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ABSTRACT 

 
The climate of the Earth is changing, and is primarily a result of our rampant industrialization 

over the past two centuries.  These changes have manifested themselves in many ways over the 

whole of the Earth’s surface and sub-systems, leading to the need to understand the changes and 

predict future outcomes.  Coupled climate and general circulation - Earth system models (GCMs) 

allow for the analysis of dynamically active simulations over the whole of the planet, yet are limited 

by computational power.  The model grids are coarse by design to perform within these 

computational constraints, which enables them to function and provide information at continental and 

larger scales, but which limit their ability to offer information for regional and local environments.  

Dynamical models created with higher resolutions allow for regional climate modeling yet are also 

limited by computational constraints and require detailed information to run.  Statistical downscaling 

seeks to bridge the gap between coarse GCM grids by utilizing observational data and statistical 

models to remove the biases from the data at the local level.  There have been several types of 

statistical methods applied to this task over many different regions with some success.  The goal of 

this study is to utilize two methods in particular, bias-corrected spatial disaggregation (BCSD) and 

redundancy analysis (RDA), to downscale maximum and minimum temperature, as well as 

precipitation, for the Northern Great Plains (NGP) region.  These methods are calibrated over the 

period 1950 – 1970 using a 1/8 degree gridded dataset for 17 GCMs, then applied to a verification 

period (1970 – 1999) and compared to observations over that period to assess the downscaled models 

skill in capturing local NGP variability.  These methods are also applied to future model runs forced 

via the representative concentration pathways (RCPs) low end (2.6), median (4.5) and high end (8.5) 

21st Century forcings, which provides possible outlooks for local stakeholders over the coming 

decades.  It is found that BCSD does well in downscaling temperature and precipitation, as well as 

their various metrics.  RDA provides more mixed success, with good skill demonstrated for 

temperatures but a strong wet bias in precipitation.  It is noted, however, that RDA yielded better 

correlations to the observations.  Future scenarios show broad ranges of projected outcomes that, as 

expected, increase with increasing forcing, though temperature shows stronger changes than 

precipitation, and BCSD exhibits higher sensitivity than RDA.  Future research may help further 

constrain the results of these downscaling methods, particularly RDA, by adopting further bias 

correction to the results.   
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CHAPTER 1 – FROM GLOBAL TO LOCAL: DOWNSCALING 

1.1    INTRODUCTION 

It is now well accepted within the scientific community that the Earth’s climate is changing, 

primarily as a result of industrial emissions of greenhouse gases and aerosols over the past half 

century as well as anthropogenic landscape modification (Bindoff et al. 2013).  Various lines of 

evidence for these climate changes are manifesting themselves worldwide through increasing 

weather extremes, shrinking ice coverage, rising seas and shifting biogeophysical systems (EPA 

2014; IPCC 2014).  As global efforts to curb greenhouse gas emissions have fallen flat and 

atmospheric CO2 concentrations have already risen by 5.8 percent above estimates made only a 

few years ago in the wake of the 2008 financial crisis, the effects are projected to worsen as the 

high emission, business-as-usual scenarios continue to play out (Peters et al. 2012).  Our 

knowledge on how our industrialization is impacting the climate system has coevolved with the 

development of dozens of Global Climate Models (GCMs) over several decades which aid in the 

refinement of climatological science as well as investigating the changes that are underway.  

These models run in a similar fashion to their meteorological counterparts used for weather 

prediction, though they incorporate more information from other parts of the Earth system such 

as coupled atmospheric, oceanic and landscape interactions as well as sub-models for ice masses 

and biological systems.  The result of the inclusion of all of these processes is a set of highly 

complex mathematical programs that must cover hundreds of years of model time integrated at 

time steps on the order of hours or shorter, all of which strain even the largest super-computers 

just to produce one model run, let alone several.  In order to obtain results in a reasonable 
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amount of time, models are built at relatively coarse spatial resolutions, which average out small 

scale variability and necessarily leave local processes dynamically unresolved (McGuffie and 

Sellers 2005).  Thus while model outputs are useful to diagnosing and predicting the changes in 

the Earth system at continental or larger scales, they have been and remain unable to provide 

information to the local stakeholder about what can be expected at that particular location under 

changing climate conditions.  While increasing computational power is slowly leading to the 

ideal of fine-resolution global climate models, present efforts exist to more quickly bridge the 

gap between the coarse GCM outputs and the local scale information needed by stakeholders.  

This study seeks to further investigate those efforts, generally known as climate model 

downscaling. 

1.1.2   DOWNSCALING METHODOLOGIES 

Downscaling, as it is broadly defined, is the process by which coarse scale climate model 

data is converted to a finer resolution.  The two main types of downscaling, dynamical and 

statistical, have very different approaches in deriving local scale climate data, and are compared 

in terms of their potential costs and benefits in Table 1.1.  Dynamic downscaling involves the use 

of regional climate models (RCMs), which resolve processes on much finer grids than GCMs.   

They are also often referred to in the literature as limited area models and often are built to 

simulate specific features of the broader landscape, ranging from a whole continent down to one 

river basin (Wang et al. 2004).  While allowing for dynamically produced information at such 

scales, they may include biases and require more complex information than statistical 

downscaling to run properly, including more advanced dynamic equations, regional forcing data 

and boundary conditions.  While not the focus of this study, RCMs are discussed further in 

section 1.2 for the sake of comparison.  The main focus of this work is statistical downscaling, 

which is the process of finding robust and efficient statistical connections between the coarse 
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model data and observational data that are then used to correct the biases in model output at the 

local level (Benestad 2008).  There are many different statistical methods that have been 

produced, which are generally classified by their use of regression or bias correction techniques 

(linear methods – section 1.3.1), weather typing (nonlinear methods – section 1.3.3), or 

stochastic resampling (weather generators – section 1.3.4), as shown in table format in Table 1.2.  

This work will focus on two linear methods, Bias Corrected Spatial Disaggregation (BCSD) and 

Redundancy Analysis (RDA), as applied to a specific study region, the Northern Great Plains 

(NGP). 

Table 1.1: A table comparing downscaling methodologies from Trzaska and Schnarr (2014).  
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Table 1.2: A table comparing statistical downscaling methods.  Note the somewhat different classes of downscaling, with weather 

typing referring to non-linear techniques and regression methods referring to linear models.  From Wilby et al. (2004). 

 
 

1.2    GLOBAL MODELS AND DYNAMIC DOWNSCALING 

1.2.1    GENERAL CIRCULATION MODELS 

The development of climate models was not a linear process of increasing complexification.  

Different types of models have developed in different periods which are suited to specialized 

purposes (Edwards 2011; Weart 2008).  Simple 0, 1 and 2 dimensional energy balance models 

forego much in the way of details, however they are useful for understanding the primary 

processes governing the climate and can be easily applied to different scenarios and long time 

periods.  These simple models have been used since the 1970s to study the Snowball Earth 

events some 600 Ma, as well as the problem of latitudinal temperature gradients during hothouse 

periods such as the Cretaceous.  Radiative-convective models (RCs) allow researchers to study 

the interplay between insolation, greenhouse heating and convection throughout the atmospheric 

column, and can be coupled to simple oceanic box models to account for the thermal lag of the 

system.  These have been used to gauge the importance of greenhouse gases, clouds and 

stratospheric ozone in the temperature profile of the atmosphere. When two-dimensional 

movements of air are calculated as part of the RC model, simple circulation systems can be 
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developed and studied.  Simplified versions of the GCMs have been developed which are known 

as Earth system models of intermediate complexity (EMICs), such as the Bern3D model that has 

been used to study coupled climate-CO2 variations throughout the Phanerozoic (Eby et al. 2013).  

Where they sacrifice in terms of detail, they make up for by having extended temporal 

applicability similar to the RC models. 

Three dimensional models have been in development since the 1950s.  The advent of 

computers made the prospect for such a model much more feasible than it had been when 

Vilhelm Bjerknes first worked out how the primitive equations could be used to numerically 

simulate atmospheric movements in the 1920s (Edwards 2011).  Global climate models are, in 

fact, the amalgamation of several sub-models that utilize input from one another and provide 

output back into the other components.  Atmospheric general circulation models (AGCMs) run 

in tandem with oceanic general circulation models (OGCMs) and are coupled at the air-sea 

exchange (AOGCMs), though they are often run using different grids.  Sub-models for 

lithospheric, cryospheric and biospheric interactions are also run using an input exchange.  As 

newer models have been developed and older ones refined, further improvements in existing 

processes and the inclusion of new ones became feasible.  Modern GCMs include 

biogeochemical models that mimic various elements of the carbon and other nutrient cycles, and 

many are now being equipped to dynamically capture chemical reactions within the atmosphere 

such as those involved in aerosols, clouds and ozone, prompting some to refer to these as Earth 

system models (Flato et al. 2013).  Some models break the atmosphere and oceans into a three 

dimensional set of grid boxes that process the dynamic equations through the use of finite 

differencing techniques in which the set of governing equations is iteratively solved.  Other 

models employ spectral methods within the atmospheric and oceanic components, with the 
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results transferred into the traditional Cartesian grid at each time step.  These spectral methods 

offer more efficient representation of atmospheric waves that generate much of the variability in 

the atmospheric and oceanic systems (Kaper and Engler 2013).  Each of the model components 

is then set with initial values and boundary conditions, which are then run for a long period of 

model time without imposing forcings to allow the model to come to equilibrium between the 

components, known as spin-up time. This process can often show biases in the model before any 

changes are imposed, such as the problem some models faced initially in which the oceans would 

warm or cool over time without external forcing driving an energy imbalance (Collins et al. 

2011).    

Global climate models have shown skill in mimicking large scale aspects of the climate 

system as a whole, both in the stationary statistics of particular periods and in the changes 

observed in both instrumental and paleoclimatic records (Knutti and Sedlácek 2013; Shukla et al. 

2006).  Confidence in the results is further bolstered when multiple models from differing, 

independent groups generally agree on some aspect of those changes, such as the polar 

amplification of the warming over the 20
th

 century (Crook et al. 2011).  Other variables and 

systems are not so well constrained by the GCMs, including precipitation and clouds, which 

could relate to the issues with the parameterizations as they are much more heavily affected by 

generalizations of small scale processes, though improvements have been noted in each 

successive IPCC general analysis (Flato et al. 2013; Solomon et al. 2007).  Other internal 

systems, such as the atmospheric-oceanic oscillations and low frequency variability have also 

been improving in time.  However, the details (such as peak dates, seasonal locking and 

interactions with other Earth system components) leave much to be desired, as do the 

teleconnections between regions (Sheffield et al. 2013).  North American mean patterns are 
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largely captured, however particular characteristics remain elusive.  Precipitation extremes are 

underestimated and differences between wet and dry areas tend to be underestimated.  Daily 

temperature ranges are also not captured, nor is the apparent century-long cooling in summer 

temperatures in the American Southeast (the so-called warming hole).  Other problems persist as 

well, such as the double intertropical convergence zone (ITCZ) where too much precipitation is 

produced in the Tropics, and the under-predicted impacts of global warming on sea ice, with 

larger losses observed in the Arctic than expected and a small increase observed in the Antarctic 

(Flato et al. 2013; Li and Xie 2013).  While some have commented on the supposed recent 

slowdown in global surface temperature warming and the apparent lack of ability of the 

ensemble model mean to capture this “hiatus”, there have been numerous studies (Cowtan and 

Way 2014; Bindoff et al. 2013; Fyfe et al. 2013; Kosaka and Xie 2013) that have concluded that 

the recent slowdown is really the result of some combination of internal variability (La Niña-type 

patterns), previously unaccounted for negative radiative forcings (tropospheric aerosols from 

volcanoes and reduced solar activity specifically) and surface station coverage biases within the 

Arctic acting on top of the upward temperature trends stemming from greenhouse gas forcing.    

1.2.2    DYNAMIC DOWNSCALING 

Regional climate models (RCMs) attempt to mimic the same processes as the GCMs but at 

within much higher resolution grids than the global models.  These regional models are often 

nested within the grids of larger, parent models through a series of staggered-resolution grids 

bridging the coarse grid to the fine grid in steps.  This allows the GCM to create the boundary 

conditions for the RCM in a stable manner that direct transmission between the model grids 

impedes (Rohli and Vega 2008).  Previously, this interaction was one-way, with the RCM run 

evolving on its own without further influencing the GCM, though two-way nesting has become 

available. Two-way nesting is not used in downscaling as of this writing because the 



8 
 

computational limits of running both the GCM and RCM would severely limit the amount of 

detail that could be included in the RCM, as well as complicate regional to global interactions 

with regard to feedbacks (Laprise et al. 2012).  The resolutions of the models range from 10 to 

100 kilometers, and often depend upon what tasks the model is intended to serve.  This means 

that certain variables, such as rough terrain, detailed vegetation, or human factors like pollution 

and land use changes must be more fully resolved where they could previously be parameterized, 

contributing to the much higher complexity that is inherent in the regional modeling process. In 

fact it is at these levels that mesoscale processes and regionalized forcings start to become 

important (Wang, et al. 2004).  As with global models, regional model responses to known 

forcing events (volcanic eruptions, large ENSO excursions) are tested for fidelity to 

observations.  While RCMs can be applied to multiple regions with relative ease, it requires that 

the boundary conditions be changed accordingly and, in some cases, an optimization of the 

parameterizations used (McGuffie and Sellers 2005).  Even in the early stages of regional model 

development, RCMs showed promise in downscaling.  In one such study, a model with a 60 by 

60 kilometer grid was nested within the grids of two GCMs, one with a resolution of 4.5 by 7.5 

degrees, the other 3 by 3 degrees, for the complex terrain of the Intermountain West (Giorgi 

1990).  The models were constrained by using only cold season forcings for the Northern 

Hemisphere, thus keeping the temporal span of interest to the January climatology of the region.  

The RCM showed a strong ability to improve the depiction of winter snowpacks and cold season 

precipitation.  Other studies have looked at temperature, precipitation, and wind speeds over 

regions such as Australia, while others have discussed the prospect of dynamic downscaling over 

the poles (Feser et al. 2011).   
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Several multi-model RCM projects have been undertaken to explore their usefulness toward 

increasing understanding of climate changes for specific regions, particularly North America and 

Europe.  The North American Regional Climate Change Assessment Program (NARCCAP), 

which started in 2006, incorporates six regional models and three boundary-forcing GCMs for an 

area encompassing the Contiguous United States, Canada, Mexico and parts of Alaska (Mearns 

et al. 2013).  A fourth parent model is the Department of Energy Global Reanalysis (NCEP 2).  

