigned to a leader 

that further decomposes it.  For this example, the UAV in a given area may be tasked with 

a survey and decompose this into two tasks for itself (conduct aerial survey of a given area, 

identify paths providing coverage of the area) and goals for three rovers.  Note that in all 

cases the Blackboard is updated with whatever data is collected. 

 

Methodology 

Distributed command architectures have been used and proposed for various 

applications [16, 93-96] related to the control of multiple robots. Autonomous control is 

particularly needed for space exploration due to distance and delay [95].  Group autonomy 

is appropriate in numerous other applications.  Any application where human craft-level 

priority-setting and control is not desirable is a candidate for group autonomy.  Limited 

autonomy at the group level has been demonstrated [97].  

 

Leader Node Control 

The leader node is responsible for all activities of the autonomous group; however, 

it delegates most of this responsibility and authority and deals primarily with high-level 

planning, evaluation and communications with users or the higher-level tier. 

For a small group, the global command module may directly control worker nodes; 

however, to allow larger groups, group leader modules (the AI equivalent of middle 
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managers) can be introduced. No leader module is expected to have an entire craft 

dedicated to it. The module co-exists with a worker command module on a worker craft. 

However, the craft selected should be one that is well suited for this use.  The group leader 

should be easily contactable by all group members to facilitate effective management. A 

hierarchy of group leaders is created to manage large-scale tasks. 

Each group leader’s leadership control module is equivalent; it is the scope of 

control that differentiates them.  While the overall leader communicates, accepts tasking 

from and reports results to system operators, lower-level leaders report results and accept 

tasks from their superior group leader.  

Each controller is responsible for communications with other craft. At each level, 

the communications control system will, based on constraints, choose and schedule the 

most important communications for escalation to higher nodes.  It also schedules contact 

with lower-level and peer nodes. Application-specific decision support modules assist in 

prioritizing application-domain information [27].  The communications control system 

combines craft control and data messages and queues them based on priority. 

Each type of controller (command, group leader and worker) has defined modules 

and communications paths that can be extended for a particular application. Given this, the 

adaptation of a module from one application domain to another is simplified.  

 

Worker Node Control 

The control module of the worker node is responsible for local control, goal 

decomposition into tasks and task execution ordering.  Each craft has a default task that it 

performs when no goals are pending.  The group controller assigns the craft one or more 
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goals.  These goals include an importance value from the analysis module of the group 

controller.  The local controller decomposes the goals into tasks and inserts the new tasks 

into its task list based on a weighted combination of the task’s importance, proximity and 

cost.  The completion level of the current task is considered when determining whether to 

place a new task in to the first position.  The planning module at the local level is prompted 

to reevaluate the current plan, based on the updated task list.  Plan recalculation may result 

in the robot immediately switching to a new task. 

 

Planning Module 

The planning module at the group level is responsible for defining a strategy for 

completing the assigned goals.  It considers constraints and assigns sub-goals, based on 

recommendations from the evaluation and analysis modules, to subordinates along with an 

assigned priority level.  It also observes the progress of goal completion and re-assigns 

goals based on relative performance, workload and other factors. 

Local planning focuses on mid-to-long-term strategies for completing assigned 

goals’ component tasks.  The module considers task location proximity and importance 

and the possibility of task-element concurrent performance.  It also monitors completion 

progress, reviewing and possibly updating its plan when progress and projections differ. 

 

Evaluation Module 

The evaluation module is responsible for refining task performance estimates based 

on data collected during operations.  The performance of all tasks conducted within the 

evaluation module’s sphere of influence is considered and projected task completion costs 
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are updated based on this.  The evaluation module considers the performance of particular 

craft relative to the group and particular task types relative to overall comparative craft 

performance.  The outcome of this evaluation is a set of modifiers that are available to the 

planning module to determine costs for particular approaches to task completion.  The 

evaluation module distributes these modifiers to all agents within its sphere of influence 

and to its superior controller.  The evaluation module also incorporates global modifiers 

into its local modifier set for factors that the local group has no or limited experience with. 

Evaluation at the local level focuses on the values that are used as part of the task 

raking process.  The local evaluation module continuously refines local movement costs 

and costs for procedures that the craft conducts.  These updated values are provided to the 

local group leader for incorporation in its modifier set.  Modifier information from the 

group evaluation module is also used to update the local costing values where insufficient 

or out-of-date local information is available. 

 

Analysis Module 

The analysis module is responsible for problem conceptualization and solution 

identification.  The identified solution is then developed by the planning module and 

executed.  Analysis focuses on the identification of objects of interest (in light of mission 

objectives).  The module is tasked with separating terrain features that are normal and 

uninteresting from those that are unusual or of particular mission interest (e.g., indications 

of water presence are of interest in Martian exploration [98]).  Features of interest are 

assigned a priority level (corresponding to the interest level in the context of a particular 

objective and the objective’s relative mission importance).  This information is sent to the 
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group’s planning module for incorporation in to the mission plan and subsequent 

assignment. 

At the local level, analysis focuses on how to best complete an assigned goal.  For 

example several sensors onboard the craft could be candidates for completing a given goal-

derived task.  The analysis module considers sensor capabilities in light of goal and task 

needs and identifies one or more sensors to use.  These recommendations (note that the 

analysis may make multiple recommendations with associated desirability ratings to allow 

trade analysis) are sent to the local planning module which evaluates how to best perform 

the task in light of other tasks and constraints. 

 

Executive Module 

The executive module is responsible for the operations of the group.  It takes 

requests from control system component modules and determines performance order.  It is 

also the final arbiter of group actions and constantly checks to ensure that constraints are 

met, including operating requirements and craft safety constraints.  Emergency response is 

a component of the executive module.  At the group level, emergency response primarily 

deals with the loss of upstream contact.  In this eventuality, the local group executive 

assumes control based on currently assigned goals and mission parameters.  It also takes 

actions to attempt to restore upstream communications (e.g., having various subordinate 

crafts attempt direct communications with the group’s upstream controller to rule out local 

interference or range issues). 

At the local level the role of the executive is similar.  The executive takes the plan 

from the planning module and turns it in to a specific set of commands that are sent to the 
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execution module to be further decomposed and sent to actuator controllers.  The local 

executive also deals with emergency response, constraint checking and upstream 

communications failures.  It overrides the planning module’s plan in any instance where a 

constraint violation has occurred.  In these instances, the executive may make an initial 

condition-reactive maneuver and task the planning module with refining the plan (or 

creating a new plan) to resolve the problematic situation. 

 

Execution Module  

The execution module is the lowest-level module and exists only as part of the 

worker control system.  It is concerned with the physical actions that are taken by the craft 

(excepting communications actions controlled by the communications module).  It accepts 

instructions from the executive module and prepares commands for transmittal to the 

actuator controls.  It also accepts sensor input and actuator controllers’ responses and 

transmits this information back to the executive. 

 

Communications Module 

The communications module at the group level is responsible for scheduling 

upstream and downstream communications based on constraints and priority.  It receives 

inbound communications from superior and subordinate and routes them to the appropriate 

module for processing.  It also accepts transmission requests from modules and queues and 

processes them.  It controls local group communications by assigning certain time slots to 

each subordinate craft for communicating non-emergency updates.  Similarly, it receives 

time slots that can be used for communicating updates to its superior.  It will generally have 
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more requests than available transmission time and must use prioritization provided by the 

analysis module (for objective priority) and the executive to determine which requests to 

action (and in what order) and which to discard. 

At the local level, the communications module accepts requests from local modules 

for communicating with the group controller and actions them based on timeslot 

availability and priority.  It also handles requests from the group communications module 

to attempt to communicate with the group’s upstream controller as part of a 

communications restoration attempt.  On a group controller, group communications 

module tasks are performed by the local communications module.  Because the local craft 

only communicates with its (co-located) group leader, the group communications module 

is the sole client of the local communications module on group controllers.  
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CHAPTER IV4 

EXPERIMENTAL DESIGN AND METHODOLOGY 

 

This chapter provides an overview of the work done to validate the multi-tier 

autonomous control software’s performance and characterize the relative performance of 

the two approaches for controlling robots with heterogeneous capabilities.  First, 

experimental goals are described.  Then, system implementation is discussed.  For the 

decentralized control approach (discussed extensively in prior chapters), an overview is 

provided to facilitate contrast between this approach and the centralized one.  The 

centralized approach is described in greater detail.  The experimental setup is, next, 

described.  Finally, the testing regime utilized is presented and discussed. 

 

Experimental Goals 

Denning, et al. [99] proffer that three approaches exist to performing work in the 

computing sciences.  The first, based on the discipline’s roots in mathematics, is 

theoretically based and involves the use of the tools of this discipline to logically 

extrapolate from what is already known.  The second, based on the scientific method, is 

predicated on the creation and validation or refutation of hypotheses.  The third, based on 

                                                 
4 This chapter is derived from: Straub, J. 2016. The Development of a Simulation Environment for Testing of a Multi-

Tier Mission Command Architecture.  Proceedings of the 2016 IEEE Aerospace Conference. 
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the engineering design process, views computer science as a problem-solving discipline 

based upon solving the needs of system users. 

Denning, et al. [99], however, did not suggest that these three approaches exist or 

operate in a vacuum.  For each of several key areas of computing, aspects relevant to each 

paradigm were identified.  In practice, the latter two of the approaches can be synergistic.  

The scientific method can be useful for answering key engineering design process 

questions (which require empirical study) and the engineering design process can be 

integral in creating the experiments and experimental conditions required to perform 

analysis using the scientific method processes. 

This work centers on this synergy, as it relates to decision making for the design of 

multi-craft autonomous systems.  Fink [2], citing several benefits (as is typical of an 

engineering design process approach), has suggested that a centralized control paradigm is 

best suited for multi-craft control for a variety of applications.  This autonomous control 

approach also closely mirrors the current commonly used manual control paradigm.  While 

it is not contended that there are benefits from this methodology, it is argued that a more 

nuanced analysis is required to facilitate the selection of a command methodology for real-

world missions. 

To this end, the contribution of this work is the analysis of numerous factors that 

may, prospectively, impact the choice of command methodology.  Each experiment utilizes 

the prevailing centralized control approach as a null hypothesis (H0) and then evaluates it 

using empirical experimentally collected data.  The results are evaluated, as applicable, 

both in terms of statistical significance (i.e., an evaluation of whether random behavior 
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could have caused the difference between methodologies) and practical significance (i.e., 

whether the difference has any real-world importance).   

Each experiment was repeated multiple times to (1) reduce the impact of any 

extraneous factors on the data set and (2) provide sufficient data such as to facilitate 

meaningful statistical significance evaluation.  As is commonly known, a larger data set 

may facilitate the identification of smaller differences as significant (by showing that they 

difference recurs over numerous experiments and thus is not attributable to randomness).  

Thus, a higher level of repetition may have facilitated the identification of additional 

statistically significant findings.  This, of course, could be extended ad infinitum, with each 

level of repetition selected yielding a suggestion that additional repetition be undertaken to 

see if additionally statistically significant findings might be identified.  The level of 

repletion utilized was selected based on balancing multiple factors: the amount of time 

required to run some of the more computationally intensive scenarios and a desire to be 

able to demonstrate statistical significance for practically significant results, if applicable.  

A limited pre-trial experiment was performed to characterize the level of variance present 

in this area.  This was used to determine the level of repetition that was implemented.  To 

facilitate comparison, a single level of repetition was used across al experiments 

performed.  In cases where data trends showed that statistical significance (at p < 0.05) 

might be attainable via additional experimentation, this is commented upon in the textual 

analysis.  Further repetition of areas that may be of particular relevance to a various 

prospective applications’ decision making process will serve as an area of future work.   

The work presented, thus, informs the engineering design process of one that has 

undertaken to implement a distributed multi-craft system by facilitating the quick 
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comparison of the different command methodologies relative to certain mission 

characteristics.  It also facilitates the rapid evaluation of decisions that have been made 

under assumed conditions as iteration in the mission planning and design process results in 

refinements to condition assumptions.  It, thus, should facilitate a reduction in the amount 

of time required to make a decision as to where to further focus the design process’s 

decision making for the command methodology. 

Three goals exist for the experimentation performed.  First, it seeks to characterize 

the performance of the Multi-Tier Autonomous Mission Architecture (MTAMA) for the 

control of robots with heterogeneous movement and task performance capabilities.  This is 

performed via creating a testing environment that provides input that is relevant to potential 

applications for MTAMA (e.g., space exploration and persistent surveillance).   

Second, it seeks to evaluate the efficacy of the MTAMA control approach for 

exploring an environment with limited prior knowledge (e.g., exploration of planets, moons 

and asteroids).  It is hypothesized (H0) that the MTAMA approach will complete the 

characterization (a) faster and with (b) greater resource efficiency than the centralized 

approach. 

Third, it seeks to characterize the relative performance of the centralized versus the 

decentralized approaches across a variety of conditions.  This allows determination as to 

which performs best for each scenario and the extrapolation of scenario characteristics 

which lead each approach’s superior or inferior performance.  This facilitates decision 

making as to which approach should be used in new applications and scenarios. 
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System Implementation 

Both systems have been implemented in C# using an object-oriented approach.  

Extensive reuse of the code base between the two systems has occurred to facilitate the 

comparison of the two approaches and minimize implementation difference impact.   

A modified Blackboard approach is used in both cases, the implementation 

specifics (and, in particular, the differences) are highlighted in the sections that follow.  In 

both cases, the system is based on a set of rules.  Actions are initiated by rules which are 

triggered (by their pre-conditions being met) and executed. 

 

Centralized Control 

The centralized control approach (based conceptually on [1, 2]) places all high-

level decision making in a single location (low-level decision making, such as hardware 

control and obstacle avoidance, is still performed onboard each craft).  The approach 

presented herein augments Fink’s concept [1, 2] with the use of elements from the 

Blackboard architectural approach (shown in Figure 11).  The system utilizes a single 

centralized blackboard that resides on the orbital spacecraft and dictates the data collection 

needs and actions of the hierarchy of craft.  An analysis of the data collection requirements 

for triggering rules is utilized to determine which data should be collected.  
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Figure 11. Centralized Control Approach. 

