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ABSTRACT

To meet the metrics set forth by the Clean Power Plan, industry can use
gasification or replacement of petroleum with biofuels. However, tars formed in
gasification are difficult to remove, and biofuel-petroleum blends may have issues with
fuel stability, corrosion, and miscibility.

Tar cracking was studied in both a laboratory-scale updraft gasifier, with a
municipal solid waste feedstock, and tar cracking reactor system and in a bench-scale tar
cracking reactor. The laboratory-scale system demonstrated that the optimal temperature
was at least 800°C, that thermal cracking accounted for 85% of tar destruction, and that
metal-based catalysts were the most promising. The bench-scale system, which used
naphthalene as a model tar compound, demonstrated that a powder dolomite catalyst was
most effective, that trona compared similarly to Plum Run dolomite, and that nahcolite
was ineffective.

Hi-pour fuel oil, lo-pour fuel oil, crude jatropha oil, biocrude derived from animal
renderings, biodiesel (refined biocrude), crude palm oil, and ultra-low sulfur diesel were
blended at 75°F, 170°F, and 220°F. Flash points, pour points, and cloud points were
determined for select oils and blends. 304 stainless steel, 316 stainless steel, brass, mild
steel, and 410 stainless steel coupons were immersed in samples of each oil type and
heated to 175°F to test for corrosive activity; these samples were examined every two

weeks for fourteen weeks. Overall, blends containing biocrude and palm oil were

XXi



marginal to unacceptable due to the large proportion of waxes at ambient temperatures;
all other fuel blends were acceptable for use in industry. Significant corrosion was
observed on the brass in biocrude, brass in jatropha, brass in biodiesel, brass in palm, and
brass in lo-pour fuel oil; the most significant corrosion was observed on the mild steel in
biocrude. All samples had corrosion rates of <1 mpy. Overall, the oils had the most

effect on the brass samples.
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CHAPTER I
INTRODUCTION

Recently greenhouse gas emissions have become a greater issue in the United
States, particularly as they relate to climate change. Figure 1-1 shows the breakdown of
greenhouse gas emissions in the United States as of 2014. The vast majority of the
emissions are carbon dioxide (CO>); consequently, the Environmental Protection Agency
(EPA) has proposed the Clean Power Plan to reduce carbon emissions from existing
power plants. Additional regulations have been proposed for both modified and
reconstructed power plants as well as new power plants in separate documents (EPA,
2014d; EPA, 2013). The Clean Power Plan alone will allow the United States to cut
carbon pollution from the power sector by 30% by 2030. In addition, it will cut 54,000-
56,000 tons of PM., 424,000-471,000 tons of SO, and 407,000-428,000 tons of NO>

(EPA, 2014a).
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SOURCE: EPA

Figure 1-1. United States greenhouse gas emissions, current as of 2014 (Web, accessed
2015).

The Clean Power Plan will be finalized by mid-summer 2015. At that point, the
EPA will begin the regulatory process for proposing a federal plan. This plan was
proposed to address the issues arising from climate change, including rising frequency
and intensity of weather disasters, which cost the American economy more than $100
billion in 2012. Other pollutants, such as arsenic and mercury, are heavily regulated at
power plants; however, there is not currently a limit on carbon. The Clean Power Plan
will cut carbon pollution at power plants by 30% from 2005 levels (EPA, 2014c).
Programs most strongly supported under the Clean Power Plan will include those
targeting renewable energy or energy efficiency (EPA, 2014b). Thus, some plants may
choose to meet the new carbon regulations by using gasification technologies or biofuels.

These switches become more feasible in light of the 10- to 15-year window EPA will



provide after the finalization of the Clean Power Plan to plan and achieve reductions in
carbon pollution (EPA, 2014b). Two potential technologies for helping reduce CO-
emissions and meeting the anticipated requirements of the Clean Power Plan are
gasification and the replacement of petroleum with biofuels.

1.1 Gasification

Gasification is a thermo-chemical process which breaks down a carbon-based
feedstock (e.g., coal, biomass, petroleum coke [petcoke], municipal solid wastes [MSW])
into its basic chemical constituents. The most common feedstock is coal, which is
exposed to steam and air or oxygen at high temperature and pressure. Gasification differs
from combustion primarily in that combustion takes place in the presence of excess
oxygen (Oz), while gasification takes place in an O-starved (i.e., reducing) environment
(EERC, 2007c).

Table 1-1 provides a list of reactions important in the gasification process. The
first four reactions are the primary reactions of gasification. The fifth reaction is the
Boudouard reaction. The sixth reaction is the formation of water from hydrogen and
oxygen. The seventh reaction is the formation of carbon dioxide and hydrogen from
elemental carbon and water. The eighth reaction is the water-gas shift reaction, which
converts carbon monoxide (CO) into carbon dioxide (CO>) by splitting water and leaving
hydrogen (Hz). The final three reactions represent possible reactions for the production of

methane.



Table 1-1. Key Reactions in Gasification (after EERC, 2007d)

Reaction Heat of Formation (kJ/mol, 25°C)

1 C+02—CO2 -390
2 C +%0; —» CO -110
3 CO + %0, — CO2 -280
4 C+H0 —- CO+Hy 130
5 C+CO2, —2CO 170
6 H> + %20, — H20 -240
7 C +2H20 — CO2 + 2H> 90

8 CO+HO—-CO2+H:2 -41

9 CO +2H2 —» CH4 + O 36

10 CO+3H2 — CHs+ H20 -210
11 2CO+2H; —» CHs+CO; -250

The generated gas largely consists of CO, Hz, CO, and H20O and is known as
syngas. Syngas has many potential applications: fuel to generate electricity using steam
turbines, production of chemicals, production of liquid or gaseous fuels, and production
of hydrogen. For example, a particularly Hz- and CO-rich syngas stream may be used to
generate liquid fuels through the Fischer-Tropsch reaction (Folkedahl et al., 2011).
Syngas, on average, has a composition of 0-6 wt% tar and oil, 28-40 vol% H,, 16-63
vol% CO, 3-33 vol% COz, 0-10 vol% CHg, 0.2-1 vol% HS, 0-0.1 vol% COS, 0-0.35
vol% NHs, and 0-0.35 vol% HCN (EERC, 2007c). The composition of the syngas
depends on both the feedstock and the gasification technology used.

The recent and projected growth of gasification will have many benefits for the
United States. First, it is more economical to capture and sequester CO> generated
through gasification than CO> generated through combustion (i.e., in a conventional coal-
fired power plant). This increased efficiency is due to the economic advantage of
separating CO- before combustion as opposed to after combustion. In addition,
gasification will help decrease dependency on the foreign oil supply, as many products

made from petroleum can be made from coal through gasification. Furthermore,
4



gasification boasts unusually wide feedstock flexibility: any carbonaceous material can
be gasified. Moreover, gasification systems can approach near-zero emission levels,
meeting the strictest EPA regulations pertaining to sulfur, particulate emissions, mercury,
and NOx removal. Finally, gasification processes can approach a considerably higher
efficiency (60% overall) compared with conventional power plants (40% overall),
excluding CO- capture and sequestration (EERC, 2007c).

Understanding the formation of tar in gasification depends on an understanding of
gasifier technology and fuel types. There are four basic classes of gasifiers: fixed bed,
fluidized bed, entrained flow, and transport. Typically the feedstock must be a solid
(pulverized to 0.5-5 mm), though some entrained flow gasifiers can handle slurry feeds.
Gas outlet temperatures range from 400°C (fixed bed) to 1400°C (entrained flow). For
most gasifiers, the oxidant is either air or O2; a notable exception is the entrained-flow
gasifier, which is almost always O2-blown. Residence time in a gasifier is usually on the
order of seconds, with the exception of the fixed-bed gasifier; here, residence times are
on the order of 15-30 minutes. Ash handling may be either slagging (molten) or non-
slagging. There are many different commercial gasifiers; for example, the Lurgi and
British-Gas Lurgi gasifiers are fixed bed, while the Shell and Prenflo gasifiers are
entrained flow (EERC, 2007a). These various types were developed to gasify a variety of
fuels, including coal, biomass, and municipal solid waste. The type of gasifier and fuel
will impact the amount and types of impurities formed, including the formation of tar.

Since no feedstock is purely carbon and hydrogen, compounds in addition to
those formed via the reactions in Table 1-1 form. Some of the most common compounds

that are formed and which must be removed from syngas are ungasifiable slag, particulate
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matter, tar, H>S, COS, sodium, mercury, and ammonia. These compounds are present in
varying amounts depending on the feedstock and gasification technology used (EERC,
2007b). Particulate matter is removed from syngas using cyclones, scrubbers, baghouses,
or electrostatic precipitators (Encyclopaedia Britannica, 2009). Sulfur can be removed
from the syngas by chemical absorption using amines, physical absorption using Selexol,
and physical absorption using Rectisol (EERC, 2007b). The most common method of
mercury removal was developed by the Eastman Chemical Company and involves
passing the syngas through a bed of activated carbon impregnated with 10-15 wt% sulfur
(USDOE NETL, 2002).

Tars are more difficult to remove. Current technologies, most commonly wet
electrostatic precipitators, wet scrubbers, and wet cyclones, are only capable of removing
40-70% of tars in the case of wet electrostatic precipitators and wet cyclones and require
large equipment sizes and consequently large capital investments. Using water to
condense and remove tars, such as in wet scrubbers, leads to saponification, only 10-25%
removal of tars, additional waste water treatment steps, and energy losses in cooling and
reheating syngas. Tars may be thermally cracked, but this typically involves heating the
syngas above the outlet temperature of the gasifier and thus imposes an energy penalty.
Catalysts, most commonly basic minerals and/or nickel or other transition metals, may be
used, but metal catalysts are expensive and susceptible to poisoning, while basic minerals
are less active in cracking tars and may be friable, eluting out of fluidized and, to a lesser
extent, fixed beds. Remaining tars may cause several problems, including causing the
deterioration of turbine parts in electricity production, increasing maintenance costs

because of the need for additional maintenance cycles for cleaning, and reducing the
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effectiveness of heat exchange equipment. Therefore, additional work on tar destruction
is needed, particularly in the dry cracking of tars (i.e., no additional water added) to
reduce the energy penalty incurred in tar removal.

Given these difficulties in dealing with tars, much recent research has been done
in tar cracking. Some technical issues that current tar cracking research attempts to
address include whether thermal catalytic cracking can be used to treat the quantity and
composition of tars arising from the countercurrent gasification of municipal solid waste
and whether enough fuel value can be recovered from cracked tars to achieve a target
conversion efficiency. Other issues include whether a recuperative heat exchanger within
the cracking reactor can recycle enough thermal energy to help achieve the target
conversion efficiency, whether fouling of heat transfer and catalyst surfaces can be
reduced to levels that minimize maintenance requirements, and whether treated syngas is
sufficiently clean so that maintenance requirements and operating lifetimes of
downstream equipment are not adversely effected (Martin, 2011). Other research has
been done in alternate catalysts, both metal- and mineral-based, to examine whether more
effective catalysts with fewer fouling tendencies and lower costs can be discovered.

1.2 Biofuel Production

Another option to reduce CO> or meet renewable fuel mandates is to use biofuels
for power generation. Since biofuels are considered carbon-neutral fuels, this allows for
the displacement of CO2 emissions associated with fossil fuel-based electricity
generation.

The term biofuels refers both to the plant or animal biomass and refined products

made from the biomass. These products may be combusted for energy, usually heat.
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Biofuels exist in solid, liquid, and gaseous forms, analogous to fossil fuels. Biofuels
provide an effective potential source for meeting future energy demands since they are
extensively available, technology and infrastructure for use are already extant, and liquid
fuel production is possible (Guo, 2014).

Combustion of biofuels, such as wood pellets, waste wood, and woody biomass,
follows the following general equation:

CsH100s + 602 — 6CO2 + 5H20 + heat + light

However, in conventional furnaces, combustion is incomplete; resulting products include
smoke, creosote, carbon monoxide, methane, NOx, and SOx. Nevertheless, wood chips
emit fewer NOx and SOx compounds than coal in combustion (Guo, 2014).

Bioethanol and other liquid biofuels may be produced from vegetative biomass
through fermentation, in which the following series of reactions occur:

(CsH100s)n (starch, cellulose, sugar) + nH20 — nCgH1206
(CsHgOa)n (hemicellulose) + nH20O — nCsH100s
CeH1206 — 2CH3CH20H + 2CO>
CsH1005 —5CH3CH20H + 5CO»

Bioethanol is currently used in gasoline blends or as a gasoline substitute in many
countries (Guo, 2014).

Biodiesel may be derived from several different sources, including “vegetable oil,
animal fats, algal lipids, or waste grease through ‘transesterification’ in the presence of
alcohol and alkaline catalyst” (Guo, 2014). The generic equation is as follows:

Triglyceride + Methanol — Biodiesel



This reaction occurs in the presence of a KOH or NaOH catalyst. Much as in the case of
bioethanol, biodiesel is currently used in diesel blends in many countries (Guo, 2014).

Finally, biomass may be pyrolyzed (heated in the absence of air) to produce bio-
ois, which may be directly burned or upgraded into various fuel oil grades (Guo, 2014).

Biogas can also be generated by the anaerobic digestion of organic wastes; that is,
microorganisms are used to convert organic material into methane by the following
reaction:

CsH1206 — 3CO2 + 3CHa4

In addition, syngas can be generated from gasification or pyrolysis of biomass.
This syngas may then be converted to chemicals or combusted for energy generation
(Guo, 2014).

Of particular interest to this study are power plants operating using fuel oil. Oil is
fairly simple to burn and produces less ash than coal. Fuel oils, derived from petroleum,
are usually atomized before combustion. The combustible fraction of fuel oil is primarily
made up of carbon and hydrogen with smaller amounts of sulfur, nitrogen, oxygen, water,
and sediment. Table 1-2 shows some characteristics of typical liquid fuels, including
gasoline, kerosene, gas oil, and fuel oil (Singer, 1981).

Table 1-2. Characteristics of Liquid Fuels (after Singer, 1981).

° % % % % % HHV Aatzero CO;at zero
APl C H2 S N O, (Btu/lb) excessair excess air
(Ib/108 (%)

Btu)
Gasoline 60 850 148 - 0.1 0.1 20200 746 14.87
Kerosene 45 85.0 14.0 - 05 05 19900 742 15.12
Gas oil 30 850 128 0.8 0.74 0.7 19300 745 15.48
Fuel oil 15 855 115 16 07 0.7 18500 758 15.90




Fuel oil falls into two general categories: distillate and residual. Fuel oils No. 1
and No. 2 are distillate oils, which are derived from vaporization in petroleum refineries.
These are lighter oils; No. 1 is the kerosene cut that boils off right after the cut used for
gasoline and fuels vaporizing pot-type boilers, while No. 2 is a distillate home heating
oil. No. 3-5 fuel oils are residual oils and heavier distillate oils; No. 3 is an archaic
designation for fuels that are now typically designated No. 2, No. 4 is a commercial
heating oil for burners without preheaters, and No. 5 is a residual heating oil which
requires preheating (Perry, 1950). No. 6 fuel oil is a heavy residual oil typically usually
used for steam generation. No. 6 oil contains vanadium, sodium, and sulfur impurities,
which can lead to operating problems, but is cheap. Residual fuel oils are not vaporized
by heating, and these oils are typically black, high viscosity fluids. They require heating
for handling and combustion (Kitto, 2005).

Biofuels are sometimes mixed with petroleum-based oils to increase the
renewable content of the fuel, with a goal of meeting renewable portfolio standards, and
may be a strategy for meeting the proposed Clean Power Plan. They are most commonly
mixed with No. 2 or No. 6 oils; however, issues with fuel stability, corrosion, and
miscibility can occur for some fuel blends. Therefore, miscibility of biofuel and
petroleum blends and corrosivity of biofuels as compared to fuel oils need to be studied.
1.3 Hypotheses

With regards to required work in tar cracking to advance the efficacy of
gasification in lowering CO2 emissions, it was hypothesized that a robust, efficient, and
compact syngas-cleaning system which complemented distributed-scale updraft gasifier

technology could be used to generate a conversion efficiency in excess of 50%. A key
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aspect of this system would be that it was dry, requiring no additional water in the form
of steam. This system was tested in the form of a laboratory-scale updraft gasifier and tar
cracker. In addition, the word “compact” was here defined as fitting within an 8” x 8’ x
20’ envelope for the full-scale system.

In addition, it was hypothesized that nahcolite and trona would be effective
catalysts for cracking tars formed in updraft gasification. Here, “effective” was defined as
75% conversion of tars to syngas and small hydrocarbons. Nahcolite and trona were
tested using a bench-scale, dry tar cracking reactor and naphthalene as a model tar
compound to determine whether they would prove effective catalysts for cracking tars
formed in updraft gasification (primary tars, typically simple 1-2 benzene ring
structures), at least as guard bed materials which could protect the transition metal
catalysts used for additional cracking of tars to syngas. This testing was done in support
of the aforementioned updraft gasifier and tar cracking work to further examine the
efficacy of mineral catalysts.

With regards to required work in biofuels to advance their efficacy in lowering
COz emissions, it was hypothesized that no 50:50 blend of biofuel and petroleum-based
fuels would present a problem at 75°F, 170°F, or 220°F, all at atmospheric pressure. For
this work, “problem” was defined as any event which would be detrimental if observed in
industry, including but not limited to the formation of gel or sludge, excessive settling of
waxes out of solution, incomplete miscibility, smoking at higher temperatures, and semi-
polymerization of oil.

It was also hypothesized that no biofuel or petroleum-based fuel would prove

significantly corrosive to a specific set of metal samples, comprised of samples of 316
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stainless steel, 304 stainless steel, 410 stainless steel, brass, and mild steel. For this work,
“significantly corrosive” was defined as having a corrosion rate in excess of 0.5 mils per
year (mpy).

In addition, it was hypothesized that it would be possible to determine the pour
point and cloud point of biofuels using simple methods. In this case, “simple methods”
was defined as those testing methods which are accurate, precise, repeatable, simple to
execute, and, preferably, may be performed in the field to confirm fuel properties before

accepting them at the plant.
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CHAPTER II
LITERATURE REVIEW — TAR CRACKING

2.1 World Energy and Liquid Fuel Overview

It is commonly accepted that global energy demands will continue to rise over the
coming decades. With the continuing overall economic growth in underdeveloped and
undeveloped countries, these countries will demand more and more energy. Specifically,
electricity generation is projected to rise to more than triple the generation level in 1990
by the year 2035, and overall total energy consumption is expected to more than double
in the same time period (as shown in Figure 2-1).

Figure 67. Growth in world electric power generation and total energy consumption, 1990-2035
(index, 1990= 1)
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Figure 2-1. Expected growth in world electric power generation and total energy
consumption, 1990-2035 (US EIA, 2010a).
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Increasing electricity demand will be met mainly by electricity from coal.
According to Figure 2-2, coal currently supplies about 42% of the electricity generated,
and this share is projected to rise slightly to 43% by 2035. This outlook, of course, bars
any major global greenhouse gas policies and assumes that the price of oil and natural gas
will remain sufficiently high to make coal the cheapest energy source available. This is

especially true in developing coal-rich countries such as China and India.

Figure 70. World net electricity generation by fuel, 2007-2035
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Figure 2-2. World net electricity generation by fuel, 2007-2035 (US EIA, 2010a).

w

Over the next several decades, the proportion of renewable energy used in energy
generation is expected to rise. Renewable energy sources include hydropower,
geothermal, solar, and wind. Municipal solid waste and biomass are also included as
renewable resources. Although biomass gives off CO2 when it is burned, it is commonly

accepted that this carbon is returned to plant life in growing the next crops for biomass.
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Figure 2-3 shows the expected overall usage of fuel sources in energy generation. Figure
2-4 shows the breakdown of different sources in electricity generation; note that
renewable sources are expected to make an ever-increasing contribution to electricity
generation.

Figure 16. World marketed energy use by fuel type, 1990-2035
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Figure 2-3. World marketed energy use by fuel type, 1990-2035 (US EIA, 2010c).
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Figure 18. World electricity generation by fuel, 2007-2035
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Figure 2-4. World electricity generation by fuel, 2007-2035 (US EIA, 2010c).

Combustion of coal for electricity generation is not the only use for coal. Coal
may also be indirectly liquefied to produce synthesis gas (a mixture of Hz, CO, COy,
H>0, and possibly CH4) or directly liquefied to produce a liquid hydrocarbon mixture.
Overall liquid fuel consumption is also projected to rise, largely as a consequence of the
aforementioned economic development and increasing prosperity around the world. The
use of coal for liquid fuels in these areas may become more important, especially if the
price of oil remains high and production remains centralized in politically unstable
regions of the world.

Figure 2-5 shows the expected unconventional liquid fuel production in 2035 as a
function of projected oil prices. These unconventional liquids include currently

undeveloped/developing oil products, gas-to-liquids, coal-to-liquids, and biofuels.
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Figure 30. World production of unconventional liquid fuels in three cases, 2007 and 2035
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Figure 2-5. World production of unconventional liquid fuels in three cases, 2007 and
2035 (US EIA, 2010b).

The most well-known liquid fuel currently produced from biomass is ethanol.
However, biomass, like coal, may be gasified to produce synthesis gas (henceforth,
‘syngas’), from which many chemical products may be produced, including liquid fuels
through the Fischer-Tropsch process, synthetic natural gas by synthesis over a nickel-
based catalyst, hydrogen for electricity generation in turbines with combined cycle, or
dimethyl ether. Municipal solid waste may be used in similar applications.

2.2 Gasification and Tar Production

The most common methods to obtain energy from coal, biomass, and municipal
solid wastes are through combustion and gasification. Combustion involves feeding the
fuel and excess air to a furnace at high temperatures to produce a flue gas primarily

composed of water and CO.. This flue gas is then used to generate energy by heating
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water into steam, then using the steam to operate turbines. Gasification involves feeding
the fuel and either air or pure oxygen along with steam to a gasifier at somewhat lower
temperatures. The main difference between gasification and combustion is that in
gasification air is fed at sub-stoichiometric ratios, so combustion reactions do not proceed
to completion. That is, instead of producing a flue gas that is primarily composed of CO>
and H>0, gasification produces a syngas composed primarily of CO and H> along with
smaller amounts of CO2, H20, and CHa.

There are some difficulties in gasifying coal, biomass, and municipal solid wastes.
Due to the impurities present in coal, biomass, and municipal solid waste, the resulting
gases may require additional processing to remove impurities. Gasifying these sources
produces particulate matter, alkali metals (e.g., Na and K compounds), heavy metals and
trace elements (e.g., mercury and lead), NHs, H,S, HCI, and tars. These compounds need
to be removed before the syngas can be used. Particulate matter can be removed by
filtering or scrubbing. Alkali metals can be removed by cooling, absorption,
condensation, or filtering. Heavy metals and trace elements are typically removed by
condensation, filtering, or using guard beds (especially in the case of Hg with activated
carbon). NHs can be removed by scrubbing; if it is later converted to NOx, it may be
removed using selective catalytic reduction. H2S and HCI can be removed by using
limestone or dolomite, zinc-based guard beds before more sulfur-sensitive beds,
scrubbing, or adsorption. Later shifting of syngas using the water-gas shift reaction may
lead to the formation of CO2, which can be captured using chemisorption or

physisorption methods.
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However, tars present a large challenge for cleaning. The precise definition of tars

is a subject for much debate, but for this dissertation, tar will be defined as follows: “the

organics produced under thermal or partial-oxidation regimes (gasification) of any

organic material are called “tars” and are generally assumed to be largely aromatic”

(Milne et al., 1998). Generally tars consist of five classes. Table 2-1 summarizes these tar

classes, their properties, and representative compounds.

Table 2-1. List of tar compounds that are considered for different tar classes (after Li and

Suzuki, 2009).