All six RCMs output data at a resolution of 0.5° by 0.5°, though with different physical 

formulations and parameterizations.  Two of them, the Canadian RCM and the Experimental 

Climate Prediction Center Regional Spectral Model (ECPC-RSM), use spectral nudging, a 

process in which the parent GCMs not only force the boundaries of the RCMs, but also influence 

the inner domain of the model.  The results of the NARCCAP project show improvements over 

the global models, though with mixed results between the RCMs.  2-meter air temperature trends 

over the observational period (up to 2010) are well represented for Spring, though results are less 

clear for the other seasons, and sub-regional variations such as the warming hole in the Southeast 

mentioned earlier are still not well constrained, though the two models using GCM nudging did a 

better job than the rest in capturing the sub-regional cooling (Bukovsky 2012).   

Sub-regional skill comparisons show that certain areas within the North American domain 

are better represented.  When analysis of variance (ANOVA) is used to partition the contribution 

to sub-regional variability, GCMs captured more variability in coastal regions while inland areas 

and those featuring complex terrain were better captured by the RCMs (Mearns et al. 2013).  The 

NGP, as defined by Mearns et al. (2013) was also better constrained by the RCMs, though with 

large uncertainties associated with both GCM input and natural variability.  Fire danger, as 

measured by the Haines Index, has been investigated using the NARCCAP ensemble (Luo et al. 
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2014).  By compiling model output for tropospheric stability and dryness, the RCMs showed a 

marked increase in fire potential throughout the United States, though model results varied in 

which regions would experience the largest increases in risk.  Changes in precipitation are better 

captured by the RCMs in multiple studies, as expected by the finer resolution and the ability to 

better replicate convective precipitation, which is important during warmer months (Bukovsky 

and Karoly 2014; Kendon et al. 2012; Rummukainen 2010).  These improvements, while still 

apparent, are not as clear for the large scale precipitation associated with cold season frontal 

systems.  The same holds true for temperature extremes, which show mixed improvement when 

considered from the perspective of large scale meteorological forcings (Loikith et al. 2015).   

1.3    STATISTICAL DOWNSCALING 

The problem of translating the coarse scale climate model output data into finer scale data 

useful to local interests and impact studies has a much less computationally expensive 

counterpart to RCMs: empirical statistical downscaling (ESD), or just statistical downscaling 

(SD).  Empirical statistical downscaling simplifies the downscaling process by using 

comparisons between observational data and model data to create mathematical relationships 

between them.  Observational data are referred to as predictands, that is, the data that the model 

seeks to more closely match via the statistical method employed.  The variable or set of variables 

used to create that model, usually from a GCM, are the predictors.  These models, also called 

transfer functions, can relate large scale GCM data to a range of more localized grids, be they 

large grids of continuous data or collections of individual station time series, and are of the form: 

Y = f(X)      Equation 1.1 

where Y is the predictand and f(X) is a function of the predictor.  Once these functions are 

established via some comparison between observed data over some time frame and model data 

for the same time domain (the “training” or “calibration” period), they can be tested by using 
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those functions to recreate other known periods with observations, called validation or 

verification periods (Benestad 2008).  Another method is to leave specific data points within the 

calibration period out of the model and then compare their downscaled values to observations.  

They can also be applied, with reservations, to periods without any means of verification, 

allowing for extrapolation at the local scale from GCM projections.  

Data used in the process of statistical downscaling come from GCM outputs of specific 

weather variables and station-based or reprocessed spatial data of observed variables.  The 

selection of predictands is dependent on the intended uses of the model, as certain variables lend 

themselves to certain applications, such as minimum temperature being used to gauge frost days.  

Predictors can be the GCM equivalents of the observed variables, though they can also be other 

variables not contained in the set of observations, which are used to infer the values of the 

predictands through the downscaling model.  These variables are assumed to have a strong 

physical or statistical connection to the observed variable of interest (such as linking geopotential 

heights to precipitation), that they are modeled realistically at the course resolution of the GCM, 

and that their relationship to the predictand remains the same even in a changed climatic state, 

known as stationarity.  This stationarity between the predictors and predictands is imperative to 

the applicability of the predictors to periods outside the calibration period, with different 

ramifications depending on the type of statistical method employed.    

1.3.1    LINEAR METHODS I: BIAS CORRECTION 

One form of statistical downscaling is bias correction, known as bias corrected spatial 

disaggregation, or BCSD (Maurer and Hidalgo 2008).  BCSD entails the use of the observed 

distribution of the predictand to correct the distribution of the modeled predictor.  The advantage 

of this method its simplicity of implementation, however it relies on the assumption that the 

climate model adequately represents all the necessary processes and interactions that work to 



12 
 

produce the predictand in question and that it does so with a consistent, or stationary bias that is 

able to be removed from the data.  BCSD utilizes quantile mapping to transform the model data 

distribution to more closely fit that of the observed distribution and then return the new model 

values corrected for the distribution shift.  Cumulative distribution functions (cdf) are 

constructed for both observed and modeled data, with the model data then being shifted to match 

the observed data over said quantiles.  The quantile to quantile relationship can be estimated in a 

number of ways, be it a comparison of empirical quantiles, through the transform of a theoretical 

distribution, or through a regression of quantiles onto one another.   

For this study, empirical cumulative distributions (ecdf) were chosen so as to allow the 

model data to conform as closely as possible to the observed data without the downscaled data 

becoming biased by being forced to conform to a parametric distribution, which is useful if the 

data come from a distribution that has no easily defined parametric function, such as 

precipitation.   This process is shown by: 

Pt,i = ecdfmod(Xt,i
Cal

)      Equation 1.2, 

CFt,i  = ecdfobs
-1

(Pt,i) – ecdfmod
-1

(Pt,i)   Equation 1.3, 

Yt,i
Val

 = Xt,i
Val

 + CFt,i      Equation 1.4, 

ΔP(0) = [ecdfmod(0) – ecdfobs(0)] / ecdfmod(0)  Equation 1.5. 

The ecdf of the predictor data (Xt,i
Cal

) over the calibration period is calculated in Equation 1.2.  

This yields the cumulative probabilities (P) of each data point from lowest to highest for each 

location (i) over each day in the calibration period (t) for the GCM data.  The probabilities are 

calculated in evenly spaced intervals between 0 and 1 and interpolated for points between the 

calculated probabilities.  The data points for each of the probabilities P is then returned from 

both the predictor and observed data through the inverse ecdf, with the correction or bias factor, 
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CF, being calculated by subtracting the GCM data from the observed data for each probability in 

the distribution for each location over the calibration period (Equation 1.3).  The correction 

factors are assumed constant for all time periods and are applied to the distributions of predictor 

data outside the calibration interval, (Xt,i
Val

) , as in Equation 1.4, to yield the validation period 

data Yt,i
Val

 (Ahmed et al. 2013; Themebl et al. 2011; Wilks 2011).  Some variables, such as 

precipitation, exhibit stepwise behavior in the real world in which it is either precipitating or not, 

with precipitating days varying in rate.  As noted in Section 1.2.1, frequencies of precipitating 

days are often missed by climate models, which tend to produce too much light precipitation 

(drizzle) and too little extreme precipitation (Gutowski et al. 2003).  The bias correction method 

outlined in Equations 1.2 through 1.4 above may not fully correct the frequency of precipitating 

events, even if the overall rates of precipitation match well with observations.  Equation 1.5 

gives the ratio of the frequency of dry days between the observed and modeled distributions, 

where the modeled distribution is then modified to bring the ratio closer to 1 through a wet day 

correction. 

      Some studies have looked into the relationship between GCM variables and their 

observational counterparts, such as Schmidili et al. (2006).  This study focused on the bias 

corrected downscaling of precipitation over the European Alps.  In this case, the use of the model 

output for precipitation was used as the predictor.  A further bias correction was applied in that 

the scaling factor for the precipitation was not held constant, but allowed to vary via a numerical 

indicator of broad scale mid-tropospheric flow, taking a rudimentary account of the type of 

pattern at each time step analogous to the non-linear methods shown in Section 1.3.3.  By 

comparing 34 years of reanalysis precipitation data, they were able to correct both the frequency 

and intensity of precipitation, including at the highest intensities.  The enhanced bias correction 
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using a simple circulation index did show extra skill over that of the simple bias correction.  

Other studies have applied bias correction to temperature, precipitation and humidity at both 

daily and monthly time scales and found that these downscaling methods resulted in value added 

over raw GCM data for multiple regions, and that they have comparable skill to regression and 

non-linear downscaling strategies overall (Abatzoglou and Brown 2012; Ahmed et al. 2013; 

Themeßl et al. 2011).   

1.3.2    LINEAR METHODS II: REGRESSION ANALYSIS 

Linear regression techniques involve finding numerical functions relating the fine scale data 

and the coarse data, be it individual variables or fields of data.  This class of methods has the 

benefit of being easily extrapolated, though with the assumption that the function relating the 

predictor and predictand holds in a changed climate.  Regression methods range from relatively 

simple multi linear regression (MLR) and multivariate regression (MVR) models to complex 

methods involving canonical correlation (CA), principal components analysis (PCA), or some 

other form of dimensionality reduction, in which large scale spatio-temporal patterns are used as 

the predictands in the downscaling models.  While advanced methods of regression analysis try 

to account for as much variability within the captured patterns (constrained variability), there is 

always some component of the data that is left over (unconstrained variability).  Regression 

models must overcome the inherent reduction in variability that occurs due to the unconstrained 

portion of data variance, with some studies looking into post-processing variance inflation 

(Storch 1999).  It was not recommended, however, due to its implicit assumption that the 

unaccounted for variance was a result of the coarse scale dynamics guiding the downscaling 

model and not a result of local processes, as well as that the added inflation detracted from the 

skill of the model.  It was recommended that including a stochastic term to generate “noise” 
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values based on the spread of the unconstrained variability would work to yield better results, 

though few studies make use of such a term.      

Most studies focus on complex methods that are more capable of capturing the higher 

variability of regional climates, though some have used simple regression models as a means of 

comparing them to the complex methods.  One such study looked into the monthly precipitation 

patterns for the Lake Karla watershed in Thessaly, Greece (Vasiliades et al. 2009).  They utilized 

sea level pressure, precipitation, surface temperatures, geopotential and wind speeds and 

regressed them against precipitation data to attain the regression model, and used the downscaled 

precipitation to calculate a standardized drought index (SDI) for an assessment of the drought 

conditions over the region.  It was found that the simple regression method worked well for 

monthly time scales, though the authors cautioned the use of such methods on daily precipitation, 

in which more complex methods would be needed to fully capture the non-Gaussian distribution 

of wet day intensities.  This conclusion was echoed in Themeßl et al, (2011), where simple 

regression techniques were applied to daily precipitation and failed to significantly improve the 

output of the GCMs analyzed, though correlations between regression-based models and 

observations were greater than those from bias corrected models.  

1.3.2a    CANONICAL CORRELATION ANALYSIS (CCA) 

One of the most common linear techniques used in downscaling is canonical correlation 

analysis, or CCA (Wilby et al, 2004).  This process involves relating local scale variables to a 

broad field of course scale data with the largest possible temporal correlation.  CCA seeks to 

extract useful model estimates of observed variables by finding those combinations of 

independent and dependent variables that result in the highest correlations, usually by means of a 

reduction in the dimensions of the data. This allows for the simultaneous comparison of many 

different locations at different times, and can be implemented via raw observational and model 
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values or by combinations of their principle components (called empirical orthogonal functions 

(EOFs) in geophysical research).  The dimensions of the data here refer to the spatial and 

temporal variability, which CCA reduces by finding those spatio-temporal patterns (the EOFs) 

that account for the maximum amount of the variations in the data, with subsequent orthogonal 

patterns accounting for further portions of the variance.  Values of the downscaled model data 

may be obtained from a direct canonical correlation analysis of the variable in question (such as 

observed tmax to modeled tmax), or they can be constructed using other model parameters which 

act as explanatory predictor variables, such as atmospheric temperature at height or wind speeds. 

CCA has been applied to various problems ranging from precipitation in Sweden (Busuioc et 

al. 2000) and the Iberian Peninsula (Storch 1992) and in South Africa during the Austral Winter 

(Landman et al. 2000), as well as Central European temperatures (Huth et al. 2003; Huth 1999) 

and sea level pressures over the Baltic Sea (Heyen et al. 1996).  In all cases, multiple variables 

were combined from the models to produce the fields needed to compare to the local variable.  

Surface temperature is often calculated from surface energy balance data but was found to be 

better represented by temperatures at the 850 hPa level than conditions than those extracted from 

combinations of heating terms and wind patterns (Huth 1999).  Precipitation was often compared 

to geopotential thicknesses and moisture variables, which often yielded good results in 

downscaling.  The investigation into Iberian precipitation also yielded the interesting result that 

the GCM used did not match the local scale results when simpler regression methods were 

applied and compared, indicating the sensitivity of the results to the methods and predictors used. 

 A general sense of the computational process can be seen in the equations describing the 

“brute force” method where no dimensional reduction takes place (Benestad et al. 2008).  The 
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first step is to find the interrelated patterns between X and Y.  The covariance matrices CYY, CXX, 

and CYX are calculated from centered data matrices X and Y: 

CYY = Y
Cal

Y
[Cal]T

      Equation 1.6, 

CXX = X
Cal

X
[Cal]T

      Equation 1.7, 

CYX = Y
Cal

X
[Cal]T

      Equation 1.8. 

Multiplying the inverses of the CYY and CXX matrices by the CYX matrix yields the normalized 

covariance matrix, C, or the interrelated patterns between X and Y, shown in Equation 1.9.  

