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ABSTRACT 

 This study proposes a method to perform velocity estimation using motion 

blur in a single image frame along   and   axes in the camera coordinate system and 

intercept a moving object with a robotic arm. It will be shown that velocity estimation 

in a single image frame improves the system's performance. The majority of previous 

studies in this area require at least two image frames to measure the target's velocity. 

In addition, they mostly employ specialized equipments which are able to generate 

high torques and accelerations. 

 The setup consists of a 5 degree of freedom robotic arm and a Kinect camera. 

The RGBD (Red, Green, Blue and Depth) camera provides the RGB and depth 

information which are used to detect the position of the target. As the object is 

moving within a single image frame, the image contains motion blur. To recognize 

and differentiate the object from blurred area, the image intensity profiles are studied. 

Accordingly, the method determines the blur parameters based on the changes in the 

intensity profile. The aforementioned blur parameters are the length of the object and 

the length of the partial blur. Based on motion blur, the velocities along   and   

camera coordinate axes are estimated. However, as the depth frame cannot record 

motion blur, the velocity along   axis in the camera coordinate frame is initially 

unknown. The vectors of position and velocity are transformed into world coordinate 

frame and subsequently, the prospective position of the object, after a predefined time 

interval, is predicted. In order to intercept, the end-effector of the robotic arm must 
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reach this predicted position within the time interval as well. For the end-effector to 

reach the predicted position within the predefined time interval, the robot's joint 

angles and accelerations are determined through inverse kinematic methods. Then the 

robotic arm starts its motion. Once the second depth frame is obtained, the object's 

velocity along   axis can be calculated as well. Accordingly, the predicted position of 

the object is recalculated, and the motion of the manipulator is modified. 

 The proposed method is compared with existing methods which need at least 

two image frames to estimate the velocity of the target. It is shown that under 

identical kinematic conditions, the functionality of the system is improved by      

times for our setup. In addition, the experiment is repeated for    times and the 

velocity data is recorded. According to the experimental results, there are two major 

limitations in our system and setup. The system cannot determine the velocity along   

in the camera coordinate system from the initial image frame. Consequently, if the 

object travels faster along this axis, it becomes more susceptible to failure. In 

addition, our manipulator is an unspecialized equipment which is not designed for 

producing high torques and accelerations. Accordingly, the task becomes more 

challenging.  

 The main cause of error in the experiments was operator's. It is necessary to 

have the object pass through the working volume of the robot. Besides, the object 

must be still inside the working volume after the predefined time interval. It is 

possible that the operator throw the object within the designated working volume, but 

it leaves it earlier than the specified time interval.  
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CHAPTER I 

INTRODUCTION 

 This work proposes a method to autonomously detect a moving object outside 

the working volume of a robotic arm, estimate its velocity along   and   axes in the 

camera coordinate system in a single image frame using motion blur, predict its future 

location after a predefined time interval and intercept the object in the predicted 

location.  

 It will be shown how the velocity estimation in a single image frame increases 

the robot's maximum reach within the predefined time interval. The results of the 

method will be compared to those which need at least two image frames to calculate 

the velocity of the target. The comparison is made under identical kinematic 

conditions for the equipment and object. It will be demonstrated that the method is 

independent from the equipment's architecture and it is valid for any other type of 

robotic arm.  

 In this project the interception is executed without a specialized equipment 

such as high torque motors. While the majority of previous research works in this area 

have employed specialized robots to perform fast motions. Accordingly, the task 

becomes considerably more constrained for our robotic arm.  
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Background and Motivation 

 The topic of reactive and fast motions have long been studied in the area of 

robotics. The motivation for such research comes from a similar human ability to 

react to the surrounding dynamic environment [1]. Humans are able to generate short 

and quick motions in response to a stimulus. Prior research has proved that humans 

can anticipate the motion to be successful at a task [2]. This type of motion is defined 

as reactive. The ability to respond to the immediate situation is of great importance to 

an agent which must function in an unpredictable world [3]. 

 In order to have a better idea of the topic of this research, we should imagine 

someone playing racquetball as illustrated in Fig. 1. As the player visually perceives 

the movement of the ball, he must be able to make a prediction of the future position 

of the target and how to approach it to successfully intercept.  

 

Figure 1. A racquetball player [4]. 

 Fast motions are utilized in several areas of robotics for a variety of tasks that 

moving object interception can be considered as only one of them. A significant 

amount of work has been devoted to the autonomous control of fast movements such 



3 
 

as catching [5-13], hitting flying objects [14,15], and juggling [16-18]. One famous 

example of fast motions in robotics is KUKA (Keller und Knappich Augsburg) table 

tennis player. Its manufacturing company suggests that it is the fastest existing robotic 

arm in the world. Fig. 2 depicts this robot [19,20].  

 

Figure 2. KUKA robotic arm playing table tennis against Timo Boll [20].  

 

Figure 3. The ball juggling robot [21]. 
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 In another project which was completed at Karlsruhe Institute of Technology 

in Germany, the possibility of real time control of industrial standard robot arms is 

studied. This has been performed by a ping-pong ball juggling system which is able to 

catch a ball, thrown by a human operator. It takes advantage of two cameras with 60 

HZ frame rates. In this research, they put a great amount of emphasis on the image 

processing of the fast moving object and comparing the widespread linear model with 

a novel physically correct model of the spatial trajectory of the moving object. The 

system can be observed in Fig. 3 [21].  

 A project which its functionality is closely related to our system has been 

designed by Swiss Space Center at Learning Algorithms and System Laboratory 

(LASA). The arm itself is a product of KUKA company and the method gives the 

equipment the ability to catch projectiles of various irregular shapes in less than five 

hundredths of seconds. LASA claims that it is a unique system and is set to be used in 

space.  

 

Figure 4. EPFL arm while catching a tennis racquet which has an irregular shape [22]. 
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 Fitted on a satellite, the robot would have the task of catching flying debris, 

whose dynamics are only partially known. However, the robot will not be able to 

work out such dynamics with precision until in space and observing the movement of 

approaching objects [22]. As a solution, the researchers employ the method of 

programming by demonstration which is the manual movement of the robot and 

teaching the possible trajectories. Then once the robot is in action, its stereo camera 

system will refine the movement [22]. Fig. 4 depicts a picture of this robot while 

catching a tennis racquet. In this figure one of the cameras can be seen as well [23].  

There are robotic systems which can juggle multiple balls. Fig. 5 illustrates one of 

these systems which is a DARPA production. In this case, the robot is a multi-

fingered hand-arm. The image processing is executed at 500 fps using a high-speed 

vision system and graphics processing unit [24,25].  

 

Figure 5. Multifingered robotic arm juggles with two balls [25]. 
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Figure 6. Humanoid robot while throwing and catching a ball [26]. 

 In [26] a humanoid robot is presented which is able to play throw and catch 

with a human operator. This robot has been presented at Disney research center. It 

takes advantage of an external camera system to locate the ball and Kalman filter to 

predict the ball destination and timing. Fig. 6 shows this robot while playing with a 

human operator.  

 If we concentrate our review solely on the topic of robotic grasping of moving 

objects, a variety of works can be found in areas such as visually guided object 

grasping, hand-eye coordination, visual servoing of robots and vision-based control of 

robot manipulators [27-31]. We will discuss each of these works, their methods, 

limitations and how our system can be compared with them.  

 The majority of works have utilized stereo camera systems and their robotic 

arms have been built for the sole purpose of high acceleration motions. One of the 

earliest works in this area was performed by Allen, Timcenko and Yoshimi in [30]. 
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 This work focused on tracking and grasping a moving object. They took 

advantage of two stereo cameras to measure the position of the object. The tracking 

was performed with the help of Kalman filter. However, the object was travelling on a 

predefined course such as a toy train's circular path. Every time the object completes 

the trajectory, the system becomes more robust in performing the task. 

 In another work, a visual tracking and grasping system is proposed. Its vision 

system takes advantage of color detection and its control model performs three 

dimensional linear trajectory prediction to successfully grasp the object [31]. The 

moving object has a circular motion on the base table of the robot and every time it 

completes the trajectory, its neural network of the control system becomes more 

robust. As the trajectory is constrained, the task becomes easier to be performed. This 

system has the same limitation of the previous system. The major difference between 

these two is the use of Kalman filter and neural networks for object tracking.    