The centralized controller devises a plan and implements a schedule that dictates 

what each system-member craft does.  These instructions can be delivered directly from 

the orbital craft to the target craft or they can be relayed by intermediate craft (e.g., an 

aerial craft relaying to a ground craft).  Individual craft perform the actions assigned to 

them, report task completion and send results to the orbital craft (again, this may be via 

another craft).  Relevant assertions and data are added to the centralized blackboard.  The 

blackboard evaluates this data and triggers and executes rules.  The problem solving 

mechanism re-evaluates the overall plan, based on the updated state of the Blackboard, and 

revises goal-implementing tasks. 

When changing task assignments, the centralized controller may assign one of three 

approaches: immediately preempt, complete current task or send report and continue.  The 

immediately preempt instruction forces the craft to stop what it is doing and immediately 

begin to undertake the newly assigned task.  Any relevant data is immediately sent to the 

central blackboard.  The complete current task instruction will result in the craft completing 

(or trying to complete, it will still stop if the task cannot be completed, based on its initial 
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assignment instructions) the task at hand before moving to work on the newly assigned 

tasks.  Finally, the report and continue approach is used if the central controller needs to 

know the current progress of the task (or evaluate the data collected to-date) before 

determining whether to preempt or wait for task completion.  This, for example, would be 

used in a case where the central controller still considers the task at hand important (though 

not, now, the most important) and estimates that it is very near completion (but needs to 

verify this assumption through an updated status report). 

 

Decentralized Control 

This section focuses on the differences between the centralized and decentralized 

control approaches.  It highlights critical elements of the previously described 

decentralized control approach which inform the experimental setup and testing regime. 

The decentralized approach includes a blackboard for every craft.  A principal 

blackboard, located on the orbital craft, contains all information relevant to achieving 

mission objectives.  This is comprised of most of the information present on other 

blackboards throughout the system.  Some information is abstracted on the principal 

blackboard, as it is important to mission objectives only when aggregated with other data 

(for example, an assertion may be placed on the global blackboard from the blackboard of 

a subordinate craft, based on data on its blackboard).   
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Figure 12. Distributed Control Approach. 

The system operates by moving information to and from the principal blackboard 

and the blackboards of the subordinate craft.  Each craft analyzes the information on its 

blackboard in terms of the rules contained on the blackboard and the goals (rules which, if 

triggered, constitute completion) and identifies what data to collect and/or what to delegate 

as goals to subordinate craft.  When data collection is complete, relevant data (and 

assertions based on this data) are placed onto the blackboard of the craft that assigned the 

goal to the performing craft.  Data placement may trigger a chain of actions, if rules are 

triggered and executed on multiple craft at levels of the mission hierarchy. 

 



46 

 

Experimental Setup 

The experimental setup involves a simple simulation environment.  A map with 

application and scenario-relevant features on it was created.  This is connected to an 

interface layer that accepts the commands output from the control system under test and 

supplies the system with relevant results.  The environment operates on a turn-based system 

to facilitate testing in faster-than-real-time.  The testing environment, from the perspective 

of the control system under test, acts as the communications layer.  In actuality, it is 

simulating the communications and the returned data. 

Output Receiver & 
Input Simulator

Map with 
Features

Control 
System 

Under Test

Craft Database: 
Location, Status 
and Capabilities

 
Figure 13. Testing Environment. 

When the system under test sends a command to the output receiver, the command 

is assessed to determine what data is required from the map.  This data is retrieved from 

the map database.  Based on the configuration of the craft that the command was issued to, 

the terrain features in the area (and between the target and the craft’s current position), 

other tasks assigned to the craft and other relevant details, it determines how long the task 

will take and supplies final and, if applicable, interim update reports at the appropriate 

times.  Error can also be introduced at configurable levels.  Error introduction is one of the 

experimental variables manipulated.  Other elements can be introduced into the scenario, 
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including temporary or permanent craft incapacitation (at adjustable occurrence levels) and 

communications interference.  The testing environment is depicted in Figure 13. 

 

Testing Regime 

The testing regime consists of six parts, each of which is now be described.  First, 

testing was performed on each of the two systems (centralized and decentralized) to 

validate that they function as intended.  This testing ensured that the systems being used in 

subsequent phases are accurate implementations of the concepts intended.  Second, testing 

was performed to characterize the performance of both systems under basic scenarios 

without the addition of other factors, allowing the characterization of ‘best case’ 

performance of each of the control approaches. 

Third, system performance was characterized with the introduction of data 

collection error.  Forth, system performance was characterized with the introduction of 

communications issues.  Fifth, system performance was characterized with the introduction 

of only permanent craft incapacitation.  Sixth, system performance was characterized with 

the introduction of both temporary and permanent craft incapacitation.  Seventh, system 

performance was characterized with the introduction of communications issues and 

temporary and permanent craft incapacitation.  Finally, system performance was 

characterized with the introduction of data collection error, communications issues and 

temporary and permanent craft incapacitation.  The level of communications errors 

(frequency of their occurrence and magnitude of their impact), craft incapacitation 

(probability of a given craft being incapacitated temporarily or permanently each turn) and 

data collection error (frequency of occurrence and amount of data affected) were held 
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constant throughout all of the eight experimental conditions, as the characterization of the 

systems across different levels of each affecting mechanism is a topic for future work.  
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CHAPTER V 

A BLACKBOARD SOLVER AND PRUNING5 

 

 This chapter is the first of four that presents additional detail related to the system 

and its evaluation (previously described in Chapters III and IV).  It presents a discussion 

of the development and testing of the blackboard solver that was integral to the operations 

of the Blackboard Architecture-based decision making system and the use of pruning to 

enhance its efficiency.   

Next, an overview of the blackboard solver is provided.  Then the pruning engine 

is discussed.  Third, results and analysis related to the use of the pruning engine are 

presented.  Finally, an overview of the results from this chapter is provided. 

 

A Blackboard Solver 

The contribution presented in this chapter is the use and characterization of a 

blackboard solver that implements rule, fact and/or action pruning.  The blackboard 

solver’s importance comes from the necessity of solving (determining a path through the 

blackboard’s network of rules, facts and actions) to facilitate effective use of the 

Blackboard Architecture for goal-based decision making.  The solver’s operations begin 

with the identification of one or more goals to achieve.  It then utilizes a routing algorithm 

                                                 
5 This chapter is derived from: Straub, J. 2015. Comparing the Effect of Pruning on a Best-Path and Naïve-Approach 

Blackboard Solver.  International Journal of Automation and Computing, Vol. 12, No. 5. 
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to determine what the most effective way of achieving the identified goal or goals is.  A 

‘best path’ is identified by the solver that serves as a guide for the lower-level decision 

making of the system robots. 
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Figure 14. Naïve Solver [100]. 

The best path is taken to be the path that requires the lowest cost (which is a 

combination of the computational cost of running rules and the costs attributable to 

actions).  In most systems that operate in a real-world environment, the action costs (e.g., 

the time and fuel used for moving a craft and collecting data) will dwarf the computational 

costs of rule activation.  However, this may not always be the case.  Rules requiring 
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particularly robust analysis may take longer than actions which do not have a physical 

component (e.g., triggering a message to be sent across a network).  Also, the level of 

concurrency possible may impact this comparison as well. 

The best path is identified based on predictions related to certain elements.  Facts 

that are asserted can obviously be taken as given; however, the results of actions or rules 

may be unpredictable (i.e., there would be little point to collecting data which is already 

absolutely known; the results of data collection can be projected based on a prior 

knowledge and past experiences, but surprises could and should occur).  Thus, for the 

purposes of solving for the best path, the outcomes of actions are predicted.  A more 

complex approach (a subject for prospective future work) would be to evaluate multiple 

result permutations. 

The naïve solver algorithm is depicted in Figure 14.  It begins by selecting an 

invokable rule (one with all preconditions satisfied) to run (if there is not one, the algorithm 

ends with no solution found and the system performs its default action, typically 

exploration, until the blackboard’s data changes or something else triggers re-solving).  The 

rule is then run, which may or may not assert one or more facts and/or trigger one or more 

actions.  Each action that is triggered may trigger additional actions (i.e., recursive chains 

of actions) and assert one or more facts.  Once all facts are asserted and all actions are run, 

the algorithm checks to see if the designated final condition is reached.  If not, the invokable 

rules are identified and the process restarts with the selection of an invokable rule to run.   

The naïve approach is important, in its own right, for several reasons.  First, the 

naïve approach is the typical method used by forward-only blackboard systems which look 

for other rules to assert once a new fact is asserted.  Second, even in a solving blackboard 
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system (such as the one discussed) the naïve approach serves a role in dealing with dynamic 

data; thus, the impact of the pruning on it may be critical for systems that need to perform 

well during periods where an assumption is violated and an update of the blackboard 

network preparations for the guaranteed solver has not yet been performed.  Third, there 

are some network configurations where the naïve solver may outperform the guaranteed 

one.  Characterization of areas of superior naïve solver performance remains a subject for 

future research. 

A blackboard-style system was implemented incorporating the naïve solver 

depicted in Figure 14 and described in the previous section.  This implementation also 

incorporated a pruning engine, which is described subsequently and depicted in Figure 15.   

 

Pruning Engine 

The pruning engine that was developed operates iteratively.  The engine begins by 

identifying facts that don’t serve as rule conditions and facts that are not currently asserted 

and which cannot be asserted (e.g., there is no rule or action that asserts them).  A 

placeholder value is then inserted into each rule which requires one of these facts as a 

precondition and they are removed from the list of facts to be asserted by rules and actions. 

Rules that now cannot be asserted (e.g., those with the placeholder values) as well 

as rules with empty trigger lists are next identified and removed.  Finally, actions that are 

no longer in any triggered list (i.e., which now cannot be invoked) are now identified and 

deleted.  If any change was made during this iteration of the pruning engine, the process 

restarts (as the changes made may allow other changes to be made); if not, the engine ends. 
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To quantify the time required for the pruning algorithm and to test and compare the 

performance of the naïve solver using pruned and un-pruned data, 500 trials were run.  Each 

trial began with the creation of a random blackboard configuration.  The beginning 

configuration included 1,000 rules, 1,000 facts and 1,000 actions.  For each fact, a random 

number of prerequisite facts (constrained by a maximum value parameter) was determined 

and this number of facts were randomly selected for use as prerequisites.  For each fact and 

action, a random number of triggered facts and/or actions (constrained by a maximum 

value parameter) was determined.  Whether a fact or action was used was then determined 

randomly for each slot.  Finally, the applicable fact or action was randomly selected.  A 

parameter-based number of facts were randomly selected to be initially asserted. 

The procedure used necessarily differed for the non-pruned and pruned trials.  The 

non-pruned trials required a two-step process.  First, an alternate solver was run on the data 

which is guaranteed to find the best path.  This was performed to allow the complexity of 

trials to be compared quantitatively.  Second, the naïve solver was run on the blackboard.  

The results of the trial were recorded and the next trial commenced. 

For the pruned trials, the process began by performing the pruning of the 

blackboard.  This process continued iteratively until a run completed with no changes being 

made.  The final number of facts, rule and actions as well as the amount of time required 

was recorded for each iteration.  Next, the guaranteed-optimal solver was run to allow 

comparison of the complexity of the solution from run to run.  Finally, the naïve solver was 

run and the results were recorded.   

It is important to note that some of the networks produced may not be solvable or 

that the naïve solver may fail to solve networks in certain cases.  The solver automatically 
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gives up after an amount of time that is significantly longer than the time typically required 

to find a solution. 
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Figure 15. Pruning Engine [100]. 
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Pruning: Results & Analysis 

This section presents the data collected during the experimentation previously 

discussed.  First, the non-pruned naïve solver results are presented in Table 1.  The first four 

fields present the data (number of iterations, time to populate, time to solve and the path 

length determined) for the guaranteed-optimal solver.  The remaining five fields 

characterize the performance of the naïve solver.  The find count field indicates the number 

of loops of the naïve solver algorithm that were run, the rules run and acts run fields indicate 

the number of rules and actions invoked, respectively.  The time field indicates the total 

time consumed by the naïve solver and the not found field indicates how many of the 500 

trials resulted in no solution being identified.  The time taken by the two solvers can be 

compared by adding the populating time and solve time for the optimal solver and 

comparing it to the time taken by the naïve solver.  All of these time values are reported in 

ticks6. 

 

Table 1. Non-Pruned Guaranteed Optimal and Naïve Solver Results (mean values from 500 runs). 

Guaranteed Optimal Solver  Naïve Solver 
# Iter Time Solve Time Path Length  Find Count Rules Run Acts Run Time Not Solved 

7.9 1,197.5 23.4 8.9  33.8 28,793.6 38,039.5 5,680.3 14 

 

The data for the pruned naïve solver is divided into two tables for ease of reading.  

The first table (Table 2) provides the data for the pruner algorithm and the second (Table 

3) provides the data for the solver.  The pruner algorithm’s data (in Table 2) begins with 

the amount of time that was required for the pruning engine to run.  The next three fields 

                                                 
6 Ticks [101] are the smallest unit of time measured by the Windows operating system.  A tick is equal to 

100 nanoseconds. 
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indicate the number of facts, rules and actions, respectively, which were left when the 

pruner completed. 

In Table 3, the solver results begin with the data related to the guaranteed-optimal 

solver (which is located in the first four fields).  The remaining five fields present the data 

for the naïve solver.  Note that the fields in Table 3 correspond to the field in Table 1 with 

the same name.  Thus, the description of each field will not be repeated. 

 

Table 2. Pruned Naïve Solver Results, Pruner Time and Results (mean values from 500 runs). 