Performing a singular value decomposition on C results in the right side of Equation 1.10.  The 

left matrix (L) and right  matrix (R) are the rotation matrices containing the eigenvectors of the 

covariance matrix, while M is the canonical correlation matrix, with the correlations in the 

diagonal from greatest to least.  Multiplying L by the identity matrix of the predictors (CXXCXX
-1

) 

yields the map, H, of highest spatial correlation for X and multiplying R by the identity matrix of 

the predictand (CYYCYY
-1

) yields the map, G, of highest spatial correlation for Y, as shown in 

Equation 1.11 and 1.12.  The canonical variates, U and V, are calculated according to Equations 

1.13 and 1.14, and contain, in descending order of importance, the time series that best capture 

the variability of the data: 

C = CYY
-1

 CYX CXX
-1

     Equation 1.9, 

C = LMR
T
      Equation 1.10, 

G = CYYCYY
-1

R     Equation 1.11, 

H = CXXCXX
-1

L     Equation 1.12, 

U = CYY
-1

LY      Equation 1.13, 

V = CXX
-1

RX      Equation 1.14. 
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Finally, new output data can be calculated by applying the prediction matrix to the new predictor 

data.  Relating X = HV
T
 and Y = GU

T
 and using Equations 1.9 through 1.14, Equation 1.15 

results, where Ψ = GM(H
T
H)

-1
H

T
:   

Y
Val

 = ΨX
Val

      Equation 1.15, 

 The set of equations describe the process of canonical correlation analysis, however they 

are of limited practical use for gridded climate datasets.  This stems from two issues; the problem 

of collinearity of the locations in the matrices and the sparseness of the centered data, which 

inhibits the inversion of the matrices in Equation 1.9.  One possible solution is to use empirical 

orthogonal functions (EOFs) which are the spatial-temporal equivalents of principle components 

(Benestad 2008).  This process would reduce the number of dimensions of the datasets and thus 

reduce the collinearity and the overall sparseness of the data, and has been deployed in climate 

and Earth system science applications, such as downscaling for wind energy generation in the 

Gaspé region of Quebec, Canada (Yosvani et al, 2015) or the downscaling precipitation from the 

East Asian Monsoon (Simon et al, 2013).  Yosvani et al, (2015) used EOF analysis on reanalysis 

data from the NCEP-NCAR group to create regional time series and spatial maps of wind 

patterns for the Gaspé region.  Simon et al, (2013) use EOF patterns of relative vorticity at 850 

hPa and vertical velocity at 500 hPa to capture rainfall patterns for various stations throughout 

the Poyang Lake catchment within the Yangtze River system.  Both studies, as well as others, 

concluded that the reduction in dimensions of the predictors aided in making the downscaling 

process less computationally demanding.  This method is more limited, however, when the 

predictor and predictand are the same variable.  Another means by which to accomplish this task, 

and the tactic employed in this work, is through the use of redundancy analysis.   
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1.3.2b    REDUNDANCY ANALYSIS (RDA) 

Redundancy analysis is very similar to CCA, though it differs in one assumption 

(Legendre and Legendre 2012).  CCA seeks out those concurrent patterns of highest correlation 

between the GCM and observational datasets.  Redundancy analysis does not seek out such a 

relationship, but rather assumes such a relationship between the independent and dependent 

variables.  CCA makes no distinction between the datasets in terms of causation, however RDA 

does.  In doing so, this method acts as a mid-point between multiple linear regression and 

canonical correlation, with the regressions being modified by the eigenvalues from the canonical 

correlations.  This helps avoid the problem of inversion by only needing the inverse of the 

independent predictor matrix.  It was used as part of a broader CCA process for temperatures 

over Turkey and to reconstruct wave heights for the North Atlantic from wind forcing data from 

GCMs (Tatli et al. 2004; WASA 1998).  RDA was developed over time from the same basic 

formulae of CCA, but brought into its own theoretical grounding by the late 1970s, having been 

applied to various problems in the mathematical ecology (Tyler 1982).   

The loadings of the multiple regression model B are calculated according to Equation 

1.17, where each specific loading is a constant based upon the regression of each observed data 

location against every GCM location over the calibration period, which is essentially 

multivariate regression.  Equation 1.18 gives the fitted responses to the predictors X and the 

loadings B.  The covariance matrix of the fitted values CYY is calculated according to Equation 

1.19, where CYX and CXX correspond to the covariance matrices in Equation 1.7 and Equation 

1.8.  Principle components analysis is done on the covariance matrix CYY in Equation 1.20.  

Substituting Equation 1.19 into 1.20 gives Equation 1.21, which is the equation for redundancy 

analysis. Solving Equation 1.21 results in the eigenvectors in UK, which give the contributions of 
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the loadings in B, where λKI are the eigenvalues in matrix form similar to M in equation 1.10 and 

the canonical coefficients are calculated in Equation 1.22 (Legendre and Legendre 2003): 

B = [X
[Cal]T

X
Cal

]
-1

X
[Cal]T

Y
Cal

    Equation 1.17, 

Y
Val 

= X
Val

B      Equation 1.18, 

CYY
 
= CYXCXX

-1
CYX

T
     Equation 1.19, 

[CYY
 
– λKI]UK = 0     Equation 1.20, 

[CYX (CXX)
-1

 CYX
T 

– λKI]UK = 0   Equation 1.21, 

C = BUK      Equation 1.22. 

 

1.3.3    NON-LINEAR METHODS 

Non-linear techniques refer to downscaling methods that seek to categorize similar data 

points into groups by their values and extract individual values from within those groups by 

either some form of group-based regression or nearest neighbor interpolation.  The groups that 

are used can be designed around the values of the predictands themselves (such as cluster 

analysis) or can be created from spatial maps of predictor variables (weather classification or 

typing).  Cluster analysis seeks out patterns, called clusters, in the predictor-predictand bi-variate 

space and assigns all data points to those clusters that they are closest too.  For weather 

classification, predictor maps are classified by similar patterns, with local values of the 

predictand grouped with their respective pattern.  When a new pattern is obtained, it is compared 

to the groups and assigned to those that are most closely correlated, with the local variable values 

then assigned based on that pattern.  Weather classification schemes have been in use for a 

number of decades and were initially used to aid in weather prediction (Lutgens and Tarbuck 

2007).  This methodology relies on the stationarity of the relationship between these 

classifications and the local values assigned to them, though involving some form of regression 
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within the classifications can lessen this restraint. The very assumption that must hold in order 

for this method to work may also prevent it from being applicable to unobserved climate states, 

as the stationarity of the patterns between climate states would necessitate that the method is 

insensitive to changing climate conditions.  

Various studies have utilized these methods with some mix of success at wringing out fine 

resolution data that was then put to use in impact studies and model validation.  One study 

mentioned in Section 1.3.1 looked into the use of BCSD and multivariate adapted constructed 

analogs (MACA) to model fire danger in the Rocky Mountain West (Abatzoglou and Brown 

2012).  The MACA method used temperature, humidity, precipitation and wind field variables to 

construct analog maps by which to compare with the local data and categorized them 

accordingly.  While both methods succeeded in giving useful localized data, MACA showed 

better skill than BCSD, retrieving data with higher accuracy when compared to non-calibration 

time periods.  These results were then extrapolated using the model outputs for the coming 

century, with projections of increased fire risk in most places in the Rocky Mountains.  Another 

similar study looked into temperature and precipitation values for the same region using BCSD 

and constructed analogs and found that while both methods were able to match seasonal and 

monthly values fairly well, the constructed analogs did better at capturing some of the extremes 

of temperature, particularly summer highs and winter lows (Maurer and Hidalgo 2007).  

However, both methods showed limited skill in recreating observed wet and dry extremes for 

daily precipitation, though BCSD continues to be used frequently in hydrological studies.  Still 

other similar methods have been applied to current climates to assess possible past climates, such 

as European temperatures and precipitation during the Last Glacial Maximum (Vrac et al. 2007). 
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The artificial neural networks (ANN) techniques are a “black-box” method of downscaling, 

meaning that, aside from the inputs and outputs, the specific steps within the program are 

unknown.  This method involves the transformation of model predictors into predictands using 

step-wise conditional pathways that take data points through a series of nodes, which have 

conditional linkages between them and the input and output nodes which seek the combination of 

input variables and weights for those variables that best explain the data as a whole (Wilby et al, 

2004).  While multiple linear regression models do this in a linear fashion, the ANN nodes can 

manipulate the weights of the inputs in non-linear ways as well.  This type of model construction 

creates pathways through the nodes that do not offer a straightforward physical interpretation and 

are known to dampen the variance of time series, which renders it less useful in the analysis of 

extreme values (Benestad 2008).  ANN has been applied to a diverse set of downscaling projects, 

including stream flows in British Columbia, Canada (Cannon and Whitfield 2002) and wind 

power viability in changing climates (Sailor et al. 1998).  In both cases, the neural network 

approach was able to effectively downscale the GCM data to that of the applications in question, 

though with the same caveats previously mentioned.  Another comparative study looked into the 

relative strengths of ANN type models and linear regression models in comparing temperature 

and precipitation over the Midwest (Schoof and Pryor 2001).  While both model types arrived at 

similar results, there were some key differences.  As expected, the models did better with 

temperature compared to precipitation.  In this case, however, the linear models had less success 

than the ANN models, though the differences were less extreme when an autoregressive term 

was added to the temperature downscaling.  The precipitation remained an issue in both models, 

and was harder to constrain based on the complex factors that pertain to capturing the physical 

processes most responsible for any rain or snowfall that occurs.   
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1.3.4    WEATHER GENERATORS 

Weather generators utilize randomness simulators that are able to recreate daily weather 

variables, usually precipitation, minimum and maximum temperatures, and sometimes solar 

radiation.  They take in observed data for a specific location for a specified time period (usually 

at least 30 years-worth of data) and use the distributions in that data to create variable values that 

can be programmed to follow a seasonal cycle and to include extreme events, with the caveat 

that the generator will not take interannual or longer term trends in climate into account, and thus 

simulate only stable regimes.  While trends cannot be simulated, different climate states at 

different times can be, as long as the trend during the time frame used is not so large as to change 

the model statistics over that time span.  Often, the goal of a weather generator is to provide for 

temporal downscaling, usually with monthly data supplied and daily data output desired that 

match the monthly statistical parameters.  Another application is the production of multiple runs 

of the daily weather within the same time span for the same average climate state to ascertain 

how variable the local climate is for the time and location specified.  One study compared the 

effectiveness of a weather generator WGEN to two separate ANN models in simulating 

precipitation across six regions of the United States (Wilby et al. 1998).  They concluded that 

WGEN did a better job constraining the true variability and mean statistics, whereas the ANN 

networks, while able to model the means adequately, were not able to capture the extremes, 

particularly the wet-day extremes.     

1.3.5    STATISTICAL DOWNSCALING COMPARED TO RCMs 

Statistical downscaling techniques have also been compared and applied to dynamical 

methods.  When compared in ability to downscale European temperatures and precipitation, it 

was observed that the statistical model did better in reproducing summer temperatures, whilst the 

regional model did better with winter precipitation (Murphy 1998).  Statistical downscaling 
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methods applied to the Animas River Basin in Colorado were compared to RCM output for the 

same region and were found to have comparable skill in recreating the hydrological conditions 

for the basin, though statistical downscaling is often preferred for hydrological studies due to its 

less computationally intensive requirements (Wilby et al. 2000).  It is also possible to apply 

statistical downscaling methods to RCM output by first using the RCM to dynamically model a 

region and then use its output as a predictor or set of predictors in a statistical model.  When 

GCM and RCM output were corrected via linear interpolation or bias correction along the lines 

outlines in Section 1.1, the BCSD method applied to RCM output did the best in capturing the 

true local features of precipitation climatology in Columbia River Basin (Wood et al. 2004).  

Linear interpolation was better when applied to RCM output than GCM data, though not to the 

extent of bias correction. These results suggest that new studies may benefit from using 

statistical methods on RCM data rather than on GCM data directly.     
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CHAPTER 2 – STUDY AREA, DATA AND METHODOLOGY 

2.1 NORTHERN GREAT PLAINS 

 

 
Figure 2.1: A map of the Northern Great Plains study region for this analysis. 

 

The Northern Great Plains is an important, though often overlooked region for the world.  

It encompasses a continental interior climate regime that challenges local ecological systems 

through relatively large seasonal changes in temperature and interdecadal fluctuations in 

precipitation.  For much of its post-1800 history, it has been an agricultural center, contributing 

greatly to global food supplies.  While some level of fuel and mineral extraction has always been 

present in the NGP, there has been a recent spike in energy extraction over the Bakken oil 

formation made possible by technological advancements in horizontal drilling and hydraulic 

fracturing.  The slow conversion of land use from natural grassland to intensive agriculture, 



26 
 

combined with the recent rapid rise in population and economic development have fragmented 

local ecosystems and diminished their adaptive capacity (Lemons et al. 2012).  These changes 

have made the region more sensitive to climate change, though the effects of the global shift in 

temperatures on the NGP are not well constrained by the GCMs (Karl et al. 2009).  This is due in 

part to the NGP acting as a transition zone between the warm and dry Rocky Mountain West and 

the wetter areas near the Great Lakes and Appalachia.  While the trends in precipitation have 

differed between sub-regions within the NGP, average temperatures have tended to follow global 

trends, warming at an average rate of 0.14°C per decade since 1880, with 8 of the last 10 

summers being warmer than the 20
th

 Century average (Ojima et al. 2012).  It is generally 

expected, as stated in Ojima et al (2012), that the change in variability within the region is the 

most important to diagnosing the impacts of climate change, rather than the mean changes.  This 

is especially true for precipitation, as the erratic decadal patterns and limited resources in the 

drier portions of the region, as well as the prospect of increased flooding in the Devils Lake and 

Red River basins, make information on local changes all the more important. 

 
Figure 2.2:  A map of the digital sub-regions capturing the NGP.  The locations on the map match those discussed in Section 3.3. 
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The regional focus of this study is on the Northern Great Plains ecoregion, as outlined in 

Figure 2.1, and captured through the use of three sub-regions shown in Figure 2.2.  The 

boundaries extend from 42°N to 55°N and from 95°W to 115°W.  It includes all of North and 

South Dakota, as well as portions of Minnesota, Nebraska, Wyoming, Eastern Montana and 

southern areas of the Canadian provinces Manitoba, Saskatchewan, and Alberta.  Elevations 

decrease from west to east as one moves away from the mountainous West.  While there is some 

climatological homogeneity within the region, important variations do exist due to the 

differences in localized geography.  The annual mean temperature tends to hover near 0°C with 

hot summers (> 30°C) and cold winters (< -15°C), with a large annual temperature range in 

excess of 45°C and a mean daily range of 13.6°C (see Figure 2.3).  This range differs slightly 

from colder to warmer as one goes from north to south.  Precipitation increases from west to east 

(see right panel of Figure 2.4) across the region, ranging from less than 1 mm/day to over 2.5 

mm/day, due to the interaction between the dry air coming off of the Rocky Mountains and the 

moist air traveling up from the Gulf of Mexico (Rohli and Vega 2008).  Figure 2.3 also portrays 

how the seasonal cycle of daily average precipitation reaches a peak in May or June, while the 

temperatures peak in late July or early August and reach their lowest levels in January.  

Differences in seasonal heating and pressure patterns cause the polar front and its annual cycle, 

bringing seasonal storms, summer convective activity and the winter polar lows that can often 

result in blizzards that sweep across the region.  Rain and snowfall can vary significantly from 

year to year, with dry periods and drought conditions giving way to wet periods that result in 

excessive flooding along many of the major rivers.  While landlocked within North America, the 

NGP is influenced by some teleconnections and regional patterns, including the El Nino-
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Southern Oscillation (ENSO), the Arctic Oscillation (AO), and the Pacific-North American 

pattern (PNA). 