 In [32] the task of thrown ball catching is pursued by a multi-purpose 7-DOF 

lightweight arm and a sophisticated 12-DOF four-fingered hand. In this work the ball 

is again detected by a stereo camera system. The work focuses on the use of extended 

Kalman filter as a mean to follow the path of the ball and subsequently manipulates 

the arm. The main limitation of their system is that if the ball's speed exceeds a certain 

limit, the system will be unable to detect the presence of the object and consequently, 

the target will be lost. On the other hand, if the system is unable to detect the object at 

the beginning but it finds it after the speed decreases, it may still fail to perform the 

task, as the ball may have already passed the working volume boundaries.  
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 In [33], the concentration is on a similar task. A robot is built specifically for 

the purpose of ball catching. The arm has exceptionally high dynamics with joint 

velocities up to 470 deg/s and power consumption of up to 5 KW. But the main focus 

of this work is on teleoperated ball catching procedure rather than the design of an 

autonomous system. The kinematic abilities of the robot makes the task of moving 

object interception considerably easier. And the system may not preserve the expected 

performance if implemented on an unspecialized equipment such as ours.  

 In all the related works which were presented in [34-36] the mechanism of 

catching a ball, the best control method for catching a moving object with the least 

amount of jerk or catching a flying object in the space have been discussed. However 

in all of which, the works have been based on computer simulations. Accordingly, it 

has not been proved if the methods will be able to preserve the expected quality once 

implemented on a real system.    

 In one of the recent and most similar works, Lippiello and Ruggiero propose a 

ball interception system with Comau Smart-Six 7au robotic arm [37]. They apply an 

eye-in-hand camera to detect the presence of the ball in the working volume of the 

robot. Their algorithm employs an extended Kalman filter to perform iterative 

trajectory refinement. In addition, the control system ensures that the ball is always in 

the field of view until the end effector successfully intercepts it. The main limitation 

of the system is that the ball needs to be continuously tracked until the moment of 

interception. If, for any reason, the target is lost, the system fails [37]. 

 There have been only two recent and related works by Neubert and Ferrier 

[38] which implements a direct mapping of visual inputs to motor torques with the 
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help of neural networks and Johnson and Neubert [39] which studies robot motion 

with the help of human-inspired motor programs. The latter paper has a concentration 

on maximum absolute jerk reduction.  

 The present work proposes intercepting a moving object without a specialized 

equipment such as high speed motors. It employs a RGBD camera to obtain RGB and 

depth information. They are used to detect the position and velocity of the object. To 

intercept, a control model has been implemented to perform conversion of Cartesian 

coordinate parameters,        , to joint angles,           . At the same time, I have 

combined a number of different methods to perform object detection, tracking, 

position extraction and most importantly, velocity estimation along   and   axes in 

the camera coordinate frame through motion blur in a single image. 

Thesis Overview 

 Chapter 2 will introduce and fully discuss the vision system for object 

detection and tracking, velocity estimation and the control model. Chapter 3 describes 

the socket communication, memory sharing, overall setup and the system architecture. 

Chapter 4 presents the experiments and the results. In addition, a thorough discussion 

of the results, the benefits of the method, the errors and the difficulties of the 

experiment will be provided. The last chapter will conclude the work and present 

future possible research in this area. In this work, the notation of   on the top right 

side of a parameter stands for camera and represents the camera coordinate frame 

such as   
 . The   stands for the center of the object. Similarly, the notations of   and 

  stand for world and image as in world and image coordinate frames.  
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CHAPTER II 

THEORY AND METHOD 

 As explained in the previous chapter, this thesis describes a method for 

moving object detection and velocity estimation in a single image frame with the goal 

of faster interception. In this chapter, the theory and complete process for detection to 

interception will be described in detail. It consists of three main sections, explaining 

the position determination, velocity estimation and the control model of the method.   

 In the first step, the system must be able to detect the object of interest. Once 

the object is detected, the corresponding initial frame will used to estimate the 

position and velocity along   and   axes in the camera coordinate system for the 

center of the object. The obtained position vector is initially in image coordinate 

frame. So they must be transformed into camera coordinate and subsequently world 

coordinate system. To approach the problem, it is necessary to obtain the focal length, 

principal point, skew coefficient and the image distortion of the camera. 

Consequently, the camera must be calibrated.  

 Once the position in the camera coordinate system is obtained, the system 

must determine the object's velocity as well. To estimate the velocity of the object, the 

system employs the method of speed estimation from motion blur. From the initial 

frame, the system will be able to determine   
  and   

  which are the velocity vectors 
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in the camera coordinate system. As the depth frame cannot record the motion blur, 

  
  cannot be estimated from the initial image frame. So the initial value for   

  is 

unknown and the robot starts its motion after receiving the initial image frame.  

 

Figure 7. The complete chart of the process 
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Once the second depth frame is acquired,   
  will be estimated, the prospective 

position of the object will be recalculated and the arm's motion will be accordingly 

modified. Consequently, the arm does not have to wait for a second image frame to 

starts its motion. It must be noted that the aforementioned   
 ,   

  and   
  are present in 

the camera coordinate frame. To employ them in the world coordinate which is set at 

the base of the robotic arm, we must consider the transformation between the camera 

and world coordinate frames. In this project, because of the specific relation between 

the coordinate systems, the   
  of the camera becomes the   

  of the world. 

Consequently, the motion blur from the initial image frame will be able to estimate 

  
  and   

  vectors of the moving object in the world coordinate frame. If we change 

the location of the camera, this relationship needs to be modified as well. In the 

proceeding chapters, this will be explained in detail to resolve any type of possible 

confusion.  

  To successfully intercept with the moving object, the end-effector must reach 

the predicted point within the predefined time interval. The predicted position of the 

moving object is determined in the world coordinate system. To calculate the 

corresponding joint angles, inverse kinematic methods must be employed.  

 According to the joint angles and the time interval for reaction, the angular 

accelerations will be calculated as well. At the end, based on the joint angles and 

accelerations, the motor angles and torque commands will be determined. The 

schematic presentation of the process from the moment of object detection until 

interception can be seen in Fig. 7.  
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 The predefined time interval for the prospective position of the moving object 

is set according to the kinematic limitations of the equipment and the existing lag in 

the communication between the computers for programming the camera and 

controlling the arm. In the following sections, each of the steps of the procedure will 

be explained in detail.    

Object Detection and Tracking 

 As explained earlier, the first step is to detect and track the object of interest. 

This step will provide the position of the target. To find the correspondence between 

the position in the image frame and the position in the camera frame, it is essential to 

obtain the focal length, principal point, skew coefficient and the image distortion 

matrix of the device. For obtaining the aforementioned parameters the camera must be 

calibrated.  

Camera Calibration  

 Camera calibration is a necessary procedure in 3D computer vision for 

extracting metric information from 2D images which are called the intrinsic and 

extrinsic parameters.  

 The parameters which encompass the intrinsic are focal length, principal point, 

skew coefficient and lens distortion [40]. The focal length and principal point are 

presented by     vectors as  

                                                                                                                            (1) 

                                                                                                                           (2) 
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Once the central pixel of the object is detected, we obtain the following vector 

                   
                                                                                                   (3) 

in which       is the object center's position in the image plane which can be shown 

by     
  and     

 . Then     
  is the depth value and the only parameter which is already 

in camera coordinate system. To proceed with the image to camera coordinate 

transformation, we must find    and    as  

   
    

  
                                                                                                                      (4) 

and  

   
    

  
                                                                                                                      (5) 

which are the coordinate values of the object's center in the camera coordinate frame 

on     plane. The point on    plane is determined as 

    
         

                                                                                                              (6) 

and 

    
         

                                                                                                              (7) 

Then the complete vector of position will become 

          
      

      
                                                                                                   (8) 

The camera's distortion is ignored as its impact on the results were minimal. The 

reason is the short distance between the camera and the target. The intrinsic camera 
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parameters were obtained using MATLAB camera calibration toolbar [41] which is 

based on [42,43].  