Tar Class name Property Representative compounds
class
1 GC- Very heavy tars, cannot be Determined by subtracting the
undetectable detected by GC GC-detectable tar fraction from
the total gravimetric tar
2 Heterocyclic Tars containing hetero Pyridine, phenol, cresols,
aromatics atoms; highly water soluble  quinoline, isoquinoline,
compounds dibenzophenol
3 Light Usually light hydrocarbons ~ Toluene, ethylbenzene, xylenes,
aromatic (1  with single ring; do not pose  styrene
ring) a problem regarding
condensability and solubility
4 Light PAH 2 and 3 ring compounds; Indene, naphthalene,
compounds  condense at low temperature  methylnaphthalene, biphenyl,
(2-3rings)  evenat very low acenaphthalene, fluorine,
concentration phenanthrene, anthracene
5 Heavy PAH Larger than 3-ring, these Fluoranthene, pyrene, chrysene,
compounds  compounds condense at perylene, coronene
(4-7rings)  high-temperatures at low

concentrations

Tars must be removed or converted because they lead to filter plugging; internal
condensation and deposition; and damage caused by impingement, especially in turbines
when the tar molecules impact on the turbine blades. Typical methods for dealing with tar

formation are wet and dry mechanical methods; thermal cracking; and catalytic cracking
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(Han and Kim, 2008; Gerber, 2007; Li and Suzuki, 2009; Xu et al., 2010; Anis and
Zainal, 2011; Siedlecki et al., 2011).

Gasifier technology also plays a role in which tars are produced and in what
amounts. Most tars are produced in fixed bed gasifiers, which are operated in two basic
but distinct modes: downdraft and updraft. Downdraft gasifiers tend to produce a very
clean syngas, with a possibility of a tar concentration less than 500 mg / Nm?3. However,
it is difficult to scale up a downdraft gasifier. In an updraft gasifier, tar yields are much
higher since the tar passes through a relatively cold drying region before exiting the
gasifier, and concentrations may be up to 100 g / m*. However, since the thermal
efficiency of the updraft gasifier is far superior to the downdraft gasifier, it is beneficial
to crack the tars (Siedlecki et al., 2011). In addition, different tars are formed in each
gasifier. Downdraft gasifier tars tend to consist of tertiary tars at low levels, while
primary tars tend to dominate the tar composition produced by updraft gasifiers (Milne et
al., 1998).

The most common methods for tar cleaning using dry mechanical methods are
cyclones, particle separators, fabric and ceramic filters, activated carbon adsorbers, and
sand bed filters (Anis and Zainal, 2011). Occasionally the ceramic filtration methods for
processing tar are combined with a catalytic element such as nickel, which has known
tar-cracking properties. Loadings as low as 1 wt% nickel on a ceramic filter have
demonstrated complete conversion of naphthalene to syngas at temperatures as low as
800°C (Zhao et al., 2000). In addition, Ni and Mg loaded onto alumina discs may almost
completely remove naphthalene and benzene (model tars) at 900°C, although it would be

better to run at 850°C; with that in mind, conversions of 99.0% were achieved at 850°C,
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but conversions of only 77% were achieved at 800°C (Ma et al., 2005). Nickel supported
on a ceramic candle filter is capable of operating at temperatures up to 850°C and
removing 98.5% of naphthalene (model tar compound) from an initial concentration of
7.8 g/ Nm? (Simeone et al., 2010).

The most common methods for tar cleaning using wet mechanical methods are
wet electrostatic precipitators, wet scrubbers, and wet cyclones. These are the most
common methods of removing tars from syngas and are widely applied in industry. Wet
electrostatic precipitators are capable of removing 40-70% of tars, but achieving this
removal requires a large equipment size and consequently a large capital investment. Wet
scrubbers use water to condense and remove tars, but have several key disadvantages,
including saponification, poor solubility of hydrocarbons (10-25% removal), waste water
treatment, and energy losses in cooling and reheating syngas. Wet cyclones are capable
of removing 30-70% of tars, but suffer from many of the same disadvantages as wet
electrostatic precipitators and wet scrubbers (Anis and Zainal, 2011).

For updraft gasifiers, since the potential energy of tars is significant, it is more
advantageous to crack tars than to remove them using mechanical methods (Virginie et
al., 2010b). Cracking tars increases the overall energy of the syngas. There are two
primary methods of tar cracking, as mentioned earlier: thermal and catalytic. Thermal
cracking of tars has been studied for a very long time; the earliest conclusive reference to
thermal cracking was published in 1935 and refers to even earlier thermal cracking work
(Frolich and Wieszevich, 1935). Thermal cracking of tars usually takes place at
temperatures above 1000°C; however, some studies have taken place at temperatures as

low as 700°C (Han and Kim, 2008; Anis and Zainal, 2011). Results of up to 99%
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conversion have been observed in the presence of excess air, though recent results
indicate tar reduction of 78% at 600°C (Phuphuakrat et al., 2010). However, this involves
heating the gas above gasification temperatures, decreasing the overall thermal
efficiency. Since the process is less efficient, it has been studied less in recent years.
Much of the recent research has focused on kinetics of thermal cracking and modeling
work, especially of model compounds with occasional studies of real gasification tars
(Nunn et al., 1985). For example, thermal decomposition of toluene at atmospheric
pressure and temperatures ranging from 700-950°C has been modeled (Taralas et al.,
2003; McCoy, 1996). Additional research has been published discussing the use of NiO
as an oxygen carrier in chemical looping combustion to remove tars (Mendiara et al.,
2011). Moreover, tar conversion tends to form products such as methane, ethylene,
propylene, cyclopentene, cyclopentadiene, benzene, and toluene as opposed to more
synthesis gas, especially at lower temperatures (Anis and Zainal, 2011).

In order to form more synthesis gas at lower temperatures (typically 750-900°C),
it is necessary to use catalytic cracking methods. The most common catalysts used are
basic minerals, iron, nickel, and rhodium (Gerber, 2007; Xu et al., 2010; Anis and Zainal,
2011).

2.3 Metal-based Catalysts

Nickel catalysts are among the most commonly studied catalysts for tar cracking.
In addition to the aforementioned work combining the nickel catalysts with filters in
mechanical separation, nickel has been supported on alumina, dolomite, olivine, and
biomass char. The decomposition of synthetic tar and ammonia over Ni monolith catalyst

has been studied; it was found that complete conversion was only possible above 850°C
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(Pfeifer and Hofbauer, 2008). The cracking of tars from waste polyethylene over a
NiO/Al203 catalyst was studied, and it was found that the highest conversions occurred at
900°C (He et al., 2009). The effects of different supports (including MgO, Al203, SiO,
and NaY [zeolites]) on the activity of Ni in coal pyrolysis was studied, and it was
determined that MgO was the best support (Liu, 2009). Char and char-supported nickel
catalysts have also been studied; although it was determined that char has some catalytic
activity in tar cracking, this may be due to the presence of trace elements such as Mg and
Fe in the char, which are known to be catalytically active (Wang et al., 2011). The effects
of nickel catalysts supported on brown coal char and Al.O3 were compared; coal char
may produce a more stable catalyst long-term than the more conventional alumina
support (Xiao et al., 2011). The cracking of tars produced in gasifying pig compost over
Ni/Al203 catalysts was studied; it was determined that the catalyst led to complete
cracking of tars into Hz, CO, CO2, and a small amount of residual carbon (Zhang et al.,
2011).

Unsupported nickel catalysts have also been studied recently, including recent
studies of Raney nickel in the gasification of activated sludge (Afif et al., 2011). These
catalysts are promising because of their increased surface area.

Nickel catalysts have also been promoted with a variety of metals. The
gasification of waste wood for hydrogen production over a Ni-CaO/Al>O3 catalyst was
studied; this catalyst was able to produce a nearly tar-free syngas and H, concentration
around 57% (Kawamoto et al., 2009). A trimetallic catalyst consisting of Ni, La, and Fe
supported on Al,O3 achieved 99% tar conversion at 800°C and did not exhibit any signs

of coking (Li et al., 2009b). A Ni-Cu-Zn-Al catalyst was prepared by co-precipitation
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(Kan et al., 2010). The decomposition of 1-methylnaphthalene over a NiMo catalyst was
studied; developed models could very nearly predict experimental results (Dou et al.,
2008). The pyrolysis of plant-based biomass with Ni-Mo catalyst was studied; it was
determined that the overall temperature could be lowered while maintaining an
acceptable tar production level (Hao et al., 2010). It was also found that a commercially-
available zirconia-promoted Ni catalyst was more active than dolomite for tar cracking
(Yoon et al., 2010). The reforming of toluene and naphthalene over Ni/MgO-Al,O3
catalysts was studied; it was determined that not only were the tar compounds fully
cracked to small molecules, the catalyst showed relatively high sulfur tolerance (Yue et
al., 2010). Similar studies were done using 1-methylnaphthalene as a model tar
compound (Yang et al., 2010). Other research has determined that the most effective
catalysts for gasifying coke were Fe/Ni/other metals in a 35/55/10 atomic ratio (Zhao et
al., 2010). The gasification of waste tires over a nickel-ceria catalyst has been studied; it
was determined that when 5% CeO, was added to the catalyst, a modest increase in gas
and Hz yield was obtained (Elbaba et al., 2011). The addition of ceria and zirconia to Ni
catalysts was studied; it was determined that, at 800°C, 80% of 1-methylnaphthalene and
99% of toluene were converted to small molecules while avoiding coking issues (Lamacz
et al., 2009; Lamacz et al., 2010).

Although nickel catalysts are effective at cracking tars and show some reforming
activity which increases the H2 and CO content of the syngas, they are not without their
drawbacks. Ni catalysts are easily poisoned by sulfur and suffer from coking issues. In

addition, Ni is a toxic metal (Virginie, 2010a).
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A common way to protect Ni from sulfur poisoning is to place a guard bed of
dolomite in front of a bed of Ni catalyst. This configuration has been used to obtain
maximum Ha concentrations of 52% and H> / CO ratios between 1.87 and 4.45 (Lv et al.,
2007). This configuration has also been used in the co-gasification of coal and wastes to
obtained Hz concentrations greater than 50% (Pinto et al., 2009).

Rhodium catalysts are not commonly studied, partly because of the expense of
rhodium. Ideally catalysts would be relatively cheap. However, rhodium-perovskite (a La
compound) catalysts supported on Al,O3 have been studied. It was determined that these
catalysts are resistant to coking and able to convert tars into syngas with only small
amounts of CH4 and CO, (Ammendola et al., 2009). In addition, it was found that the
activity of Rh-perovskite catalysts was superior to dolomite, olivine, and Ni (Ammendola
etal., 2010).

Iron-mixed oxides catalysts are less commonly studied as well, partly because
most studies focus on attempting to harness the catalytic properties of several catalysts
(such as by supporting Ni on dolomite). Nevertheless, the decomposition of tars produced
in gasification of cedar sawdust over a FesO4 catalyst has been studied. It was found that
the production of H2 and CO> increased while the production of CO decreased because Fe
also catalyzes the water-gas shift reaction (Uddin et al., 2008).The reforming of
naphthalene over Fe supported on Al2O3 and ZrO, was also studied. It was determined
that by adding a small amount of CuO, the overall cracking properties were increased
(Noichi et al., 2010). (Coincidently, this is a similar composition to several well-

documented Fischer-Tropsch catalysts.) Iron-based catalysts using biomass tars created in
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a fluidized bed have been studied; evidence of tar-cracking properties was observed
(Nemanova et al., 2010).
2.4 Mineral-based Catalysts

Basic mineral catalysts include dolomite, olivine, and calcite. Dolomite is a
carbonate of calcium and magnesium and is usually represented as CaMg(COz)2 or
CaC03-MgCO:s. It is typically used in the concrete industry as an aggregate, in the
production of magnesium, as a buffer in saltwater aquariums, and as a flux for smelting
iron and steel. Olivine is a carbonate of iron and silica and is usually represented as
(Mg,Fe)2SiOa. It is a solid solution of foresterite (Mg2SiO4) and fayalite (Fe2SiOa)
(Swierczynski, 2006). It is used in the aluminum foundry industry and may be used to
sequester CO». Calcite is a carbonate of calcium and is represented by the chemical
formula CaCO:s. Its typical uses are in optical applications.

Much of the current work using dolomite involves comparing other catalysts (Ni,
olivine, etc.) to the performance of dolomite (Kim et al., 2011; Yoon et al., 2010;
Ruoppolo et al., 2010). However, dolomite is still studied for its own catalytic merits
occasionally. The cracking of tars produced in olive oil waste gasification over dolomite
was studied; catalyzing with dolomite led to a large increase in hydrogen concentration
and activation energies and pre-exponential factors were determined for overall tar
cracking (Encinar et al., 2008). The effect of dolomite in cracking tars formed in pine
sawdust gasification was studied, and the maximum tar conversion achieved was 66% at
750°C (Gusta, 2008). The kinetics of tar cracking over dolomite were studied, and it was
found that a first-order combustion model fit the data obtained well (Li et al., 2009a). The

effect of Chinese dolomites in gasifying birch was studied. It was determined that not all
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dolomites demonstrate equal catalytic properties; while four performed acceptably (<
60% conversion), Anhui dolomite did not exhibit any catalytic activity (10-20%
conversion) (Yu et al., 2009). The pyrolysis of MSW over dolomite was studied, and it
was determined that Ho concentration more than doubled in the presence of the catalyst
(He et al., 2010). However, dolomite is very friable and tends to elute from fluidized
beds.

Olivine catalysts have been studied in methane, toluene, and naphthalene
reforming. It was found that, while the catalysts were able to reform naphthalene, they
were unable to reform methane at the tested conditions (Kuhn et al., 2008b). The
gasification of plastic wastes with olivine as a catalyst has been studied; it was
determined that the tar concentration dropped to undetectable levels and the H>
concentration tripled over uncatalyzed gasification (Mastellone and Arena, 2008). The
gasification of plastic wastes with olivine as tar-cracking catalyst was studied, and it was
found that tars were cracked to compounds <CHwm (Arena et al., 2009). Biomass
gasification over iron-enhanced olivine was examined; it was determined that adding iron
increased hydrogen and gas yield and decreased tar as compared to olivine alone
(Rapagna et al., 2010). Toluene reforming over iron-enhanced olivine led to 91%
conversion at 825°C, which was three times higher than olivine alone (Virginie et al.,
2010a; Virginie et al., 2010b). Gasification of mixed plastic wastes over olivine has been
studied, but it was determined that the process is only economically viable for low-grade
plastic wastes at this point in time (Arena et al., 2011). The cracking of biomass-derived
tars over olivine at 720-900°C and 1-5 bars was studied; it was determined that higher

temperatures had a greater influence on cracking than pressure (Kitzler et al., 2011). The
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cracking of 1-methylnaphthalene in a synthetic syngas mixture over olivine at 850°C was
studied. The bed setup was similar to a chemical looping combustion bed; however, it
was found that olivine was carrying very little oxygen, and most of the activity (75%
conversion) was likely due to the catalytic properties of olivine (Koppatz et al., 2011).
Olivine has lower activity than dolomite partly due to its smaller surface area, but it has
better mechanical properties.

One of the most common methods of studying the catalytic activity of olivine is to
compare its activity with the well-documented activity of dolomite. The catalytic activity
of olivine and dolomite was compared for MSW gasification. It was found that the
activity of olivine was almost completely inhibited when feedstocks were changed,
making dolomite the superior catalyst in this application (Arena et al., 2010).

Coal gasification with CaO as bed material has been studied, but it was
determined that CaO is ineffective as a steam-reforming catalyst for tar cracking at the
relatively low temperatures (600-670°C) required for CO2 removal (Corella et al.,
2008b). Corella et al. observed this result for reacted and coked catalyst and found that
coking occurred very quickly, within one hour of startup; fresh catalyst reduced this
issue, and they found that high CaO/coal ratios are required for technical feasibility
(Corella et al., 2008b). The catalytic activity of CaO, which is the calcined form of
CaCOs, was studied, and it was discovered that not only does CaO exhibit catalytic
cracking properties, but it can also be used in CO capture (Widyawati et al., 2011).

Tar-cracking and Cl-removing abilities of limestone (CaO) and dolomite were
studied, and it was determined that limestone has a very low tolerance for chlorine

(Corella et al., 2008a). The catalytic activity of dolomite, olivine, and Ni was compared,
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and it was found that activity declined in the following order: Ni > dolomite > olivine
(Miccio et al., 2009). The catalytic activity of dolomite, olivine, and calcite have been
compared for the steam reforming of phenol; it was found that olivine was more active at
lower temperatures (650°C) and dolomite was more effective at high temperatures
(800°C), while the activity of calcite was nearly constant (Constantinou et al., 2010).
2.5 Combinations of Metal- and Mineral-based Catalysts

Impregnating basic minerals, especially dolomite and olivine, with Ni has become
increasingly prominent over the last several years. The catalytic activity of Ni-
CeOq/olivine in decomposing benzene and toluene was studied, and it was found that
adding ceria increased activity and coking resistance (Zhang et al., 2007). The
decomposition of naphthalene over Ni/olivine was studied, and it was determined that the
catalyst was resistant to coking in the presence of excess steam (Kuhn et al., 2008a). The
steam reforming of toluene over Ni/olivine and olivine was studied; the research group
found that significantly lower temperatures could be used with Ni/olivine, discovered the
presence of a NiO-MgO solid solution after calcining, and were able to determine kinetic
data including the activation energy (Swierczynski et al., 2007; Swierczynski et al.,
2008). Coconut shell gasification over a Ni/dolomite catalyst was studied, and it was
determined that tar was reduced from 19.55% without catalyst to 1.4% with catalyst
(Chaiprasert and Vitidsant, 2009). Simultaneous tar cracking and CO> capture using a
Ni/dolomite catalyst was studied, and it was found that, once the catalyst was saturated
with CO2 from sorption, the catalytic activity for tar cracking significantly decreased (Di
Felice, 2009). Ni/dolomite and Ni-WOzs/dolomite catalysts were studied for the

gasification of bamboo; it was found that both catalysts had acceptable activity, but the
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Ni-WOz/dolomite catalyst was superior (Ketcong, 2009). The catalytic steam gasification
of biomass over olivine catalysts, some of which were Ni-impregnated, was studied. The
research group found that adding Ni to olivine led to a modest increase in gas content as
compared to olivine alone. In addition, they determined that iron oxide migrates to the
catalyst surface and, when Ni is present, forms a Fe-Ni alloy which increases the catalytic
activity (Michel, 2010).

2.6 Other Catalysts

Several other catalysts have been studied to a lesser degree with varied results.
These include biomass char, activated carbon, ilmenite, limonite, platinum group metals,
mixed rare earth oxides, and tungsten (Sun et al., 2011; Chaiwat et al., 2010; Abu EI-Rub
et al., 2008; Kuzentsov, 2009; Mun et al., 2011; Min et al., 2011; Li et al., 2007; Magrini
etal., 2011; Adusumilli, 2009; Pansare et al., 2008).

However, there are additional basic minerals which may have catalytic properties
for cracking gasification tars. Based on previous studies, additional materials that may
have cracking properties include nahcolite and trona (Young and Timpe, 1995).
Nahcolite is the technical name for sodium bicarbonate and has the chemical formula
NaHCO:s. It may be purified to form baking soda. Trona is a dicarbonate of sodium and is
usually represented as NasH(CO3)2-2H-0. It is the primary source of sodium carbonate
(baking soda) in the United States.

References to trona and nahcolite as cracking catalysts are not plentiful in the
literature. Trona was used as a biomass gasification catalyst once. Although it produced
better results than using no catalyst at all, the performance was inferior to the reference

catalysts sodium bicarbonate and potassium carbonate (Mudge et al., 1981). In a recent
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review, the use of nahcolite in HCI sorption from flue gases was mentioned (Ohtsuka et
al., 2009).

There are also very few references to Na-based oxide catalysts. Sodium oxides
would be the calcined form of nahcolite and trona. Nevertheless, the gasification of coal
over limestone, sodium carbonate, and dolomite was studied, and it was determined that
sodium carbonate was a better catalyst than either limestone or dolomite and sodium
carbonate was capable of increasing carbon conversion to 81% (without catalyst, carbon
conversion was 69%) (Zhou et al., 2007). The effect of solid additives, including
Na>CO3, K2CO3, CaCO3z, MgCOs, Fe203, and CaSOs, on the pyrolysis of bituminous coal
was studied, and it was determined that Na.COgs reduced tars to their lowest observed
levels. However, the research group had mechanically combined pure Na>COs3 with the
coal prior to combustion, and it is unclear whether the mineral form of nahcolite or trona
would have better tar-cracking properties (Ahmad et al., 2009). Still, these results are
promising.

2.7 Summary

Based on the literature review and the relative paucity of work done in sodium-
based catalysts, nahcolite and trona were selected as potential tar-cracking catalysts. For
activity comparison, the well-known catalysts dolomite and olivine were selected. In
addition, a Ni-based catalyst —- NREL 60 — was selected for testing to examine a catalyst

with high potential for tar cracking.
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CHAPTER IlI
EXPERIMENTAL METHODS AND MATERIALS — TAR CRACKING

Two different systems were used to carry out the gasification and tar cracking
experiments. The first system was a laboratory-scale updraft gasifier and tar cracking
reactor; the results observed on the first system drove the development of a second
system, which was a bench-scale tar cracking reactor. These two systems are treated
separately where practicable.

3.1 Laboratory-Scale Updraft Gasifier and Tar Cracking Reactor

The scope of work of the laboratory-scale system was selected to address the
following:

1.) Demonstrate that the catalytic gas cleanup system can enable conversion
efficiencies in excess of 50%; and

2.) Show that such a system can comply with maximum size limitations, in this case,
an 8’ x 8’ x 20’ envelope, for the full-scale system.

3.) Identify a range of conditions for bench-scale tar cracking system tests.

An overall schematic of such a system is shown in Figure 3-1. For this work, the
gasifier and tar cracking reactor were built at laboratory scale as opposed to the pilot

scale of the full system.
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Figure 3-1. Schematic of updraft gasifier and thermo-catalytic tar cracking reactor.

The laboratory-scale gasifier and its associated hopper had a 4 inch O.D., and the
system (gasifier and hopper together) was approximately 72 inches tall. The unit was
built with 304 stainless steel and lined with a ceramic sleeve (3 inch 1.D.). The air-blown
gasifier was capable of handling gravity-fed fuel feed rates of 0.25-1 kg/h and
countercurrent air flow rates of 4-10 slpm. Operating pressures were 0.25-0.75 psig. The
gasifier was electrically heated maintain the desired test temperature (oxidation [up to
1500°C] at the bottom of the fuel bed to ~260°C at the outlet), counteracting the heat loss
due to the system’s small size (Martin and Dunham, 2013).

Generated syngas was sent to the catalyst oven through heated lines, maintained
at 550°F, which were constructed of insulated 0.25 inch O.D. 304 stainless steel tubing.
The catalyst oven was heated to 600-900°C, depending on test requirements, using an

electric furnace. Tar-laden syngas was fed into the oven and split into four streams; three
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of the pathways contained catalyst beds, and the fourth was empty. This allowed three
catalysts to be simultaneously tested and compared to the effects of thermal cracking
alone, which was evaluated by the empty bed line. The catalyst bed reactors were built
from 304 stainless steel tubing and were 0.5 to 1 inch in diameter. Bed heights varied
from 0.5 to 8 inches depending on the particle size of the catalyst evaluated. The reactor
diameter and bed height were manipulated to achieve target space velocities of 4000-
5000 hrt. Syngas flowed downward through the catalyst beds, which were supported on
stainless steel mesh discs (Martin and Dunham, 2013).

After the catalytic oven, tars (here defined as organics that condensed at room
temperature [~20°C]) were sampled in 0.25 inch O.D., 150 mm long 304 stainless steel
tubes packed with glass wool and a disc of quartz filter media. The tubes were weighed
before each test, exposed to a known volume of gas, dried to remove moisture, and
reweighed. A typical eight-hour test would include the exposure of two sets of tar-
sampling tubes, each of which were exposed for 20-30 minutes. Tar loading was
calculated from the weight gain and measured gas volume (Martin and Dunham, 2013).

The gas then entered a series of ice condensers (0°C) to remove moisture and
condensable hydrocarbons. The gas was then passed through a coalescing filter and
backup thimble filter to remove any aerosols. Cleaned gas was passed through a mass
flow meter and a rotameter to measure and control gas flow through each pathway. Each
gas stream could be routed to a laser gas analyzer (LGA) for further analysis; the LGA
was capable of identifying and measuring the concentration of CO, H20, Ha, O2, N2, CO»,
CHa, and CxHy (interpreted as equivalent volume of propane).