 

2.2 DATA 

2.2.1 OBSERVATIONS 

Observational data come from Maurer et al, (2002) downloaded from the University of Santa 

Clara (http://www.engr.scu.edu/~emaurer/data.shtml).  It consists of gridded station data in 

which precipitation and temperatures from stations within the continental United States (COOP 

network), as well as northern Mexico (Servico Meteorologico National) and southern Canada 

(Environment Canada) were used to fill a 0.125° by 0.125° (1/8 x 1/8, or about 13 km to a side) 

grid via the SYMAP interpolation used in Sheperd (1984) for the period from January 1, 1950 to 

December 31, 1999 in daily time steps from averaged 3-hourly data.  Other data, such as dew-

point temperature, were derived from the station variables however were not used in this 

analysis.  The variables selected as predictands from this analysis were minimum and maximum 

temperature (Tmax and Tmin in °C) and precipitation (Pr in mm/day).  Figure 2.4 shows the 

mean daily values for the region for the period 1970 – 1999.    The total area covered ranged 

from 25 - 53°N and 67 – 125°W.  Grid squares heavily covered by water and without adequate 

station coverage nearby were left unfilled, including the Red Lake and Lake of the Woods areas 

in Northern Minnesota.  Precipitation data from the interpolated station grid were then scaled to 

match the long term output of the parameter-elevation regressions on independent slopes model 

(PRISM).  This produced two advantages, in that the precipitation in this data set is station based 

(not produced through model dynamics, as in the ECMWF-ERA 40 reanalysis) and is optimized 

to take into account some aspects contained in the PRISM analysis, such as elevation.  
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Figure 2.3: A climagraph for the NGP as a whole, based on the Maurer dataset (section 2.2.1).  The red line is max temperature, 

the blue min temperature, and the grey bars are the precipitation amounts in mean daily mm. 
 

 
Figure 2.4: Observed maximum and minimum temperature and precipitation maps (from left to right), averaged over the whole 

verification period (1970 – 1999). 

 

2.2.2 GENERAL CIRCULATION MODELS 

Data from 17 GCMs or earth system models were downloaded from the CMIP5 online 

database (http://pcmdi9.llnl.gov/esgf-web-fe/; see Table 2.1).  They range in resolution from 

about 1 to 4° (mean of 2.5 by 2.5°) in latitude and longitude and from 2.5 to 4.8°C (mean of 

3.6°C) in sensitivity to a doubling of CO2.  The predictor variables sought from the models 

corresponded to the observed variables, namely maximum and minimum temperature (in degrees 
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kelvin, K) and precipitation (in kg   m-2   s-1
).  These were converted to °C (Tmax – 273.14; Tmin 

– 273.14) and to mm/day (Pr   86400, as kg   m-2   s-1 
is equivalent to mm per second) to match 

the units of the observed variables.  These variables were extracted for the NGP-specific area as 

well as for the North American region (25 - 75°N, 75 - 125°W), for the period 1950 - 1999.  The 

NGP is represented by only about 20 to 30 grid squares in most of the models, and the North 

American region by only 250 – 450 grid squares.  This is in contrast to the high resolution of the 

gridded observations which encapsulate the NGP with a total of 10,496 grid squares. 

  Model projections up to 2100 were also downloaded from CMIP5 for the GCMs for which 

projected data was available (see Table 2.1), with projected data available and used to downscale 

for projected scenarios forced by the so called representative concentration pathways or RCPs.  

The same variables and areas were subset as in the verification matrices.  There are four possible 

RCPs to use, each representing a different possible outcome dependent upon assumed human 

activities and their impact on the radiative forcing of the system (Van Vuuren et al. 2011).  Three 

of the RCPs were chosen for this analysis: RCP 8.5, RCP 4.5 and RCP 2.6, where 8.5, 4.5 and 

2.6 represent the external climate forcing by 2100 in Wm
-2 

relative to 1850.  For comparison, a 

doubling of CO2 (2xCO2) is estimated to cause a radiative imbalance of approximately 3.7 Wm
-2

.  

8.5 represents business as usual, with ever increasing populations, economic growth and 

technological change leading to growing emissions rates through 2100 and quite possibly 

quadrupled CO2 levels.  4.5 can be approximated as the roughly doubled CO2, where the annual 

atmospheric loading rate is held constant or slows somewhat.  2.6 represents a scenario with 

prompt and heavy action to reduce emissions and to keep CO2 to lower levels, possibly below 

500 ppm.  While there are multiple possible development scenarios for how to reach each of 
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these forcing levels, including how anthropogenic greenhouse gas and aerosol emissions change, 

they were chosen based upon their rough encapsulation of high, middle and low end projections.   

Table 2.1: A table of the GCMs used in this study for historical and projected (RCP) time periods.  RCP indicators with a * 

denote that only RCP 8.5 data was available during this project.  The equilibrium climate sensitivities (ECS) are calculated on a 

2xCO2 forcing of 3.7 Wm-2.  The resolution is reported in what was output in CMIP5.  The underlined models are used for 

examining the impact statistics and the RCPs in more detail.  Adapted from Flato et al. 2013. 

 

2.2.3 DATA PROCESSING AND STORAGE 

The data files for this project were stored as matrices in CSV files on the N-drive server 

for the Earth System Science and Policy department at the University of North Dakota.  The 

CSV data format was used for its applicability in the R programming interface.  The file names 

denote the variable and sub-region (North, Middle or South, see Figure 2.2).  These data files 

include the observed fields for maximum (tmax) and minimum (tmin) daily temperature (°C) and 

daily precipitation (pr, in millimeters), the GCM data for said variables, including NGP-specific 

data used in BCSD and the North American data for RDA, in the units provided from CMIP5 

(temperatures in kelvin and precipitation in kgm
-2

s
-1

).  The downscaled files contain the same 

General Circulation Models from CMIP5
Model Name Abbreviation Institution Resolution ECS RCPs Used

BCC-CSM1.1 BCC Beijing Climate Center, China Meterological Administration 2.81 x 2.81 3.3 yes

BNU-ESM BNU Beijing Normal University 2.81 x 2.81 4.1 no

CanESM2 CAN Canadian Center for Climate Modeling and Anlaysis 2.81 x 2.81 3.7 yes

CMCC-CESM CMCCCESM Centro Euro-Mediterraneo per I Cambiamenti Climatici 3.75 x 3.75 NA yes*

FGO ALS-g2 FGO ALS LASG (Institute of Atmospheric Physics)- CESS 2.81 x 2.81 NA yes

GFDL-ESM2G GFDL2G NOAA Geophysical Fluid Dynamics Laboratory 2.5 x 2 2.6 yes

GFDL-ESM2M GFDL2M NOAA Geophysical Fluid Dynamics Laboratory 2.5 x 2 3 yes*

GFDL-CM3 GFDLCM3 NOAA Geophysical Fluid Dynamics Laboratory 2.5 x 2 4.8 yes

IPSL-CM5A-LR IPSLLR Institut Pierre Simon Laplace 3.75 x 1.9 4.8 yes

IPSL-CM5A-MR IPSLMR Institut Pierre Simon Laplace 2.5 x 1.25 NA yes

MIRO C5 MIRO C5 University of Tokyo, National Institute - Environmental Studies 1.41 x 1.41 2.6 yes

MIRO C-ESM-CHEM MIRO CCHEM University of Tokyo, National Institute - Environmental Studies 2.81 x 2.81 NA yes

MIRO C-ESM MIRO CESM University of Tokyo, National Institute - Environmental Studies 2.81 x 2.81 4.1 yes

MPI-ESM-LR MPILR Max Planck Institute for Meteorology 1.8 x 1.8 3.3 yes

MPI-ESM-MR MPIMR Max Planck Institute for Meteorology 1.8 x 1.8 NA yes

MRI-CGM3 MRI Meteorological Research Institute 1.125 x 1.125 3 yes

NorESM1-M NO RESM Norwegian Climate Centre 2.5 x 1.9 3.3 yes



32 
 

variables in the same units as the observations.  Downscaled file names denote the GCM used to 

downscale, the variable, and the time period or projection, where Validation refers to the 

verification period (1970 - 1999) or the RCP is noted by R (R2.6, R4.5 or R8.5) and the decade 

noted as D (D20, D50 or D80).  Observed data are reported in the standard calendar, while most 

of the GCMs used report data without leap years (set 365 days per year).  The leap years were 

removed from the observed data during downscaling, as well as from those GCMs that did 

include them.  This process resulted in downscaled files that do not contain leap years.  The 

observations and GCM data were stored in a 50 year block from 1950 to 1999, resulting in 18250 

reported days.  Downscaled data are stored in 30 year blocks with 10950 days each.  The 

downscaled matrices report the data with rows denoting locations, with the first two rows 

denoting the latitude and longitude coordinates of the locations, and dates in month-day-year 

format along the columns (see Table 2.2).  The locations are listed by latitude then longitude, 

increasing from the southwest corner to the northeast corner of each sub-region.  Observed and 

GCM data are reported in data blocks that report the data with time along the rows and locations 

along the columns, though the files contain the data matrices only. 

Table 2.2: An example of the downscaled data stored as discussed.  This example includes the first week of readings for the first 

ten locations for the maximum temperature forced by the BCC GCM for the southern sub-region.  The filename would thus be 

bccTmaxSouthValidation.csv. 

 

 

Lat Lon 1/1/1970 1/2/1970 1/3/1970 1/4/1970 1/5/1970 1/6/1970 1/7/1970 1/8/1970

41 -105 3.83 2.47 0.86 1.07 1.18 -1.8 -3.44 -2.23

41.125 -105 4.26 2.9 1.28 1.47 1.59 -1.38 -3.02 -1.8

41.25 -105 4.79 3.44 1.78 1.96 2.07 -0.84 -2.52 -1.23

41.375 -105 5.33 3.89 2.28 2.45 2.56 -0.43 -2.05 -0.81

41.5 -105 5.7 4.15 2.47 2.68 2.79 -0.19 -1.89 -0.55

41.625 -105 6.07 4.43 2.87 3.05 3.16 0.04 -1.52 -0.3

41.75 -105 6.13 4.51 2.8 2.99 3.1 0.23 -1.47 -0.03

41.875 -105 5.65 4.04 2.43 2.61 2.72 -0.19 -1.93 -0.47

42 -105 5.64 4.06 2.4 2.6 2.71 -0.3 -1.98 -0.58

42.125 -105 5.78 4.26 2.55 2.75 2.86 -0.21 -1.82 -0.46
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2.3 METHODS 

2.3.1 R – A STATISTICAL PROGRAMMING LANGUAGE 

 The R software environment provided the means by which to downscale the data from 

the 17 GCMs.  R is a free, open source statistical programming language that is descended from 

older statistical packages such as S and SAS, and is available for Windows, Macs and Linux 

operating systems (Team 2000).  The source code for R is most often in C or Fortran, and several 

of the add on packages, including the ones used in this study, Qmap and Vegan, are sourced to 

those languages as well.  The primary and secondary components are found in the CRAN 

repository, which is where most packages containing non-base functions and data are stored and 

able to be easily installed and implemented in the R interface.  The openness of the R interface 

has resulted in many additional packages and uses throughout the sciences, with most being 

documented in various online forums or able to be accessed through the R help function.  Many 

packages are actually coded in the R interface, and are thus able to be manipulated in the 

package itself or brought directly into the interface for even more maneuverability.  The down 

side to the openness of R, as with any other open source language, is the lack of official support 

when bugs or other issues arise.  However, new versions of R are released every few months or 

so, with many of the bugs found in previous versions having been patched.  The current version 

as of this writing is R3.2.1. 

2.3.2 BIAS CORRECTED SPATIAL DISAGGREGATION 

BCSD is accomplished in R by means of quantile mapping, as outlined in Section 1.3.  

This quantile mapping is done in the two functions fitQmap and doQmap, found in the function 

package Qmap downloaded from the package repository for R called CRAN.  The matrices 

involved are imported as the observed data, the GCM data for the historical period (1950 – 1999) 
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and the GCM matrices for the projection period (2010 – 2099 for RCP 2.6, 4.5 and 8.5).  First, 

the historical data files are split between the calibration period (1950 – 1979) and the validation 

period (1970 – 1999).  The use of 30 year timespans ensures that both time periods, even at the 

expense of having a ten year overlap (1970 – 1979), constitute the traditional climatological-

normal that is widely used in climate research (Rohli and Vega 2008).  In order to use these 

functions, the matrices of the GCM data must be interpolated to match the resolution of the 

observed data.  This was done using the interp2grid function from the package Climates, which 

is used with the internal R function apply on the GCM data to interpolate the latitude and 

longitude at each time slice.  fitQmap sets up the model of correction factors for each location, 

with four parameters input to the function; the observed matrix, the GCM matrix, the specific 

method of quantile mapping, and the wet day correction.  The specific method used is the 

empirical quantile method, denoted as QUANT, which applies Equations 1.2 and 1.3.  Other 

possible methods to choose from include those based upon specific statistical distributions 

(DIST), those using parametric distribution equations (PTF) or a form of quantile regression 

(RQUANT or SSPLIN).  The empirical quantiles were preferred to the distribution-based methods 

due to the need for a-priori information on what the best distribution would be for each variable, 

while regression of quantiles using either linear regression or splines resulted in less accurate 

downscaled data than the empirical quantile mapping.  The wet day correction is applied only to 

the precipitation model by calculating the empirical probability of non-dry days (Pr > 0) in the 

observations and setting all values below that corresponding probability in the modeled data to 0, 

bringing the ratio in Equation 1.5 as close to 1 as possible.  The resulting model from fitQmap is 

then applied to the function doQmap, with the input parameters being the downscaling model 

and the matrix of new GCM data to downscale, and is shown in graphical form in Figure 2.5.  



35 
 

The downscaling function is applied to the verification period data and the RCPs, with the 

resulting RCPs broken down into the three decadal periods for the 2020s, 2050s and 2080s.  

These downscaled data files were then output in CSV format and stored according to Section 

2.2.3 above.   

 
Figure 2.5: Empirical cumulative distributions for Tmax (left) and Precipitation (right) for the BCC model for the middle portion 

of the NGP region.  The fitQmap function creates the correction factor using the observed data (blue line) that is then applied to 

the GCM data (light grey lines) to obtain the downscaled data (dark grey lines).  The red line is the average GCM cumulative 

distribution curve, for reference. 
 

2.3.3 REDUNDANCY ANALYSIS 

RDA in R is most often applied through functions pertaining to statistical ecology, which 

meant great care had to be taken to ensure the proper use of the R package used.  The package 

Vegan from the CRAN repository provided the framework function needed for this downscaling 

method.  As in the BCSD section above, the historical data is split into the calibration and 

verification periods.  There are two functions that work to implement this method; rda and 

predict.  The rda function uses the observed and GCM matrices much like fitQmap does, in 

which is constructs the downscaling model using Equations 1.17 – 1.22 in Section 1.3.1.  The 

inputs for this function are the two data matrices and the scaling command.  Scaling refers to the 

standardization of the data by subtracting the mean from the data before the regression is applied 
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and is done automatically unless otherwise commanded.  This scaling is avoided for this study, 

as the correction imposed by the scaling is not corrected for and results in non-physical values, 

particularly for precipitation, where initial downscaling attempts resulted in negative daily 

values.  The model derived from the rda function is applied to new GCM predictor data in the 

predict function, where the model and GCM data are inputs, along with the specification that the 

type of output from the function be the full response.  Other types of results available from 

predict include location-specific loading scores or statistical ecology metrics, though these are 

not applicable to this study.  As applied here, the process used by the rda function simplifies the 

steps described in Section 1.3.2 down to a straightforward application of Equation 1.17, which is 

most comparable to multi-variate regression.  The model created tries to explain the day to day 

observations of each predictand at each location by using a combination of data from all 

locations in the GCM data, in the order that best captures the variations observed.  The bulk of 

the other equations used in the RDA process are best described as further analysis of the 

relationships derived by the model, which could be useful in a model using combinations of 

GCM predictors to calibrate the model values, but which is not relevant here due to the purely 

statistical connection between the GCM predictors and their observed counterparts.   

