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ABSTRACT 

Insect herbivory is a major stress on plants that results in significant economic 

losses to forest plantations and natural forests. In response, Populus have evolved a suite 

of constitutive and inducible defenses to deter insect feeding. Despite advances in 

technologies and the sequencing of the Populus trichocarpa genome, defensive pathways 

against insect herbivores are poorly understood. With the creation of activation tagged 

(AT) Populus we can use a forward genetics approach to identify genes involved in insect 

resistance (IR).  

To explore the genetic architecture of tree defenses, we conducted a forward 

genetics screen of AT Populus tremula x Populus alba (Pt x Pa) trees using choice 

bioassays with the purpose of identifying mutants with altered constitutive and induced 

defenses to Orgyia leucostigma. 770 AT mutants from Michigan Technological 

University were screened using mutant-mutant pairs on unwounded and wounded leaves. 

Fourteen percent (108 mutants) were identified as candidates for additional choice 

bioassays against wildtype trees. From this screen we have identified a few candidates 

that can be investigated with additional bioassays. In addition, we conducted bioassays on 

nine AT mutants previously identified from a screen at Queen’s University to confirm 

that they had altered IR. One mutant from the QU population, E8-16, showed IR during 

two independent choice bioassays using unwounded leaves. Choice bioassays 

demonstrated that larvae consumed less area and less weight from E8-16 compared to 

wildtype leaf disks. No-choice bioassays, designed to determine if the AT mutant has an 
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effect on insect weight gain and development, revealed larvae reared on E8-16 trees 

gained less wet and dry weight, consumed less leaf material, and delayed larval 

development.  

The next step was to identify where the T-DNA inserted within the Populus 

genome for E8-16 and which gene(s) were “activated” in response to being in close 

proximity to cauliflower mosaic virus enhancers on the T-DNA. We used SiteFinding 

and thermal asymmetric interlaced (TAIL) PCR to map a T-DNA insertion on 

chromosome 10 for the E8-16 mutant. Real-time PCR of three genes within 20 kb of the 

T-DNA revealed 10s12800 had elevated expression in E8-16 versus Pt x Pa wildtype 

leaves (6.9-fold, nested ANOVA, p<0.00001).  

To begin to characterize the gene a bioinformatic analysis of the 10s12800 amino 

acid sequence was conducted which identified a really interesting new gene (RING) 

domain. 10s12800 is a putative E3 RING-H2 ubiquitin ligase involved in the terminal 

step of the ubiquitin-proteasome pathway that marks target proteins with ubiquitin for 

degradation by the 26S proteasome.  

Real-time PCR was used to measure absolute abundance of 10s12800 mRNA in a 

tissue panel consisting of mature leaves, immature leaves, phloem, bark, xylem, petioles, 

and roots. This analysis revealed 10s12800 is ubiquitously expressed in all tissues with 

greatest expression in mature leaves. To identify potential defensive pathways influenced 

by increased 10s12800 expression, we analyzed leaf transcriptomes of E8-16 and Pt x Pa 

wildtype trees on an Agilent 4x44K Populus microarray. Using criteria of p<0.05 and a 

false discovery q value <0.15, only 22 of the 43, 803 gene probes showed expression 

differences between Pt x Pa wildtype and E8-16. Among those 22 probes were MADS-
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box transcription factors and chitinases. To confirm 10s12800 is responsible for the IR 

phenotype, 10s12800 full length cDNA was inserted into the pCAMBIA S1300 vector 

behind a partial superpromoter and introduced into two different Populus genetic 

backgrounds. qPCR screening of transgenic lines revealed one line, TL4, with a two-fold 

increase in expression compared to a vector control (Nested ANOVA, p<0.05, n=5). 

Choice assays revealed that Orgyia leucostigma larvae preferred to consume vector 

control trees compared to TL4 (Nested ANOVA, p<0.05, n=8 pairs). However, we did 

not see a statistical difference in insect growth and development in a no-choice assay 

where larvae were caged on either TL4 or vector control trees (t-test, p>0.05, n=9). 

Collectively, these results suggest that we have identified a putative E3 RING-H2 

ubiquitin ligase that may be a regulator of plant defense against Orgyia leucostigma. 
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CHAPTER I 

 

INTRODUCTION TO DISSERTATION  

 

Thesis Goal and Objectives 

 Populus species have become an important economic resource for lumber and 

paper products, carbon sequestration, phytoremediation, and as a potential source for 

cellulosic ethanol. As such, plantation forestry has become a means to meet the ever-

growing demand for these products. Unfortunately, traditional means to protect 

agricultural crops from insects, such as pesticides and crop rotation, are not applicable 

when it comes to large plantation forests. Substantial defoliation by insect herbivores can 

negatively impact forest plantation productivity by slowing plant growth and weakening 

trees to other opportunistic insects and fungal pathogens that can eventually result in their 

death. As long-lived sedentary organisms, tree species such as Populus have evolved a 

suite of natural constitutive and inducible defenses to deter or reduce insect herbivory and 

make the host plant more insect resistant. With the creation of activation tagged (AT) 

Populus populations (Busov et al. 2010; Harrison et al. 2007), we can now use a forward 

genetics approach to identify genes and gene regulatory networks involved in Populus 

defense to insect herbivores. The purpose of this study was to conduct a forward genetics 

screen of AT mutants and identify Populus genes relevant to insect resistance (IR) to the 

white-marked tussock moth (WMTM), Orgyia leucostigma (J.E. Smith). This thesis 
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seeks to further advance our understanding of genes involved in IR that could eventually 

be incorporated into breeding programs to produce superior trees for plantation forestry.  

Objective #1: Identify AT Populus Mutants With Altered Insect Resistance to 

Orgyia leucostigma Using Choice and No-choice Bioassays. 

Populus has become a model system for studying aspects of deciduous tree 

physiology including wood formation, environmental adaptation, and responses to biotic 

stresses including pathogens and insect herbivores (Mauriat et al. 2015; Philippe and 

Bohlman 2007; Jansson and Douglas, 2007; Cronk, 2005; Brunner et al. 2004). The study 

of plant biology, including plant-insect interactions, has advanced due to the sequencing 

of the Populus trichocarpa genome (Tusken et al. 2006), creation of genetic and physical 

genome maps (Woolbright et al. 2008; Kelleher et al. 2007; Yin et al. 2004), 

development of microarray platforms (Ralph et al. 2006; Harding et al. 2005; Brosche et 

al. 2005; Andersson et al. 2004), large collections of expressed sequence tags and full-

length cDNAs (Ralph et al. 2008; Ralph et al. 2006; Sterky et al. 2004; Christopher et al. 

2004; Ranjan et al. 2004), RNA-Seq data (Ariani et al. 2015; Liu et al. 2014; Zhang et al. 

2014), and proteomic and metabolite studies (Hamanishi et al. 2015; Nilsson et al. 2010; 

Kieffer et al. 2009). In particular, substantial transcriptomic data following simulated and 

actual insect herbivory from lepidopteran defoliators has resulted in extensive gene lists 

that can be used in a reverse genetics approach to identify genes causing IR. However, 

our understanding of the genes involved in regulating plant defenses is still poorly 

understood. A literature review discussing Populus, their lepidopteran defoliators, and 

their defenses can be found in chapter 2. 
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Until the last decade, forward genetics approaches to identify genes involved in 

plant defense for Populus were not possible due to a lack of mutagenized populations. In 

Populus, AT has become an effective insertion mutagenesis approach to developing gain 

of function mutants (Busov et al. 2010; Harrison et al. 2007). Few forward genetic 

studies have been conducted on AT plant populations to identify genotypes with altered 

resistance to insect herbivory (Chen et al. 2012; Ralph 2009). The first screen to identify 

insect resistant mutants in AT Populus was conducted by Ralph (2009) using a 

population created by Sharon Regan’s lab at Queen’s University (QU) in Ontario, Canada 

(Harrison et al. 2007). The purpose of objective #1 of this dissertation was to continue the 

work started by Ralph (2009) by: 1) conducting additional choice assays with greater 

biological replication on AT candidates identified from the QU screen, and 2) screening 

additional AT lines created by Dr. Victor Busov at Michigan Technological University 

(MTU) in Houghton, MI, using choice bioassays to identify AT mutants with altered IR. 

Choice bioassays designed to compare feeding preference of WMTM on unwounded 

leaves were conducted on nine mutant candidates from QU. Only one candidate, E8-16, 

had consistently and substantially higher IR (i.e., WMTM consumed more Pt x Pa 

wildtype leaves than mutant leaves). E8-16 was also validated as an IR mutant by having 

a negative effect on WMTM larval weight gain and development in no-choice bioassays.  

A new screen of MTU mutants was conducted to identify additional mutants with 

altered WMTM feeding preference in leaves before and after wounding. We screened 

770 mutants and identified approximately 5% to be potentially altered in IR compared to 

Pt x Pa trees. Between the QU validation and the MTU screen we have identified several 

mutants that show an altered WMTM feeding preference that can be further validated 
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with additional bioassays and eventual molecular work designed to map T-DNA 

insertions and identify genes responsible for the phenotype. Results for all bioassay 

experiments can be found in chapter 3. Ultimately we decided to continue with objectives 

#2 and #3 using the IR mutant E8-16. 

Objective #2: Map the T-DNA Insertion and Identify the Activated Gene in the AT 

Mutant E8-16. 

 The E8-16 mutant was created in the Regan Lab (Harrison et al. 2007) by 

inserting the pSKI074 AT vector (Weigel et al. 2000) into a Populus tremula x P. alba 

clone 717-1B4 (Pt x Pa) background using Agrobacterium-mediated transformation (Han 

et al. 2000; Tzfira et al. 1997). The vector pSKI074 contains four copies of a cauliflower 

mosaic virus (CAMV) enhancer that can act upon a nearby gene promoter and “activate” 

expression of an endogenous gene roughly 5-10 fold above wild-type levels (Weigel et al. 

2000). Because AT is a random insertional mutagenesis approach it requires a means to 

identify where the T-DNA(s) have inserted within the Populus genome and to evaluate 

expression of genes near the T-DNA site to identify which gene(s) are impacted by the 

CAMV enhancers. This validation is necessary to confirm that the observed phenotype is 

caused by the AT mutation and not by random mutations created during the tissue culture 

process to generate the AT trees. 

To accomplish objective #2, two PCR methods, SiteFinding (Tan et al. 2005), and 

thermal asymmetric interlaced (TAIL) PCR (Busov et al. 2010; Liu et al. 1995) were 

used to amplify the region of the Populus DNA next to the left border of the T-DNA 

vector within the E8-16 genotype. A basic local alignment search (BLAST) of multiple 

PCR products sequenced from these two methods within the Populus trichocarpa 
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genome (Phytozome, www.phytozome.net) identified the same genomic region within 

chromosome 10.  Most T-DNA insertions in previous AT Populus research were found in 

intergenic regions of the genome and activated a gene within 13 kb of the mutation 

(Busov et al. 2010). Since the T-DNA location we mapped for E8-16 was located outside 

predicted gene models in the Populus trichocarpa genome, it suggested that the T-DNA 

had not disrupted a gene and that nearby genes should be tested to determine which 

gene(s) were being “activated”. To identify the “activated” gene, expression of three 

genes located near the T-DNA site was measured using quantitative PCR (qPCR) in E8-

16 and Pt x Pa wild-type leaves. The gene model POPTR_10s12800 (10s12800), located 

closest to the T-DNA insertion site, showed a nearly seven-fold increase in expression 

compared to the wild-type trees. 10s12800 appears to be the gene activated by the T-

DNA enhancers. Results from the T-DNA mapping and gene identification can be found 

in chapter 4. 

Objective #3: Characterize the Function of 10s12800, the Putative E3 RING-H2 

Ubiquitin Ligase Gene Found to be Over-expressed in the E8-16 mutant. 

 With the identification of the activated gene in E8-16, the next steps in a forward 

genetics approach involve characterizing the function of the gene of interest and 

confirming that the mutation is indeed causing the phenotype of interest. In particular we 

were interested in answering questions related to: 1) potential protein function of 

10s12800, 2) where the gene is expressed, and 3) identifying potential defensive 

pathways influenced by increased 10s12800 expression in the E8-16 mutant.  

To identify potential function, we conducted a bioinformatics analysis of the 

amino acid sequence of 10s12800. To determine the class of the protein, we conducted a 
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BLASTP search of the non-redundant database within the National Center for 

Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov). Orthologs were aligned 

using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2; Larkin et al. 2007) and a 

boxshade plot was created to identify conserved regions within the group of proteins. 

Transmembrane domains were identified using the ARAMEMNON database 

(http://aramemnon-botanik.uni-koeln.de, Schwacke et al. 2003) and InterProScan 

(http://www.ebi.ac.uk/Tools/pfa/iprscan; Quevillon et al. 2005) and PROSITE 

(http://prosite.expasy.org; Sigrist et al. 2010) were used to identify functional domains of 

10s12800. We found 10s12800 to be a predicted E3 ubiquitin ligase with a conserved, 

really interesting new gene (RING) H2 domain with two predicted transmembrane 

domains near the N-terminus. 

E3 ligases function as protein regulators within the ubiquitin/proteasome pathway. 

Ubiquitination is a multistep reaction that involves three enzymes to tag proteins with 

ubiquitin, a 76 amino acid regulatory protein, for degradation: ubiquitin activating 

enzyme (E1), ubiquitin conjugating enzyme (E2), and ubiquitin ligase (E3) (Glickman 

and Ciechanover 2002). Within Arabidopsis, nearly 5% of all genes are predicted to be 

involved in the ubiquitin-26S proteasome pathway, suggesting that protein ubiquitination 

is essential in a number of biological processes for plants (Smalle and Vierstra 2004). 

RING E3 ligases contain a domain of 40-60 amino acids that bind two atoms of zin. This 

domain may function as a scaffold in protein-protein interactions to bring the E2 with 

thioester-linked ubiquitin and a specific protein substrate together for ubiquitination 

(Lorick et al. 1999). RING proteins have been associated with a number of regulatory 

pathways (Chen and Hellman 2012) as well as environmental interactions 
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(Schweichheimer et al. 2009). RING E3 ligases are continually being discovered in 

forward genetic screens (Bueso et al. 2014; Huang et al. 2010). Therefore it comes as no 

surprise that we have identified an E3 ligase that may be involved in plant defense 

against an insect herbivory.  

Understanding where the gene is expressed within tree tissues can also lead to 

clues about gene function within the plant. If gene expression is limited to one tissue 

type, it may suggest a specific role in the development and regulation of those tissues. To 

understand where the gene is expressed within Pt x Pa trees, we used qPCR to measure 

10s12800 abundance on a tissue panel consisting of mature leaves, immature leaves, 

phloem, bark, xylem, petioles, and roots. Constitutive expression from the tissue revealed 

10s12800 is ubiquitously expressed in all tissues with greatest expression in mature 

leaves. 

To identify potential defensive pathways influenced by increased 10s12800 

expression, we analyzed the leaf transcriptomes of E8-16 and Pt x Pa wildtype trees 

using an Agilent 4x44K microarray. RNA was isolated and then sent to our collaborator, 

Dr. Matias Kirst at the University of Florida, for cDNA synthesis and Cy3 and Cy5 

labeling before being hybridized to the Populus microarray. Microarray analysis using a 

gene-by-gene mixed ANOVA model in SAS9.2 revealed only 22 out of 43,803 probes 

with differential expression using the criteria of p<0.05 and a false positive q<0.15. The 

genes over-expressed in E8-16 included 10s12800, bZIP and MADS-BOX transcription 

factors, and chitinases. We hypothesize that it is the over-expression of class I chitinases 

that may be causing the IR phenotype, possibly by disrupting the peritrophic membrane 

of the insect gut.  



 8 

One of the most important aspects of forward genetics is creating new transgenic 

trees to recapitulate the phenotype observed in the initial mutant as a “gold standard” that 

the gene is indeed responsible for the phenotype. Our collaborators at North Dakota State 

University, Dr. David Dai and Danqiong Huang, created new transgenics by inserting an 

additional copy of the 10s12800 gene using a pCAMBIA S1300 vector into the Pt x Pa 

and P. grandidentata x P. canadensis (Pc x Pg) backgrounds. Thirteen Pt x Pa and nine 

Pc x Pg lines were generated, brought back to UND, and screened for 10s12800 

expression. We used qPCR to identify one transgenic line, TL4, in the Pt x Pa 

background with two-fold over-expression of 10s12800 compared to empty vector 

controls (Nested ANOVA, p<0.05, n=5). Choice assays revealed that WMTM preferred 

to consume vector control trees compared to TL4 (Nested ANOVA, p<0.05, n=8 pairs). 

However, we did not see a statistical difference in insect growth and development in a 

no-choice assay where larvae were caged on either TL4 or vector control trees (t-test, 

p>0.05, n=9).Additional transgenic lines are being created with the hope of achieving the 

same fold difference in 10s12800 expression as the original E8-16 mutant. These new 

mutants will also be tested using bioassays to confirm the gene’s impact on IR. Results 

for objective #3 can be found in chapter 4. Chapter 5 provides a summary of the data and 

suggests some possible future directions to further characterize the function of the 

10s12800 gene. 
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CHAPTER II 

 

LITERATURE REVIEW  

 

Introduction 

Trees are important ecological and economical resources. For over 370 million 

years, trees have dominated the terrestrial landscape providing habitat for numerous 

species as well as serving an important role in regulating planetary atmospheric 

conditions through carbon sequestration. As an economic resource, the U.S. forest 

industry has become a $200 billion industry providing timber, paper, and renewable fuel 

as well as employing approximately one million workers 

(www.epa.gov/agriculture/forestry.html). Because of an ever-increasing demand for tree 

products, there is great interest in determining genes involved in various tree biology 

traits, including IR, to develop superior trees for plantation forests. 

Until the last decade our ability to potentially improve tree stocks for IR using 

technology was limited due to a lack of functional genomic tools such as sequenced 

genomes and mutagenized populations for rapid screening to identify defense-related 

genes and gene regulatory networks. With the sequencing of the Populus (Populus 

trichocarpa, Torr & Gray) genome (Tuskan et al. 2006) and the generation of AT mutant 

populations (Busov et al. 2010; Harrison et al. 2007), we can now identify genes and 

gene regulatory networks that cause IR. This chapter will serve as a literature review 
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to: 1) introduce the genus Populus and its ecological and economic value, 2) describe 

why Populus can be a good model for studying perennial plant-insect interactions, 3) 

introduce important lepidopteran defoliators of Populus, and 4) discuss known Populus 

defenses in response to insect defoliators and the impact of scientific and technological 

advances have had in identifying potential defense related genes 

Ecological and Economic Importance of Populus  

The genus Populus (cottonwoods, poplar, aspen) includes 30-40 species that span 

the entire Northern Hemisphere. Hybridization within the genus frequently occurs where 

ranges overlap and is likely to have been a major driver in the speciation of Populus. This 

has resulted in some problems in creating taxonomic groupings of Populus (Eckenwalder 

1996, Hamzeh and Dayanandan 2004). Many Populus species serve important ecological 

roles as “foundational species” in early successional forest ecosystems due to their ability 

to rapidly colonize disturbed areas in riparian and recently burned habitats. Most Populus 

species have adapted to live in riparian and wetland habitats where seasonal flooding can 

occur. Riparian-dwelling species, such as Populus nigra (Linneaus), are highly adapted to 

water dynamics and sediment movement allowing them to colonize riverbanks (Storme et 

al. 2004). Seeds can be quickly dispersed by wind and water and can establish along 

riverbanks on sites that have experienced natural winter floods. Moist silt and sand, 

following the recession of flooding, create an ideal environment for the germination of 

seeds and tree establishment (Vanden Broeck 2003). Populus can also produce clones by 

vegetative propagation from broken twigs and branches that can take root on riverbanks 

(Braatne et al. 1996) or by root suckering from exposed roots or roots near the soil 

surface (Barnes 1966). Eliminating natural flooding by damming rivers or diverting
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rivers has been shown to negatively impact Populus regeneration in riparian ecosystems 

(Braatne et al. 1996; Vanden Broeck et al 2003).  

 

Figure 1: Eastern cottonwood (Populus deltoides Bartram ex Marshall) along the  
Minnesota River near St. Peter, MN. 

 

Other Populus species are better adapted to drier, upland environments. For 

example, Populus tremula (Linnaeus), commonly referred to as the Eurasian aspen or 

common aspen, grows best in moist, well-aerated soil. However, it can grow in a variety 

of soil types, tolerate seasonal flooding or up to two months of less than 40 mm of 

rainfall, and can grow in elevations ranging from sea level to 1600 meters (von 

Wuehlisch 2009). Populus tremuloides (Michaux), a popular species used in research, is 

the most widespread tree species in North America primarily found in Canada, around the 
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Great Lakes, and in the arid mountain west region of the U.S. (Perala 1990). This species 

can survive in a variety of soils (Perala 1990) and regularly colonize unstable 

environments such as volcanic cones, rock outcrops, glacial outwash, and landslides. 

Populus tremuloides (Michaux) communities in the mountain west region are found in 

mid to high elevations with annual temperature extremes ranging from -57° to 41°C 

(Perala 1990). This species can be found scattered within montane and subalpine conifer 

forests but can also be found in extensive pure stands within the southern Rocky and 

Utah ranges (Shinneman et al. 2013). Fire has been shown to have an important role in 

regeneration of this species (Shinneman et al. 2013). Vegetative root suckering, along 

with some regeneration from wind-borne seeds, allow for the rapid colonization of 

disturbed areas following forest fires. 

Besides their ecological importance, Populus also have substantial economic 

value. Characteristics of the genus, such as fast growth, easy propagation, and appearance 

have made it a desirable wood source for landscape and agricultural purposes for 

thousands of years. In fact, the word Populus comes from the term arbor populi, or “the 

people’s tree”, for its widespread use during the Roman Empire (Gordon 2001). Recent 

archeological evidence suggests Populus was used for heating and house construction as 

far back 10,000 years ago along the Euphrates River in the Middle East(Settler 2009). 

Other early cultures, such as the Objibwe in North America (8000 B.C.), the Neo-

Sumerian Empire in Mesopotamia (2100 B.C.), Chinese (700 B.C.), and the Hohokam 

natives of Mexico (800 A.D.), all used Populus for purposes, including cooking, heating, 

construction/shelter, medicine, tools, soil stabilization, and windbreaks (Gordon 2001; 

Stettler 2009; Hageneder 2005; Logan 2002).  
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Exploitation of natural forests during WWII, as well as demand for lumber 

products during post-war industrialization, drove the development of industrial plantation 

forests in Europe (FAO 1980, Castro and Zanuttini 2008). In the U.S., plantation forestry 

expanded in the late 20th century due to depletion of natural stands of Populus as a result 

of agricultural conversion and damming and diverting natural river flows (Sternitzke 

1976). This, combined with the increasing human population in the later half of the 20th 

century, resulted in the need for plantation forestry and sustainable forest industry 

practices to meet demand for wood products (Sternitzke 1976). By the end of the 20th 

century concerns over sustainability of forests had become a major global concern and 

was a significant topic at the 1992 United Nations Conference on Environment and 

Development (Sedjo et al. 1998).  

Today many countries have extensive plantations of Populus, with the largest 

found in China (7.6 million ha), France (236,000 ha), Iran (150,000 ha), and Turkey 

(125,000 ha) (FAO 2008; FAO 2012; Stanturf and van Oosten 2014). Populus make up 

the largest fraction of managed hardwood forest acreage in the U.S. and Canada (Coyle et 

al. 2005). Approximately 45,000 ha of Populus species are grown in the U.S. primarily 

for the production of bioenergy, pulpwood, lumber, and paper products (Stanturf and van 

Oosten 2014). Populus are also seen as a potential source for cellulosic ethanol, with 

significant work being done to reduce or change the lignin content of these species to 

make the process more economical (Meyermans et al, 2000; Anterola and Lewis 2002; 

Sasaki et al. 2004). Populus are also cultivated for a number of environmental 

applications. Populus are commonly used as windbreaks and shelterbelts designed to alter 

wind flow around farmsteads and homes. They are also useful for preventing soil erosion 
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and as riparian buffers. Because Populus species grow rapidly and have root systems 

capable of taking up a lot of water and nutrients (Isebrands and Karnosky 2001; Licht and 

Isebrands 2005) they have also been used for phytoremediation, the cleaning up of 

contaminated soil and water by removing and degrading toxic chemicals using plants, as 

well as carbon sequestration (Coyle et al. 2005).  

One of the challenges for plantation forests, as well as natural forests, is that they 

are prone to substantial insect herbivory. Dense populations of Populus with limited 

genetic diversity can create spatially uniform, low biodiversity environments vulnerable 

to insect outbreaks (Neuvonen and Niemela 1983; Niemela and Neuvonen 1983; Mattson 

et al. 1991; Haack and Mattson 1993). Unfortunately, some tools used for pest control in 

annual agricultural crops are are not suitable for application in forestry. For many 

agricultural crops, pesticide applications combined with annual crop rotations are 

effective in reducing insect herbivory. However these are not viable solutions in wide-

scale forests where trees are grown over a number of years (Phillipe and Bohlman 2007). 

Despite the potential use of genetic engineering of pest resistance in trees, so far the 

deployment of genetically modified trees has been prevented in many jurisdictions (Lida 

et al. 2004, Phillipe and Bohlman 2007) due to the possibility that transgenic populations 

will breed with wild trees and concerns over unknown impacts on the environment. 

Domestication, defined as the process of exploiting and manipulating genetic variation at 

multiple levels to breed commercial cultivars for wood-based commodities, energy 

feedstock, and environmental services (Libby 1973; Dickmann et al. 1994; Bradshaw and 

Strauss 2001), of Populus has been on-going for 100 years (Stanton et al. 2014). As a fast 

growing wood source that can be hybridized with relative ease, Populus has become a 
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useful organism for selecting trees for improved growth, adaptability and increased 

resistance to biotic pests for forest plantations (Broderick 2010, Coyle et al. 2005). 

Traditional domestication of Populus involved interspecific hybridization by combining 

genomes of distinct species, selecting clones with ideal traits, and using vegetative 

propagation to maintain genetic lines for planting and further testing or for additional 

genetic crossing (Stanton et al. 2014). Unfortunately, without the aid of modern 

molecular techniques, this approach requires extensive testing and breeding in an 

organism that typically requires 7-10 years before each generation develops flowers. As a 

result, traditional breeding strategies are slow and there is limited information about what 

genes are contributing to the phenotype.  

While extensive deployment of transgenic trees may not be an option in the near 

future, molecular approaches have been developed that allow scientists to more quickly 

identify genes and allelic combinations for desirable traits. Genome wide association 

studies using DNA-based markers such as restriction fragment length polymorphisms 

(RFLP), amplified fragment length polymorphism (AFLP), randomly amplified 

polymorphic DNA (RAPD), microsatellites, and functional markers such as single 

nucleotide polymorphisms (SNPs), along with genetic transformation studies have greatly 

contributed to our understanding of genes associated with Populus traits (Bradshaw et al. 

1994; Schroeder et al. 2012; Lojewski et al. 2009; Cervera et al. 2005). These tools have 

allowed researchers to identify genes to target for breeding programs to develop superior 

trees. The following sections will discuss why Populus is a good model for studying 

plant-defoliator interactions, common lepidopteran pests to Populus, and what prior 



 20 

research has been done to identify genes involved in IR so that Populus breeders can 

incorporate this information into breeding programs to produce superior IR trees. 

Populus as a Model Organism for Tree Biology 

Populus has become a model system for studying aspects of deciduous tree 

physiology including wood formation, environmental adaptation, and responses to biotic 

stresses including pathogens and insect herbivores (Mauriat et al. 2015; Philippe and 

Bohlman 2007; Jansson and Douglas, 2007; Cronk, 2005; Brunner et al. 2004). 

Characteristics that make this an ideal tree species to study include: fast growth, short 

reproductive cycle for trees (7‐10 years), relatively easy to genetically modify (Chupeau 

et al. 1994; Confalonieri et al. 1995; Qiao et al. 1997; Ma et al. 2004; Takata and 

Eriksson 2012), enormous size for spatial studies, and it was the first tree species to have 

a sequenced and annotated genome (Populus trichocarpa; Tuskan et al. 2006).  The 

genome size is relatively small in terms of trees, with the haploid genome size 

approximately 485 million base pairs (Tuskan et al. 2006), only four times larger than 

Arabidopsis. The genome also contains approximately 45,000 coding genes, most with 

some similarity to the Arabidopsis genome (Tuskan et al. 2006). The smaller genome 

makes Populus an attractive target for map-based cloning of genes.  Numerous tools have 

been created to allow for large genome wide expression studies of Populus including 

development of microarray platforms (Ralph et al. 2006; Harding et al. 2005; Brosche et 

al. 2005; Andersson et al. 2004) large collections of expressed sequence tags and full-

length cDNAs (Ralph et al. 2008; Ralph et al. 2006; Sterky et al. 2004; Christopher et al. 

2004; Ranjan et al. 2004), RNA-seq data (Ariani et al. 2015; Liu et al. 2014; Zhang et al. 

2014) and proteomic and metabolite studies (Hamanishi et al. 2015; Nilsson et al. 2010; 
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Kieffer et al. 2009). Research prior to the creation of these molecular tools focused on the 

study of tree-insect interactions at the physiological and ecological levels. These newer 

molecular tools now allow us to explore tree-insect interactions and the diverse 

anatomical structures and chemical plant defenses used to combat insect herbivory at the 

molecular and cellular/biochemical levels.  

Lepidopteran Defoliators of Populus 

Long lifespan (up to 400 years), large size, sessile lifestyle, late sexual 

reproduction, and their ecological dominance expose Populus to a wide variety of more 

rapidly evolving insect herbivores. Approximately 300 species of insects and mites in 

North America consume Populus (Mattson et al. 2001). Of the hundreds of insects that 

feed on Populus, less than 10% create enough damage to be considered serious pests. 

Insects found on Populus species, grouped by feeding lifestyle, include gall formers, 

sucking/phloem feeders, wood borers, root feeders, and leaf feeders (which include 

defoliators and leaf miners). Table 1 shows some insect species for each lifestyle group. 