A block diagram of this system is shown in Figure 3-2.
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Figure 3-2. Block flow diagram of countercurrent gasifier and thermo-catalytic tar
cracking reactor.

A fuel mixture was developed to simulate a municipal solid waste stream. Clean
raw materials were used to reduce variability associated with uncontrolled components in
the fuel, which would be present in actual waste products. While there is no single
representative waste composition, for this set of experiments, the formulation was based
on findings at the Force Provider Training Module in Fort Polk, Louisiana (Ruppert,
2004). For all tests, a fuel comprised of 40% cardboard, 40% saturated soybeans, 9.5%
polyethylene, 9.5% polystyrene, and 1% polyvinylchloride was fed to the gasifier.
Cardboard was selected to represent paper-based wastes, and soybeans were selected to
represent food-based wastes (providing moisture, sulfur, and nitrogen). Among the
plastics, polyethylene was selected because of its prevalence in packaging wastes,
polystyrene was selected because of its inclusion of the aromatic ring structure which is a
fundamental monomer in many tars, and polyvinylchloride was selected because of its
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high chlorine concentration. Figure 3-3 shows a photographic representation of this raw
feed mixture (soybeans are dry in this image), and Table 3-1 gives the proximate/ultimate

analysis of the feed on an as-fired basis.

Figure 3. ier.

Table 3-1. Proximate/Ultimate Analysis of Gasifier Feed, as-fired

Proximate Analysis

Moisture, % 28.2
Volatiles and Fixed Carbon, %  69.8
Ash, % 2.0
Ultimate Analysis

C, % 43.2
H, % 8.6
N, % 11
S, % 0.1
Cl, % 0.3
0, % (by difference) 44.6
Heating Value, kJ/kg 19,100

Figure 3-4 shows the laboratory-scale gasifier and tar cracking system, and Figure

3-5 shows examples of the tar collected on the filter media.
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Figure 3-5. Tars collected on filter media.

The laboratory-scale system was used to perform a screening study of various
catalysts, which were selected based on literature review, vendor recommendations, and
EERC and NREL expertise. Table 3-2 shows the catalysts used in the screening study.
Temperatures of the catalyst oven, in which tars were cracked, ranged from 600°C to
900°C. Condensed tars in the ice bath and on the final filter were weighed, and samples
were collected before and after the tar cracker to determine the destruction efficiency

(Martin, 2013).
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Table 3-2. Catalyst Candidates.

Category Catalyst
Natural Materials (guard candidates) Dolomite
Calcium carbonate
Olivine
Activated Carbon
Generic Metals-Based (commercially available) Pt-Alumina

Automotive Oxidation

Woodstove Oxidation
Proprietary Metals-Based (commercially available)  Tar Cracking, Vendors A-C

Reforming, Vendor A
Laboratory-Developed NREL 60

EERC

3.2 Bench-Scale Tar Cracking Reactor

The bench-scale tar cracking reactor system was a tubular reactor, approximately
12 inches in length with an O.D. of 0.5 inches, with a six-inch single-point thermocouple
running axially from the top of the reactor to approximately the center. This reactor was
surrounded by ceramic heaters and a layer of insulation. The reactor and heaters were
contained in a heated cabinet to prevent the naphthalene and cracked product vapors from
condensing.

Synthetic syngas was made by blending a mixture of purified hydrogen, nitrogen,
carbon monoxide, and carbon dioxide. The total flow rate used was 0.5 slpm, and the
flow rate of each individual gas was as follows: 0.09 slpm H2 (18%), 0.10 slpm CO
(20%), and 0.31 slpm N2 (62%). These concentrations were selected to most accurately
replicate conditions seen in air-blown gasification, with the exception of the omission of
COg; this was done to avoid condensation issues in the impinger. Gases were fed from
pressurized cylinders and stepped down to 75 psig through a regulator. They were then
fed through individual stainless steel lines to Porter 200 series mass flow controllers.
These controllers were metered using LabView software to set the desired flow rates.
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After the mass flow controllers, the gases then were combined in a stainless steel
manifold.

The combined syngas was fed into a permeation source containing naphthalene.
This source was controlled using a four-way valve; in the “on” position, gas flow passed
through the permeation source, sweeping naphthalene on its way past, while in the “off”
position, the gas flow bypassed the permeation source. The amount of naphthalene
collected in the syngas was controlled by controlling the temperature of the permeation
source. The source, valve, and associated tubing were all contained in a heating mantle
which was heated to the required temperature for the desired naphthalene concentration.
The internal temperature of the permeation source was measured using a K-type
thermocouple and recorded by the LabView software.

All tests were performed in a BTRS-Jr autoclave heated to 750°, 800°, 850°, or
900°C, depending on the experimental run. Tests were conducted at atmospheric
pressure, and the effluent stream from the reactor was condensed in an impinger using
liquid nitrogen (LN>). Figure 3-6 shows a schematic of the bench-scale tar cracking

reactor setup.
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Figure 3-6. Bench-scale tar cracking reactor schematic.

Figures 3-7 through 3-13 show various sections of the bench-scale reactor system.
Figure 3-7 shows the gas cylinders and impinger. Figure 3-8 shows the pressure
indicator, the mass flow controllers, and the stainless steel manifold. Figure 3-9 shows
the heated mantle containing the naphthalene permeation source, the four-way valve for
controlling the permeation source, and the entering and exiting lines to the reactor, taped
and insulated together. Figure 3-10 shows the controls for heating the naphthalene
permeation source heating mantle and insulated, heat-taped lines leading to and away
from the reactor. Figure 3-11 shows the autoclave with the heating controls for the
cabinet and reactor itself. Figure 3-12 shows the insulated reactor and reactor cabinet in

the autoclave.

40



Figure 3-7. Gas cylinders and impinger.
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Figure 3-8. Mass flow controllers, pressure indicator, and stainless steel manifold for
mixing syngas.
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|

Figure 3-9. Heated mantle around the naphthalene permeation source, four-way valve,
and insulated, heat-taped inlet and outlet lines to the reactor.

43



Figure 3-10. eating controls for the naphthalene permeation source heating mantle and
heat-taped inlet and outlet lines for the reactor.
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Autoclave cabinet
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Canmen

Figure 3-12. Tar cracking reactor (inslated) and cabinet.

Six catalysts were tested: two dolomites (one fine powder [> 55% CaO], one from
Plum Run [66.6% CaO]), olivine, nahcolite, trona, and NREL’s nickel-based catalyst.
Figure 3-13 shows samples of the tested mineral catalysts. Table 3-3 shows the average

particle sizes and the bulk density of the tested catalysts.
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(d)

Figure 3-13. Calcined catalysts as tested in the bench-scale tar cracking reactor.

(e)

(©)
(a) —trona
(b) — nahcolite
(c) —olivine
(d) — powder dolomite
(e) — Plum Run dolomite

Table 3-3. Particle sizes and bulk densities of tested catalysts.

Catalyst Average Particle Size Bulk Density (g/mL)
(um)
Powder dolomite 90 0.59
Trona 70 0.98
Nahcolite 180 1.14
Olivine 2100 2.03
Plum Run Dolomite 1000 0.73
NREL Ni-based Catalyst 250 1.41
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Table 3-4 shows the experimental design and run order used in the experiments.
“Empty bed” runs refer to those with no material in the reactor at all, and “no catalyst”
runs refer to those containing the packing material, including alumina pellets, mesh
screens, and quartz wool, but no specific catalytic materials.

Table 3-4. Experimental design and run order.

Temperature (°C) 750 800 850 900
Empty bed — N> - — - 1
Empty bed 3 2 4 1
No catalyst 3 2 4 1
Trona 4 2 1 3
Nahcolite 2 1 4 (5) 3
Olivine 3 4 (5) 2 1
Powder Dolomite 3 2 4 1
Plum Run Dolomite 2 4 3 1
NREL Ni-based catalyst 3 2 1 4

Catalyst was loaded into the reactor bed according to Figure 3-14. From the
bottom of the reactor, 5.625” of 1/8” alumina pellets were loaded in order to raise the bed
to the heated zone of the reactor and to just below the height of the thermocouple, thereby
ensuring the temperature of the catalyst was as close as possible to the temperature of the
reactor without introducing error from heat transfer through bed materials in contact with
the thermocouple, while using inert materials. A mesh screen was inserted next to hold
the catalyst bed in place. A 0.25” quartz wool plug was inserted to hold the catalyst
material above the metal screen. A 0.5” bed of catalytic material was inserted next. A
similar 0.25” plug of quartz wool and mesh screen were inserted to secure the bed from

above.
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Figure 3-14. Reactor loading schematic.

Baseline data was obtained on the bench-scale system by running the reactor with
no bed material in place at 300°F for 4-6 hours to confirm the level of mass balance
closure for naphthalene. The naphthalene heater was set at 175°F, slightly below the

melting point of naphthalene (176.5°F). The exit stream was condensed in an impinger
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using liquid nitrogen. All pieces (the naphthalene permeation source, the impinger,
connectors, etc.) were weighed on a five-place balance to determine the mass balance
closure level. The impinger was plumbed in reverse to ensure better residence time for
condensation and to prevent “plugs” of naphthalene from forming in the entrance tube,
thus blocking the system. Typical impingers are plumbed so that the inlet gas enters
through the tube extending almost the entire length of the impinger and the outlet gas
leaves through the second opening at the top of the impinger. However, when the
impinger was set up in this way, it was found that the naphthalene was condensing in the
tube, leading to blockages and subsequent rises in system pressure. To prevent this from
happening, the impinger was plumbed so that the gas would enter through the opening at
the impinger top without a tube and exit through the axial tube of the impinger.

Table 3-5 shows selected results of the mass balance closure. Mass balance
closures ranged from 83% to 110% for the tests using LN>. Using LN for condensation
provided more consistent results than any ice-water bath test that was attempted,
especially for the removal of water on the outside (and occasionally inside) of the
impingers. For those tests using LN, the average feed concentration was 4.06 g/m?, the
average collected concentration was 3.70 g/m?, and the average percent difference was
8.9%.

Runs were performed according to the following set of procedures:

Before the start of every run, the naphthalene permeation source was heated to the
desired feed temperature overnight. The autoclave cabinet heater and ceramic heaters
surrounding the reactor were turned on about 60-90 minutes before the start of the test to

allow the reactor to heat to the desired testing temperature; H2, CO, and N2 flows were
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started at this time as well. LabView was used to record data, and the recording was
started. The cryogenic trap, a 300-mL Dewar flask, was filled with LN>. The run started
with the opening of the four-way valve to open the naphthalene permeation source and
the starting of a timer.

During the run, the cryogenic trap was topped off every 90 minutes to ensure
constant temperatures at the impinger. At the same time, the pressure indicator was
checked to ensure that blockages were not forming in the system. Blockages required that
the run be terminated since they caused the system pressure to increase, which altered the
reaction kinetics and posed a safety hazard.

At the end of the run, the four-way valve was closed to the impinger source, Hz
and CO flows were turned off, and N2 flow was turned up to 0.5 slpm for 30 minutes to
flush the system of any naphthalene/tar deposits. The heaters were then shut off, the N>
flow was shut off, and all source and collection pots were removed and weighed. Tar

deposits were recovered by dissolving them in 10 mL of acetone.
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CHAPTER IV
TAR CRACKING — RESULTS AND DISCUSSION

4.1 Laboratory-Scale Updraft Gasifier and Tar Cracking Reactor

The tar-laden syngas from the updraft gasifier exited the gasifier and was fed
through tar sampling tubes and into the tar cracking reactor. The average raw gas tar
loading, as measured using the tar sampling tubes discussed in Chapter 3, was 39.4
g/dscm, placing the gasifier solidly in the updraft tars regime (10-50 g/dcsm). A GC-MS
analysis of the soluble tar condensates revealed a very complex mixture that could not be
completely identified. This was expected, as tar is very complex; usually only about 50%
of the constituent compounds can be positively identified, and the remainder can be
identified only in terms of their basic structures (e.g., 1-ring aromatic compounds, 2-ring
aromatic compounds, alkenes, etc.). The identified compounds were sorted into broad
categories which give qualitative insight into the fate of the constituents. Aliphatic
hydrocarbons are most likely derived from the polyethylene. The higher-order polycyclic
aromatic hydrocarbons (PAHS) are likely derived from the styrene and represent
secondary (e.g., naphthalene) and tertiary (e.g., phenanthrene, anthracene) gasification
tars. Nitrogen, chlorine, and sulfur atoms were observed in the compounds containing
heteroatoms; their sources were discussed in Chapter 3. Figure 4-1 shows a breakdown of

the raw gas tar condensate (Martin and Dunham, 2013).
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Figure 4-1. Categorical breakdown of identifiable compounds in raw gas tar condensate.

Figure 4-2 shows the gas composition on a dry basis after it is fed through tar-
cracking beds containing various cracking catalysts at 900°C. As discussed in Chapter 3,
three of the four parallel beds contained tar cracking catalysts, while the fourth bed was
left empty to examine the effects of thermal cracking. The gas analyzer was switched
from stream to stream to determine the gas composition of each exit stream. The
decreasing CxHy and CHa content in the exit streams of the beds containing catalyst
indicates decomposition of these compounds and, presumably, the more complex tars.
Increasing CO and H. content arises from the conversion of hydrocarbons, including the
tars. Thus, in this series of tests, the methane reforming catalyst provided the most
complete cracking to CO and Ho; however, the woodstove oxidation catalyst and
automotive oxidation catalyst provided some reforming over thermal cracking alone

(Martin and Dunham, 2013).
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Figure 4-2. Fuel gas composition, post-cracking beds.

Figure 4-3 shows the results of temperature screening on the various tested
catalysts. It is apparent that a considerable amount of thermal cracking was occurring, as
tar loadings in the empty bed decreased from almost 40 g/dscm to about 7.2 g/dscm just
from heating the tar to 600°C-700°C and to 5.8 g/dscm at 900°C. The most effective
catalyst overall was the spray dried calcium carbonate, but the most effective at higher
temperatures were the metal-based catalysts — the Pt-alumina catalyst, the NREL 60
catalyst, and Vendor A’s tar cracking catalyst. No catalyst was able to produce a tar
loading below 2.5 g/dscm at temperatures at or below 800°C. It is also apparent that a
major change in the rate of reaction occurs between 800°C and 900°C since the bed outlet

tar loading decreases for all the catalysts tested except the spray-dried CaCOs, and, in
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some cases, quite dramatically. This could be due to a change in the structure in the bond
or a change in the bond state or energy of the tar molecules; however, further study is
needed to prove this. Another possible explanation for the greater extent of cracking at
900°C may be fouling of the catalyst surface by coking at lower temperatures, but more
study would be needed to prove this as well (Martin and Dunham, 2013). Figure 4-4
shows the equilibrium-based carbon deposition boundary for the fuel mixture fired in the
gasifier. The gasfier was run at approximately a 0.45-0.55 equivalence ratio, which would

border the carbon deposition boundary (Martin and Dunham, 2013).
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Figure 4-3. Temperature screening of various catalysts. Lines are included only to assist
in seeing trends.
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Figure 4-4. Equilibrium-based carbon deposition boundary (Martin and Dunham, 2013).

Because of the concern about coking at lower temperatures, the remainder of the
work focused on cracking tars at 900°C. Figure 4-5 shows the bed outlet tar loadings for
each of the catalysts at 900°C; Table 4-1 shows the number of replicates for each catalyst.
Several catalysts were able to decrease the tar loading to less than 1 g/dscm (< 97% tar
destruction), including the Pt-alumina, Vendor A’s methane reforming, Vendor A’s tar
cracking, the NREL 2.5 mm spheres, Vendor B’s tar cracking, Vendor C’s tar cracking,
and the NREL 60 catalyst. These catalysts were metal-based reforming and/or cracking
catalysts intended for use in reducing conditions. The remaining catalysts were generally
natural materials or metal-based catalysts intended for use under oxidizing conditions.

Thermal cracking did account for 85% of tar destruction on average. The variability
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observed may be attributed to the measurement method, as the sensitivity of the
equipment used decreases with lower tar loading, and the gasifier operating conditions,
which affect the inlet tar loading and possibly even the specific tar species. While the
variability does not affect interpretation of performance of specific catalysts, it does lead
to difficulty in selecting the best catalyst for tar cracking. Further experimentation,
including a wider set of design parameters, would be necessary to select the optimal
candidate. Another possibility is that there is no single “best” candidate but rather a series
of equally effective catalysts, and the optimal catalyst may depend on the final

application.
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Figure 4-5. Bed outlet tar loading for various catalysts at 900°C. Error bars represent + 1
standard deviation.

Table 4-1. Number of replicates for each catalyst at 900°C.

Catalyst Number of Replicates

Pt-Alumina

Vendor A Methane Reforming
Vendor A Tar Cracking
NREL 2.5 mm Spheres
Vendor B Tar Cracking
Vendor C Tar Cracking
NREL 60

EERC Ni Reforming
NREL 2.5 mm Cylinders
Olivine

Spray Dried CaCO3
Activated Carbon
Automotive Oxidation

NOOT\JI—‘@I\J'I:\IOO-POJI\JOJ
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Table 4-1, cont.

Catalyst Number of Replicates
Woodstove Oxidation 2

Plum Run dolomite 1

Empty Bed 23

Metal-based catalysts, on average, reduce tar loadings to 25-50% those of mineral
catalysts. However, mineral catalysts still show significant tar reductions and warrant
further studies, especially in light of their lower costs. Therefore, a selection of mineral
catalysts were studied in a bench-scale reactor using naphthalene as a model tar
compound, as it is the most difficult compound to crack according to literature.

4.2 Bench-Scale Tar Cracking Reactor
4.2.1 Catalyst Characterizations

Table 4-2 shows the average particle sizes and bulk densities for the tested
catalysts. The catalysts varied widely in particle size, and this could have affected their
performances in tar cracking as more surface area would be exposed for a smaller particle
size. Surface areas were estimated assuming that the catalyst particles were perfect
spheres randomly packed (64% packing efficiency).

Table 4-2. Catalyst average particle sizes, bulk densities, and surface areas.

Catalyst Average Particle Bulk Density Estimated Surface Area
Size (um) (g/mL) (mm?/mL)

Nahcolite 180 0.59 21,000

NREL Ni-based 250 1.41 15,000

Catalyst

Olivine 2100 2.03 1800

Plum Run Dolomite 1000 141 3800

Powder Dolomite 90 0.59 42,000

Trona 70 0.98 53,000

4.2.2 Reacted Tar Characterizations and Conversions
As described in the experimental section, naphthalene vapors were passed over

the catalyst and collected in an impinger cooled with liquid nitrogen. Acetone was used
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to recover the naphthalene and its cracked products form these experiments. These results
were used to determine the conversion of naphthalene to intermediate compounds (i.e.,
the effectiveness of each catalyst and temperature combination in cracking tars).

Table 4-3 shows the naphthalene conversions observed for each catalyst.

naphthalenefeq—naphthalenecoiected

Naphthalene conversion was calculated as x100%. At

naphthalenefeq

the conclusion of each run, the impinger was weighed, deposits were dissolved in
acetone, and the resulting solution was analyzed using GC-MS to determine how much of
the collected product was unreacted naphthalene. The right-most column indicates the
conversion of naphthalene accounting for the incomplete closure of the system. In
baseline testing, approximately 91% of the naphthalene fed was recovered. It is assumed
that, for the experimental tests, there is a similar loss of or unaccounting for material due
to test procedures and equipment. The naphthalene may have condensed in the heated
lines or been unaccounted for due to measurement error. The mass loss may be caused by
an incomplete measuring of all the system components, as gas samples were not collected
after the cryogenic impinger. Products which did not condense near -321°F, primarily Ho,
CO, and hydrocarbons smaller than butane (CsH10), are likely to have escaped the system.
In addition, in baseline runs, not all the naphthalene fed to the system was collected in the

impinger. This is also assumed to be part of the uncollected mass.
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Table 4-3. Bench-scale naphthalene conversion.

Carrier Catalyst Temperature % Conversion of Naphthalene

Gas (°C) As- Accounting for
determined average mass loss
N2 Empty bed 900 67 61
Syngas Empty bed 750 57 52
Syngas Empty bed 800 57 52
Syngas Empty bed 850 61 56
Syngas Empty bed 900 60 55
Syngas  No catalyst 750 39 35
Syngas No catalyst 800 21 19
Syngas  No catalyst 850 83 76
Syngas  No catalyst 900 52 47
Syngas  Trona 750 27 25
Syngas Trona 800 42 38
Syngas Trona 850 * *
Syngas Trona 900 86 78
Syngas Nahcolite 750 28 25
Syngas Nahcolite 800 24 22
Syngas Nahcolite 850 36 33
Syngas Nahcolite 850 68 62
Syngas  Nahcolite 900 * *
Syngas  Olivine 750 28 25
Syngas  Olivine 800 95 86
Syngas  Olivine 800 100 91
Syngas  Olivine 850 72 66
Syngas  Olivine 900 45 41
Syngas  Powder 750 42 38
dolomite
Syngas  Powder 800 96 87
dolomite
Syngas  Powder 850 100 91
dolomite
Syngas  Powder 900 95 86
dolomite
Syngas PlumRun 750 ** **
dolomite
Syngas PlumRun 800 49 45
dolomite
Syngas PlumRun 850 66 60
dolomite
Syngas PlumRun 900 90 82
dolomite
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Table 4-3, cont.

Carrier Catalyst Temperature % Conversion of Naphthalene

Gas °O) As- Accounting for
determined average mass loss
Syngas NREL Ni 750 66 60
catalyst
Syngas NREL Ni 800 79 72
catalyst
Syngas NREL Ni 850 100 91
catalyst
Syngas NREL Ni 900 100 91
catalyst

* Measurements indicated a weight gain.
** Measurements indicated a weight loss in excess of the naphthalene fed.

The conversion of naphthalene to intermediate compounds in an empty bed,
which would capture the effects of thermal cracking, was nearly steady at about 55% for
all the temperatures tested. This does not match the results seen in the laboratory-scale
gasifier and tar cracking system, in which significant increases in conversion were
generally observed between 800°C and 900°C. However, naphthalene is a difficult
compound to crack (secondary tar) as compared to the primary tars formed in updraft
gasification; consequently, naphthalene requires higher temperatures for more complete
thermal cracking. Figure 4-6 shows the GC-MS results for the empty bed runs with
syngas as the carrier gas for the naphthalene. The chromatograms show similar
compounds for all temperatures tested, demonstrating similar conversion of naphthalene

to intermediate compounds, as the conversion data indicates.
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Figure 4-6. GC-MS results for empty bed runs using syngas blend.
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2,2"-binaphthalene

The conversion of naphthalene to intermediate compounds in a bed without

catalytic material varied from 21% at 800°C to 83% at 850°C. The lower than 55%

conversions (empty bed average conversion) may indicate that the naphthalene or its

cracked intermediate products may have absorbed on the alumina pellets, quartz wool,

and/or mesh screen used in packing the bed. This could lead to the later observed runs in

which residual compounds would occasionally elute out of the system in runs after those

in which they were formed. Alternatively, the higher than 55% conversion may indicate

the bed materials themselves may have had some activity for conversion of naphthalene
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to intermediate compounds. Figure 4-7 shows the GC-MS results for runs performed
using all the bed materials (quartz wool, alumina pellets, and mesh screens) without
catalyst. Significantly fewer compounds were detected using GC-MS for the no catalyst
runs than for the empty bed runs, lending more credence to the theory that the compounds

may have absorbed on the packing material.
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Figure 4-7. GC-MS results for no catalyst runs using syngas blend.

The conversion of naphthalene to intermediate compounds over a trona catalyst
varied from 27% at 750°C to 86% at 900°C. The conversion to intermediate compounds
rose as the temperature rose. The conversion at 750°C being lower than the conversion at
the same temperature with an empty bed or no catalytic material present indicates the
large error present (at least £15% based on the mass balance closure). At 900°C, the trona

catalyst exhibited a higher conversion of naphthalene to intermediate products, indicating
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its efficacy as a cracking catalyst over using no catalytic material at all. In addition, at

900°C, this was an effective catalyst by the parameters set forth in the hypothesis for this

work. Figure 4-8 shows the GC-MS results for the trona runs with syngas as the carrier

gas for the naphthalene. With increasing temperatures, a greater variety of intermediate

compounds is detected, indicating increasing naphthalene conversion to these

compounds.
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Figure 4-8. GC-MS results for trona runs using syngas blend.