This regression model relied on the ability of the variance and patterns in the predictor 

data to capture the patterns in the observed data, though it was found that utilizing the observed 

and GCM data as stored according to Section 2.2.3 above created a couple of problems.  One 

problem was the severe lack of variance in the data resulting from a mass application of the rda 

and predict functions to all the data at once.  This was fixed by applying the functions to smaller 

temporal portions of the data, with the observations and GCM data all broken into separate 

monthly time series (all observed January data regressed against GCM January data, for 
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example).   It was also found that the spatial domain of the predictor data set did make a 

difference to how well the rda function was able to capture the true distribution of the data.  

When supplied with only the GCM data for the NGP, the downscaled data exhibited significant 

excursions from the observations over the verification period.  This may stem from the lack of 

possible model loadings (see section 1.3.2B).  There are often fewer than 10 or so GCM grid 

squares covering the NGP.  As shown in Figure 2.6, 50 to 100 loadings are about how many 

explanatory locations it takes for the explained variance to asymptotically approach its 

maximum.  The use of GCM data covering all of North America accounted for this problem by 

offering more loadings for the regression model.  Thus it is clear that the inclusion of more 

explanatory variables for each observed location increases the amount of variance explained by 

the model, with this increased skill coming as a result of the increased variance in the larger 

GCM dataset.    

 
Figure 2.6: Explained variance and average residuals by average number of explanatory variables (GCM locations) for the BCC 

model over the middle portion of the NGP region.  As expected of the RDA model, increasing the explanatory variable loadings 

increased the explained variation in the left panel and decreased the residuals shown in the right panel.   
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2.3.4 VERIFICATION PROCESS 

 In order to test the ability of the downscaled models to capture the general characteristics 

of the local and regional climate, four metrics were calculated that encapsulate the means and 

variations and test their differences between the downscaled models and the observations over 

the verification period.  The general distributions of the datasets are compared to assess the 

relative skill that the downscaled models have in reproducing the data values and their spread.  

Spatial patterns are also discussed, where in the metrics described below are calculated for six 

individual grid squares (denoted by a notable town or city located there – see Figure 2.2), as well 

as spatial maps for the difference of means and the correlations.  The metrics include the 

difference of means, the difference of standard deviations, correlations, and the root mean square 

error (RMSE), which were all calculated for each location and averaged to obtain the regional 

NGP average.  Two of the metrics, the difference of means and the correlations (Pearson product 

coefficient), were calculated over monthly time steps, with maximum and minimum temperature 

being averaged in °C and precipitation totaled in millimeters over each month.  The difference of 

means measures the average difference between the downscaled monthly values and the 

observed values.  Both the difference of means and the correlations were calculated for monthly 

values due to the chaotic nature of the daily time series.  Daily values are expected to vary 

considerably and daily GCM predictions, even when downscaled, are not expected to match the 

observed day to day values explicitly (as evidenced by the low correlations between the daily 

values, especially for precipitation), though the variation in those values should be better 

encapsulated by downscaling.   

The other two metrics, RMSE and the difference of standard deviations, were calculated 

from the daily data.  The difference of standard deviations measures the difference in daily 
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variability between the downscaled models and the observations.  RMSE captures the average 

error in daily values (in the same units as the monthly means) for the downscaled datasets only, 

giving a sense of the relative skill in capturing daily values by both downscaling regimes.  It is 

expected that the downscaled models will exhibit lower mean and standard deviation differences 

while also exhibiting higher correlations compared to the GCM data.  Previous studies have 

indicated that BCSD and RDA produce similar levels of skill at capturing observed data values 

and improvements over raw GCM data, though the simplification of the RDA method employed 

(see Section 2.3.3) in this study may alter that somewhat (Tyler 1982).  It is expected that the 

RDA data will exhibit a lower RMSE than the BCSD data, however, due to the regression 

involved. 

 

2.3.5 IMPACT DIAGNOSTIC ANALYSIS 

 Impact diagnostics for this study are statistics calculated to assess some of the extreme 

elements of the NGP climate and how they may change in the 21
st
 Century RCP projections.  

The impact diagnostics are taken, in part, from the STARDEX project on European weather 

extremes but modified for the NGP, and are calculated for the region as a whole by calculating 

the statistics for each location, then averaging among all locations (Goodess 2005).  For 

temperature these include heatwave (maximum consecutive annual days with Tmin > 90
th

 

percentile) and coldwave (maximum consecutive annual days with Tmax < 10
th

 percentile) 

indices, as well as frost days (mean annual total of days in which Tmin < 0°C).  Growing degree 

days (GDD) are calculated according to Miller et al (2001), where an average of daily Tmax and 

Tmin is calculated and a baseline temperature (growing threshold) is subtracted, with the 

resulting daily totals added together to obtain annual growing degree days.  The baseline chosen 
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here was 10°C, which is close to the threshold for many crops, including many grown in the 

NGP (Ojima et al. 2012).  Precipitation indices include the maximum consecutive dry day 

lengths (indicative of excessive drought) as well as the percentage of precipitation from heavy 

events (Pr > 90
th

 percentile) and the number of said events (possible precursors to flooding).  The 

percentiles for the temperature and precipitation indices are taken from the observations.  These 

impact diagnostics are compared over the verification period to further test the downscaled 

models ability to capture observed climate characteristics before being applied to the projections 

over the 21
st
 Century to assess their changes over time. 
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CHAPTER 3 – RESULTS 

3.1 ASSESSING STATIONARITY 

The relationship between the coarse scale predictors and the local scale predictands must 

remain the same, even under changing climate conditions (Benestad 2008).  Put another way, a 

robust downscaling method must be able to capture the distributional patterns in the data while 

accounting for the shifting temporal mean.  Linear methods can account for such shifts in the 

mean and show the relevant trends provided the predictors used to force the model exhibit strong 

enough connections to the predictands and are broadly influenced by shifting boundary 

conditions.  Non-linear models that utilize weather pattern classification are prone to break the 

assumption of stationarity due to the complicated ways in which changing mean climate 

conditions interact with the broad scale circulation, which are not well captured by the limited 

number of pattern classifications available from historical data (Wilby et al. 2004; Wilby 1997).  

In this study, the coarse GCM temperature and precipitation data act as the predictors.  Given 

that the aim of the GCMs is to capture the real world as accurately as possible, it is reasonable to 

assume that there is some relationship between the coarse data and the predictands.  As the 

GCMs are forced by external parameters and allowed to dynamically change, it is also 

reasonable to expect that the coarse variables will exhibit changes due to the external factors and 

thus communicate those changes to the predictands through the derived statistical models. 

One way stationarity is tested in downscaling is by the use of so called “perfect proxy” 

models.  The basic premise of this method is that given that there are no observational values 

beyond the present, model runs are employed to act as observations for both the historical and 
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projected periods, with one set of GCM data acting as the predictor and the other GCM or RCM 

data the predictand, thus creating “observations” at times outside of the historical record 

(Driouech et al. 2010).  One simplified mechanism involved the use of a high resolution, 25 km 

GCM run for two periods, 1979 – 2008 and 2086 – 2095, under two different warming scenarios 

for the 21
st
 Century (Dixon et al. 2013).  Predictor data was created by coarsening the GCM data 

to 1/64
th

 the resolution for both the historical and projected periods.  The high resolution data 

was then related to the coarse data through a statistical model (which method is not elucidated in 

the presentation), then the model was applied to the coarse data in the projection to achieve 

statistically downscaled version of the data for the late 21
st
 Century.  These data were then 

compared to the original high resolution GCM data, which in this case showed that the statistical 

model was not stationary, as the spatial and temporal residual patterns did not hold between the 

historical and projected periods.  Adding to that conclusion, the breakdown of stationarity in time 

was amplified in the model run exhibiting greater warming, indicating a serious problem in the 

statistical model relating the predictor to the predictand.   

A simple method not requiring the use of GCMs or RCMs involves the calculation of the 

residuals of the downscaling models and the associated slopes, which elucidates the evolving 

predictor-predictand relationship.  In Schmith 2008, a non-linear regression was used to capture 

temperature and precipitation data from stations across Europe using geopotential height data 

from the NCEP-NCAR reanalysis.  The residuals for each station were calculated as deviations 

of the downscaled values from the observations over a non-calibration period.  The residuals 

were subjected to a Monte Carlo simulation to ascertain the uncertainty of the linear slope 

calculated from said residuals.  While a slope was evident in the residuals for all the stations, 

most were not significant at the 0.95 level, though a few were.  Other regression methods were 
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also tested and yielded varying results, with some showing good correlations to the observations 

and relatively stationary model-observation relationships, where others also had high correlations 

yet showed significant trends in the residuals in over half of the station time series.  Other tests 

of the stationarity were also discussed, such as the Theil-Sen non-parametric trend estimate and 

the test of split intercepts, where trends for different portions of the data are calculated to see if 

the end points line up.  Schmith describes the possible role predictors play in generating the 

differing levels of stationarity, noting that the principle component patterns of geopotential 

yielded higher stationarity than the raw predictor values.  The advantage of this type of check on 

stationarity is the data and methods used are more available.   

For this study, the method of residual slope is used to test the assumption of stationarity 

for the downscaling employed for the NGP.  The residuals are calculated by subtracting the 

downscaled daily values from the observed daily values over the verification period.  The slope 

is calculated by ordinary least squares regression for each location and stored as time series.  As 

locations clustered so close together are not expected to be independent (highly collinear), the 

slopes for each of the 10000 runs are averaged over the region and summarized in Figures 3.1 

and 3.2, which show the results for maximum temperature and precipitation for downscaled BCC 

model values.  Spatial variations in slope were small for most of the region, though the area in 

the North region near the base of the Rocky Mountains showed some increased deviations.  The 

confidence interval of the slopes is calculated by means of a bootstrap method, wherein random 

orders of the residuals are sampled without replacement to create 10000 time series of possible 

regionally-averaged residuals.  In each case, for both temperature and precipitation and for 

BCSD and RDA, the slopes clustered close to 0, with all mean values and confidence intervals 

on the order of 10
-7

 or so in magnitude.  The p-values for each test were 0.51, 0.55 for the 
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temperature tests and 0.74 and 0.28 for precipitation. As none of the values were below 0.05 (p < 

0.05), none of the slopes calculated were statistically significant, and thus very likely 

indistinguishable from 0.  Thus it is shown that the relationships derived by the models to relate 

the biases in the GCM data to the observed data are robust in time, at least over the verification 

period.   

 

 
Figure 3.1: The distribution of slopes created from the resampling of residuals for maximum temperature for one GCM.  BCSD is 

shown in the left panel, RDA in the right panel. 
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Figure 3.2: The distribution of slopes created from the resampling of residuals for precipitation for one GCM.  BCSD is shown in 

the left panel, RDA in the right panel. 

3.2 STATISTICAL VERIFICATION: SPATIAL AND TEMPORAL 

 Tests of the downscaled models skill at reproducing variations in the observed data 

showed unanimous improvement over the GCMs, though to varying levels of statistical 

significance.  Table 3.1 summarizes these findings for all of the downscaled models.  In general, 

the correlations between the downscaled data and the observed data are higher than those 

between the GCM data and observations, with RDA producing slightly higher correlations than 

BCSD.  As in previous studies, the correlations for temperature (about 0.9) were higher than 

precipitation (0.3), though RDA models improved temperature correlations by almost 0.05 and 

brought precipitation values above 0.5 compared to those of BCSD which were similar to GCMs 

for temperatures and 0.38 for precipitation.   The RMSE scores are smaller for RDA than BCSD 

for minimum temperature and precipitation and comparable for max temperature.  Mean and 

standard deviation differences are smaller (by 50 – 90 percent) for downscaled temperature data 

compared to the GCMs.  BCSD shows an improvement in precipitation over GCMs as well with 
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regard to mean (>2 mm versus >13 mm), and standard deviation (<1 mm versus >5) differences, 

however RDA models do slightly worse at capturing the absolute values of precipitation and its 

variations than the GCMs.  This pattern in the skill of the downscaled models (or lack thereof) in 

capturing the climatological characteristics of the three variables is robust throughout the 

verification period and for every downscaled GCM. 

Table 3.1: The table of validation statistics used in this study.  Mean Diff refers to the difference of means at the monthly time 

scale, while the St. Dev Diff refers to the difference of standard deviations at the daily scale.  The values represent the averages 

of all the downscaled models, with the confidence intervals, calculated at 95 percent, coming from the spread of those models. 

 

Validation Statistics (1970 - 1999)

Max Temperature GCM BCSD RDA

Correlation 0.919 0.925 0.949

confidence interval 0.005 0.004 0.006

RMSE NA 9.061 9.163

confidence interval NA 0.179 0.428

Mean Diff. -1.677 0.195 -0.189

confidence interval 1.098 0.175 0.101

St. Dev Diff. -0.923 0.227 0.241

confidence interval 0.751 0.099 0.307

Min Temperature GCM BCSD RDA

Correlation 0.917 0.927 0.952

confidence interval 0.005 0.004 0.004

RMSE NA 8.31 7.762

confidence interval NA 0.133 0.354

Mean Diff. 2.916 -0.261 -0.397

confidence interval 0.836 0.164 0.075

St. Dev Diff. -0.695 0.324 0.225

confidence interval 0.537 0.1 0.246

Precipitation GCM BCSD RDA

Correlation 0.184 0.378 0.591

confidence interval 0.053 0.035 0.01

RMSE NA 5.097 4.504

confidence interval NA 0.061 0.169

Mean Diff. 13.824 -1.14 14.287

confidence interval 5.055 0.871 4.031

St. Dev Diff. -0.016 0.02 -0.846

confidence interval 0.285 0.078 0.26
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 The distributions shown in Figures 3.3 and 3.4 for the predictands illustrate how well the 

downscaled models captured the mean and spread of the data.  The maximum and minimum 

temperature distributions are relatively well reproduced by both methods, as shown in Figure 3.3.  

Both exhibit the characteristic bimodal structure, with observed peaks around 15°C (warm peak) 

and -2°C (cold peak) for minimum temperatures and 25°C and 0°C for maximum temperatures.  

Both methods show a drastic improvement over the GCM distributions. General circulation 

models tended toward smaller variations in the seasonal range and daily ranges (minimum 

temperatures tend to be too warm and maximum temperatures too cool).  This pattern of reduced 

variation is also seen in Table 3.1, where GCM standard deviations are -0.9 (tmax) and -0.7 

(tmin) compared to observations.  The BCSD models clustered somewhat more reliably about 

the observed distribution, and had smaller monthly mean and standard deviation differences than 

GCMs.  RDA models also capture both temperature distributions, though the cold peak in 

minimum temperatures is not as well captured, with two minor peaks produced instead.   