Time Facts Rules Actions 

507,906.2 685.6 938.9 667.1 

 

Table 3. Pruned Guaranteed Optimal and Naïve Solver Results (mean values from 500 runs). 

Guaranteed Optimal Solver  Naïve Solver 

# Iter Time 
Solve 
Time 

Path 
Length 

 Find 
Count Rules Run Acts Run Time 

Not 
Solved 

9.6 1,317.4 20.8 11.6  14.0 12,877.8 17,747.8 2,366.0 6 

 

The point of presenting both the guaranteed solver and naïve approaches is multi-

faceted.  First, it demonstrates the impact of pruning on both.  The guaranteed solver’s time 

commitment for a non-preprocessed network is actually a combination of the preparation 

time (i.e., the second column of Table 1 and Table 3) and the solve time (third column).  

This is still less than the naïve solver – across both conditions; however, it is notable that 

the pruning improves the naïve solver’s performance significantly.   

Analysis of the data presented in the previous section demonstrates the value of the 

pruning process to the naïve solver (a significant reduction in solver runtime).  While the 

performance of the guaranteed-optimal approach does not change significantly (the number 

of iterations and path length increase slightly, as does the population time and the solve 
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time decreases by approximately 11%), the impact on the naïve solver is more pronounced.  

Comparing Table 1 and Table 3 shows that naïve solver now only requires 41.3% of the 

number of iterations that it did previously to generate a solution and it runs only 44.7% of 

the rules and 46.7% of the actions of the non-pruned approach.  The number of instances 

where a solution could not be identified drops from 2.8% to 1.2%.  Perhaps most 

importantly, the amount of time required decreases to 41.7% of the non-pruned approach. 

The pruner, however, is computationally intensive to run, requiring an average of 

507,906.2 ticks.  This is, of course, much more than the average savings per solution 

generated (of 3,315.4 ticks).  Thus, to justify the cost of the pruning, at least an average of 

153.2 uses of the solver (based on dividing the amount of time required to run the pruner 

by the average savings per solution generation) must be run for each pruning.  As the solver 

will typically need to be repetitively run while the blackboard system is operating 

(regenerating the optimal path after data on the blackboard changes), this may be a 

worthwhile tradeoff for many applications.  The initial pruning, under the random model 

presented is (of course) the most expensive and, thus, even with changes to the blackboard, 

the benefit from the initial pruning may be enjoyed across numerous runs (with the re-

pruning runs taking significantly less time due to having to do less work). 

To demonstrate the lower level of cost that may be enjoyed by subsequent prunings, 

the amount of time required for the first three iterations of the pruner was collected across 

five trials.  In each of these trials, the third pruner run did not produce any additional results 

(though this would not always be the case).  This is presented in Table 4.   From this, it is 

clear that re-prunings (which benefit from the previous prunings performed and, thus, 

require less work) are less expensive (requiring approximately one-half of the time of the 
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initial pruning). 

 

Table 4. Comparative Cost of Pruning Iterations. 

  Iteration 1 Iteration 2 Iteration 3 

Max (ticks) 352841 183148 193167 

Min (ticks) 293395 157702 152937 

Average (ticks) 332,487 170,356.8 170,268.4 

Percent 49.4% 25.3% 25.3% 

 

Overview 

This chapter has provided an overview of the research contribution of using and 

characterizing a blackboard solver and pruner.  The solver is a key component of the 

creation of a goal-driven blackboard system and the pruner increases its efficacy, for some 

applications, and operating efficiency.   

The speed enhancement provided by solving a pruned network was compared to 

the cost of pruning, demonstrating that approximately 153 uses of the pruned network 

would be required to cost-justify the pruning solely on this metric.  The notion of a reducing 

re-pruning cost was discussed (allowing this initial cost to be spread over extended 

operations with a significantly lower cost level being incurred for subsequent re-prunings).  

However, the value of shifting time from periods of critical demand to off peak times is 

not considered from this purely quantitative analysis.   

Pruning is an activity that can be conducted on an as-resources-are-available basis, 

while the benefit can be enjoyed (potentially) during times where performance is critical, 

such as decision making for a cyberphysical system.  The comparative value of the two 

types of processing time consumed should, thus, also be taken into account as part of the 

analysis process.  This relative value is (of course) application-specific and, thus, must be 

considered in the context of a prospective use of the Blackboard Architecture.  
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CHAPTER VI 

SYSTEM OPERATIONS AND THE NEED FOR MAINTENANCE7 

 

The previous chapter discussed pruning and demonstrated its utility, in general, for 

blackboard systems.  The contribution of this chapter is the characterization of pruning’s 

efficacy for the maintenance of robotic systems.  This is important as, due to the nature of 

a Blackboard Architecture-based system for robot control, over time more and more 

information is added to the blackboard network and some existing or new information is 

or becomes irrelevant to blackboard solving.  In the absence of regular maintenance to 

resolve this, as progressively more facts are discovered and assertions added, the speed of 

the system may decline.  Searches will take longer, due to the amount of things to search; 

time-constrained searches may miss identifying critical facts or assertions, due to being 

forced to terminate before reaching them.   

It is thus desirable to remove stale, obsolete or unused data and assertions from the 

blackboard and/or to archive data and assertions that, while still potentially relevant, do not 

appear to be likely to be used.  The former can be identified by being: (a) still present after 

an inherent time limitation on the data, (b) supplanted by later or directly conflicting data, 

(c) not relevant to any rule that could be triggered (e.g., data may have been added to 

support a rule whose trigger condition can now never be activated due to another trigger 

                                                 
7 This chapter is derived from: Straub, J. 2013. Automating Maintenance for a One-Way Transmitting Blackboard 

System and Other Purposes.  Accepted for publication in Expert Systems. 



61 

 

condition being shown, through data collection, to be false) or (d) too old to be relied upon, 

for data that is likely to change occasionally.  The latter is identified by not being relevant 

to any rule on the best or top-few (the exact setting can be customized as a parameter) next-

best rules. 

 

A System for Performing Ongoing Maintenance 

A system for performing this ongoing Blackboard maintenance, autonomously, is 

now presented.  The system can be activated at regular intervals.  The exact interval is 

configured as a system parameter; however, it is expected that it will be run several time 

during each expiration period (the amount of time that an item on the blackboard is not 

rechecked for after being checked and stamped) so that only a fraction (ideally 1/3rd to 

1/5th) of the blackboard items will need to be checked during each run. 

Each run will assess all items on the blackboard by iterating through them.  Each 

item on the blackboard’s status will be assessed as having one of the following five 

statuses:  current, stale / obsolete, unused, unlikely to be used, or used.  The actions 

performed are different based on what status the item is assigned.  Figure 16 presents an 

overview of the path taken for each possible item-status. 

Current – The current status means that the item has been checked within the 

expiration period and does not need to be checked again at this time.  When a current item 

is identified, no further actions are taken.  The next item on the board is selected and 

processed. 

Stale / Obsolete – Stale or obsolete items meet one of several conditions.  They may 

be (a) data that has a definite lifetime, such as the presence of a moving robot in a particular 
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grid location, (b) data that has an implicit lifetime, such as the amount of an evaporating 

substance that remains, (c) data that changes occasionally but at unknown interval, such as 

weather conditions or (d) data that is replaced by different, more current data.   

For each fact / assertion / rule 
     on blackboard:

Begin Maintenance

End Maintenance

Mark as Stale / 
Obsolete

Status?

Evaluate Item

Mark as Unused
Mark as Unlikely to 

be Used
Mark as Current

Stamp Last 
Reviewed as Current 

Date/Time

stale / obsolete unused unlikely to be used used

Archive to stale data 
database

Archive to unused 
database

Archive to ancillary 
database

Update don’t collect 
list with element

Update don’t collect 
list with element

Select first/next 
item on blackboard

Items Remain?

Yes

No

Update available 
element list with 

element

current

 
Figure 16. MTAMA Multi-Level Blackboard Architecture. 
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When data of each of the first three of these types is inserted into the blackboard, it 

is given a ‘current until’ expiration value.  The next time the data is checked after this 

expiration it is removed from the blackboard.  The forth is checked for during this process 

by looking for data with the same definition but with different timestamps.  If duplicates 

are found, the older piece of data is marked as stale/obsolete and removed from the 

blackboard.  Removal is effected by marking it as stale/obsolete and archiving it to the stale 

data database.  The data can be retained in archive for a configurable period of time to 

facilitate system debugging (e.g., to determine why a rule executed, after the data later 

expires). 

Unused – Unused data and assertions are data and assertions that don’t meet the 

activation conditions for any trigger-able rule.  Rules are considered able to be triggered if, 

for each required activation condition (or a collection of conditions meeting one triggering 

combination): (a) data could be collected to meet the activation conditions (e.g., it is not 

known that the data collection in question would return an non-applicable result), (b) 

another rule exists to assert the assertion that is required to trigger a give rule, (c) data 

already exists to meet the activation condition or (d) the required assertion has already been 

asserted.  Thus rules become not able to be triggered if it is found that a critical data element 

is not as expected or a critical assertion cannot be asserted (due, for example, to the removal 

of another rule or the removal of an starting assertion for which there is no way to reassert). 

Data and assertions that are not needed (as described above), rules that produce 

only unneeded assertions and rules that cannot be activated (as described above) are 

considered unused.  When an item is determined to be unused it is marked as such and 

archived to the unused database.  A list of collection restrictions (the ‘don’t collect’ list) is 
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updated for data elements that are removed in this way to prevent effort from being wasted 

on trying to collect non-perishable data that will not be useful.  Note that this list is checked 

and items removed from it if new rules are added that would make the data useful.  In these 

instances, the data could be retrieved from the archive, if still present. 

Unlikely to be Used – items are deemed unlikely to be used if they are not needed 

for items in the currently selected best path or one of the near-best paths.  Items are deemed 

to be needed if they are required as part of a chain that meets an activation condition.  Note 

that rules that end in required assertions are retained after the needed assertion has been 

asserted in case the assertion should be removed and be required to be re-asserted to meet 

the rule activation conditions.  All other elements that are not needed for one of these paths 

and do not qualify as stale / obsolete or unused are deemed to be unlikely to be used.  

However, because conditions could change rendering the currently selected best and near-

best paths untenable, these elements are retained in an ancillary database (items are not 

removed from this database, except in the case of storage limits being exceeded).  Data 

items meeting this criteria are listed in the don’t collect list to preclude effort being spent 

to recollect already existing data.  They are also added to the available element list which 

is checked occasionally as part of the process of ensuring that the best and near-best paths 

are still actually the most desired paths and/or when best / near-best paths are rendered 

untenable. 

Used – Elements that are used are needed by a rule that is in the currently selected 

best path or one of the paths identified as a near-best path.  Used data is stamped with a 

new expiration date/time for this status (based on the expiration period) and left on the 

blackboard.  The next item is then selected and processed. 
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Quantitative Analysis of Maintenance System 

 

The data presented in the previous chapter demonstrated the computational savings 

afforded by using pruned data.  This is, of course, offset by the cost of actually performing 

the data pruning required.  This chapter considers the impact of different blackboard 

configurations on the efficacy of pruning in the context of autonomous control.  It presents 

data from varying the initial number of rules, facts and actions as well as the number of 

associations between the rules, facts and actions.   

First, the number of rules is varied with six different levels between 750 and 2000 

rules presented.  Table 5 presents the results for non-pruned operations with these rule 

levels.  Table 6 presents the impact of pruning on operations.  Then, Table 7 facilitates 

comparison by presenting the performance of the pruned system as a percentage of the non-

pruned system.   

 

Table 5. Non-Pruned Data for Number of Initial Rules Varied (1000 Facts, 1000 Actions, 3 Associations, times in tics). 

Rules 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

750 5.0 739.8 6.9 5.8 1.2 

1000 9.6 1731.5 17.1 12.7 1.3 

1250 14.4 2974.9 40.1 25.6 1.6 

1500 12.1 3272.0 23.0 15.1 1.5 

1750 10.4 3102.2 18.3 11.2 1.6 

2000 8.9 3283.9 17.7 9.8 1.8 

 

Table 6. Pruned Data for Number of Initial Rules Varied (1000 Facts, 1000 Actions, 3 Associations, times in tics). 

Rules 

Pruning 

Time #Facts #Rules #Actions 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

750 384944.1 573.6 703.5 668.3 6.5 692.9 8.9 7.6 1.2 

1000 503849.3 683.6 939.1 666.2 10.2 1338.2 21.2 14.3 1.5 

1250 630555.8 768.0 1173.3 668.0 12.1 2043.9 28.6 15.6 1.8 

1500 763121.7 826.6 1406.6 668.5 10.4 2172.1 22.9 11.0 2.1 

1750 889030.1 873.7 1640.4 666.5 9.5 2348.7 20.6 10.6 2.0 

2000 1016860.7 907.1 1878.9 668.6 8.5 2420.9 18.1 8.3 2.2 
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Next, the number of facts is varied.  Five levels of initial fact counts are used (the 

1000-level is omitted as this data has already been presented in Table 5 and Table 6).  Table 

8 presents the non-pruned system performance, while Table 9 presents the performance of 

the system which utilizes pruning.  Table 10, again, compares the two, presenting the 

performance of the pruned system as a percentage of the non-pruned system.   

 

Table 7. Pruned Results as Percentage of Non-Pruned for Number of Initial Rules Varied (1000 Facts, 1000 Actions, 3 

Associations). 