The conversion of naphthalene to intermediate compounds over a nahcolite

catalyst varied from 24% at 800°C to 68% at 900°C. The conversion to intermediate

compounds rose as the temperature rose. The conversion at 750°C, 800°C, and 850°C

being lower than the conversion at the same temperature with an empty bed or no

catalytic material present indicates the large error present (at least +15% based on the

mass balance closure). In addition, at no point did the conversion rise to 75%,



demonstrating that nahcolite was not an effective catalyst for converting naphthalene to

intermediate compounds as set forth in the hypothesis of this work. Figure 4-9 shows the

GC-MS results for the nahcolite runs with syngas as the carrier gas for the naphthalene.
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Figure 4-9. GC-MS results for nahcolite runs using syngas blend.

The conversion of naphthalene to intermediate compounds over olivine varied

from 28% at 750°C to 100% at 850°C. This catalyst exhibited a much higher conversion

of naphthalene to intermediate compounds at intermediate temperatures than expected.

The conversion of naphthalene to intermediate compounds at 900°C is 45%, lower than
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that observed for the runs in an empty bed or with no catalytic material present. It is
possible that, above 850°C, the catalyst underwent a phase change or sintered, leading to
the decrease in the availability of active sites and thus lower conversion levels
(Bartholomew, 1996). Since the conversion of naphthalene to intermediate compounds
was greater than 75%, olivine at 800°C and 850°C is an effective tar cracking catalyst at
these conditions. In addition, olivine is a better catalyst than trona, as it requires a lower
operating temperature to achieve superior conversion. Thus, a lower energy penalty
would be incurred in heating the syngas to crack tars using olivine than using trona.
Figure 4-10 shows the GC-MS results for the olivine runs with syngas as the carrier gas

for the naphthalene.
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The conversion of naphthalene to intermediate compounds over powder dolomite
varied from 42% at 750°C to 100% at 850°C. This catalyst exhibited a very high
conversion of naphthalene to intermediate compounds at temperatures above 800°C; at
no temperature above 800°C was the conversion of naphthalene to intermediate
compounds less than 95%. Since the conversion of naphthalene to intermediate
compounds was greater than 75%, powder dolomite at temperatures above 800°C is an

effective tar cracking catalyst at the conditions studied. It is as effective as the olivine
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studied and is a better catalyst than trona, as it requires a lower operating temperature to

achieve superior conversion. Thus, a lower energy penalty would be incurred in heating

the syngas to crack tars using powder dolomite than using trona. This may be due to the

particle size of the powder dolomite, which was very fine and consequently would have a

high surface area, leading to more active sites for catalytic activity. Figure 4-11 shows the

GC-MS results for the powder dolomite runs with syngas as the carrier gas for the

naphthalene.
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Figure 4-11. GC-MS results for powder dolomite runs using syngas blend.

The conversion of naphthalene to intermediate compounds over Plum Run

dolomite varied from 49% at 800°C to 90% at 900°C. Since the conversion of

naphthalene to intermediate compounds was greater than 75%, Plum Run dolomite at
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900°C is an effective tar cracking catalyst at the conditions studied. It is as effective a
catalyst as trona, but less energy efficient than olivine and powder dolomite, as it requires
a higher temperature to convert naphthalene to intermediate compounds. Thus, a higher
energy penalty would be incurred in heating the syngas to crack tars using Plum Run
dolomite than olivine or trona. The difference in catalytic activity between the two
dolomite samples studied may be partially attributed to their differences in particle size.
Plum Run dolomite had an average particle size of approximately 0.8-1.0 mm, while the
powder dolomite had an average particle size of approximately 90 um. This significant
difference in particle size could have led to the powder dolomite being a more effective
catalyst as it would have a consequently larger surface area per gram and thus would
have had more available active sites for naphthalene conversion to intermediate
compounds. Another difference in catalytic activity between the two dolomite samples
may be attributable to their differing compositions; the powder dolomite is at least 55%
CaO, while the Plum Run dolomite is 66.6% CaO. Figure 4-12 shows the GC-MS results

for the Plum Run dolomite runs with syngas as the carrier gas for the naphthalene.
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Figure 4-12. GC-MS results for Plum Run dolomite runs using syngas blend.

The conversion of naphthalene to intermediate compounds over the NREL Ni-

based catalyst varied from 66% at 750°C to 100% at 850°C and 900°C. The Ni-based

catalyst was very effective in cracking tars; this is expected, as transition metal-based

catalysts have been shown to have very high conversion rates for tar cracking (Gerber,

2007; Xu et al., 2010; Anis and Zainal, 2011). Figure 4-13 shows the GC-MS results for

runs performed using the NREL Ni-based catalyst.
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Figure 4-13. GC-MS results for NREL Ni-based catalyst runs using syngas blend.

Table 4-4 shows the composition of the collected tar samples as analyzed by gas

chromatography-mass spectrometry (GC-MS).

Table 4-5 shows the tar compositions as collected by GC-MS, exclusive of the

acetone. Since acetone was used to collect the naphthalene and other cracking products,

the results should be considered in its absence.
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Figure 4-14 shows structures of the detected intermediate compounds. The
heteroatoms (here, any atom other than C or H) would have been donated by the inlet gas
stream. O would have been donated by the CO when it decomposed, and N would have
been donated by the N> when it decomposed. The source of the S is unclear; no inlet gas
contained sulfur, and it is possible that this is a misidentification by the GC-MS. For
highly effective catalysts and complete cracking, expected compounds would be Hz, CO»,
CO, and CHa.
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1,1°-binaphthalene 1,2-dihydrobenzo[b]fluoranthene  1H-1,2,4-triazole

| /

N _NH
Q™

N
1H-imidazole, 1-methyl-2-amino  1H-indene, 1-methylene 1H-indene, -methyl
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Figure 4-14. Structures of GC-MS detected compounds.
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Figure 4-15 shows the naphthalene conversion versus temperature for the bench-
scale system. The highest overall conversions were observed above 800°C for the powder

dolomite, NREL Ni-based catalyst, olivine, and Plum Run dolomite.
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Figure 4-15. Naphthalene conversion versus temperature. Plotted without following runs:
trona at 850°C, nahcolite at 900°C, Plum Run dolomite at 750°C.

Figure 4-16 show the naphthalene conversion versus the run order. This graph
indicates that variance is due to the effect of temperature and not an artifact of the run
order. For example, the run order for the powder dolomite catalyst was as follows: 1)
900°C, 2) 800°C, 3) 750°C, and 4) 850°C. If run order were a factor in the observed
conversions, one would expect the conversions to increase or decrease as a function of
the run order. This has not occurred; therefore run order did not significantly contribute

to the variance.
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Figure 4-16. Naphthalene conversion versus run order. Plotted without following runs:
trona at 850°C, nahcolite at 900°C, Plum Run dolomite at 750°C.

There are several suspect data points. First, the conversion of naphthalene over a
trona catalyst at 850°C is reported as -49.5%. This is impossible and probably indicates
residuals from a previous test in the system being released at a later point such that more
naphthalene was collected than was fed. The second run in the empty bed at 900°C,
which was the last test performed before the 850°C trona test, therefore, may have had
less naphthalene reported than it should and thus an artificially higher conversion. The
same issue is apparent for the conversion of naphthalene over a nahcolite catalyst at
900°C. These results indicate that the previous test may have had less naphthalene and
condensable cracking products collected than there should have been; in the case of the
nahcolite run, this would have been the run with nahcolite catalyst at 750°C. In addition,
the conversion of naphthalene over a Plum Run dolomite catalyst at 750°C is reported as

240.1%. This is impossible and probably indicates a measurement error with the balance
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used, as the mass of the collection pieces after the run was less than the mass of the same
pieces before the run.

In addition, the mass balance closure was not complete. The mass balance closure
results using liquid nitrogen indicated that the closure was 93+15%. Table 4-6 shows the
range of conversions for the runs accounting for this incomplete mass balance closure.
The greatest discrepancies are observed for runs with low conversion rates as opposed to
runs with higher conversion rates.

Table 4-6. Conversion ranges, accounting for incomplete mass balance closure.

Tabulated without following runs: trona at 850°C, nahcolite at 900°C, Plum Run
dolomite at 750°C.

Catalyst Carrier Temperature (°C) % Conversion
Gas As-measured Low High

Empty bed \ 900 67.0 62.0 719
Empty bed Syngas 750 57.3 50.8 63.7
Empty bed Syngas 800 56.7 50.2 63.2
Empty bed Syngas 850 60.5 546 66.4
Empty bed Syngas 900 59.8 53.7 65.8
Empty bed Syngas 900 38.0 28.8 473
No catalyst Syngas 750 38.6 294 478
No catalyst Syngas 800 20.8 9.0 32.7
No catalyst Syngas 850 83.4 809 859
No catalyst Syngas 900 52.3 452 595
Trona Syngas 750 27.2 16.3 38.1
Trona Syngas 800 42.2 335 508
Trona Syngas 900 86.3 843 884
Nahcolite Syngas 750 27.6 16.7 385
Nahcolite Syngas 800 24.3 129 356
Nahcolite Syngas 850 36.1 26,5 45.6
Nahcolite Syngas 850 68.0 63.2 728
Olivine Syngas 750 27.8 17.0 38.6
Olivine Syngas 800 94.5 93.7 954
Olivine Syngas 800 100 100 100
Olivine Syngas 850 71.8 676 76.1
Olivine Syngas 900 449 36.6 53.2
Powder dolomite Syngas 750 41.8 33.1 505
Powder dolomite Syngas 800 95.9 95.3 96.6
Powder dolomite Syngas 850 100 100 100
Powder dolomite Syngas 900 94.9 941 95.6
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Table 4-6, cont.

Catalyst Carrier Temperature (°C) % Conversion

Gas As-measured Low High
Plum Run dolomite  Syngas 800 49.0 414  56.7
Plum Run dolomite  Syngas 850 65.9 60.8 71.0
Plum Run dolomite  Syngas 900 90.1 88.6 91.6
Ni catalyst Syngas 750 66.4 614 715
Ni catalyst Syngas 800 79.2 76.0 823
Ni catalyst Syngas 850 100 100 100
Ni catalyst Syngas 900 100 100 100

Table 4-7 shows the results of loss-on-ignition (LOI) testing for the spent catalyst

and bed materials, and Figure 4-17 shows the recovered catalyst and bed materials post-

experimental runs. The LOI tests were conducted at 750°C under air and were run in

triplicate, and the average is reported. The dark material in the photographs is most likely

carbon deposited by coking. In the case of the olivine catalyst, some of the carbon may

have been used in the formation of iron carbide. After it was calcined, the olivine catalyst

was a bright orange-red, similar to rust, which was expected as calcination drove off CO>

and H»0, leaving magnesium and iron oxides. In the presence of CO, the iron oxides may

have been converted to iron carbides (Eliason, 1997). This is substantiated by the LOI for

the olivine catalyst and bed materials, which was approximately half of that observed for

most of the other catalysts. It is unclear why the LOI of the powder dolomite was so low,

although this sample did qualitatively appear to have fewer carbon deposits than the

others.
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Table 4-7. Loss-on-ignition test results.

Spent Catalyst % LOI % Carbon Fed in Coking
Deposits
Bed Material (no catalyst) 17+4 2.5
Trona 19+1 4.8
Plum Run Dolomite 18+1 51
Powder Dolomite 8x1 1.3
Nahcolite 18+3 5.2
Olivine 9+1 3.3

(a) (b)

Figure 4-17. Recovered catalyst and bed materials. (a) — trona, (b) — nahcolite.
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(e) ()
Figure 4-17, cont. (c) — olivine, (d) — powder dolomite, (e) — Plum Run dolomite, (f) —
catalyst-free bed material.

4.3 Summary
4.3.1 Laboratory-Scale Updraft Gasifier and Tar Cracking System

It is clear that there is a transition in catalyst cracking performance between

800°C and 900°C. The optimal temperature for catalytic cracking is at least 800°C, as
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coking is too prevalent at lower temperatures. Thermal cracking performance
substantially increases between 800°C and 900°C as well.

Thermal cracking accounted for ~85% of the observed tar destruction, and
depending on the application, thermal cracking may be sufficient. This would impose a
balance between the energy penalty of heating the syngas from the gasifier to the degree
required to crack the tars formed in gasification and the cost of operating a catalyst bed to
incur a lesser energy penalty.

The data suggest that guard catalysts are of little value at 900°C because the tar is
thermally destroyed. However, mineral-based guard catalysts may still be of use to
protect more expensive transition metal-based catalysts against poisoning and coking.

The primarily transition metal-based reforming and cracking catalysts were the
most promising, showing outlet tar loadings two to three times lower than the mineral
catalysts, especially at 900°C. This is in agreement with the reviewed literature.

4.3.2 Bench-Scale Tar Cracking Reactor

The powder dolomite was the most effective catalyst for converting naphthalene
to intermediate compounds, exhibiting conversions in excess of 95% at temperatures
above 800°C. The NREL Ni-based catalyst and olivine were highly effective as well; the
Ni-based catalyst exhibited conversions in excess of 79% at temperatures above 800°C,
and the olivine exhibited conversions of 100% at 800°C and 72% at 850°C. The trona
and Plum Run dolomite were effective catalysts at 900°C; the trona exhibited a
conversion of 86%, and the Plum Run dolomite exhibited a conversion of 90%. Nahcolite

was not an effective naphthalene-converting catalyst.
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GC-MS data could not be used to determine which mineral-based catalyst was
most effective based on the abundance of intermediate compounds formed in the
conversion of naphthalene, as generally only small amounts of these compounds were
present in comparison with the large amount of acetone present in the sample. That is,
the method used is only semi-quantitative at the low values of the other compounds
imposed by the use of the acetone solvent.

Generally higher temperatures led to greater conversion. This is as expected since
thermal cracking effects would be more evident at higher temperatures. The exception to
this rule was olivine: temperatures above 800°C led to a decrease in cracking activity.
This may be due to a phase change within the mineral structure of the catalyst or sintering

of the catalyst particles.
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CHAPTER V
LITERATURE REVIEW - BIOFUELS

5.1 Bio-oil and Biodiesel Sources

Although there are many other sources of bio-oils and biofuels, this literature
review is focused only on those used for the testing performed here. These oils were
chosen because of their relative abundance and, consequently, availability.

Jatropha oil is derived from the Jatropha genus of flowering plants. Most of the
species of this plant are native to the Americas. The main oil-bearing plant as identified
by Goldman Sachs is Jatropha curcas, which is native to the North and Central American
tropics. The seeds average 34.4% oil, which can be refined into biodiesel (Achten et al.,
2008). The remaining cake may also be burned for further energy production (Jongschaap
et al., 2009). The plant is simple to cultivate and grows in nearly every soil, although
yields may be somewhat lower in poor and stony soils (von Reppert-Bismarck, 2011).
Jatropha plants live for more than 40 years and produce seeds after 9-12 months, though
maximum vyield is not obtained until after the first 2-3 years. While seed yields vary
widely, an average yield is around 1500 to 2000 kg / hectare, which equates to 540 to 640
liters of oil / hectare (Dar, 2007). However, the Jatropha genus of plants has not been
domesticated. Furthermore, the Jatropha curcas plant requires a substantial amount of
water to grow, potentially upwards of five times that of sugar cane and corn (McKenna,
2009). Currently, jatropha plants are mainly used for soap production, traditional

medicine (the seeds act as a purgative), and live fence (Asselbergs et al., 2006).
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Palm oil is derived from the fruit of the oil palm trees, especially the African oil
palm Elaeis guineensis. Indonesia produces the most palm oil in the world at 20.9 million
tonnes (2009), while Malaysia produces 18.79 million tonnes (2012) (Scientific
American, 2012; USDA, 2012). Other producers of palm oil include Nigeria, Thailand,
Colombia, and smaller producers in Africa (Ayodele, 2010). In 2012-2013, total world
production of palm oil was 58.1 million metric tonnes (Index Mundi, 2013). Its principle
use is as a cooking ingredient, especially in the tropical belt of Africa, southeast Asia, and
Brazil. It has also been used in soap products (e.g., Unilever and Palmolive), in processed
foods as a cheap substitute for butter, and in the production of biodiesel (although this
does ignite a food vs. fuel debate) (Fedepalma, accessed 2013).

Animal and plant products can generally be recycled into biocrude fuel and
refined into biodiesel. Several companies, including Griffin Industries and Darling
International, recycle animal fats collected during animal rendering, used cooking oil, and
other plant oils into renewable diesel. Some of the fats used in this process include
inedible tallow, technical lard, choice white grease, poultry fat, yellow grease, flotation
fat, prepared foods waste fats, soybean oil, corn oil, palm stearin, palm fatty acid
distillate, tall oil, camelina oil, jatropha oil, and algal oil (Griffin Industries, 2010). As an
example, the Diamond Green Diesel facility located in Norco, LA, is able to take in
approximately 11% of the animal fats and used cooking oil generated in the United States
and output 137 million gallons of renewable diesel annually (Zerman, 2013). Another
plant processing these streams in the United States is the Dynamic Fuels plant in
Geismar, LA. This plant is able to output 75 million gallons of renewable diesel per year

(Dynamic Fuels LLC, accessed 2013).
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5.2 Quick Assessment Tools for Biofuels
5.2.1 Critical Fuel Properties Impacting Performance In Power Production

The fuel properties which most greatly impact power production performance are
viscosity, volatility, surface tension, corrosion, oxidative stability, acid number, water
absorption, and deposit formation.

Higher viscosity in pure vegetable oils, waste oils, and greases can prevent
adequate atomization of the fuel. This results in poorer mixing with combustion air and
incomplete combustion in engines and turbines. Thus, this can lead to poor cold start
performance, nozzle clogging, and lubricating oil contamination. Viscosity can be
improved (lowered) by heating the fuel prior to injection, by diluting with lower viscosity
fuels (e.g., petroleum diesel, alcohols, or fatty acid methyl esters [FAME]), emulsifying
the oils, or converting the oils to FAME (Rehman et al., 2011). In one study, heating
waste fryer oil to 135°C resulted in a reduction of its viscosity to be similar to that of
diesel fuel at 30°C (Pugazhvadivu and Jeyachandran, 2005).

The viscosity of triglycerides is nearly ten times greater than that of their
corresponding methyl esters, as indicated in Table 5-1. Due to the strong correlation
between viscosity and the fraction of unreacted triglycerides in biodiesel, viscosity is a

useful parameter to indirectly assess FAME purity (Knothe, 2001).
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Table 5-1. Comparison of properties of vegetable oils and esters with diesel fuel (after
Ramadhas et al., 2004).

Fuel Type Calorific Density Viscosity Cetane
Value (kJ/kg)  (kg/m?) (27°C, mm?/s)  number

Diesel fuel 43,350 815 4.3 47.0

Sunflower oil 39,525 918 58.5 37.1

Sunflower 40,579 878 10.3 45.5

methyl ester

Cottonseed oil 39,648 912 50.1 48.1

Cottonseed 40,580 874 11.1 45.5

methyl ester

Soybean oil 39,623 914 65.4 38.0

Soybean methyl 39,760 872 11.1 37.0

ester

Corn oil 37,825 915 46.3 37.6

Opium poppy 38,920 921 56.1 -

oil

Rapeseed oil 37,620 914 39.2 37.6

Relatively low volatility makes vaporization of vegetable oils, waste oils, and
greases difficult. Incomplete vaporization can lead to thermal cracking of the oils,
resulting in excessive smoke emissions and carbon deposits in the combustion chamber
(Rehman et al., 2011).

Higher surface tension can reduce spray atomization, increase droplet size, and
impact other properties of spray atomization (Boucher et al., 2000; Graboski and
McCormick, 1998). Limited data exists on the surface tension of neat biodiesel and
blends. A typical value for No. 2 diesel is 22.5 dyne/cm at 100°C. Reported surface
tension of biodiesel ranges from 34.9 dyne/cm at 60°C for neat soy methyl ester and 25.4
dyne/cm at 100°C for rapeseed oil methyl ester (Stotler and Human, 1995; Reece and
Peterson, 1993).

The presence of free fatty acids (FFA) can lead to corrosion of metallic

components in storage and transportation equipment. Copper is especially susceptible to
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this attack; therefore, copper- and brass-containing components should ideally be
replaced with steel. Additionally, grey cast iron has showed slight corrosion in the
presence of FFA and should be avoided for these fuel mixtures (Geller et al., 2007).

Oxidative stability is a measure of biodiesel fuel oxidation after exposure to air at
elevated temperatures. It is determined through measurement of the induction period (IP)
by CEN method EN14112; this is known as the Rancimat method. Increased oxidation of
FAME can lead to the formation of peroxides, which may attach to elastomers or
polymerize into insoluble high-molecular weight compounds that can clog fuel lines or
filters or lead to incomplete combustion and associated engine deposits (Dunn, 2002).
Some other tests, including kinematic viscosity, acid number, and iodine value, have been
used as indicators of oxidation, but are generally not accurate (Moser, 2011).

The acid number is typically determined using Karl Fischer titration in
accordance with ASTM D664. In renewable oil fuels, this is largely a measurement of the
amount of FFA present in the fuel. Fuels with elevated acid numbers can cause corrosion
in storage and feed systems. The specification for biodiesel calls for a maximum of 0.5
mg KOH / g fuel; however, fats and oils can posses acid numbers up to 10 mg KOH / g
fuel (Espadafor et al., 2009).

ASTM D975 indicates that up to 500 ppm water is acceptable in diesel fuel. No. 2
diesel fuel is typically 60 ppm water at 25°C, which is nearly equivalent to the water
solubility in diesel at this temperature. The water solubility in 100% soy-based biodiesel
is 1500 ppm; the water solubility in 20% biodiesel is around 40 ppm, which is
statistically similar to 60 ppm with current measurement techniques. Blending saturated

methyl ester with No. 2 diesel can lead to water separation. If enough water separates, a
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water layer may form and provide a site for microbial growth and subsequent fuel
degradation (Graboski and McCormick, 1998).

The formation of deposits in combustion engines is frequently attributed,
therefore, to the high viscosity and low volatility of vegetable oil fuels. Heating the oil
can significantly lower fuel viscosity and reduce deposit formation. However, the
mechanisms that lead to deposit formation are not fully understood. Deposits are often
attributed to the presence of triglycerides. For examples, in esterified oil fuels, the
reduced amount of triglycerides correlates with lower levels of deposit formation. In
some studies, diesel blends with less than 30% vegetable oil showed a performance
similar to that of neat diesel (Sidibe et al., 2010).

5.2.2 Screening Methods for Fuel Quality Assessment

It is evident that it is important to analyze a fuel for, at a minimum, the
aforementioned properties. While many standards are available to assess fuel properties,
it may be beneficial to have a “quick and dirty” field test which can efficiently and
accurately assess fuel properties. Table 5-2 outlines screening methods that oil-fired
power plants could use to assess fuel quality.

Table 5-2. Summary of Screening Methods for Fuel Quality Assessment.

Property Standard Method  Quick Method Feasibility of
Available Quick Method
Pour Point ASTM D97 or Phase Technology — Feasible for refined,
D5949 70X1 Cloud particulate-free

Analyzer (D5949) fuels. Not feasible
for unrefined fuels
due to presence of
solids as this is an
optical method.
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Table 5-2, cont.