Object Detection 

 After calibrating the device, it will become possible to proceed with estimating 

the position of the object in camera coordinate system. As the object is moving, the 

image will be blurred. Consequently, the system must be able to recognize the blur 

area from the actual object. 

 Motion blur is caused by rapid movement of objects in a still image or a 

sequence of images such as movie or animation. It can be a result of either rapid 

movement or long exposure. When a camera creates an image, it does not represent an 

instance of time, but the scene over a period of time. Consequently, when there is 

movement within that period, which is referred as exposure time, the result is motion 

blur. In Fig. 8 an animated blurred moving ball is presented. Cameras with shorter 

exposure times are less susceptible to motion blur.   

 

Figure 8. The graphical image blur of a moving ball [44].  
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 As objects in a scene move, an image of the scene is supposed to represent an 

integration of all the positions of the moving objects. This representation will be 

according to the camera's viewpoint and the exposure time. The moving object(s) will 

seem blurred or smeared along the direction of the relative movement. Such a 

graphical artifact will look natural in a moving picture like an animation. However, 

this would not be the case in a single image frame.  

 The initial step in using the motion blur for velocity estimation is to identify 

the blur in an image. The purpose of blur identification is to estimate the parameters 

of the blur which are the starting position and the length of the partial blur along the 

direction of the motion. Some commonly used techniques such as the periodic zero 

patterns in the frequency domain [45,46], must deal with the motion of the camera. 

But in this project, the camera is stationary.   

 We are employing a RGBD camera and we can acquire two image frames, one 

depth and one RGB. The motion blur can only be recorded in the RGB image frame.  

Because of the blur, the intensity profile changes smoothly and ends at the edge of the 

blur or the object. Intensity profile is the intensity of the pixels along a certain 

direction or path in the image. To receive accurate results, the background must be 

clean. If the pixel intensity of the background objects mix with the target or its blurred 

area, there is considerable possibility that the method fails to determine the correct 

edge of the blur.  

 Once the object is detected in the depth image frame, it is fitted inside a 

rectangle. The position of the center of that rectangle is taken as the position of the 
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object. In addition, the detected area in the depth image frame provides the possibility 

to determine the edge of the target in the RGB image frame as well.  

 

Figure 9. The real world target's RGB representation with its approximated center. 

 Fig. 9 depicts an actual object with the detected center. To proceed, the 

algorithm must be able to determine: 

 The direction of the motion  

 The area with the longest blur 

Based on [47], if we consider the motion of a moving object on the horizontal or 

vertical directions in the image frame, there will be motion blur on the right and left 

or top and bottom sides of the object. Once the object is detected, the system does not 

have any idea which area contains the blur. To simplify the process, based on the 

orientation of the fitted rectangle around the object, we can imagine the object being 

rotated as much as   to approximately align the object's edges (the fitted rectangle) 

with the image coordinate frame. To determine where the blur exists, the intensity 

profile is measured along the vertical and horizontal directions, passing through the 
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center of the object. Fig. 10 depicts the rotated sample object along with both of the 

intensity profiles. The intensity profiles are measured along the depicted 

perpendicular blue lines. If the comparison between the length of the blur to the 

distance between the center of the object to the object's edge is smaller than a certain 

threshold, it will not be considered as blurred area. In this work, this threshold is set to 

  . 

 

 

                                    (a)                                                                      (b) 

Figure 10. The rotated object along with the horizontal and vertical intensity profiles. a) The 

intensity profile along the horizontal line. b) The intensity profile along the vertical line. 

 In Fig. 10, the top image depicts the actual object along with the directions of 

the intensity profiles.   shows the angle of rotation. In the bottom-right side of the 

  
Edge of object 
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figure, the intensity along the vertical line is shown. As it can be seen, the profile 

suddenly changes when the edge of the object starts and ends. There is no 

considerable smooth variation to be taken as blur. The left image shows the intensity 

profile of the horizontal direction. In this profile, blur is recorded on both sides of the 

object. The edges of object and blur are shown with the vertical lines. Because of the 

blur's presence, the horizontal path will be considered as the direction of motion in the 

rotated image. By having  , the direction of motion in the original image can be found 

as well. The rotation formula is under affine transformations. However, the algorithm 

still needs to determine whether the motion is from left to right or the opposite.  

  According to [47], although the blur seems symmetrical on both sides of the 

object, the widths of the intensity profile prove differently. By paying attention to the 

offset between the pairs of vertical lines in Fig.10, it can be seen that the distance 

between the pairs on the right side of the object is longer. Consequently, this side is 

selected as the side for blur parameter determination. In addition, it means that the 

object is moving from left to right in the image frame.  

 

Figure 11. The fitted rectangle and the selected area to determine the blur parameters. 

Horizontal intensity profile 

Vertical intensity profile 

Selected area 

Reference line 

Reference line 
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 Fig. 11 shows a presentation of the fitted rectangle around the object after 

rotation. The perpendicular vertical and horizontal lines are the ones along which the 

intensity profiles are measured. Then based on the side which has the longest width of 

blur, an approximate symmetrical area, bounded with the laterals of the rectangle is 

chosen. This area is approximately 
 

 
 of the whole rectangle. In Fig. 11, this area is 

shown with two   angles and the rectangle's laterals are the reference lines. At this 

point, the algorithm chooses   directions with random angles, falling inside this area. 

Along these directions, the intensity profiles are measured again. This time the 

intensity profiles provide the algorithm with the points on the edge of the blurred area 

along the directions. The distances between the center of the object and its edge, and 

the center of the object and its blurred edge will be calculated along every direction. 

Each distance is determined by 

         
            

                                                                                    (9) 

and 

         
            

                                                                                  (10) 

in which      
      

   is the position of the center,         is a point on the blur's edge 

and         is the point on the object's edge.  

These new distances are averaged as well. The difference between the averaged 

distances will approximate the length of the partial blur,  , as  

   
       

 
   

 
   

 
                                                                                                     (11) 
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 By choosing more distances the algorithm becomes more robust but at the 

same time it will increase the computational cost of the algorithm. Fig. 12 depicts the 

animated blurred ball along with a sample intensity profile. The distances, as 

described above, are shown in this figure as well. The horizontal black line is the 

reference of the random angles and    is a random angle.  

 

Figure 12. The calculation of motion blur parameters and the intensity profile sample.  

 

Figure 13. The calculated distances on the object.  
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Figure 14. The step by step process on a sample picture.  

 Fig. 13 depicts the sample object with the calculated distances. As it can be 

seen, all the distances are randomly selected based on the center of the object. Fig. 14 

presents the complete process for the sample in Fig. 9 until the end. Fig. 15 shows the 

complete process of the explained procedure under this section. Table (1) provides the 

position of the points on the object's edge. The average distance of the blur for this set 

of data is          

 

Figure 15. The system flowchart for the blurred parameters detection procedure. 
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Table 1. Actual position of the points on the edges of object and blur in the sample picture. 

  
    

    
    

    

412.2391 57.4565 414.8478 43.5435 14.1270 

413.9783 70.5000 417.4565 55.7174 15.1539 

420.0652 84.4130 424.4130 73.1087 12.0793 

425.2826 106.1522 432.2391 95.7174 12.5249 

427.0217 111.3696 436.5870 100.9348 14.0856 

433.9783 131.3696 447.0217 125.2826 14.3936 

443.5435 153.1087 457.4565 154.8478 14.0125 

449.6304 163.5435 464.4130 168.7609 15.6758 

453.9783 178.3261 470.5000 187.0217 18.6371 

460.0652 192.2391 470.5000 201.8043 14.1241 

  

According to [47], this method is proposed for highway vehicle speed estimation. So 

the camera is able to estimate the speed at a certain distance from the moving vehicle. 

However, as in this work, it is implemented on a RGBD camera, the distance between 

the camera and the object is always known. In addition, it must be noted that it is 

more likely to have an error, if the object is spherical. The method heavily relies on 

the orientation of the fitted rectangle around the object. When the object is a sphere, 

the rectangle's orientation may not correctly reflect the motion direction of the object 

and consequently, the correct direction of motion will not be found.   
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Velocity Estimation 

 In the previous section, we explained the step-by-step procedure to obtain the 

position of the object in camera coordinate system as      
      

      
  . The next step is 

to estimate the velocity of the object. From the initial image frame and based on the 

motion blur, we will obtain    
    

  . First   
  is set to zero and the robot starts its 

motion. Once the second depth frame is obtained, the actual value of   
  will be 

estimated. Subsequently, the prospective position of the object will be recalculated 

and the robot's motion will be modified. In the coming sections we will first explain 

how the whole blurred area is calculated and then how the blur parameters will be 

used to estimate the velocity.  