Rules 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

750 131.0% 93.7% 129.9% 132.3% 98.2% 

1000 107.1% 77.3% 123.5% 112.3% 110.0% 

1250 84.2% 68.7% 71.5% 60.9% 117.4% 

1500 86.4% 66.4% 99.6% 73.0% 136.4% 

1750 91.5% 75.7% 112.7% 94.4% 119.4% 

2000 95.2% 73.7% 101.9% 84.8% 120.1% 

 

Table 8. Non-Pruned Data for Number of Facts Varied (1000 Rules, 1000 Actions, 3 Associations, times in tics) 

Facts 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

750 12.4 2245.5 26.3 17.2 1.5 

1250 4.9 908.9 5.5 5.1 1.1 

1500 4.4 955.4 5.5 4.8 1.1 

1750 3.8 820.5 4.7 4.5 1.0 

2000 3.7 1368.2 7.1 4.4 1.6 

 

Now the number of actions is varied, again using the base values of 1000 facts and 

1000 rules and 3 associations.  Table 11 and Table 12 present the non-pruned and pruned 

data, respectively.  Table 13 presents a comparison between the pruned and non-pruned 
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systems, with the performance of the pruned system as a percentage of the non-pruned 

system computed.   

 

Table 9. Pruned Data for Number of Facts Varied (1000 Rules, 1000 Actions, 3 Associations, times in tics) 

Facts 

Pruning 

Time #Facts #Rules #Actions 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time 

per Unit 

Length 

750 404473.0 603.6 937.1 664.4 10.4 1430.0 23.2 12.6 1.8 

1250 595891.3 724.9 938.2 664.2 7.0 992.9 14.9 7.8 1.9 

1500 683227.3 747.1 938.8 667.7 5.5 760.3 12.2 5.8 2.1 

1750 768395.4 753.2 937.9 667.1 4.5 652.8 6.2 5.2 1.2 

2000 853479.1 746.5 937.9 666.8 4.3 623.2 6.4 5.0 1.3 

 

 

Table 10. Pruned Results as Percentage of Non-Pruned for Number of Facts Varied (1000 Rules, 1000 Actions, 3 

Associations) 

Facts 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

750 83.4% 63.7% 88.1% 73.3% 120.3% 

1250 144.5% 109.2% 271.7% 152.5% 178.1% 

1500 125.3% 79.6% 220.8% 119.8% 184.2% 

1750 118.2% 79.6% 132.4% 115.5% 114.6% 

2000 116.5% 45.5% 89.7% 113.1% 79.3% 

 

 

Table 11. Non-Pruned Data for Number of Actions Varied (1000 Rules, 1000 Facts, 3 Associations, times in tics) 

Actions 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

750 6.4 1241.5 8.7 6.4 1.4 

1250 8.8 1536.6 12.8 10.2 1.3 

1500 8.1 1422.4 10.5 8.7 1.2 

1750 7.2 1413.8 9.8 7.2 1.4 

2000 7.6 1523.7 12.2 9.0 1.3 
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Table 12. Pruned Data for Number of Actions Varied (1000 Rules, 1000 Facts, 3 Associations, times in tics) 

Actions 

Pruning 

Time #Facts #Rules #Actions 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time 

per Unit 

Length 

750 454137.7 664.3 938.4 500.7 9.5 1285.3 22.7 12.9 1.8 

1250 552255.1 696.9 937.3 833.9 10.4 1362.4 22.5 13.5 1.7 

1500 594598.9 709.6 937.5 999.7 10.5 1378.6 14.7 12.2 1.2 

1750 650037.8 722.3 938.9 1166.6 10.5 1398.7 22.2 11.9 1.9 

2000 694694.5 729.1 937.6 1336.2 11.4 1578.2 26.9 16.2 1.7 

 

Table 13. Pruned Results as Percentage of Non-Pruned for Number of Actions Varied (1000 Rules, 1000 Facts, 3 

Associations) 

Actions 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

750 148.1% 103.5% 260.4% 200.3% 130.0% 

1250 118.0% 88.7% 175.9% 131.9% 133.4% 

1500 130.3% 96.9% 140.1% 140.4% 99.8% 

1750 146.3% 98.9% 226.6% 164.4% 137.9% 

2000 150.6% 103.6% 221.2% 179.0% 123.6% 

 

The level of association (the number of other object types associated with each 

object) is now varied.  Table 14 and Table 15 present association levels of 2, 4 and 5 

(adding to the common association level of 3 that has been used throughout the other 

tables).  Table 16 presents the performance of the pruned systems as a percentage of the 

non-pruned systems.   

 

Table 14. Non-Pruned Data for Number of Associations Varied (1000 Rules, 1000 Facts, 1000 Actions, times in tics) 

Associations 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

2 6.8 752.6 6.6 5.7 1.2 

4 9.2 2015.7 24.1 16.1 1.5 

5 12.4 3364.0 49.9 27.9 1.8 

 

 



69 

 

Table 15. Pruned Data for Number of Associations Varied (1000 Rules, 1000 Facts, 1000 Actions, times in tics) 

Assns 

Pruning 

Time #Facts #Rules #Actions 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time 

per Unit 

Length 

2 272993.6 443.3 832.9 499.0 6.2 483.0 7.1 5.2 1.3 

4 701340.2 817.6 969.8 749.0 13.6 2593.3 47.3 27.4 1.7 

5 874828.3 898.6 981.8 798.6 12.4 2953.9 38.8 25.6 1.5 

 

Table 16. Pruned Results as Percentage of Non-Pruned for Number of Associations Varied (1000 Rules, 1000 Facts, 

1000 Actions) 

Associations 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

2 92.0% 64.2% 107.1% 92.3% 116.1% 

4 147.4% 128.7% 196.4% 170.4% 115.3% 

5 99.9% 87.8% 77.7% 91.5% 85.0% 

 

Finally, the impact of concurrently manipulating multiple variables is considered.  In Table 17 and Table 18, the 

number of rules, facts, actions and associations is varied concurrently.  Table 17 presents this data for non-pruned 

systems, while Table 18covers systems using pruning.   

Table 19, again, presents the performance of the pruned system as a percentage of 

the non-pruned system.    

 
Table 17. Non-Pruned Data for Rules, Facts and Assertions Varied Concurrently (times in tics) 

Rules Facts Actions Associations 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

750 750 750 2 6.5 516.2 6.2 5.6 1.1 

1000 1000 1000 2 6.7 694.1 6.6 5.8 1.1 

1250 1250 1250 4 9.4 2741.4 30.6 16.5 1.9 

1500 1500 1500 4 10.1 3244.0 20.7 14.1 1.5 

1750 1750 1750 5 9.3 4255.4 30.9 16.7 1.9 

2000 2000 2000 5 10.2 5506.9 56.4 27.0 2.1 
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Table 18. Pruned Data for Rules, Facts and Assertions Varied Concurrently (times in tics) 
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750 750 750 2 152151.0 331.8 625.8 374.0 5.5 335.0 9.1 5.3 1.7 

1000 1000 1000 2 271295.9 442.2 833.5 500.5 6.2 452.2 8.3 5.4 1.5 

1250 1250 1250 4 1130483.6 1027.6 1212.7 938.9 12.9 2987.3 46.0 25.2 1.8 

1500 1500 1500 4 1650845.5 1234.3 1455.8 1124.1 11.9 3425.7 45.5 24.8 1.8 

1750 1750 1750 5 2832415.0 1572.5 1718.0 1399.1 14.2 6112.9 56.2 31.5 1.8 

2000 2000 2000 5 3722875.8 1794.7 1965.1 1598.7 14.4 7354.6 76.0 38.7 2.0 
 

Table 19. Pruned Results as Percentage of Non-Pruned for Rules, Facts and Assertions Varied Concurrently 

Rules Facts Actions Associations 

Average 

Iterations 

Average 

Time 

Solve 

Time 

Path 

Length 

Time per 

Unit 

Length 

750 750 750 2 84.7% 64.9% 147.3% 94.2% 156.4% 

1000 1000 1000 2 92.7% 65.1% 124.4% 93.1% 133.6% 

1250 1250 1250 4 136.6% 109.0% 150.5% 152.6% 98.6% 

1500 1500 1500 4 118.4% 105.6% 219.9% 175.9% 125.0% 

1750 1750 1750 5 152.9% 143.7% 181.6% 189.1% 96.1% 

2000 2000 2000 5 141.2% 133.6% 134.7% 143.4% 93.9% 

 

 

 

Network Impact on Pruning Efficacy 

 

The results of the use of pruning at various numbers of rules, actions and facts and 

with different levels of associations are quite varied.  The average time to prepare the 

network (a comparatively expensive process) is generally less with the use of pruning.  This 

is the case with all levels of rules and 17 of 25 cases, overall.   

The average path length tended to be generally more for pruned data, with 16 of the 

25 cases requiring more iterations of solving for the pruned condition.  A different group 

of 16 of the 25 cases also require a greater, on average, number of iterations, as well.  In 

many cases, however, the differences between the two were not statistically significant at 
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p<0.05.  In only 5 of the 20 cases did the pruning approach generate a faster average solve 

time; however, given the correlation between path length and solve time, this is not 

unexpected.  The time per unit length was also, on average, higher for the pruned version; 

however, in many cases these differences were again not statistically significant ay p<0.05. 

It is, thus, clear that the principal value of the pruning approach, generalizing across 

all conditions, is the reduction in the preparation time of the network (which can be two 

orders of magnitude greater than a single solution).  This is visually depicted in Figure 17 

which compares the pruned and non-pruned performance across the four experimental 

conditions previously discussed.  Additional analysis of the variations between the 

conditions and between specific runs will serve as a subject for future work. 

 

 

 

Figure 17. Comparison of pruned and unpruned performance on network preparation time for solving: varying number 

of rules (upper left), number of facts (upper right), number of actions (lower left) and number of associations (lower 

right).  The X-axis represents the number of rules, facts and actions and the Y-axis represents the preparation time. 
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Comparing the Impact of Different Types of Pruning 

Up until this point a combined pruning strategy has been considered.  Under this, 

previously described, iterative strategy, rules, facts and actions are pruned and each pruning 

action may result in more objects qualifying for pruning.  This section considers the impact 

of pruning only a subset of the object types.  The results for tests, which each eliminate one 

type of pruning, are presented in Table 20.   

Of the four, eliminating only fact pruning (condition 1) results in the best 

performance, in terms of several key metrics, each of which will now be discussed.  It 

generates a significantly better (nearly 20% reduction in time) performance in terms of the 

average time of populating the network for solution determination.  Its time per unit length 

is also approximately 15% lower than the base condition.  Rules and actions must be 

traversed to determine the nature and best paths through the network; however, facts are 

referenced only when implicated by a rule or action.  Because of this, the benefit of their 

reduction stems primarily from reducing the time cost of fact access (from having a smaller 

number to maintain and search, etc.).  Pruning rules and actions, on the other hand, 

eliminates vestigial components of the network.  This rule and action pruning provides the 

search benefits for the relevant object type as well as reducing the level of facts implicated 

(and the associated search and access costs). 
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Table 20. Impact of Not Pruning Certain Object Types. 
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Base (#0) 0 1000 1000 1000 8.0 1418.2 11.2 8.7 1.3 

No Fact Pruning (#1) 386811.9 1000 939.2 669.7 8.2 1156.3 11.5 10.3 1.1 

No Action Pruning (#2) 402558.5 702.0 1000 1000 10.0 1608.0 25.3 12.2 2.1 

No Rule Pruning (#3) 387782.7 704.4 1000 664.0 9.8 1368.4 16.5 12.3 1.3 

 

The elimination of only rule pruning (condition 3) is marginally better than the base 

case, with an approximately 4% decrease in network population time and a similar time 

per unit length.  Eliminating action pruning (condition 2) – which also, largely, prevents 

rule pruning due to network properties – actually causes the pruning system to 

underperform the base (non-pruning approach), resulting in it taking 13% longer to 

populate the network and requiring 62% more time per unit of length. 

 

Summary 

This section has presented the research contribution of characterizing the 

enhancement to performance that can be provided by the pruning of a blackboard network.   

Specifically, it has demonstrated the value of pruning, in particular for the network 

preparation time, across numerous different experimental conditions (including conditions 

that combined multiple experimental variables). In 17 out of the 25 experimental 

conditions, pruning decreased network preparation time.  Combinations of experimental 

variable also demonstrated enhanced (as compared to the base condition) performance.  

Combined action and rule pruning provided a 15% reduction in network preparation time, 

while the combination of fact and action pruning reduced preparation time by 4%.  In some 
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cases, however, pruning was not effective at reducing network preparation time (and 

actually, in some cases, increased it).  Combined fact and rule and fact pruning, for 

example, under-performed the base condition: it took 15% longer to prepare the network.  

This chapter has, in addition to considering the benefits and drawbacks related to 

network preparation time, demonstrated that pruning has performance impacts on multiple 

other areas.  For all of the areas of impact (network preparation and otherwise), it has 

characterized the areas where pruning is and is not justified, based upon the benefits 

provided.  
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CHAPTER VII 

CREATING A DISTRIBUTED BLACKBOARD SYSTEM  

THROUGH THE USE OF BOUNDARY NODES8 

 

Focus now turns to another aspect of creating a distributed blackboard system that 

is suitable for robotic command.  The contribution of this chapter is the introduction and 

characterization of the use of boundary nodes to facilitate distributed blackboard 

operations.  The proposed boundary node-based system is compared to other data 

synchronization and replication approaches including hierarchical, full replication, limited 

replication and centralized blackboard approaches.   

This work was conducted in the context of the aforementioned robotic command 

system which is utilizes a collection of facts, rules and actions which are used to solve 

problems.  A problem’s solution (i.e., a medical diagnosis or scientific assertion) is 

generally determined by reaching a final fact (that represents a complete satisfaction of 

system requirements); however, in some cases, a system review mechanism (which 

characterizes the current state of the system after a period of time or an event) may be used.   

Fact-rule-action chains may span the various robots of the system.  This may result 

in a node requiring remote-to-node information to its trigger rules.  New information from 

a given node may also be needed for decision making on other nodes.  A system for 

                                                 
8 This chapter is derived from: Straub, J. 2013. A Distributed Blackboard Approach Based Upon a Boundary Rule 

Concept.  Journal of Intelligent & Robotic Systems (in press, initial online publication Sept. 30, 2015). 
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managing data communications between nodes is, thus, needed.  Boundary nodes serve as 

both logical encapsulations of data as well as replication / synchronization points between 

the robots in the multi-robot system. 