Property

Standard Method

Quick Method

Feasibility of

Available Quick Method
Total Acid Number  ASTM D664 pHIip — color Feasible for refined
indicating aciditiy fuels. Unfeasible for
unrefined fuels due
to presence of solids
and/or intense oil
color.
i-SPEC Q-100 Feasible
ECON TAN Test, Feasible
DIGI Field Kit, FG-
K1-008-KW (0-3
TAN)
FFA/TAN Test, Feasible for refined
DIGI Biodiesel Test  fuels. Unfeasible for
Kit unrefined fuels due
FG-K16897-KW to presence of solids
(Acid content/0-6  and/or intense oil
TAN) color.
Moisture and ASTM D2709 Hot pan, > 500 ppm  Feasible
impurities (centrifuge) Sandy Brae, > 50 Feasible
ppm — pressure
calibrated to H.0O
Kittiwake Test Kit,  Feasible
DIGI Water in Qil
Cell
0.02-1%, 200-
10,000 ppm, 0-10%,
0-20%
Heating value ASTM D240 None available N/A
(HHV)
FFA Per PORAM None available N/A
lodine Value AOCS Cd 1c-85 None available N/A
Viscosity ASTM D7042 DIGI Viscotube, Feasible
DIGI Clean Oil Kit
FG-K14971-KW
(20-600 cSt @
40°C)
Flash Point ASTM D93 None available N/A
Sulfur ASTM D1552, None available N/A
D2622, or D4294
Nitrogen ASTM D4629 or None available N/A
D5762
Vanadium ASTM D5863 None available N/A
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Table 5-2, cont.

Property Standard Method  Quick Method Feasibility of
Available Quick Method

API gravity ASTM D4052 None available N/A

Density ISO 3675 or 12185  Density Feasible for refined
Hydrometer, DIGI fuels. Unfeasible for
Biodiesel Test Kit unrefined fuels due
FG-K16897-KW to potentially
(850-950 kg/m?®) intense oil color.

Cetane FIA test None available N/A

CCAI FIA test None available N/A

Total Sediment ISO 10307-1 None available N/A

extant

Water, before ISO 3733 None available N/A

engine (distillation)

Micro carbon ISO 10370 None available N/A

residue

Ash ISO 6245 or LP None available N/A

1001

Phosphorus ISO 10478 extended None available N/A

Aluminum ISO 10478 None available N/A

Calcium + ISO 10478 extended None available N/A

Magnesium content

Iron ISO 10478 extended None available N/A

Silicon, organic No method specified None available N/A

Silicon, inorganic ISO 10478 None available N/A

Alkali (sodium + ISO 10478 extended None available N/A

potassium)
Cloud Point

Cold-Filter Plugging
Copper Strip
Corrosion

Steel Corrosion
Strong Acid
Number

Synthetic Polymers

Ester content

ISO 3015 or ASTM
D5949

IP 309
ASTM D130

LP 2902
ASTM D664

LP 2401 extended
or LP 3402
EN 14103

Phase Technology
PSA-70Xi analyzer

None available
None available

None available
None available

None available

None available
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Table 5-2, cont.

Property Standard Method  Quick Method Feasibility of
Available Quick Method
Linolenic acid EN 14103 None available N/A
content
Total Glycerin ASTM D6584 pHIip (qualitative —  Feasible for refined
visible as interface)  fuels. Unfeasible for
unrefined fuels,
especially
particulate-rich or
strongly colored
fuels, as this is an
optical method.
Wilks IR Infraspec  Feasible
(<0.24% wiw)
i-SPEC Q-100, Feasible
handheld analyzer
for B-100
Methanol EN 14110 I-SPEC Q-100, Feasible
handheld analyzer
for B-100
Carbon residue ASTM D4530 None available N/A
Oxidative stability =~ CEN method EN Metrohm USA, Inc.  Feasible
14112 (Riverview, FL,
Rancimat USA) model 893
Rancimat instrument
AOCS CD 12-b-92  Feasible
oil stability index,
ISO 6886
Accelerated
oxidation test
Rancimat 892
Water ASTM D1744 — Mettler DL 18 Feasible
Karl Fischer titrator
titration
Total Base Number Kittiwake DIGI Feasible
Water in Oil/TBN
cell (0-80 TBN)
Insolubles ECON Insolubles Feasible

Test DIGI Basic Kit,
FG-K1-003-KW
(qualitative)
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pHIip is a quick field test available through CytoCulture International capable of
measuring biodiesel acidity. The instrument can also indicate the presence of catalysts
and measure soaps, monoglycerides, diglycerides, and triglycerides.

Wilks InfraSpec is a small infrared (IR) instrument designed for oils with total
glycerin measurements below 0.24% w/w. The analysis time required is less than one
minute. In addition, it can measure the presence of vegetable oil in methyl ester. The
InfraSpec is available commercially as the InfraSpec VFA-IR Spectrometer
manufactured by Wilks Enterprises, Inc.

The i-SPEC Q-100 is a handheld analyzer which uses impedance spectroscopy. It
measures the blend percent, total glycerin, methanol, and acid number in B-100 samples.

The Mettler DL18 titrator uses the Hydranal Composite 5 reagent, which contains
iodine, SOz, and amine/methyl glycol to perform Karl Fischer titration for water
determination. It meets the specifications set out in ASTM D1744.

Alkali metal content can be determined by using the Perkin-Elmer 100B Atomic
Absorption Spectrometer, which uses nitric acid and hydrochloric acid digestion followed
by spectrometry.

A quick test for water in oil involves placing drops of oil in a heated pan.
“Popping” sounds are indicative of water in the oil; this method is accurate to 500 ppm
(0.05% wiw).

Another test for water can be performed using the Sandy Brae Water Test Kit.
This test involves reacting calcium hydride with water in an oil sample to produce H> gas.

Since the reaction takes place in a closed container, the pressure of the container can be
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calibrated to the amount of water in the sample. This method is accurate to a low level of
50 ppm.

A quick test for viscosity involves dipping a piece of cardboard in the oil and
removing it, then observing the flow of oil off the cardboard. Smooth runny flow
indicates good flow properties, while clumps indicate high viscosity at ambient
temperature.

An optical cloud point analyzer can provide quick cold flow data provided the
sample is clear and/or transparent.

Biodiesel test kits are available from Fleet Biodiesel, Inc., for B5/B20 and B100.
The test kit allows for testing for water content, visual clarity, acid number,
yeast/mold/anaerobic bacteria, and glycerin for ranges from 0.05% to 0.5%.

A relatively simple test to indicate the presence of triglycerides in biodiesel is the
Warnquist 3/27 test. The test is carried out by mixing 27 mL of room temperature
methanol with 3 mL of water-free biodiesel. Shake this mixture and let it settle. If oily
material settles out in 30 minutes, the fuel contains more than trace amounts of
triglycerides (and associated di- and monoglycerides).

Finally, another company that provides oil testing solutions is Kittiwake.

5.3 Key Temperature Parameters for Fuels

Table 5-3 shows melting points, boiling points, flash points, and autoignition
temperatures for biodiesels, low-sulfur fuel oils, jatropha oil, palm oils, pyrolysis oils,
and yellow greases. These data were acquired by examining a number of material safety
data sheets (MSDS) and researcher-reported results (last row for each fuel in Table 5-3)

(Tesoro, accessed 2012; National Biodiesel Board, accessed 2012; BioFlex Fuels,
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accessed 2012; ConocoPhillips, accessed 2012; Biodiesel Industries, accessed 2012;
Cargill, accessed 2012; Bi, 2010; Goodrum, 2002; Ramadhas et al., 2005; Dooley et al.,
2008; Flint Hills Resources, accessed 2012; Philips Petroleum Company, accessed 2012;
Sprague, accessed 2012; Hess Corporation, accessed 2012; National Institute for
Occupational Safety and Health, 2014; Diligent Tanzania Ltd., accessed 2012; Olasheu et
al., 2015; Dubey et al., 2011; Sciencelab.com, Inc., accessed 2012; Natural Sourcing,
accessed 2012; Just a soap, accessed 2012; The Soap Kitchen, accessed 2012; Acme
Hardesty Oleochemicals, accessed 2012; Nassu and Gongalves, 1999; Kiram, 2010;
CAMEO Chemicals, 1999; Cirad, 2006; ChevronPhillips, 2011; ChevronPhillips, 2011;
Unipetrol, 2010; Ensyn Technologies Inc., 2007; Olefins Panel of the American
Chemistry Council, 2005; Zhang et al., 2007; Wonkhorsub and Chindaprasert, 2013;
European Chemicals Agency, 2013; Griffin Industries, 2007; Backyard Biodiesel, LLC,
2011; lllinois Sustainable Technology Center — Waste Management and Research Center,
2006; Zhang et al., 2003; Liu and Kim, 1999).

Table 5-3. Summary of Temperature-Related Parameters for Various Fuels.

Fuel Melting Point  Boiling Point Flash Point Autoignition
(°F) (°F) (°F) Temperature
CF)
Biodiesel n/a 298 100 351
n/a > 392 n/a n/a
n/a 300-691 126-140 611
n/a 300-691 126-180 611
n/a > 399 n/a n/a
<< 8.6 > 392 266 n/a
32-35.6 644-707 130 944-1088
Low-sulfur fuel -20.2 325-700 n/a n/a
oil n/a 320-700 > 126 n/a
n/a 340-675 n/a n/a
n/a 340-700 n/a n/a
-22--0.4 540-640 125.6 489-545
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Table 5-3, cont.

Fuel Melting Point  Boiling Point Flash Point Autoignition
(°F) (°F) (°F) Temperature
CF)
Jatropha oil n/a n/a 464 n/a
39-41 426 235 n/a
Palm oil 95 n/a n/a n/a
97-100 n/a n/a n/a
95-104 n/a n/a n/a
77+ > 212 n/a n/a
108-140 568-689 > 212 > 482
106 471 280 373
Pyrolysis oil n/a > 212 104-230? 932
45 338 140-200 644
n/a 336-1074 219 658
59 392-572 > 214 > 842
n/a n/a 144-210 n/a
277 212 —482-536 154 - 212 851
Yellow grease 86 nfa— 399 n/a
decomposes
86 nfa— 399 n/a
decomposes
86 516 302 689 — 702

5.4 Fuel Corrosivity

Corrosion is a problem with biofuels as they generally have greater acid content,

absorb more water, and have higher oxidative characteristics than petroleum-based fuels

(Burton, 2008; Jayed et al., 2009). Generally corrosion is caused by a number of factors,

including “free water, free FAME, corrosive acids (formic & acetic), free methanol,

NaOH or KOH particles in fuel, high viscosity at low temperatures, iodine value, [and]

total acid number” (Jayed et al., 2009). The corrosion behavior of Indian seed oil-derived

biodiesels on engine parts was studied, and it was determined that Salvadora oleoides-

derived biodiesels showed marked corrosion, while oils derived from Jatropha curcas,

Pongamia glabra, and Madhuca indica showed little or no corrosion of the engine parts

(Kaul et al., 2007). It was demonstrated that copper and/or brass components were most
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susceptible to corrosion by poultry fat and diesel fuel mixtures and should generally be
avoided; in addition, grey cast iron showed slight corrosion and should perhaps be
avoided as well (Geller et al., 2007). Furthermore, it has been shown that anaerobic
metabolism of biodiesel can lead to its degradation and subsequently increase corrosive
activity (Aktas et al., 2010).

However, it has been demonstrated that even increasing the amount of
incompletely converted soybean oil may not have a significant effect on its copper strip
corrosion (Fernando et al., 2007). Other researchers have studied the effects of soybean-
and sunflower-derived biodiesels on carbon steel and found that, while there was a low
level of surface etching, the weight loss was minimal. HDPE polymers, however,
underwent a weight gain in the order of 10 g due to absorption (Maru et al., 2009).

Additives may be used to reduce corrosion. It was demonstrated that use of an
anticorrosion additive with a palm oil diesel not only reducee corrosion but also increasee
brake power, reduced exhaust emissions, decreased wear metal, and decreased total base
number (Kalam and Masjuki, 2002). Other researchers showed that tert-butylamine was a
more effective corrosion inhibitor than ethylenediamine and n-butylamine for attack by
palm-based biodiesel (Fazal et al., 2011).

5.5 Summary

Little to no information was available in the literature on the miscibility of crude
bio-based oils with petroleum-based oils. It was decided to study the miscibility of blends
of lo-pour fuel oil, hi-pour fuel oil, ultra-low sulfur diesel, crude jatropha oil, crude palm
oil, biocrude derived from animal renderings, and biodiesel (refined biocrude) in order to

determine if there were any adverse effects that arose from their blends. It was decided to
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study these blends at 75°F (ambient temperature), 170°F (temperature in oil storage
tanks), and 220°F (temperature to which oils are heated just before combustion) to
determine any differences in the behavior of the oil blends at different temperatures.
Adverse effects could include events such as excess settling of waxes, smoking, or semi-
polymerization of the oils.

It was decided to study the pour point, flash point, and wax appearance
temperature of select pure oils and oil blends to attempt to determine whether any
synergistic properties might exist for these blends or whether a simple correlation could
be used to predict, for example, what the wax appearance temperature for an oil blend
would be given the wax appearance temperatures of its constituent pure oils.

While some information on corrosion is available in the literature, the potential
corrosive activity of crude palm oil, biocrude derived from animal renderings, and
biodiesel refined from the same does not seem to have been studied. It was decided to
expose metal samples representative of those that might be encountered in a typical oil-
fired power plant to these oils as well as crude jatropha oil, ultra-low sulfur diesel, lo-
pour fuel oil, and hi-pour fuel oil in order to study any adverse effects these oils might

have.
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CHAPTER VI
EXPERIMENTAL METHODS - BIOFUELS

6.1 Fuels Tested

Seven different oils were sourced for testing. These oils, along with their original
sources, are listed in Table 6-1. The qualitative difference between hi-pour fuel oil and
lo-pour fuel oil is the viscosity: hi-pour fuel oil, which has a (reasonably) high reported
pour point of about 55°F, has the approximate viscosity of lard, while lo-pour fuel oil,
which has a reported pour point of about 30°F, has the approximate viscosity of slightly
cooled corn oil.

Table 6-1. Fuel oils tested.

Oil Source

Hi-Pour Fuel Oil Petrospect

Lo-Pour Fuel Qil Petrospect

Crude Jatropha Oil Original Source Unknown

Biocrude derived from animal renderings REG Newton

Biodiesel (refined biocrude) REG Newton

Crude Palm Qil Sime Darby Biodiesel

Ultra-Low Sulfur Diesel Purchased at Valley Dairy gas station in
Grand Forks, ND — original source
unknown

6.2  Miscibility Testing

Oils were mixed in ¥ cup portions for a total of approximately 1 cup of blended
oils per sample. This mixing occurred at three distinct temperatures: 75°F (ambient
temperature for subtropical/tropical power stations), 170°F (storage temperature in the
tanks in the tank farm), and 220°F (temperature to which the oils are heated before
feeding to the burner.
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For testing at 75°F, oils were combined in a beaker and (if necessarily) slightly
heated to 75°F. The oils were then blended by stirring at the highest achievable RPM on
the heating/stir plate (i.e., before the magnetic stir bar went out of balance) for five
minutes; most oils were stirred at about 1200 RPM for five minutes.

For testing at 170°F, oils were combined in a beaker and heated to 170°F. The oils
were then blended by stirring at the highest achievable RPM on the heating/stir plate,
which was typically about 1200 RPM, for five minutes.

For testing at 220°F, oils were combined in a beaker and heated to 220°F. The oils
were then blended by stirring at the highest achievable RPM on the heating/stir plate,
which was typically about 1200 RPM, for five minutes.

After the oils were blended, they were photographed and visually examined for
effective miscibility. The blended oils were then allowed to sit at the testing temperature
(i.e., 75°F, 170°F, or 220°F) on a hot plate for a further 25 minutes without stirring, at
which point they were examined again for separation of entrained solids or overall
separation of oils. Again, the blends were photographed at the end of the 25 minutes. The
oils were then placed in an oven maintained at the desired testing temperature and
allowed to sit for an extended period of time (2 days — ~1.5 years, depending on the
sample) in order to examine for further separation.

The samples heated to 170°F and 220°F were cooled to 75°F in order to test for
any difficulties with the blends in the scenario that heating would be lost within the plant.
The samples were allowed to sit for an extended period of time at the cooler temperature
to examine for any separation of entrained solids, formation of sludge, or overall

separation of oils. The samples were photographed again at the end of this period.
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6.3 Characterization of Individual Fuels and Fuel Blends

In general, liquid fuels (petroleum-based) are analyzed for the following
properties: composition and heating value by means of proximate and ultimate analysis,
specific gravity, viscosity, flash point, and pour point. Each individual fuel in testing was
analyzed for composition and heating value using proximate/ultimate analysis; this
analysis was not performed on each blend of fuels, as these properties would be additive.

However, flash point, cloud point, and pour point may not be additive properties.
Tests were consequently conducted to determine the flash point, pour point, and cloud
point for select pure fuels and fuel blends. Viscosity testing was not conducted because of
equipment limitations.

Flash point was determined using an Elcometer 6910/3 Setaflash Series 3
ActiveCool flash point tester. This is in accordance with ASTM D93.

Pour point was determined using a Multipoint Phase Technology 70X Series
analyzer. This instrument operates in accordance with ASTM D97.

Cloud point was determined using a proprietary method developed in-house to
find the wax appearance temperature. This method provides a conservative estimate of
the wax point, as most wax points are determined by filter plugging. The cloud point
determined by this method provided the first potential problem temperature.

6.4  Corrosion Testing

The main alloys in use at most power stations are 304 stainless steel, 316 stainless
steel, brass/bronze, mild steel, aluminum, and Monel. In addition, 410 stainless steel is a
common alloy in wetted parts in fuel pumps. It was determined that aluminum and Monel

did not need to be analyzed for susceptibility to corrosion for two reasons: 1.) these
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metals are usually not present in large amounts at power stations and 2.) these metals are
not typically susceptible to corrosion because of passivating behavior. Therefore, five
metals were selected for corrosion testing: 304 stainless steel, 316 stainless steel, brass,
mild steel, and 410 stainless steel.

Samples of each metal were cut into 1”” wide pieces (typically also 17 tall). These
samples were then prepared by sanding all surfaces with 120 grit sandpaper. This was
done in order to remove enough material to get below any variations in the metal surface,
and remove any oil, grease, or other contaminants. Each metal type was polished with its
own piece of sandpaper in order to avoid cross-contamination of metals, which could
have led to erroneous results through galvanic corrosion effects.

All of the seven oils were used in the corrosion testing. The metal samples were
each immersed in excess oil in 40z jars, allowed to sit on the bottom of the jar, and placed
in an oven at 175°F.

The metal samples were weighed, measured using a caliper, and photographed
prior to corrosion testing and each time they were removed from the oven. The samples
were removed from the oven and examined every two weeks for mass loss and change in
appearance. Excess oils were removed by running the samples under water while

scrubbing them with a rubber stopper.
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CHAPTER VII
RESULTS AND DISCUSSION — BIOFUELS

7.1  Miscibility Test Results
7.1.1 Oils Blended at 75°F

This blending temperature represents a worst-case scenario for many tropical and
subtropical plants, as this temperature should never be experienced unless the heating and
stirring on the storage tanks fails for an extended period of time.

Blends are considered to be failures if the qualitative viscosity was too high, i.e.,
if the blend failed to flow, or if a significant amount of solids settled out of solution. For
this chapter, “solids” is defined as waxes, which essentially are longer-chain fuel
molecules which are too heavy to remain suspended in solution. The main cause of the
failure at this temperature was solids settling, which could be problematic in the event of
a prolonged heating and stirring failure in the storage tank and/or any heat-traced line. In
addition, it was found that blends of crude palm oil with both hi-pour and lo-pour fuel oil
were resistant to mechanical mixing. These blends could be manually stirred, and this
may be a limitation of the magnetic stir plate used. The main problem with palm oil is its
semi-solid characteristics at relatively low temperatures, in addition to its high
concentration of solids.

Table 7-1 shows the elapsed time between initial blending and final photos of
each oil blend. This indicates how long a blend was held at 75°F, which can affect factors

such as particulate settling.
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Table 7-1. Elapsed time between blending and final photos, 75°F.

Qil Blend Elapsed Time (days)
Hi-Pour — Palm 8
Hi-Pour — Jatropha 556
Hi-Pour — Biocrude 8
Hi-Pour — Biodiesel 9
Hi-Pour — Ultra-low Sulfur Diesel 9
Lo-Pour — Palm 492
Lo-Pour — Jatropha 492
Lo-Pour — Biocrude 374
Lo-Pour — Biodiesel 492
Lo-Pour — Ultra-low Sulfur Diesel 374
Palm — Jatropha 567
Palm — Biocrude 560
Palm — Biodiesel 560
Palm — Ultra-low Sulfur Diesel 370
Jatropha — Biocrude 560
Jatropha — Biodiesel 560
Jatropha — Ultra-low Sulfur Diesel 373
Biocrude — Ultra-low Sulfur Diesel 373
Biodiesel — Ultra-low Sulfur Diesel 371

Figure 7-1 shows photos of a blend of hi-pour fuel oil and crude palm oil. This
blend resisted stirring on the magnetic stir plate, but was able to be stirred by hand for the
required five minutes. At ambient temperatures, this blend would be a poor fuel;
however, it most likely would be pourable. The tops of the beakers in these photos

indicate that the crude palm oil (yellow areas) did not fully blend with the hi-pour fuel

oil.
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Figure 7-1. Hi-pour fuel oil — crude palm oil blend, mixed and held at 75°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) eight days
after stirring.
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Figure 7-2 shows photos of a blend of hi-pour fuel oil and crude jatropha oil. This
blend could be easily mixed and was completely miscible; in fact, addition of the jatropha
oil lowered the viscosity of the blend as compared to the hi-pour fuel oil. At ambient
temperatures, this would be a good fuel. The qualitative viscosity of the blend did not
change during storage. This indicates no formation of sludge or gels that would be

evidence of chemical change, implying that this blend had an acceptable shelf life.

(@) (b) (c)
Figure 7-2. Hi-pour fuel oil — crude jatropha oil blend, mixed and held at 75°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) 556 days after
stirring.

Figure 7-3 shows photos of a blend of hi-pour fuel oil and biocrude derived from
animal renderings. While initially this blend was resistant to stirring on the magnetic stir
plate, a little manual stirring was sufficient to get it moving. This is most likely due to the
high wax content of both the hi-pour fuel oil and biocrude derived from animal
renderings. This combined wax content would make this a poor fuel blend at ambient

temperatures.
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Figure 7-3. Hi-pour fuel oil — biocrude blend, mixed and held at 75°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) eight days after stirring.
Figure 7-4 shows photos of a blend of hi-pour fuel oil and biodiesel (refined
biocrude). This blend was easily mixed and was completely miscible; in fact, addition of

the biodiesel lowered the viscosity of the blend as compared to the hi-pour fuel oil. At

ambient temperatures, based on the viscosity and miscibility, this would be a good fuel

blend.
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Figure 7-4. Hi-pour fuel oil — biodiesel blend, mixed and held at 75°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) nine days after stirring.
Figure 7-5 shows photos of a blend of hi-pour fuel oil and ultra-low sulfur diesel.
This blend was easily mixed and completely miscible; again, the addition of the ultra-low

sulfur diesel lowered the viscosity of the hi-pour fuel oil. Based on the miscibility and the

viscosity, this would be a good fuel blend at ambient temperatures.
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Figure 7-5. Hi-pour fuel oil — ultra-low sulfur diesel blend, mixed and held at 75°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, and (c) nine days
after stirring.

Figure 7-6 shows photos of a blend of lo-pour fuel oil and crude palm oil after
attempted blending. This mixture resisted blending, even manually, and had the
approximate consistency of cottage cheese. However, during storage, the two oils did mix
together. This may be caused by the high concentration of saturated fatty acids and
monounsaturated oleic acid of palm oil, which may have increased its polarity above that
of the lo-pour fuel oil. Regardless, because of the high viscosity and low initial
miscibility, this would be a poor fuel blend at ambient temperatures.
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Figure 7-6. Lo-pour fuel oil — crude palm oil blend, mixed and held at 75°F. (a)
immediately after attempted blending, (b) 492 days after attempted blending.
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Figure 7-7 shows photos of a blend of lo-pour fuel oil and crude jatropha oil. This
blend was easily mixed and completely miscible; in fact, the crude jatropha oil
qualitatively improved the viscosity of the lo-pour fuel oil. At ambient temperatures, this
would be a good fuel. The qualitative viscosity of the blend did not change during
storage. This indicates no formation of sludge or gels that would be evidence of chemical
change, implying that this blend had an acceptable shelf life.
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Figure 7-7. Lo-pour fuel oil — crude jatropha oil blend, mixed and held at 75°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) 492 days after
stirring.