Velocity Estimation Formulation 

 Most of the video-based speed estimation methods use reference information 

such as the travelled distance across the image frame and then estimate the speed 

according to the inter-frame time. Nevertheless, because of the limited imaging frame 

rate, the video camera has to be installed far away from the device in order to avoid 

motion blur.     

 The benefit of using this method in this research is that the speed can be 

estimated in a single image frame. For any fixed time interval, the displacement of the 

object is proportional to the length of blur in the image.   

 Speed estimation from motion blur was proposed by Lin et al in [47] for the 

purpose of vehicle speed detection for law enforcement. In the original work, the 

method is implemented on a passive system. However, we have implemented the 
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theory for a real time application. According to the imaging procedure, image 

degradation caused by motion blur can be categorized as either a spatially invariant or 

a spatially variant distortion. The latter one corresponds to the cases in which the 

image degradation model does not rely on the position in the image. Such kind of 

motion blur image is usually a result of movement during the imaging process [47]. 

This blur mostly appears in the images which contain moving objects and recorded by 

a static camera.  

 The speed estimation is performed on the primary image frame in which the 

moving object is detected. The pinhole camera model can be seen in Fig. 17. Let's 

take   as the angle between the direction of the moving object and the image plane of 

the camera. And   is the displacement of the object in the frame over   which is the 

camera's exposure time. The exposure time of our device is           . To determine 

 , we must use the distance between the center of the object and its edge as in Fig. 16.  

 

Figure 16. Determining the angle between the object's motion direction and camera plane. 

According to the previous section,    is the distance between      
      

   and         

in the image frame. It is transformed to the camera coordinate frame based on the 

model explained under camera calibration. In addition, we have the depth of each of 
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these points as   
  and   

 . Considering the absolute difference between the depth 

values, we can determine    as 

      
     

                                                                                                           (12) 

and   as 

          
  

  
                                                                                                            (13) 

which can be seen in Fig. 16. Then we have 

 

    
 

     

 
                                                                                                                (14) 

and 

       

 
 

  
 

 
                                                                                                               (15) 

where    and   are the distance between the center of object to its edge and the length 

of the partial blur area on the image plane. By substituting (14) into (15), and 

eliminating  , we obtain 

  
  
    

                
                                                                                                   (16) 

in which   
  is the distance between the object and the camera plane and   is the focal 

length of the camera. If the time interval is represented by   and the CCD pixel size in 

the horizontal direction is   , then the velocity along each coordinate axis can be 

formulated as 
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                                                                                      (17) 

then    and   are the distance between the center of object to its edge and the length 

of the partial blur area (in pixels). The vectors of velocity along   and   axes will be 

calculated by 

                                                                                                                       (18) 

                                                                                                                        (19) 

 

Figure 17. Pinhole camera model for speed estimation. 

 It should be noted that if the exposure time, focal length, CCD pixel size, 

starting position, length of the motion blur, and the motion direction are known, then 

the velocity of the moving object can be derived as 
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                                                                                        (20) 

and the speed can be approximated by 

  
  
    

      
                                                                                                                 (21) 

if      and the angle   is less than    .  

 

Figure 18. Pinhole model for the special case of parallel moving object [47]. 

 In these equations the focal length   and the CCD pixel size    are the internal 

parameters of the camera. The focal length is obtained from camera calibration and    

is given by the manufacturer's data sheet. The exposure time (or shutter speed)   is 

assigned by the camera settings during image acquisition. Thus, for the speed 

measurement of a moving object using a motion blurred image, the parameters to be 

indentified include the blur parameters and the relative position and orientation 

between the object and the camera.  

 For a special case that the object is moving along a certain direction parallel to 

the image plane of the camera, the displacement of the object can be obtained using 

similar triangles for a fixed camera exposure time. Fig. 18 depicts this special case.  
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Accordingly, the equation to obtain the speed can be simplified as  

  
  
    

  
                                                                                                                    (22) 

in which the angle   is set to zero. In this case, the position of the object is not 

required for speed estimation. The only parameter which must be identified from the 

recorded image is the length of the motion blur.  

 With the proposed method and its implementation on a camera, it is only 

possible to estimate    
    

     The arm starts its motion with these velocity vectors 

and assumes   
  to be zero as it is known. After obtaining the second frame and 

calculating   
 , the prospective position of the object will be recalculated. 

Subsequently, the motion of the arm will be modified. This way the manipulator does 

not have to wait for the second frame to start its motion. In this project, the angular 

displacement of the motors are recorded by the encoders. So the displacement 

between the first and second image frames are known.   

 Once the second depth frame is acquired, we take advantage of depth frame 

subtraction to estimate the vector of velocity along   axis in the camera coordinate 

system. The first frame after the detection of the object provides the initial distance 

between the object and the camera coordinate system as   
 . The next frame would 

provide   
 . If the time interval between the two frames is  , then   

  can be 

approximated by 

  
  

  
    

 

 
                                                                                                                  (23) 
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Finally, the vectors of position      
      

      
   and velocity    

    
    

   in camera 

coordinate system are obtained. With these vectors, the future position of the object 

can be obtained again. Accordingly, the joint angles and accelerations of the robot 

will be recalculated.  

 

Figure 19. The world coordinate frame of the system on the base of the robotic arm.  

 

Figure 20. The velocity estimation along with position. 

 Fig. 19 depicts the coordinate frame of the system (world coordinate frame) 

and Fig. 20 shows an example of how the position and velocity of the target are 

estimated. It must be noted that the robot and world coordinate frames are the same 
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and these terms are used interchangeably. The provided data are in    and according 

to the world frame (robot's coordinate frame).  This figure shows the graphical display 

of the position and velocity parameters of the moving object along with the RGB 

picture on the top right side of the figure and the depth image as well. As it can be 

seen in the RGB image, the moving object is blurred and its position and velocity 

vectors are calculated. All the parameters of velocity have positive values. The 

positive value of   shows that the object is on the left side of the robotic arm.  In this 

presentation,   
  is almost zero. It means that the object has minimal displacement on 

  axis.  

Control Model 

 As discussed in the previous section, the initial position and velocity of the 

moving object are determined. Consequently, its future position can be predicted after 

any time interval. This time interval is actually the response time for the arm. In other 

words, this would be the time that the end-effector has to reach the predicted position 

of the target. 

  When the object is thrown, the only considered acceleration is gravity and air 

resistance is ignored. The position of the target can be predicted in world (robot) 

coordinate frame by 

    
    

       
                                                                                                       (24) 

and 

    
    

       
                                                                                                       (25) 

and 
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                                                                                       (26) 

where   is the time interval,    is the time interval after the first depth frame,   is the 

constant acceleration of gravity and      
      

      
   is the predicted position of the 

target after  . At this point,      
      

      
   must be used to derive the corresponding 

joint angles for the robot. Based on the time interval, the necessary joint accelerations 

will be calculated as well. The corresponding joint angles are derived with the help of 

inverse kinematics.  

 Inverse kinematics is the application of the kinematic methods and equations 

to calculate the joint parameters which will provide the desired position of the end-

effector. In other words, we will be able to determine the value of each joint in order 

to place the arm at the desired position and orientation. To explain this procedure, we 

must practice forward kinematics first. This is based on Denavit-Hartenberg 

representation of forward kinematics of robots. According to the DH table of the 

manipulator, we can form the transformation matrix of each joint by  

    
                                                   

                                                                                                                        (27) 

in which   is the joint number, starting from  . By calculating     , the following 

matrix will be found as  
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in which      is the angle to rotate around the current corresponding   axis,      is 

the displacement along the current corresponding   axis,      is the displacement 

along the current corresponding   axis and      is the angle to rotate around the 

current corresponding   axis.   and   represent sine and cosine. If the number of 

joints to be controlled in the manipulator are equal to three, we will be able to find 

three matrices as           . These matrices can be used to find the forward 

transformation from the base of the robot as the first joint to the robot's end-effector 

according to 

321 AAATH

R                                                                                                            (29) 

where H

RT  is called the robot's total transformation matrix. This matrix is represented 

as  
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T                                                                                        (30) 

in which   ,  , and    are the unit vectors of object's orientation in the world coordinate 

frame. These vectors are named normal, orientation and approach, consecutively. 