 The precipitation distributions in Figure 3.4 highlight the stark differences in skill 

between the BCSD and RDA methods.  Observations follow a log-normal or gamma-like 

distribution.  GCMs reproduce this pattern, though with fewer dry days (lower peak near 0) and 

slightly higher levels of low-rate precipitation.  BCSD models corrected this pattern, though with 

somewhat too many dry days leading to a slight dry bias, as seen in Table 3.1, where monthly 

precipitation values averaged about 1.14 mm less than observed over the verification period.  

RDA models did little to correct the GCM biases and by some measures, made them worse.  

Where the BCSD models tended to over correct the wet bias in the GCMs slightly, RDA 

heightened the differences by producing too many occurrences of slight to moderate precipitation 

at the expense of dry days.  Both methods, however, captured the extreme precipitation days 
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relatively well, though BCSD did better at capturing the standard deviation (-0.02 versus -0.85 

for RDA – see Table 3.1).  The large biases in RDA precipitation are discussed further in Section 

3.3.   

 
Figure 3.3: Ensemble density distributions of middle-portion NGP maximum and minimum temperatures for the verification 

period 1970 – 1999, as an example.  The other sub-regional temperature distributions (not shown) were similar. 

 

 
Figure 3.4: Ensemble density distribution of middle-portion NGP precipitation for the verification period 1970 -1999.  The other 

sub-regional precipitation distributions (not shown) were similar. 

 

 The spatial patterns of the difference of means and the correlations between the 

downscaled and observed data are shown in Figures 3.5 through 3.7.  The meridional gradient in 
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both tmax and tmin is well replicated both downscaling methods.  As shown in Figure 3.5 and 

Figure 3.6, BCSD produced striations in the bias pattern, with warm biases along the edges of 

the data ranges and where many of the boundaries of the GCM grid squares occur within the 

regions and are most pronounced in the middle and south portions of the NGP.  Biases in the 

RDA models exhibit no pattern, though there does seem to be a shift to slightly warmer biases in 

the southeast section of the NGP, particularly for maximum temperature.  Both BCSD and RDA 

exhibited non-patterned cool biases in the north data region.  This cool bias in the northern 

portions of the NGP may be related to the change in station networks used to fill in the observed 

data grids between the United States (COOP network) and Canada (Environment Canada).  The 

average bias is small for both maximum and minimum temperature, as shown in Table 3.1. 

The mean bias in precipitation shown in Figure 3.7 shows much less of a spatial pattern 

than the temperature biases.  Both methods did capture the zonal distribution of precipitation, 

with lower values in the West and higher values in the East, though RDA did produce values in 

excess of 2 mm/day much further West than is observed.  BCSD precipitation has very small 

biases that tend toward zero.  The only striation is visible in the middle data region as a small wet 

bias that occurs in the same place as the most prominent biases in the BCSD downscaled 

temperatures. The RDA method produced no pattern in the mean biases for precipitation, though 

the magnitude, as mentioned above, is larger than BCSD, with much of the area averaging 0.5 – 

1 mm/day too wet compared to observations, which amounted to over 14 mm per month as per 

Table 3.1.   
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Figure 3.5: Ensemble mean downscaled models for Tmax, left are the mean values over the verification period, right are the 

biases compared to the observations.  Note the stripes in the biases from BCSD, discussed in text. 
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Figure 3.6: Ensemble mean downscaled models for Tmin, left are the mean values over the verification period, right are the 

biases compared to the observations.  Note the stripes in the biases from BCSD, discussed in text. 
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Figure 3.7: Ensemble mean downscaled models for Pr, left are the mean values over the verification period, right are the biases 

compared to the observations.  The stripes are less apparent in the precipitation spatial averages than in temperature, though a 

small wet bias occurs in the central part of the middle portion of the NGP. 

 

 Figure 3.8 depicts the correlations for the between the observed and downscaled values 

for the three predictands.  Correlations for maximum and minimum temperature range from 0.85 

to 0.97, with RDA showing higher correlations than BCSD.  The striations evident in the BCSD 

mean difference maps are also present in the correlations.  There are anomalously low 

correlations between BCSD downscaled values and observations at the edge of the Rocky 
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Mountains in the southwest corner of the north data region, especially for minimum temperature, 

though the low correlations only fall to between 0.85 and 0.9, compared to the mean value of 

0.93 (BCSD) and 0.95 (RDA).  The RDA temperature correlations exhibit a meridional gradient, 

with higher values in the north and east, and lower in the south and west.  Precipitation 

correlations showed little pattern for either BCSD or RDA.  There is, however, an area of low or 

even slightly inversely correlated values for BCSD in the same area that exhibited somewhat 

lower temperature correlations. 

3.3 LOCAL VERIFICATION 

 The six locations selected from within the NGP region offer a representation of the skill 

of the downscaling methods at the local level.  This level of analysis shows that the skill of the 

methods at individual locations (at the highest possible resolution for this dataset, at 1/8° latitude 

and longitude) mirror the results of the regional analysis described above.  Figures 3.9 and 3.10 

show an annual (at daily resolution) and 5-year (at monthly resolution) time series for maximum 

temperature (3.9) and precipitation (3.10) for two of the six locations.  Table 3.2 gives the same 

statistics as Table 3.1 at the scale of the six individual grid squares.  As with the NGP as a whole, 

temperature correlations are higher than precipitation, while RDA produced better correlations 

than BCSD, as well as generally smaller RMSEs.  However the wet bias in the RDA 

precipitation models is also clearly evident in Figure 3.10, as the total monthly values average 12 

– 15 mm too high (see Table 3.2) and show no improvement compared to the GCMs, which also 

exhibit a wet bias.  RDA models also under-represent the variation in precipitation, as the 

standard deviation differences are higher than for BCSD models.   
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Figure 3.8: The spatial correlations for the verification period for Tmax, Tmin and Pr.  The left column of panels are for BCSD, 

the right column for RDA.  Note the slightly different scales for the precipitation correlations at the bottom, which were used so 

the patterns would be clearer. 
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Figure 3.9: Maximum temperature variations are shown for two of the six locations shown in Figure 2.2, namely Billings, 

Montana and Lloydminster, Canada.  The top row shows the average daily temperature, in degrees Celsius, for a year averaged 

over the verification period.  The bottom row shows 5 years of monthly data in the same units starting from January 1995. 

 

 
Figure 3.10: Precipitation variations are shown for two of the six locations shown in Figure 2.2, namely Billings, Montana and 

Lloydminster, Canada.  The top row shows the average daily precipitation, in millimeters, for a year averaged over the 

verification period.  The bottom row shows 5 years of monthly data, also in millimeters, starting from January 1995. 
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Table 3.2:  A table of the same values as Table 3.1 but for the six individual grid squares shown in Figure 2.2.  The top row (left 

column on this page) shows the average values of all the BCSD models for these locations, the bottom row (right column on this 

page) the RDA values. 
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The verification statistics described above for the region both temporally and spatially, as 

well as for a subset of individual locations, indicate a significant difference in skill between the 

BCSD and RDA method, particularly with regard to precipitation, and a general improvement 

over the data produced by GCMs for the NGP.  BCSD was able to reduce the monthly mean 

biases for maximum and minimum temperature, as well as precipitation, while improving the 

representation of the variation in the data as shown by the differences in standard deviation 

between the downscaled and observed data.  The correlations and RMSE were similar to or 

slightly improved compared to the GCMs, though precipitation did show an increase in 

correlation from less than 0.2 to over 0.35.  There is a slight dry bias in the BCSD data, as well 

as some spatial patterns in the mean monthly bias and correlations that suggest some problems 

for the method at the meeting points of GCM grid squares or in regions with significant 

variations in the data from the regional average, such as at the foot of the Rockies.  RDA showed 

comparable skill to BCSD with regard to maximum and minimum temperatures while increasing 

the correlations further than BCSD at the monthly time scale.  There is a significant wet bias in 

the RDA downscaled precipitation data, with daily wet biases giving rise to acute monthly wet 

biases, though the correlations are over 0.55 and the RMSE is comparable to BCSD at the daily 

time scale.  Thus RDA shows significant improvement in correcting GCM biases for 

temperatures, however shows no improvement, and by some metrics a degradation, in daily 

precipitation, which is discussed in the next section.   

3.4 RDA PRECIPITATION BIAS 

 The failure of the RDA method to adequately capture the precipitation over the NGP is a 

curious issue, though not unforeseeable given the problems outlined in the literature regarding 

the use of such regression-based methods to model daily precipitation.  The biggest problem with 
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using multivariate linear regression either within or outside of the auspices of redundancy 

analysis to capture daily precipitation is the incompatibility of fitting a Gaussian or normally 

distributed model to non-Gaussian data distributions (Wilby et al. 1998).  Daily precipitation is 

better captured by a log-normal or gamma distribution, with a large number of dry days and an 

exponentially decreasing frequency of increasing precipitation rates.  The application of simple 

regression models to daily precipitation tends to produce either too many or too few wet days, 

often with reduced variance compared to the observations.  The ability of the RDA method to 

capture the maximum and minimum temperature data with a level of skill similar to BCSD also 

shows this to be the likely reason for its failure, as the temperature data do exhibit a near normal 

distribution, if bimodal in nature.     

The bias in low-rate precipitation days can be observed in Figure 3.2, where the 

distribution of downscaled precipitation rates produces too few dry days and too many 

occurrences of values ranging from 1 – 7 mm/day.  In effect, the transition from dry days to wet 

days is a problem for simple linear regression based methods, while previous studies have noted 

a marked improvement in non-linear downscaling methods, such as step-wise regression or 

cluster analysis (Maurer and Hidalgo 2008; Wilby et al. 2000).  Figure 3.11 shows a comparison 

of precipitation intensity days for three of the downscaled GCMs.  The RDA bars show similar 

or even greater frequencies of low precipitation day counts compared to GCMs, though higher 

values tend to better match observations.  This pattern is seen in the dry day counts in Figure 

3.12 as well.  Both downscaling methods correct the GCM pattern of dry days to match those of 

the observations (more dry days in Winter, fewer in Summer), however the RDA counts are only 

about 60 percent of what they should be.  This lack of dry days in favor of slightly wet days does 

little to affect the skill of the method on a day to day basis (with the RMSE being similar to 
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BCSD), however the wet bias adds up and causes significant differences at the monthly time 

scale, as evidenced by Figure 3.13, where the average total monthly precipitation over the 

verification period shows positive deviations from the observed values that often reach as high as 

60 mm, with higher wet biases in Summer.    

 
Figure 3.11: Distribution of precipitation intensities for three representative GCMs (GFDL2G, GFDLCM3 and NorESM) out of 

the full range of 17 downscaled for this study. 

 

 

 
Figure 3.12: Monthly averaged dry days, averaged over all downscaled models for the verification period 1970 - 1999, as well as 

the observed and non-downscaled GCM dry days.   
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Figure 3.13: NGP averaged monthly total precipitation over the verification period 1970 – 1999 for observed, downscaled and 

GCM data. 

 

3.5 IMPACT DIAGNOSTICS AND THE RCPS 

 One important application of downscaling is the ability of the downscaled data to 

effectively capture the impacts of climate change at local and regional spatial scales.  These 

impacts range from extreme temperatures to prolonged periods without precipitation.  In order to 

test whether these impacts are skillfully replicated, the statistics discussed in Section 2.3.5 are 

calculated for the downscaled and observational data and compared over the verification period.  

These same impact diagnostics are also calculated for the RCPs to ascertain how regional climate 

characteristics are expected to change in the 21
st
 Century.  As shown in the previous sections, the 

downscaled models show an improvement over the GCMs that force them, with the important 
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exception of RDA downscaled precipitation.  For this reason, beyond comparing the verification 

results, RDA precipitation data will not be used to downscale the RCP projections. 

 
Figure 3.14: Tmax, Tmin and Pr NGP averaged evolution over the 21st Century for each RCP from 2010 to 2099.  The shaded 

regions are the total model spread for each model, the colored lines are the means. 

 

 Figure 3.14 illustrates the overall changes to each of the predictands for the NGP as a 

whole over the full RCP period (2010 – 2099).  Both maximum and minimum temperature 

increase by an average of 4°C by 2100 under the 8.5 RCP projection, with the l low estimate 2.6 

projection resulting in less than 1°C rise for the NGP.  Different models show different levels of 

regional warming, however, with the highest warmings of up to 8°C in the models with the 

highest sensitivities.  As with the global projections, the highest RCP projection has the widest 

error margin due to the increasing uncertainties in forcings and feedbacks at higher temperature 

changes (IPCC 2014). It is noteworthy that the three RCPs warm at a similar rate, on average, 

until the 2060’s, at which point they begin to diverge markedly.  Precipitation shows little 

change over the 21
st
 Century, with all three RCPs depicting little difference except for RCP 8.5 

from the 2080s onward, where the daily average rate of precipitation shows a slight increase 

compared to the other projections.  Table 3.3 shows the average of each of the predictands in the 

2080s for BCSD and for temperature downscaled via RDA, as well as the average value of the 

observed and downscaled values for the verification period (1970 – 1999).  The standard 
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deviations are also calculated.  The variation in daily data values is very similar between the 

verification period and each of the RCPs for BCSD data.  RDA data show increases in the 

standard deviation in the latter 21
st
 Century of about 2°C for maximum temperature and 1°C for 

minimum temperature, though these are small changes at the daily time scale.  

Table 3.3: A table showing the change in the mean and standard deviation for each of the predictands for both downscaling 

methods averaged over the 2080s, as well as the observed and downscaled average values for the verification period.  RDA-based 

precipitation values were not included here due to the extreme wet bias, however the impact of those biases on the impact 

diagnostics can be seen in Table 3.4.    

 

 Table 3.4 shows the average values of the impact diagnostics calculated from all the 

downscaled models and the parent GCMs over the verification period.  The precipitation 

diagnostics for RDA models are included for comparison.  Overall the downscaling brought the 

estimates of the impact diagnostics more in line with observed values, though to varying degrees 

of accuracy and only rarely within the envelope of the model derived 95 percent confidence 

intervals.  For the data centered on the 1980s, extremely cold days outnumbered extremely warm 

Summary Statistics
Verification Period RC Pathways

OBS BCSD 2.6 4.5 8.5

Max Temperature

mean 12.35 12.35 15.6 15.8 16.3

st. dev 13.61 13.93 13.7 14.3 13.9

Min Temperature

mean -1.09 -1.38 1 1.8 2.4

st. dev 11.92 12.22 11.9 11.7 11.9

Precipitation

mean 1.3 1.25 1.31 1.32 1.33

st. dev 3.68 3.65 3.74 3.75 3.81

OBS RDA 2.6 4.5 8.5

Max Temperature

mean 12.35 12.25 14 14.3 14.9

st. dev 13.61 13.72 15 15.1 15.8

Min Temperature

mean -1.09 -1.52 0 0.2 0.6

st. dev 11.92 12.14 12.7 12.9 13.2
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days, and frost days usually exceeded 50 percent of the year (> 182 days).  Growing degree days 

with a base of 10°C varied between models, but averaged to just over 1100.  The maximum 

length of dry days approached 3 months, while the percent of precipitation stemming from 

extreme rainfall or snowfall events was about 36 percent.  GCMs produced more warm extremes 

than cold, and simulated too few frost days, maximum dry day lengths (underestimated by 50 

percent), and wet extremes (both the number of days and the percent of total precipitation).  