Figure 7-8 shows photos of a blend of lo-pour fuel oil and biocrude from animal
renderings. This blend was initially resistant to mechanical stirring on the magnetic stir
plate, though a little manual stirring was sufficient to overcome this. This is most likely
due to the high wax content of both the hi-pour fuel oil and biocrude derived from animal
renderings. This combined wax content, along with ambiguity about whether any waxes
settled to the bottom of the jar in which it was stored due to the opacity of the hi-pour

fuel oil, would make this a poor fuel blend at ambient temperatures.
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Figure 7-8. Lo-pour fuel oil — biocrude blend, mixed and held at 75°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) 374 days after stirring.

Figure 7-9 shows photos of a blend of lo-pour fuel oil and biodiesel (refined
biocrude). This blend was easily mixed and completely miscible; in fact, the addition of
the biodiesel lowered the viscosity of the blend as compared to the lo-pour fuel oil. At
ambient temperatures, this would be a good fuel. The qualitative viscosity of the blend
did not change during storage. This indicates no formation of sludge or gels that would be

evidence of chemical change, implying that this blend had an acceptable shelf life.
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Figure 7-9. Lo-pour fuel oil — biodiesel blend, mixed and held at 75°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) 492 days after stirring.
Figure 7-10 shows photos of a blend of lo-pour fuel oil and ultra-low sulfur
diesel. This blend was easily mixed and completely miscible; in fact, the addition of the
ultra-low sulfur diesel lowered the viscosity of the blend as opposed to the lo-pour fuel

oil. At ambient temperatures, this would be a good fuel. The qualitative viscosity of the
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blend did not change during storage. This indicates no formation of sludge or gels that

would be evidence of chemical change, implying that this blend had an acceptable shelf

life.
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Figure 7-10. Lo-pour fuel oil — ultra-low sulfur diesel blend, mixed and held at 75°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) 374 days after
stirring.

Figure 7-11 shows photos of a blend of crude palm oil and crude jatropha oil.
Immediately after stirring, the two oils appeared well-mixed; however, as soon as 25
minutes later, palm solids, which are primarily waxes, had already begun to settle out of
solution. This indicates that, in the absence of constant stirring, a layer of solids could
settle out in a storage tank. Over time, this layer of solids could plug the tank outlet,
leading to additional maintenance costs. If the solids settled in a pipeline, they could plug

the pipeline or lead to favorable environments for pitting or erosion corrosion. Thus, this

blend is marginally acceptable because of the risk of waxes settling out of solution.
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Figure 7-11. Crude palm oil — crude jatropha oil blend, mixed and held at 75°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) 567 days after
stirring.

Figure 7-12 shows photos of a blend of crude palm oil and biocrude from animal
renderings. There is a high concentration of solids in this oil blend, making it fairly
viscous. This is especially clear in Figure 7-12c, where a large amount of solids have
settled to the bottom of the jar. In the absence of constant stirring, a layer of solids could
settle out in a storage tank. Over time, this layer of solids could plug the tank outlet,
leading to additional maintenance costs. If the solids settled in a pipeline, they could plug

the pipeline or lead to favorable environments for pitting or erosion corrosion. Thus, this

blend is marginally acceptable because of the risk of waxes settling out of solution.
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Figure 7-12. Crude palm oil — biocrude blend, mixed and held at 75°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) 560 days after stirring.

Figure 7-13 shows photos of a blend of crude palm oil and biodiesel (refined

biocrude). In less than 25 minutes after stirring, a layer of palm solids settled to the
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bottom of the beaker. In a fuel tank, this could lead to problems with solids settling out,
leading to long-term issues such as poor tank drainage and additional maintenance costs.
In the absence of constant stirring, a layer of solids could settle out in a storage tank.
Over time, this layer of solids could plug the tank outlet, leading to additional
maintenance costs. If the solids settled in a pipeline, they could plug the pipeline or lead
to favorable environments for pitting or erosion corrosion. Thus, this blend is marginally

acceptable because of the risk of waxes settling out of solution.
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Figure 7-13. Crude palm oil — biodiesel blend, mixed and held at 75°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) 560 days after stirring.
Figure 7-14 shows photos of a blend of crude palm oil and ultra-low sulfur diesel.
The whole blended fuel turned into a thick sludge. Upon initial addition of the diesel to
the palm oil, the mixture cooled by 6°F. Since this behavior was not observed with any

other oil blend, it was conjectured that some sort of endothermic reaction took place

between these oils.
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Figure 7-14.(?:)rude palm oil — ultra-low SU|(ftL)J)I’ diesel blend, mixed and he(l((:j) at 75°F. (a)
imm_ediately after five minutes of stirring, (b) 25 minutes after stirring, (c) 370 days after
stirring.

Figure 7-15 shows photos of a blend of crude jatropha oil and biocrude derived
from animal renderings. Addition of jatropha oil to biocrude derived from animal
renderings improved the viscosity as compared to the biocrude alone, but the high
concentration of solids in biocrude could still potentially lead to processing problems,
such as poor tank drainage, in an unheated and unstirred worst-case scenario. Thus, this
blend is marginally acceptable because of the risk of solids settling and leading to pitting,
erosion corrosion, and increased maintenance costs due to plugging.
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Figure 7-15. Crude jatropha oil — biocrude blend, mixed and held at 75°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) 560 days after
stirring.
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Figure 7-16 shows photos of a bend of crude jatropha oil and biodiesel (refined

biocrude). This blend could be easily mixed, had low viscosity, was completely miscible,

and had no solids settling. Thus, this blend would be a good fuel at ambient temperatures.

(@) (b) (c)
Figure 7-16. Crude jatropha oil — biodiesel blend, mixed and held at 75°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) 560 days after

stirring.

Figure 7-17 shows photos of a blend of crude jatropha oil and ultra-low sulfur

diesel. This blend could be easily mixed, had low viscosity, was completely miscible, and

had no solids settling. Thus, this blend would be a good fuel at ambient temperatures.

@ | (b) (©)
Figure 7-17. Crude jatropha oil — ultra-low sulfur diesel blend, mixed and held at 75°F.
(a) immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) 373 days
after stirring.
Figure 7-18 shows photos of a blend of biocrude derived from animal renderings

and ultra-low sulfur diesel. Within 25 minutes, a layer of biocrude-derived solids began

settling out of solution. These solids could pose processing problems, such as poor tank
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drainage, in an unheated worst-case scenario. Thus, this blend is marginally acceptable
because of the risk of solids settling and leading to pitting, erosion corrosion, and

increased maintenance costs due to plugging.
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Figure 7-18. Biocrude — ultra-low sulfur diesel blend, mixed and held at 75°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) 373 days after
stirring.

Figure 7-19 shows photos of a blend of biodiesel (refined biocrude) and ultra-low
sulfur diesel. This blend could be easily mixed, had low viscosity, was completely
miscible, and had no solids settling. Thus, this blend would be a good fuel at ambient

temperatures.
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Figure 7-19. Biodiesel — ultra-low sulfur diesel blend, mixed and held at 75°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, and (c) 371 days
after stirring.

Based on the above results, Table 7-2 shows the miscibility of fuel blends at 75°F;

duplicate blends are filled in with black boxes to alleviate confusion, and grey boxes
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indicate pure oils. This is the acceptability at the worst-case scenario in which a storage

tank would lose heat for an extended period of time. The main cause of failure at this

temperature was entrained waxes that had a tendency to settle out of solution, as

discussed above for affected oil blends.

Table 7-2. Fuel blend acceptability at 75°F.

Ultra-low
sulfur
diesel

7.1.2 Oils Blended at 170°F

Lo- Hi-Pour | Biocrude | Crude Crude Biodiesel | Ultra-
Pour Fuel Oil | (animal) | Jatropha | Palm Oil | (refined low
Fuel Qil biocrude) | sulfur
Oil diesel
Lo-Pour Not Marginal | Yes No Yes Yes
Fuel Qil Tested
Hi-Pour Marginal | Yes No Yes Yes
Fuel Qil
Biocrude Marginal | No Not Marginal
(animal) Tested
Crude Marginal | Yes Yes
Jatropha
Qil
Crude Marginal | No
Palm Oil
Biodiesel Yes
(refined
biocrude)

This blending temperature is approximately equal to the average temperature of oil

storage tanks in industry. Table 7-3 shows the elapsed time between initial blending and

final photos of each oil blend. This indicates how long a blend was held at 170°F.

Table 7-3. Elapsed time between blending and final photos, 170°F.

Oil Blend

Elapsed Time (days)

Hi-Pour — Palm

Hi-Pour — Jatropha
Hi-Pour — Biocrude
Hi-Pour — Biodiesel



Table 7-3, cont.

Qil Blend Elapsed Time (days)

Hi-Pour — Ultra-low Sulfur Diesel
Lo-Pour — Palm

Lo-Pour — Jatropha

Lo-Pour — Biocrude

Lo-Pour — Biodiesel

Lo-Pour — Ultra-low Sulfur Diesel
Palm — Jatropha

Palm — Biocrude

Palm — Biodiesel

Palm — Ultra-low Sulfur Diesel
Jatropha — Biocrude

Jatropha — Biodiesel

Jatropha — Ultra-low Sulfur Diesel
Biocrude — Ultra-low Sulfur Diesel
Biodiesel — Ultra-low Sulfur Diesel
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Figure 7-20 shows photos of a blend of hi-pour fuel oil and crude palm oil. This
blend could be easily mixed, had low viscosity, and was completely miscible. Thus, this

blend would be a good fuel at 170°F.
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Figure 7-20. Hi-pour fuel oil — crude palm oil blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) two days after
stirring.

Figure 7-21 shows photos of a blend of hi-pour fuel oil and crude jatropha oil.

This blend could be easily mixed, had low viscosity, and was completely miscible. Thus,

this blend would be a good fuel at 170°F.
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Figure 7-21. Hi-pour fuel oil — crude jatropha oil blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) two days after
stirring.
Figure 7-22 shows photos of a blend of hi-pour fuel oil and biocrude derived from

animal renderings. This blend could be easily mixed, had low viscosity, and was

completely miscible. Thus, this blend would be a good fuel at 170°F.
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Figure 7-22. Hi-pour fuel oil — biocrude blend, mixed and held at 170°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) two days after stirring.

Figure 7-23 shows photos of a blend of hi-pour fuel oil and biodiesel (refined
biocrude). This blend could be easily mixed, had low viscosity, and was completely

miscible. Thus, this blend would be a good fuel at 170°F.
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Figure 7-23. Hi-pour fuel oil — biodiesel blend, mixed and held at 170°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) two days after stirring.

Figure 7-24 shows photos of a blend of hi-pour fuel oil and ultra-low sulfur
diesel. This blend could be easily mixed, had low viscosity, and was completely miscible.

Thus, this blend would be a good fuel at 170°F.

Y =="Ta
g s T W

g& FFRC

(@) (b) (©)
Figure 7-24. Hi-pour fuel oil — ultra-low sulfur diesel blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) two days after
stirring.
Figure 7-25 shows photos of a blend of lo-pour fuel oil and crude palm oil. This

blend could be easily mixed, had low viscosity, and was completely miscible. Thus, this

blend would be a good fuel at 170°F.
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Figure 7-25. Lo-pour fuel oil — crude palm oil blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) four days after
stirring.

Figure 7-26 shows photos of a blend of lo-pour fuel oil and crude jatropha oil.
This blend could be easily mixed, had low viscosity, and was completely miscible. Thus,

this blend would be a good fuel at 170°F.
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Figure 7-26. Lo-pour fuel oil — crude jatropha oil blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) four days after
stirring.
Figure 7-27 shows photos of a blend of lo-pour fuel oil and biocrude derived from

animal renderings. This blend could be easily mixed, had low viscosity, and was

completely miscible. Thus, this blend would be a good fuel at 170°F.
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Figure 7-27. Lo-pour fuel oil — biocrude blend, mixed and held at 170°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) four days after stirring.
Figure 7-28 shows photos of a blend of lo-pour fuel oil and biodiesel (refined
biocrude). This blend could be easily mixed, had low viscosity, and was completely

miscible. Thus, this blend would be a good fuel at 170°F.
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Figure 7-28. Lo-pour fuel oil — biodiesel blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) five days after
stirring.

Figure 7-29 shows photos of a blend of lo-pour fuel oil and ultra-low sulfur

diesel. This blend could be easily mixed, had low viscosity, and was completely miscible.

Thus, this blend would be a good fuel at 170°F.
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Figure 7-29. Lo-pour fuel oil — ultra-low sulfur diesel blend, mixed and held at 170°F.
(a) immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) five days
after stirring.

Figure 7-30 shows photos of a blend of crude palm oil and crude jatropha oil. This
blend could be easily mixed, had low viscosity, was completely miscible, and had zero

solids settling. Thus, this blend would be a good fuel at 170°F.
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Figure 7-30. Crude palm oil — crude jatropha oil blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) five days after
stirring.
Figure 7-31 shows photos of a blend of crude palm oil and biocrude derived from

animal renderings. This blend could be easily mixed, had low viscosity, was completely

miscible, and had zero solids settling. Thus, this blend would be a good fuel at 170°F.
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Figure 7-31. Crude palm oil — biocrude blend, mixed and held at 170°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) five days after stirring.

Figure 7-32 shows photos of a blend of crude palm oil and biodiesel (refined
biocrude). This blend could be easily mixed, had low viscosity, was completely miscible,

and had zero solids settling. Thus, this blend would be a good fuel at 170°F.
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Figure 7-32. Crude palm oil — biodiesel blend, mixed and held at 170°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) five days after stirring.

Figure 7-33 shows photos of a blend of crude palm oil and ultra-low sulfur diesel.
This blend could be easily mixed, had low viscosity, was completely miscible, and had

zero solids settling. Thus, this blend would be a good fuel at 170°F.
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Figure 7-33. Crude palm oil — ultra-low sulfur diesel blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days after
stirring.
Figure 7-34 shows photos of a blend of crude jatropha oil and biocrude derived

from animal renderings. This blend could be easily mixed, had low viscosity, was

completely miscible, and had zero solids settling. Thus, this blend would be a good fuel

at 170°F.
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Figure 7-34. Crude jatropha oil — biocrude blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days after
stirring.

Figure 7-35 shows photos of a blend of crude jatropha oil and biodiesel (refined

biocrude). This blend could be easily mixed, had low viscosity, was completely miscible,

and had zero solids settling. Thus, this blend would be a good fuel at 170°F.
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Figure 7-35. Crude jatropha oil — biodiesel blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days after
stirring.

Figure 7-36 shows photos of a blend of crude jatropha oil and ultra-low sulfur

diesel. This blend could be easily mixed, had low viscosity, was completely miscible, and

had zero solids settling. Thus, this blend would be a good fuel at 170°F.

(@) (b) (©)
Figure 7-36. Crude jatropha oil — ultra-low sulfur diesel blend, mixed and held at 170°F.
(a) immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days
after stirring.
Figure 7-37 shows photos of a blend of biocrude derived from animal renderings
and ultra-low sulfur diesel. This blend could be easily mixed, had low viscosity, was

completely miscible, and had zero solids settling. Thus, this blend would be a good fuel

at 170°F.
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Figure 7-37. Biocrude — ultra-low sulfur diesel blend, mixed and held at 170°F. (a)

immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days after
stirring.

Figure 7-38 shows photos of a blend of biodiesel (refined biocrude) and ultra-low

sulfur diesel. This blend could be easily mixed, had low viscosity, was completely

miscible, and had zero solids settling. Thus, this blend would be a good fuel at 170°F.

(@) () | ©
Figure 7-38. Biodiesel — ultra-low sulfur diesel blend, mixed and held at 170°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days after
stirring.
Based on the above results, Table 7-4 shows the miscibility of fuel blends at
170°F. This is approximately equal to the storage tank temperature. All blends were

acceptable; entrained particles dissolved or melted into solution, and no blends smoked or

formed semi-polymerized films on the testing beaker.
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Table 7-4. Fuel blend acceptability at 170°F.

Ultra-low
sulfur
diesel

7.1.3 Oils Blended at 220°F

Lo- Hi-Pour | Biocrude | Crude Crude Biodiesel | Ultra-
Pour Fuel Oil | (animal) | Jatropha | Palm (refined low
Fuel Qil Qil Qil biocrude) | sulfur
diesel
Lo-Pour Not Yes Yes Yes Yes Yes
Fuel Qil Tested
Hi-Pour Yes Yes Yes Yes Yes
Fuel Qil
Biocrude Yes Yes Not Yes
(animal) Tested
Crude Yes Yes Yes
Jatropha
Oil
Crude Yes Yes
Palm Oil
Biodiesel Yes
(refined
biocrude)

This blending temperature is approximately equal to the temperature to which

industry heats the oils before firing them. It is also greater than the boiling point of water,

so any water in the oils should be driven off.

Table 7-5 shows the elapsed time between initial blending and final photos of

each oil blend. This indicates how long a blend was held at 220°F.

Table 7-5. Elapsed time between blending and final photos, 220°F.

Oil Blend

Elapsed Time (days)

Hi-Pour — Palm

Hi-Pour — Jatropha
Hi-Pour — Biocrude
Hi-Pour — Biodiesel

Hi-Pour — Ultra-low Sulfur Diesel

Lo-Pour — Palm
Lo-Pour — Jatropha
Lo-Pour — Biocrude

AP OWOWWWWWW
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Table 7-5, cont.

Qil Blend Elapsed Time (days)

Lo-Pour — Biodiesel

Lo-Pour — Ultra-low Sulfur Diesel
Palm — Jatropha

Palm — Biocrude

Palm — Biodiesel

Palm — Ultra-low Sulfur Diesel
Jatropha — Biocrude

Jatropha — Biodiesel

Jatropha — Ultra-low Sulfur Diesel
Biocrude — Ultra-low Sulfur Diesel
Biodiesel — Ultra-low Sulfur Diesel
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Figure 7-39 shows photos of a blend of hi-pour fuel oil and crude palm oil. This
blend could be easily mixed, had low viscosity, and was completely miscible. Thus, this
blend would be a good fuel at 220°F.
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Figure 7-39. Hi-pour fuel oil — crude palm oil blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) three days
after stirring.

Figure 7-40 shows photos of a blend of hi-pour fuel oil and crude jatropha oil.
Figure 7-40a shows this blend immediately after stirring, Figure 7-40b shows this blend
25 minutes after stirring, and Figure 7-40c shows this blend three days after stirring. This

blend could be easily mixed, had low viscosity, and was completely miscible. Thus, this

blend would be a good fuel at 220°F.
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(a) (b)
Figure 7-40. Hi-pour fuel oil — crude jatropha oil blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) three days

after stirring.
Figure 7-41 shows photos of a blend of hi-pour fuel oil and biocrude derived from

animal renderings. This blend could be easily mixed, had low viscosity, and was

= |
e EERC ~ L =ERC -

()

completely miscible. Thus, this blend would be a good fuel at 220°F.
ENFFRC

(b)
Figure 7-41. Hi-pour fuel oil — biocrude blend, mixed and held at 220°F. (a) immediately

(@)
after five minutes of stirring, (b) 25 minutes after stirring, (c) three days after stirring.

Figure 7-42 shows photos of a blend of hi-pour fuel oil and biodiesel (refined

biocrude). This blend could be easily mixed, had low viscosity, and was completely

miscible. Thus, this blend would be a good fuel at 220°F.
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Figure 7—42.(|6—1I)i-pour fuel oil — biodiesel blgr)1)d, mixed and held at 220°F.((Ca)) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) three days after stirring.
Figure 7-43 shows photos of a blend of hi-pour fuel oil and ultra-low sulfur
diesel. This blend, and all blends containing ultra-low sulfur diesel, smoked slightly, both
while being stirred and in the initial 25 minutes it was maintained at 220°F after stirring.
Since this behavior was not observed with any other blends containing hi-pour fuel oil,
the smoke was likely caused by the ultra-low sulfur diesel, which was blended without
any additives to improve its performance. This behavior may be improved by the addition

of a cetane number improver, which would reduce smoke (Bacha et al., 2007). Because

of the smoke emitted by the blend, in the absence of a cetane number improver, this blend

is marginally acceptable.

Seenc E)FFRC
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Figure 7-43. Hi-pour fuel oil — ultra-low sulfur diesel blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) three days
after stirring.
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Figure 7-44 shows photos of a blend of lo-pour fuel oil and crude palm oil. This
blend could be easily mixed, had low viscosity, and was completely miscible. Thus, this

blend would be a good fuel at 220°F.
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Figure 7-44. Lo-pour fuel oil — crude palm oil blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) three days
after stirring.
Figure 7-45 shows photos of a blend of lo-pour fuel oil and crude jatropha oil.

This blend could be easily mixed, had low viscosity, and was completely miscible. Thus,

this blend would be a good fuel at 220°F.
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Figure 7-45. Lo-pour fuel oil — crude jatropha oil blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) three days
after stirring.
Figure 7-46 shows photos of a blend of lo-pour fuel oil and biocrude derived from

animal renderings. This blend could be easily mixed, had low viscosity, and was

completely miscible. Thus, this blend would be a good fuel at 220°F.
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Figure 7-46. Lo-pour fuel oil — biocrude blend, mixed and held at 220°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) four days after stirring.

Figure 7-47 shows photos of a blend of lo-pour fuel oil and biodiesel (refined
biocrude). This blend could be easily mixed, had low viscosity, and was completely

miscible. Thus, this blend would be a good fuel at 220°F.

_ (a) O ()

Figure 7-47. Lo-pour fuel oil — biodiesel blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) four days after
stirring.

Figure 7-48 shows photos of a blend of lo-pour fuel oil and ultra-low sulfur
diesel. This blend smoked heavily, both while being stirred and in the initial 25 minutes
after stirring. Since this behavior was not observed with any other blends containing lo-
pour fuel oil, the smoke was likely caused by the ultra-low sulfur diesel, which was

blended without any additives to improve its performance. This behavior may be

improved by the addition of a cetane number improver, which would reduce smoke
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(Bacha et al., 2007). Because of the smoke emitted by the blend, in the absence of a

cetane number improver, this blend is marginally acceptable.
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Figure 7-48. Lo-pour fuel oil — ultra-low sulfur diesel blend, mixed and held at 220°F.
(a) immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) four days
after stirring.
Figure 7-49 shows photos of a blend of crude palm oil and crude jatropha oil. This

blend could be easily mixed, had low viscosity, was completely miscible, and had zero

solids settling out of solution. Thus, this blend would be a good fuel at 220°F.
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Figure 7-49. Crude palm oil — crude jatropha oil blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) five days after
stirring.
Figure 7-50 shows photos of a blend of crude palm oil and biocrude derived from
animal renderings. A thin film appeared on the bottom of the beaker within 25 minutes

after it was stirred. Since this film was not observed with any other blends containing

crude palm oil, it was conjectured that this was caused by the biocrude derived from
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animal renderings. It is conjectured that this film resulted from the semi-polymerization
of the biocrude. This could lead to favorable environments for crevice corrosion or
pitting. Because of the semi-polymerized oil, this blend is marginally acceptable.
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Figure 7-50. Crude palm oil — biocrude blend, mixed and held at 220°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) five days after stirring.

Figure 7-51 shows photos of a blend of crude palm oil and biodiesel (refined
biocrude). This blend could be easily mixed, had low viscosity, was completely miscible,

and had zero solids settling out of solution. Thus, this blend would be a good fuel at

220°F.
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Figure 7-51. Crude palm oil — biodiesel blend, mixed and held at 220°F. (a) immediately
after five minutes of stirring, (b) 25 minutes after stirring, (c) five days after stirring.
Figure 7-52 shows photos of a blend of crude palm oil and ultra-low sulfur diesel.

This blend smoked slightly, both while being stirred and in the initial 25 minutes after

stirring. Since this behavior was not observed with any other blends containing lo-pour
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fuel oil, the smoke was likely caused by the ultra-low sulfur diesel, which was blended
without any additives to improve its performance. This behavior may be improved by the
addition of a cetane number improver, which would reduce smoke (Bacha et al., 2007).
Because of the smoke emitted by the blend, in the absence of a cetane number improver,

this blend is marginally acceptable.
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Figure 7-52.(g)rude palm oil — ultra-low SU|(ftl)J)r diesel blend, mixed and he(I((:j) at 220°F. (a)
irr_1m_ediate|y after five minutes of stirring, (b) 25 minutes after stirring, (c) five days after
stirring.