 As we have already noticed, forward kinematic equations have a multitude of 

coupled angles. It is impossible to discover sufficient number of elements in the 

matrix to solve for individual sines and cosines to calculate the angles of the joints. To 

decouple the unknown angles, we will premultiply the H

RT matrix with the individual 

  
   matrices. Fig.21 depicts the inverse kinematics model of our manipulator. This 
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presentation is called elbow-up as the third joint of the robot is considered the elbow 

the same as human's arm.  

 

Figure 21. The inverse-kinematics model solution for the manipulator. 

 This solution is based on the model presented in [48]. However, it may 

similarly be repeated for other robots with different configurations. Let's assume table 

(2) represents the DH table of the manipulator.  

Table 2. DH tables with parametrical elements.  

             

1                

2                

3                

4                

5                

 

We consider the matrix of position in the world coordinate frame to be  
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                                                                                                                    (31) 

According to the configuration of the manipulator, shown in Fig. 21, the first angle 

will be found as  

           
  

  
                                                                                                       (32) 

If we take    as the tip of the end-effector, it will be found by  

      

  

  

  

                                                                                                               (33) 

in which    is taken from table (1). According to (31) and (33), we will be able to 

find the location of the wrist as  

        

   

   

   

                                                                                                 (34)                                                                                                                 

In addition, we form another matrix as  

    
 
 
  

                                                                                                                    (35) 

which is the location of the second joint.    is taken from table (1) as well. According 

to (34) and (35), we can find   as 

         

  
  
  

                                                                                                   (36) 

Based on (36), we can find the length of   as 
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                                                                                                              (37) 

At this point, it is possible to find the value of 3  angle by  

          
     

    
 

     
                                                                                              (38) 

where    and    are taken from the DH table.  

if we take   as 

                                                                                                                    (39) 

then  

         
 

 
                                                                                                           (40) 

and 

         
 

     
                                                                                                   (41) 

Accordingly,    will be found as 

                                                                                                                      (42) 

 As explained earlier, for the task of interception the first three joints will 

manipulate the arm to the corresponding location in the working volume. 

Consequently, the fourth and fifth joint angles will be kept constant.  

Let   represent the vector of joint angles as 

            
                                                                                                         (43) 
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If we assume that the angular displacement can be determined by  

   
 

 
                                                                                                               (44) 

and     , then the necessary acceleration for each joint can found by  

    
   

  
                                                                                                                      (45) 

where     represents the acceleration of joint  ,    is the angular difference between 

the initial and final position of the end effector and   is the time interval. This process 

is only performed for the first three joints of the manipulator.    

 In this chapter, we presented the complete method and theoretical basis of our 

system. In the first part of the chapter, we discussed the object detection and camera 

calibration model. In the second part, we fully explained the velocity estimation 

method which provides the major contribution of this work. And in the final part, the 

control model and dynamical analysis of the method were illustrated.   
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CHAPTER III 

EQUIPMENT AND EXPERIMENTAL SETUP 

 In this chapter we will present the equipments which are used for testing and 

the setup for the implementation of our method. The kinematic specifications and 

limitations of the devices will be provided and the Simulink control model will be 

thoroughly described. In addition, it will contain information about the 

communication means between the computer devices in our setup.  

Experimental Setup 

 Fig. 22 shows a schematic diagram of the system's architecture. The vision 

system and all the necessary calculations are processed on a separate windows 7 

system. These two machines communicate through UDP socket. The main reason that 

we preferred UDP over TCP/IP was the delay in the procedure [49].  

 

Figure 22. The schematic configuration of the system. The information is transferred from 

Kinect to PC 2 without feedback. 
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 It is desirable to have the vision system process the data and transfer the 

processed information to the controller's machine without considering any possible 

malfunction or blockage on the other side of the communication line.   

 In the previous chapter, we fully explained how the vectors of position and 

velocity are obtained. However, both of these vectors are present in the Kinect's 

coordinate system. These vectors must be transformed to the arm's coordinate system 

(world frame). 

Coordinate Transformation  

 The calibration is performed according to the first section of second chapter 

and the provided model is used. The procedure provides the intrinsic parameters of 

the Kinect as 

                                                                                                            (46) 

                                                                                                          (47) 

                                                                                                                           (48) 

                                                                                       (49) 

which   represents the vector of focal length,    the vector of principal points,    the 

skew coefficient and    is the vector of distortion. All of the provided values are in 

millimeters.    

 To calibrate the relationship between the Kinect and the robot, the accurate 

origin of the camera coordinate system must be obtained. In this project, we found the 

origin of the Kinect coordinate system by manually manipulating the end-effector in 
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front of the camera. The end-effector is detected. The position of the end-effector is 

known in the world coordinate frame. The image processing algorithm provides its 

position in camera coordinate frame as well. Then the coordinate relation between the 

end-effector and the camera's position can be determined.   

 

Figure 23. The position of the camera and the robot.   

 As it can be observed in Fig. 23, the camera is mounted on the right side of the 

robot at                         in the world coordinate frame. To align the 

Kinect's coordinate frame with the world's, a rotation of     around   and a rotation 

of   around   are needed.  

 Considering the location of the Kinect and the coordinate origin of the arm, 

the transformations are executed as 

                                                                                                        (50) 

and  

                                                                                                        (51) 
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where     cam is the position of the object according to the Kinect's coordinate system 

and     arm is the position of the object according to the arm's coordinate system. The 

same condition is valid for     cam and     arm.  

 In this project, the robot's working volume contains a 3D rectangular space 

with the dimensions of        by        and        in front of the robot. When 

the robot is in home position, the end-effector is at the center of this volume. For fast 

motions, the kinematic limits of the arm can dominate the robot's behavior. To ensure 

the robot's safety, if any of these limits is exceeded, the controller automatically 

disconnects the arm.  

Equipments 

 The equipment for performing the object interception is a robotic arm which is 

depicted in Fig. 24. This equipment is a 5-DOF manipulator named as CRS Catalyst-

5, designed and produced by Thermo Science company, which is mainly employed 

for the purpose of object manipulation, force measurement and analysis. All the joints 

in this equipment are rotational and the arm has an articulated configuration. In this 

picture the world coordinate system can be observed at the base of the robot. 

Table 3. The joints and their corresponding angular ranges. 

Joint number Range (deg) 

1            

2        

3          

4          

5          
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Figure 24. CRS Catalyst 5 with the world coordinate system. The origin of the coordinate 

system is on the base of the arm. 

Table (3) presents the joint limits of the equipment. Table (4) provides the 

corresponding working volume of the robot in Cartesian coordinate values. And in 

table (5), we can find the DH table of the equipment.  

Table 4. The Cartesian limits. 

Axis name Range (mm) 

X          

Y            

Z            
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 The angular limits in table (3) ensure that the robot will not be damaged over 

the course of manipulation. It is possible to alter the control algorithm and increase 

these limits but it can cause severe damage to the arm.  

Table 5. The DH table of CRS Catalyst-5. 

             

1 0 254 0   

 
    

2   

 
 

0 254 0    

3  

 
 

0 254 0    

4   

 
 

0 0   

 
    

5 0 159 0 0    

 The images were acquired with a Kinect camera. Kinect is a RGBD camera 

which measures the position of objects of interest in the camera coordinate system. 

The first generation of this device was designed for Xbox. Then in 2011, Microsoft 

released a software development kit (SDK) which made it possible to program this 

device in Windows 7.  

 This device is a horizontal bar established on a small base with a motorized 

pivot and is designed to be positioned lengthwise above or below the video display. 

The device contains a RGB camera and a depth sensor.  