BCSD models did relatively well in bringing these GCM estimates closer to observed values, 

though the value of cold extremes went up (to 28 days) rather than down as was needed.  RDA 

proved more skillful at capturing temperature extremes, bringing the values very close to the 

observed values and, for heatwaves, within the 95 percent confidence interval.  The wet bias in 

precipitation carried over into the RDA impact diagnostics, with the maximum dry days being 

less than 50 percent of observed and the percent of precipitation coming from extreme events 

calculated at 6 percent higher than observed, though the bias in the number of extreme events 

was similar to that of the BCSD models, as expected from the precipitation intensity distributions 

in Figure 3.11. 

Table 3.4: A table of the impact diagnostics described in the text calculated for the verification period for the observations, GCM 

data and the downscaled models.  The values are the averages of all downscaled models in which RCP data were also available, 

while the 95 percent confidence intervals are calculated from the same model spreads, as in Table 3.1.  GDD refers to growing 

degree days while the wet events count the number of extreme precipitation events and the wet percentage is the percent of 

precipitation out of all precipitation coming from those exceptional events. 

 

 

Impact Diagnostics: Verification Period

Heatwave Coldwave Frost Days GDD Dry Day Max Wet Event Wet %

OBS 16 23 199 1147 81 9 0.36

GCM 38.3 25.3 162.7 1011.7 44 4.3 0.32

Confidence Interval 17.7 3.6 1.2 99.7 0.9 0.3 0.3

BCSD 22.7 27.7 187.3 1167 72.3 8 0.33

Confidence Interval 4.6 1.9 1.2 14.4 1.5 0.5 0.2

RDA 14.3 21.7 184.7 1140.7 42.7 10.7 0.42

Confidence Interval 2.5 0.3 1.2 4.3 2.6 1.1 0.2
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 The impact diagnostics are shown to be better captured for the region as a whole by 

downscaling.  These downscaling methods are then applied to the RCPs and compared on a 

decadal basis in Table 3.5.  Each of the impacts changed as expected given the warming climate 

projected through the 21
st
 Century.  Heatwaves increased, with the consecutive hot days 

calculated at over three months under the highest RCP projection by the 2080s.  Coldwaves 

decreased, reducing to only half the length of verification period coldwaves by the latter part of 

the century.  Frost days are shown to go down by about 25 percent under the highest projections, 

meaning that, even being a colder interior continental climate, the annual percentage of frost 

days will go under 50 percent even under modest warming.  This inexorably aids the upward 

trend in growing degree days, which increase by 13 – 63 percent under modest to high warming 

scenarios.  RDA models show less temperature and temperature-based impact change than 

BCSD models, as is evident from Table 3.3 and Table 3.5.  This may be a result of the increase 

in variability noted above, which would obscure the changes as well as indicate a relative lack of 

persistent weather systems that result in extremes such as heatwaves and cold snaps.   

 The NGP lies in a unique position geographically in that GCMs disagree on what trend 

the precipitation will take going into the latter 21
st
 Century, however a slight majority favor a 

wetting of the Northern Plains and a drying of the South (Ojima et al. 2012).  As stated 

previously, given the extreme wet bias of the RDA precipitation data, only the BCSD method 

was applied to RCP precipitation projections.  The BCSD results are also cataloged in Table 3.5.  

Overall the wet events are shown to increase under high RCP projections by up to 5 such days, 

along with a corresponding increase in the percentage of precipitation coming from heavy events 

(44 percent compared to the modern 36 percent).  This pattern of increasing precipitation 

extremes mirrors that of the global projections (IPCC 2014).  The maximum consecutive dry 
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days are expected to, on average for the region, decrease.  This decrease could mean that drought 

conditions will become less severe for the NGP, however such a conclusion does not take into 

account increased potential evapo-transpiration induced by increased warming. 

 The apparent divergence in the temperature impacts by the two methods is clear in the 

data, as shown above.  These differences are also influenced by the sensitivity of the GCMs that 

are downscaled, in that the data from those GCMs that is used to drive the BCSD and RDA 

models over the RCP projection period change with the sensitivity of the GCM.  This is shown in 

Table 3.6, where the model that is least sensitive all the downscaled models, the GFDL2G GCM 

downscaled via RDA, is compared to the model exhibiting the highest sensitivity, GFDLCM3 

downscaled via BCSD.  The changes in the temperature impacts are shown for the early and late 

21
st
 Century for the RCP 8.5 projection.  It is clear that the high sensitivity model produces the 

largest changes in the diagnostics, with consecutive hot days reaching a full four months in the 

GFDLCM3 versus the small increase seen in the GFDL2G.  Cold days, frost days and growing 

degree days also show the increased changes that occur in higher sensitivity models, with the 

GDD increasing by 70 percent versus only 27 percent under low sensitivity.  This shows that the 

sensitivity of the GCMs that are downscaled plays a large role in what changes are shown to 

occur under climate change projections.  This increases the uncertainty in model projections, 

even having undergone downscaling.   
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Table 3.5: The impact diagnostics calculated in Table 3.4, but now extended to the projected decades (2020s, 2050s and 2080s) 

under the three RCP scenarios (2.6, 4.5 and 8.5), averaged over both downscaling methods.  Historical impact diagnostics come 

from the observations.  As in Table 3.3, RDA precipitation is left out of the calculations due to its extreme wet bias. 

 

 

Table 3.6: A table comparing the early 21st Century temperature impact diagnostics to those in the late 21st Century to show the 

impact of GCM sensitivity on the results.  The BCSD downscaled GFDLCM3 model was the most sensitive of the downscaled 

models, with the largest temperature changes, while the RDA downscaled GFDL2G showed the least.   

 

 

 

 

 

 

Impact Diagnostics
Historical RCP 2.6 RCP 4.5 RCP 8.5

1980s 2020s 2050s 2080s 2020s 2050s 2080s 2020s 2050s 2080s

Bias Corrected Spatial Disaggregation

Heatwave 16 41 46 43 46 64 65 52 85 102

Coldwave 23 17 16 10 16 12 11 15 12 10

Frost Days 186 175 168 172 175 164 161 172 161 142

GDD 1167 1305 1370 1367 1278 1443 1549 1303 1567 1944

Redundancy Analysis

Heatwave 16 26 29 27 29 40 41 33 54 64

Coldwave 23 15 12 12 14 12 11 16 12 10

Frost Days 186 172 165 169 172 161 158 169 158 139

GDD 1167 1279 1343 1340 1252 1414 1518 1277 1536 1905

Bias Corrected Spatial Disaggregation

Max Dry Days 81 77 73 74 78 74 72 75 73 68

Wet Event 9 11 12 11 11 12 12 12 13 14

Wet % 0.36 0.35 0.35 0.36 0.34 0.36 0.37 0.39 0.42 0.44

GFDLCM3 - BCSD GFDL2G - RDA

2020s 2080s 2020s 2080s

Heatwaves 58 120 12 21

Coldwaves 16 14 15 13

Frost Days 168 117 172 150

Growing Degree Days 1458 2479 1256 1590

Impact Diagnostic Sensitivity 
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CHAPTER 4 – DISCUSSION AND CONCLUSIONS 

4.1 DOWNSCALING FOR THE NGP 

 Downscaling global climate model data for the Northern Great Plains is a necessary 

objective because of the increasing importance of the region in the global economy, particularly 

with regard to energy and agriculture.  GCMs, by the constraints of available computational 

resources, must use low resolution grids that average out large amounts of information at the 

local level, making the output from those models only marginally useful to local stakeholders.  

Just as well, GCMs greatly reduce the variation in daily and annual temperatures, as well as 

between dry and wet extremes of precipitation, resulting in significant biases.  Both dynamic 

downscaling and statistical downscaling seek to remedy these biases and provide information 

about local changes in climate.  While dynamic downscaling allows for more detailed analysis of 

the causes and consequences of the forcings and feedbacks operating at the global and regional 

level, statistical methods for downscaling allow for easier implementation and are much less 

computationally expensive.  This study focused on the use of two such statistical methods and 

compared them by testing their skill in representing independent data for the historical period.     

The appraisal of model skill in representing the climatic state and changes of the NGP in Chapter 

3 showed that both Bias Corrected Spatial Disaggregation and Redundancy Analysis had the 

potential to offer useful local and regional information.  Both methods showed comparable skill 

in capturing the temporal and spatial patterns in maximum and minimum temperature.  BCSD 

also did well in capturing precipitation, though RDA exhibited a significant wet bias.  The skill 

of the models was represented both in the set of validation statistics and impact diagnostics 
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chosen to assess the impact of climate changes on the weather extremes.  The set of diagnostics 

was then applied to RCP projections through the 21
st
 Century, shedding light on the potential 

impacts that different environmental sensitivities and emissions scenarios could cause.  A 

general summary of the strengths and weaknesses of each method is shown in Table 4.1.  Thus 

the main thrust of this work has been realized; the testing and application of downscaling models 

to the NGP region, which allowed for local scale changes important to local stake holders to 

become clearer and more accessible compared to what has been available from coarse GCMs. 

Table 4.1: A table of the general conclusions regarding the use of BCSD and RDA in downscaling for the NGP, noting the 

advantages, disadvantages and possible improvements for both. 

 

 The skill of the BCSD models in capturing local climate variations and patterns followed 

closely to the bulk of previous work in which BCSD was applied to other regions and 

climatological situations.  The slight dry bias the existed in the BCSD models was noted in 

previous studies (Ahmed et al. 2013; Abatzoglou and Brown 2012).  The success of BCSD 

Final Results

Bias Corrected Spatial Disaggregation Redundancy Analysis

Advantages: ease of implementation/adapatability higher correlations (>0.9 for tmax/tmin, >0.3 for precip)

low monthly mean differnces (< 10% of GCMs) slightly lower RMSEs

higher skill in all 3 predictands

better representation of impact diagnostics

Disadvantages: requires prior interpolation (greater uncertainty) less adaptable

striations in spatial patterns/discontinuities significant reduction in st. dev. (-0.84 ± 0.26 mm)

slight dry bias in precipitation (negative mean diff.) significant wet bias (60% of obs. dry days)

large monthly mean diff. (14 ± 4 mm)

associated wet bias in impact diagnostics

Possible Improvements: better ways of quantile mapping better predictors - particularly for precip

better wet day adjustments new geographical zones for predictors

normalization of predictors/predictands
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compared to RDA is a departure from the results of other studies at first glance, wherein the 

more complex regression models better captured the predictands of interest in those studies 

(Trzaska and Schnarr 2014; Murphy 1999; Wilby et al. 1998).  It should be noted, however, that 

those studies modified the regression models by using optimized predictors rather than the same 

GCM variables used for the BCSD method.  The model used in the RDA process used the same 

predictors as the BCSD method, which combined with the limitations discussed in Chapter 3 to 

produce lower skill, overall, than BCSD. 

 The Redundancy Analysis models showed mixed results between the temperature and 

precipitation predictands.  Both maximum and minimum temperatures were well represented by 

the RDA method, with comparable distributions to and higher correlations than BCSD models.  

Precipitation contained a significant wet bias in which extra low to moderate rate precipitation 

days were produced at the expense of dry days.  This wet bias is largely the result of the 

regression model being ill-suited to capturing the non-Gaussian distribution of daily 

precipitation, as evidenced by the dichotomous ability of the method to capture the temperature 

predictands relatively well.  This deviation from observations in RDA downscaled precipitation 

is broadly similar to the results of Themeßl et al. (2010) where similar regression methods failed 

to capture the values of precipitation.  RDA models did, however, still maintain higher 

correlations with the observations and better constrained the extreme values of precipitation, also 

in accordance to previous studies (Themeßl et al. 2010; Huth 2004). 

Downscaling of the RCPs showed many of the characteristics expected of broader scale 

climate change.  More sensitive models produced, on average, more change in the impact 

statistics for the region.  Many of the changes may not become noticeable until later on in the 

21
st
 Century, as the RCP temperatures do not diverge markedly until 2060 – 2070.  Heatwave 
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lengths are projected to increase, growing degree days are expected to rise, and coldwaves and 

frost days are expected to decline dramatically, as expected under warming scenarios (Flato et al. 

2013).  Precipitation changes are not projected to be large for the region, with a small decrease in 

dry days projected, as documented in previous studies (Ojima et al. 2012).  BCSD models show 

less change in heavy precipitation (both in percentage of precipitation and the number of events) 

than RDA, though both show non-negligible increases, particularly in the late 21
st
 Century under 

high forcing scenarios.          

4.2 FURTHER RESEARCH OPPORTUNITIES 

The conclusions above are all made under the assumption that the models showed skill in 

recreating climate conditions at the local level.  While the ability of the downscaling models to 

reproduce observed changes during the verification period bolsters this assumption, it is by no 

means given that the statistical relationships derived in the BCSD and RDA models would hold 

under a changing climate.  RDA in particular is prone to the problem of stationarity described in 

Section 1.3, as it assumes the regression-based relationships it is based upon will stay the same, 

however there is little to back such an assumption that the GCM variables, particularly 

precipitation, will maintain a given statistical relationship to the observed values.  There is also 

the problem, as faced directly by dynamical downscaling (see Section 1.2.2), of regional 

forcings.  These include land use changes and aerosols, which are much more concentrated over 

the regions in which they are emitted than the well-mixed greenhouse gases.  These regional 

forcings are assumed to change in a certain way by the global models that feed into the statistical 

ones used here, but which may vary in a different way than expected within the NGP region, 

resulting in changes unable to be captured in the downscaled models.  As is clear, these methods, 
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while promising, are only a first step toward local scale climate information for the Northern 

Great Plains.   

This work has shown that there is skill in using observations to correct GCM output for 

the Northern Great Plains, and further studies could show how best to improve these results.  