Figure 7-53 shows photos of a blend of crude jatropha oil and biocrude derived
from animal renderings. A thin film appeared on the bottom of the beaker within 25
minutes after it was stirred. Since this film was not observed with any other blends
containing crude jatropha oil, it was conjectured that this was caused by the biocrude
derived from animal renderings. It is conjectured that this film resulted from the semi-
polymerization of the biocrude. This could lead to favorable environments for crevice

corrosion or pitting. Because of the semi-polymerized oil, this blend is marginally

acceptable.
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Figure 7-53. Crude jatropha oil — biocrude blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days after

stirring.
Figure 7-54 shows photos of a blend of crude jatropha oil and biodiesel (refined
biocrude). This blend could be easily mixed, had low viscosity, was completely miscible
and had zero solids settling out of solution. Thus, this blend would be a good fuel at
S)FFRC
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Figure 7-54. Crude jatropha oil — biodiesel blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days after

(©)

stirring.
Figure 7-55 shows photos of a blend of crude jatropha oil and ultra-low sulfur

diesel. This blend smoked slightly, both while being stirred and in the initial 25 minutes
after stirring. Since this behavior was not observed with any other blends containing
crude jatropha oil, the smoke was likely caused by the ultra-low sulfur diesel, which was

blended without any additives to improve its performance. This behavior may be
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improved by the addition of a cetane number improver, which would reduce smoke

(Bacha et al., 2007). Because of the smoke emitted by the blend, in the absence of a

cetane number improver, this blend is marginally acceptable.

Figure 7-55.(g)rude jatropha oil — uItra—Iow(EJIfur diesel blend, mixed and(%)eld at 220°F.
(a) immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days
after stirring.

Figure 7-56 shows photos of a blend of biocrude derived from animal renderings
and ultra-low sulfur diesel. A thin film appeared on the bottom of the beaker within 25
minutes after it was stirred. Since this film was not observed with any other blends
containing ultra-low sulfur diesel, it was conjectured that this was caused by the biocrude
derived from animal renderings. It is conjectured that this film resulted from the semi-
polymerization of the biocrude. This could lead to favorable environments for crevice

corrosion or pitting. Because of the semi-polymerized oil, this blend is marginally

acceptable.
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Figure 7-56. Biocrude — ultra-low sulfur diesel blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days after
stirring.

Figure 7-57 shows photos of a blend of biodiesel (refined biocrude) and ultra-low
sulfur diesel. This blend smoked slightly, both while being stirred and in the initial 25
minutes it was maintained at 220°F after stirring. Since this behavior was not observed
with any other blends containing biodiesel, the smoke was likely caused by the ultra-low
sulfur diesel, which was blended without any additives to improve its performance. This
behavior may be improved by the addition of a cetane number improver, which would
reduce smoke (Bacha et al., 2007). Because of the smoke emitted by the blend, in the

absence of a cetane number improver, this blend is marginally acceptable.
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Figure 7-57. Biodiesel — ultra-low sulfur diesel blend, mixed and held at 220°F. (a)
immediately after five minutes of stirring, (b) 25 minutes after stirring, (c) six days after
stirring.
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Based on the above results, Table 7-6 shows the miscibility of fuel blends at

220°F. This is approximately the temperature to which oils are heated before firing. The

main causes of marginal behavior were smoking and semi-polymerized films on the

beaker.

Table 7-6. Fuel blend acceptability at 220°F.

(refined
biocrude)

sulfur
diesel

Ultra-low

7.1.4 Cooling Oil Blends from 170°F to 75°F

Lo- Hi-Pour | Biocrude | Crude Crude Biodiesel | Ultra-
Pour Fuel Oil | (animal) | Jatropha | Palm Oil | (refined low
Fuel Qil biocrude) | sulfur
Oil diesel
Lo-Pour Not Yes Yes Yes Yes Yes
Fuel Oil Tested
Hi-Pour Yes Yes Yes Yes Marginal
Fuel Oil
Biocrude Marginal | Marginal | Not Marginal
(animal) Tested
Crude Yes Yes Yes
Jatropha
Oil
Crude Yes Yes
Palm Qil
Biodiesel Yes

All the oils blended at 170°F were cooled overnight to 75°F and were allowed to

settle for eight days. This represents a worst-case scenario for industry where the heating

on the storage tanks would fail and oil blends would cool, potentially creating a situation

where solids could settle or sludge-like compounds could form.

Figure 7-58 shows photos of a blend of hi-pour fuel oil and crude palm oil after it

was cooled. This cooled blend was thicker than the heated fuel blend; qualitatively the
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viscosity was similar to that of refrigerated vegetable oil. However, this viscosity was not
dissimilar to that of the same oils blended at 75°F, indicating that heating the oils did not
significantly change their overall properties. Nevertheless, the high opacity of the fuel oil
may have obscured any qualitatively-observable changes, such as solids settling out of

solution.

S)FFRC

(a) (b)
Figure 7-58. Hi-pour fuel oil — crude palm oil blend, cooled from 170°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-59 shows photos of a blend of hi-pour fuel oil and crude jatropha oil
after it was cooled. There was no difference between the viscosity of the cooled blend

and the viscosity of the same oils blended at 75°F, indicating that heating the oils did not

significantly change their properties. Thus, this cooled blend of oils is acceptable.
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Figure 7-59. Hi-pour fuel oil — crude jatropha oil blend, cooled from 170°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-60 shows photos of a blend of hi-pour fuel oil and biocrude derived from
animal renderings after it was cooled. The qualitative viscosity of the cooled fuel blend
was slightly lower than that of the same oils blended at 75°F. However, the high opacity
of the fuel oil may be obscuring any qualitatively-observable changes, such as solids

settling out of solution.
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Figure 7-60. Hi-pour fuel oil — biocrude blend, cooled from 170°F to 75°F. (a) shows the
blend sitting flat, and (b) shows the blend tilted at an angle.
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Figure 7-61 shows photos of a blend of hi-pour fuel oil and biodiesel (refined
biocrude) after it was cooled. There was no difference between the viscosity of the cooled

blend and the viscosity of the same oils blended at 75°F, indicating that heating the oils

did not significantly change their properties. Thus, this cooled blend of oils is acceptable.

(a) (b)
Figure 7-61. Hi-pour fuel oil — biodiesel blend, cooled from 170°F to 75°F. (a) shows the
blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-62 shows photos of a blend of hi-pour fuel oil and ultra-low sulfur diesel
after it was cooled. There was no difference between the viscosity of the cooled blend

and the viscosity of the same oils blended at 75°F, indicating that heating the oils did not

significantly change their properties. Thus, this cooled blend of oils is acceptable.
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Figure 7-62. Hi-pour fuel oil — ultra-low sulfur diesel blend, cooled from 170°F to 75°F.
(a) shows the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-63 shows photos of a blend of lo-pour fuel oil and crude palm oil after it
was cooled. The qualitative viscosity of the cooled fuel blend was significantly lower
than the initial viscosity of the same oils blended at 75°F. However, the high opacity of
the fuel oil may be obscuring any qualitatively-observable changes, such as palm solids
settling out of solution.
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Figure 7-63. Lo-pour fuel oil — crude palm oil blend, cooled from 170°F to 75°F. ()
shows the blend sitting flat, and (b) shows the blend tilted at an angle.
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Figure 7-64 shows photos of a blend of lo-pour fuel oil and crude jatropha oil
after it was cooled. There was no difference between the viscosity of the cooled blend
and the viscosity of the same oils blended at 75°F, indicating that heating the oils did not

significantly change their properties. Thus, this cooled blend of oils is acceptable.
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(a) (b)
Figure 7-64. Lo-pour fuel oil — crude jatropha oil blend, cooled from 170°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-65 shows photos of a blend of lo-pour fuel oil and biocrude derived from
animal renderings after it was cooled. The qualitative viscosity of the cooled fuel blend
was similar to that of the same oils blended at 75°F. However, the high opacity of the fuel

oil may be obscuring any qualitatively-observable changes, such as solids settling out of

solution.
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Figure 7-65. Lo-pour fuel oil — biocrude blend, cooled from 170°F to 75°F. (a) shows the
blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-66 shows photos of a blend of lo-pour fuel oil and biodiesel (refined
biocrude) after it was cooled. There was no difference between the viscosity of the cooled
blend and the viscosity of the same oils blended at 75°F, indicating that heating the oils
did not significantly change their properties. Thus, this cooled blend of oils is acceptable.
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Figure 7-66. Lo-pour fuel oil — biodiesel blend, cooled from 170°F to 75°F. (a) shows
the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-67 shows photos of a blend of lo-pour fuel oil and ultra-low sulfur diesel

after it was cooled. There was no difference between the viscosity of the cooled blend
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and the viscosity of the same oils blended at 75°F, indicating that heating the oils did not

significantly change their properties. Thus, this cooled blend of oils is acceptable.

(a) (b)
Figure 7-67. Lo-pour fuel oil — ultra-low sulfur diesel blend, cooled from 170°F to 75°F.
(a) shows the blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-68 shows photos of a blend of crude palm oil and crude jatropha oil after
it was cooled. A considerable amount of solids (most likely palm-based) settled out of

this blend. These solids could lead to favorable conditions for crevice corrosion or

erosion corrosion or could lead to plugging of tank outlets. Therefore, this blend is not

acceptable under these cooled conditions.

(@) (b)
Figure 7-68. Crude palm oil — crude jatropha oil blend, cooled from 170°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.
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Figure 7-69 shows photos of a blend of crude palm oil and biocrude derived from
animal renderings after it was cooled. This blend thickened quite a bit in cooling to the
approximate consistency of honey. Overall, the viscosity of this cooled blend was higher
than that of the same oils blended at 75°F, even though solids settled out of the latter
blend as well. The thickened oil blend could lead to plugging of pipelines or tank outlets.

Therefore, this blend is not acceptable under cooled conditions.

S) EEFi

Figure 7-69. Crude (pe:i)lm oil — biocrude blend, cooled from 170°F(tt)()) 75°F. (a) shows the
blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-70 shows photos of a blend of crude palm oil and biodiesel (refined
biocrude) after it was cooled. A considerable amount of solids settled out; the solids at
the bottom were more densely packed, while the solids nearer the top were less dense.
These solids could lead to favorable conditions for crevice corrosion or erosion corrosion
or could lead to plugging of tank outlets, especially as the solids became more densely

packed from top to bottom through the blend, which may have been due to the actions of

gravity. Therefore, this blend is not acceptable under these cooled conditions.
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(@) (b)
Figure 7-70. Crude palm oil — biodiesel blend, cooled from 170°F to 75°F. (a) shows the
blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-71 shows photos of a blend of crude palm oil and ultra-low sulfur diesel
after it was cooled. A layer of moderately dense palm solids settled out. These solids
could lead to favorable conditions for crevice corrosion or erosion corrosion or could lead
to plugging of tank outlets, especially as the solids became more densely packed from top

to bottom through the blend, which may have been due to the actions of gravity.

Therefore, this blend is not acceptable under these cooled conditions.

(@) (b)
Figure 7-71. Crude palm oil — ultra-low sulfur diesel blend, cooled from 170°F to 75°F.
(a) shows the blend sitting flat, and (b) shows the blend tilted at an angle.
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Figure 7-72 shows photos of a blend of crude jatropha oil and biocrude derived
from animal renderings after it was cooled. A layer of moderately packed solids settled
out, and more solids were visible throughout the solution. These solids could lead to
favorable conditions for crevice corrosion or erosion corrosion or could lead to plugging
of tank outlets, especially as the solids became more densely packed from top to bottom
through the blend, which may have been due to the actions of gravity. Therefore, this

blend is not acceptable under these cooled conditions.
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(a) (b)
Figure 7-72. Crude jatropha oil — biocrude blend, cooled from 170°F to 75°F. (a) shows
the blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-73 shows photos of a blend of crude jatropha oil and biodiesel (refined
biocrude) after it was cooled. There was no difference between the viscosity of the cooled

blend and the viscosity of the same oils blended at 75°F, indicating that heating the oils

did not significantly change their properties. Thus, this cooled blend of oils is acceptable.
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(a) (b)
Figure 7-73. Crude jatropha oil — biodiesel blend, cooled from 170°F to 75°F. (a) shows
the blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-74 shows photos of a blend of crude jatropha oil and ultra-low sulfur
diesel after it was cooled. There was no difference between the viscosity of the cooled

blend and the viscosity of the same oils blended at 75°F, indicating that heating the oils

did not significantly change their properties. Thus, this cooled blend of oils is acceptable.

(@) | (b)
Figure 7-74. Crude jatropha oil — ultra-low sulfur diesel blend, cooled from 170°F to
75°F. (a) shows the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-75 shows photos of a blend of biocrude derived from animal renderings

and ultra-low sulfur diesel after it was cooled. A layer of crystalline solids settled out of
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solution. These solids could lead to favorable conditions for crevice corrosion or erosion
corrosion (particularly true for these crystalline solids) or could lead to plugging of tank

outlets, especially as the solids became more densely packed from top to bottom through
the blend, which may have been due to the actions of gravity. Therefore, this blend is not

acceptable under these cooled conditions.
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(@) (b)
Figure 7-75. Biocrude — ultra-low sulfur diesel blend, cooled from 170°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-76 shows photos of a blend of biodiesel (refined biocrude) and ultra-low
sulfur diesel after it was cooled. There was no difference between the viscosity of the
cooled blend and the viscosity of the same oils blended at 75°F, indicating that heating

the oils did not significantly change their properties. Thus, this cooled blend of oils is

acceptable.
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Figure 7-76. Biodiesel — ultra-low sulfur diesel blend, cooled from 170°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.

Based on the above results, Table 7-7 shows the acceptability of the fuel blends
after they were cooled from 170°F to 75°F. The main cause of failure was solids settling
or the formation of sludge-like compounds. Generally, more solids were observed in
blends containing crude palm oil which were cooled from 170°F to 75°F than were
observed in blends containing this oil at 75°F. It is possible that the oil structure was
changed by heating it. This may not have been entirely detrimental, though; the blend of
lo-pour fuel oil with crude palm oil had a significantly lower viscosity after cooling than
the initial blend of these same oils at 75°F. More solids were also observed in blends
containing biocrude derived from animal renderings which were cooled from 170°F to
75°F than were observed in blends containing this oil at 75°F, though not enough is
known about the fuel properties of the biocrude to make a determination as to why this

would be the case.
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Table 7-7. Acceptability of fuel blends after cooling from 170°F to 75°F.

(refined

sulfur
diesel

biocrude)
Ultra-low

7.1.5 Cooling Oil Blends from 220°F to 75°F

Lo- Hi-Pour | Biocrude | Crude Crude Biodiesel | Ultra-
Pour Fuel Oil | (animal) | Jatropha | Palm Oil | (refined low
Fuel Oil biocrude) | sulfur
oil diesel
Lo-Pour Not Yes Yes Marginal | Yes Yes
Fuel Qil Tested
Hi-Pour Yes Yes Marginal | Yes Yes
Fuel Oil
Biocrude No No Not No
(animal) Tested
Crude No Yes Yes
Jatropha
Qil
Crude No No
Palm Oil
Biodiesel Yes

All the oils blended at 220°F were cooled overnight to 75°F and allowed to settle

for three days. This represents an unlikely scenario in industry where the heated lines to

the furnace would fail for some reason and the failure would go unnoticed for an

extended period of time. This would potentially create a situation where solids would

settle or sludge-like compounds would form.

Figure 7-77 shows photos of a blend of hi-pour fuel oil and crude palm oil after it

was cooled. This cooled blend was thicker than the heated fuel blend; the viscosity was

comparable to that of refrigerated vegetable oil, and the blend had the approximate

consistency of cottage cheese. The thickness of the blend could lead to plugging of
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heated lines or tank outlets. Therefore, this blend is not acceptable under the cooled

conditions.
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Figure 7-77. Hi-pou(fz‘uel oil — crude palm oil blend, cooled from(g%0°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-78 shows photos of a blend of hi-pour fuel oil and crude jatropha oil
after it was cooled. There was no difference between the viscosity of the cooled blend
and the viscosity of the same oils blended at 75°F, indicating that heating the oils did not
significantly change their properties. However, the high opacity of the fuel oil may be

obscuring any qualitatively-observable changes, such as palm-based solids settling out of

solution.
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Figure 7-78. Hi-pour fuel oil — crude jatropha oil blend, cooled from 220°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-79 shows photos of a blend of hi-pour fuel oil and biocrude derived from
animal renderings after it was cooled. The qualitative viscosity of the cooled fuel blend
was slightly lower than that of the same oils blended at 75°F. However, the high opacity

of the fuel oil may be obscuring any qualitatively-observable changes, such as biocrude-

based solids settling out of solution.
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(@) (b)
Figure 7-79. Hi-pour fuel oil — biocrude blend, cooled from 220°F to 75°F. (a) shows the
blend sitting flat, and (b) shows the blend tilted at an angle.
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Figure 7-80 shows photos of a blend of hi-pour fuel oil and biodiesel (refined
biocrude) after it was cooled. There was no difference between the viscosity of the cooled

blend and the viscosity of the same oils blended at 75°F, indicating that heating the oils

did not significantly change their properties. Thus, this blend of oils is acceptable.

(a) (b)
Figure 7-80. Hi-pour fuel oil — biodiesel blend, cooled from 220°F to 75°F. (a) shows the
blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-81 shows photos of a blend of hi-pour fuel oil and ultra-low sulfur diesel
after it was cooled. There was no difference between the viscosity of the cooled blend

and the viscosity of the same oils blended at 75°F, indicating that heating the oils did not

significantly change their properties. Thus, this cooled blend of oils is acceptable.
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Figure 7-81. Hi-pour fuel oil — ultra-low sulfur diesel blend, cooled from 220°F to 75°F.
(a) shows the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-82 shows photos of a blend of lo-pour fuel oil and crude palm oil after it
was cooled. There was no difference between the viscosity of the cooled blend and the
viscosity of the same oils blended at 75°F, indicating that heating the oils did not
significantly change their properties. However, the high opacity of the fuel oil may be
obscuring any qualitatively-observable changes, such as palm-based solids settling out of

solution.
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Figure 7-82. Lo-pour fuel oil — crude palm oil blend, cooled from 220°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.
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Figure 7-83 shows photos of a blend of lo-pour fuel oil and crude jatropha oil
after it was cooled. There was no difference between the viscosity of the cooled blend
and the viscosity of the same oils blended at 75°F, indicating that heating the oils did not

significantly change their properties. Thus, this cooled blend of oils is acceptable.
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Figure 7-83. Lo-poé?)fuel oil — crude jatropha oil blend, cooled fr(ck))r)n 220°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-84 shows photos of a blend of lo-pour fuel oil and biocrude derived from
animal renderings after it was cooled. There was no difference between the viscosity of
the cooled blend and the viscosity of the same oils blended at 75°F, indicating that
heating the oils did not significantly change their properties. However, the high opacity

of the fuel oil may be obscuring any qualitatively-observable changes, such as biocrude-

based solids settling out of solution.
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(€)) (b)
Figure 7-84. Lo-pour fuel oil — biocrude blend, cooled from 220°F to 75°F. (a) shows the
blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-85 shows photos of a blend of lo-pour fuel oil and biodiesel (refined
biocrude) after it was cooled. There was no difference between the viscosity of the cooled

blend and the viscosity of the same oils blended at 75°F, indicating that heating the oils

did not significantly change their properties. Thus, this cooled blend of oils is acceptable.

(@) (b)
Figure 7-85. Lo-pour fuel oil — biodiesel blend, cooled from 220°F to 75°F. (a) shows
the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-86 shows photos of a blend of lo-pour fuel oil and ultra-low sulfur diesel

after it was cooled. There was no difference between the viscosity of the cooled blend
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and the viscosity of the same oils blended at 75°F, indicating that heating the oils did not

significantly change their properties. Thus, this cooled blend of oils is acceptable.

(a) (b)
Figure 7-86. Lo-pour fuel oil — ultra-low sulfur diesel blend, cooled from 220°F to 75°F.
(a) shows the blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-87 shows photos of a blend of crude palm oil and crude jatropha oil after
it was cooled. A large amount of solids settled out of this fuel blend, but they were not
especially dense. However, under the right circumstances, they could still create

environments suitable for erosion corrosion or perhaps crevice corrosion if they built up

in a dead leg of piping. Therefore, this cooled blend is marginally acceptable.

F

(@) (b)
Figure 7-87. Crude palm oil — crude jatropha oil blend, cooled from 220°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.
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Figure 7-88 shows photos of a blend of crude palm oil and biocrude derived from
animal renderings after it was cooled. The whole blend became a sludge comprised of
congealed palm and biocrude solids. The thickness of the blend could lead to plugging of

heated lines or tank outlets. Therefore, this blend is not acceptable under the cooled

conditions.
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Figure 7-88. Crude (p?lm oil — biocrude blend, cooled from 220°F(tt)()) 75°F. (a) shows the
blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-89 shows photos of a blend of crude palm oil and biodiesel (refined
biocrude) after it was cooled. Some loosely packed solids settled out of this blend. Under
the right circumstances, these solids could still create environments suitable for erosion
corrosion or perhaps crevice corrosion if they built up in a dead leg of piping. The solids

could also plug pipelines or, more likely, tank outlets, leading to additional maintenance

costs. Therefore, this cooled blend is marginally acceptable.
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(@) (b)
Figure 7-89. Crude palm oil — biodiesel blend, cooled from 220°F to 75°F. (a) shows the
blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-90 shows photos of a blend of crude palm oil and ultra-low sulfur diesel
after it was cooled. A layer of loosely packed solids settled out of the blend. Under the
right circumstances, these solids could still create environments suitable for erosion
corrosion or perhaps crevice corrosion if they built up in a dead leg of piping. The solids
could also plug pipelines or, more likely, tank outlets, leading to additional maintenance

costs. Therefore, this cooled blend is marginally acceptable.

—

(@) (b)
Figure 7-90. Crude palm oil — ultra-low sulfur diesel blend, cooled from 220°F to 75°F.
(a) shows the blend sitting flat, and (b) shows the blend tilted at an angle.
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Figure 7-91 shows a blend of crude jatropha oil and biocrude derived from animal
renderings after it was cooled. A large quantity of low-density solids settled out of the
blend. Under the right circumstances, these solids could still create environments suitable
for erosion corrosion or perhaps crevice corrosion if they built up in a dead leg of piping.

Therefore, this cooled blend is marginally acceptable.

S)FFRC

= a1

ota

(a) (b)
Figure 7-91. Crude jatropha oil — biocrude blend, cooled from 220°F to 75°F. (a) shows
the blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-92 shows a blend of crude jatropha oil and biodiesel (refined biocrude)
after it was cooled. There was no difference between the viscosity of the cooled blend

and the viscosity of the same oils blended at 75°F, indicating that heating the oils did not

significantly change their properties. Thus, this cooled blend of oils is acceptable.
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(a) (b)
Figure 7-92. Crude jatropha oil — biodiesel blend, cooled from 220°F to 75°F. (a) shows
the blend sitting flat, and (b) shows the blend tilted at an angle.
Figure 7-93 shows a blend of crude jatropha oil and ultra-low sulfur diesel after it
was cooled. There was no difference between the viscosity of the cooled blend and the

viscosity of the same oils blended at 75°F, indicating that heating the oils did not

significantly change their properties. Thus, this cooled blend of oils is acceptable.
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(a) - (b)
Figure 7-93. Crude jatropha oil — ultra-low sulfur diesel blend, cooled from 220°F to
75°F. (a) shows the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-94 shows a blend of biocrude derived from animal renderings and ultra-

low sulfur diesel after it was cooled. There was no difference between the viscosity of the
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cooled blend and the viscosity of the same oils blended at 75°F, indicating that heating
the oils did not significantly change their properties. Thus, this cooled blend of oils is

acceptable.
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(@) (b)
Figure 7-94. Biocrude — ultra-low sulfur diesel blend, cooled from 220°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.