Gall formers, such as Saperda, Dasineura, and Prodiplosis species, produce galls when 

feeding on shoots, petioles, or leaf lamina.  The galls provide young instars food as well 

as protection from predators (Charles et al. 2014). Sucking aphid species, such as 

Phloemyzus passerinii (Signoret) and Tuberolachnus salignus (Gmelin) contain 

mouthparts called stylets designed to puncture bark and suck phloem. Wood boring and 

leaf feeding insects are often considered pest species. Wood-boring insects can cause 

substantial damage to the trunk making the trees unsuitable for certain wood products and 

more vulnerable for collapse under heavy winds (Charles et al. 2014). Defoliating insects 

comprise the largest group of insect pests for Populus and primarily come from the 
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Table 1: List of some insect species that feed on Populus trees. Table shows some 
representatives from Hempiptera, Coleoptera, Lepidoptera, Hymenoptera, and Diptera 
along with their common names and feeding style. 
Species Common Name Feeding Style 
Hemiptera 

Chaitophorus leucomelas (Koch) 
Parthenolecanium corni (Bouché)       
Phloemyzus passerinii (Signoret) 
Tuberolachnus salignus (Gmelin) 

 
None (aphid species) 
European fruit lecanium 
Woolly poplar aphid 
Giant willow aphid 

 
Shoot/phloem sucking 
Shoot/phloem sucking 
Shoot/phloem sucking 
Shoot/phloem sucking 

Coleoptera 
Agrilus liragus (Barter and Brown) 
Anaplophora glabripennis (Motschulsky) 
Chrysomela populi (Linnaeus) 
Cryptorhychus lapathi (LeConte) 
Gypsonoma haimbachiana (Kearfott) 
Oberia schaumii (LeConte) 
Polydrusus impressifrons (Gyllenhal)  
Polydrusus sericeus (Schaller) 
Saperda calcarata (Say) 
Saperda inornata (Say) 

 
Bronze poplar borer 
Asian longhorned beetle 
Poplar leaf beetle 
Poplar and willow borer 
Cottonwood twig borer 
Poplar branch borer 
Pale green weevil 
Green immigrant leaf weevil 
Poplar borer beetle 
Poplar-gall saperda 

 
Wood Borer 
Wood borer 
Leaf feeder 
Wood borer 
Wood borer 
Wood borer 
Root feeder, Leaf feeder 
Root feeder, Leaf feeder 
Gall former 
Gall former 

Lepidoptera 
Choristoneuria conflictana (Walker) 
Clostera inclusa (Hübner) 
Lymantria dispar (Linnaeus) 
Malacosoma disstria (Hübner) 
Orgyia leucostigma (J.E. Smith) 
Phyllocnistis populiella (Chambers) 

 
Large aspen tortrix 
Poplar tent maker 
Gypsy moth 
Forest tent caterpillar 
White-marked tussock moth 
Common aspen leaf miner 

 
Leaf feeder 
Leaf feeder 
Leaf feeder 
Leaf feeder 
Leaf feeder 
Leaf feeder 

Hymenoptera 
Janus abbreviates (Say) 
Trichiocampus viminalis (Fallen) 
Tremex fuscicornis (Fabricius) 

 
Willow shoot sawfly 
Poplar sawfly 
Tremex wasp 

 
Leaf feeder 
Leaf feeder 
Wood borer 

Diptera 
Dasineura populeti (Rübsaamen) 
Prodiplosis morrisi (Gagne) 
Phytobia cambii (Hendel) 

 
Gall midge 
Poplar gall midge 
Poplar cambium mining fly 

 
Gall former 
Gall former 
Wood borer 

 

Coleoptera and Lepidoptera taxanomic groups (Harrell et al. 1981, Mattson et al. 2001). 

Because this dissertation is concerned with identifying Populus genes involved in 

deterring lepidopteran larval insect defoliation, this literature review will cover 

lepidopteran herbivory and some of the more common lepidopteran defoliating pest 

species in more detail. 

Some of the more important lepidopteran defoliators of Populus in the U.S. and 

Canada (figure 2) include the white‐marked tussock moth (WMTM, Orgyia leucostigma  
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Figure 2: Common lepidopteran defoliators of Populus. A) White-marked tussock 
moth, image by Gerald J. Lenhard, Louisiana State University, Bugwood.org. B) Forest 
tent caterpillar, image by William M. Ciesla, Forest Health Management International, 
Bugwood.org. C) Large aspen tortrix, William M. Ciesla, Forest Health Management 
International, Bugwood.org. D) Common aspen leaf miner, image by USDA Forest 
Service-Ogden, USDA Forest Service, Bugwood.org. E) Gypsy moth, image by John H. 
Ghent, USDA Forest Service, Bugwood.org. F) Extensive defoliation by forest tent 
caterpillars, image by USDA Forest Service-Region8-Southern, USDA Forest Service, 
Bugwood.org. 
 

A. B. 
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F. E. 
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J.E. Smith), forest tent caterpillar (FTC, Malacosoma disstria Hübner), large aspen tortrix 

(Choristoneura conflictana Walker), common aspen leaf miner (Phyllocnistis populiella 

Chambers) and gypsy moth (Lymantria dispar Linnaeus). Lepidopteran defoliators are 

generally not considered a great threat to tree survival. However, the extent and duration 

of defoliation can influence Populus growth and mortality. Light defoliation has little 

effect on Populus mortality or tree growth (Ives and Wong 1988). Under short periods of 

extreme defoliation trees can tolerate a significant loss of leaves (Robison and Raffa 

1994; Reichenbacker et al. 1996). For example, Robison and Raffa (1994) they tested 

clones of fifteen hybrid Populus against FTC using laboratory and greenhouse trials to 

examine relationships between tree productivity, defoliation tolerance, and insect 

resistance. Despite 75% defoliation several of the hyrids displayed substantial defoliation 

tolerance and tree productivity.  

Extensive outbreaks of native insect species, or the accidental release of non-

native species, can significantly reduce biomass production and wood quality in Populus 

(Reichenbacker et al. 1996). Wagner and Doak (2013) used insecticide on quaking aspen 

at two sites in Alaska over a period of seven years during an aspen leaf miner multi-year 

outbreak period and compared tree growth to non-treated aspen. By the seventh year 

ramets with ambient levels of leaf mining possessed half the leaves and fewer than half 

the shoots than ramets that were treated with the insecticide. Control trees also  displayed 

smaller leaves, reduction in height, and reduction in girth. They also observed greater 

dieback to basal sprouts in control trees than those protected by the insecticide 

suggestingthat insect defoliation can greatly impact health and productivity of Populus. 
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Lepidopteran defoliators pose a greater risk to Populus species during periodic 

population outbreaks, when substantial defoliation over consecutive growing seasons 

weakens the tree resulting in the increased incidence of fungal disease and infestation by 

opportunistic insects (Churchill et al. 1964; Klepzig et al. 1997; Hogg et al. 2002), 

especially when coupled with abiotic environmental stresses. In Hogg et al. (2002) they 

found that die-off in trembling aspen in western Canada in the 1990’s was likely due to 

the result of substantial defoliation events from FTC coupled with drought in 1960’s and 

1980’s that led to reduced growth and susceptibility to wood boring insects such as 

Saperda calcarata (Say), and Agrilus liragus (Barter and Brown) and fungal pathogens 

(Armillaria spp, Phellinus tremulae, Venturia macularis, Hypoxylon mammatum, 

Peniophora polygonia). Weakening of trees for secondary opportunistic insects and 

pathogens can cause widespread economic loss in Populus plantations (Harrell et al. 

1981; Coyle et al. 2002; Hogg et al. 2002). To minimize substantial lepidopteran 

defoliation of natural and plantation forests we need to understand what gene regulatory 

networks are involved in plant defense to minimize substantial lepidopteran defoliation. 

The next few sections will describe the common lepidopteran defoliators of Populus in 

more detail. 

White-marked Tussock Moth 

WMTM is the insect species we use to study plant-insect interactions, as it is 

considered a top three defoliator of Populus species in the U.S. and Canada. The WMTM 

has wingless female moths that lay 100-300 eggs in a single cocoon from which offspring 

emerge (Wagner 2005). The light brown larvae emerge in the spring and feed on the 

undersides of young foliage of over 140 different plants including Populus species 
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(Wagner 2005). Because this species can consume leaf material from many different 

plants sources they are considered generalist herbivores. Young larvae can be dispersed 

to neighboring vegetation by “ballooning” (Wagner 2005). “Ballooning” refers to the 

wind breaking threads of newly hatched larvae hanging from trees and carrying larvae to 

other nearby plants. Later instars develop white tufts and gain yellow, red, and black 

body coloration and become voracious leaf consumers (Rose and Lindquist 1982). Once 

mature the larvae pupate and then emerge as winged males or flightless females a few 

weeks later (Martineau 1984; Johnson and Lyon 1991). WMTM exist in a range from the 

southeastern U.S. and along the U.S. coast into Canada and as far west as Texas, North 

Dakota, and Manitoba (Wagner 2005). The insect’s high fecundity and dispersal behavior 

can result in significant population outbreaks as well as the establishment of new colonies 

(Harrison 1997; Maron et al. 2001; van Frankenhuyzen et al. 2002; Yoo 2006). WMTM 

can infest crops near wooded areas during outbreaks (Howard 1896; Dustan 1923; Isaacs 

and Van Timmeran 2009). WMTM also contain hairs that can cause rashes for humans, 

especially during population outbreaks. Crashes in population are typically the result of 

diseases such as nuclear polyhedrosis (Cunningham 1972) and cytoplasmic polyhedrosis 

viruses (Hayashi and Bird 1968) and predation from natural enemies such as birds and 

parasitoids (Howard 1897; Embree et al. 1984; Cunningham and Kaupp 1995; van 

Frankenhuyzen et al. 2002).  

Forest Tent Caterpillars 

The FTC is another major native generalist defoliating pest of Populus species in 

the USA and Canada. FTC have a single generation each year that hatch early in the 

spring with the flushing of foliage. If hatching occurs before foliage is available, larvae 
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become vulnerable to freezing and starvation (Blais et al. 1955; Raske 1975). Newly 

hatched larvae form colonies that stay together through the first four instar stages by 

laying silken trails for larvae to follow others and form silken mats for insects to 

congregate for resting and molting (Fitzgerald 1995). After two months of feeding on 

leaves fifth instar larvae have pale blue lines along the sides of their brown bodies with 

white spots along their back. Larvae pupate five to six weeks following hatching and 

emerge ten days later as short-lived adults. Adults lay between 100-350 eggs that develop 

into larvae and overwinter in the eggs until spring (Fitzgerald 1995). During population 

outbreaks that occur every ten years, FTCs commonly defoliate trees occurring over 

millions of hectares, with a density as high as 20,000 caterpillars per tree (Stairs 1972; 

Fitzgerald 1995). As a result FTC larvae can grow to over 1000 times their mass at 

hatching and consume more than 15,000 times their initial body weight in leaf tissue 

(Fitzgerald 1995). Light defoliation has little effect on tree growth, however, more 

substantial feeding over multiple years can result in depressed radial growth at stump and 

mid crown height (Hildahl and Reeks 1960) and can make trees more susceptible to 

impacts from other forms of stress (Churchill et al. 1964).  

Large Aspen Tortrix 

The large aspen tortrix is a native insect species that feeds primarily on Populus 

tremuloides forests north of the range of FTC (Mattson et al. 2001). Newly hatched 

larvae emerge in mid to late July appearing yellow-green with a light brown head and 

anal plate (Prentice 1955). First instar larvae feed on the leaf epidermis of expanded 

leaves before they spin hibernacula for the winter (Mattson 2001). Second instar emerge 

in the spring and mine Populus buds through the third instar. Late instar larvae change 
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their feeding strategy by webbing expanded leaves together for protection during feeding 

(Charles et al. 2014). By the fifth instar they appear dark green with a black head capsule, 

setal bases, and anal plate. Fifth instar larvae undergo pupation for one to two weeks in 

late June to July and then have approximately five to ten days to mate and lay eggs. 

During severe outbreaks the species has defoliated trees over an area as large as 1.3 

million hectares (Beckwith 1968). Outbreaks normally collapse within two or three years 

(Cerezke and Volney 1995) due to natural predators and parasitoids.  

Common Aspen Leaf Miners 

Common aspen leaf miner is found in the northern part of North America 

including Canada and Alaska. Adults emerge in the spring after spending the winter 

under the bark of hardwood and conifer trees to feed and mate (Kruse et al. 2007). Adults 

lay a single egg on newly emerged Populus leaves and protect them by folding the leaf 

over over egg. Small white larvae emerge from the eggs, bore into the leaf, and then feed 

on the mesophyll layer located between the upper and lower epidermal layers (Kruse et 

al. 2007). Over a couple months feeding produces serpentine mining pattern through the 

leaf. Larvae undergo four instar stages and pupate within the mines before emerging as 

adults in late August and September (Kruse et al. 2007). In 2006 a significant outbreak 

occurred in Alaska and over a two-year span 305,200 ha were affected (U.S. Forest 

Service, 2006, 2007). Leaf mining can causes damage to Populus by reducing 

photosynthesis and growth and causing early leaf abscission (Wagner et al. 2008).  

Gypsy Moth 

Gypsy moth, a non-native lepidopteran species accidentally introduced to the 

USA in the late 19th century, has become one of North America’s most devastating forest 
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pests.  They can successfully consume over two hundred different plant species including 

Populus (McFadden and McManus 1991).  Plant host availability, limited natural 

enemies, and the fact that it can probably survive anywhere in the USA (Giese and 

Schneider 1979), make the gypsy moth a threat to Populus plantation forests in North 

America. Gypsy moth adult females can deposit up to 1,000 eggs in an egg mass. Newly 

hatched larvae disperse by “ballooning” and begin feeding when they encounter an 

acceptable food source. Insects undergo four larval instar stages before transforming into 

pupae sometime in late June or July. Male moths typically emerge first and begin to fly to 

find a mate. Adult female moths have well-developed wings but are unable to fly. 

Females use the sex pheromone disparlure, 2-methyl-7R, 8S-epoxy-octadane, to attract 

adult males (Bierl et al. 1970). After mating females uslayy lay eggs in the same location 

where she pupated. Since its introduction in 1979 it has gradually expanded its range 

(Liebhold et al. 1992) and can now be found as far west as Minnesota. Millions of acres 

of trees each year have been defoliated since its introduction and the continued expansion 

of the species threatens vulnerable hardwood populations despite several large-scale 

barrier programs (McFadden and McManus 1991).  

Populus Defenses Against Insect Herbivory 

Terminology and Overview of Populus Defenses to Lepidopterans 

Insect herbivory is a major stress on plants. Due to their sedentary lifestyle trees 

cannot escape their environment. To deter insects from feeding, trees have evolved a 

suite of secondary metabolites, biochemical defenses, physical defenses, and indirect 

defenses to deter or reduce defoliation and make the host plant more insect resistant. 

Defense, as defined by Karban and Baldwin (1997) and Strauss and Agrawal (1999), 
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refers to plant traits that provide a fitness benefit to the plant in the presence of insect 

herbivores.  A defense therefore may or may not harm the insect herbivore. IR, however, 

refers to plant traits that reduce performance or preference of herbivores. Plants respond 

to insect herbivory through chemical and physical features designed to limit the feeding 

insects directly (direct defenses) or through tritrophic interactions initiated by the release 

of volatile bouquets to attract predators of the attacking insect (indirect defenses, Howe 

and Jander 2008). 

Defenses against insects are costly (Baldwin 1998; Mauricio 1998; Koricheva 

2002; Strauss et al. 2002) and require trees to balance resource allocation between the 

growth and development of the tree and defending it from insect herbivores. Therefore, 

plants, such as Populus, have evolved a combination of constitutive and inducible 

defense strategies to limit insect feeding. Constitutive defenses involve anatomical 

features and chemical compounds that are present regardless of whether or not insect 

herbivores are on the tree (Howe and Jander 2008). Constitutive defenses serve as a 

primary level of defense against insect herbivores. Inducible defenses are only expressed 

in the plant in response to the presence of a particular stress (Howe and Jander 2008) and 

are under tight regulatory control (Philippe & Bohlmann 2007; Kessler and Baldwin 

2002) as these responses divert resources away from primary processes like 

photosynthesis (Mattson and Palmer 1988). Induced defenses can be activated locally, or 

systemically following wounding and insect feeding (figure 3, Parson et al. 1989; 

Arimura et al. 2004; Lawrence et al. 2006; Major and Constabel 2006; Babst et al. 2009; 

Philippe et al. 2010). The signals that activate local and systemic induced genes in 

Populus are poorly understood. However, there is evidence that they may come from 
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jasmonates by way of the octadecanoid pathway (Havill and Raffa 1999; Constabel et al. 

2000; Haruta et al. 2001, Arimura et al. 2004; Philippe et al. 2010). Studies based on 

Populus and other plant species suggest other signals could include sugar sensing (Ehness 

et al. 1997, Rolland et al. 2002), electrical (Lautner et al. 2005), and volatiles (Frost et al. 

2007). 

Insect herbivory creates a need for resources to support the production of induced 

defenses. However, loss of leaf material at the herbivory site means less photosynthesis 

and less carbon available for assimilation to support plant defenses (Schultz et al. 2013). 

Therefore, resources need to be reallocated from other existing resource pools to create 

plant defenses. Demand can be met by increased sink strength, a relative ability to draw 

in and unload photosynthate, at the site of herbivory (Schultz et al. 2013). Sinks are 

defined as tissues to which photosynthate is drawn. Sources are mature leaves that create 

carbohydrates through photosynthesis. Mechanical damage, insect feeding, and jasmonic 

acid have been shown to increase the sink strength to produce phenolic defense 

compounds in developing leaves for Populus (Arnold and Schultz 2002; Arnold et al. 

2004; Babst et al. 2005, Philippe et al. 2010). Leaves neighboring a leaf that has 

undergone herbivory can also be considered sinks as they can experience increased 

carbon import for the production of phenylpropanoids (Arnold et al.2004). Young leaves 

in Populus are considered sink materials as they do not undergo photosynthesis and 

therefore do not have the resources available for their own development, much less for 

defenses (Arnold and Schultz 2002; Arnold et al. 2004). As leaves mature and become 

source leaves they lose their ability to increase sink strength (Arnold et al. 2004). The 

leaf plastochron index (LPI) developed by Larson and Isebrands (1971) has been used to 
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Figure 3: Schematic diagram of Populus defenses against insect herbivores. Insect 
herbivores encounter direct and indirect defenses designed to limit insect feeding. Direct 
defenses can be constitutive (present regardless of insect presence) or induced upon 
insect feeding. Some constitutive physical defenses, such as trichomes and epicuticular 
wax, as well as chemical defenses, such as phenolic glycosides (PGs), serve as a first line 
of defense against herbivory. Other compounds, such as condensed tannins, kunitz 
protease inhibitors (KPIs), and chitinases are induced upon insect feeding. Insect 
presence and feeding can also cause the induction of indirect defenses. The bouquet of 
volatiles released by injured tissue serves to attract natural predators of the insect 
herbivore, such as parasitic wasps, to come to the tree. Feeding by insect herbivores not 
only induces local plant defenses in the wounded leaf, it can also activate systemic sink 
leaves through signals that either travel through plant through phloem or by volatiles. 
Image of WMTM comes from Kevin D. Arvin, Bugwood.org. Image of the paper wasp 
Polistes fuscatus comes from Johnny N. Dell, Bugwood.org. 
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standardize developmental stage of leaves in Populus (Philippe and Bohlman 2007). The 

first leaf that is 2 cm in length is designated as LPI 0 and the transition from sink to 

source leaves in Populus occurs between LPI five and six (Larson and Dickson RE 

1973). Another factor that can influence activation of systemic defenses is phloem 

connectivity between leaves. In a study by Davis et al. (1991) mechanical wounding of 

LPI 9 resulted in win3 transcript detection in unwounded portions of the wounded leaf as 

well as in LPI 4. This study demonstrated that every fifth leaf is connected by phloem 

and that local wounding could activate defenses in leaves that were connected 

systemically. The next few sections will discuss specific examples of Populus defenses. 

For additional information on general Populus defenses used in response to insect 

herbivory see Philippe & Bohlmann (2007), Ralph (2009), and Lindroth and St. Clair 

(2013).  

Populus Constitutive Defenses 

Physical. Constitutive defenses that serve as physical barriers to directly impede 

lepidopteran feeding on Populus leaves include trichomes (Rudgers et al. 2004) and 

epicuticular waxes (Eigenbrode and Espelie 1995). Trichomes are enlarged, modified 

epidermal cells that extend from epidermal layers either as hair-like projections to serve 

as a barrier to insect feeding, or grow perpendicular to the leaf surface as glandular 

trichomes that accumulate toxins (Wagner 1991; Mauricio 1998; Simmons and Gurr 

2005).  As their density increases, trichomes can decrease transpiration rates (Choinski 

and Wise 1999; Pérez-Estrada et al. 2000) and increase defenses against herbivores and 

parasites (Neal et al. 1989; Bodnaryk 1996). In a forward genetic screen of AT Populus 

Harrison et al. (2007) identified a mutant, fuzzy, with increased trichome density. Plett et 
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al. (2010) identified the over-expressed gene in the fuzzy mutant as a MYB transcription 

factor and confirmed that greater trichome density in the mutant negatively impacted 

WMTM larval feeding and development in choice and no-choice bioassays. 

Leaf surfaces are covered by a cuticle, consisting of a cutin matrix along with 

cuticular waxes that form a barrier between the plant and its environment (Jenks and 

Ashworth 1999; Martin and Juniper 1970). Cuticular waxes are complex mixtures of 

primary alcohols, fatty acids, and alkyl esters combined with odd-numbered chain length 

hydrocarbons, secondary alcohols, and ketones (Walton 1990). Waxes inside the cutin 

matrix are called intracuticular whereas waxes outside the cutin matrix and exposed on 

the leaf surface are called epicuticular waxes (Jetter et al. 2000). Epicuticular waxes have 

diverse chemical compositions, and can change in relative abundance depending on plant 

age and development, and the environment (Jenks and Ashworth 1999). Epicuticular 

waxes are important for reducing surface transpiration in plants (Jordan et al. 1984; 

Cameron et al. 2002). Epicuticular waxes have also been shown to have a role in plant 

defense to insects. For insect herbivores to consume leaf material they must come in 

contact with the leaf surface and either consume or penetrate through the waxy layer 

(Southwood 1986; Eigenbrode 1996). The cuticle has been shown to impact insect 

behavior in a number of studies (Varela and Bernays 1988; Renwick et al. 1992; Griffiths 

et al. 2000; Eigenbrode and Jetter 2002). Laboratory experiments by Alfaro-Tapia et al. 

(2007) demonstrated that Chaitophorus leucomelas (Koch) devoted less time to probing 

behavior in resistant hybrids of Populus compared to susceptible hybrids. However, when 

leaves were de-waxed they did not observe a difference in probing behavior time. As a 
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physical barrier it appears to be effective in negatively impacting Chaitophorus 

leucomelas (Koch) feeding behavior. 

Chemical. In addition to physical characteristics, Populus also produce 

constitutive chemical defenses. One of the major classes of secondary metabolites found 

within Populus species are phenols. These compounds are regulated by the 

shikimate/phenylpropanoid pathways (Philippe and Bohlmann 2007), which produce 

thousands of chemicals including simple phenols, flavanoids, stilbenes, coumarins, 

lignans and the salicin-based phenolic glycosides (PGs), hydroxycinnate derivitives 

(HCDs) and condensed tannins (CTs) (Tsai et al. 2006, Philippe and Bohlmann 2007). 

Their roles in defense, as well as genes involved in the phenylpropanoid pathway, are 

covered in reviews by Tsai et al. (2006) and Chen et al. (2009). Only a few of these 

chemical groups have been studied for their role in plant defense against insects. The 

most studied example of chemical constitutive defenses in Populus are the suite of 

salicylate-glycosides known as PGs. Biosynthesis of salicylate-derived PGs in Populus 

are poorly understood (Chen et al. 2009). However, it appears this group of compounds is 

derived from precursors of salicylic acid biosynthesis (Pierpoint 1994; Lee et al. 1995; 

Dempsey et al. 1999). Salicylic acid can be synthesized from chorismate-phenylalanine 

via cinnamate and benzoate although it has been shown in Arabidopsis that salicylic acid 

can be synthesized in chloroplasts from isochorismate (Wildermuth et al. 2001; Metraux 

2002). Twenty salicylate-derived PGS have been found within the genus Populus, 

however, the best-studied PGs in terms of IR in Populus are salicin, salicortin, 

tremuloidin, and tremulacin (figure 4, Tsai et al. 2006). Phenolic glycoside tissue 

concentration, like many secondary chemical defenses in Populus, are shaped by genetic, 
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developmental, and environmental factors (Lindroth and Clair 2013). PGs are found 

 

Figure 4: Populus tremuloides (Michaux) phenolic glycosides. Salicin, salicortin, 
tremuloidin, and tremulacin are well-studied PGs. Insecticidal activity increases from left 
(salicin) to the right (tremulacin). Structures come from the National Center for 
Biotechnology Information (NCBI) PubChem database. 
 

within bark and leaf tissues of Populus. Within leaves, salicin and tremuloidin occur in 

low concentrations, roughly 1%. However, salicortin and tremulacin can be as high as 

15% (Hemming and Lindroth 1995; Lindroth and Hwang 1996; Osier et al. 2000). 

Populus tremuloides Michaux clones can exhibit as much as a 10-fold variation in levels 

of foliar PGS across landscapes of North America (Lindroth and Hwang 1996; 

Donaldson et al. 2006b), which is of greater variation than that observed for primary 

metabolites (Lindroth 2011). This suggests that Populus species may have more diverse 

evolutionary strategies for defense than primary metabolism (Lindroth and St. Clair 

2013).     

 Developmentally, PGs decline dramatically during the first ten years of life for 

Populus ramets (Donaldson et al. 2006a; Smith et al. 2011) but can revert back to the 

juvenile chemical profile of PGs after being cut back (Stevens et al. 2012), suggesting 

that many PGs may actually be targeting mammalian herbivores. Genotype largely 

dictates PG concentration in leaves and their impact on gypsy moth biomass and 

development (Osier and Lindroth 2006). However, environmental conditions, such as 

Salicortin Salicin Tremuloidin Tremulacin 
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high light, high carbon dioxide, and low nutrient availability can also increase 

concentrations of PGs (Lindroth et al.1993; Osier and Lindroth 2006). As previously 

mentioned, chemical defenses come at a cost, which in certain environments can reduce 

plant fitness. Osier and Lindroth (2006) observed growth of young saplings was inversely 

correlated with phenolic glycoside concentrations when the environment had low light 

and nutrient availability but was not correlated when all available resources were 

abundant. Older saplings showed the opposite effect, where PG production was more 

costly under high nutrient conditions, suggesting that older trees will devote more energy 

to growth once established (Stevens et al. 2007). The last two studies in particular, 

highlight how the interplay of genetics, environment, and development impact the 

production of PGs in Populus. 

PGs may function as more reactive products following insect consumption 

(Clausen et al. 1990) by creating oxidative stress or binding covalently with proteins to 

hinder enzymatic reactions and disrupt nutrient uptake (Felton et al. 1992; Appel 1993; 

Summers and Felton 1994). PGs have been shown to be effective at reducing tree 

defoliation at low to moderate insect densities (Donaldson and Lindroth 2007) but at high 

densities where all leaf material is consumed these compounds have little effect 

(Donaldson and Lindroth 2007). Constitutive levels of PGs, such as salicortin and 

tremulacin, cause shifts in feeding preferences and distributional patterns, reduce 

consumption, and negatively impact growth and development in gypsy moth and FTC 

(Lindroth and Hwang 1996; Lindroth and Kinney 1998; Osier et al. 2000; Hemming and 

Lindroth 2000; Osier and Lindroth 2001; Osier and Lindroth 2004). As an example, 

Hemming and Lindroth (2000) fed fourth instar FTC and gypsy moth leaves 
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supplemented with 0, 2, or 4% of PGs and 0 or 5% casein. At the 4% PG concentration, 

there was an increase in duration in the fourth instar of FTC and gypsy moth (16 and 12% 

respectively) as well as a reduction in growth (27% gypsy moth, 14% FTC). Digestibility 

was also slightly reduced with increased PGs for gypsy moths but not for FTC (Hemming 

and Lindroth 2000). Numerous studies have shown levels of PGs within Populus can also 

shape the community of FTC and gypsy moth larvae populations (Lindroth and Hemming 

1990; Lindroth and Bloomer 1991; Lindroth et al. 1991; Hemming and Lindroth 1995; 

Hwang and Lindroth 1997; Donaldson and Lindroth 2007). Previous herbivory damage 

may also change the chemical composition of PGs, although the only study 

demonstrating this effect occurred when substantial damage was done to young growing 

trees and PGs increased in new leaves produced right after the event (Stevens and 

Lindroth 2005).  

While PGs are considered a constitutive defense, it is important to note that they 

may also be inducible (Clausen et al. 1989; Lindroth and Kinney 1998). Clausen et al. 

(1989) simulated herbivory by crushing of leaf tissue which resulted in significant 

increases in salicortin and tremulacin in leaves within 24 hours. The conversion of 

salicortin and tremulacin to 6-hydroxy-2-clyclohexenone and the degradation of these 

products to catechol, which are toxic to the large aspen tortrix, provided a plausible 

mechanism for short-term resistance in Populus tremuloides to insect herbivory. Lindroth 

and Kinney (1998) also demonstrated that gypsy moth defoliation induced PGs in 

Populus tremuloides (Michaux) aspen.  

Induced Defenses 
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Probably the best-studied induced chemical defenses in Populus are a group of 

plant phenols called tannins. Tannins can be broken down into hydolyzable tannins (HT) 

and condensed tannins (CT) (Hagerman and Butler 1989). HTs contain structures with a 

core, usually glucose, which is esterified with galloyl groups (Barbehenn and Constabel 

2011). CTs are polymers of flavan-3-ol subunits with chain lengths that can vary among 

Populus species (Schweitzer et al. 2008). Tannins are widely distributed in the plant 

kingdom (Mole 1993; Porter 1988) and found within various tissues of woody plants.  