 The depth sensor is made of an infrared laser projector which is combined 

with a monochrome CMOS sensor. It obtains video data in 3D under any ambient 

light conditions. The new Microsoft SDK makes it possible to adjust the range of the 

depth and it can automatically calibrate the sensor based on the physical environment, 
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accommodating for the presence of furniture or other obstacles. The depth range is 

between 0.8 to 4.0 meters. This means that the objects which are closer or farther 

from these distances from the Kinect will not be detected. At the same time, the 

device has a near mode depth which covers a range of 0.4 to 3.5 meters. Fig. 25 

shows a Kinect along with its coordinate system (camera coordinate frame).  

 

Figure 25. Kinect's coordinate system. 

  As it is shown in Fig.25, the depth range is determined along the   direction. 

The figure demonstrates the rough location of the coordinate system but to precisely 

determine the location of the frames origin and its relative location with respect to the 

robot frame, the procedure must be completed as explained in the previous section.  

 The Kinect for windows SDK makes it possible to use and control a Kinect 

camera in windows by C++/C# compilers. The compiler language which is used for 

this project is C#. The Kinect API provides the chance of using the kinect's 

image/video stream similar to a webcam. As discussed earlier, the depth sensor 

provides the distance of the objects. And it would be possible to leverage the video 
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and depth data together for detecting objects. The SDK provides the essential libraries 

to access the Kinect's video and depth stream.  

 The Kinect and arm are programmed and controlled in separate computer 

devices. Once the position and velocity vectors of the target are processed and the 

prospective position of the object is determined, the data is transferred to the other 

computer device which controls the robot. This data transfer is possible through UDP 

socket communication. In the proceeding sections more information on this type of 

communication will be provided. The transferred data arrives at the second computer. 

The data will be processed in C++ for the robot's Simulink model. Consequently, the 

new processed data needs to be transferred again. This last procedure is possible 

through memory sharing. In the next section, the stream server block and sharing 

configuration will be described in detail as well.  

Open-Architecture Configuration 

 As explained earlier, the equipment in this project is a CRS Catalyst-5. It is a 

5-DOF manipulator with a C500C controller which has a closed-architecture. 

Advanced robotic experiments such as coupled control, adaptive control, and other 

advanced algorithms cannot be implemented on this architecture. However, if the 

control is set on open-architecture model, the controller would be able to send 

commands directly to the motors. The designed open-architecture controller can be 

switched back and forth to the closed-architecture CRS controller seamlessly. 

 The open-architecture configuration allows us to change the control model. 

This architecture is designed to make adding, upgrading and swapping components 

easy [50]. With the help of open-architecture configuration, we make the control 
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model to have the arm perform the task of interception.  Fig. 26 provides the control 

model for the arm.  

 

Figure 26. Schematic of the discrete controller inside the real-time kernel. 

 This figure is a schematic presentation of the control Simulink model. To 

further investigate how the model is configured and how the system functions, we will 

explain each of the blocks in detail. 

 As discussed earlier, inverse kinematics provides the corresponding joint 

angles for end-effector's manipulation. This process is performed in C++ and the 

vector of angles and angular accelerations must be used to determine the motor 

commands. In Fig. 26, the stream server block provides the mean for communication 

between the C++ and Simulink model.  

 Fig. 27 depicts an actual image of this block in Simulink environment. This 

block listens for connections from local hosts. When a remote host attempts to 

connect, it accepts the connection and establishes a persistent connection with that 

host. Only one connection is accepted at a time. The host may be local or remote.  If 

the connection to the host is lost, this block automatically accepts a new connection. 

The current state of the connection is available at the state output.  



47 
 

 

Figure 27. The stream server block in Simulink. 

When the block is configured to receive data and data arrives, the new output is set to 

true and the data appears at the rcv output.  

 When the block is configured to send data, the signal at the snd input is sent to 

the host each sampling instant in which the en input is non-zero. This signal may be 

multi-dimensional. The sent output is set to true (non-zero) if the data was sent. If the 

send operation would have blocked then the sent output is set to false (zero). If an 

error occurs then a standard negative QuaRC error code is output at the err output. An 

error condition will cause the block to close the connection and attempt to accept a 

new connection.  

 The basic stream blocks are always non-blocking. They do not wait for data to 

be sent or to be received. However, the signals sent or received are always treated as 

atomic units-the block will never receive part of the data or send part of the data.  

 The stream block supports a number of different communication options. It 

may be configured to use non-blocking I/O for the underlying stream or to use 

blocking I/O in separate threads. In either case, the block itself never waits for data to 

be sent or received and thus does not interface with the sampling rate of the model. 

The blocking I/O option requires more knowledge to use but has the advantage that it 
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reconnects faster when the connection is lost and typically requires less computation 

time in the control thread.  

 It may also be configured to maximize throughput or minimize latency. When 

maximizing throughput, the block buffers the data prior to flushing it to the 

underlying stream in order to make optimum use of the communications bandwidth 

available. However, this option can lead to latencies at the peer because the data is not 

necessarily sent immediately. The size of the buffers used for internally buffering the 

data are set via the Send buffer size and Receive buffer size parameters.  

 When the block is configured to minimize latency, it flushes the data to the 

underlying stream every sampling instant. This option can result in poor use of 

communications bandwidth but minimizes the time for the data to arrive at the host. 

For example, a single TCP/IP packet can store 1460 bytes of data, or 182 doubles. 

Suppose the stream server block is sending and receiving a single double. If the send 

and receive buffer size are set to 1460 bytes, and the maximize throughput option is 

selected, then the stream block will send 182 doubles in each TCP/IP packet, making 

efficient use of the communications bandwidth. However, if the minimize latency 

option is selected, then the stream server block will send one double in each TCP/IP 

packet. In this case there is a lot of wasted bandwidth but the latency is minimized.  

 In most circumstances, the server and client only need to exchange the most 

recent data and old data may be discarded. The stream server block supports this 

option as well, which also helps to minimize latency when only the most recent data is 

required.  
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 As the vectors of joint angles and joint accelerations are transferred through 

the stream server, they will be used to generate the trajectory of the arm. Fig. 28 

depicts the CRS motor commands block details.  

 

Figure 28. The motor commands block details. 

As illustrated, the joint angles are transferred in degrees into the block of smooth 

absolute joint commands. Fig. 29 presents the aforementioned block. This block 

determines absolute joint commands for each joint according to the home position of 

the robot. The commands are converted into radians. Subsequently, they will be 

transferred to be converted to motor commands. The vectors of   and    are 

transferred to the continuous sigmoid functions through the saturation blocks. The 

kinematic limits of the arm are set by the saturation. This block limits the input signal 

to the upper and lower saturation limits. The limitations are the angular position, 

velocity and acceleration range for each joint. If any of these limits are exceeded, the 

controller disconnects the robot to prevent motors from being damaged.  

Each continuous sigmoid block generates a sigmoid trajectory from the current 

position and acceleration to the target's position. Position and acceleration profiles are 
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generated, as well as a signal to indicate when the trajectory has reached the target. 

The output of each continuous sigmoid block is the corresponding absolute joint 

command. The Abs to Rel Offset block sets the angular offset for the arm in its home 

position. It can be seen that there is a     offset for the third joint.  

 

Figure 29. Smooth absolute joint commands block. 

The joint commands are transferred to CRS position controller block. The model can 

be seen in Fig. 30. As it can be observed, the vector of joint commands are fed into 

PD control system and consequently, the motor current limits will be determined. In 

this picture, the HIL Read Encoder block reads the specified encoder channels every 

time the block is executed. The channels are read immediately. The output is the 

count values from the encoders. On the other hand the HIL Write Analog block writes 
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the specified analog channels every time the block is executed. The channels are 

written immediately. 

 

Figure 30. CRS position controller. 

 In this chapter, we provided detailed information about our equipments, 

testing setup and network communication in the system. In the proceeding chapter, 

the testing results and the discussion will be provided.  
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CHAPTER IV 

EXPERIMENT, RESULTS AND DISCUSSION 

 In this chapter, we provide the testing results and demonstrate the benefits of 

velocity estimation in the initial image frame. A thorough discussion of the obtained 

data will be provided. At the end, the errors and limitations of the system will be 

described.   