This chapter presents an analysis of the benefits and trade-offs of multiple 

approaches of synchronization between nodes in a distributed multi-node blackboard 

system.  It continues with a discussion of the creation of a distributed multi-node 

blackboard system.  Then, the use of boundary nodes for this distributed system is 

discussed.  Next, the system is analyzed qualitatively.  Following this, the quantitative data 

that has been collected from experimentation is presented and discussed.   

 

Creation of a Multi-Node Blackboard System 

For robotic applications, it is desirable under certain circumstances (Chapter VIII 

discusses when this is the case) to spread decision making across multiple robots via the 

use of a multi-node system.  For this work, an adaption of the Blackboard Architecture is 

used for this purpose.  To expand the blackboard/solver-based system that was discussed 

in the previous chapter to a multi-node system, several requirements exist.  The data 

communication mechanism needs to be able to use low-bandwidth links effectively 

(without having system operations delayed by waiting for queued data transfer for extended 

periods of time), support peer-to-peer collaboration and interaction and facilitate the 

solving of problems where the data required would be on multiple nodes.   

The need for low bandwidth utilization is driven by several factors, which may exist 

individually or in combination.  Many heterogeneous craft applications will have 

significant bandwidth limitations between various points in the craft collection.  This may 
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be due to craft operating at the edges of communications range, the need to transmit data 

products for storage, backup or additional analysis (meaning that the transmission of excess 

data would be constraining the ability to maximize the amount of higher-value data that 

was moved over a given link capacity) or link design limitations.  The use of boundary 

nodes were identified as one prospective approach to solving this problem. 

 

Boundary Node-Based System 

Facts which are boundary objects (boundary objects are discussed in [102]) can 

serve to encapsulate areas of a blackboard (such as was described in [103]); alternately, 

they can serve to signal between different areas of the multi-node system.  In the latter case, 

multiple boundary facts could be shared between the same two nodes to allow different 

types of collaboration, to facilitate the dissemination of different types of information or to 

solve different types of problems (or subsets of a single large problem).   

 

Boundary facts have several characteristics: 

 

 They are shared between the blackboards of two nodes (a multi-node boundary 

fact is considered as a subject for future work).  Either blackboard can change the 

status of the fact (subject to the business logic of the system developer) and the 

other blackboard is notified.   

 They are non-directional.  Subject to the business rules of the two systems, the 

assertion or de-assertion of this fact can be performed by either blackboard and 

this will serve to fulfil (or not) the requisite input requirements for nodes which 

indicate the boundary fact as an input pre-condition. 
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 They can be final facts.  This may be of little importance in some systems; 

however, if the system will continue operations (with a refined focus, etc.) the 

replication of the results of the first problem-solving process will be required. 

 They can serve as inputs or outputs of rules and presumed or actual outcomes of 

actions on either (any) blackboard they are part of. 

 They are unique and distinct within the system.  Each is assigned a globally 

unique identifier (GUID) and this identifier is associated only with a single 

boundary fact. 

 Multiple boundary fact links between nodes’ local blackboards can be created; 

each can have its status modified separately. 
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Figure 18. Blackboard spanning multiple nodes using boundary facts. 

 

An example of a multi-blackboard system (MBS) using boundary nodes is 
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presented in Figure 18.  Note that the links over which the status updates occur are left to 

the discretion of the system developer and may vary significantly from application to 

application.   

Given the wide variety of system types that could make use of this architecture, 

concurrency management is largely left to the system implementation developer.  For the 

purposes of testing, a limited locking mechanism (to prevent duplicate updates) was used.  

This is sufficient to allow demonstration and characterization of the concept.  However, 

the planned robotic system will use a resultant-set-of-changes determination mechanism to 

facilitate system operations over an extended period with intermittent connectivity between 

any given set of nodes. 

This work has been performed in the context of evaluating the MBS boundary node 

concept for use by a planned robotic system.  This system will include multiple craft with 

heterogeneous movement, sensing and actualization capabilities.   

 

 

Data Collected 

 

To characterize the comparative performance of the proposed distributed 

Blackboard system, numerous multi-blackboard scenarios were created.  Each scenario 

was randomly generated, based on the creation of a set number of agents (each with a local 

blackboard).  The blackboards are populated randomly with a collection of facts and 

linking rules and actions.  For the purposes of this testing, actions are presumed to always 

assert the projected output facts (as introducing a probabilistic model for this would serve 

to obscure the comparison of the distributed blackboard architectures).  Each blackboard 

was populated with 1,000 facts and 1,000 actions and rules.  Of these local facts, 400 were 
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initially marked as asserted.  One-hundred of these facts were identified as final facts; 

three-hundred facts per blackboard were identified as boundary facts and a corresponding 

linked fact was inserted elsewhere. 

The performance of the different distributed blackboard approaches (the version 

proposed herein, full replication, limited replication, single central blackboard and 

hierarchy) is characterized via running ten trials for each of four different scenarios (2 agent 

/ blackboard, 3 agent / blackboard, 5 agent / blackboard and 10 agent / blackboard).  For 

the hierarchy approach, arbitrary hierarchies were established; these are shown in Figure 

19, Figure 20, Figure 21 and Figure 22.  Each trial begins with the aforementioned 

randomly asserted initial facts.  The agent continues running the triggered actions and rules 

until a final rule is reached (or a set number of iterations has completed without any final 

fact being reached – these non-solutions are discarded as they are not useful for comparison 

purposes).  For each scenario, the number of iterations (each iteration consists of a single 

action/rule being run) and the level of replication communications activity is recorded.  The 

amount required by other approaches, based on using the same path (rule/action order) 

selection is calculated.  These two metrics have been selected for several reasons.  

Replication communications, first are selected as they are critical to understanding the 

impact of architecture selection on the communications requirements and system usage of 

the system.  This is essential information for sizing a communications system (i.e., making 

sure that it is able to handle the magnitude and configuration of inter-craft communications 

needs).  This is critical to inform design decisions for future work utilizing actual hardware.  

Second, both of these metrics are not highly application dependent, like other prospective 

metrics would be.  This allows greater generalizability than, for example, metrics which 
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characterize performance in a particular mission environment or hardware configuration.  

This allows this work to inform future studies progressing towards multiple application 

areas. 

The test system was custom developed.  It is an enhancement of a previous (also 

custom) implementation [104] of a generic Blackboard architecture that has been 

significantly augmented to support multi-blackboard problems and, in particular, to utilize 

boundary objects for this purpose.  The system utilizes a turn-based methodology.  

Prospectively, different actions can incur different time-cost levels.  Physical movement 

times, however, were not considered for two reasons.  First, they are arbitrary, and thus 

better left to consideration in the context of a specific set of mission objectives and 

circumstances.  Second, they do not impact the metrics considered, with the exception of 

introducing an arbitrary amount of delay, which (if this is not a controlled and manipulated 

variable) is effectively noise being added to the data.  The particular implementation for 

this test system was created in C#; however, this is an arbitrary selection.  Replication 

traffic is measured by monitoring the requests made to the system to simulate data 

transmission / receipt. 
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Figure 19. Diagram of two-blackboard connection. 
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Figure 20. Diagram of three-blackboard connections. 
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Figure 21. Diagram of five-blackboard connections. 
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Figure 22. Diagram of ten-blackboard connections. 
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The results of these trials are presented in Table 21, Table 22, Table 23 and Table 

24 and summarized and analyzed in the immediately succeeding section. These results 

correspond with the networks shown in Figure 19, Figure 20, Figure 21 and Figure 22, 

respectively.  Table 21 presents the results for using two blackboards; Table 22 presents 

the results for using three blackboards.  Table 23 and Table 24 present the results for using 

five and ten blackboards, respectively. 

In addition to presenting data for the proposed approach, the tables also present 

several other approaches, for comparison purposes, which could also be candidates for use 

in a multi-robot system.  A full replication approach, based on having a shared 

communications medium to all nodes, is presented.  A limited replication approach, again 

requiring extensive interconnectivity, is also included.  The use of a central blackboard 

system (where all data is sent to, and all instructions are received from a central node) is 

also considered.  Finally, data for a hierarchical system (where the hierarchy is used to 

transfer / filter replication requests) is also presented. 

 

Table 21. Results for two-blackboard testing (in terms of replication requests). 

Run Proposed 

Full 

Replication 

Limited 

Replication 

Central 

Blackboard Hierarchy 

1 2 8 8 820 8 

2 8 14 14 1432 14 

3 0 4 4 412 4 

4 2 12 12 1228 12 

5 0 8 8 820 8 

6 4 8 8 820 8 

7 0 6 6 616 6 

8 6 24 24 2452 24 

9 4 12 12 1228 12 

10 10 42 42 4288 42 
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Table 22. Results for three-blackboard testing (in terms of replication requests). 

Run Proposed 

Full 

Replication 

Limited 

Replication 

Central 

Blackboard Hierarchy 

1 2 6 4 618 2 

2 12 36 24 3678 19 

3 3 6 6 618 4 

4 11 21 22 2148 15 

5 3 9 6 924 3 

6 5 6 10 618 7 

7 14 21 28 2148 18 

8 3 6 6 618 4 

9 1 3 2 312 1 

10 3 3 6 312 5 

 

 
Table 23. Results for five-blackboard testing (in terms of replication requests). 

Run Proposed 

Full 

Replication 

Limited 

Replication 

Central 

Blackboard Hierarchy 

1 7 10 28 1030 14 

2 7 10 28 1030 11 

3 12 15 48 1540 21 

4 11 15 44 1540 20 

5 10 15 40 1540 18 

6 4 5 16 520 7 

7 5 10 20 1030 8 

8 7 10 28 1030 13 

9 14 20 56 2050 29 

10 9 10 36 1030 15 

 

 
Table 24. Results for ten-blackboard testing (in terms of replication requests). 

Run Proposed 

Full 

Replication 

Limited 

Replication 

Central 

Blackboard Hierarchy 

1 10 10 90 1040 36 

2 9 10 81 1040 25 

3 18 20 162 2060 52 

4 9 10 81 1040 27 

5 9 10 81 1040 26 

6 9 10 81 1040 28 

7 26 30 234 3080 76 

8 17 20 153 2060 53 

9 9 10 81 1040 25 

10 18 20 162 2060 49 

 

 

The random placement of facts and distribution of rules and actions was selected 

so as to not favor any particular approach to facilitate direct comparison.  An actual 

implementation, however, might be optimized in an application-specific manner.  The 

limited replication approach underperformance of full replication is indicative of a non-
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optimized solution.  Full replication uses multicast transmissions, while limited replication 

utilizes point-to-point communications.  Due to this, the full replication approach generally 

outperforms limited replication.  Limited replication would, thus, generally not be used in 

this type of scenario (unless multicasting was impossible, in which case it would equal or 

outperform full replication).  The hierarchy approach is based on node-to-node relaying 

(which is a typical feature of this approach), whereas all other approaches are point-to-

point communications.  It is also worth noting that the central blackboard approach 

presumes that the local agents must retrieve and check rules for termination (final fact 

assertion) conditions.  If this could be performed on the central blackboard, data transfer 

for this approach could be reduced significantly.  Whether this could be accommodated 

centrally or not is an implementation-specific detail. 

 

Analysis of Data 

 

A summary, to facilitate comparison, of the data presented in the foregoing section 

is included as Table 25 and visually depicted in Figure 23.  From the dramatic difference 

in performance, it is obvious that the proposed approach significantly outperforms the 

limited replication, central blackboard and hierarchy approaches.  It outperforms the full 

replication approach significantly for the two, three and five blackboard tests; however, the 

performance of the full replication approach is only 1.6 communications lower, on average, 

for the ten blackboard testing.  At higher levels it appears that the full replication approach 

would overtake the proposed approach. 

While this comparison (visually depicted in Figure 23) allows a quantitative 

analysis of the communications resources used by each approach, this is not the only factor 
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in a selection decision.  The application and system configuration play a large role in this 

decision (in some cases larger than the performance considerations).  As perhaps the most 

obvious example, the hierarchy approach requires a specific configuration of network 

connections.  In the absence of this, the approach either won’t work or will work virtually 

on top of another topology (creating a, perhaps significantly different, communications 

profile).  Similarly, full replication requires that all nodes be connected to a single network 

segment.  If they are not, it turns in to a (generally less efficient) hierarchy approach.  The 

central blackboard, similarly, requires direct connectivity to the blackboard (dictating a flat 

network structure).  Limited replication, conversely, would generally not be used on a 

network that can multicast (with all nodes being directly connected) as it would 

underperform full replication.  The proposed approach, conversely, expects to have direct 

connectivity to any node that it shares a fact with.  This allows it to exist in several different 

network structures.  It can support peer-to-peer communications as well as communications 

with superior/inferior nodes.  A hybrid hierarchy/proposed approach could be utilized to 

facilitate direct communications within the local group and use the hierarchy for 

transmitting to nodes outside of this group. 

 

Table 25. Summary of averages for all testing (in terms of replication requests). 

  Proposed 

Full 

Replication 

Limited 

Replication 

Central 

Blackboard Hierarchy 

2 Blackboards 3.6 13.8 13.8 1411.6 13.8 

3 Blackboards 5.7 11.7 11.4 1199.4 7.8 

5 Blackboards 8.6 12 34.4 1234 15.6 

10 Blackboards 13.4 15 120.6 1550 39.7 
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Figure 23. Comparison of Techniques (Y-axis is presented in terms of replication requests). 