Concentrations of tannins within plant species can be highly variable due to genotype, 

tissue development stage and environment. Levels of CTs in Populus leaves can be up to 

25% of leaf dry weight (Donaldson and Lindroth 2008) but are generally much lower in 

woody tissues (Lindroth et al. 2007). CTs generally accumulate in the vacuole of leaves 

and fruit (Kao et al. 2002; Lees et al. 1993) while HTs are known to be concentrated in 

the cell wall of mesophyll cells (Grundhofer et al. 2001). In P. tremuloides and P. 

angustifolia, CT levels are twice as high in mature leaves as developing leaves 

(Donaldson et al. 2006b; Rehill et al. 2006). However, unlike PGs, CTs generally show 

an increase in levels during the first ten years of life for Populus (Donaldson et al. 

2006b). Increases in CT as trees mature suggest that those compounds are targeting insect 

herbivores (Lindroth and St. Clair 2013). There is some debate as to whether CT have a 

role in IR in Populus to common lepidopteran pests. To date there is little evidence that 

supports the role of CTs as defenses against major lepidopteran pests of Populus (Osier 

and Lindroth 2001; Osier and Lindroth 2004; Schweitzer et al. 2008; Constabel and 

Lindroth 2010; Lindroth and St. Clair 2013). CT genes do appear to be induced upon 

wounding and herbivory (Osier and Lindroth 2001; Kao et al. 2002; Peters and Constabel 
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2002; Tsai et al. 2006). For example, dihydroflavanol reductase enzymes are involved in 

CT synthesis and is significantly induced 24h following mechanical wounding feeding by 

satin moth larvae (Leucoma salicis Linnaeus) and FTC (Peters and Constabel 2002). In 

other tree species tannins can play a role in IR. For example, Kopper et al. (2002) 

reported that WMTM larve reared on a diet with higher CT concentrations from paper 

birch Betula papyrifera Marshall had increased instar duration, decreased relative growth 

rate, and decreased food conversion. However, WMTM ate more and grew larger on diets 

containing tannin than the control diet. While there is limited evidence support to a direct 

role in IR in Populus tannins, they may facilitate rapid nutrient uptake and plant recovery 

following herbivory (Lindroth and St. Clair 2013) and may protect the tree from 

pathogens such as shoot blight (Holeski et al. 2009). Also, Populus tremuloides 

(Michaux) tannins are negatively correlated with performance of specialized aspen-

feeding chryosomelids (Donaldson and Lindroth 2004).  

Some proteinaceous defenses, such as the kunitz protease inhibitors (KPI) and 

chitinases, are induced in response to wounding and insect herbivory. Protease inhibitors 

may have roles in regulating endogenous protease activities, storage proteins, or 

biochemical defenses (Ryan 1973; Richardson 1977; Phillipe et al. 2009). KPI’s are 

induced by insect feeding or mechanical wounding in a number of studies (Bradshaw et 

al. 1990, Haruta et al. 2001, Christopher et al. 2004; Ralph et al. 2006; Philippe and 

Bohlman 2007). There is also evidence from in vitro studies that KPI’s directly inhibit 

proteases in FTC gut extracts (Major and Constabel 2008). A study by Philippe et al. 

(2009) identified 31 KPIs in the Populus trichocarpa genome. There are six Populus 

specific subfamilies of KPIs, suggesting that tandem duplications are driving the 



 41 

expansion of these protease inhibitors. There is not a lot of evidence that KPI’s are 

effective against insect herbivory in Populus, but when the win3-encoded KPI protein 

from Populus was expressed in tobacco and tomato it lead to decreased larval weight gain 

of tobacco budworm (Heliothis virescens Fabricius) (Lawrence and Novak 2001).  

Chitinases were among the first defensive genes found in Populus. Chitinases are 

glycosyl hydrolases that can degrade chitin to low molecular weight chitooligomers 

(Hamid et al. 2013). It is thought that plant chitinases may target the peritrophic 

membrane of the insect gut, which contains chitin as a protective barrier for the insect gut 

(Richards and Richards 1977; Chapman 1985). Win6 and win8, basic chitinases, are 

strongly and systemically induced in Populus in response to wounding (Parsons et al. 

1989; Davis et al. 1991; Clarke et al. 1998). Jiang et al. (2013) identified 37 chitinases 

with a complete open reading frame in Populus trichocarpa that could be grouped into 

five different classes of chitinases using phylogenetics. As seen with the KPIs, some 

chitinase subfamilies, such as the class 1 and class 3 chitinases, were in localized tandem 

repeats. Within chitinase families some genes were highly expressed when exposed to 

fungus, methyl jasmonate, and following wounding (Jiang et al. 2013). The best evidence 

for their role in defense against insects comes from a study by Lawrence and Novak 

(2006). Colorado potato beetles that fed on transgenic tomato plants with the win6 

chitinase from P. trichocarpa x P. deltoides Bartr. showed slower development compared 

to control plants.  

Several other studies have been done to explore inducible genes and their role in 

Populus defense against insect herbivory through indirect means. These studies have 

identified signaling compounds, such as methyl jasmonate (Wu et al. 2008) and ethylene 
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(Benavente and Alonso 2006), and volatile organic terpenoids used in tritrophic 

interactions intended to attract enemies of herbivores (Arimura et al. 2004). In many 

plant species herbivore induced volatiles act as direct defenses because of their toxicity or 

as indirect defenses by attracting natural enemies of the herbivore (Yuan et al. 2008). 

Volatile emissions of mono-, sesqui-, and homo-terpenoids, phenolics, and benzene 

cyanide appear to be herbivore induced in Populus as an indirect defense to attract 

parasitoids (Ariumura et al. 2004). Terpenoids can be increased by the cytosol-localized 

mevalonate (MVA) pathway or the plastid-localized methylerythritolphosphate (MEP) 

pathway (Tholl 2006). Formation of monoterpenes, diterpenes, and sesquiterpenes is 

catalyzed by terpene synthases (Chen et al. 2009). The terpene synthase gene family 

consists of 38 members within Populus trichocarpa (Irmish et al. 2014). They were able 

to identify and isolate 11 terpene synthase genes from gypsy moth damaged leaves. A 

subset of these genes were found to be upregulated after herbivory and to be regulated by 

jasmonates. Interestingly, gene expression differences were observed in damaged leaves 

only, suggesting no systemic induction. Sesquiterpenes have been shown to be released 

due to insect herbivory, such as (E,E)-α farnescene from FTC damage (Arimura et al. 

2004) and (E)-β-caryophyllene from gypsy moths (Frost et al. 2007). McCormick et al. 

(2014) tested volatile emission from damaged and adjacent undamaged leaves of Populus 

nigra after herbivory by gypsy moth caterpillars to determine whether compounds 

attracted the gypsy moth parasitoid Glyptapanteles liparidis (Braconidae). Volatiles 

released by damaged leaves included terpenes, green leaf volatiles, and nitrogen 

containing compounds such as aldoximes and nitriles. Volatile emission release appeared 

to be regulated by jasmonate signaling and local activation of volatile biosynthesis. 
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Further work needs to be done to identify and characterize genes involved in indirect 

defenses and to identify volatiles that are involved in recruitment of lepidopteran 

parasitoids. 

Significant research has been done to identify genes with transcriptional responses 

to insect herbivory. Christopher et al. (2004) used macroarrays with 580 cDNAs to look 

at leaf responses 24 hours after mechanical wounding or wounding with FTC regurgitant 

in P. trichocarpa x P. deltoides. They observed that chitinases, PPO, KPIs, vegetative 

storage proteins, and genes involved in octadecanoid and phenylpropanoid biosynthesis 

were induced by both treatments, but the magnitude of induction was generally larger in 

the wounding plus regurgitant treatment. Lawrence et al. (2006) used RNA differential 

display to identify 57 distinct genes that were differentially expressed in leaves after 

feeding by gypsy moth or after mechanical wounding compared to control leaves.  They 

identified three sequence motifs in the 5’ region of 15 of the wound-induced genes that 

were overrepresented (i.e., DRE element, W box, and H box), potentially identifying 

regulators of wound-inducible promoters. Major and Constabel (2006)  used a 

macroarray with 580 cDNAs to compare the transcriptome profiles of P. trichocarpa x P. 

deltoides elicited by wounding and regurgitant from FTC in treated and systemic leaves. 

They identified wound-responsive genes involved in primary and secondary metabolism 

and found three unknown genes with a ZIM motif that may be transcription factors. 

These proteins were later called jasmonate ZIM-domain (JAZ) proteins and they are 

important regulators of jasmonate signaling in that they repress transcription of genes that 

respond to jasmonate (Thines et al. 2007, Chini et al. 2007).  Overlapping expression was 

observed in directly treated and systemically induced leaves. The chemical volicitin from 
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insect regurgitant was identified as the factor that induced expression of these genes. 

Ralph et al. (2006) used a microarray with 15,496 cDNAs to measure changes in gene 

expression after 24 hours of FTC feeding.  They identified 1,191 up-regulated genes and 

557 down-regulated genes in response to insect feeding.  Induced defenses included 

proteinaceous defenses, like KPI’s and chitinases, enzymes involved in secondary 

metabolism (e.g. cytochrome P450s, polyphenol oxidase, terpene synthases), as well as 

many new genes that were previously not associated with plant defense.  These included 

leucine-rich repeat containing transmembrane/receptor-like kinases, ATP-binding 

cassette (ABC) proteins, and genes involved in carotenoid biosynthesis and many 

different transcription factors. Miranda et al. (2007) also looked at the P. trichocarpa x P. 

deltoides leaf transcriptome in response to poplar leaf rust (Melampsora medusae) as well 

as FTC feeding.  Many genes that were repressed by rust at 3, 6, and 9 days post-

innoculation were induced after 24 hours of insect feeding. This suggests a possible 

antagonistic response of Populus to the pathogen versus insect feeding. 

Babst et al (2009) used microarrays to examine the transcriptional response of P. 

nigra leaves to gypsy moth feeding or the stress hormone jasmonic acid in local and 

systemic leaves.  Eight hundred genes were induced, although only 14% of those were 

induced in response to both gypsy moth herbivory and exogenous jasmonic acid.  This 

suggests that although jasmonates are released in response to insect feeding, it is not a 

good treatment to identify genes involved in the response to insect herbivory.  Gypsy 

moth feeding resulted in the up-regulation of genes involved in jasmonate biosynthesis, 

abscisic acid biosynthesis, and other signaling pathways. Babst et al. (2009) also 

observed that gypsy moth feeding on local leaves resulted in greater gene expression 
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differences than untreated systemic leaves and genes that did respond in systemic leaves 

were a subset of those found in local leaves.  The authors suggested that genes induced in 

local and systemic leaves may be the highest quality IR candidates for additional future 

work.  

Philippe et al. (2010) measured transcriptional responses in local source, systemic 

source, and systemic sink leaves 2, 6, and 24h following the application of FTC oral 

secretions on mechanically wounded leaves. Genes with the greatest expression 

differences between local source and systemic sink leaves included galactinol synthase, 

heat shock proteins, KPIs, and proteins of unknown functions. Phillippe et al. (2010) also 

observed rapid and strong expression differences in local source leaves, weaker and 

slower responses in systemic source leaves, and faster stronger responses in systemic sink 

leaves (compared to systemic source leaves). While a significant number of genes have 

been collectively identified as potential targets in these studies, future transcriptomic 

studies in Populus should look at 1) induction of gene expression in response to different 

insects, 2) temporal patterns of activated defensive genes, and 3) earlier time-points in 

order to capture early molecular events that initiate in defensive signaling cascades 

(Ralph 2009).  

Other important studies have focused on validating targets identified from these 

microarray experiments to confirm their role in IR. Biochemical characterization has 

been done via heterologous expression of recombinant proteins in yeast or bacteria. On 

addition, purified protein or metabolite has been added to an artificial diet to study their 

impacts on insect growth and development (Major and Constabel 2008; Arimura et al. 

2004; Peters and Constabel 2002). Transgenics have also been a successful approach to 
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study herbivory-induced genes and their effectiveness in inhibiting insect performance.  

McCown et al. (1991) generated P. alba x P. grandidentata and P. nigra x P. trichocarpa 

transgenic lines to express d-endotoxin that negatively impacted feeding of FTC and 

gypsy moth larvae.  Gill et al. (2003) used transgenic P. tremula x P. alba INRA 717-1-

B4 to over-express tryptophan decarboxylase.  Tryptophan decarboxylase catalyzes the 

decarboxylation of tryptophan to tryptamine, which may inhibit insect development and 

reproduction. The transgenic Populus were shown to have higher levels of tryptamine, 

which resulted in reduced leaf consumption by FTCs feeding on control trees.  

Conclusion 

 Substantial work has been made done to understand how plants, specifically 

Populus, defend themselves against lepidopteran pests. We now have comprehensive 

inventories of genes that are transcriptionally activated and repressed in response to 

insect herbivory, as well as a comprehensive list of secondary metabolites involved. What 

remains to be determined is which genes are regulating the defense response. With the 

development of AT Populus mutant lines we can now use forward genetics as a 

complimentary approach to continue to identify genes and gene regulatory networks 

involved in IR. Screening of AT Populus by Ralph (2009) for mutants with altered 

resistance to WMTM feeding has identified several mutants for further validation with 

bioassays.  The next chapter will discuss forward genetics, AT, and discuss how we 

screened QU and MTU AT mutants to identify mutants with altered resistance to 

WMTM.   
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CHAPTER III 

 

BIOASSAY SCREENING OF ACTIVATION TAGGED POPULUS TO IDENTIFY 

MUTANTS WITH ALTERED INSECT RESISTANCE 

 

Contributions of Authors 

QU Experiments 

AT Populus were created by Dr. Sharon Regan at Queen’s University. Dr. Steven 

Ralph propagated QU candidates from stem cuttings with assistance from Justin Burum, 

Haylee Dassinger, Alicia Grant, and Diana Bertrand. Justin Burum performed air-layer 

propagation, choice bioassays, and no-choice development bioassays for QU candidates 

with assistance from Alicia Grant and Haylee Dassinger.  

MTU Experiments 

 AT Populus were created by Dr. Victor Busov at Michigan Technological 

University. Dr. Steven Ralph propagated mutant lines in tissue culture and maintained 

healthy trees in incubators at UND with assistance from Justin Burum, Samuel Bandi, 

Heidi Connahs, Brett Gross, Alicia Grant, and Aubree Wilke. Insect care and regurgitant 

collection was primarily done by Justin Burum, with assistance from Heidi Connahs and 

Samuel Bandi. Justin Burum screened 392 mutants (50.9%) with assistance from Brett 

Gross, Aubree Wilke, and Eric Jagim. Samuel Bandi, Heidi Connahs, and Steven Ralph 

screened the remaining mutant pairs. Justin Burum conducted choice bioassays 
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comparing mutant candidates against Pt x Pa wildtype. Histograms for each choice 

bioassay, comparison of leaf area FPR and leaf weight FPR, and graphs for individual 

mutant-wildtype comparisons with statistical analysis were done by Justin Burum.  

Introduction 

Despite the knowledge that has been gained from studies highlighted in Chapter 

2, regulatory mechanisms of many plant defensive pathways are still unknown. Prior 

work in Populus to validate genes of interest in response to insect herbivory involved a 

reverse genetics approach. Experiments were conducted to generate lists of genes 

impacted by herbivory and candidates were followed up by creating transgenics to 

confirm their role in IR. While this approach has been successful, it has also revealed that 

genes previously hypothesized to be involved in defense may not actively contribute to 

IR. Two examples of genes that have been shown to be induced after insect feeding but 

have not been shown to be involved in IR in Populus are polyphenol oxidase (PPO) and 

ascorbate oxidase (AO) in Populus. PPOs catalyze the oxidation of ortho-diphenolic 

compounds to quinones (Vaughn and Duke 1984). One proposed IR mechanism for PPO 

is that quinones cross-link proteins and amino acids during feeding, decreasing the 

insect’s ability to absorb amino acids (Duffy and Felton 1991). To test whether or not 

PPO causes IR Wang and Constabel (2004) created transgenic poplar to significantly 

over-express PPO and tested them on different insect species. They determined that only 

first instar FTC larvae from older egg masses showed higher mortality and reduced 

weight gain when fed on transgenic leaf disks as compared to wildtype leaf disks. Insect 

feeding choice was no different for wildtype versus mutants. Barbehenn et al. (2007) also 

used up-regulated PPO Populus to examine effects on consumption and growth rate of 
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gypsy moth and WMTM. There was no difference in either consumption or growth rate 

between insects that fed on mutant versus wildtype leaf disks, suggesting that more 

controlled mechanistic studies need to be done on plant-herbivore systems to determine if 

PPO has an effect on insect performance.    

Ascorbate oxidase (AO) has also been investigated for its potential role in poplar 

defense. Ascorbate is an antioxidant that is an essential nutrient involved in catalyzing the 

oxidation of L-ascorbate to dehydroascorbate in insects (Barbehenn et al. 2008) and has 

been shown to be induced in response to insect herbivory and wounding (Felton and 

Summers 1993; Bi et al. 1997). Barbehenn et al. (2008) used transgenic Populus with 14-

37 fold higher foliar expression of AO than wildtype plants to examine effects on gypsy 

moth and Melanoplus sanguinipes grasshoppers. No significant difference in ascorbyl 

radicals within the insect gut or relative consumption rate, growth rate, or nutritional 

indices between transgenic and wildtype trees were found. The authors of this study 

concluded that AO is unlikely to serve as a defense against these two insect species as 

there was no impact on feeding and development.  

These examples highlight that induction of genes following insect herbivory does 

not always correlate to an active role in defending the plant. An alternative or 

complimentary approach that can be applied to identifying genes involved in plant 

defense is forward genetics. Forward genetics, specifically using activation tagging (AT) 

in Populus, may reveal genes that can influence plant defense from leaf defoliating 

insects.  

Forward Genetics 
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Forward genetics has become a successful approach to identify genes responsible 

for a trait of interest in plants (Alonso and Ecker 2006). Forward genetics begins with the 

generation of a randomly mutated population, screening that population for alterations in 

the phenotype of interest, and then identifying the mutated gene that is causing the 

resulting phenotype (Alonso and Ecker 2006). One Agrobacterium T-DNA insertional 

mutagenesis approach that has been successfully applied in a variety of plant species, 

including Populus, has been AT.  

In nature, Agrobacterium tumefaciens is a soil bacterium responsible for crown 

gall disease in over 140 plant species. To infect the plant, Agrobacterium tumefasciens 

inserts a tumor-inducing plasmid. The plasmid contains a small segment of DNA, called 

a transfer DNA (T-DNA), as well as several additional genes necessary to transfer the 

plasmid into the plant host cell, cut out the T-DNA, and randomly integrate the T-DNA 

in actively transcribed regions of chromosomal DNA of the plant cell. The T-DNA 

encodes genes to produce auxin or indole-3-acetic acid that stimulate cell proliferation 

and the formation of galls. In AT, the T-DNA is modified to remove genes that induce 

gall formations. These genes are replaced with a series of strong enhancers positioned 

next to the right or left hand border of the plasmid. The T-DNA inserts randomly within 

the plant genome through the use of Agrobacterium tumefasciens and the enhancers can 

recruit transcription factors to the promoter region of nearby genes to produce gain of 

function mutants (Weigel et al. 2000).   

A few decades ago Walden and colleagues (Hayashi et al. 1992) constructed the 

first T-DNA vector with four copies of an enhancer element from the cauliflower mosaic 

virus (CaMV) 35S gene and used Agrobacterium tumefaciens to infect the plant (figure 
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5). The AT mutants containing the T-DNA insert showed the same tissue/cell pattern of 

gene expression in wild-type plants, but the level of expression was enhanced 

approximately 5-10 fold. Altered phenotypes in mutants were related to normal 

endogenous gene function but at a higher level of transcription than in wildtype plants. 

Since that initial study a number of different AT vectors have been used to look at a 

variety of phenotypes including flowering (Lee et al. 2000; Kardailsky et al. 1999), 

secondary metabolism (Woodward et al. 2005; Borevitz et al. 2000), growth and 

development (Busov et al. 2003; Zhang et al. 2006; Schomburg et al. 2003; Li et al. 

2002), abiotic stress (Yu et al. 2008; Zhang et al. 2008; Yoo et al. 2007), pathogen 

resistance (Koch et al. 2006; Xia et al. 2004; Grant et al. 2003; Suzuki et al. 2004) and IR 

(Ralph 2009; Chen et al. 2012). 

Activation Tagging in Populus 

AT is ideally suited for Populus because: 1) mutants express a dominant 

phenotype that is typically visible in the primary transformant (important in Populus that 

do not develop flowers for 7-10 years) and 2) the frequency of visible mutants observed 

in screens of Populus is high compared to Arabidopsis, likely due to a high level of 

epigenetic gene silencing in Arabidopsis in second generation progeny (Harrison et al. 

2007). Dr. Steve Strauss’s lab described the first AT Populus population  (Busov et al. 

2003) where 627 independent mutant lines were generated using Agrobacterium 

tumefasciens to insert the AT vectors pSKI015 and pSKI074 into the Pt x Pa genetic 

background. Transformants were screened for visible phenotypes in tissue culture, 

greenhouse, and field environments. The first phenotype identified was a dwarf variety 

with reduced internode length and overall stature that was caused by overexpression of 
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Figure 5: Activation tagging procedure. A T-DNA, containing four copies of the CaMV enhancer is 
transformed into Agrobacterium tumefasciens. Leaf tissue is inoculated with Agrobacterium which randomly 
inserts the T-DNA within the Populus genome, increasing transcription of a nearby gene by enhancing its 
promoter. AT mutants can then be grown in tissue culture and then transferred to the greenhouse to be 
screened for phenotypic differences. 
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GA 2-oxidase gene (Busov et al. 2003). Since then a few populations have been created 

and screened for various traits. Dr. Sharon Regan at QU has created the largest 

population to date using Agrobacterium mediated transformation with the pSKI074 AT 

vector (1,800 trees; Harrison et al. 2007). Phenotypic analysis of greenhouse-grown 

plants in the QU population has assessed leaf size, leaf shape, leaf texture, leaf spacing, 

stem size, stem shape, stem texture, internal wood color, overall size, and tree shape. 

Using these features, at least 50 different visible phenotypes have been observed among 

the 1,800 lines, indicating an altered phenotype rate of about 3% (Harrison et al. 2007).  

In a study by Busov et al. (2010) 627 independent AT events were planted 

outdoors in a two-year field study. Prior to the field exposure 1.6% of AT Populus 

showed a phenotypic difference under greenhouse conditions. However, after two 

growing seasons in the field nearly 6.5% of the mutants showed visable phenotypes. 

Therfore, AT Populus allowed to interact with the environment revealed a greater 

number of mutants with detectable phenotypic differences. 

 A few interesting visible phenotypes have been identified from these AT 

populations. One mutant identified from the AT populations from Harrison et al. (2007) 

and Busov et al. (2010) showed enhanced woody growth and changes in bark texture 

caused by increased secondary phloem production (Yordanov et al. 2010). The mutation 

was identified as an activation of a novel lateral boundaries domain (LBD) transcription 

factor (Yordanov et al. 2010). Suppression of the gene lead to decreased diameter growth 

and irregular phloem development. In a study by Trupiano et al. (2013) they identified 

five mutant AT lines with changes in adventitious rooting in Populus. In one line with 
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increased adventitious rooting they identified the up-regulated gene as an AP2/ERF 

transcription factor. 

These studies highlight how AT mutagenesis has been successfully used to 

identify genes involved in morphological phenotypes. IR is, however, not a visible 

phenotype and cannot be determined simply by looking at the plant. The IR phenotype 

can only be observed in response to insect feeding. Therefore screening needs to be 

conducted on many AT mutants in a manner that can measure IR to identify candidates 

for eventual T-DNA mapping and identification of genes responsible for the phenotype 

(Ralph 2009).   

One approach to identify genotypes with IR has been to conduct molecular 

genetic screening for specific plant metabolites known to increase plant IR, followed by 

insect bioassay validation and identification of mutation(s) contributing to the phenotype.  

An example of this approach involved screening for leaf glucosinolates in Arabidopsis. 

Beginning with bioassays to identify leaf glucosinolate content based on quinone 

reductase activity in Arabidopsis (Gross et al. 2000), Grubb et al. (2002) were able to 

positively correlate quinone reductase and leaf glucosinolate profiles using leaf disks. 

Cell-free leaf extracts from a large collection of AT Arabidopsis mutants were screened 

for altered quinone reductase activity (Wang et al. 2002).  One gene identified to have an 

altered glucosinolate profile, later called IQD1, was shown to be induced by mechanical 

wounding of leaves and after infestation of peach aphids (Levy et al. 2005). This 

approach has also been used to identify Arabidopsis AT genotypes with increased 

phenolics. Gigolashvili et al. (2007) they identified a mutant, HIG1, with increased 

expression of an R2R3 MYB transcription factor that activated indolic glucosinolate 
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genes.  This type of approach allows rapid screening for specific metabolites associated 

with the phenotype of interest. The main drawback of this strategy is that plant defenses 

not related to altered metabolite profiles will not be detected. Furthermore, performing a 

comprehensive metabolite profile to identify statistically significant differences is costly 

and time consuming.  

An alternative strategy is to conduct greenhouse, laboratory, or even field studies 

using whole or parts of the plant to directly assess plant defense. A study by Chen et al. 

(2012) screened an AT collection of Arabidopsis thaliana using the green peach aphid 

Myzus persicae (Sulzer) and the virus Turnip yellows virus (TuYV). AT lines were 

exposed to peach aphids carrying the virus and then screened for the efficiency of virus 

transmission as an indicator of insect resistance. Mutants that were virus free following 

aphid feeding were characterized and showed increased resistance to aphids, suggesting 

that their approach allows for rapid screening of thousands of mutants (Chen et al. 2012).  

This work has lead to the identification and characterization of several different mutants. 

In 2013 Chen et al. characterized one of the AT aphid resistant mutants and identified the 

activated gene as At5g65040, later renamed Increased Resistance to Myzus persicae 1 

(IRM1). New transgenics over-expressing IRM1 resulted in aphid resistance, confirming 

observations from the original AT mutant. Using an electrical penetration graph, this 

mutant had an enhanced mechanical barrier to prevent aphids from reaching the phloem.  

On the other hand, aphids easily penetrated the plant tissue of knock-out mutants and 

more rapidly penatrated through the xylem to the phloem.  

In 2014 Chen et al. characterized another aphid resistant mutant with over-

expression of SKS13, a gene normally expressed only in pollen and non-responsive to 
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aphid attack. SKS13 over-expression resulted in aphids having difficulty feeding on 

leaves. Accumulation of reactive oxygen species in this mutant may be regulated by the 

jasmonic acid pathway and cause the IR phenotype (Chen et al. 2014). While there are 

not many examples of bioassays approach being used to screen mutagenized plant 

populations, this strategy has been employed to screen cultivars using either detached 

leaves or whole plants in choice and no-choice assays for IR (Sharma et al. 2005; 

Shankar et al. 2014; Nordman et al. 2005). Within the last ten years a few populations of 

AT Populus mutants have been generated and screened for mutants with morphological 

abnormalities (Busov et al. 2003; Harrison et al. 2007). However, screening for IR has 

been limited (Ralph 2009). Our goal was to use these AT Populus populations and 

bioassays to identify genes involved in IR. 

Proof of Principle of Using Bioassays to Detect IR 

Before a large screen in Populus was attempted, bioassays were conducted on the 

AT mutant fuzzy (Plett et al. 2010) to prove it was possible to identify IR mutants. The 

fuzzy mutant was initially identified from a screen of the AT QU population for having a 

visible “fuzzy” leaf texture due to greater trichome density (Harrison et al. 2007). 

Characterization of the mutant later confirmed that the increased trichome density was 

caused by over-expression of MYB186 (Plett et al. 2010). Plett and colleages from the 

Ralph lab used three different bioassays to test the hypothesis that WMTM larvae feeding 

on fuzzy would exhibit reduced consumption and retarded development compared to 

larvae feeding on wild-type leaves.  

A choice bioassay was conducted to measure leaf consumption when WMTM 

larvae were given both wildtype and fuzzy leaf disks from unwounded leaves. This 



 77 

bioassay determined whether WMTM had a preference for feeding on mutant or wildtype 

leaves. Leaves were harvested and cut into disks from fuzzy and wild type trees using a 

copper pipe, and then pinned in an alternating pattern on large Petri dishes with wet paper 

towels. Following 24 hours of starvation, four fourth-instar WMTM larvae were allowed 

to feed on the leaf disks for 24 hours. Remains of leaf disks were scanned and analyzed 

using a custom-modified imaging program GNU Image Manipulation Program (GIMP) 

version 2.4.6 (http://gimp.org) to calculate leaf area remaining.  

The second bioassay performed was a no-choice development bioassay in petri 

dishes. The purpose of this bioassay was to measure WMTM leaf consumption, wet 

weight gain, and development (instar stage) when larve were given leaf material from 

either wildtype or fuzzy leaf disks over a two-week period. Leaf consumption and insect 

development could be accurately measured when newly hatched larvae were confined to 

petri dishes. LPI 11-13 leaves were harvested and cut into leaf disks. Wildtype or fuzzy 

disks were pinned on wet paper towels in small plates. Eight first instar larvae, three days 

post hatch, were placed on each plate and allowed to feed. Every two days the leaf area 

remaining from each plate was scanned and analyzed using GIMP. New leaf disks were 

cut and placed in petri plates from freshly harvested leaves. Insect development was 

monitored every two days and insect weight gain was measure on days six, ten, and 14.  

The third bioassay was an on-tree no-choice development bioassay. Like the petri-

plate no-choice development bioassay, this bioassay was designed to measure WMTM 

larvae weight gain and development when reared on leaf material from either fuzzy or 

wildtype trees over a longer period of time (7-12 days). However, instead of cutting leaf 

disks from trees, late second instar WMTM larvae were caged with nylon mesh bags 
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around 10 leaves of the same LPI stage on either fuzzy or wildtype trees. This type of 

bioassay allowed a more realistic evaluation of the effect of the tree on WMTM larvae. 