 To study the system's functionality, the setup is tested by throwing a cup 

inside the working volume of the robot. When the system is armed, the cup is held out 

of the Kinect's view angle. Then it is thrown within the working volume by an 

operator.   

 In this project, we take advantage of the area size that each object has in the 

depth image. The object must meet a specific area size range to be considered as the 

target. We have the possibility to accumulate the depth pixels as separate contour 

areas. As there is a knowledge of the 2D contour area size range of the object of 

interest, the contours which are bigger or smaller than a certain size will be removed. 

 The size range in this project is between          to         . It must be 

noted that the area size is a function of depth. Consequently, the proposed area size 

range is valid for our setup. It is determined based on the straight distance between the 

camera and the arm's working volume. So for a different setup, the area size range 
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must be modified as well. Fig. 31 shows the environment with the objects. The RGB 

picture can be viewed on the top right side of the figure.  

 

Figure 31. The RGBD data after filtering the contours. 

 In Fig. 31 the object of interest is detected and shown with a red rectangle. As 

the contour is detected and the red rectangle is drawn, the center of the rectangle is 

approximately determined in pixel values as    
    

  . The image frame size is 

       . Accordingly, the pixel number of the center will be calculated by 

     
          

                                                                                                 (52) 

Based on  , the pixel's depth can be obtained as   
 . 

 At this point the only parameter which is in the camera coordinate system is 

  
 . To find the corresponding parameters for   

  and   
  in camera coordinate frame, 
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we need to employ the model which was provided under camera calibration section in 

chapter II and proceed with velocity estimation.  

 

Figure 32. The location of the Kinect and robot. 

Fig. 32 illustrates the actual system in which both CRS Catalyst 5 and Kinect can be 

observed. In this figure the object is not present. The arm is in its home position from 

which its manipulation starts and after each experiment, it will return to this position. 

The Kinect is placed on the top of a wooden base to compensate for the height of the 

robot's base table. This allows the Kinect to observe the whole working volume of the 

arm.  

 The kinematic limitations of the equipment affects the system's ability for a 

successful interception. Understanding these limits will help to have a better 

perception of the practical benefits of velocity estimation in a single image frame. 

Table (6) represents the kinematic limits of the equipment in Cartesian coordinate 

system. These limits can be altered by changing the control setup of the equipment. 
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However, the manufacturing company recommends to avoid exceeding more than 

      of the proposed limits. Otherwise, it can severely damage the robot.  

Table 6. World coordinate kinematic limits of the equipment. 

Coordinate Speed limit  
  

 
  Acceleration limit  

  

  
  

  30000 30000 

  30000 60000 

  30000 60000 

 

 We must consider that the end-effector always starts its motion from zero 

velocity. Then its displacement along any axis can be determined solely by the 

acceleration limits and the motion time. There are ultimate number of ways to throw 

the cup as it can have an ultimate number of directions and velocities. The theory tells 

us, if the moving object will be present in the working volume after the predefined 

time interval, the robotic arm must be able to intercept it. However, if the object 

passes beyond the boundaries of the working volume, the robot will never be able to 

perform a successful interception.  

 Let's consider a condition that the system requires two image frames to 

estimate the velocity. Taking         as the predefined time interval, the motion of 

the end-effector will start after the acquisition of the second image frame. This means 

that the robot needs to wait until the second image frame is processed and then start 

its motion. As the frame rate is       , the amount of time that the arm has to perform 

the interception is determined by 

     
 

  
                                                                                                                 (53) 
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which is approximately equal to        . We take   
        

  

    from table (4). 

Accordingly, the displacement of the end-effector along   axis after   is 

    
 

 
  

                                                                                                                 (54) 

which would be equal to          . If we consider the condition for the end-

effector's motion along other axes, then   
  and   

  are equal to       
  

   and the 

displacements will be 

   
 

 
  

                                                                                                                  (55) 

and 

   
 

 
  

                                                                                                                  (56) 

 Accordingly, the value of both will be equal to          . Now, based on 

these displacements a volume can be calculated. This volume represents the end-

effector's chance to successfully intercept with the moving object after the predefined 

time interval. Let's take   
  as the volume for this condition.   

  will be calculated as 

  
                                                                                                                   (57) 

which will be equal to               . Now if we consider the condition of 

estimating the velocity with the initial frame, the results will be considerably 

different.  

 If the robot starts its motion after the acquisition of the initial frame, the robot 

will have       to react. we can recalculate the displacements on the axes. According 

to (54), (55) and (56), the new values for   ,   , and    will be       , 
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         , and       , respectively. As it can be seen, the value of    has not 

changed. The reason is that with the motion blur we can only estimate the object's 

velocity along   and   axes in the camera frame. After transformation from camera 

frame to robot's frame, we would have the velocity along   and   axes. Based on the 

new displacements, the new volume will be  

  
                                                                                                                   (58) 

which will be equal to            . Now if we compare   
 with   

 as 

  
 

  
                                                                                                                          (59) 

we will find out that   
  is about   times bigger than   

 . This difference between the 

volumes represents the difference between the system's ability for having a successful 

performance under the explained conditions. Obviously, the kinematic limitations of 

the equipment remains the same and the procedure would be regardless of the moving 

object's direction of motion and velocity. Now let's imagine if we could estimate    

from the initial image frame as well. Then    would be equal to       . 

Accordingly,   
  would become equal to            . If we compare this value 

with   
 , it can seen that  

  

  
                                                                                                                         (60) 

which means   
   would become approximately    times bigger than   

 . This 

comparison shows the significant benefit of velocity estimation in the initial image 

frame.  
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Figure 33. The 3D representation of the end-effector's motion boundaries within      . 

 The main discussion is when the system can estimate the prospective position 

of the moving object. Let's imagine an object is thrown to our face and it takes     to 

reach us. If we notice the object       after it is thrown compared to    , we would 

have a better chance of protecting our face.  

 Keeping in mind that our reaction time remains the same in both conditions. 

The same situation is present for our robotic system. If our robotic system can detect 

the object and estimate its future position with the first image frame, it will have a 

better chance to intercept it compared to when it needs to wait for the second frame.  

 Fig. 33 depicts both of the volumes. The blue volume represents   
 , the 

middle size transparent volume is   
  and the biggest volume is the whole working 

volume of the robot. Fig. 34 shows the volumes from top view. In all of these figures 

the robot's end-effector is located at        . 
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Figure 34. The top view representation of the end-effector's motion boundaries within      . 

 As it can be seen   
  and   

  are located inside the working volume of the 

robot. However, the blue volume represents the chance of successful interception, if 

the motion starts after the second frame. But the middle volume is its chance, if the 

motion starts after the first frame. In order to better understand the difference, we can 

study the case with a moving object. Fig. 35 shows a top view of the volumes with a 

moving object and Fig. 36 shows the 3D view of the same environment.   

 In Fig.35, the black star represents the initial position of the moving object. 

We assume that this is once the initial image frame is obtained. The red circle 

represents the prospective position of the target after      . To simplify the example, 

we can assume that the motion on the     plane is linear. As it can be observed, the 

object will pass through both the blue and transparent volumes.  
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Figure 35. The top view of the working volume and a moving object.   

 

Figure 36. The 3D view of the working volume and a moving object. 

 Obviously, if the robot starts its motion after the acquisition of the second 

image frame, the target would have passed the boundaries of the blue volume. 

However, if the motion starts after the initial image frame, the end-effector will reach 

the prospective position of the target within the predefined time interval. At this point, 

a question may come to mind that what if the       time interval starts after the 

second frame. This theory will not increase the chance of a successful interception. 
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The reason is that the prospective position of the object after the time interval is 

estimated from the initial image frame and if we consider the second image frame as 

the origin of the target's motion, the object will be farther away from the position that 

is currently shown in Fig. 35. So the robot will not be able to successfully intercept 

with it at all.       

 

 

 

Figure 37. The images from left to right and top to bottom show the interception with the 

thrown cup. The last image depicts the moment of interception. 
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 Fig. 37 and 38 present two successful attempts while the cup was thrown by 

the operator. In Fig. 37, the cup is thrown to the far right side of the arm, along   

direction and the arm successfully intercepts it. 

  In Fig. 38, the cup is thrown across the working volume of the robot, 

approximately along   direction, and again, the robot successfully intercepts the cup 

within the proposed working volume.     