 

An example of a scenario with characteristics where the proposed architecture 

would excel is illustrative.  One such example is a planetary exploration mission where 

local groups of craft conduct research in discrete areas which is designed to contribute to 

larger regional or planet-wide conclusion goals.  These craft would have shared facts with 

other members of the local group which they were collaborating on specific data collection 

(or providing actuation in support of, etc.) and the group would have shared facts with other 

adjacent groups and summative shared facts which served as the relationship with higher 

levels in the hierarchy. 

 

Summary 

This chapter has described the research contribution of using boundary nodes as 

logical blackboard network and robot-to-robot intermediaries.  The use of boundary nodes 

has been compared to other synchronization / replication approaches including 

hierarchical, full replication, limited replication and centralized blackboard approaches.  

Through this process, the efficacy of using boundary nodes was demonstrated.  The full 
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replication approach (which relies on multicast traffic making it unsuitable for many 

applications), for example, required between 12% and 283% more transmission traffic than 

the proposed approach.  Limited replication approaches require between 13.8 and 120.6 

times as much traffic, while the hierarchical and central blackboard approaches require as 

much as 1550 and 39.7 times as many transmissions, respectively.  As the foregoing 

demonstrates, there is significant value to using the boundary node approach, both in terms 

of reducing communications as well as benefiting from the associated time savings from 

not having to receive, process and store changes from all of the additional transactions 

generated by other approaches.  Notably, it appears that the full (multicast-based) 

replication may be less expensive (in cases where multicast traffic is available) for systems 

with more than 10 robots / blackboards.  
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CHAPTER VIII 

COMPARISON OF CENTRALIZED AND DISTRIBUTED COMMAND 

APPROACHES FOR ROBOTIC MISSIONS9 

 

This chapter builds upon the work presented in prior chapters that evaluates several 

critical aspects of system design.  It presents the contribution of comparing the efficacy 

and efficiency of centralized and distributed command systems under multiple 

experimental conditions.  These conditions include both normal and impaired operations 

and experimental conditions that are the combination of multiple impairments.  In this 

chapter, thus, results relevant to the key question of when centralized and decentralized 

command approaches are most effective are presented and analyzed. 

A simulation environment was used to test the two command approaches.  It 

utilized a 1,000 × 1,000 location grid.  The premise of the test was to locate a phenomena 

via symptoms that are observable at different levels of data resolution, ranging from long-

distance scanning to on-site analysis.  For the purposes of the testing, six prospective 

conditions were deemed to be of interest.  These conditions are part of two sets (1-3 and 4-

6) with the respective positions in each set (1 and 4, 2 and 5, 3 and 6) having similar 

characteristics.  The first and forth are observable at the lowest resolution (e.g., orbital) 

level, the second and fifth are observable starting at the middle (e.g., UAV) resolution level 

                                                 
9 This chapter is derived from: Straub, J., R. Marsh. 2015. A Comparison of Centralized and Decentralized Blackboard 

Architecture-Based Command Techniques for Robotic Control Under Varying Conditions.  Submitted to Expert 

Systems with Applications. 
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and the third and the sixth are observable only at the highest (e.g., ground rover) resolution 

level.  To be an area of interest (the identification of which is the deemed completion 

criteria for the scenarios), a region must have a concentration of locations with both 

conditions three and six present.  This is an analog for numerous possible mission 

scenarios, ranging from the identification of scientifically interesting regions to missions 

to locate mineral sites for extraction.  There is a presumption of correlation between the 

presence of conditions 1, 2 and 3 and, separately, 4, 5 and 6.  Thus, a location with one of 

the lower-resolution-detectable conditions becomes a candidate for exploration with 

higher-resolution equipment. 

This decision making process has been embodied into the Blackboard-based 

architecture through the creation of an elaborate rule network comprised of over 6,000,000 

facts.  This network can be sub-divided, conceptually, into eight categories of facts (which 

are summarized in Table 26).  Facts 0 to 999,999 relate to the presence of condition 1 at 

each of the 1,000 x 1,000 grid locations.  Five more bands (facts 1,000,000 to 5,999,999) 

relate to conditions 2 to 5.  The next 100 facts (6,000,000 to 6,000,099) relate to the 

suitability of regions and the last fact (6,000,100) is the final rule for the purposes of system 

operations (the triggering of which means that the system has successfully completed its 

mission).  Rules and actions are denoted by their pre and post conditions and their 

placement in the corresponding data structure is arbitrary.    

Table 26. Summary of Facts 

Fact Range Corresponds to 

0 to 999,999 Condition 1 (orbital perceivable, group 1) 

1,000,000 to 1,999,999 Condition 2 (aerial perceivable, group 1) 

2,000,000 to 2,999,999 Condition 3 (ground perceivable, group 1) 

3,000,000 to 3,999,999 Condition 4 (orbital perceivable, group 2) 

4,000,000 to 4,999,999 Condition 5 (aerial perceivable, group 2) 

5,000,000 to 5,999,999 Condition 6 (ground perceivable, group 2) 

6,000,000 to 6,000,099 Suitability of 100 (100x100) regions 

6,000,100 Final Rule (indicates mission complete) 
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A collection of rules and actions interconnect this network.  Rules are automatically 

triggered, if their pre-conditions are met, and assert one or more facts.  Actions are 

conceptually similar; however, they seek to (in this case) trigger data collection.  While an 

outcome for each action is presumed (based on the assumption of condition correlation), 

this is not guaranteed.  Thus, a robotic explorer (UAV or ground) may be dispatched to a 

location to find that the presumed outcome is not accurate.  The UAV or ground robot will 

report any conditions that it detects at the location (or on the way, while traveling). 

Figure 24 and Figure 28 depict the operations of this network control approach 

under successful (Figure 24) and unsuccessful (Figure 28) runs.  Note that the labeling of 

rules and actions is arbitrary (based, for illustration purposes, on the expected result), as 

rules are referenced within the network by their pre- and post-conditions and actions are 

numbered arbitrarily (with the number being immediately stored in a corresponding rule). 

Both figures exclude extraneous details.  For example, given the crafts’ sensing 

range, numerous additional facts (not relevant to the example) would be concurrently 

asserted (triggering corresponding rules and queueing corresponding actions).  Additional 

facts would also be asserted, while performing actions, as the craft all sense while moving. 

In Figure 24, the process starts with an orbital sensing of grid position <50,500>.  

Presuming (as is assumed in this example) that conditions 1 and 4 are detected, the 

appropriate facts are identified and asserted.  Condition 1 facts are determined by 

multiplying the x coordinate by 1000 and adding the y coordinate so, in this case, fact 

50500 is asserted to store the presence of condition 1 at this location.  Condition 4 facts are 

determined by multiplying the x coordinate by 1000 and adding the y coordinate and 

3,000,000.  Thus, fact 3050500 is asserted to denote the presence of condition 4. 
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The identification of conditions 1 and 4 trigger (separate) processes to search for 

conditions 2 and 5, which are associated with (but not guaranteed by) the presence of 

conditions 1 and 4, respectively, at a location.  This is done by triggering an action that will 

assign a nearby air-based craft to explore this region.  If conditions 2 and 5 are detected 

(supporting the possibility of conditions 3 and 6 being present), than a similar process will 

occur.  Facts 1050500 and 4050500 will be asserted to store the presence of these 

conditions and actions will be triggered to explore this grid area with a ground-based craft. 

If the ground based craft confirms the presence of both conditions 3 and 6, this will 

identify the grid location as a target location and support the triggering (along with the 

presence of other targets) of final rule 6000100, when a sufficient number of target 

locations have been identified in the region. 

A portion of this process, from actual operations, is shown in Listing 1 which uses 

the data sensed from the map shown in Figure 25 (a detail view of the top-left 200x200 

grid locations is also shown, for ease of viewing, in Figure 27 and a key to the coloration 

is shown in Figure 26).  Three elements are highlighted to illustrate key portions of the 

process.   

The collection of data by robotic exploration, for condition 1, is highlighted in 

yellow in Listing 1.  Fact 1101461 is asserted, triggering rule (F1101461) >> (A507306), 

which launches action 507306.  The same process, for condition 2, is highlighted in red.  

Fact 3105461 is asserted, triggering rule (F3105461) >> (A527307) and launching action 

527307.  From the numbering of the facts (and the discussion of the fact numbering system, 

previously), it is clear that these two facts relate to the same grid coordinate. 
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The assertion of the final rule is also highlighted (in magenta).  This indicates that 

the assertion of facts 2922586 and 5922586 (related to a different grid coordinate than the 

previous example) causes rule (F2922586, F5922586) >> (F6000100) to run.  Shortly 

thereafter, the system again checks to see if final rule 6000100 has been asserted and, when 

it does, it determines that the mission has been completed and stops. 
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Figure 24. Ideal operations of the Blackboard-based control network. 



95 

 

 

Figure 25. Global map for example (coloration key can be found in Figure 26). 

 

Under this ideal scenario, the system could theoretically operate in forward-only 

mode and be successful.  The process becomes more complex when non-ideal locations 

(such as shown in Figure 28) are present.  In Figure 28, the presumption of the presence of 

condition 5 is not accurate.  Thus, when an aerial sensing of this location occurs, fact 

4050500 is not asserted.  This prevents the remainder of the network from triggering. 
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Figure 26. Map Key. 

 

 

Figure 27. Top-left 200 x 200 grid locations for example (coloration key can be found in Figure 26). 
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 Listing 1. Sample Log of Operations 

FACT 4152504 Asserted 

FACT 1154504 Asserted 

FACT 4897858 Asserted 

FACT 1898858 Asserted 

FACT 5834010 Asserted 

FACT 3236990 Asserted 

FACT 4238990 Asserted 

FACT 5239990 Asserted 

FACT 973805 Asserted 

FACT 974805 Asserted 

FACT 1976805 Asserted 

FACT 218314 Asserted 

FACT 3530148 Asserted 

FACT 3531148 Asserted 

FACT 1884008 Asserted 

FACT 2893278 Asserted 

FACT 4894278 Asserted 

FACT 3544983 Asserted 

FACT 3547983 Asserted 

FACT 1101461 Asserted 

FACT 2103461 Asserted 

FACT 3105461 Asserted 

FACT 4151203 Asserted 

FACT 175138 Asserted 

FACT 1176138 Asserted 

FACT 177138 Asserted 

FACT 3177138 Asserted 

FACT 509796 Asserted 

FACT 511796 Asserted 

FACT 5147835 Asserted 

FACT 3150835 Asserted 

RULE (F1101461) >> (A507306) has run 

ACTION 507306 triggered 

RULE (F3105461) >> (A527307) has run 

ACTION 527307 triggered 

RULE (F3150835) >> (A754177) has run 

ACTION 754177 triggered 

RULE (F4151203) >> (A756018) has run 

ACTION 756018 triggered 

RULE (F4152504) >> (A762523) has run 

ACTION 762523 triggered 

RULE (F1154504) >> (A772521) has run 

ACTION 772521 triggered 

RULE (F175138) >> (A875690) has run 

ACTION 875690 triggered 

RULE (F1176138) >> (A880691) has run 

ACTION 880691 triggered 

RULE (F177138) >> (A885690) has run 

ACTION 885690 triggered 

RULE (F3177138) >> (A885692) has run 

ACTION 885692 triggered 

RULE (F218314) >> (A1091570) has run 

ACTION 1091570 triggered 

RULE (F3236990) >> (A1184952) has run 

ACTION 1184952 triggered 

RULE (F4238990) >> (A1194953) has run 

ACTION 1194953 triggered 

RULE (F509796) >> (A2548980) has run 

ACTION 2548980 triggered 

RULE (F511796) >> (A2558980) has run 

ACTION 2558980 triggered 

RULE (F3530148) >> (A2650742) has run 

ACTION 2650742 triggered 

RULE (F3531148) >> (A2655742) has run 

ACTION 2655742 triggered 

RULE (F3544983) >> (A2724917) has run 

ACTION 2724917 triggered 

RULE (F3547983) >> (A2739917) has run 

ACTION 2739917 triggered 

RULE (F1884008) >> (A4420041) has run 

ACTION 4420041 triggered 

RULE (F4894278) >> (A4471393) has run 

ACTION 4471393 triggered 

RULE (F4897858) >> (A4489293) has run 

ACTION 4489293 triggered 

RULE (F1898858) >> (A4494291) has run 

RULE (F509796) >> (A2548980) has run 

RULE (F511796) >> (A2558980) has run 

RULE (F3530148) >> (A2650742) has run 

RULE (F3531148) >> (A2655742) has run 

RULE (F3544983) >> (A2724917) has run 

RULE (F3547983) >> (A2739917) has run 

RULE (F1884008) >> (A4420041) has run 

RULE (F4894278) >> (A4471393) has run 

RULE (F4897858) >> (A4489293) has run 

RULE (F1898858) >> (A4494291) has run 

RULE (F973805) >> (A4869025) has run 

RULE (F974805) >> (A4874025) has run 

RULE (F1976805) >> (A4884026) has run 

FACT 2237988 Asserted 

FACT 5237988 Asserted 

FACT 4239988 Asserted  

FACT 4240988 Asserted 

FACT 4241988 Asserted 

FACT 973805 Asserted 

FACT 974805 Asserted 

FACT 1976805 Asserted 

FACT 5532147 Asserted 

FACT 1884008 Asserted 

FACT 4544984 Asserted 

FACT 3546984 Asserted 

FACT 4923482 Asserted  

FACT 1118159 Asserted  

FACT 5409249 Asserted 

FACT 101459 Asserted 

FACT 2103459 Asserted 

FACT 2176139 Asserted 

FACT 507797 Asserted 

FACT 4148836 Asserted 

FACT 2237988 Asserted 
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FACT 5237988 Asserted 

FACT 4239988 Asserted 

FACT 4240988 Asserted 

FACT 4241988 Asserted 

 