Choice feeding bioassays, conducted to measure leaf consumption after 24 hours 

by 3rd and 4th instar larvae, found that larvae fed significantly less on fuzzy compared to 

wildtype leaf disks (Plett et al. 2010).  Petri plate no-choice development bioassays 

revealed that WMTM larvae raised on wild-type leaf discs in Petri dishes developed 

through 4th or 5th instar and gained, on average, 20.9 mg in fresh weight whereas larvae 

reared on a diet of fuzzy leaf discs only developed to the 3rd or 4th larval instar and gained 

only 5.8 mg (Plett et al. 2010). In the on-tree no choice development bioassay, larvae 

caged with nylon mesh on wildtype trees grew significantly larger than larve caged on 

fuzzy trees(Plett et al. 2010). The three bioassays confirmed that WMTM preferred 

consuming wildtype leaves over fuzzy leaves and larvae displayed reduced development 

when raised on fuzzy leaves. The study also showed that bioassays results could be used 

to identify IR AT Populus mutants. 

AT and Populus IR 

The first screen for altered IR in AT Populus was conducted by using choice 

bioassays on 608 mutants from the QU population (Ralph 2009). Unwounded leaves 

from the same LPI for two different AT mutants were cut into leaf disks and then pinned 

in alternating pattern on wet paper towels in large petri plates. After 24 hours of 

starvation, five or six third and fourth WMTM instar were placed on each plate and 

allowed to feed for 24 hours. Areas remaining for leaf disks from each mutant were 

measured using GIMP and a feeding preference ratio was calculated by dividing the area 

remaining from one mutant over the other mutant in each pair (Ralph 2009). The screen 
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identified 22 pairs as having a feeding preference ratio greater than 1.5 standard 

deviations from the population mean. These mutant pairs suggested that at least one 

mutant within each pair was either a resistant or sensitive candidate for further testing 

(Ralph 2009). The screen ultimately showed that choice bioassays could be used to 

identify IR candidates in the AT mutant population. The screen revealed several 

interesting mutants for further validation and characterization, setting up for the work 

conducted in this dissertation. 

 The purpose of any forward genetics screen is to be quick and qualitative so that 

more energy can be devoted toward testing promising candidates. To rapidly screen the 

AT population, mutant-mutant comparisons using a single biological replicate in choice 

bioassays was performed at QU (Ralph 2009). Mutant-mutant comparisons were not 

viewed as a problem as previous greenhouse studies only identified up to 3% of the 

population with altered visable developmental phenotypes (Harrison et al. 2007). If IR 

follows the same mutation rate as visible phenotype mutations in AT Populus, then we 

would estimate that at least 97% of mutants would not have an altered IR phenotype. The 

use of a single biological replicate for each mutant in choice bioassays can increase the 

odds of false positives among the candidate pairs. Also, mutant-mutant pairs where 

insects had a substantial feeding preference for one mutant over the other would require 

additional bioassays to establish which mutant(s) is the candidate to pursue. To overcome 

the biological and mutant-mutant comparison limitations from the initial screening effort, 

additional validation of mutant candidates using bioassays against a wildtype background 

with greater biological replication would be required. In addition, choice bioassays only 

determined if insects had a preference for one mutant versus another. It does not 
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necessarily mean that the preference will result in an impact on growth and development 

of the insect. Additional no-choice assays for mutants identified from the screen would 

need to be used to determine if the mutant has an effect on the insect. 

Objective #1 of Dissertation 

Objective #1 of this dissertation was to identify AT Populus mutants with altered 

IR to WMTM using choice and no-choice bioassays. To achieve this objective candidates 

identified from the QU screen were brought back to UND, propagated, and tested against 

wild-type trees using choice bioassays with extensive biological and technical replication. 

Of the nine mutants screened, only one mutant, E8-16 consistently and substantially 

affected WMTM behavior, with larvae consuming more from Pt x Pa wildtype leaves 

than mutant leaves. E8-16 underwent further testing to assess its impact on insect growth 

and development in no-choice on-tree and no-choice petri plate development assays. We 

also screened an additional 770 AT Populus mutants created by Dr. Victor Busov from 

MTU to find additional candidates. In this new screen we expanded the original bioassay 

design by using choice bioassays with unwounded and wounded leaves. This new screen 

was a novel approach to identify mutants that have altered constitutive and induced 

defenses to WMTM larvae.  

Methods 

QU Unwounded Choice Bioassays 

Populus propagation for bioassays. Stem cuttings for nine candidates from the 

QU screen in 2009 (E14-56, E7-4, E8-13, E8-16, EB25-9, R22-6, R1-1, B7-17, and R8-

23) were initially propagated in “cone-tainers” by making a fresh cut on the stem, 

applying Hormex rooting powder on the wound site, and placing the stems in a 3:1 mix 
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of Sunshine Mix #1 potting soil and sand. Stem cuttings were grown in an incubator at 

25°C with 55-65% humidity until root development. As the saplings grew they were 

transferred to 1-gallon pots, and then later to 3-gallon pots. Candidate lines were further 

propagated using air-layering due to greater rooting and propagation success. Parent 

plants were grown with four lateral branches from the main stem. Branches were 

wounded by making an angular incision 1/3 to 1/2 of the way through the stem between 

nodes 10-15 cm from the branch apex. Incision sites were held open with toothpicks or 

large piece of sphagnum moss to prevent the branch from healing around the wound site.  

Rootone (GardenTech; Palatine, IL, USA) rooting hormone was applied to the wound site 

with a cotton swab to induce rapid root development.  Damp sphagnum moss was placed 

around the stem at the wound site and wrapped in aluminium foil. Newly air-layered 

branches were monitored for four weeks, with water added to the sphagnum moss as 

needed. Newly rooted daughter plants were cut from the parent plant below the moss and 

potted in a 3:1 mix of Sunshine Mix#1 potting soil and sand, staked, and then covered 

with a clear plastic bag for three days. Bags were removed on cloudy days or at night to 

reduce plant stress. For pictures of the air-layering process see figure 6. Candidate lines 

and wildtype trees were propagated at the same time to produce 6-10 biological copies of 

the same age for each unwounded choice bioassay. All propagation and growing of trees 

occurred in the Starcher Hall greenhouse at the University of North Dakota (UND). Air-

layering of QU AT lines occurred between March 2010 and May 2011 where greenhouse 

temperatures were 70-94°F. Trees were provided supplemental lighting to provide a 

constant 16:8 day/night cycle even in the winter and were watered and fertilized ad 

libitum. Trees were routinely inspected and sprayed with cold water to ensure trees 
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Figure 6: Propagation of AT Populus mutants using air-layering. A) Angular incisions 
were made using a razor blade on branches approximately 20 cm from the apex. Wound 
site was held open with toothpicks. B) Rooting hormone was applied to the incision site 
and nearby nodes to encourage root development. C) Damp sphagnum moss was placed 
around and within the incision site and wrapped with aluminum foil leaving the top open 
for watering. D) Air-layers were staked to encourage drainage of excess water. E-H) Four 
weeks following air-layer creation roots have formed. Air-layers were cut from the parent 
plant, potted in 1gallon pots, bagged for three days, and then gradually acclimated to the 
greenhouse. 

A B C 

D E F 

G H 
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remained healthy and spidermite free. 

Insect propagation. All WMTM eggs were purchased from the Insect Production 

Service of the Canadian Forest Service. Insects were reared in a growth chamber 

(Percival Scientific model #166LVL; Perry, IA, USA) at 50% relative humidity with a 

16:8 day-night cycle and 22:18ºC day/night temperatures on General Purpose 

Lepidopteran Diet with 14% aureomycin antibiotic (BioServ; Flemington, NJ, USA).  

Insects were reared to third and fourth instar larvae for choice assays and late second 

instar for on-tree no-choice development bioassays. Insects used for petri plate no-choice 

development bioassays were first instar, two days post hatch.  

Unwounded choice assays. Procedures for unwounded choice bioassays were 

done as described in Wang & Constabel (2004) with some modifications. Six to ten air- 

layered biological copies of each AT candidate line, along with Pt x Pa wild-type 

biological replicates, were arranged in an alternating pattern on greenhouse benches and 

grown until they reached a height between 80-100 cm. Mutant and Pt x Pa 

wildtypebiological replicates for each comparison were phenotyped for height, number of 

leaves, and overall health and paired based on similar height and appearance. Leaves 

designated as LPI 11-13 (Larson and Isebrands 1971) were harvested by cutting the 

leaves off at the petiole for each mutant-wildtype pairing at the petiole using greenhouse 

clippers (figure 7). Leaves were briefly rinsed with water and gently dried with paper 

towels before 6.5 cm2 leaf disks were cut using a sharpened copper pipe. Four disks from 

mutant and Pt x Pa wildtype trees were pinned in an alternating pattern on a wet paper 

towel with colored pins (figure 7). Three to four technical replicate plates were prepared 

for each biological pair. Ten additional leaf disks were cut, placed in brown paper bags,  



 84 

 

Figure 7: QU unwounded bioassay design. LPI 11-13 leaves from wildtype and mutant 
trees (paired biological replicates) were cut into leaf disks and arranged in an alternating 
pattern on petri plates (technical replicates). After 24 hours of starvation, five 3rd instar 
larvae were placed on each plate and allowed to feed until 30-50% of leaf material was 
consumed. Leaf weight consumed was calculated by weighing leaf disks and subtracting 
them from the average weight of unconsumed leaves. Leaf area consumed was calculated 
using GIMP imaging software to determine feeding preference. 
 

and dried in an oven at 65°C for two days. These leaves were harvested to serve as a 

control for calculating percent leaf weight consumption after each choice assay. Five late 

3rd to early 4th instar WMTM larvae were starved 24 hours prior to choice assays by 

Rep 1 Rep 2 Rep 3 

AT Mutant 
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placing insects on petri plates with wet paper towels and then into a incubator (Percival 

Scientific model #166LVL; Perry, IA, USA) at 22°C, 50% humidity with a 12:12 light-

dark cycle. Insects were allowed to feed for 24-48 hours until approximately 30-50% of 

the total leaf material was consumed. Mutant and Pt x Pa wildtype leaf material 

remaining from each petri plate were scanned and area remaining was determined using 

GIMP version 2.4.6 (www.gimp.org). Leaf material was then placed in paper bags and 

dried for two days at 65°C prior to weighing for the leaf weight consumption analysis.  

Nested ANOVA statistical tests for leaf weight and leaf area consumption were done 

using the R software program (www.r-project.org). 

On-tree no-choice development bioassays. Two independent experiments of on-

tree no-choice development bioassays were conducted to compare insect growth for  

WMTM reared on E8-16 and Pt x Pa trees. In the first experiment, seven new copies of 

Pt x Pa and E8-16 trees were propagated using air-layering and grown in the greenhouse 

to an approximate height of 100 cm. Nylon mesh bags were used to cage twelve large 

pre-weighed 2nd instar WMTM on LPI 8-16 for each tree. An additional twelve 2nd instar 

WMTM larvae were frozen and then dried in the oven at 65°C for two days for eventual 

dry weight gain measurements. Caged insects were allowed to feed until the largest 

insects were late fourth instar (11 days). Average wet weight gain of insects for each tree 

were measured before insects were frozen and then dried at 65°C for two days prior to 

measuring dry weight. A second independent experiment was conducted in the same 

manner with ten new biological copies per genotype in June 2011 over a seven day 

period. 
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Petri plate no-choice development bioassays. Two independent petri plate no-

choice development bioassays, two weeks in length, were also completed to measure 

differences in larval development and leaf consumption of insects reared on Pt x Pa and 

E8-16 leaf material. LPI 12 leaves for each genotype (10 trees per genotype for each 

experiment) were cut into 6.5 cm2 leaf disks and placed on three technicial replicate petri 

plates per tree with moist paper towels. In the beginning of the experiment two leaf disks 

were placed on each replicate plate. As the experiment progressed the number of leaf 

disks placed on each plate increased to ensure leaf material was not limited. Eight 

WMTM, three days post hatch, were weighed, placed on each plate, and allowed to feed 

for 48 hours. Every two days leaf disks were scanned, dried, and weighed to measure leaf 

area and weight consumption. Leaf disks were replaced on plates from leaves located 

apically from the previous harvesting. WMTM instar stage and mortality was recorded 

every 48 hours and average wet weight measurements was taken on days 6, 10, and 14. 

After two weeks, insects were frozen and dried to measure dry weight gain.  

MTU Screen 

Plant propagation. Dr. Victor Busov generated a population of AT trees by 

transforming the AT vector pSKI074 into the Pt x Pa background using Agrobacterium 

tumefasciens (Busov et al. 2003). Unrooted stems were shipped to the University of 

North Dakota where stem cuttings were rooted and propagated in magenta boxes with 

media [2.15 g/L Mirashige-Skoog salts, 205 mg/L 2-(N-morpholino)ethanesulfonic acid, 

100 mg/L myo-inositol, 10 mL FV vitamins (25 mg each of nictonic acid, pyridoxine 

HCL, thiamine HCL, L-cysteine, biotin, L-glutamine in 250 mL MilliQ water), 20 g/L 

sucrose, and 6.5 g/L Phytoblend agar] at pH 5.8 with 1 mL of Plant Preservative Mixture 
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antibiotics in an incubator (Percival Scientific model #CU36L5; Perry, IA, USA). 

Reagents for media were purchased from Caisson Laboratories, Smithfield, UT, USA. 

Incubator conditions were set for a 12:12 day-night light cycle with 40% humidity. Three 

copies of each mutant were propagated and then transferred to “4” pots with Sunshine 

Mix #1 soil. Trees were covered with bags and grown on racks under a 16:8 diurnal cycle 

using artificial light in the tissue culture room (figure 8). Trees were gradually acclimated 

to less humidity by removing bags slowly over a course of two weeks and then 

transferred to an environmental growth chamber for a few weeks (Percival Scientific; 

Perry, IA, USA). Trees were re-potted in one-gallon pots with a 3:1 ratio of Sunshine 

Mix #1 and sand, and then transferred to the Starcher Hall greenhouse. Each mutant 

triplet was randomly paired with another mutant triplet, arranged in an alternating pattern 

in a single row within the greenhouse, and grown together for eventual bioassays.  

Regurgitant collection. Large 4th and 5th instar larvae were fed LPI 10-18 Pt x Pa 

wildtype leaves for 24 hours in petri plates in the growth chamber. Insects were then 

placed on a chilled glass petri dish and put into a 4ºC fridge for five to ten minutes to 

reduce their activity for easier handling. Cool temperatures also resulted in some insects 

expelling liquid onto the petri plate. Additional regurgitant was extracted from each 

insect by gently squeezing each insect behind the head to encourage regurgitation onto 

the plates. Each larvae produced approximately 20 microliters of regurgitant. Plates were 

then washed with 800 μL of dH2O, for a total of 1 mL, and then pipetted into 1.7 mL 

microcentrifuge tubes. One μL of Tween20 (VWR Internation; Radnor, PA, USA) was 

added to make the regurgitant easier to spread on leaves. Insect regurgitant was 

centrifuged at 10,000 rpm for five minutes at 4°C to remove insect hair, frass, or larger 
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Figure 8: MTU plant propagation. Stems were placed in tissue culture until significant 
rooting. Rooted plantlets were put in “4” pots in the tissue culture room under artificial 
light. Mutants were eventually potted in 1 gallon pots and paired with another mutant 
triplet for eventual bioassays. 
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leaf matter and then pipetted into a clean microcentrifuge tube. Regurgitant was either 

immediately used or stored at -80ºC for future bioassays. Regurgitant was never reused 

once thawed. 

Choice bioassay screen. After mutant pairs had grown 80-120 cm in height in the 

Starcher Hall greenhouse, three choice bioassays were conducted to identify mutants with 

altered consistutive and induced defenses (figure 9). Each choice bioassay consisted of 

three biological pairs with two technical replicate petri plates per pair.  Unwounded 

choice bioassays were conducted as previously described using LPI 13-15 leaves. Five to 

six late 3rd to early 4th instar WMTM larvae were starved for 24 hours and then placed on 

each plate. Insects were allowed to feed until 40-60% of the total leaf material was 

consumed. Leaf area remaining for each mutant was scanned and analyzed using GIMP. 

The area remaining for one mutant was divided by the leaf area remaining for the second 

mutant in each pair to create a feeding choice ratio (CFR), as was done in Ralph (2009). 

Additional leaf disks were cut, dried in an oven, and served as control disks to measure 

leaf weight consumption. A leaf weight FCR was calculated by dividing the leaf weight 

remaining for one mutant over the second mutant.    

Seventy-two hours later, three leaves located immediately above those harvested 

for the unwounded assay were wounded. A single wound line was made with a fabric 

pinwheel, approximately 10 cm in length, on either side of the midvein for each leaf. Ten 

microliters of insect regurgitant was then applied to each wound line (60 μL per tree) 

using a paintbrush. Twenty-four hours later wounded leaves were harvested from both 

mutants, cut into disks, and arranged on petri plates (wound local choice bioassay). At the 

same time LPI 7-9 leaves, located approximately 15-30 cm above the wounded leaves, 
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Figure 9: Unwounded, wound local, and wound systemic mutant-mutant bioassay 
screen design. A) Mutant-mutant pairs, three copies each, were randomly paired and 
grown together in the Starcher greenhouse. B) In the unwounded choice bioassay 
biological replicates for mutant 1 and mutant 2 were paired and LPI 13-15 was harvested 
and cut into disks with a copper pipe. Leaf disks from each mutant were placed in an 
alternating pattern on petri plates and secured with colored minuten pins. Five to six late 
third and early fourth instar WMTM larvae were placed onto each plate and allowed to 
feed until 40-60% of total leaf area on the plate was consumed. Leaf area remaining from 
mutant 1 was divided by leaf material remaining from mutant 2 to create a feeding choice 
ratio (FCR). C) Three days following the unwounded assay the new LPI 13-15 leaves 
(wound local choice bioassay) were wounded along both sides of the mid-vein and insect 
regurgitant was applied on each strip. Twenty-four hours later wounded local leaves were 
harvested and compared in wound local bioassays. LPI 7-9 were also harvested to test for 
systemic responses to wounding (wound systemic choice bioassay). Surface area and % 
weight FCRs were calculated similar to the unwounded response assay. D) Example of a 
plate showing no difference in WMTM feeding preference (FCR =1) and a plate with a 
strong preference (FCR > 2 std deviations). 
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were also harvested and used in a wound systemic choice bioassays. Choice bioassay set-

up and analysis for wound local and wound systemic choice bioassay for leaf area were 

conducted in the same manner as the unwounded bioassays. Analysis for leaf weight 

consumption was slightly altered to take into account that the smaller sized leaves used in 

wound systemic bioassays and the physical wounding on portions of each leaf in wound 

local assays prevented cutting enough control disks. For wound local and wound 

systemic choice bioassays we used the control disks from the unwounded choice bioassay 

to determine amount of leaf weight consumed by WMTM. Leaf area and leaf weight 

FPRs for all mutant-mutant pairs were log transformed and binned by intervals of 0.05 

for histograms for all three bioassays.  Linear regressions comparing leaf area FCR and 

leaf weight FCR were performed using R. The mutant-mutant screen was conducted on 

770 mutants between August 2010 and January 2013.  

Validation of MTU mutants. Following the initial screen, mutant pairs that had a 

FPR ≥ 2 standard deviations from the population mean for a single assay, or ≥ 1.5 in 

multiple assays, were selected for choice bioassays against Pt x Pa wildtype trees (figure 

10).  The selection criteria was created to maximize the chance of finding mutants with a 

large effect on WMTM feeding preference in one bioassay, or a significant effect on 

feeding preference across multiple choice bioassays. Three new biological replicates of 

mutants, along with Pt x Pa wildtype trees, were propagated by air-layering and 

compared in unwounded, wound local, and wound systemic choice bioassays as 

previously described. Mutants that displayed greater than 40% difference in leaf area 

consumption compared to Pt x Pa wildtype trees and a nested ANOVA p value < 0.01 

using R were selected for an additional round of choice bioassays with greater biological  
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Figure 10: MTU screen and validation. A) Mutant triplets were paired and grown in 
the UND Starcher greenhouse and three choice bioassays (unwounded, wound local, and 
wound systemic) were performed for each mutant-mutant pair. B) If WMTM had a 
preference to consume leaf material from one mutant over the other mutant in any of the 
three bioassays then new copies for both mutants were propagated and compared against 
Pt x Pa wildtype trees in choice bioassays. C) Mutants displaying greater than 40% 
difference in leaf area consumption compared to Pt x Pa wildtype trees and a nested 
ANOVA p value < 0.01 were selected as candidates for an additional round of choice 
bioassays with greater biological replication. 
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replication. Four candidates, 237p-15, 239L-5, 173L-4, and 357L-1 had unwounded, 

wound local, and wound systemic choice assays performed with greater biological 

replication (6-10 biological replicates per tree) as previously described.  

An on-tree no-choice development bioassay was also conducted on 357L-1 to 

determine if the mutant had an impact on insect development and weight gain. Twelve 

2nd instar WMTM larvae were caged with mesh bags on LPI 8-16 leaves of seven 357L-1 

and Pt x Pa wildtype trees. Insects were caged on trees for eight days until the largest 

insects were late 4th instar. Instar stage was recorded for each insect and wet weight gain 

was calculated as previously described. A t-test comparing weight gain between insects 

caged on each genotype was calculated using R. 

Results and Discussion 

QU Candidates 

Unwounded choice bioassays. Nine AT mutants identified from the screen at QU  

(E14-56, E7-4, E8-13, E8-16, EB25-9, R22-6, R1-1, B7-17, and R8-23) were tested using 

unwounded choice bioassays. One independent experiment was performed for each 

candidate to determine if WMTM had a preference for Pt x Pa over the mutant for both 

leaf area and leaf weigh consumption. A second independent unwounded choice bioassay 

was only performed if there was a substantial feeding preference difference (≥ 30%) 

between the mutant and Pt x Pa with a p value < 0.05 for both the leaf area and leaf 

weight consumption data in the first experiment. Eight mutants did not have significant 

feeding difference or significant statistical support to continue with additional bioassays 

(table 2). WMTM did show more preference for Pt x Pa leaves than E8-16 in two 

independent unwounded choice bioassays for both leaf area and leaf weight (figure 11A).  
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Table 2: WMTM did not show a feeding preference in unwounded choice bioasays 
for eight QU candidates. Candidates (E7-4, E8-13, EB25-9, R22-6, R1-1, B7-17, R8-23, 
E14-56) selected from the screen at QU, propagated with Pt x Pa wildtype trees, and 
were tested in independent choice bioassays to determine if WMTM had a preference 
between the mutant candidate and paired wildtype trees. Choice assays were designed to 
These mutants did not meet our criteria for having a substantial feeding preference 
difference (≥ 30%) between the mutant and Pt x Pa with a p value < 0.05 for both the leaf 
area and leaf weight consumption data. 
 

Mutant Leaf Area Leaf Weight 
E7-4 
 
 
E8-13 
 
 
EB25-9 
 
 
R22-6 
 
 
 
 
R1-1 
 
 
 
B7-17 
 
 
R8-23 
 
 
 
 
E14-56 
 
 

Not significant, p=0.08, n=6 pairs 
 
 
Not significant, p=0.28, n=6 pairs 
 
 
Not significant, p=0.12, n=9 pairs 
 
 
Significant, p=0.002, n=6 pairs, 
WMTM fed 23.8% more on 
mutant 
 
 
Not significant, p=0.1, n=6 pairs 
 
 
 
Not significant, p=0.07, n=6 pairs 
 
 
Significant, p=0.001, n=7 pairs, 
WMTM fed 21.7% more on 
mutant 
 
 
Not significant, p=0.29, n=7 pairs 
 

Not significant, p=0.69, n=6 pairs 
 
 
Not significant, p=0.56, n=6 pairs 
 
 
Not significant, p=0.20, n=9 pairs 
 
 
Significant, p=0.018, n=6 pairs, 
WMTM fed 22.4% on mutant 
 
 
 
Significant, p=0.031, n=6 pairs, 
WMTM fed 22% more on mutant 
 
 
Not significant, p=0.31, n=6 pairs 
 
 
Not significant, p=0.4, n=7 pairs 
 
 
 
 
Not significant, p=0.25, n=7 pairs 
 

 

In the first round of choice assays we observed 35% less WMTM feeding in leaf area 

(Nested ANOVA, p=0.0038, n=6 pairs) and 34% less feeding in leaf weight (Nested 

ANOVA, p=0.003, n=6 pairs) from E8-16 than Pt x Pa. WMTM consumed 68.8% more 
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leaf weight from Pt x Pa leaf disks than E8-16 (figure 11A; Nested ANOVA, p<0.001). 

In the second round we observed 44% less feeding in leaf area (figure 11B; Nested 

ANOVA, p<0.001, n=6 pairs) and 68% less feeding in leaf weight (figure 11B; Nested 

ANOVA, p<0.001, df=6 pairs) on E8-16 trees. Because insects did not prefer to feed on  

 

Figure 11: WMTM preferred to consume unwounded leaves from Pt x Pa wild-type 
trees over E8-16 in choice bioassays. Two independent of unwounded choice bioassays 
were conducted to determine if WMTM larvae had a preference between the mutant and 
Pt x Pa. A) In the first round of choice assays we observed 35% less feeding in leaf area 
(Nested ANOVA, p=0.0038, n=6 pairs) and 34% less feeding in leaf weight (Nested 
ANOVA, p=0.003, n=6 pairs) on E8-16 trees than Pt x Pa. B) In the second round we 
observed 44% less feeding in leaf area (Nested ANOVA, p<0.001, n=6 pairs) and 68% 
less feeding in leaf weight (Nested ANOVA, p<0.001, df=6 pairs) on E8-16 trees. Bars 
represent mean +/- SE in panels A and B. * indicate statistical significance 
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E8-16 leaves we continued with on-tree and petri plate no-choice development bioassays 

to determine if E8-16 had a negative impact on WMTM growth and development. 

On-tree and petri plate no-choice development bioassays. In the first on-tree 

no-choice development bioassay we compared growth of WMTM larvae when caged on 

either Pt x Pa wildtype trees or E8-16 trees, over 11 days. WMTM did not gain more wet 

weight (figure 12A; Two sample t-test, p>0.05) or dry weight (figure 12A; Two sample t- 

test, p>0.05) per insect on Pt x Pa wildtype trees than E8-16. In the second round of on- 

tree no-choice bioassays we increased the number of biological replicates to ten E8-16 

and Pt x Pa wildtype trees. WMTM larvae caged on Pt x Pa trees gained 40.7% more wet 

weight per insect (figure 12B; Two sample t-test, p=0.0002, n=10 trees each) and 43.6%  

more dry weight than insects reared on E8-16 trees (figure 12B; Two sample t-test, 

p=0.0003, n=10 trees each).  

 In the petri plate no choice development bioassay E8-16 had a negative impact on 

insect weight gain and development. WMTM larvae consumed more Pt x Pa leaf weight 

on days 4, 8, 10, 12, and 14 than E8-16 (figure 13A; Nested ANOVA p<0.01, n= E8-16 

and Pt x Pa trees) and consumed more leaf area from Pt x Pa than E8-16 trees on days 

10, 12, and 14 (figure 13B; Nested ANOVA p<0.001). Wet weight of WMTM larvae was 

measured on days 6, 10, and 14 of the two week bioassay. WMTM gained 34.6% less wet 

weight on E8-16 wildtype leaves on day 6 (figure 13C; Nested ANOVA, p<0.001) than 

larvae reared on Pt x Pa wildtype leaves. WMTM wet weight gain was also 44.8% less 

on day 10 (p<0.00001), and 44.4% less on day 14 (p<0.00001) on E8-16 leaves 

compared to Pt x Pa wildtype. After the two week bioassay WMTM were dried and 

weighed to determine dry weight gain. WMTM gained 53% less dry weight gain on E8- 
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Figure 12: Results for two independent on-tree no-choice bioassays comparing 
WMTM weight gain and development when reared on either E8-16 or Pt x Pa trees. 
A) In the first experiment of on-tree assays there was a small biological difference but not 
a statistical difference in average larval wet weight gain (two sample t-test, p=0.3206, 
df=12) and average larval dry weight gain (Welch t-test, p=0.3433, df=12). B) When we 
conducted a second experiment we included more biological replication. Over a 7 day 
period we observed WMTM larvae gain 40.7% more wet weight per insect on Pt x Pa 
trees (Two sample t-test, p=0.0002) and 43.6% more dry weight than insects reared on 
E8-16 trees (Two sample t-test, p=0.0003). Bars represent mean +/- SE in panels A and 
B. * indicate statistical significance 
 

16 leaves than Pt x Pa (figure 13D; Nested ANOVA, p<0.001). WMTM larvae also 

developed faster on Pt x Pa leaves than E8-16 leaves by day 14 (figure 15E, Chi Square 

Test, p<0.0001).  
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Figure 13: WMTM larvae prefer feeding, consume more, and develop faster on Pt x 
Pa wild-type leaves than E8-16 leaves in the first petri plate no-choice development 
bioassay. A) WMTM larvae consumed more Pt x Pa leaf weight on days 4, 8, 10, 12, and 
14 than E8-16 (Nested ANOVA p<0.01, n= 10 E8-16 and Pt x Pa trees). B) WMTM 
consumed more leaf area from Pt x Pa than E8-16 trees on days 10, 12, and 14 (Nested 
ANOVA p<0.05). C) WMTM gained more wet weight on Pt x Pa leaves on days 6, 10, 
and 14 than insects raised on E8-16 leaves (Nested ANOVA, p<0.001). D) WMTM 
gained 53% less dry weight gain on E8-16 leaves than Pt x Pa (Nested ANOVA, 
p<0.001). E) WMTM larvae developed faster on Pt x Pa leaves than E8-16 leaves by day 
14 (Chi Square Test, p<0.0001). Black bars and squares indicates E8-16, white indicates 
Pt x Pa. Bars represent mean +/- SE in panels A and B. * indicate statistical significance. 
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Results for the second petri plate no-choice development bioassay were similar to 

first experiment. WMTM larvae consumed more Pt x Pa leaf weight on days 6, 10, and  

12 than E8-16 (figure 14A; Nested ANOVA p<0.005, n=10 E8-16 and Pt x Pa trees) and 

more leaf area from Pt x Pa than E8-16 trees on days 10 and 12 (figure 14B; Nested 

ANOVA p<0.05). WMTM gained 27.9% less wet weight on day 6 (figure 14C; Nested 

ANOVA, p<0.01), 28.7% less on day 10 (Nested ANOVA, p<0.001), and 25.5% less on 

day14 (Nested ANOVA, p<0.001) on E8-16 leaves than Pt x Pa wildtype leaves. WMTM 

also gained 30% less dry weight on E8-16 leaves than Pt x Pa (figure 14D; Nested 

ANOVA, p<0.01). WMTM larvae also developed faster on Pt x Pa leaves than E8-16 

leaves by day 14 (figure 14E; Chi Square Test, p<0.001). 