New research may focus on other methods than BCSD or RDA, particularly with regard to 

precipitation, or they may focus on improving the two methods applied here.  As for other types 

of statistical models, non-linear methods have already been known to better constrain 

precipitation patterns.  Dynamical downscaling is also an option for the region, as it has been 

applied to multiple other domains.  BCSD could possibly be improved through the use of other 

types of cumulative distribution functions, though they often require a priori assumptions about 

the possible distribution of the variable sought.  RDA, as applied in this study, was fairly simple 

and lacked a physical basis for its prediction.  Making use of other predictors that have some 

physical connection to the variables, such as geopotential height or upper tropospheric humidity 

to predict precipitation, may make a difference in improving the skill of the model.  It may also 

be possible to use BCSD and RDA in conjunction by bias correcting the output of the 

redundancy model.        
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APPENDIX A 

Data Distribution Table 

 
Table 5.1: A table of the distributional data averaged for the observations, GCM data and for both downscaling methods.  This 

provides the basis of Figures 3.1 and 3.2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODEL ENSEMBLE AVERAGE DISTRIBUTIONS

North Obs GCM BCSD RDA North Obs GCM BCSD RDA North Obs GCM BCSD RDA

mean 9.18 8.13 8.83 8.8 mean -3.32 -0.69 -3.86 -3.94 mean 1.17 1.44 1.14 1.71

stdv 14.15 13.1 14.65 14.28 stdv 12.39 11.92 12.81 12.69 stdv 3.58 3 3.6 2.63

min -39.86 -37.27 -40.23 -48.49 min -53.24 -45.87 -51.91 -63.81 min 0 0 0 0

10% -10.76 -8.91 -12.18 -11.16 10% -21.88 -17.78 -23.27 -22.42 10% 0 0 0 0

median 10.58 8.35 10.33 10.6 median -1.38 0.55 -1.61 -1.48 median 0 0.29 0 0.78

90% 26.26 24.69 26.6 26.1 90% 10.99 13.45 10.93 10.73 90% 3.3 4.14 3.22 4.67

max 43.44 40.11 45.83 50.39 max 28.32 26.22 29.45 32.91 max 193.82 71.1 195.93 164.11

Middle Middle Middle

mean 12.5 10.7 12.47 12.35 mean -1.26 1.52 -1.56 -1.71 mean 1.23 1.71 1.19 1.64

stdv 13.87 12.83 14.13 13.94 stdv 12.07 11.34 12.34 12.23 stdv 3.4 3.61 3.38 2.65

min -40.82 -34.74 -35.59 -45.06 min -48.64 -42.74 -50.18 -60.08 min 0 0 0 0

10% -6.47 -5.72 -7.09 -7.03 10% -18.74 -14.18 -19.7 -19.17 10% 0 0 0 0

median 13.78 11.04 13.77 13.86 median -0.21 2.08 -0.31 0 median 0 0.31 0 0.67

90% 29.47 27.09 29.87 29.49 90% 13.24 15.44 13.25 12.93 90% 3.5 5.01 3.37 4.61

max 45.73 43.05 47.98 52.02 max 32.81 28.41 33.3 31.86 max 183.8 82.55 278.39 179.66

South South South

mean 15.38 13.5 15.76 15.6 mean 1.3 3.99 1.29 1.09 mean 1.51 2.12 1.42 1.95

stdv 12.81 12 13.01 12.94 stdv 11.3 10.52 11.52 11.5 stdv 4.06 4.41 3.98 3

min -31.82 -29.05 -28.3 -36.96 min -44.73 -36.9 -43.63 -51.17 min 0 0 0 0

10% -1.85 -1.91 -1.85 -2.25 10% -13.74 -9.72 -14.35 -14.66 10% 0 0 0 0

median 16.55 13.81 17.04 16.88 median 1.36 3.94 1.46 1.85 median 0 0.32 0 0.81

90% 31.11 29.05 31.81 31.58 90% 15.61 17.52 15.89 15.49 90% 4.55 6.41 4.25 5.51

max 45.39 44.35 50.41 55.48 max 34.3 29.56 34.21 33.74 max 233.52 86.6 212.2 193.91

NGP NGP NGP

mean 12.35 10.78 12.35 12.25 mean -1.09 1.61 -1.38 -1.52 mean 1.3 1.76 1.25 1.77

stdv 13.61 12.64 13.93 13.72 stdv 11.92 11.26 12.22 12.14 stdv 3.68 3.67 3.65 2.76

min -37.5 -33.69 -34.71 -43.5 min -48.87 -41.84 -48.57 -58.35 min 0 0 0 0

10% -6.36 -5.51 -7.04 -6.81 10% -18.12 -13.89 -19.11 -18.75 10% 0 0 0 0

median 13.64 11.07 13.71 13.78 median -0.08 2.19 -0.15 0.12 median 0 0.31 0 0.75

90% 28.95 26.94 29.43 29.06 90% 13.28 15.47 13.36 13.05 90% 3.78 5.19 3.61 4.93

max 44.85 42.5 48.07 52.63 max 31.81 28.06 32.32 32.84 max 203.71 80.08 228.84 179.23

Maximum Temperature Summary Minimum Temperature Summary Precipitation Summary
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APPENDIX B 

Verification Data Table 

 
Table 5.2: A table of the regionally averaged verification statistic values, showing the raw GCM, BCSD and RDA downscaled 

values for all 17 GCMs used in this study.  This is the basis of Table 3.1. 

 
 

NGP Averaged Verification Data
Model General Circulation Models Bias Corrected Spatial Disaggregation Redundancy Analysis

Precipitation Corr Mn Diff St. Dev Diff Corr Mn Diff St. Dev Diff RMSE Corr Mn Diff St. Dev Diff RMSE

BCC 0.145 6.062 -0.613 0.353 -1.695 -0.075 5.017 0.598 11.387 -1.206 4.272

BNU 0.238 22.355 -0.436 0.397 2.069 0.251 5.246 0.564 -1.818 -0.653 4.611

CAN 0.111 -7.369 -0.535 0.239 -0.439 0.021 5.142 0.607 11.693 -1.231 4.252

CMCCCESM 0.068 34.749 0.292 0.438 -0.735 0.17 5.187 0.575 6.146 -0.955 4.431

FGOALS 0.098 12.432 -0.327 0.395 -0.375 -0.03 5.073 0.609 10.733 -1.304 4.206

GFDL2G 0.2 15.283 0.122 0.423 -1.844 -0.008 5.056 0.583 23.328 -0.327 4.834

GFDL2M 0.189 19.626 0.28 0.408 -2.922 -0.125 4.981 0.574 23.229 -0.301 4.859

GFDLCM3 0.193 22.283 0.188 0.437 -2.195 -0.042 5.036 0.575 20.511 -0.523 4.709

IPSLLR 0.12 7.338 -0.338 0.415 -1.265 0.021 5.094 0.585 15.658 -0.862 4.474

IPSLMR 0.153 4.835 -0.058 0.313 -1.15 0.016 5.114 0.61 11.071 -1.241 4.246

MIROC5 0.247 15.897 0.699 0.383 -0.653 0.034 5.128 0.604 17.549 -0.782 4.551

MIROCCHEM 0.163 10.466 -0.423 0.289 -1.124 -0.003 5.125 0.617 10.474 -1.334 4.2

MIROCESM 0.154 9.121 -0.494 0.379 -3.244 -0.126 5.001 0.615 11.847 -1.267 4.226

MPILR 0.215 17.972 0.875 0.359 -1.132 0.193 5.229 0.579 12.296 -0.693 4.606

MPIMR 0.259 15.217 0.683 0.392 -0.799 -0.002 5.078 0.602 13.972 -1.066 4.367

MRI 0.351 18.991 0.618 0.381 0.305 0.107 5.142 0.585 17.165 -0.734 4.584

NorESM 0.229 9.746 -0.798 0.42 -2.18 -0.061 5.003 0.571 27.636 0.095 5.14

Max Temperature Corr Mn Diff St. Dev Diff Corr Mn Diff St. Dev Diff RMSE Corr Mn Diff St. Dev Diff RMSE

BCC 0.931 -1.79 0.611 0.933 0.268 0.342 9.006 0.936 0.007 0.076 8.502

BNU 0.94 -1.53 0.189 0.937 0.298 0.094 8.616 0.954 0.117 -0.126 8.366

CAN 0.933 4.161 2.461 0.934 0.286 0.425 8.657 0.957 0.122 -0.131 8.287

CMCCCESM 0.916 -3.339 -1.614 0.936 -0.043 0.268 8.884 0.966 0.065 -0.796 7.41

FGOALS 0.926 -5.953 -0.064 0.93 0.66 0.065 8.705 0.962 0.105 -0.25 8.118

GFDL2G 0.905 -2.6 -1.492 0.917 0.256 0.11 9.439 0.944 -0.087 1.053 9.706

GFDL2M 0.914 -1.935 -1.998 0.921 0.46 0.164 9.339 0.943 0.238 0.827 9.751

GFDLCM3 0.917 -2.002 -2.908 0.921 0.376 -0.173 9.311 0.939 -0.22 0.831 9.643

IPSLLR 0.91 -3.574 -1.641 0.913 0.24 0.357 9.274 0.956 0.052 0.236 8.746

IPSLMR 0.926 -2.257 -0.754 0.923 -0.019 0.4 9.098 0.951 0.004 0.643 9.233

MIROC5 0.931 -0.042 0.803 0.936 -0.609 0.421 8.512 0.948 0.011 -0.161 8.332

MIROCCHEM 0.907 0.276 -0.478 0.915 0.295 0.401 8.978 0.952 -0.02 -0.089 8.354

MIROCESM 0.917 0.514 -0.489 0.926 -0.206 0.449 8.8 0.949 -0.087 -0.041 8.385

MPILR 0.907 -1.798 -2.568 0.913 0.793 0.026 9.669 0.95 -0.052 0.053 8.405

MPIMR 0.91 -1.839 -2.563 0.919 0.064 0.276 9.532 0.955 -0.028 -0.285 8.234

MRI 0.911 -2.68 -2.53 0.92 0.297 -0.053 9.315 0.953 0.157 0.037 8.593

NorESM 0.924 -2.113 -0.664 0.93 -0.103 0.295 8.907 0.951 0.066 0.911 9.896

Min Temperature Corr Mn Diff St. Dev Diff Corr Mn Diff St. Dev Diff RMSE Corr Mn Diff St. Dev Diff RMSE

BCC 0.915 1.969 0.03 0.93 -0.104 0.309 8.353 0.933 -0.155 0.075 7.572

BNU 0.921 2.222 -0.036 0.929 -0.068 0.26 8.335 0.956 -0.478 -0.044 7.353

CAN 0.92 5.476 1.07 0.927 0.006 0.33 8.319 0.96 -0.196 -0.184 7.224

CMCCCESM 0.92 1.699 -1.07 0.938 -0.375 0.32 7.957 0.967 -0.368 -0.721 6.462

FGOALS 0.921 -1.028 0.725 0.933 0.068 0.284 8.093 0.962 -0.276 -0.279 7.155

GFDL2G 0.907 2.77 -1.568 0.919 -0.125 0.081 8.547 0.953 -0.493 0.556 8.395

GFDL2M 0.922 4.216 -2.221 0.932 -0.151 0.207 8.365 0.947 -0.574 0.898 8.611

GFDLCM3 0.907 3.025 -2.631 0.917 -0.096 -0.064 8.677 0.947 -0.287 0.555 8.411

IPSLLR 0.906 1.58 -0.763 0.916 -0.369 0.582 8.596 0.954 -0.426 0.222 7.663

IPSLMR 0.92 2.385 -0.434 0.92 -0.432 0.529 8.554 0.952 -0.436 0.219 7.496

MIROC5 0.934 4.574 -0.011 0.934 -1.039 0.549 7.989 0.95 -0.388 0.392 8.168

MIROCCHEM 0.922 4.765 -0.859 0.929 -0.294 0.402 8.026 0.951 -0.364 0.064 7.381

MIROCESM 0.923 4.942 -0.908 0.93 -0.665 0.508 8.041 0.95 -0.595 0.193 7.459

MPILR 0.915 3.108 -1.163 0.926 0.215 0.081 8.309 0.947 -0.223 -0.074 7.397

MPIMR 0.914 2.933 -0.991 0.928 -0.424 0.428 8.375 0.95 -0.426 0.648 8.52

MRI 0.911 3.209 -1.412 0.923 -0.15 0.381 8.389 0.953 -0.526 0.343 7.891

NorESM 0.911 1.727 0.416 0.926 -0.432 0.322 8.349 0.95 -0.525 0.964 8.8
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APPENDIX C 

Demonstration of Downscaling Functions – R Script 

 

 
##This is a test script for the main functions used to downscale## 

##Not the full script!!!!## 

 

#Load package(s) needed to perform downscaling: 

library(qmap) 

library(climates) 

library(vegan) 

 

#Read in historical GCM data for BCSD [NGP specific]: 

Hist <- read.csv("N:\\Kirilenko_Coburn_ModelOutput\\Thesis\\Modeled\\GFDL2G\\GFDL2GnorthTmax.csv") 

Hist <- Hist[,2:length(Hist[1,])] 

Hist.bcsd <- as.matrix(Hist)-273.14 

 

#Read in historical GCM data for RDA [North America]: 

Hist <- read.csv("N:\\Kirilenko_Coburn_ModelOutput\\Thesis\\Modeled\\GFDL2G\\GFDL2GnaTmax.csv") 

Hist <- Hist[,2:length(Hist[1,])] 

Hist.rda <- as.matrix(Hist)-273.14 

 

#Interpolate BCSD GCM data: 

DIMs <- dim(Hist.bcsd) 

dim(Hist.bcsd) <- c(DIMs[1],DIMs[2]/2,DIMs[2]/6) 

tx <- seq(1,6,length=120) 

ty <- seq(1,2,length=32) 

x2 <- seq(1,6) 

y2 <- seq(1,2) 

Hist.bcsd <- apply(Hist.bcsd, MARGIN=c(1), FUN=interp2grid, xout=ty,  

yout=tx, xin=y2, yin=x2, type=1) 

Hist.bcsd <- t(Hist.bcsd) 

 

#Import the observed data 

#Remove leap years 

#Remove the row names: 

Data.O <- read.csv("N:\\Kirilenko_Coburn_ModelOutput\\Thesis\\Observations\\TmaxNorth.csv") 

Data.O <- Data.O[,2:length(Data.O[1,])] 

Data.O <- as.matrix(Data.O) 

Date <- seq(as.Date("1950/1/1"), as.Date("1999/12/31"), by = c("day")) 

MDdate <- (format(Date, "%m-%d")) 

rownames(Data.O) <- MDdate 

Data.O <- subset(Data.O, rownames(Data.O) != "02-29") 

rownames(Data.O) <- NULL 

 

#Do quantile mapping and apply function to GCM data: 

q.map <- fitQmap(Data.O, Hist.bcsd, method=c("QUANT"), wet.day=F) 

Validation.bcsd <- doQmap(Hist.bcsd,q.map) 

 

#Do RDA regression and apply function to GCM data 

#Real script separates data by month, but this is just a demo: 

rda.mod <- rda(Data.O,Hist.rda,scale=FALSE) 

Validation.rda <- predict(rda.mod,Hist.rda,type="response") 

 

#Quick check of performance by graphing the distributions of data: 

plot(density(Data.O, na.rm=T), col="black", lwd=2) 

lines(density(Validation.bcsd, na.rm=T), col="green", lwd=2) 

lines(density(Validation.rda, na.rm=T), col="blue", lwd=2) 

 

##END OF SCRIPT 
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