… 
 

RULE (F922535) >> (A4612675) has run 

RULE (F1922535) >> (A4612676) has run 

RULE (F1922537) >> (A4612686) has run 

RULE (F4922545) >> (A4612728) has run 

RULE (F4922548) >> (A4612743) has run 

RULE (F4922580) >> (A4612903) has run 

RULE (F922585) >> (A4612925) has run 

RULE (F922586) >> (A4612930) has run 

RULE (F2922586, F5922586) >> (F6000100) has 

run 

RULE (F922587) >> (A4612935) has run 

RULE (F4922587) >> (A4612938) has run 

RULE (F922589) >> (A4612945) has run 

RULE (F922591) >> (A4612955) has run 

RULE (F1922598) >> (A4612991) has run 

RULE (F1922666) >> (A4613331) has run 

RULE (F922670) >> (A4613350) has run 

RULE (F922673) >> (A4613365) has run 

RULE (F4923482) >> (A4617413) has run 

RULE (F4923518) >> (A4617593) has run 

RULE (F4923519) >> (A4617598) has run 

RULE (F3923523) >> (A4617617) has run 

RULE (F3923525) >> (A4617627) has run 

RULE (F3923526) >> (A4617632) has run 

RULE (F923534) >> (A4617670) has run 

RULE (F923537) >> (A4617685) has run 

RULE (F923538) >> (A4617690) has run 

RULE (F1923550) >> (A4617751) has run 

RULE (F1923572) >> (A4617861) has run 

RULE (F1923578) >> (A4617891) has run 

RULE (F923589) >> (A4617945) has run 

RULE (F923590) >> (A4617950) has run 

RULE (F1923629) >> (A4618146) has run 

RULE (F4923643) >> (A4618218) has run 

RULE (F4923645) >> (A4618228) has run 

RULE (F923669) >> (A4618345) has run 

RULE (F4923699) >> (A4618498) has run 

RULE (F1923716) >> (A4618581) has run 

RULE (F1923726) >> (A4618631) has run 

RULE (F1923741) >> (A4618706) has run 

RULE (F4924484) >> (A4622423) has run 

RULE (F1924489) >> (A4622446) has run  

RULE (F4924492) >> (A4622463) has run 

RULE (F1924493) >> (A4622466) has run 

RULE (F1924499) >> (A4622496) has run 

RULE (F4924504) >> (A4622523) has run 

RULE (F1924507) >> (A4622536) has run 

RULE (F3924508) >> (A4622542) has run 

RULE (F3924509) >> (A4622547) has run 

RULE (F4924510) >> (A4622553) has run 

RULE (F4924522) >> (A4622613) has run 

RULE (F1924529) >> (A4622646) has run 

RULE (F924530) >> (A4622650) has run 

RULE (F1924532) >> (A4622661) has run 

RULE (F924534) >> (A4622670) has run 

RULE (F4924534) >> (A4622673) has run 

RULE (F924538) >> (A4622690) has run 

RULE (F1924538) >> (A4622691) has run 

RULE (F4924550) >> (A4622753) has run 

RULE (F1924557) >> (A4622786) has run 

RULE (F1924560) >> (A4622801) has run 

RULE (F1924580) >> (A4622901) has run 

RULE (F924587) >> (A4622935) has run 

RULE (F924589) >> (A4622945) has run 

RULE (F4924655) >> (A4623278) has run 

RULE (F924671) >> (A4623355) has run 

RULE (F924672) >> (A4623360) has run 

RULE (F4924707) >> (A4623538) has run 

RULE (F4924714) >> (A4623573) has run 

RULE (F1924741) >> (A4623706) has run 

RULE (F1927759) >> (A4638796) has run 

RULE (F4935764) >> (A4678823) has run 

RULE (F4938771) >> (A4693858) has run 

RULE (F1940769) >> (A4703846) has run 

RULE (F4940771) >> (A4703858) has run 

RULE (F3941772) >> (A4708862) has run 

RULE (F3941774) >> (A4708872) has run 

RULE (F3942772) >> (A4713862) has run 

RULE (F4942772) >> (A4713863) has run 

RULE (F3942774) >> (A4713872) has run 

RULE (F4943774) >> (A4718873) has run 

RULE (F3943775) >> (A4718877) has run 

RULE (F3944776) >> (A4723882) has run  

RULE (F3945774) >> (A4728872) has run 

RULE (F3945775) >> (A4728877) has run 

RULE (F4945776) >> (A4728883) has run 

RULE (F3946775) >> (A4733877) has run 

RULE (F4946778) >> (A4733893) has run 

RULE (F947005) >> (A4735025) has run 

RULE (F4947777) >> (A4738888) has run 

RULE (F4948778) >> (A4743893) has run 

RULE (F1948781) >> (A4743906) has run 

RULE (F1952783) >> (A4763916) has run 

RULE (F4959792) >> (A4798963) has run  

RULE (F4954787) >> (A4773938) has run 

RULE (F4956789) >> (A4783948) has run 

RULE (F3957788) >> (A4788942) has run 

RULE (F4957789) >> (A4788948) has run 

RULE (F4959788) >> (A4798943) has run 

RULE (F3959790) >> (A4798952) has run 
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RULE (F3959791) >> (A4798957) has run 

RULE (F4959791) >> (A4798958) has run 

RULE (F3959792) >> (A4798962) has run 

RULE (F3960792) >> (A4803962) has run 

RULE (F3960793) >> (A4803967) has run 

RULE (F4960793) >> (A4803968) has run 

RULE (F3961790) >> (A4808952) has run 

RULE (F961793) >> (A4808965) has run 

RULE (F3961793) >> (A4808967) has run 

RULE (F4961793) >> (A4808968) has run 

RULE (F4962792) >> (A4813963) has run 

RULE (F3962793) >> (A4813967) has run  

RULE (F1963792) >> (A4818961) has run 

RULE (F4963792) >> (A4818963) has run 

RULE (F4963794) >> (A4818973) has run 

RULE (F1963795) >> (A4818976) has run 

RULE (F3964794) >> (A4823972) has run 

RULE (F4965794) >> (A4828973) has run 

RULE (F1965795) >> (A4828976) has run 

RULE (F3965797) >> (A4828987) has run 

RULE (F966795) >> (A4833975) has run 

RULE (F966796) >> (A4833980) has run 

RULE (F966797) >> (A4833985) has run 

RULE (F967797) >> (A4838985) has run 

RULE (F1967797) >> (A4838986) has run 

RULE (F967800) >> (A4839000) has run 

RULE (F968797) >> (A4843985) has run 

RULE (F1968800) >> (A4844001) has run 

RULE (F1969798) >> (A4848991) has run 

RULE (F970800) >> (A4854000) has run 

RULE (F1971801) >> (A4859006) has run 

RULE (F1971804) >> (A4859021) has run 

RULE (F1972802) >> (A4864011) has run 

RULE (F973804) >> (A4869020) has run 

RULE (F1973804) >> (A4869021) has run 

RULE (F973805) >> (A4869025) has run 

RULE (F974805) >> (A4874025) has run 

RULE (F1976805) >> (A4884026) has run 

RULE (F980005) >> (A4900025) has run 

FACT 6000100 Asserted - Mission Accomplished 

 

 

This occurrence illustrates the need for the solver mechanism that has been 

previously described.  Because the solver always works backwards from the goal (in this 

case final fact 6000100), any rule, fact or action that is not in a chain to this will not be 

identified as a goal and thus no effort will be made to further explore areas that have no 

pathway to achieving the overall system goals.  For example, if the non-presence of 

condition 5 was known at the time, no ground robot tasking would be performed to seek 

condition 3 as, even if condition 3 was detected, this would not advance the system towards 

its goal. 

Some networks will be inherently unsolvable due to a failure to have enough (or 

any) target locations.  Other networks may be unsolvable under conditions that impair the 

ability of the system to fully function.  This is considered in the subsequent section. 
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Figure 28. Failed operations of the Blackboard-based control network. 
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Robotic Command: Testing Under Typical and Atypical Conditions 

 Simulations were performed to assess the comparative efficacy of the two 

approaches (centralized and decentralized) under a variety of experimental conditions.  To 

facilitate comparison, the same command methodology and software code was used (to the 

extent possible, excepting some code necessary for the specifics of each approach) for both 

the distributed and centralized methodologies.  This same code base was used across all 

experimental conditions.  Experimentation was conducted on a cluster of Intel i7 computers 

(each with 8 processor cores and 16 GB of RAM).  Total command processing runtime (in 

milliseconds) and the amount of simulated time taken to complete each scenario are 

reported. 

 Simulations were conducted by creating a randomly-generated field of operations 

that is 1,000 x 1,000 grid locations in size (each grid location is nominally sized to 

correspond to a 100 meter x 100 meter area; however, for most purposes, the exact size of 

the grid locations is irrelevant, as the command decision making algorithm would work 

similarly across multiple grid sizes).  Experimental conditions are created by controlling 

the frequency of several categories of scenario elements: map features (of multiple types) 

of interest and the rates of data collection errors, communications errors, temporary craft 

incapacitation and permanent craft incapacitation.  For each run of the experiment, a new 

map is generated, a new scenario file (corresponding to the occurrences of various 

simulated error conditions) is generated, a corresponding Blackboard-style network is 

generated and the simulation is run. 

Comparison of Approaches Under Error Conditions 

 The first area of data collection and analysis was the performance of the system 



102 

 

under normal and various error conditions.  These error conditions simulated temporary 

and ongoing periods of system incapacitation.  They included data collection error, 

communication error, temporary craft incapacitation and permanent craft incapacitation.  

Performance of the two systems under the various conditions was compared and a 

statistical t-test was applied to assess statistical significance.  A one-tailed t-test was 

calculated for all conditions (based on the nominal thesis that the distributed system would 

outperform the centralized system).  The processing times, scenario completion times and 

t-values are presented in Table 27 and Table 28.  

As might be expected, no statistically significant (at p < 0.10) difference was 

experienced under the error-free condition, for either processing time or scenario 

completion time.  Statistically significant (at p < 0.10) out performance of the distributed 

approach was demonstrated for the communications error and temporary incapacitation 

conditions, in terms of the number of turns required to complete the scenario.  The 

distributed approach under-performed for the data collection error and permanent 

incapacitation scenarios, in terms of scenario completion (violating the premise of the one-

tailed t-test that was conducted) and, thus, a two-tailed t-test was used to assess the 

statistical significance of the difference in performance.  For the data collection error 

scenario, a significant difference in performance was identified, showing that the 

centralized approach may be more resilient to this type of error.  This will serve as a 

prospective topic for future study.  The difference in performance under the permanent 

incapacitation scenario was not shown to be significant at p < 0.10 for this data set; however 

the prospective efficacy of the centralized approach for this condition also merits further 

review. 
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Table 27. Processing Time and T-Value for Various Error Conditions (in ms). 

Condition Processing Time T-Value 

 Centralized Distributed 

 Mean Median Mean Median 

No Error 292388.95 228494 321729.7 295468 - 

Data Collection Error (20) 287998.55 219042 270079.7 226006 0.34 

Communication Error (20) 355701.5 284873.5 397089.3 284019 - 

Temporary Incapacitation (10) 419561.4 299730 304835.9 261264 0.08 

Permanent Incapacitation (10) 318422.65 265797.5 316975 240180.5 0.98 

 

Table 28. Scenario Completion Time and T-Value for Various Error Conditions (in turn-units). 

Condition Scenario Completion Time T-Value 

 Centralized Distributed 

 Mean Median Mean Median 

No Error 88 85 87.5 72.5 0.48 

Data Collection Error (20) 84.25 65 119.25 115 0.08* 

Communication Error (20) 126 100 92.25 67.5 0.07 

Temporary Incapacitation (10) 111.25 92.5 82.75 60 0.07 

Permanent Incapacitation (10) 98.75 97.5 139.75 127.5 0.10* 

* Two-tailed t-test 

 

 For four of the five scenarios, no statistically significant difference was detected 

between the centralized and distributed approaches in terms of processing time.  A 

significant (at p < 0.10) difference was detected in terms of responding to temporary 

incapacitation. 

 Performance under several experimental conditions which combined the simulation 

of multiple types of error was then conducted.  These are presented in Table 29 and Table 

30.  In all cases (excepting the no error case), the distributed approach out-performed the 

centralized one in terms of processing time.  However, this difference was only significant 

(at p < 0.10) in the case of the combined temporary and permanent incapacitation scenario. 

 In terms of scenario completion time, the distributed approach, again, outperformed 

in all areas except for one (combined communications error and incapacitation).  None of 

these differences in performance (including a two-tailed assessment of the difference in the 
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area where the distributed approach didn’t outperform the centralized one) was statistically 

significant at p < 0.10. 

 

Table 29. Processing Time and T-Value for Combined Error Conditions (in ms). 

Condition Processing Time T-Value 

 Centralized Distributed 

 Mean Median Mean Median 

No Error 292389 228494 321729.7 295468 - 

Temporary (10) & Permanent (10) Incapacitation 423331.1 398438.5 268171.7 214913 0.009 

Communications Error (20) & Incapacitation (10/10) 329056.6 235045.5 297672.7 217480 0.32 

All Errors (Comm./Coll. = 20; Incap. = 10) 405592.8 360067.5 364212.6 318271.5 0.26 

 

Table 30. Scenario Completion Time and T-Value for Combined Error Conditions (in turn-units). 

Condition Scenario Completion Time T-Value 

 Centralized Distributed 

 Mean Median Mean Median 

No Error 88 85 87.5 72.5 0.49 

Temporary (10) & Permanent (10) Incapacitation 123.75 107.5 106.5 87.5 0.22 

Communications Error (20) & Incapacitation (10/10) 87.75 72.5 91.25 70 0.86* 

All Errors (Comm./Coll. = 20; Incap. = 10) 76.3 62.5 69.15 56.5 0.36 

* Two-tailed t-test 

 

Summary 

This chapter has presented the research contribution of comparing the performance 

of centralized and decentralized command approaches under normal operating and 

impaired conditions.  It has demonstrated the approximate equivalency (non-statistically 

significant difference) of the centralized and decentralized command approaches under 

normal operating conditions and how the impairment conditions affect the two command 

approaches differently. 