Bioassay results suggest that WMTM preferred to consume leaves from Pt x Pa 

wild-type trees over E8-16. Less leaf consumption of E8-16 appears to result in a 

negative impact on larval weight gain and development. Results from bioassays are 

relatively consistent suggesting that this is a prime candidate for molecular 

characterization to identify T-DNA location and the “activated” gene. 

Michigan Tech Screen 

Leaf area vs. leaf weight FCR comparison. In the beginning of our screen we  

examined whether leaf area could be used as an alternative to leaf weight to identify AT 

genotypes with altered WMTM feeding preference. Measuring leaf weight consumption, 

while more biologically relevant, has drawbacks including: 1) time required to dry and 

weigh leaf disks, 2) accuracy in manually weighing small leaf fragments that can crush 

easily or get stuck within bags, and 3) the impracticality of long term storage of leaf disks 

to confirm significant results. Measuring leaf area consumption by scanning leaf disks 
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Figure 14: WMTM larvae prefer feeding, consume more, and develop faster on Pt x 
Pa wild-type leaves than E8-16 leaves in the second independent petri plate no-
choice development bioassay. A) WMTM larvae consumed more Pt x Pa leaf weight on 
days 6, 10, and 12 than E8-16 (Nested ANOVA p<0.05, n=10 E8-16 and Pt x Pa trees). 
B) WMTM consumed more leaf area from Pt x Pa than E8-16 trees on days 10 and 12 
(Nested ANOVA p<0.05). C) WMTM gained more wet weight on Pt x Pa leaves on days 
6, 10, and 14 than insects raised on E8-16 leaves (Nested ANOVA, p<0.05). D) WMTM 
gained 30% less dry weight gain on E8-16 leaves than Pt x Pa (Nested ANOVA, p<0.01). 
E) WMTM larvae developed faster on Pt x Pa leaves than E8-16 leaves by day 14 (Chi 
Square Test, p<0.001). Black bars and squares indicates E8-16, white indicates Pt x Pa. 
Bars represent mean +/- SE in panels A and B. * indicate statistical significance.  
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allows for faster processing of data, minimal manual handling of leaf disks and 

calculations, and data can be stored digitally for future analysis. For the first 43 mutant-

mutant comparisons tested we determined FCRs using leaf area and leaf weight for each 

bioassay and compared them using Pearson correlation tests (figure 15). We identified a 

significant relationship between area and weight FCRs for unwounded (Pearson 

Correlation F1,42=337.73, p=0.00, R2=0.891, y=0.92745x-0.00293), wound local (Pearson 

Correlation F1,42=182.07, p=1.11E-16, R2=0.816, y=0.92x+0.00199), and wound 

systemic (Pearson Correlation F1,42=174.64, p=2.22E-16, R2=0.81, y=0.971x+0.00336) 

assays (figure 15). A strong correlation between area and weight FCR, despite using 

control disks from unwounded assays for all FCR calculations, suggested that we could 

continue with the screen by only analyzing leaf area FCR comparisons and not miss any 

true positives.  

Mutant-mutant screen. The purpose of conducting any large-scale screening 

effort is to rapidly identify candidates for further biological and molecular 

characterization while limiting the number of false positives. In an ideal situation each 

AT mutant would be compared against wildtype trees with enough biological and 

technical replication to identify true positives in a single round of bioassays. However, 

this would be impractical and inefficient for reasons of time, money, and greenhouse 

space. Instead, mutant-mutant comparisons were conducted with the assumption that a 

significant majority of mutants would not impact WMTM feeding preference (Ralph 

2009). If we were to expect as much as 5% of mutants to have altered IR, then the odds 

of two IR mutants being randomly paired together would be 0.05 x 0.05, or 0.25%. 

Therefore, out of a screen of 400 mutant pairings, only one pairing on average would 
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Figure 15: Comparison of FCR for 43 mutant pairs using leaf area and leaf weight 
data for unwounded, wound local, and wound systemic assays. Leaf area FPR is 
strongly correlated with leaf weight FCR for A) unwounded (F1,42=337.73, p=0.00, 
R2=0.891, y=0.92745x-0.00293), B) wound local (F1,42=182.07, p=1.11E-16, R2=0.816, 
y=0.92x+0.00199), and C) wound systemic bioassays (F1,42=174.64, p=2.22E-16, 
R2=0.81, y=0.971x+0.00336) despite using unwounded control leaf disks for each assay. 
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consist of two IR mutants. This would suggest that the risk of missing canididates with 

altered IR due to being paired together was remote. The odds of pairing an IR mutant 

with a non-IR mutant would be 9.5% (0.05 x 0.95 + 0.95 x 0.05). Out of 400 pairings that 

would equal 38 pairs. By comparison, if we were to compare wildtype trees against each 

mutant in the AT population, then this would result in 20 mutant pairs (5%). Therefore 

mutant-mutant pairings would be sufficient to find mutants with altered IR. Three 

separate choice bioassays (unwounded, wound local, and wound systemic) were used to 

identify mutants with altered IR. 

Histograms showing the distribution of FCRs for 770 mutants (385 pairs) 

revealed a normal distribution curve for each class of choice bioassay (figure 16A-C) 

with the majority of mutant pairs at or near a FCR of 0.  In unwounded choice bioassays 

the mean FPR was 0 ± 0.09 with forty-four mutants (22 pairs, 5.7%) having a FCR ≥ two 

standard deviations from the mean (figure 16A). Forty-four mutants (22 pairs, 5.7%) 

were identified as having a FCR greater than two standard deviations from the mean (0 ± 

0.09, figure 16B) in wound local choice bioassays and forty-eight mutants (24 pairs, 

6.2%) in wound systemic choice bioassays (mean= 0.01 ± 0.1, figure 16C).  Mutants with 

a FCR ≥ 2 standard deviations from the mean for a single bioassay or ≥ 1.5 for multiple 

bioassays were selected as candidates for further investigation using bioassays against Pt 

x Pa wildtype trees. Between all three choice bioassays we identified 108 mutants (54 

pairs) candidates (figure 16D). Fifty-four candidates (50%) had a FCR ≥ 2 standard 

deviations from the mean for a single bioassay while the remaining candidates had a FCR 

≥ 1.5 for two (31.5%) or all three (18.5%) choice bioassays. 

In total, our mutant-mutant screen identified 14% of the total AT population as 
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Figure 16: Mutant-mutant FCR histograms from unwounded, wound local, and 
wound systemic choice assays from the MTU AT population. A) In total 770 mutants 
(385 pairs) underwent choice assays. FPR data for all bioassays were log transformed and 
binned by units of 0.05 for histograms. In unwounded assays the mean FCR was 0 ± 0.09. 
The FCR values of 44 mutants (22 pairs) were outside two standard deviations and were 
identified as mutants for comparison against Pt x Pa wild-type trees. B) In wound local 
assays (mean 0 +/- 0.09) the FCR of 44 mutants (22 pairs) were greater than two standard 
deviations from the mean. C) The FCR values for 48 mutants (24 pairs) were outside two 
standard deviations from the population mean in wound systemic choice bioassays 
(mean= 0.01 +/- 0.1). Dashed red lines in panels A-C indicate two standard deviations 
from the mean. D) Venn diagram showing the 108 mutants that passed the FCR threshold 
(> 2 std deviations for one bioassay or >1.5 std deviations for two or more assays) in the 
initial mutant-mutant screen organized by bioassay type. 
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candidates for further validation. We had predicted that 9.5% of the 385 mutant-mutant 

pairings (36 pairs) would be IR-non-IR pairings. The 54 pairs we identified in the screen 

is higher than the predicted number of IR-non-IR mutant pairings we would have 

expected from the AT population. This could indicate that there are a number of false 

positives within our candidates. Half of the candidates had a signficant FCR for a single 

choice bioassay, possibly indicating a very specific role in constitutive or wound- 

induced defenses. The other half of candidates revealed a significant FCR for two or 

more bioassays with most of those being involved in local and systemic defense. Several 

microarray studies examining transcriptomes of Populus after mechanical wounding or 

insect feeding have shown many different types of genes involved in inducible defenses 

including kunitz protease inhibitors, endochitinases, leucine-rich repeats, ABC 

proteins,PPO, P450s, and enzymes involved in octadecanoid biosynthesis and 

phenylpropanoid metabolism (Major and Constabel 2006, Ralph et al. 2006, Babst et al. 

2009). Within these gene families, such as the kunitz protease inhibitors and 

endochitinases, are members with complex function in regards to plant defense, that are 

present consitutively, can be induced at the site of feeding, and can be induced 

systematically following feeding (Phillipe et al. 2009, Christopher et al. 2004). With a 

more manageable population of interesting candidates we could now validate mutants 

within each pair against wild-type trees and with increased biological replication to 

confirm previous screening results and eliminate false positives. 

Validation of candidates. Bioassays are inheritably variable. Health of trees and 

insects, as well as insect behavior are difficult to control. These variables could result in 

false positives amongst our candidates. In addition, our initial screen only identified 
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mutant pairs where WMTM preferred to consume leaves from one mutant over the other. 

The most likely scenario for any of these mutant-mutant pairs is that one mutant is 

resistant or sensitive to WMTM feeding and is paired with a mutant that is phenotypically 

wildtype with regards to IR. However, without additional validation comparing each 

mutant against a common background, we cannot know which mutant in each pair has 

altered IR. Therefore, independent bioassays were conducted by comparing mutants 

identified from the screen against the Pt x Pa wildtype background.  

Twenty-one of the original 108 mutants identified from the initial screen were 

compared against Pt x Pa wild-type trees in unwounded, wound local, and wound 

systemic choice bioassays (table 3).  These twenty-one mutants were selected as they 

were identified early in the screen to be a part of mutant-mutant pairs with significant 

FPR values. Three new biological replicates for each candidate were propagated along 

with Pt x Pa wildtype trees using the air-layering method and grown in the greenhouse. 

In this round of validation, mutants that had a ≥ 40% difference in feeding preference 

compared to Pt x Pa wildtype, along with a nested ANOVA p-value <0.01 for at least one 

choice bioassay, were selected as candidates for additional bioassays with greater 

biological replication. Selection criteria were created to find the most interesting mutants 

among the 21 tested. Eight (173L-4, 237p-15, 239L-4, 357L-1, 23L-3, 372L-1, 612L-1, 

175st-5) of the 21 mutants (38%) were verified as candidates for future greenhouse and 

molecular work, with seven showing sensitivity in one assay (Table 3).  Five of the eight 

candidates showed a statistically significant difference in WMTM feeding preference 

compared to Pt x Pa wildtype in wound systemic choice bioassays. One candidate was 

found in wound local bioassays, and two in unwounded bioassays. Mutants that did not 
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Table 3: Candidates identified from the MTU screen. Twenty-one candidates 
identified from the initial mutant screen were tested against Pt x Pa in unwounded, 
wound local (w. local) and wound systemic (w. systemic) choice bioassays. Three 
biological replicates were propagated for mutant lines and paired with Pt x Pa for each 
candidate. Mutants that had a ≥ 40% difference in feeding preference (% diff) and a p 
value < 0.01 for at least one bioassay were selected as candidates for additional bioassays 
with greater biological replication. * indicates mutants that passed our selection criteria. 
 
 Unwounded  W. Local  W. Systemic  

Mutant p value % Diff p value % Diff p value % Diff 

173L-4* 
93L-1 
237p-15* 
239L-4* 
238L-4 
213L-1 
542L-3 
300L-5 
240L-6 
176st-3 
171L-3 
377L-2 
357L-1* 
627L-1 
23L-3* 
317L-4 
372L-1* 
372L-2 
612L-1* 
525L-3 
175st-5* 

< 0.05 
< 0.05 
< 0.001 
< 0.05 
> 0.05 
> 0.05 
< 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
< 0.005 
> 0.05 
> 0.05 
< 0.01 
< 0.01 
> 0.05 
> 0.05 
> 0.05 

-37.6 
-39.4 
65.5 
33.3 
11.7 
-10.5 
57.1 
0.7 
26.5 
1.9 
-8.6 
16.1 
76.2 
-34.0 
49.8 
73.8 
-55.5 
-30.1 
34.4 
18.8 
-11.9 

< 0.01 
> 0.05 
< 0.05 
< 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
< 0.05 
> 0.05 
> 0.05 
< 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 

-42.8 
-19.2 
49.6 
65.6 
13.5 
-15.9 
-5.8 
7.6 
13.4 
25.2 
27.8 
10.7 
105.2 
-13.9 
26.8 
60.2 
-8.5 
-27.6 
40.7 
32.4 
26.0 

> 0.05 
> 0.05 
> 0.05 
< 0.005 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
> 0.05 
< 0.001 
> 0.05 
< 0.005 
> 0.05 
> 0.05 
> 0.05 
< 0.00005 
> 0.05 
< 0.0001 

-16.9 
6.8 
22.9 
169.9 
16.1 
-29.4 
27.3 
19.1 
-9.6 
-10.3 
38.8 
19.3 
150.0 
-9.7 
245.2 
60.5 
39.2 
-23.6 
172.2 
-6.9 
80.2 

 

meet our criteria were considered false positives. Some mutants did have either a ≥ 40% 

difference in WMTM feeding preference or a p value less than 0.001 for one of the three 

bioassays. These mutants may be of interest if followed up with additional bioassays with 

greater biological replication. However, due to time and financial constraints, we opted to 

focus on mutants that met our criteria having a large, statistically significant difference in 

insect feeding preference. Interestingly, WMTM preferred to feed on six of the mutants 
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(237p-15, 239L-4, 357L-1, 23L-3, 612L-1, 175st-5) over Pt x Pa. That is, they appear to 

be sensitive to insect feeding. As shown in a study by Busov et al. (2010), approximately 

30% of AT T-DNA insertions were within the promoter and coding regions of genes. 

Perhaps several of these mutants are not actually over-expressing a gene but are actually 

losing a copy of that particular gene. Perhaps insect sensitivity could result from the 

knock-down of a defense gene or the activation of a gene for growth/photosynthesis that 

alters the allocation of energy resources to plant defense. Further work to validate these 

mutants through bioassays and molecular characterization will likely reveal a diversity of 

genes that influence Populus defense. 

Four of the eight candidates have been propagated to 6-10 biological copies and 

further tested against Pt x Pa trees using choice bioassays. 237p-15 was found to be 

sensitive in unwounded and wound local bioassays when compared against Pt x Pa 

wildtype with three biological replicates but did not show difference in bioassays with 

greater biological replication. In unwounded, wound local, and wound systemic choice 

bioassays using seven biological replicates WMTM larvae showed no consumption 

preference between 237p-15 and Pt x Pa wildtype leaves (figure 17; Nested ANOVA, 

p>0.05, n=6 pairs). In the original mutant-wildtype validation (three biological replicates) 

239L-4 showed insect sensitivity in all three bioassays. In the first round of choice 

bioassays with greater biological replication WMTM showed no preference for 239L-4 

leaves over Pt x Pa wildtype leaves in unwounded and wound systemic choice bioassays  

(figure 18; Nested ANOVA, p>0.05, n=6 pairs). WMTM did consume more 30% more 

leaf area from 239L-4 trees than Pt x Pa wildtype (Nested ANOVA, p<0.005, n=7 pairs). 

However, in a second independent set of choice bioassays we observed different results. 
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Figure 17: Results for 237p-15 unwounded, wound local, and wound systemic choice 
bioassays. 237p-15 is shown in white, Pt x Pa wildtype is shown in black. WMTM 
larvae did not show a preference between 237p-15 and Pt x Pa wildtype leaves in 
unwounded, wound local, and wound systemic choice bioassays (Nested ANOVA, 
p>0.05, n=6 pairs. Bars represent mean +/- SE.  
 

 

Figure 18: In the first independent set of choice bioassays WMTM larvae preferred 
to feed on wound local leaves from 239L-4 over Pt x Pa wildtype trees. 239L-4 
average leaf area consumption is shown in white, Pt x Pa wildtype is shown in black. 
WMTM consumed 30% more leaf area on 239L-4 wound local leaves than Pt x Pa leaves 
(Nested ANOVA, p<0.005, n=7 pairs). Bars represent mean +/- SE. * indicates statistical 
significance. 
 

0 

20 

40 

60 

80 

100 

Unwounded Wound Local Wound Systemic 

Av
er

ag
e 

%
 L

ea
f A

re
a 

C
on

su
m

ed
 

0 

20 

40 

60 

80 

100 

Unwounded Wound Local Wound Systemic 

Av
er

ag
e 

%
 L

ea
f A

re
a 

C
on

su
m

ed
 

* 



 110 

WMTM larvae consumed 23.7% less leaf area on 239L-4 in unwounded choice bioassays 

(figure 19; Nested ANOVA, p<0.05, n=7 pairs), and 31.5% less area in wound local 

choice bioassays (figure 19; Nested ANOVA, p<0.05, n=7 pairs). WMTM did not show a 

preference in wound systemic choice bioassays (figure 19; Nested ANOVA, p>0.05, n=7 

pairs). Because 237p-15 and 239L-4 either did not result in a difference in feeding  

 

 
Figure 19: In the second independent set of choice bioassays WMTM larvae 
preferred to feed on unwounded and wound local leaves from Pt x Pa wildtype trees 
over 239L-4. 239L-4 average leaf area consumption is shown in white, Pt x Pa wildtype 
is shown in black. WMTM larvae consumed 23.7% less leaf area on 239L-4 in 
unwounded choice bioassays (Nested ANOVA, p<0.05, n=7 pairs), and 31.5% less area 
in wound local choice bioassays (Nested ANOVA, p<0.05, n=7 pairs). Bars represent 
mean +/- SE. * indicates statistical significance. 
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consumed less on unwounded and wound local leaves. When biological replication was 

increased to nine pairs of trees WMTM preferred to feed more on Pt x Pa wildtype leaves 
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than 173L-4 leaves in unwounded (31.8%, Nested ANOVA, p=0.0001) and wound local 

(24.4%, Nested ANOVA, p<0.05) choice bioassays (figure 20).  

 

 

Figure 20: Results for unwounded, wound local, and wound systemic choice 
bioassays comparing WMTM feeding preference for 173L-4 and Pt x Pa wildtype 
trees. 173L-4 average leaf area consumption is shown in white, Pt x Pa wildtype is 
shown in black. WMTM preferred to feed on Pt x Pa wildtypes leaves than 173L-4 leaves 
in unwounded (31.8%, Nested ANOVA, p=0.0001) and wound local (24.4%, Nested 
ANOVA, p<0.05) choice bioassays). * indicates statistical significance. Bars represent 
mean +/- SE.  
 
Another candidate that we pursued more heavily, 357L-1, has consistently been preferred 

by WMTM in choice bioassays. During the mutant-mutant and validation comparison 

WMTM consumed more leaf weight from 357L-1 in unwounded, wound local, and 

wound systemic bioassays (figure 21 A-C).  In an unwounded choice bioassay using eight 

biological replicates WMTM consumed 26.2% more leaf area from 357L-1 than Pt x Pa 

wild-type trees in unwounded assays (figure 21A; Nested ANOVA p=0.0206, 26.2% 

difference). WMTM also showed greater preference for 357L-1 in wound local (figure 

21A; Nested ANOVA p<0.0005, 37.4% difference) and wound systemic (figure 21A; 

Nested ANOVA p<0.00001, 40.6% difference) assays.  In on-tree no-choice assays 
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Figure 21: Assays with greater biological replication revealed WMTM preferred 
feeding on 357L-1 over Pt x Pa wildtype leaves in choice assays and greater insect 
weight gain development in an on-tree no-choice development assay. A) In choice 
assays with eight biological replicates per genotype WMTM consumed more leaf weight 
from 357L-1 in unwounded (Nested ANOVA p=0.0206, 26.2% difference), wound local 
(Nested ANOVA p<0.0005, 37.4% difference) and wound systemic (Nested ANOVA 
p<0.00001, 40.6% difference) than Pt x Pa. Bars represent mean +/- SE. B) 
Representative plate photos for unwounded, wound local, and wound systemic assays. 
357L-1 leaves were was pinned with pink pins, Pt x Pa was pinned with blue pins. C) In 
no-choice development assays WMTM caged on 357L-1 trees gained more weight (15.78 
mg) than insects on Pt x Pa trees (11.36 mg) over eight days (Two sample t-test 
p<0.003). Bars represent mean +/- SE, n=7 trees per genotype. D) Representative profiles 
from insects reared on 357L-1 and Pt x Pa trees. 
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WMTM caged on 357L-1 gained more weight (15.78 mg) than insects caged on Pt x Pa 

(11.36 mg) over eight days (figure 21C; Two sample t-test p<0.003, n=7 trees per 

genotype).  

These results show that we can use choice bioassays to identify mutants with 

altered constitutive and induced defenses to WMTM. While we identified 108 (14%) 

candidates from the initial screen, more than half are likely to be eliminated with further 

bioassay validation. Half of those candidates will likely be eliminated as they were likely 

probably paired with a mutant with altered IR. If the trend from the 21 mutants that we 

selected for validation were to remain true for the rest of the candidates we will be able to 

eliminate additional false positives. Therefore, the percentage of candidates with altered 

IR in the population is probably less than five percent. This puts the number of interesting 

mutations closer to the percentage observed in screens to identify mutants with obvious 

developmental mutations (Harrison et al. 2007, Busov et al. 2010). This is also a much 

more manageable number in terms of being able to pursue greenhouse and molecular 

validation of interesting mutants. Further validation followed by molecular work to 

identify T-DNA insertions and activated genes on multiple candidates will likely need to 

be completed on candidates identified from this screen before additional work can be 

completed to characterize genes involved in IR. 

Conclusion 

 Nine candidates from the QU population were further investigated with follow-up 

bioassay experiments. From those candidates one mutant, E8-16, revealed IR as WMTM 

preferred to consume Pt x Pa over E8-16 leaves and additional no-choice assays revealed 

that the mutant had a negative impact on insect growth and development. We also 
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conducted a screen of 770 AT mutants from MTU using unwounded, wound local, and 

wound systemic choice assays to identify mutants with altered constitutive or induced 

defenses. We identified several candidates from the Michigan Tech screen that, with 

further bioassay validation and eventual T-DNA mapping, may prove to be valuable 

targets for gene identification and characterization. Because we have done more 

validation experiments with the E8-16 mutant and they have shown relatively consistent 

results in all bioassay types performed we ultimately decided to continue with molecular 

work designed to identify the T-DNA localization, gene identification, and gene 

characterization of the E8-16 mutant which will be discussed in the next chapter. 

Bioassays from the forward genetic screen of AT mutants has identified several possible 

candidates for further work that may reveal important genes involved in plant defense 

against insect herbivory. 
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CHAPTER IV 

 

IDENTIFICATION AND CHARACTERIZATION OF 10s12800, A 

PUTATIVE E3 RING-H2 UBIQUITIN LIGASE OVER-EXPRESSED IN THE E8-

16 ACTIVATION TAGGED MUTANT 

 

Contributions of Authors 

 Justin Burum performed all air-layer propagation, tree care, and tissue harvesting 

for all experiments. Justin Burum also performed the pSKI074 vector confirmation PCR 

experiment. Brett Gross and Dr. Steven Ralph conducted SiteFinding and TAIL PCR T-

DNA mapping, qPCR for identifying the “activated gene”, and full length cloning of 

10s12800 cDNA and generated the gels for those experiments. Dr. Steven Ralph 

performed the BLAST search and generated the boxshade plot while Justin Burum 

analyzed the 10s12800 amino acid sequence for functional domains for the protein 

bioinformatics analysis. Dr. Danquong Huang and Dr. Wenhao (David) Dai created all 

10s12800 transgenic and vector control lines. Brett Gross and Dr. Steven Ralph isolated 

RNA for the microarray and Dr. Matias Kirst and Dr. Cintia Ribiero conducted the 

microarray hybridization as well as statistical analysis for that experiment. Jen Neva and 

Dr. Steven Ralph performed the BLAST of significant Populus probes from the 

microarray against the P. trichocarpa genome and non-redundant NCBI database and 

created the microarray results table. Jen Neva and Dr. Steven Ralph generated the RNA 
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and cDNA for the microarray validation and performed the qPCRs with 10s12800 and 

3s16845. Matthew Flom, with assistance from Justin Burum, generated data for 

microarray validation for 3s16840 and 3s16845. Justin Burum generated data for 4s10990 

and 11s12420. Justin Burum, with assistance from Ben Mohr, isolated RNA, created 

cDNA, and performed the qPCR analysis for the constitutive tissue 10s12800 expression 

and 10s12800 gene expression experiments. Justin Burum performed the unwounded 

choice and on-tree no-choice development bioassays for transgenic lines with vector 

controls. 

Introduction 

AT has become an effective gain-of-function approach to identify and study gene 

function related to a phenotype of interest in plants (Weigel et al. 2000; Wan et al. 2009; 

Busov et al. 2010). In chapter 3 we discussed a forward genetics approach using AT 

Populus that led to the identification of the IR mutant E8-16. The ultimate goal of any 

forward genetics strategy is to identify genes that cause the phenotype of interest. The 

E8-16 mutant was created by the Regan Lab (Harrison et al. 2007) by inserting the 

pSKI074 AT vector (Weigel et al. 2000) into the Pt x Pa genome using Agrobacterium-

mediated transformation (Tzfira et al. 1997; Han et al. 2000). Upon insertion the four 

CAMV enhancers on the vector can “activate” a nearby endogenous gene causing over-

expression (Weigel et al. 2000). Therefore, the first step towards identifying the mutation 

in E8-16 required mapping where the pSKI074 T-DNA(s) had inserted. Then, nearby 
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genes could be tested for expression to identify the activated gene, followed by additional 

experiments to characterize the gene to understand how the gene may be causing IR.  

T-DNA Mapping 

One significant advantage of using a T-DNA insertional mutagenesis approach, as 

opposed to mutations introduced through chemical (e.g., ethyl methanesulphonate) or 

physical (e.g., x-rays) methods, is the relative ease in which T-DNA locations can be 

mapped because the DNA sequence is known. The general approach taken towards 

identifying T-DNA insertion site(s) within AT mutants has been to use the T-DNA vector 

as a molecular marker in a PCR based strategy to amplify the genomic region flanking 

the T-DNA or to use plasmid rescue techniques. Early methods required laborious 

manipulations of the DNA, such as restriction digests and ligations before PCR could be 

used (Ochman et al. 1993) making it difficult to optimize for more rapid identification of 

T-DNA inserts within plant genomes.  

In 1995 Liu et al. developed a more efficient PCR method called TAIL PCR 

originally designed to amplify target DNA sequences adjacent to known yeast artificial 

chromosome (YAC) and PI clones. Liu et al. (1995b) adapted this technique to determine 

genomic sequences flanking T-DNA insertions within transgenic lines of Arabidopsis 

thaliana. The method used three nested vector specific primers in successive reactions in 

combination with arbitrary degenerate (AD) primers. AD primers are primer sequences 

where some of its positions can have several different possible bases. By using AD 

primers, amplification efficiency for specific products, such as unknown genomic DNA 

near T-DNA insertion, could be controlled by thermal conditions during PCR (figure 22). 

The use of semi-nested primers allowed for the amplification of rare sequences, such as a 
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single T-DNA, within large genomes. Liu et al. (1995b) used specific primers to 

pGDW32 T-DNA vector along with AD primers to amplify insertion specific products 

from 183 out of 195 tested Arabidopsis T-DNA insertion lines, suggesting that it is an 

efficient means to identify T-DNA locations. 

Another PCR method that has been more recently created is called SiteFinding 

PCR (Tan et al. 2005). Like the TAIL PCR method, this method incorporates the use of 

AD and vector specific primers to amplify the genome flanking the inserted T-DNA. In 

this method, 61 bp oligonucleotides called SiteFinder-1 and SiteFinder-2 contain several 

random nucleotides along with specific nucleotides at the 3’ end to bind to many 

locations within the plant genome. The oligonucleotide sequences of 5’-

NNNNNNGCCT-3’ at the 3’ end of SiteFinder-1 and 5’-NNNNNNGCGC-3’ at the 3’ 

end of SiteFinder-2 are designed to bind to GCCT or GCGC sites within the genome 

respectively, ideally binding to a location within a few thousand nucleotide base pairs 

from T-DNA insertion site. On average, each of these four bp sequences should occur 

once every 256 bp. The long oligonucleotides have sites for three different primers for 

easy use to amplify PCR products flanking T-DNA and AT vectors when used in 

combination with vector specific primers (figure 23). If the PCR product is produced via 

amplification using two SiteFinder primers instead of one T-DNA primer and one 

SiteFinder primer then the DNA that will form stable stem-loop structures preventing 

exponential amplification. If, however, the PCR product is produced with both a 

SiteFinder primer and a T-DNA primer, then amplification will go unhindered during the 

three rounds of nested PCR. Successful amplification of Populus DNA near the T-DNA 

will result in a bp shift between the secondary and tertiary rounds of PCR using gel
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Figure 22: Thermal asymmetric interlaced PCR (TAIL PCR).  Seven different 
arbitrary degenerate (AD) primers used in combination with primers designed to the left 
border of the AT vector pSKI074 (LBr1, 2, and 3) are used in a three round, semi-nested 
PCR to amplify Populus DNA flanking the vector. PCR products can then be cloned and 
sequenced. Location can then be determined by alignment with the Populus trichocarpa 
sequence. N= any of the four nucleotides. S=G or C. W=A or T. 
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Figure 23: SiteFinding-PCR. In this PCR method long oligonucleotides containing a 
series of degenerate nucleotides bind to thousands of locations within the Populus 
genome. Using primers designed to the oligonucleotide (SFP1, 2, 3) along with primers 
designed to the left border of the T-DNA (LBr 1, 2, 3) the method can amplify genomic 
DNA flanking the T-DNA. PCR products are then cloned and sequenced and a BLAST 
analysis of the PCR product can reveal T-DNA localization within the Populus genome. 
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electrophoresis. Now that we have discussed PCR methods used to determine T-DNA 

insertions, it is important to know where other researchers have found AT vectors within 

mutants and how they identified the activated gene. 