  

  

 

Figure 38. The images from left to right show the interception with the thrown cup in a 

different location. The last image shows the moment after interception. 
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 In the previous figures, the images are recorded by the Kinect itself. So the 

images are actually what the Kinect observes during the procedure. The experiment is 

repeated 25 times. 

 Every time the experiment is performed, the velocity data is recorded. All of 

the recorded data of the experiments are presented in table (7). This table contains the 

velocity of the cup as well as a checkmark indicating the successful completion of the 

task.  

Table 7. The velocity data of the experiments. 

Experiment                            Result 

1 -2.1 -1.5 4.12  

2 3.5 3.5 3.1  

3 3.01 -4.5 2.5 × 

4 -1.45 -2.5 2.3  

5 3.5 2.1 -1.5  

6 -4.13 -7.3 -2.24 × 

7 3.12 3.8 1.1  

8 3.1 4.5 1.7  

9 -3.2 -0.26 -2.7  

10 -1.6 0.71 1.8  

11 -1.1 1.2 1.38  

12 2.3 -4.1 2.12  

13 0.7 7.4 -3.88 × 

14 -0.4 -1.73 4.48  

15 1.4 -4.64 2.33  

16 -2.81 0.78 1.27  

17 1.91 -1.37 -3.38  

18 2.61 2.21 2.56  

19 -2.7 -1.27 0.34  

20 2.47 -0.101 2.18  

21 -4.34 1.12 -2.62  

22 -2.78 -2.34 1.25  

23 -1.3 1.54 2.62  

24 -3.35 3.12 -2.91  

25 -0.7 7.13 3.41 × 
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 As it can be seen in table (7), the object has been thrown with different 

velocities. And the robot has been successful for approximately      of the time. 

There are multiple reasons for our system to miss the target. It is not possible to study 

the chance of a successful interception solely based on the velocity of the target. The 

direction of motion plays an important role as well. As stated before, there are 

ultimate number of ways to have the target pass through the working volume of the 

end-effector. Consequently, there is only one way to surely say that the interception 

will happen and that is when the object is inside the determined working volume and 

the boundary limits of the end-effector after the predefined time interval.   

 According to table (7), experiment 3, 6, 13 and 25 show that the robot has 

failed to intercept with the target. By paying attention to the recorded velocity data, it 

can be seen that the velocity varies in a considerably wide range. The smallest 

recorded value for the velocity is approximately       and the biggest is 

approximately      . According to the recorded vectors of velocity, we can 

conclude that the system posses acceptable symmetrical ability for determining the 

velocity and prospective position of the moving object. It means the direction of the 

object, as long as it stays inside the reachable boundaries of the end-effector after 

     , will not affect the chance of a successful interception. This is concluded based 

on the positive or negative directions of the velocity vectors. For instance if we 

consider experiments (3) and (4), we will see that    is negative in both of the tests. 

However, (3) is a failure and (4) is a success. This proves that the direction of the 

velocity vector has not affected the performance of the system and the failure must 

have had a different reason such as faster motion along  . The same situation is 

present for the    vectors in (5) and (6).   
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 Another factor which plays an important role in the process of velocity 

estimation is the motion along   axis. It must be noted that the robot's   axis is in fact 

the Kinect's   axis, the axis corresponding to depth. If we remember from the 

previous chapters, we could not take advantage of motion blur speed estimation for 

the depth as it does not contain any blur. Consequently, the robot receives the velocity 

vectors along   and   from the first frame. But the velocity along   is obtained after 

the acquisition of the second image frame. The robot starts its motion with the initial 

frame and then it modifies its path after the second image frame. Consequently, the 

system cannot react to motion along   as fast as motion along the other two axes. If 

we consider experiments (3), (6), (13) and (25), we can see that in all of which    has 

a greater value compared to    and   . In (6), (13) and (25) the absolute difference 

between    and the other vectors is greater than approximately      . 

 Another main reason for failure is operator's error. It is very important to 

throw a cup through the working volume of the robot. The operator has an 

approximate knowledge of where the working volume of the robot is, but it is still 

difficult to pass the target exactly through the volume. In addition, the object might 

partially pass through the view point of the camera . Consequently, the vision system 

may fail to detect the target at all. Because of the direction of motion, the camera can 

sometimes detect the object but it leaves the arm's working volume before the robot 

will be able to react.  

 In this chapter we provided the results of    tests and proved how velocity 

estimation in a single image frame can increase the arm's chance for a successful 

interception. The major limitation of our setup was its inability to estimate the 
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velocity along   axis from the initial image frame. In addition, the kinematic 

limitations of our robotic arm restricted the system's ability to intercept with faster 

moving objects.  
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CHAPTER V 

CONCLUSION 

 In this thesis, we presented a robotic system to autonomously detect the 

presence of a moving object outside the working volume of a robotic arm, estimate its 

velocity in a single image frame through motion blur, predict its prospective position 

after a time interval, and intercept it in the predicted position.  

 The main contribution of the work was the velocity estimation for a real time 

application. This method has never been used for a real time system before. In 

addition, the majority of previous work in this area employed specialized 

manipulators which were solely designed for the purpose of moving object 

interception. However, we implemented the method on a robotic arm which is not 

designed for the task of moving object interception.  

 The system was implemented on a testing setup which consists of a windows 

Kinect camera and CRS-Catalyst 5 robotic arm. Our manipulator has not been 

designed and never been employed for high speed, acceleration and torque tasks in 

previous research. Besides, the previous works in this area show that most of the 

projects have been attempted with equipments, which were designed and built for the 

sole purpose of moving object interception. 

 The major goal in this thesis was to present how velocity estimation from the 

initial image frame can improve the performance of our robotic system for the task of 
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moving object interception. The system's functionality is compared to when it 

requires at least two image frames to estimate the target's velocity. This work shows 

that our method improves the performance of the robotic system more than three 

times. As the motion blur methods cannot be implemented on the depth image frame, 

the velocity along   direction in the world coordinate frame could not be estimated 

from the first image. Theoretical results suggested that if we could estimate the 

velocity along the aforementioned axis in the first image frame as well, the system's 

performance could be improved more than five times.   

 The experiment was repeated 25 times and the results were provided. The 

obtained data showed that the system was able to intercept almost     of the time. 

Among the reasons for failure, the operator's error played a major role. It is 

significantly important to throw the object inside the working volume of the robot. In 

addition, as the system cannot determine the velocity along  , it is more susceptible to 

failure when the object is moving faster along this axis. This faster movement is in 

comparison with the object's velocity along the other axes.   

 The importance of this method to the field of robotics can be significant as it 

makes the task of moving object velocity estimation faster without altering the 

equipments such as the use of high speed cameras. This method can improve the 

performance of all the robotic systems which use visual sensing. A considerable 

number of such systems need to function in an environment with dynamic obstacles. 

For instance, there are industrial robotic arms which work interactively with human 

operators. Humans can be considered dynamic obstacles and it is significantly 

important to ensure their safety in such kind of working environment. This method 

will help such robots to sense the humans faster at a low cost. In addition, as these 
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robotic arms need to grasp and manipulate moving objects, this method will assist 

them to notice the target faster and then it will increase the productivity of the 

industrial site. Considering the fact that this method can be implemented on any 

robotic system which takes advantage of RGBD cameras, an increase in the robotic 

jobs can be expected as well. Moreover, we can imagine rescue or military robots 

which navigate in the environments with dynamic obstacles too. In the case of 

humanoid robots, this method can be a significant help to their visual abilities.  

 As explained under the second chapter, a lot of times other methods for 

velocity estimation employ more expensive tools to perform the task. By using this 

method, such kinds of costs, either in the area of research or industry, will be reduced.  

For the future research, our project can be extended in several areas. One of the main 

parts of the project which can be modified is the object detection algorithm. Our 

object detection model is solely based on contour area size in the depth image. 

Actually, the model can be improved to detect objects with more details in a greater 

depth range. The most important ability of the system which can be modified is to 

estimate velocity along    from the initial image frame as well. As the theory 

showed, if we could estimate the velocity along this axis like the other vectors, the 

system's ability would be considerably increased. 
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