Multiple statistically significant findings (at p < 0.10) were recorded through this 

process of assessment.  The decentralized approach was shown to have (statistically 

significant) faster processing time for temporary craft incapacitation.  The decentralize 

approach was also shown to have faster scenario completion time for communications error 
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and temporary craft incapacitation.  The centralized approach was shown to have faster 

scenario completion time under the data collection error scenario.  The decentralized 

command approach was also shown to have faster processing time under scenarios that 

combined both temporary and permanent craft incapacitation.  No statistically significant 

findings were generated for scenario completion time for combined error conditions. 

The foregoing demonstrates that the type of interference and/or other risk factors 

applicable to a given application play a significant role in the determination of what type 

(centralized or distributed) of command strategy to select for the mission.  Neither 

approach is an across-the-board best decision; thus, the prospective likelihood, frequency 

and severity of events that could cause each of the various types of impairments should be 

taken into account when selecting a mission command strategy. 
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CHAPTER IX 

CONCLUSIONS AND FUTURE WORK 

 

 The proceeding chapters have each discussed the design, development and 

characterization of critical elements of a system for commanding heterogeneous craft.  

Chapter 1 provided an overview of the work, the research question and the key questions 

that the work sought to answer.  Chapter 2 presented prior related work.  In Chapter 3, 

focus turned to the development of a distributed Blackboard Architecture-based system for 

robotic control.  Chapter 4 presented an overview of the research methodology. 

Chapters 5 to 8 presented work on the characterization of various components of 

the system.  Chapter 5 discussed the use of pruning on blackboards and the benefits that it 

provides.  Chapter 6 applied this pruning to a long-running robotic control system.  In 

Chapter 7, focus turned to the implementation of the distribution of knowledge and the use 

of boundary nodes was proposed.  Chapter 8 spoke to the key question of this work: 

characterizing circumstances under which centralized or distributed control would 

outperform each other. 

 

Summary of Contributions 

The work presented in these chapters has considered multiple approaches to 

conducting multi-craft missions for craft with heterogeneous capabilities (a number of 

which apply to, but may not be needed in, the simpler case of commanding a collection of 
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homogeneous robots).  The work, thus, has made a number of contributions to the 

discipline. First, it has applied the pre-existing Blackboard Architecture to this command 

challenge.  A variety of logistical and development challenges were solved in this process.   

Second, the basic Blackboard Architecture concept has been expanded to support 

mission-driven operations through the addition of a solver mechanism.  The solver changes 

the traditional forward-chaining approach to Blackboard operations (where conclusions are 

drawn from information provided and actions are potentially triggered by operating 

principles embodied in rules) to a data and goal driven methodology.  Under this paradigm, 

rules give context to the data (instead of being created with a particular type of operation 

in mind) allowing the system to expand beyond its originally intended area of use.  The 

solver attempts to find pathways to support or refute conclusions of interest through data 

collection and analysis operations.  Multiple solver approaches and their comparative 

merits were assessed.    

Third, several key additions were made to the Blackboard Architecture to support 

distributed and long-term robotic operations.  Boundary nodes, extending existing work on 

boundary objects, are an integral part of making a system that is locally-responsive while 

being globally aware and able to communicate over limited bandwidth connections.  In 

addition to their utility for robotic control, other subsequent work [0] has demonstrated 

their prospective efficacy for multi-homed online system control.   

Forth, a key operating issue has been resolved.  Operation in a real-world 

environment over any extended period of time presents a problem of data overload.  The 

system is either forced to arbitrarily discard information (without knowing its importance) 

or become bogged down by the ever-growing data set.  Pruning was applied to the 
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Blackboard Architecture and, subsequently, considered in the context of a robotic mission 

as a solution to this problem.   

Finally, information was collected to help answer a key design question in robotic 

command: whether centralized or distributed control was most effective for normal 

operations and a variety of impairment scenarios.  This expands the existing knowledge in 

this area which, previously, was based on a non-validated design assumption by Fink 

related to the selection of a centralized architectural approach. 

  

Key Findings 

 A key goal of the work presented herein is to provide information to system 

designers to inform design decisions for heterogeneous multi-robot systems.  Several 

results of this work are directly responsive to this goal. 

 The characterization of the pruning process demonstrated the efficacy and value of 

the use of pruning.  Pruned networks were shown to require less than one-half of the time-

to-solve of non-pruned networks.  Moreover, the comparative cost of solving and pruning 

were considered.  For networks similar to the one used for testing, approximately 150 

solver uses (typically the solver is run repetitively as new information is added or 

information is updated on the Blackboard) would be required to justify the time-cost of 

pruning.  Of course, the fact that pruning can be done at convenient times (when the 

system’s processors are not otherwise needed) means that pruning may be adopted for its 

real-time / near real-time performance benefits alone.  Re-pruning was also shown to be 

much less computationally intensive than initial pruning.  The effect of pruning on system 

longevity was also demonstrated. 



109 

 

 The utility of boundary node-based data encapsulation and replication has also been 

demonstrated.  Using the boundary nodes, data transmission needs were reduced by two 

orders of magnitude from the use of a centralized blackboard approach and were about 

60% less to one-third of the data transmission requirements of a hierarchical approach.  The 

proposed approach also consistently outperformed limited and full replication strategies.  

Boundary nodes, thus, have been shown to be a key way to reduce communications needs.  

In addition to demonstrating their efficacy, this demonstrate communications reduction 

potential may be a key factor in command architecture selection decisions for many 

(communications constrained) missions. 

 Finally, the efficacy of the distributed and centralized command approaches was 

demonstrated.  The distributed approach was shown to perform roughly equivalent to the 

centralized approach under many scenarios.  However, in the case of communications 

errors and temporary craft incapacitation, it was shown to reduce scenario completion time 

by a statistically (p<0.10) and practically significant amount.  It was also shown to reduce 

processing time for temporary craft incapacitation and combined temporary/permanent 

craft incapacitation scenarios by a statistically and practically significant amount.  The 

centralized command approach, conversely, was shown to provide practically and 

statistically significant superior performance for completion time under data collection 

error scenarios and approached statistical significance (with a practically significant 

difference in result) for completion time for permanent craft incapacitation scenarios. 

  

Considering Pruning and Command Strategy Selection 

 Previous chapters have discussed the impact of utilizing pruning (Chapters V and 
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VI) and the comparative performance of centralized versus decentralized command 

strategies (Chapter VIII).  The efficacy of using pruning in any given application is driven 

by a number of application-specific factors that determine what level of prunable rules, 

facts and actions are present and the impact of their presence on network operations.  The 

work in Chapters V and VI assessed this impact in terms of randomly generated networks, 

to provide a general-purpose heuristic that could serve the process of initial decision 

making.  However, a final decision is more nuanced. 

 The networks generated in Chapters V and VI initially had a significant number of 

immediately prunable nodes.  This, however, is more typical of an exploration system’s 

network at later points, once significant data has been collected, rendering parts of the 

network irrelevant (as they would only be activated by the assertion of facts that are now 

known to be false).  Pruning the networks presented in Chapter VIII before system 

operations would not result in a significant level of removal (depending on the settings for 

the potentially network-operations-impactful ‘unlikely to be needed’ pruning, it may result 

in no removal at all). 

 At later points in network operations, pruning may be more helpful.  However, 

given the typical prioritization of system operations processing over data processing, the 

impact would likely not be on mission completion time (unless the data processing being 

potentially displaced was required for mission completion) but on the potential to do 

scientific analysis onboard (potentially being most impactful to secondary and tertiary 

goals, and not to the primary one).  The prospective benefits of pruning might also be 

considered in the context of processor sizing, where the 50% reduction in pruning might 

facilitate the use of a lower-cost, lower-mass and/or lower-volume processor, reducing 
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overall mission cost levels. 

 Because of the parallel construction of the blackboard networks, the impact of 

pruning would be similar between centralized and distributed command approaches.  

Boundary nodes would typically not be prunable, as they represent higher-level data 

abstractions.  Pruning would have some impact on the comparative performance on 

different types of data replication.  The use of pruning might remove nodes that would 

otherwise be replicated under full replication, limited replication and central blackboard 

configurations (these nodes could be changed despite the fact that the change is irrelevant 

to future network operations).  The impact, here, would be highly dependent on blackboard 

network design.  However, as full and limited replication are not viable for most scenarios 

(as they require the nodes to be fully connected in a way that supports multicast traffic) 

and the central blackboard approach is two-to-three orders of magnitude more 

transmission-expensive than the proposed and hierarchical solutions, the prospective 

impact of pruning won’t be a major consideration in replication configuration, for most 

applications.  

 

Future Work 

 Several areas for prospective future work are indicated by the work that has been 

presented herein.  First, as was previously identified, further assessment of the performance 

of the system under different levels of error conditions may yield other indications of areas 

of prospective differences in performance.  Second, conditions which may be specific to 

various operating scenarios (such as dramatically difference movement conditions in 

certain areas of the operating region) should be assessed to determine what impact these 
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may have on the comparative performance of the two command approaches.  The 

identification of additional comparative differences may inform, more granularly, the 

selection of a given approach for real-world missions with some or all of these 

characteristics present. 

 Third, the technologies developed for this work may have application to other areas 

of research (and real-world use) beyond the application described herein.  An exploration 

of these prospective additional uses may drive future work in several areas. 

 Fourth, the characterization of the impact of pruning on multiple forms of the 

blackboard decision-making rule-fact-action networks remains a topic for future work.  

Two key areas of work are prospectively interesting, in this area.  The first is the 

characterization of the impact of pruning on changing networks.  Specifically, the impact 

of pruning on a network that is concurrently changing while the pruner runs and that is 

solving as the pruner is running and as the network is changing between prunings would 

provide additional insight into the efficacy of the pruner’s use for craft where the data 

collection capability to processing capability ratio is higher than was simulated herein. 

 The simulation of this would test several independent variables: multiple (3) speeds 

of pruning, multiple test durations (e.g., 1,000, 5,000, 10,000, 20,000 and 50,000 turns), 

the impact of beginning pruning at multiple points (100, 250, 500, 1,000, 5,000) during 

longer duration tests and multiple simulation area (and thus blackboard network) sizes 

(e.g., 1,000 x 1,000, 2,000 x 2,000, 5,000 x 5,000).  For each, the duration to first result, 

the average number of results and the total computational time required would be collected 

and recorded.  Tests of statistical significance would then be applied to each of the 225 
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experimental conditions to assess the comparative impact of pruning during the applicable 

mission. 

 The second are of prospective interest, relative to Blackboard network pruning, 

would be to conduct static network tests across the experimental conditions listed above.  

This would eliminate any potential confounding of the data caused by the concurrent 

occurrence of data changes and pruning.  The juxtaposition of these two result sets (using 

the same experimental conditions), using statistical significance testing, would facilitate 

the determination of the impact of concurrent pruner-solver operations.  Demonstrating 

that this works (or does not work) well would inform the mission design of future 

prospective missions. 

 Fifth, the testing of the impact of pruning on the two different command strategies 

and multiple replication strategies is another area of interest.  Based on the results of the 

long-running simulation testing described above, several conditions (with specific variable 

combinations for pruning speed, multiple test durations, point of pruning and simulation 

area size) could be selected to serve as independent variables in conjunction with a choice 

of command architecture (centralized or distributed).  In the context of the distributed 

command architecture selection, each of the five data transmission / synchronization 

strategies (boundary node, full replication, limited replication, central blackboard and 

hierarchical) could also be tested.  Presuming that three long-running simulation 

configurations were selected to serve as an independent variable (along with the six 

command architecture / data transmission / synchronization strategy choices), this would 

generate 18 experimental conditions.  This data could then be analyzed using statistical 
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significance testing to ascertain the impact of using these different options in system 

design. 

 Finally, the validation of the experimentation performed via simulation through a 

real-world test mission is required to advance the Technology Readiness Level (TRL) to a 

point where the control technology would be deemed suitable for future work.  This large-

scale endeavor may identify other characteristics that may differentiate the performance of 

the distributed and centralized control approaches. 
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Appendix A 

Glossary of Terms 

 

 

Central Analysis, Planning and Tasking – A system module that is responsible for high-

level system planning. 

 

Globally Unique Identifier – A value generated in a manner such that the chance of 

duplication is extremely low. 

 

Ground Rover – A robot that operates on the surface of the Earth or another planet. 

 

Micro-Aerial Vehicles – Unmanned aerial vehicles of a small size (typically small 

enough to fit in a human hand. 

 

Multi-Blackboard System – A system that utilizes multiple agents, each with their own 

Blackboard for decision making. 

 

Multi-Tier Autonomous Mission Architecture – The presented approach for controlling a 

mission comprised of orbital, aerial and ground craft. 

 

Null Hypothesis – an assertion of current status that can be rejected through assessment 

of statistical significance. 

 

Remotely Piloted Vehicle – An unmanned aerial vehicle that is controlled by a human 

from a remote location. 

 

Technology Readiness Level – A system for evaluating the current status of a technology 

or system to facilitate the assessment of it for missions being planned. 

 

Ticks - Ticks are the smallest unit of time measured by the Windows operating system 

[101].  A tick is equal to 100 nanoseconds. 
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Appendix B 

Glossary of Acronyms / Abbreviations 

 

CAPaT – Central Analysis, Planning and Tasking  

 

GUID – Globally Unique IDentifier 

 

H0 – null hypothesis 

 

MAVs – Micro-Aerial Vehicles 

 

MBS - Multi-Blackboard System 

 

MTAMA – Multi-Tier Autonomous Mission Architecture 

 

RAM – Random Access Memory 

 

RPV – Remotely Piloted Vehicle 

 

TRL – Technology Readiness Level 

 

UAV – Unmanned Aerial Vehicle 

 

UAS – Unmanned Aerial System 
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