Previous Studies of T-DNA Mapping 

Weigel et al. (2000) created two AT vectors, pSKI015 and pSKI074 (Figure 24), 

containing four copies of CaMV enhancers and strategically placed restriction enzyme 

sites for rescue of sequences from either the right or left border. Vacuum-infiltration was 

used to generate AT mutants in several Arabidopsis thaliana backgrounds (Weigel et al. 

2000). In their largest screen (25,000 transformants) they identified and confirmed 23 

mutants with altered morphological phenotypes. Several lines were characterized in terms 

of phenotype as well as for location and identification of activated genes. T-DNA with 

flanking genomic DNA were recovered by plasmid rescue and analyzed by restriction 

mapping and DNA sequencing with comparison to GenBank. Genes near the T- DNA 

sites were tested using qPCR to identify overexpressed genes. What they found was that 

the distance between the T-DNA and the over-expressed genes ranged from 380 bp to 3.6 

Kb. Ichikawa et al. (2003) generated 61,591 independent Arabidopsis thaliana lines that 

were transformed with the AT vector pPCVICEn4HPT. Of those lines 1262 lines (2%) 

showed an abnormal morphology, growth rate, plant color, flowering time, or fertility in 

tissue culture or planted in soil. From these lines they isolated and mapped T-DNA 

insertions within the genome. A total of 1,172 independent T-DNA positions from the 

1262 AT mutants (93%) were identified, with 885 inserting outside coding regions. The 

other 317 mutations were within the reading frame of genes and therefore disrupted gene 

function. Regions near the centromere had less T-DNA integration and integration tended  
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Figure 24: Vector map of pSKI074. This figure shows the orientation and 
characteristics of the AT vector pSKI074 used by Weigel et al. (2000). This vector was 
also used to create the E8-16 mutant. 
 

to cluster in “hot spots” of particular chromosomes. However they did observe relatively 

even distribution between chromosomes and an average of 2.1 insertions per mutant. 

Distances between the enhancer and the activated gene varied between 0.7 and 8.2 Kb.  

TAIL PCR has been optimized and used to identify AT vector insertion sites 

within Populus. Busov et al. (2010) used AT pSKI015 and pSKI074 vector specific 

primers and seven different degenerate primers (AD 21, AD 22, AD 23, AD 24, AD 25, 

AD 4, and AD5) to recover DNA sequences flanking T-DNA insertion sites within 109 

AT Populus mutants. A total of 136 T-DNA insertions were recovered from 109 mutants, 

demonstrating that this method is effective in determining AT vector insertions. Most T-

DNA inserts (70%) were found within intergenic space and only 13.4% within introns 

and 15.7% within exons (Busov et al. 2010). The average distance of a T-DNA from a 

codon start site was 5 Kbp however nearly a third of all insertions were less than half that 

distance. They also found that the average number of insertions per AT mutant was 1.25, 
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slightly lower than studies in Arabidopsis. TAIL has also been successfully used to 

identify the location of T-DNA insertions in a variety of plant species with sequenced 

genomes including Arabidopsis thaliana (Liu et al. 2006, Nakazawa et al. 2003), Oryza 

sativa (Mori et al. 2007), and Lotus japonicas (Imaizumi et al. 2005). 

These studies revealed several characteristics about T-DNA insertions that need to 

be considered when T-DNA mapping. First, T-DNA insertions can occur between and 

within gene coding regions. If inserted near an endogenous gene, enhancers may recruit 

transcriptional machinery resulting in over-expression. Because there is a considerable 

amount of intergenic DNA in a species’ genome it is more likely the T-DNA will insert 

in those regions for a given AT mutant. If a T-DNA inserts within a gene it may disrupt 

gene expression or function. Second, these studies indicated that the distribution of 

inserted T-DNAs for a given AT population was even between chromosomes. These 

studies suggest that although the T-DNA insertion is more or less random, in roughly 

90% of mutants the T-DNA can be identified. Third, multiple T-DNA insertions were 

common within mutagenic lines. The PCR method(s) chosen for T-DNA mapping needs 

to be able to identify multiple PCR sites. Finally, these studies also suggest that once the 

T-DNA insertions are found, genes located nearest the T-DNA site are more likely to be 

impacted by the enhancers and can be tested using qPCR. These studies provide us a 

context as what we can expect and confidence that we can apply PCR for T-DNA 

mapping folluped with qPCR to measure gene expression to accomplish objective #2 of 

this dissertation.  

Objective #2 of Dissertation 
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Objective #2 of this dissertation was to map the T-DNA insertion(s) and identify 

the activated gene(s) in the AT mutant E8-16. To accomplish this objective SiteFinding-

PCR (Tan et al. 2005) and TAIL PCR (Busov et al. 2010) were used to amplify the 

region of the Populus DNA next to the left border of the pSKI074 vector within the E8-

16 mutant. A BLAST analysis of all PCR product sequences against the Populus 

trichocarpa genome (Phytozome, www.phytozome.net) identified a single T-DNA 

insertion within chromosome 10. Using qPCR we determined that 10s12800, the gene 

located closest to the T-DNA insertion, showed a nearly seven-fold increase in 

expression within E8-16 leaves compared to the wild-type trees suggesting that 10s12800 

expression is activated by the the T-DNA enhancers.  

Objective #3 of Dissertation 

In addition to identifying the activated gene within E8-16, it is also important to 

understand how the gene is causing the IR phenotype. To characterize the 10s12800 

gene, we conducted several different experiments. We performed a basic bioinformatic 

analysis of the protein by identifying predicted transmembrane and functional domains, 

and performing a BLASTP analysis within the NCBI non-redundant database 

(http://blast.ncbi.nlm.nih.gov) to find putative orthologs of the activated gene (10s12800) 

in other plant species. Next, we measured 10s12800 abundance in a tissue panel to 

determine where the gene was expressed. To understand how the mutation was impacting 

global gene expression patterns in the E8-16 mutant, we also examined gene expression 

using an Agilent 4x44K microarray along with a separate qPCR validation experiment of 

select genes. Finally, to provide independent genetic confirmation 10s12800 over-

expression was causing IR, new transgenic tree lines were created by inserting an 
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additional copy of the 10s12800 gene in a pCAMBIA S1300 T-DNA vector into two 

Populus hybrid backgrounds. Ultimately we determined that 10s12800 is a putative E3 

RING-H2 ubiquitin ligase that contains a really interesting new gene (RING) domain 

along with two transmembrane domains near the N terminus. The constitutive tissue 

expression analysis revealed ubiquitous expression but greatest expression in mature 

leaves. Over-expressing the 10s12800 gene in E8-16 appears to only impact a limited 

number of genes in the Populus transcriptome including chitinases and MADS-Box 

transcription factors. A two-fold increase in 10s12800 expression in Pt x Pa transgenic 

trees appears to inhibit WMTM feeding but further work is required to recapitulate the 

phenotype to conclusively prove 10s12800 is causing IR.  

Methods 

Confirmation of AT Vector Insertion Within E8-16 

Five new biological replicates of E8-16 and Pt x Pa wildtype trees were 

propagated and grown in the Starcher Hall greenhouse to a height of ~100 cm using 

methods described in chapter 3. LPI 11-13 leaves were harvested, frozen with liquid 

nitrogen, and then stored in a -80 C freezer for eventual experiments. Genomic DNA was 

isolated from one gram of leaf material from E8-16 using a Qiagen DNeasy Plant Mini 

Kit (Qiagen; Valencia, CA, USA) following the manufacturer’s instructions. Genomic 

DNA was quantified and quality checked using a ND-1000 spectrophotometer (Thermo 

Scientific; Wilmington, DE, USA). Three sets of PCR reactions were set up to determine 

which regions of the T-DNA were in the  E8-16 mutant.  Primer design was based on 

southern blot probe design by Harrison et al. (2007) to amplify the vector region before 

the left border (preLB F1 and R1 primers), after the right border, (pSK F1 and R1 
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primers), and the kanamycin resistance gene (kanR F1 and R1 primers) of the pSKI074 

vector (table 4). Unless noted, all primers were purchased from Integrated DNA   

Table 4:  Primers used for confirming pSKI074 insertion and identifying the T-DNA 
location within the E8-16 mutant. Primers were designed for the left border (preLB), 
right border (pSK) and kanamycin resistance region (kanR) of the pSKI074 vector to 
determine if the entire T-DNA inserted within E8-16 (T-DNA confirmation). Thermal 
assymetric interlaced PCR (TAIL) and SiteFinding PCR primers were used to amplify 
Populus DNA flanking the T-DNA. 
Primer  Sequence (5’-3’)  Purpose 
preLB F1  
preLB R1 
pSK F1 
pSK R2 
kanR F1 
kanR R1 
AD21 
AD22 
AD23 
AD24 
AD25 
AD3 
AD4 
LBr1 
 
LBr2 
 
LBr3 
SiteFinder1 
 
 
SiteFinder2 
 
 
SFP1 
SFP2 
SFP3  

 
 

TGTAGATGTCCGCAGCGTTA 
ATCTAAGCCCCCATTTCCAC 
CTCGGGAGTGCTTGGCATT 
ATCATCCTGTGACGGGAACTTTGG 
GCGTGGCTTTATCTGTCTTTGTATTG 
GGCCTACTTTAATTGCTTCCACTGTTA 
NGTCGASWGANAWGAA 
NGTCGASWGANAWGTT 
NGTCGASWGANAWGAC 
NGTCGASWGANAWCAA 
NGTCGASWGANAWCTT 
WCAGNTGWTNGTNCTG 
NGTAWAASGTNTSCAA 
AAGCCCCCATTTGGACGTGAATGTAG
ACAC 
TTGCTTTCGCCTATAAATACGACGGA
TCG 
TAACGCTGCGGACATCTAC 
CACGACACGCTACTCAACACACCACC
TCGCACAGCGTCCTCAAGCGGCCGCN
NNNNNGCCT 
CACGACACGCTACTCAACACACCACC
TCGCACAGCGTCCTCAAGCGGCCGCN
NNNNNGCGC 
CACGACACGCTACTCAACAC 
ACTCAACACACCACCTCGCACAGC 
CGCACAGCGTCCTCAAGCGGCCGC 

T-DNA confirmation 
T-DNA confirmation  
T-DNA confirmation 
T-DNA confirmation 
T-DNA confirmation 
T-DNA confirmation 
TAIL PCR 
TAIL PCR 
TAIL PCR 
TAIL PCR 
TAIL PCR 
TAIL PCR 
TAIL PCR 
TAIL PCR 

 
TAIL PCR 

 
TAIL PCR 
SiteFinding PCR 

 
 

SiteFinding PCR 
 
 

SiteFinding PCR 
SiteFinding PCR 
SiteFinding PCR 

    
 

Technologies. Fifteen microliters of master mix [2.5 U Paq 5000 (Agilent Technologies; 

Santa Clara, CA, USA), 1x Paq Buffer, 0.2 μM forward primer, 0.2 μM reverse primer, 

250 μM dNTP, water] plus five μL of E8-16 DNA (20 ng) were used in each reaction for 
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a total reaction volume of 20 μl. All PCR reactions, unless indicated, were performed on 

a DNA Engine Tetrad 2 Peltier Thermal Cycler PCR (Bio-Rad; Hercules, CA, USA). 

Thermal cycler conditions for preLB were as follows: 95°C for two minutes, 35 cycles of 

95°C for 30 seconds, 56°C for 30 seconds, then 72°C for two minutes. PCR conditions 

for KanR were: 95°C for two minutes, 35 cycles of 95°C for 30 seconds, 60°C for 30 

seconds, then 72°C for two minutes. PCR conditions for pSK primers were: 95°C for two 

minutes, 35 cycles of 95°C for 30 secs, 53°C for 30 seconds, and then 72°C for two 

minutes. PCR products were run on a 1% agarose gel to determine if the appropriate sizes 

were amplified. All gels, unless noted, were stained with ethidium bromide and imaged 

using an AutoChemi Gel Documenting System (UVP Bioimaging Systems; Upland, CA, 

USA). 

T-DNA Mapping 

TAIL PCR was conducted essentially as described in Busov et al. (2010). 

Genomic DNA was extracted from 1 gram of E8-16 leaves harvested as described in the 

prior section. In the primary PCR, genomic DNA was amplified with the pSKI074 vector  

specific left border round 1 primer (LBr1) in conjunction with one of seven different AD 

primers (AD21, AD22, AD23, AD24, AD25, AD3, or AD4, table 4) in 25 microliter 

reactions with Advantage 2 PCR kit (Clontech; Mountain View, CA, USA) according to 

the manufacturer’s instructions (1x Advantage 2 Polymerase Mix, 1x Advantage 2 

Buffer, 200 μM dNTPs, 150 μM LBr1 Primer, 100 ng DNA). Primary PCR reactions 

were amplified with the thermal conditions indicated in table 5. Primary PCR products 

were diluted in distilled water (1/10) and 2 μL were added to a master mix (1x Advantage 

2 Polymerase Mix, 1x Advantage 2 Buffer, 200 μM dNTPs, 200 μM of LBr2 primer, 1.6 
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μM degenerate primer) for a total reaction volume of of 25 μL. PCR products were 

amplified using secondary PCR thermal conditions indicated in table 5. A 1/10 dilution of 

the secondary PCR product in water was added to a 23 μL master mix of the same 

composition as the secondary PCR with LBr3 and amplified using tertiary PCR thermal  

Table 5: Primary, secondary, and tertiary PCR thermal conditions for TAIL PCR. 
Reaction Cycle # Thermal Conditions 
Primary 
 

1 
5 
1 
12 
 
 
1 

95°C, 2 min 
94°C, 30 sec, 64°C, 1min, 72°C, 2 min 30 sec 
94°C, 30 sec, 27°C, 3 min, 72°C, 5 min ramp at 0.3°C/sec 
94°C, 30 sec, 64°C, 1 min, 72°C, 2 min 30 sec 
94°C, 30 sec, 64°C, 1 min, 72°C, 2 min 30 sec 
94°C, 30 sec, 44°C, 1 min, 72°C, 2 min 30 sec 
72°C, 5 min 
 

Secondary 
 

12 
 
 
1 
 

94°C, 30 sec, 64°C, 1 min, 72°C, 2 min 30 sec 
94°C, 30 sec, 64°C, 1 min, 72°C, 2 min 30 sec 
94°C, 30 sec, 44°C, 1 min, 72°C, 2 min 30 sec 
72°C, 5 min 
 

Tertiary 31 
1 

94°C, 30 sec, 50°C, 1 min, 72°C, 2 min 30sec 
72°C, 5 min 

 

conditions (table 5). Secondary and tertiary PCR products were were separated by 

electrophoresis on a 1% agarose gel, imaged, and bands that showed a size shift between 

the two rounds were excised from the gel using a razor blade and purified using a Gel 

Extraction Kit per instructions (Qiagen; Valencia, CA, USA). Tertiary PCR products 

from AD 22, 23, 3 were then ligated into the pCR 4 -TOPO vector and transformed into 

One Shot TOP10 chemically competent E.coli according to the manufacturer’s 

instructions for the TOPO TA Cloning kit (ThermoFisher Scientific; Minneapolis, MN, 

USA) or directly sequenced. Transformed cells were plated on 1.5 % LB agar plates with 

100 μg/mL ampicillin, 80 μg/mL X-Gal (G Biosciences; St. Louis, MO, USA) and 50 μM 

IPTG (G Biosciences; St. Louis, MO, USA) and grown overnight for blue-white colony 
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selection.  

White colonies were diluted in ten microliters of distilled water in 0.2 μL PCR 

tubes. Colony PCR using M13F (5’-GTAAAACGACGGCCAGT-3’) and M13R (5’-

GTTTTCCCAGTCACGAC-3’) sequencing primers were used to identify plasmids with 

the expected insert size based on TAIL tertiary bands. Twenty µL total reactions 

(Paq5000 2U, 1x Paq Buffer, 200 pMol M13 F primer, 200 pMol M13 R primer, 200 μM 

dNTP mix, 1 μL of DNA from white colonies) were amplified at the following thermal 

conditions: 95°C for 2 minutes, 32 cycles of 95°C for 20 seconds, 55°C for 20 seconds, 

72°C for 2 minutes, and then 72°C for five minutes. Colony PCRs were run on a 1% gel, 

stained with ethidium bromide, and imaged. Colonies with a PCR band size matching the 

TAIL tertiary PCR were grown overnight in 2 mL of LB broth with 200 ng of ampicillin 

in a shaking incubator at 225 rpm at 37°C. Plasmids were isolated using a Qiagen 

QIAprep Spin Miniprep kit (Qiagen; Valencia, CA, USA) and then sequenced using an 

ABI BigDye Terminator 3.1 Cycle Sequencing kit (Thermo Fisher Scientific; 

Minneapolis, MN, USA) with M13 primers. Sequences were run on an ABI Prism 3100 

Genetic Analyzer (Applied Biosystems; Thermo Fisher Scientific; Minneapolis, MN, 

USA) with the program ABI Sequence Scanner v1.0. Sequences were trimmed using 

BioEdit software (www.bioedit.software.informer.com) to remove the pCR 4-TOPO 

vector sequence. A BLASTN analysis of sequences was conducted against the NCBI 

non-redundant database (www.ncbi.nlm.nih.gov) to determine if products contained a 

fragment of the pSKI074 T-DNA and against the P. trichocarpa genome sequence 

(http://www.phytozome.net; Goodstein et al. 2012) to determine the T-DNA location 

within the E8-16 genome.  
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 SiteFinding-PCR was conducted essentially as described in Yordanov et al. 

(2010). Sitefinder-1 and 2 primers were annealed to E8-16 genomic DNA in separate 25 

µL reactions (1x Advantage 2 Polymerase Mix, 1x Advantage 2 Buffer, 250 μM dNTP, 

10 pMoles SiteFinder-1 or 2 Primer, 100 ng of E8-16 DNA) at the following PCR 

conditions: 92°C for two minutes, 95°C for 1 minute, 25°C for 1 minute, and 1 ten 

minute cycle where temperature was ramped up to 68°C at 0.2°C/sec.  Following the 

annealing of the SiteFinder primers, five µL (50 pMoles SiteFinding primer, 10 pMoles 

LBr1 primer, 1x Advantage 2 Buffer) were added to the reactions before they underwent 

the primary PCR. Thermocycler conditions for the primary PCR were: 94°C for 1 minute, 

30 cycles of 95°C for ten seconds, 68°C for six minutes, and then 1 cycle at 72°C for five 

minutes. PCR products were diluted in distilled water (1/100) and then 1 μL was added to 

a master mix (1x Advantage 2 Polymerase, 1x Advantage 2 Buffer, 25 μM dNTP mix, 

0.2 μM LBr2 primer, 0.2 μM SFP2 primer) for a total of 50 μL. Secondary thermal PCR 

conditions were the same as the primary PCR. A 1/100 dilution of the secondary PCR 

was used for the tertiary PCR using the same PCR reagents with LBr3 and SFP3 primers 

with the same thermal conditions as the primary PCR. PCR products from Sitefinder-1 

and 2 were ligated into pCR 4-TOPO vector and transformed into TOP10 E.coli cells or 

directly sequenced using methods discussed for the TAIL PCR to determine if products 

contained a fragment of the pSKI074 T-DNA and to determine the T-DNA location 

within the E8-16 genome.  

Expression of Genes Near T-DNA Location 

Absolute transcript abundance of predicted genes located within 20 kb of the T-

DNA were tested using quantitative PCR and normalized to the housekeeping gene 
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translation initiation factor 5 alpha (TIF5α) to identify the activated gene. Total RNA 

was isolated from LPI 11-13 leaves harvested from three Pt x Pa and three E8-16 trees 

described in the vector confirmation section, using Qiagen’s RNeasy Plant Miniprep kit 

(Qiagen; Valencia, CA, USA). RNA was quality checked and quantified with a Nanodrop 

ND-1000 spectrophotometer (Thermo Fisher Scientific; Waltham, MA, USA.) and Bio-

Rad Experion Automated Electrophoresis System (Bio-Rad; Hercules, CA, USA). One 

microgram of RNA from each tree was treated with DNase1 (Thermo Fisher Scientific; 

Minneapolis, MN, USA) and cDNA synthesis was generated using an iScript cDNA 

synthesis kit (Bio-Rad; Hercules, CA, USA) according to manufacturer’s instructions. 

Three genes located near the T-DNA site were tested for gene expression.  

POPTR_0010s12800 (10s12800) was amplified using primers 5’- 

GAGATGATGCATGTGCATGATG-3’ and 5’-TGTAGCAGCTAAGAAATTCCAAG-

3’.  Primers for amplification of POPTR_0010s12810 (10s12810) were 5’-

CTCCTTCGCTAGGTAAACTCTC-3’ and 5’- ATTCCGATACTGACAAGTTGTTC-

3’. POPTR_0010s12790 (10s12790) was amplified using the primers 5’-

CAGCATTAATCAAACTAGTACTCC-3’ and 5’-

CATCTAATGCTATAACTTCTCAGC-3’. TIF5α was amplified using the primer set 5’ -

GACGGTATTTTAGCTATGGAATTG-3’ and 5’-CTGATAACACAAGTTCCCTGC-

3’. PCRs were conducted in 25 μL reactions (1x Advantage 2 Polymerase, 1x Advantage 

Buffer, 0.2 μM of the forward and reverse primer, 0.2 mM dNTPs, 1 μL of 50 ng of Pt x 

Pa or E8-16 DNA). PCR conditions for amplifying all three genes were: 95°C for two 

minutes then 30 cycles of 95°C for 15 seconds, 56°C for 15 seconds, 68°C for one 

minute, then 68°C for 15 minutes. PCR products were separated on a 1.5% agarose gel to 
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ensure amplification occurred at the appropriate size. PCR products were purified using a 

QIAquick PCR Purification kit (Qiagen; Valencia, CA, USA), ligated into the pCR4-

TOPO vector and transformed into TOP10 chemically competent E.coli as described 

above, and then sequenced using ABI BigDye Terminator 3.1 Cycle Sequencing kit 

(Thermo Fisher Scientific; Minneapolis, MN, USA). pCR4-TOPO plasmid standards for 

each gene were prepared for calculating absolute gene expression. qPCR runs consisted 

of a 10-fold dilution series for plasmid standards (6x10-2 to 6x10-9 ng), 25 ng of cDNA 

for all trees, and RNA and water negative controls using iQ SYBR Green Supermix (Bio-

Rad; Hercules, CA, USA) at the following conditions: 95°C for 15 minutes, then 40 

cycles of 94°C for 10 seconds 60°C for thirty seconds 72°C for 30 seconds followed by a 

plate read, then 72°C for ten minutes, and then a melting curve between 65°C to 95°C 

with readings every 0.2 seconds followed by 72°C for ten minutes. All qPCR runs were 

run on a Chromo4 AlphaBlock Assembly Detector (Bio-Rad; Hercules, CA, USA). Four 

technical replicate qPCR runs were made for each gene to ensure technical 

reproducibility. Amount of plasmid per ng of of RNA was calculated based on the 

standard curve and normalized to TIF5α for each gene. Molecular weights of pCR 4-

TOPO standards with gene inserts were calculated according to Invitrogen 

(http://www.invitrogen.com/site/us/en/home/references/Ambion-Tech-Support/rna-tools-

and-calculators/dna-and-rna-molecular-weights-and-conversions.html) to calculate copy 

number. 

Protein Bioinformatics 

 10s12800 is predicted by Phytozome to have a coding sequence of 517 bp, 

translating to 169 amino acids. To determine the class of protein we conducted a 
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BLASTP search of the non-redundant database analysis of the National Center for 

Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov) database. Homologues that 

were found to be similar (<e-10) were aligned using ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2; Larkin et al. 2007). A boxshade plot was 

created (BOXSHADE v.3.21, https://sourceforge.net/projects/boxshade/) to identify 

conserved regions within the group of proteins. To identify transmembrane helices within 

10s12800 we used the ARAMEMNON database (http://aramemnon-botanik.uni-

koeln.de) which integrates predictions from 18 individual programs (Schwacke et al. 

2003). InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan; Quevillon et al. 2005) and 

PROSITE (http://prosite.expasy.org; Sigrist et al. 2010) were used to identify functional 

domains. 

Constitutive Expression of 10s12800 

To determine where the 10s12800 gene is expressed within Pt x Pa tissues a 

separate greenhouse experiment was conducted. Five E8-16 trees and four Pt x Pa trees 

were propagated from original stems from QU using air-layering and then grown in 

three-gallon pots in the Starcher Hall greenhouse as described in chapter 3. Trees were 

grown to ~180 cm, with a 3:1 ratio of Sunshine Mix #1 and sand, under a 16:8 day:night 

cycle with supplemental lighting, with water and fertilizer provided ad libitum. From four 

of the E8-16 and Pt x Pa wildtype trees we harvested mature leaves (LPI 11-13), 

immature leaves (LPI 0-2 and crown), bark, xylem, phloem, petioles, and roots tips using 

sterile razor blades. Tissues were immediately frozen in liquid nitrogen, and then stored 

at -80°C. For analyzing constitutive expression of 10s1280, RNA was isolated from E8-

16 and Pt x Pa tissues using the Qiagen RNeasy Plant Miniprep kit (Qiagen; Valencia, 



 138 

CA, USA) and quality checked and converted to cDNA with an iScript cDNA Synthesis 

kit (Bio-Rad; Hercules, CA, USA) as previously described. Four technical qPCR runs for 

each RNA sample were performed using 25ng of cDNA using the same 10s12800 and 

TIF5α primers used to determine the activated gene. Absolute gene expression, 

normalized to TIF5α, was done as previously described above in the section for 

determining gene expression near the T-DNA. 

Microarray Analysis 

To determine global expression differences between E8-16 and Pt x Pa wildtype 

trees a microarray analysis was conducted. Mature LPI 11-13 leaves that were previously 

harvested for the constitutive tissue panel were also used to compare global 

transcriptomic expression differences between E8-16 and Pt x Pa trees. One gram of 

RNA was isolated from five E8-16 and four Pt x Pa trees using the Qiagen RNeasy Plant 

Minikit (Qiagen; Valencia, CA, USA) per the manufacturers instructions. RNA was 

quantified and quality checked as previously described. RNA was then shipped to the 

Interdisciplinary Center for Biotechnology Research (ICBR) at the University of Florida 

where microarray hybridization and image processing was performed. cDNA synthesis 

and Cy3 and Cy5 dye labeling was performed using an Agilent Low-Input Quick Amp 

Labeling kit (Agilent; Santa Clara, CA, USA). The Populus microarray was generated 

using Agilent’s SurePrint technology and consisted of gene probes arranged in a 4x44K 

format per slide. The microarray comprised one 60-mer probe per gene for 61,361 

previously described gene models derived from the annotation of the genome sequence of 

P. trichocarpa clone 'Nisqually-1' (version 2.2; Tuskan et al. 2006) and a set of non-
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annotated ESTs supported with transcriptional evidence. Duel hybridizations and image 

analysis were performed at the ICBR as described in Drost et al. (2009).  

To confirm the results from the microarray we propagated and grew five new E8-

16 and Pt x Pa trees within the greenhouse and then individually tested genes using 

qPCR. POPTR_0010s12800 (10s12800, E3 ubiquitin ligase), POPTR_003s16840 

(3s16840, MADS-box), POPTR_003s16845 (3s16845, MADS-box), POPTR_004s10990 

(4s10990, bZIP transcription factor), and POPTR_0011s12420 (11s12420, NAM protein) 

were selected as probes because these genes were found to be over-expressed in E8-16 

from the microarray. Another gene, POPTR_008s12460 (8s12460, E3 ligase) that has 

amino acid sequence similarity to 10s12800 was also tested for absolute gene expression 

relative to TIF5α. Primers were designed to either the 3’ UTR or between two exons for 

all genes. The primers used for 10s12800 were the same as those used in the initial 

identification of the activated gene. 3s16840 was amplified with the primers 5’- 

GAGGCGAAATGGATTGTTCAAG-3’ and 5’-CTCGCGTATAAGCAACGATAAG-

3’. 3s16845 was amplified with the primers 5’- CGGTAAAGACTCGGATCACCC-3’ 

and 5’- CCTCCAGCGGTAAGTTATCAC-3’. The bZIP transcription factor 4s10990 

was amplified with the primers: 5’- CCTCCTCAGCTTCAAGAATTC-3’ and 5’- 

GTGAGCACTTGACGTAGTTCAG-3’. The NAM protein 11s12420 was amplified with 

the primers 5’- CTTCTCAGTCAACTTCCACAG-3’ and 5’- 

CTACTAATCAATCGACGACCG-3’. Genes were amplified with the same reagents and 

conditions as previously described followed by agarose gel confirmation, sequencing, and 

cloning into pGEM T-Easy for amplification standards, and then qPCR. 

Full-length 10s12800 cDNA  
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 An important step in proving whether or not the 10s12800 gene is causing the IR 

phenotype observed in the E8-16 genotype requires recapitulating the phenotype by 

creating new transgenics intentionally over-expressing the gene by inserting an extra 

copy of 10s12800 gene within a wildtype background. The first step towards 

recapitulation required amplifying the full-length of 10s12800 gene so that it can be 

cloned within a suitable vector for Agrobacterium transformation into the Populus 

genome. One forward primer (F2 5’-ATCGCATAACCTAAAACACTG-3’) with one of 

two different reverse primers (R1 5’-TGTAGCAGCTAAGAAATTCCAAG-3’, R2 5’-

GAATGCACTCTTATAGCAG-3’) designed to the 5’ and 3’ untranslated regions (UTR) 

of the predicted gene model POPTR_10s12800 were used to amplify 10s12800. Twenty 

µL reactions (1x Advantage 2 Polymerase Mix, 1x Advantage 2 Buffer, 200 μM dNTPs, 

0.2 μM F2 primer, 0.2 μM R1 or R2 primer, 8.34 ng cDNA from E8-16) were used to 

amplify full length 10s12800 cDNA with the following PCR conditions: 1 cycle 95°C for 

two minutes and 32 cycles of 95°C for 15 seconds, variable temperatures for 30 seconds, 

72°C for 1 minute. Using cDNA from one of the Pt x Pa trees used for the qPCR gene 

expression analysis we attempted to amplify the gene using a temperature gradient with 

three different annealing temperatures: 51.7, 55.5, or 61.8°C.  PCR products were loaded 

and separated on a 1% agarose gel. The single intense band generated using the F1-R2 

primer combination at the 55.5°C annealing temperature was PCR purified using a 

Qiagen PCR Purification Kit and cloned into the PCR4-TOPO vector as previously 

described. Twenty µL colony PCR reactions (2U Paq 5000, 1x Paq Buffer, 200 pMol F 

primer, 200 pMol R primer, 200 μM dNTPS, 1 μL of bacteria in water) using M13F and 

M13R primers were conducted using the following PCR thermal cycler conditions: 1 
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cycle 95°C for two mins, 32 cycles of 95°C for 20 seconds, 55°C for 20 seconds, 72°C 

for one minute, and one cycle at 72°C for five minutes. Colonies were run on a gel and 

colonies with bands at approximately 517 bp were grown overnight in 1 mL LB broth 

with amplicillan on a shaking incubator at 37°C. Plasmids were purified using a Qiagen 

Plasmid miniprep kit and then sequenced to confirm that the colonies contained the full 

sequence of the 10s12800 gene without mutations.  

Generation of 10s12800 Transgenic Trees 

 10s12800 cDNA was amplified using primers with Xba I and Sac I restriction 

sites (5’- GTATCTTCTAGAAAAAATGGGTTTGCAAAACCAG -3’, 5’- 

CATAGAGAGCTCTCATCTCAAGGAGAGCCAG -3’). PCR amplification was 

performed according to manufacturers instruction for the Elongase Enzyme Mix 

(Invitrogen; Carlsbad, CA, USA). PCR products were purified using a QIAquick Gel 

Extraction Kit (Qiagen; Valencia, CA, USA) and then cloned into the pGEM-T Easy 

vector (Promega; Madison, WI, USA) and transformed into chemically competent cells. 

Bacteria was plated on LB broth with ampicillin and grown overnight at 37°C. Positive 

colonies with the insert were selected (blue-white colony selection) and confirmed using 

colony PCR (figure 25). Select plasmids were grown overnight, isolated, and sequenced. 

10s12800 cDNA from pGEM-T Easy was cut and inserted into the multi-cloning (MC) 

site of the plant expression vector pCAMBIA S1300 next to the vector’s super promoter 

(a trimer of octopine synthase activator, monopine synthase activator, and mas promoter) 

as shown in figure 25. 10s12800 constructs were transfected into Agrobacterium 

tumefasciens strain EHA105 and PCR was used to confirm that the correct size of 

10s12800 (517bp) was transformed into the Agrobacterium tumefasciens EHA105 
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Figure 25: Generation of 10s12800 transgenic lines. A) Full length 10s12800 cDNA 
was inserted in the pCambia S1300 vector in the multi-cloning site. B) cDNA with vector 
was transformed with Agrobacterium and a colony PCR was performed to identify 
bacteria with the correct insert size (517 bp). Leaf tissue was exposed to transformed 
Agrobacterium and placed on callus induction media. C) Callus tissue from transformed 
cells growing on callus induction plate. After placing callus on root and shoot induction 
media copies of each independent lines were made in tissue culture. 
 

followed by sequencing. Leaves from Pt x Pa and Pc x Pg were cut into 0.5-0.8 cm wide 

pieces and then incubated in a petri plate with 10s12800 transfected Agrobacterium for 

15 minutes. Explants were then placed on petri plates with co-cultivation media (MS with 



 143 

5 mM Zip, 10 mM NAA, and 100 mM acetosyringone) and placed in petri plates for two 

days at room temperature in the dark. Explants were gently washed with autoclaved water 

and gently dried before being placed on callus induction media (MS with 5 mM Zip, 10 

mM NAA, 500 mg/L carbenicillan, 250 mg/L cefotaxime, and 5 mg/L hygromycin) for 

four weeks in the dark at room temperature. Explants were then transferred to shoot 

induction media (MS with 0.2 mM TDZ, 500 mg/L carbenicillin, 250 mg/L cefotaxime, 5 

mg/L hygromycin) under lights with a 16 hr photoperiod for four weeks. Individual 

shoots were then placed on rooting media (1/2 MS with 0.5 mM NAA, 500 mg/L 

carbenicillin, 250 mg/L cefotaxime, and 5 mg/L hygromycin. DNA was extracted from 

roots of each tree line and a standard PCR was conducted to ensure that each line 

contained the transgene. Trees lines were propagated in tissue culture and eventually 

transferred to soil and grown in the greenhouse to a height of >10cm. 

qPCR Screen of 10s12800 Trangenic Lines 

LPI 2-3 leaves were harvested from five trees from all 10s12800 transgene and 

vector control line trees using sterile razor blades. Harvested leaves were stored in 50 mL 

falcon tubes with liquid nitrogen and then stored at -80°C for later use. Total RNA was 

isolated, quality checked with a Nanodrop UV spectrophotometer, treated with DNaseI, 

and converted to cDNA as previously described. Primers designed for TIF5α and 

10s12800 based on the P. trichocarpa genome sequence were used to measure absolute 

expression of 10s12800. pGEM T-Easy plasmid standards for each gene (i.e., containing 

the target PCR amplicon) were cloned, sequenced, and quantified by Nanodrop. Each 

qPCR run consisted of a plasmid dilution series from 6x10-3 to 6x10-8 ng, 25 ng of each 
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cDNA , 25 ng of Pt x Pa or Pc x Pg RNA, 25 ng of transgene RNA, and water alone. 

qPCR reactions were performed using iQ SYBR green supermix as previously described. 

Bioassays for Select 10s12800 Transgenic Trees 

For unwounded choice bioassays eight biological replicates of 10s12800 

transgene and vector control Pt x Pa trees were grown together and LPI 11-13 leaves 

were harvested, cut into 6.5cm2 disks, and pinned on four petri plates per pair (technical 

replicates). For details of how plates were set up see chapter 3. Six 3rd instar WMTM 

larvae were placed on each plate and allowed to feed for 24-48 hours. Leaf area was 

analyzed using GIMP imaging software, and then the leaves were dried and weighed. 

On-tree no-choice bioassays to compare insect growth and development between 

TL4 transgene and TL8 Pt x Pa vector control was conducted as described earlier. Twelve 

2nd instar WMTM larvae were caged with mesh bags on LPI 8-16 leaves of ten trees of 

each line. Insects were reared for seven days on trees until the largest insects were late 4th 

instar. Insects were removed from each tree and weighed for fresh weight gain. 

Statistical Analysis 

Statistical analysis of all bioassay data and gene transcript abundance data was 

conducted in R (www.r-project.org). Leaf consumption for choice bioassays, transcript 

abundance of genes located near the T-DNA, 10s12800 constitutive expression, and the 

microarray transcript expression validation were analyzed using a nested-ANOVA test. 

Wet and dry weight gain of insects were analyzed using a two-sample t-test and instar 

development was analyzed using a chi-square test. Constitutive tissue expression was 

analyzed using a one-way ANOVA followed by a post hoc Tukey’s HSD test. For the 

microarray raw signal data from all hybridizations were quantile-normalized, log2-
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transformed and analyzed using a gene-by-gene mixed ANOVA model in SAS 9.2. Data 

was filtered for background noise based on negative control spots on the microarray, and 

probes displaying low signal (<200 units) were considered below the detection 

threshold.F-tests were performed for genotype effect and least-square mean estimates 

were obtained analyzed using q-value at false discovery rate (FDR) of 0.15.  

Results 

T-DNA Confirmation and Localization 

Before additional work was conducted to identify the T-DNA localization we 

tested whether or not the mutant E8-16 contained a T-DNA. PCR primers were used to 

amplify the left border (preLB), kanamyacin resistance (kanR), and right border regions 

(pSK) of the psKI074 vector. The left border and kanR regions amplified with the 

expected products at 160 bp (lane 5) and 454 bp (lane 10) respectively (figure 26). Weak 

amplification at ~1431bp with pSK primers (lane15) suggests that the right border of the 

T-DNA may be degraded from endonucleases during the Agrobacterium transformation 

into the Populus tissue.  

To determine the T-DNA location(s) within the E8-16 mutant we used two  

PCR methods, TAIL PCR and SiteFinding-PCR. For TAIL PCR we used seven different 

degenerate primers along with pSKI074 vector specific products to amplify E8-16 

genomic DNA flanking T-DNA insertions. If primers specifically amplify the genomic 

region flanking a T-DNA we would expect to see a 50bp shift between the secondary and 

tertiary rounds of PCR. Of the seven degenerate primers tested, five (AD 21, 22, 25, 3, 4) 

showed an approximate 50bp band shift between the secondary and tertiary rounds of 

PCR (figure 27). We also observed non-specific products in each PCR. Substantial non- 
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Figure 26: T-DNA confirmation of the pSKI074 vector within E8-16. A) Three 
sections of the AT vector were amplified: the left border (pre-LB), kanamycin region 
(KanR), and the right border (pSK). The preLB and kanR products amplified strongly at 
the same expected bp sizes as the positive control. For the pSK primer set there was weak 
amplification at the expected size of 1431 bp. Gel was run with a positive control, 
another AT mutant called R19-6, at two different DNA amounts, along with Pt x Pa and 
water negative controls.  
 

specific background products can be generated using this method since two AD can 

amplify DNA without the pSKI074-specific primer. We also found PCR products in 

water negative controls for several of the AD primers. Contamination, which was non-

specific, is common when performing multiple rounds of semi-nested PCR. We chose to 

gel excise, clone, and sequence the products from AD 22, 3, and 4 as they had PCR 

product bands that did not correspond with bands in the negative controls for those AD 
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Figure 27: Results for E8-16 using TAIL PCR. Three rounds of semi-nested TAIL 
PCR were used to amplify Populus DNA flanking the T-DNA insertion site with 
pSKI074 vector specific primers and AD primers (AD21, 22, 23, 24, 25, 3, 4). Gels show 
the secondary and tertiary PCR products for all seven AD primers for E8-16 and water 
negative controls, as well as an additional AT mutant 239L-5 that was being investigated 
at the same time. Five of the AD primers showed the characteristic 50 bp band shift 
between PCR rounds (highlighted in red box).  
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primers.  

Following gel excision, tertiary products from AD 22 and AD 4 were directly 

sequenced. We were unable to directly sequence the tertiary product from AD 3 but we 

were able to clone the product into the pCR4-TOPO vector and purify the plasmid for 

sequencing. Vector sequences were trimmed using BioEdit to remove the T-DNA 

sequence and then another BLAST analysis was done in Phytozome against the Populus 

trichocarpa genome. AD3 mapped to the12786 kb position on chromosome 10 (E 

value=2.3E-51) with a 95.5% identity match (106/110 bp). AD 4 (E value=2.6E-44) and 

AD22 (E value=1.1E-49) also had the strongest match to the same location on 

chromosome 10 with an identity score of 96.4% (106/110 bp) and 94.5% (121/128 bp), 

respectively.  

SiteFinder-1 and 2 products that specifically amplify the genomic region 

containing the T-DNA should reveal a 70 bp band shift between PCR rounds. SiteFinder-

1 revealed a single PCR band at ~1500bp in the secondary PCR and two bands at ~1400 

bp and 400 bp in the tertiary (figure 28). With the SiteFinder-2 primer we observed an 

intense band at ~1550bp in the secondary PCR that appeared to shift 70 bp in length in 

the tertiary PCR. We also observed several other minor bands. We attempted to directly 

sequence the clone the two products from the tertiary of SiteFinder-1 and the intense 

bands from the secondary and tertiary rounds of SiteFinder-2. A BLAST analysis from 

the 1400 bp band from SiteFinder-1 and the 1550 bp from the secondary PCR of 

SiteFinder-2 within the non-redundant database of NCBI revealed the sequence of 

pSKI074 activation-tagged vector and Populus DNA. BLAST analysis of the tertiary 

PCR product from SiteFinder-1 against the P. trichocarpa genome in Phytozome had the 
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Figure 28: SiteFinding-PCR results for E8-16 using SiteFinder-1 and SiteFinder-2 
oligonucleotides. A) SiteFinder-1 revealed a single intense band at ~1500 bp in the 
secondary PCR and two products in the tertiary (~1400 bp and ~400bp). B) SiteFinder-2 
showed an intense band ~1550 bp in the secondary PCR and multiple products in the 
tertiary but the most intense band at ~1480 bp.  
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strongest match at chromosome 10 (E=1.8E-51) with an identity of 95.3% (122/128 bp). 

We were unable to sequence the tertiary product from SiteFinder-2 but the secondary 

PCR product had the strongest match at 12786 kbp on chromosome 10 (E=1.2E-83) with 

an identity of 95.9% (185/193 bp). 

qPCR Expression Analysis of Predicted Gene Models Near the T-DNA 

To determine if there was transcriptional activation near the T-DNA we selected 

three gene models located near the insertion site for expression analysis using qPCR. 

Two predicted gene models, 10s12800 and 10s12810, were selected because most 

activated genes are within 10 kb of the insertion site (Busov et al. 2010). We also chose 

to test the predicted gene model 10s12790 as the CAMV enhancers are orientated to 

impact genes on either side of the T-DNA. 10s12810, a predicted serine-threonine kinase, 

was not detectable in leaf tissue. Expression of 10s12800, a predicted E3 ubiquitin ligase, 

was 6.94 fold higher in E8-16 leaves than Pt x Pa (figure 30; Nested ANOVA, 

p<0.00001). Expression of 10s12790, a predicted fructose-bisphosphate aldolase, was 

1.53 fold higher in E8-16 leaves than Pt x Pa (Nested ANOVA, p=0.0104). 10s12800 

shows a pattern of 5-10 fold higher expression in AT vs. wild-type lines with strong 

statistical support. These results suggest 10s12800 is the activated gene in the E8-16 

mutant.  

10s12800 is a Putative E3 RING-H2 Ubiquitin Ligase 

A BLASTP analysis was performed to identify all available homologues with 

sequence similarity (e-10). We then compared sequences using a Clustal W2 alignment 

of proteins to identify to identify conserved regions. The BLASTP comparison of the  
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Figure 29: SiteFinding and TAIL PCR results for identifying a T-DNA insertion 
within the E8-16 mutant. SiteFinding and TAIL PCR identified the same location on 
chromosome 10 as shown in the red box. Three gene models are located in close 
proximity to the T-DNA, 10s12790, 10s12800, and 10s12810 (blue boxes). 

 

 

Figure 30: Absolute transcript expression of 10s12790 and 10s12800. A) Expression 
of 10s12790 was 1.53 fold higher in E8-16 leaves than Pt x Pa (Nested ANOVA, 
p=0.0104). Expression of 10s12800, a predicted E3 ubiquitin ligase, was 6.94 fold higher 
in E8-16 leaves than Pt x Pa (Nested ANOVA, p<0.00001). Bars represent mean +/- SE. 
 

10s12800 amino acid sequence against the non-redundant database from GenBank 

identified proteins with similar sequences found throughout the plant kingdom including 

12780K 12790K 12800K 12810K 12770K 12760K 

10s12800  10s12810  10s12790  

Chromosome 10 
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Orzyia sativa, Arabidopsis, and Populus (Figure 29). Two regions of 10s12800 (1-44 and 

100-148 amino acid location 2) showed strong sequence similarity to other proteins 

which prompted us to further investigate whether these areas corresponded with known 

functional domains or secondary protein structures. InterProScan and PROSITE 

confirmed the presence of a really interesting new gene (RING) zinc finger domain 

between amino acids 100-142. InterProScan identified two transmembrane domains at 

amino acid positions 15-35 and 55-71 amino acids while the ARAMEMNON plant 

membrane protein database suggested that the two transmembrane domains are between 

amino acids 13-33 and 50-70. PROSITE also confirmed the presence of a zinc finger 

RING type profile from amino acids 100-142. Another look at the RING domain in the 

boxshade plot revealed a conserved Cys3His2Cys3 motif suggesting that 10s12800 is an 

E3 RING-H2 ubiquitin ligase that appears to be localized within a membrane. The 

ARAMEMNON database suggested that the protein is likely involved in the secretory 

pathway and does not predict an N-terminal cleavable signal peptide. There is a mix in 

results about whether the N-terminus is facing the cytosol. 

10s12800 Constitutive Expression 

cDNA from seven tissues (bark, immature leaves, phloem, roots, mature leaves, 

xylem, and petioles) from four Pt x Pa wildtype trees were tested for 10s12800 

expression normalized to TIF5α. As shown in figure 32, 10s12800 expression was 

observed in all tissues tested. A one-way ANOVA showed that the effect of tissue type 

on 10s12800 expression was significant, (F6,21=10.51, p=0.00002). A post hoc Tukey 

HSD test revealed that mature leave tissue expression differed from petioles, bark, 

immature leaves, phloem, and roots at p<0.01; expression from xylem tissue was not 
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Figure 31: Boxshade CLUSTAL W2 alignment of the 10s12800 protein and 20 
related plant proteins identified during a BLASTP search in GenBank. The 
10s12800 protein contains two transmembrane domains (indicated in orange) and 
conserved Cys3: His2: Cys3 residues characteristic of the RING-H2 domain. Black boxes 
indicate > 60% identity and gray boxes indicate >60% similarity. Conserved cysteine and 
histidine residues for the RING-H2 domain are indicated with red and blue boxes 
respectively. 
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Figure 32: Constitutive expression of 10s12800 in Populus tissues. A) TIF5α CT range 
across all tissues was 1.2. B) 10s12800 gene expression was observed in all tissues. A 
post hoc Tukey HSD statistical test revealed a difference in gene expression between 
mature leaves and bark, immature, phloem, roots, and petioles (p<0.01). Bars indicate 
mean +/- SE. 
 

significantly different from the two groups, lying somewhere in the middle.  
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Microarray Comparison and Validation  

To compare global transcript level differences between the E8-16 and Pt x Pa 

wildtype genotypes we conducted a microarray experiment using RNA from LPI 11-13 

leaves from four E8-16 and four Pt x Pa trees. Before probes were identified overall 

signal intensity and slide-to-slide intensity was evaluated with a scatter plot to ensure 

quality hybridization (figure 33). Slide to slide comparisons revealed correlation 

coefficients greater than 0.9, suggesting the intensity of probes was even between slides 

and trees (figure 33). Gene expression for the microarrays was considered statistically 

significant if p value < 0.05 and a false discovery q value < 0.15. Only 22 probes out of a 

 

Figure 33: Scatterplot analysis. This graph shows a scatterplot comparison of Cy3 and  
Cy5 hybridization signal intensities for each slide. Multivariate analysis shows 
correlation coefficients range  from 0.90 to 0.97 across all slides indicating consistent 
hybridization throughout the experiment and very little noise among microarrays 
Microarrays with Pt x Pa wildtype RNA are 12, 22, 42, 6, and 8. Microarrays with E8-16 
are 1-4.  
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potential 43,803 revealed expression differences between genotypes (Table 6). 10s12800 

was among the most highly differentially expressed genes at levels 6.06 fold higher in 

E8-16 versus Pt x Pa leaves. PCR experiments had identified this gene as activated by the 

T-DNA mutation in E8-16. Thus, the microarray experiment provides independent 

confirmation that 10s12800 is the activated gene in E8-16. Other than 10s12800 and the 

probe designed for the pSKI074 vector, probes for MADS-box transcription factors, a 

chitinase 1, No Apical Meristem (NAM), metallotheionin 3, and a bZIP transcription 

factor also showed overexpression in E8-16 compared to Pt x Pa. Nine probes for a plant 

invertase/pectin methylesterase inhibitor, alpha/beta hydrolases, a transferase, a serine-

threonine kinase, a class IV chitinase, and remorin were downregulated in E8-16 leaves.  

Five new E8-16 and Pt x Pa trees were grown in an independent greenhouse 

experiment to validate the microarray results. Five genes were chosen for the qPCR 

validation based on magnitude of expression differencesand statistical support in the 

microarray experiment. 10s12800, the RING-H2 ubiquitin ligase, 3s16840 and 3s16845, 

predicted MADS-box transcription factors, 4s10990, a predicted bZIP transcription 

factor, and 11s12420, a predicted NAM protein, were selected as they were shown to be 

over-expressed in the E8-16 mutant in the microarray experiment. We also chose to test 

8s12460, another predicted E3 ligase, as it was the closest related amino acid sequence 

(60%) identity to 10s12800 in the Populus genome. 10s12800 expression was 8.83 fold 

higher in E8-16 leaves than in Pt x Pa wildtype leaves (figure 34; Nested ANOVA, 

p<0.00001, n=5 pairs).  3s16840 and 3s16845 expression was significantly higher, 14.22 

and 23.12 fold higher respectively, in E8-16 leaves than Pt x Pa (figure 34; p<0.0001).  
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Table 6: Twenty-two differentially expressed probes with Populus genome ID and 
annotation along with p and q value scores. 

 

 

4s10990 expression was 4.65 fold higher in E8-16 leaves (figure 34; p<0.001) than Pt x 

Pa. Expression for the predicted NAM was 2.9 fold higher in E8-16 leaves than in Pt x 

Pa (p<0.0001). Expression for 8s12460 was 2.36 fold lower in E8-16 versus Pt x Pa 
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leaves (p<0.001). Expression from the validation experiment was consistent with the 

microarray, although the fold difference for most genes was higher for the qPCR than the 

microarray. 

 

 

Figure 34: qPCR validation of the microarray. Six genes were selected and tested for 
gene expression between E8-16 and Pt x Pa leaves. Five genes, 10s12800, 3s16845, 
4s10990, and 11s12420 showed significantly higher expression in E8-16 leaves (Nested 
ANOVA, p<0.001, n=5 pairs). 8s12460 revealed 2.36 fold less expression in E8-16 
leaves compared to Pt x Pa (Nested ANOVA, p<0.001, n=5 pairs). Bars represent SE. 
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The purpose of producing the full-length cDNA of 10s12800 was to use the 
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full-length of the cDNA we designed primers to the 5’ and 3’ UTRs based on  

POPTR_10s12800 gene model from the P. trichocarpa genome in the Phytozome 

database, as well as available EST data from the non-redundant database from NCBI. We 

used one forward primer and two different reverse primers along with three different 

annealing temperatures in the PCR to successfully capture the sequence without 

acquiring mutations. As shown in Figure 35, the F1-R2 primer combination at 

 

 

Figure 35: PCR products using forward and reverse primer combinations at 
different annealing temperatures to amplify the full-length cDNA of 10s12800. 
Annealing temperature 51.7°C produced a strong band that was ultimately sequenced.  
 

the 51.7°C annealing tempterature showed a strong PCR band at the expected size of 517 

bp. The PCR product was cloned within pCR4-TOPO vector followed by colony PCR 

and sequencing. We ultimately sequenced three colonies. Colony 1 had the correct 
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product without mutations based on the P. trichocarpa genome sequence. The plasmid 

was ultimately sent to our collaborators at NDSU to produce the new transgenic trees. 

qPCR Screening and Bioassay Validation of 10s12800 Transgenic Lines 

Our collaborators at NDSU created 13 transgenic lines within the Pt x Pa genetic 

background and 9 transgenic lines within the Pc x Pg background. Trees were brought 

back to UND and grown in the greenhouse until replicates were >10 cm in height. RNA 

isolation, cDNA synthesis, and qPCR were done in three batches for each genetic 

background. Five biological replicates for each 10s12800 transgenic line (TL) as well as 

vector control lines (VC) were used in our qPCR analysis to identify transgenic lines 

over-expressing 10s12800. Our selection criteria was that TL lines had to be over-

expressing 10s12800 at least two fold higher than the VC line and have a nested ANOVA 

p<0.05. Only one transgenic line, TL4 in the Pt x Pa background, was found to be two 

fold higher in expression than VC8 (figure 36; Nested ANOVA, p<0.05, n=5). 

Surprisingly, several lines had lower expression than the VC in the Pt x Pa and Pc x Pg 

(figure 37) background. We feel confident that our qPCR results are accurate as the 

TIF5α values were within one cycle threshold (CT) in each batch. In addition, RNA 

negative and water negative controls only had sporadic non-target amplification after 35 

cycles. 

Unwounded choice bioassays were used to compare WMTM larvae feeding 

preference between for three TL lines against vector controls. TL4 was compared to VC8 

to see if a two-fold increase in 10s12800 expression would result in feeding preference 

difference. TL10 and 21 were compared against vector controls (VC5 and VC1) to 

confirm that mutants that did not have higher expression of 10s12800 did no have an IR 

phenotype. WMTM did not prefer to feed on VC5 over TL21 (figure 38A; Nested 
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ANOVA, p>0.05, n=8 pairs). In a choice assay between TL1 vector and TL10 transgene 

lines WMTM consumed more leaf material from the control was this was not a 

statistically significant difference (figure 38B; Nested ANOVA, p>0.05, n=8 pairs).  

WMTM did consume more leaf area (27%) from the VC8 compared to the TL4 transgenic 

line (figure 38C; Nested ANOVA, p<0.05, n=8 pairs). The leaf area consumption 

difference was smaller than the original unwounded bioassays with E8-16. These results 

suggest that a two-fold 10s12800 expression difference does result in a small feeding 

preference difference. Smaller differences in expression, or no difference in 10s12800  

 

Figure 36: qPCR expression analysis of 10s12800 in Pt x Pa transgenic lines. A) 
TIF5α cycle threshold values for thirteen transgenic lines (TL, indicated in black) and 4 
vector controls (VC, indicated in white). B) Copies per ng of RNA normalized to 
translation initiation 5 alpha (TIF5α) expression of 10s12800 normalized to TIF5α. Only 
TL4 shows a statistically significant two-fold increase in expression over the VC8 vector 
control. Bars indicate mean +/- SE. 
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Figure 37: qPCR expression analysis of 10s12800 in Pc x Pg transgenic lines. Left 
had side shows CT values of TIF5α for nine transgenic lines (TL, indicated in black) and 
3 vector control lines (VC, indicated in white). Right side shows absolute expression of 
10s12800 relative to TIF5α for each transgenic and VC. Bars indicate mean +/- SE. N= 
five biological replicates. 
 

expression between TL and VC lines will not result in a detectable difference in choice 

bioassays. Because TL4 was the only transgenic line to show an effect, albeit small, we 

conducted a single on-tree no-choice bioassay to determine if the mutant line had an 

affect on WMTM weight gain. Twelve late 2nd instar WMTM larvae were caged with 

meshbags on nine TL4 and VC8 trees for seven days. We did not observe a difference in 

fresh weight gain for insect (figure 39B; t-test, p>0.05, n=9). The small 2 fold increase 
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Figure 38: Choice Bioassays of Select Transgenic Lines in Pt x Pa Background. 
Three choice bioassays comparing feeding preference of a 10s12800 transgene line 
versus a vector control were conducted. A) WMTM did not prefer to feed on TL21 
transgene line versus vector control (Nested ANOVA, p>0.05, n=8 pairs). In a choice 
assay between TL1 vector and TL10 transgene lines WMTM consumed more leaf 
material from from the control but was not found to be statistically different (Nested 
ANOVA, p>0.05, n=8 pairs).  C) WMTM consumed more leaf area (27% more) from the 
TL8 control line compared to the TL4 transgenic line (Nested ANOVA, p<0.05, n=8 
pairs). All bars are mean +/- SE. 
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Figure 39: On-Tree No-Choice Development Bioassay Comparing Weight Gain of 
WMTM Caged on VC8 or TL4. A) Image of mesh bags on trees for on-tree no-choice 
bioassay. B) WMTM did not gain more fresh weight when reared on TL4 compared to 
VC8 trees (t-test, p<0.05, n=9 trees per genotype).  

 

in 10s12800 expression fold increase had no detectable effect on growth of WMTM 
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than the previous on-tree experiments, suggesting insects were healthy and able to 

consume the leaves. The bioassays suggest that there may be a slight feeding preference 

for VC8 over TL4 in choice bioassays but that preference does not appear to translate to 

an effect on insect weight. It is possible that because the difference in 10s12800 gene 

expression is smaller it may not have an impact on insects that are restricted to one leaf 

source.  

Discussion 

In terms of full disclosure, our initial attempts to identify T-DNA insertions 

involved other PCR methods that required additional enzymatic DNA manipulation and 

and cloning steps and these approaches were not successful. Ultimately we switched to 

TAIL and SiteFinding PCR instead as they have been successfully applied in Populus 

and Arabidopsis and were considerably easier to use and achieve consistent results 

between members of the Ralph lab. Both strategies were used not only to identify 

possible T-DNA insertions within E8-16, but also to independently confirm results 

between PCR strategies. In addition, we used multiple degenerate primers to ensure we 

could find a few that would work. For SiteFinding PCR we used two different degenerate 

primers and for TAIL PCR we used seven different degenerate primers. SiteFinder-1 and 

2, as well as products from TAIL (AD 22, AD3, and AD4) reactions resulted in 

sequences that contained a perfect match to part of the T-DNA as well as the same single 

location within chromosome 10. This was significant as the amount of replication within 

and between methods was extensive. As mentioned in the introduction, studies by Busov 

et al (2010) and Harrison et al. (2007) showed that while most AT mutants contain a 

single T-DNA, other mutants had additional insertions. We would expect that at this level 
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of replication using two different PCR methods we would have identified multiple T-

DNAs within the mutant if they existed. Our mutant E8-16 probably contains a single T-

DNA insertion and a southern blot would provide confirmation. 

Once we identified a T-DNA site we had to determine if nearby genes were 

activated. In our qPCR analysis of genes near the AT insertion site two genes, 10s12800 

and 10s12790, revealed a higher expression in the E8-16 mutant versus Pt x Pa trees. 

While 10s12790 was over-expressed in the mutant it was a small increase in expression 

(1.53 fold). The microarray, which will be discussed a little later, did not indicate this 

gene as over-expressed. Limited evidence from the qPCR analysis suggests that at best 

this gene is only slightly impacted by the enhancers and is unlikely to be causing the IR 

phenotype. On the other hand, 10s12800, the gene closest to the T-DNA site had a nearly 

7 fold increase in expression with strong statistical support. In addition the gene was one 

of the most strongly over-expressed in the microarray suggesting that it is strongly 

impacted by the T-DNA enhancers. Therefore, we believe we had the desired outcome of 

a single vector causing transcriptional activation of a single gene (10s12800) within E8-

16.  

10s12800 is a Putative E3 RING-H2 Ubiquitin Ligase 

Based on BLAST results and CLUSTAL alignment of proteins with similar 

amino acid sequences from the plant kingdom it appears that 10s12800 is an E3 RING-

H2 ubiquitin ligase. E3 ligases function as protein regulators by tagging proteins with 

ubiquitin for degradation within the 26S proteasome/ubiquitination pathway. 

Ubiquitination is a multistep reaction involving three enzymes: ubiquitin activating 

enzyme (E1), ubiquitin conjugating enzyme (E2), and ubiquitin ligase (E3) (figure 40; 
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Glickman and Ciechanover 2002). Within Arabidopsis more than 5% of all genes are 

predicted to be involved in the 26S proteasome/ubiquitination pathway, suggesting that 

protein ubiquitination is essential in a number of biological processes for plants (Smalle 

and Vierstra 2004). Over 1300 E3 ubiquitin ligases have been predicted in Arabidopsis 

compared to 2 isoforms of E1 and 37 predicted E2s, suggesting that E3 ligases have a 

role in substrate specificity in ubiquitination (Smalle and Vierstra 2004).  Little work has  

 

Figure 40: 26S proteasome/ubiquitination pathway. Ubiquitin is attached to ubiquitin 
activating enzyme (E1) with adenosine triphosphate (ATP) and then transferred to 
ubiquitin conjugating enzyme (E2). Ubiquitin ligase (E3) helps transfer Ub to a target 
protein. Once the target is tagged with one or more Ub the 26S proteasome recognizes the 
protein and degrades it.  
 

been done to identify all of the E3 ligases in Populus but there are probably at least 1300 

and possibly more due to genome duplication. 

E3 ligases can be further divided into three classes based on domain sequences: 

HECT, U-box, or RING (Smalle and Vierstra 2004). Based on our bioinformatics 
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analysis, we believe 10s12800 is an E3 RING ubiquitin ligase. RING E3 ligase domains 

are 40-60 amino acids long containing eight Cys and/or His residues that coordinate with 

zinc ions in a cross-brace structure (Barlow et al. 1994; Borden et al. 1995; Borden 2000) 

for protein-protein interactions (Lovering et al. 1993; Borden 2000). The domain is 

thought to function as a scaffold to bring the E2 with the thioester-linked ubiquitin and a 

specific protein substrate together for ubiquitination (Lorick et al. 1999).  

RING domain-containing proteins can be further divided based on other 

conserved domain features as well as their ability to function as either simple or complex 

E3 ligases (Freemont et al., 1991; Freemont 1993). RING domains can be categorized as 

based on the composition of Cys and His residues. The two main types, C3HC4 (RING-

HC) and C3H2C3 (RING-H2) are both important for enzyme activity in E3 ligases 

(Lorick et al. 1999) but differ at metal ligand position 5 (Freemont 1993; Lovering et al. 

1993). Because our E3 ligase protein, 10s12800, contains a histidine residue at ligand 

position 5 it has been classified as a RING-H2 type protein. The other conserved domain, 

a predicted transmembrane domain at the N-terminal of 10s12800, suggests that the 

protein is in a membrane. To date we do not know if it is localized within the plasma 

membrane or an organelle membrane or both. RING ligases can also be classified as 

simple or complex based on interactions with proteins. Simple RING proteins can contain 

a substrate-binding domain and E2-binding RING domain within the same protein or act 

as homodimer/heterodimer complex with another RING protein. Other RING ligases are 

classified as complex and are often referred to as CUL1-Based or SCF (SKIP1-like Cul1 

F-box) complexes in that they have cullin protein that recruits a RING-H2 at its C-

terminus while the N-terminal binds to substrate adapter proteins (Kuroda et al. 2002; 
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Lechner et al. 2002; Risseeuw et al. 2003). Ultimately our knowledge about 10s12800 is 

based on the amino acid sequence and identification of conserved domains. We feel 

confident that the predicted function based on homology is correct since all of the 

sequence hallmarks for an E3 RING-H2 ligase are present in the correct positions in 

10s12800. Nonetheless, bench experiments are needed to confirm gene function. Future 

experiments should assess enzyme activity and identify protein-protein interactions to 

confirm class/type of protein (chapter 5). 

RING proteins have been associated with plant growth and development as well 

as environmental interactions (Schweichheimer et al. 2009). A literature review on E3 

ligases and their impact on regulatory pathways can be found in Chen and Hellmann 

(2012).  The authors compiled a list of E3 ligases with known classes and their 

involvement in plant processes. Monomeric RING and CUL proteins have been shown to 

be involved in a wide variety of pathways including: stress related responses such as 

water, salt, and drought (Cheng et al. 2012; Ning et al. 2011; Lee et al. 2009; Seo et al. 

2012); plant hormone signaling involving ethylene (Lyzenga et al. 2012; Guo and Ecker 

2003; Potuschak et al. 2003; Gagne et al. 2004; Binder et al. 2007, An et al. 2010; 

Yoshida et al. 2005; Christians et al. 2009, Thomann et al. 2009), auxin (Dharmasiri et al. 

2005; Kepinski and Leyser 2005; Tan et al. 2007; Pan et al. 2009; Calderon Villalobos et 

al. 2012), jasmonic acid (Devoto et al. 2002; Chini et al. 2007; Thines et al. 2007; Yan et 

al. 2009; Sheard et al. 2010; Wager and Browse 2012), gibberellin (McCinnis et al. 2003; 

Dill et al. 2004; Ariizumi and Steber 2007; Ariizumi et al. 2011); as well as plant 

morphological characteristics like nodule organogenesis (Yuan et al. 2012), root 

gravitropism and growth (Sakai et al. 2012), shoot and root development (Stirnberg et al. 
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2007; Mashiguchi et al. 2009; Puig et al. 2012), and flowering (Pazhouhandeh et al. 

2011).  RING E3 ligases are continually being discovered in forward genetic screens 

(Bueso et al. 2014; Huang et al. 2010). It therefore comes as no surprise that we have 

identified an E3 RING-H2 ligase, that when over-expressed, appears to be involved in 

plant defense against insect herbivory.  

Global Expression Analysis 

The biggest potential clues about how over-expression of 10s12800 is causing IR 

in the E8-16 mutant come from the Agilent 4x44 microarray study. Surprisingly, our 

microarray experiment revealed only a small number (22) of genes as differentially 

expressed between E8-16 and Pt x Pa leaves. Quality control procedures indicated that 

the RNA was of high integrity and the hybridization signals were consistently strong 

across microarrays. Genes tested in the microarray validation showed similar expression 

effects and therefore we feel confident that our microarray is providing an accurate 

representation of differentially expressed genes.  

Of particular interest is the over-expressed MADS-box and class 1 chitinase 

families. MADS-box genes are transcription factors that have diverse biological 

functions. These genes involved in many early developmental processes including phase 

transitions in sporophytic development; flower and fruit development; and root and leaf 

morphogenesis (Smaczniak et al. 2012). These proteins are also widely conserved in a 

variety of organisms, including bacteria, fungi, and animals. However, the gene family is 

significantly larger in higher plant species suggesting duplication events have allowed for 

divergence in function within the family (De Bodt et al. 2005). Apart from a few studies 

exploring MADS-box transcription factors and their role against pathogens, very little 
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work has been done in any plant species to explore their role in plant defense. Down-

regulation of the MADS-box transcription factor OsMADS26 in Oryza sativa resulted in 

pathogen resistance to rice pathogens Magnaporthe oryzae and Xanthomonas oryzae 

(Khong et al. 2015). Zhang et al. (2016) determined that transgenic lines silencing the 

MADS-box transcription factor NbMADS1 from Nicotiana benthamiana inhibited 

stomatal closure, decreased hydrogen peroxide, and reduced hairpinXoo-induced 

resistance to Phytophthora nicotianae compared to control plants. Application of 

hydrogen peroxide and sodium notroprusside resulted in a return to the normal stomatal 

closure phenotype observed in control plants suggesting that the MADS-box is important 

in responding to hairpinXoo. To date there is a lack of literature looking at Populus or 

other plant MADS-box transcription factors and their possible role in IR. Future work 

that could be done to explore these MADS-box transcription factors and their possible 

role in IR are discussed in chapter five. 

Chitinases are glycosyl hydrolases that can hydrolyze the glycosidic bonds 

between two or more carbohydrates. Chitinases are present in a wide variety of yeasts, 

plants, actinomycetes, arthropods, and humans (Hamid et al. 2013). In plants, chitinases 

function in the defense against insects by destroying chitin, an important scaffold 

material supporting the cuticles of the epidermis and trachea, as well as the peritrophic 

membrane of the gut epithelium (Hamid et al. 2013). Lawrence and Novak (2006) 

showed that a Populus chitinase, inserted within tomato, resulted in retardation of 

development of the Colorado potato beetle. We suspect that one or more members of the 

class 1 chitinases are causing the IR phenotype in E8-16 and future work could include 

creating transgenics and studying gene function within this group of proteins. We 
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hypothesize over-expression of 10s12800 results in tagging a negative regulator of class 1 

chitinases for protein degradation by the ubiquitination/26S proteasome pathway. 

Without the negative regulator MADS-box transcription factors can then allow 

transcription of class 1 chitinases (figure 41). Future work that could be done to confirm 

this hypothesis (chapter 5).  

Transgenic Recapitulation of the Phenotype 

One of the most important steps in conclusively determining whether or not a 

gene is involved in the phenotype from AT mutants is to recapitulate the phenotype in 

one genetic background. In the E8-16 mutant, we observed a seven fold increase in 

10s12800 expression. Therefore, our goal was to create new transgenics that over-

expressed 10s12800 at a level similar to the original mutant (i.e., 5-10 fold) and then 

conduct bioassays to determine if the same IR phenotype occurs. Our collaborators at 

NDSU were able to generate 12 transgenic lines within the Pt x Pa background and 9 

lines within the Pc x Pg background. Unfortunately we were unable to achieve the 

desired fold change between TL and VC lines. One possible reason for our limited 

success is that the pCAMBIA S1300 vector used may not have been the best choice for 

our particular gene. The type of promoter within the vector can effect the magnitude of 

transgene expression in transformants (De Bolle et al. 2003). For example, a common 

vector used to over-express genes in transgenics is the 35S promoter of the CAMV. 

DeBolle et al. (2003) found a bimodal distribution with few transgenic lines having high 

expression levels and most transformants having low expression. Other promoters, such 

as the mannopine synthase gene, never reach the high expression levels of those with the 

35s promoter but have more normal distributed of expression levels in transformant
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Figure 41: Hypothesized mechanism of action for 10s12800, leading to increased 
insect resistance. E3 ubiquitin ligases target specific proteins for degradation by adding 
ubiquitin peptide tags, thus marking the protein for digestion by the 26S proteasome6. We 
propose that the 10s12800 protein targets a negative regulator of plant defense that, 
presumably, controls the activity of one or more transcription factors involved in 
activating defense gene expression in response to insect attack. Possible transcription 
factor targets from the microarray data include the MADS-BOX, bZIP and No Apical 
Meristem (NAM) families. Given the established role of endochitinases in plant defense, 
we propose that the transcription factor, once released from negative inhibition, activates 
expression of an endochitinase, which then acts to destroy chitin in the peritrophic 
membrane of the insect pest gut epithelium that ultimately deters insect feeding and 
disrupts growth and development. 
 
populations (De Bolle et al. 2003).  Our vector has a superpromoter that contains the 

mannopine synthase gene. Perhaps the vector is incapable of delivering the large increase 

needed to recapitulate expression in the E8-16 mutant. It is also possible that other factors 

may be influencing 10s12800 expression. Transgene expression can be influenced by 

surrounding regulatory sequences or incorporation into chromosomal regions with higher 

or lower transcriptional activity (Meyer 2000). It is also possible that transcriptional gene 
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silencing is occurring due to methylation of promoter sequences of the transgene (Mette 

et al. 2000). We did observe a few lines where the overall expression of 10s12800 was 

lower in transgene lines than vector controls. qPCR screening for 10s12800 expression 

for all transgenic lines only produced one line, TL4, with a small two-fold increase in 

expression that was statistically higher than the VC. This mutant did show a small 

negative effect on WMTM feeding preference in the choice assay.  

In an on-tree no-choice assay the TL4 mutant did not reveal a statistical difference 

in insect weight gain. While it was not statistically different the weight gain for insects 

feeding on TL4 was slightly smaller. We believe that because the two-fold expression 

increase is a very small difference in expression it had a smaller effect on the insects than 

the original mutant. The data is not conclusive but does suggest additional work can be 

done to strengthen the case that 10s12800 is causing the IR phenotype in E8-16. 

Additional on-tree no-choice development bioassay experiments with greater biological 

replication may reveal a small statistical difference in feeding preference and insect 

weight growth with the current TL4 mutant. We could also use petri plate no-choice 

bioassays to determine if TL4 has an effect on insect weight gain and development. In 

chapter 3 we conducted two separate experiments for all three bioassays to ensure E8-16 

was an IR mutant. We only conducted one choice and one on-tree no-choice assay for 

TL4. Variables such as tree or insect health and insect behavior could be playing a role in 

our observed results. However, it should be noted that insect and tree health appeared to 

be good before and during the bioassay and insect weight gains was substantial on both 

the VC and TL4 trees. Another member of the Ralph lab is creating additional transgenic 

mutants to produce lines with a higher fold increase in 10s12800 expression for eventual 
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bioassay confirmation. In terms of objective #3 we have identified the 10s12800 gene as 

a putative E3 RING-H2 ubiquitin ligase, determined it is expressed in all tissues but most 

strongly in mature leaf tissues, and the microarray revealed a few different classes of 

proteins that appear to be impacted from the mutation. We hypothesize that over-

expression of certain class 1 chitinases may be causing IR within the E8-16 mutant. 

Conclusions 

Molecular work conducted on the E8-16 genome revealed a T-DNA insertion at 

chromosome 10 that appears to be causing over-expression of the gene 10s12800, an E3 

RING-H2 ubiquitin ligase. Characterization of the mutant further further revealed that the 

gene is ubiquitously expressed in Populus tissues and appears to cause over-expression of 

a limited number of genes including MADS-Box transcription factors and chitinases. We 

hypothesize that over-expression of 10s12800 causes over-expression of either MADS- 

box or bZIP transcription factor that ultimately leads to over-expression of one or more 

class 1 chitinases. Further work needs to be completed to not only fully characterize 

10s12800 but also to potentially link a gene pathway that explains how E8-16 is IR to  

WMTM. While we have begun to characterize this E3 ligase there are still many 

questions that could be answered with further work. These possible future directions will 

be covered in chapter 5. 
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CHAPTER V 

 

EPILOGUE 

 

Introduction 

 The overall goal of this Ph.D. dissertation was to conduct a forward genetics 

screen of AT Populus mutants to identify genes involved in IR for possible incorporation 

into breeding programs to develop superior trees for plantation forestry.  In total, over 

7000 choice assay plates were prepped, scanned and analyzed over the course of two and 

half years to screen 770 AT Populus mutants from the MTU population and evaluate 

candidates identified from a previous screen of the QU population (Ralph 2009). From 

the forward genetic screen we showed we could use unwounded, wound local, and 

wound systemic choice bioassays in mutant-mutant comparisons. The initial screen was 

followed by mutant versus wildtype choice bioassays to identify candidates with altered 

constitutive and induced IR. In addition, we also investigated candidates identified from a 

prior screen for IR (Ralph 2009). WMTM preferred to consume unwounded leaves from 

Pt x Pa wildtype trees over the E8-16 mutant in two independent unwounded choice 

bioassays. Because a reduced feeding preference does not necessarily mean the mutant 

impacts insect development, we also conducted no-choice bioassays to compareinsect 

growth and development. Results confirmed that E8-16 had a negative impact on 

WMTM larvae by delaying their development and negatively impacting weight gain.
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Because E8-16 showed consistent results as an IR mutant we continued with 

molecular work to achieve objective #2 of the dissertation. SiteFinding and TAIL PCR 

identified a T-DNA on chromosome 10. The “activated” gene, 10s12800, was identified 

using qPCR and had the expected 5-10 fold increase in expression typical of AT 

mutagenesis. A bioinformatics analysis of the10s12800 amino sequence revealed the 

gene to be a putative E3 RING-H2 ubiquitin ligase that is likely involved in the 26S 

proteasome/ubiquitination pathway.  

To characterize 10s12800 (objective #3), we examined constitutive tissue 

expression in Populus, as well as a microarray to exam global transcriptome differences 

between E8-16 and Pt x Pa to identify gene regulatory networks influenced by the 

mutation. We also attempted to develop new transgenic lines over-expressing 10s12800 

to recapitulate the phenotype from the original AT mutant. qPCR analysis of 10s12800 in 

Populus tissues revealed that this gene is expressed in all tissues, with highest expression 

in mature leaves and petioles. The microarray analysis revealed a small set of genes that 

are over-expressed in the E8-16 mutant, including 10s12800, transcription factors 

(MADS-Box, NAM, bZIP), and chitinases. Transgenic lines created to over-express 

10s12800 revealed one line, TL4, with a two-fold increase in expression. Bioassay results 

revealed a feeding preference of WMTM for vector controls over TL4 but we did not 

detect a difference in insect growth and development from the on-tree no-choice assay. 

There are several possible future directions that could be pursued based on our 

findings. The following sections reveal future directions for: 1) AT mutant candidates 

discovered from the forward genetic screen, 2) the 10s12800 gene in regards to its 
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function and role in plant defense, and 3) experiments that could be conducted on genes 

identified from the microarray to be connected to 10s12800. 

Future Directions 

Candidates from the Forward Genetic Screen 

Forward genetic screening in trees is a time consuming process. The propagation 

and growing of healthy Populus, sometimes up to four months for a single round of 

bioassays, is physically demanding and time consuming. Greenhouse space, 

environmental factors such as natural sunlight during certain times of the year, tree 

health, and availability of healthy WMTM insects, can greatly impact the speed at which 

trees can be screened for altered IR. As discussed in chapter 3, replication is also required 

to ensure repeatability of experiments with different insect batches. While it would have 

been desirable to explore additional candidates identified from the MTU screen more 

thoroughly, we ultimately decided to focus our time, energy, and funding towards 

investigating E8-16.  

Future directions for research might involve screening new AT mutants for 

altered IR or conduct additional bioassays with greater biological replication on 

candidates identified from the MTU screen. Several candidates from the MTU screen 

have shown substantial differences in feeding preference between mutant-mutant and 

mutant-wildtype rounds of the screen for one or more choice bioassays. While some will 

turn out to be false positives we would expect that some have altered IR. These mutants 

would then undergo molecular work including T-DNA mapping and identification of the 

“activated” gene(s). This dissertation contains protocols for conducting choice and no-

choice bioassays, as well as the molecular procedures for T-DNA mapping and 
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identifying the activated gene(s). New members of the Ralph labwill be able to more 

rapidly jump into research to find other potential mutant candidates and move into new 

and different experiments to characterize genes of interest. 

10s12800 Gene 

Generation of additional transgenic lines over-expressing 10s12800. 

Unfortunately we were unable to generate transgenic lines recapitulating the same fold 

change of 10s12800 expression observed in the original E8-16 mutant. Creating Populus 

transgenic lines is a time consuming process requiring as much as a year of work from 

the early stages of Agrobacterium transformation and plant tissue culture to young trees 

growing in the greenhouse ready to be screened for gene expression. As such, by the time 

we received transgenic lines from NDSU and had completed the qPCR screening of the 

transgenic lines, we were running short on time to generate additional mutants under the 

NSF grant. As discussed in chapter 4, confirmation that a gene is responsible for the 

observed phenotype in AT only requires recapitulation of the phenotype in one transgenic 

line. We tested 22 transgenic lines but only had one line with a small 2 fold change in 

10s12800 expression that showed a negative impact on WMTM feeding preference in 

choice assays but not a statistical effect in weight gain in on-tree no-choice assays.  

As described in chapter four, we are uncertain as to why we were unable to 

achieve the transgenics with the desired level of 10s12800 expression. We are not sure if 

the problem was due to the promoter (De Bolle et al. 2003), unfortunate luck that 

transgenic expression was inhibited by surrounding regulatory sequences, or 

incorporation of the transgene into chromosomal regions with higher or lower 

transcriptional activity for many of the lines (Meyer 2000), or epigenetic silencing 
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(Huettel et al. 2006), or a combination of these factors. One possible course of action may 

be to continue creating additional transgenic lines with pCAMBIA S1300 and screening 

them for 10s12800 expression using qPCR. If the problem is due to the promoter or 

where the transgene is inserting within the Populus genome then with enough screening 

we could potentially find a few transgenics with the desired 10s12800 expression. The 

alternative is to attempt new transgenics with a different promoter. Other plasmids with 

varying numbers of CAMV virus promoter sequences have been used to over-express 

genes within plant species (Park et al. 2005; Gaxiola et al. 2001; Harrison et al. 2007, 

Plett et al. 2010). A member of the Ralph lab is currently working towards creating new 

transgenics over-expressing 10s12800. Once trees are created bioassays can be conducted 

to validate the IR phenotype.  

Ubiquitination assay. While the amino acid sequence suggests that 10s12800 

may be an E3 RING-H2 ubiquitin ligase, future work could be done to confirm gene 

function by testing the gene’s enzyme activity. Many E3 ligases have the ability to 

regulate their own activity by auto-ubiquitination in-vitro. Ubiquitination reactions could 

be performed by using an auto-ubiquitination kit (Enzo Life Sciences) and then separated 

using SDS-PAGE. Immunoblot analysis could then be conducted by performing a 

western blot using the kit’s anti-ubiquitin antibody (Ab) to detect auto-ubiquitination and 

anti-GST Ab (Santa Cruz Biotech) to detect Ub moiety. Fortunately, one member of the 

Ralph lab is currently working on this experiment, which would go a long ways towards 

characterizing this gene.   

Yeast two-hybrid. E3 ligases function within the 26S proteasome/ubiquitination 

pathway by tagging proteins with ubiquitin for degradation. Proteins that interact with 
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10s12800 and are subsequently degraded could cause an increase in expression of 

defensive proteins in the E8-16 mutant, leading to IR. Therefore, we would ultimately 

like to know which Populus proteins might be interacting with 10s12800. One method 

designed to determine protein-protein interactions is called a yeast two-hybrid. The 

classic yeast two-hybrid system created by Fields and Song (1989) was designed so that 

protein interactions could be detected by the activation of a reporter gene. A bait protein, 

typically the known protein of interest, is expressed as a fusion protein to a DNA binding 

domain of a transcription factor, such as GAL4 or LexA. The DNA binding domain of 

the fusion protein can then bind to the operator sequence in the promoter region of a 

reporter gene. However, without the remaining portion of the transcription factor, called 

the activation domain, no transcription activation of the reporter gene occurs. If other 

proteins fused with the activation domain, called prey proteins, interact with the bait 

protein they will fully reconstitute the transcription factor and activate the reporter gene.  

Yeast two-hybrid experiments are typically not performed by testing a single prey 

protein. Instead a larger collection of unknown preys expressed from cDNA or genomic 

libraries are screened for potential interactions to the known bait protein(s). Large-scale 

screening can be done using two approaches: library screening or a matrix (Auerbach and 

Stagljar 2005). In the library screening approach a liquid culture of bait fusion proteins in 

one yeast reporter strain is mixed with a library pool of preys in another yeast strain and 

incubated and plated on selective media. Those with protein interactions between the bait 

and prey are selected for plasmid isolation and sequenced, and a BLAST analysis can be 

done to identify the prey protein. In the matrix approach a defined collection of preys are 

used by spotting their yeast clones onto plates. The bait protein is then mated to the prey 
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proteins and then transferred to a selective media. Unlike the library method, prey 

proteins are already known so further steps to isolate and sequence plasmids are not 

required (Auerbach and Stagljar 2005) 

Until now we have mostly described the classic yeast two-hybrid method in very 

broad terms of how it works and its application. In terms of using this approach to finding 

proteins interacting with 10s12800, one very significant limitation exists. In the classic 

yeast two-hybrid assay, protein system interactions must occur in the nucleus for the 

reporter gene to be activated. This presents a potential problem. Based on the 

bioinformatics analysis in chapter 4, 10s12800 appears to contain transmembrane 

domains suggesting it is a membrane bound protein. While we could attempt to use the 

classical method by truncating the 10s12800 protein it would likely lead to altered protein 

folding, resulting in false positive protein interactions or no detectable protein-protein 

interactions.  

Fortunately, modifications of the initial yeast two-hybrid system now exist to 

identify a greater variety of protein interactions including protein-protein interactions 

between non-soluble membrane proteins. The split ubiquitin yeast two-hybrid system 

allows for the study of protein-protein interactions for proteins found outside the nucleus 

(Johnsson and Varshavsky 1994). In the future a split ubiquitin yeast two-hybrid system 

may lead to the discovery of a negative regulator of genes involved in IR.  

Impacts of environment on phenotype. As described in Busov et al. (2010), 

more AT Populus trees showed a visible phenotype after multiple years in the field 

(6.5%) than found in greenhouse (1.6%). All of our experiments with E8-16 were done in 

a greenhouse environment. While we did not observe any noticeable phenotypic 
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differences from E8-16 in the greenhouse, perhaps transgenic lines over-expressing 

10s12800 in a long-term field trial may reveal a visual phenotype in response to 

environmental stress. To conduct this type of experiment would: 1) require permits to 

plant AT trees within the field and, 2) require using a Populus background that is hardy 

enough to survive North Dakota winters. The Pc x Pg genetic background that we tried to 

use to recapitulate the phenotype in chapter 4 is a hardier hybrid designed to survive 

Minnesota winters. We could attempt to create additional transgenic lines within this 

genetic background and, providing permit approval, conduct a long-term growth study to 

focus on environment affects on phenotype in trees over-expressing 10s12800.  

 In addition to conducting a long-term field study, new experiments could be done 

testing 10s12800 transgenic lines within the greenhouse to other biological stresses, such 

as additional insect species and pathogens.  In our work with E8-16 we only tested effects 

on consumption, growth, and development of WMTM. As discussed in chapter 2, 

hundreds of insect species feed on Populus. To date we have not tested E8-16 to 

determine if it has a negative impact on other lepidopteran species, such as the large 

aspen tortrix (Choristoneura conflictana Walker), common aspen leaf miner 

(Phyllocnistis populiella Chambers) or gypsy moth (Lymantria dispar Linnaeus). Just 

because E8-16 had an impact on WMTM does not mean it will negatively affect other 

lepidopteran species. In the case of the invasive gypsy moths we would have to perform 

bioassays in a facility that has the appropriate permits to house this species in the U.S. 

We have not tested E8-16 against non-lepidopteran species that feed on leaves or other 

Populus tissues. 10s12800, while expressed lower in tissues other than leaves and 
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petioles, could have an impact on phloem sucking and wood boring insects. New 

bioassays and experiments could be designed to explore these plant-insect interactions.  

Future Targets 

From the Agilent 4x44K microarray study we identified several genes that were 

over-expressed within E8-16 leaves that could be potential targets for future experiments. 

MADS-box transcription factors from Populus have been analyzed for their role during 

flower development and vegetative development (Zhang B et al. 2008; An et al. 2011; 

Ceske et al. 2003; Ceske et al. 2005; Cseke et al. 2007). Apart from a few studies 

exploring MADS-box transcription factors and their role in defense against pathogens 

(Khong et al. 2015; Zhang et al. 2016) very little work has been done in any plant species 

to explore their role in plant defense.  

As discussed in the beginning of chapter 3, over-expression in a microarray does 

not necessarily mean those genes cause IR. One possible future experiment could be to 

create transgenic Populus over-expressing and knocking out expression of MADS-box 

transcription factors identified from the microarray. Following the production of 

transgenic lines and verification of expression of the intended genes using qPCR, choice 

and no-choice assays could be done using WMTM to determine if they play a role in IR. 

In-depth phenotyping following a growth trial of transgenic trees could also be done to 

see if these MADS-box transcription factors alter growth or result in a visible phenotype 

in either vegetative or floral tissues.  

Some of the other gene families identified in the microarray, such as bZIP 

transcription factors, NAM proteins transcription, and chitinases, are regularly found to 

be over-expressed in transcriptomic studies following actual or simulated herbivory in 
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Populus (Ralph et al. 2008; Major and Constabel 2006; Christopher et al. 2004). Creation 

of transgenics over-expressing these genes within a Populus background, followed by 

bioassays would be a logical step to determine if they cause IR. Chitinases are a large 

gene family with amino acid similarity. Transgenics could be particularly useful in 

separating out chitinases that are relevant to IR identified from the microarray.  

Ultimately we would want to identify how the insect is being impacted from the 

E8-16 mutant. Future experiments could be done to determine if certain chitinases from 

the microarray actually cause physical damage to the peritrophic membrane in WMTM. 

Kabir et al. (2006) examined the use of a chitinase from Bombyx mori as biocontrol agent 

for Japanese pine sawyer (Monochamus alternatus). Starved insects were gavaged with 

purified chitinase or Na-phosphate buffer and then then allowed to feed on pine branches 

for two days. Insects were dissected and the midgut was separated from the rest of the 

digestive tract and then cut into three sections and excised to expose the peritrophic 

membrane. Peritrophic membranes were prepared for fluorescence microscopy using 

chitin binding fluorescence dye or were prepared for scanning electron microscopy. The 

fluorescence assays and scanning electron microscopy revealed that the peritrophic 

membrane was damaged due to the chitinase the midgut epithelium was not affected 

(Kabir et al. 2006). Fluorescence or scanning electron microscopy could be used to 

evaluate impact of purified chitinase activity or transgenic Populus on the WMTM gut. 

Conclusion 

 We identified an AT mutant, E8-16, that has a negative impact on WMTM leaf 

consumption as well as weight gain and insect development.  We have also identified the 

site of a T-DNA insertion and the “activated” 10s12800 gene within the mutant. We have 
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also begun to characterize the gene by determining where it is expressed in Populus 

tissues and identified constitutive global transcriptomic differences between E8-16 and Pt 

x Pa wildtype tree leaf tissue. We have also conducted a forward genetics screen and 

identified other potential AT mutants with altered IR. Future work can still be done to 

identify and confirm IR mutants from the screen, characterize the 10s12800 gene and its 

role in IR, or explore genes identified from the microarray and how they impact insect 

feeding and development. These experiments may lead to new gene targets and a greater 

understanding of genes involved in IR in Populus that will lead to the development of 

superior trees for the forest industry. 
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