Figure 7-95 shows a blend of biodiesel (refined biocrude) and ultra-low sulfur
diesel after it was cooled. There was no difference between the viscosity of the cooled
blend and the viscosity of the same oils blended at 75°F, indicating that heating the oils

did not significantly change their properties. Thus, this cooled blend of oils is acceptable.
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(a) (b)
Figure 7-95. Biodiesel — ultra-low sulfur diesel blend, cooled from 220°F to 75°F. (a)
shows the blend sitting flat, and (b) shows the blend tilted at an angle.
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Based on the above results, Table 7-8 shows the acceptability of the fuel blends
after they were cooled from 220°F to 75°F. The main cause of failure was solids settling
or the formation of sludge-like compounds. Fewer dense solids were observed in the
crude jatropha oil — biocrude derived from animal renderings blend, the crude palm oil —
biodiesel (refined biocrude) blend, and the crude palm oil — ultra-low sulfur diesel blend
cooled from 220°F to 75°F than in the respective blends cooled from 170°F to 75°F. This
may have been due to a change in structure for the blends containing crude palm oil; as
outlined previously, the palm oil may have gone rancid from heating it rapidly, causing a

change in the structure of the oil molecules. Not enough is known about the biocrude

derived from animal renderings to determine why it would experience fewer solids

settling out of solution under these conditions.

Table 7-8. Acceptability of fuel blends after cooling from 220°F to 75°F.
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Lo- Hi-Pour | Biocrude | Crude Crude Biodiesel | Ultra-
Pour Fuel Oil | (animal) | Jatropha | Palm Oil | (refined | low
Fuel Qil biocrude) | sulfur
Oil diesel

Lo-Pour Not Yes Yes Marginal | Yes Yes

Fuel Qil Tested

Hi-Pour Yes Yes Marginal | Yes Yes

Fuel Qil

Biocrude Marginal | No Not No

(animal) Tested

Crude No Yes Yes

Jatropha

Qil

Crude Marginal | Marginal

Palm Oil

Biodiesel Yes

(refined

biocrude)

Ultra-low

sulfur

diesel




7.1.6 Aggregate Photos of Oil Blends

Figure 7-96 shows a blend of hi-pour fuel oil and crude palm oil. These oils were
resistant to blending at 75°F, but were fully miscible at 170°F and 220°F. In addition,
these oil blends are highly opaque and darkly colored, contributing to difficulty in
determining whether palm solids settled out of solution, especially in the blends which

were cooled from 170°F and 220°F to 75°F. These oils are unlikely to store and pump

well, especially if heating on the tanks or pipelines fails.

Figure 7-96. Hi-pour fuel oil — crude palm oil blend. In order from left to right, original
blend temperatures were 75°F, 170°F, 220°F. All blends have been photographed at
75°F.

Figure 7-97 shows a blend of hi-pour fuel oil and crude jatropha oil. These oils
were fully miscible at all three testing temperatures. However, these oil blends are highly
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opaque and darkly colored, contributing to difficulty in determining whether any solids
settled out of solution, especially in the blends which were cooled from 170°F and 220°F

to 75°F. It is thought that this would be unlikely because of the low wax content of the

crude jatropha oil. Given these factors, this blend is likely to store and pump well.

Figure 7-97. Hi-pour fuel oil — crude jatropha oil blend. In order from left to right,
original blend temperatures were 75°F, 170°F, 220°F. All blends have been photographed
at 75°F.

Figure 7-98 shows a blend of hi-pour fuel oil and biocrude derived from animal
renderings. These oils were resistant to blending at 75°F, but were fully miscible at 170°F

and 220°F. In addition, these oil blends are highly opaque and darkly colored,

contributing to difficulty in determining whether biocrude-derived solids settled out of
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solution, especially in the blends which were cooled from 170°F and 220°F to 75°F.

These oils may store and pump well, but this is a little unclear because of the

aforementioned difficulty in determining whether any solids settled out of the mixture.
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Figure 7-98. Hi-pour fuel oil — biocrude blend. In order from left to right, original blend
temperatures were 75°F, 170°F, 220°F. All blends have been photographed at 75°F.

Figure 7-99 shows a blend of hi-pour fuel oil and biodiesel (refined biocrude).
These oils were fully miscible at all three testing temperatures. However, these oil blends
are highly opaque and darkly colored, contributing to difficulty in determining whether
any solids settled out of solution, especially in the blends which were cooled from 170°F
and 220°F to 75°F. It is thought that this would be unlikely because of the low wax

content of the biodiesel. Given these factors, this blend is likely to store and pump well.
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Figure 7-99. Hi-pour fuel oil — biodiesel blend. In order from left to right, original blend
temperatures were 75°F, 170°F, 220°F. All blends have been photographed at 75°F.
Figure 7-100 shows a blend of hi-pour fuel oil and ultra-low sulfur diesel. These
oils were fully miscible at all three testing temperatures; however, this blend did smoke at
220°F. In addition, these oil blends are highly opaque and darkly colored, contributing to
difficulty in determining whether any solids settled out of solution, especially in the
blends which were cooled from 170°F and 220°F to 75°F. It is thought that this would be
unlikely because of the low wax content of the ultra-low sulfur diesel. Given these
factors, this blend is likely to store and pump well, especially with the addition of a
cetane number improver. The improver would have the added effect of enhancing its

combustion characteristics by raising the cetane number.
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Figure 7-100. Hi-pour fuel oil — ultra-low sulfur diesel blend. In order from left to right,
original blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at
75°F.

Figure 7-101 shows a blend of lo-pour fuel oil and crude palm oil. These oils were
resistant to blending at 75°F, but were fully miscible at 170°F and 220°F. In addition,
these oil blends are highly opaque and darkly colored, contributing to difficulty in
determining whether palm solids settled out of solution, especially in the blends which

were cooled from 170°F and 220°F to 75°F. These oils are unlikely to store and pump

well, especially if heating on the tanks or pipelines fails.

176



Figure 7-101. Lo-pour fuel oil — crude palm oil blend. In order from left to right, original
blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at 75°F.

Figure 7-102 shows a blend of lo-pour fuel oil and crude jatropha oil. These oils
were fully miscible at all three testing temperatures. However, these oil blends are highly
opaque and darkly colored, contributing to difficulty in determining whether any solids
settled out of solution, especially in the blends which were cooled from 170°F and 220°F
to 75°F. It is thought that this would be unlikely because of the low wax content of the

crude jatropha oil. Given these factors, this blend is likely to store and pump well.
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Figure 7-102. Lo-pour fuel oil — crude jatropha oil blend. In order from left to right,
original blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at
75°F.

Figure 7-103 shows a blend of lo-pour fuel oil and biocrude derived from animal
renderings. These oils were resistant to blending at 75°F, but were fully miscible at 170°F
and 220°F. In addition, these oil blends are highly opaque and darkly colored,
contributing to difficulty in determining whether biocrude-derived solids settled out of
solution, especially in the blends which were cooled from 170°F and 220°F to 75°F.
These oils may store and pump well, but this is a little unclear because of the

aforementioned difficulty in determining whether any solids settled out of the mixture.
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Figure 7-103. Lo-pour fuel oil — biocrude blend. In order from left to right, original blend
temperatures were 75°F, 170°F, 220°F. All blends were photographed at 75°F.

Figure 7-104 shows a blend of lo-pour fuel oil and biodiesel. These oils were fully
miscible at all three testing temperatures. However, these oil blends are highly opaque
and darkly colored, contributing to difficulty in determining whether any solids settled
out of solution, especially in the blends which were cooled from 170°F and 220°F to
75°F. It is thought that this would be unlikely because of the low wax content of the

biodiesel. Given these factors, this blend is likely to store and pump well.
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Figure 7-104. Lo-pour fuel oil — biodiesel blend. In order from left to right, original
blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at 75°F.

Figure 7-105 shows a blend of lo-pour fuel oil and ultra-low sulfur diesel. These
oils were fully miscible at all three testing temperatures; however, this blend did smoke at
220°F. In addition, these oil blends are highly opaque and darkly colored, contributing to
difficulty in determining whether any solids settled out of solution, especially in the
blends which were cooled from 170°F and 220°F to 75°F. It is thought that this would be
unlikely because of the low wax content of the ultra-low sulfur diesel. Given these
factors, this blend is likely to store and pump well, especially with the addition of a
cetane number improver. The improver would have the added effect of enhancing its

combustion characteristics by raising the cetane number.
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Figure 7-105. Lo-pour fuel oil — ultra-low sulfur diesel blend. In order from left to right,
original blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at
75°F.

Figure 7-106 shows a blend of crude palm oil and crude jatropha oil. Solids
tended to settle out of this mixture at 75°F; however, this problem was not observed at
170°F and 220°F. When the mixtures blended at 170°F and 220°F were cooled to 75°F,
solids settled out of the blends. If heat is not lost in the storage tanks and pipelines, this
blend will pump and store well; however, if heat is lost, this blend may not pump or store

well.
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Figure 7-106. Crude palm oil — crude jatropha oil blend. In order from left to right,
original blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at
75°F.

Figure 7-107 shows a blend of crude palm oil and biocrude derived from animal
renderings. A significant amount of solids settled out of this mixture at 75°F. At 220°F, a
layer of semi-polymerized biocrude oil formed on the bottom of the beaker within 25
minutes of stirring at temperature. However, these problems were not observed at 170°F.
When the blends at 170°F and 220°F were cooled to 75°F, solids settled out of the

mixtures. Given these factors, this blend is unlikely to pump and store well.
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Figure 7-107. Crude palm oil — biocrude blend. In order from left to right, original blend
temperatures were 75°F, 170°F, 220°F. All blends were photographed at 75°F.

Figure 7-108 shows a blend of crude palm oil and biodiesel (refined biocrude). A
significant amount of solids settled out of this mixture at 75°F. However, this problem
was not observed at 170°F or 220°F. When the blends at 170°F and 220°F were cooled to
75°F, solids settled out of the mixtures. This blend may pump and store well if heating is

not lost in the storage tanks or pipelines.
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Figure 7-108. Crude palm oil — biodiesel blend. In order from left to right, original blend
temperatures were 75°F, 170°F, 220°F. All blends were photographed at 75°F.

Figure 7-109 shows a blend of crude palm oil and ultra-low sulfur diesel. The
blend at 75°F became a sludge; however, solids did not settle out of the blends at 170°F
and 220°F. In addition, this blend smoked at 220°F. Solids settled out of the blends which
were cooled from 170°F and 220°F to 75°F. Given these factors, this blend is unlikely to

store and pump well.
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Figure 7-109. Crude palm oil — ultra-low sulfur diesel blend. In order from left to right,
original blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at
75°F.

Figure 7-110 shows a blend of crude jatropha oil and biocrude derived from
animal renderings. A significant amount of solids settled out of this mixture at 75°F. This
problem was not observed at 170°F or 220°F; however, a film of semi-polymerized oil
formed on the beaker at 220°F. When the blends at 170°F and 220°F were cooled to
75°F, solids settled out of the mixtures. Given these factors, this oil may not pump or

store well.
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Figure 7-110. Crude jatropha oil — biocrude blend. In order from left to right, original
blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at 75°F.

Figure 7-111 shows a blend of crude jatropha oil and biodiesel (refined biocrude).
These oils were fully miscible, completely mixed, and had zero solids settling at 75°F,
170°F, and 220°F. In addition, no solids settled out of the mixtures when the blends were

cooled from 170°F and 220°F to 75°F. This blend would pump and store well.
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Figure 7-111. Crude jatropha oil — biodiesel blend. In order from left to right, original
blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at 75°F.

Figure 7-112 shows a blend of crude jatropha oil and ultra-low sulfur diesel.
These oils were fully miscible, completely mixed, and had zero solids settling at 75°F,
170°F, and 220°F. However, this blend smoked at 220°F. Given these factors, this blend

may store and pump well, especially with the addition of a cetane number improver.
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Figure 7-112. Crude jatropha oil — ultra-low sulfur diesel blend. In order from left to
right, original blend temperatures were 75°F, 170°F, 220°F. All blends were
photographed at 75°F.

Figure 7-113 shows a blend of biocrude derived from animal renderings and ultra-
low sulfur diesel. A significant amount of solids settled out of this mixture at 75°F. This
problem was not observed at 170°F or 220°F; however, a film of semi-polymerized oil
formed on the beaker at 220°F. When the blend at 170°F was cooled to 75°F, solids
settled out of the mixture. This settling behavior was not observed in the blend cooled
from 220°F to 75°F. Given these factors, this oil may pump and store well, especially if

adequate heating in the storage tanks and pipelines is maintained.
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Figure 7-113. Biocrude — ultra-low sulfur diesel blend. In order from left to right,
original blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at
75°F.

Figure 7-114 shows a blend of biodiesel (refined biocrude) and ultra-low sulfur
diesel. These oils were fully miscible, completely mixed, and had zero solids settling at
75°F, 170°F, and 220°F. However, this blend smoked at 220°F. Given these factors, this
blend may store and pump well, especially with the addition of a cetane number

improver.
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Figure 7-114. Biodiesel — ultra-low sulfur diesel blend. In order from left to right,
original blend temperatures were 75°F, 170°F, 220°F. All blends were photographed at
75°F.

In summary, blends with high concentrations of waxes at ambient temperatures,
such as those containing biocrude derived from animal renderings or crude palm oil, were
more likely to be marginally acceptable or unacceptable as the waxes tended to settle out
of solution at ambient temperature or when cooled to ambient temperature. Furthermore,
blends containing biocrude derived from animal renderings were likely to form semi-
polymerized oil layers at 220°F, making these blends more marginally acceptable. Blends
containing ultra-low sulfur diesel tended to smoke at 220°F, making them marginally

acceptable without the use of a cetane number improver. However, blends that contained
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transparent bio-based oils, such as biodiesel or crude jatropha oil, were much more likely
to be acceptable because of their low solids content and low viscosity.

7.2 Characterization of Pure Fuels and Fuel Blends
7.2.1 Pour Points

Pour points were analyzed for six blends: crude jatropha oil — biodiesel (refined
biocrude), crude jatropha oil — biocrude derived from animal renderings, crude palm oil —
biocrude derived from animal renderings, crude jatropha oil — crude palm oil, crude palm
oil — biodiesel (refined biocrude), and hi-pour fuel oil — crude jatropha oil. The reported
pour points are listed in Table 7-9.

Table 7-9. Pour points of selected fuel blends.

Fuel Blend Pour Point (x5°F)
Crude jatropha oil — biodiesel (refined biocrude) 45
Crude jatropha oil — biocrude derived from animal renderings 20
Biocrude derived from animal renderings — crude palm oil 40
Crude jatropha oil — crude palm oil 30
Crude palm oil — biodiesel (refined biocrude) 35
Hi-pour fuel oil — crude jatropha oil 40

These pour points indicate that all these blends would be pourable — and therefore
pumpable — at ambient temperatures, but would not pour or pump at colder temperatures
without heat-tracing on the pipelines. However, many of these blends have entrained
waxes, and these waxes can interfere with reported pour points on this apparatus,
especially if they settle to the bottom of the sample cup and the pour point of the liquid
above is measured. In addition, the optical nature of this measurement method adds to the
difficulty in determining pour points of darkly-colored blends, such as the hi-pour fuel oil

— crude jatropha oil blend.
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7.2.2 Flash Points

Six fuel blends were tested for flash point: crude jatropha oil — biodiesel (refined
biocrude), crude jatropha oil — biocrude derived from animal renderings, crude palm oil —
biocrude derived from animal renderings, crude jatropha oil — crude palm oil, crude palm
oil — biodiesel (refined biocrude), and hi-pour fuel oil — crude jatropha oil. While this
analyzer is reported in the documentation to be able to determine flash points as high as
266°F, due to equipment failure, the analyzer did not heat above 155°F during testing.
Therefore, since none of the blends flashed at 155°F or lower, it can be determined that
all six of the blends had flash points in excess of 155°F, though how much in excess
cannot be determined.

Table 7-10 shows the flash points of the pure oils studied in these blends as
determined through literature review. Blends containing biodiesel and low-sulfur fuel oil
may have had flash points higher than those of the pure oils.

Table 7-10. Flash points of pure oils.

Fuel Type Flash Point (°F)
Biodiesel (refined biocrude) 100, 126-140, 266
Crude jatropha oil 464

Yellow grease 399

Crude palm oil > 212

Low-sulfur fuel oil > 126

7.2.3 Cloud Points

Cloud points were measured using a proprietary method. Table 7-11 shows the
cloud points for selected pure oils and oil blends. Some oils and blends had a wax content
too low to have a discernable cloud point using the aforementioned method. While this
method, which more properly measures the wax appearance temperature, is conservative

insofar as the exact temperatures where problems will be observed, a few trends do stand
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out. At ambient temperatures, fuels and fuel blends with wax appearance temperatures

ranging from approximately 70°F to 80°F will have little to no problems with filter

clogging. However, fuels and fuel blends with higher wax appearance temperatures — i.e.,

those containing lo-pour fuel oil and hi-pour fuel oil — may experience issues with filters

or orifices clogging or pipeline or heat exchanger fouling due to accumulation on cold

surfaces. In addition, it was observed that the hi-pour fuel oil — crude jatropha oil blend

had a higher wax appearance temperature than that of either the hi-pour fuel oil or the

crude jatropha oil (for which a wax appearance temperature was not observed).

Table 7-11. Cloud points of selected oils and oil blends.

Oil/Oil Blend

Wax Appearance Temperature (°F)

Crude jatropha oil — biodiesel (refined
biocrude)

Biocrude derived from animal renderings —
crude palm oil

Crude jatropha oil — crude palm oil
Biocrude derived from animal renderings —
crude jatropha oil

Crude palm oil — biodiesel (refined
biocrude)

Hi-pour fuel oil — crude jatropha oil

Crude palm oil

Biodiesel (refined biocrude)

Biocrude derived from animal renderings
Lo-pour fuel oil

Hi-pour fuel oil

Crude jatropha oil

Not observed

81.1+0.1

73.2
71.2+1.8

80.1

150.8 + 4.6
73.4+3.7
Not observed
795+2.0
144.3+6.1
116.2+7.0
Not observed

7.2.4 Proximate and Ultimate Analysis

Table 7-12 shows the ultimate analysis for the pure oils. As these properties are

additive (Atkins and Jones, 2005), values for the blends may be calculated based upon the

properties of the parent fuels. Thermogravimetric analysis (TGA) results indicated that

there was more than 100% volatile matter for all of the oil samples; therefore, proximate
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analysis could not be performed and moisture was determined by Karl Fisher titration.
The moisture values indicate that, while many of the oils would present no problem for
normal use, the biocrude derived from animal renderings and lo-pour fuel oil would need
drying before use.

Table 7-12. Ultimate analysis of pure oils, as-determined basis.

Biocrude Biodiesel Hi-Pour Crude Lo-Pour  Crude
Fuel Oil  Jatropha Fuel Oil Palm QOil
Oil
Hydrogen 11.5% 12.3% 9.1% 11.7% 8.1% 11.6%

Carbon 75.7% 77.1% 87.0% 77.5% 84.3% 76.3%
Nitrogen 0.10% 0.01% 0.50% 0.01% 0.70% 0.20%

Sulfur 0.002% 0.01% 0.30% 0.01% 0.40% 0.01%

Oxygen 12.7% 10.6% 3.1% 10.8% 6.6% 11.9%

(Ind)

Ash 0% 0% 0% 0% 0% 0%

Heating 16650 17068 18712 16922 18603 16942

Value

(Btu/lb)

Notes Karl Karl Karl Karl Karl Karl
Fisher Fisher Fisher Fisher Fisher Fisher
water = water = water = water = water = water =

1.21% 0.04% 0.10% 0.06% 1.15% 0.08%

7.3 Corrosion Test Results

Samples of 304 stainless steel, brass, 316 stainless steel, mild steel, and 410 stainless
steel were exposed to pure samples of lo-pour fuel oil, hi-pour fuel oil, crude palm oil,
crude jatropha oil, biocrude derived from animal renderings, biodiesel (refined biocrude),
and ultra-low sulfur diesel at a temperature of 175°F. Samples were exposed for a total of

98 days, and were removed every 14 days for inspection.
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The metal samples were photographed prior to exposure to the pure oils and each
time they were removed from the oven. In addition, the masses of the metal samples were
recorded each time they were removed from the oven.

Figure 7-115 shows the metal samples prior to exposure to the pure oils. Within each
metal type, sample 1 was immersed in hi-pour fuel oil, sample 2 was immersed in lo-pour
fuel oil, sample 3 was immersed in ultra-low sulfur diesel, sample 4 was immersed in
crude palm oil, sample 5 was immersed in crude jatropha oil, sample 6 was immersed in
biocrude derived from animal renderings, and sample 7 was immersed in biodiesel
(refined biocrude). All corrosion products were removed to the extent possible to allow

measurement of the weight loss.
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(b)
(d)

(€)
Figure 7-115. Metal samples, 0 hours of exposure to pure oils. (a) 304 stainless steel, (b)
brass, (c) 316 stainless steel, (d) mild steel, and (e) 410 stainless steel.

Table 7-13 shows the masses of the metal samples in g throughout the testing

period, and Table 7-14 shows the change in mass of the metal samples in mg throughout
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the testing period. These changes in mass are calculated with respect to the masses of the
samples before exposure to the pure fuels. Some samples, most noticeably the samples in
ultra-low sulfur diesel, gained mass at several points in the testing due to deposits caused
by fouling of the diesel, which had no thermal stabilizers added to it. These deposits were
removed to the extent possible by scrubbing with a rubber stopper under running water

and drying the samples before they were weighed.
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Each metal type will be discussed individually.

Figure 7-116 shows the changes in mass of the 304 stainless steel throughout the
exposure process. With the exception of the sample immersed in ultra-low sulfur diesel,
no 304 stainless steel sample underwent a change in mass greater than 8 mg. In addition,
no sample experienced an overall loss in mass. This implies that no metal was lost from

the samples due to corrosive processes.

304 Stainless Steel
20
N //

_ 16

; /

% 14 —#=—HPFO
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Eo == Jatropha

g =@-Biocrude
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0 500 1000 1500 2000 2500
Exposure Time (h)

Figure 7-116. Changes in mass of 304 stainless steel samples during testing period.
Change in mass of ultra-low sulfur diesel at 2010 hours and 2340 hours is an outlier and
does not appear on the figure.

Figure 7-117 shows the rates of corrosion of the 304 stainless steel samples in

mils per year (mpy). The corrosion rate was calculated by the formula:

534w
DAT
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mpy =



where W is the weight loss in mg, D is the density of the specimen in g/cm?®, A is the area
of the specimen in in.2, T is the exposure time of the specimen in hours, and 534 is a
constant which allows for unit consistency throughout the equation (Fontana, 1986). As
expected for samples which saw very little mass change overall, no corrosion was
observed. The highest rate of gain of mass observed, with the exception of the ultra-low

sulfur diesel at 2010 hours, was for the biocrude sample at 336 hours and was 0.28 mpy.

304 Stainless Steel

=¢=HPFO
——LPFO
=== ULS Diesel

== Palm

Corrosion Rate (mpy)

-0.6 == )atropha
=@=Biocrude

Biodiesel

_1 T T T T 1
0 500 1000 1500 2000 2500

Exposure Time (h)

Figure 7-117. Rates of change of mass of 304 stainless steel samples during testing
period. Rate of change of mass for ultra-low sulfur diesel at 2010 hours is an outlier and
does not appear on the figure.

Figure 7-118 shows time lapse photos of the 304 stainless steel samples when

they were removed from the oven.
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Figure 7-118. 304 stainless steel samples after exposure to pure oils.

The 304 stainless steel samples immersed in lo-pour fuel oil and biocrude derived
from animal renderings were selected for SEM analysis. Figure 7-119 shows the
backscatter images of the 304 stainless steel sample in lo-pour fuel oil, and Figure 7-120

shows the backscatter images of the 304 stainless steel sample in biocrude derived from
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animal renderings. The rate of gain of mass for the sample in lo-pour fuel oil was 0.03
mpy at 2340 hours, and the rate of gain of mass for the sample in biocrude derived from
animal renderings was 0.03 mpy at 2340 hours. Qualitative elemental analysis of the
sample in biocrude indicates carbonaceous deposits on the sample in a line near the
bottom of the coupon. This deposit appeared very early in testing and did not change in
character throughout the exposure process. It is believed that this represents burned

biocrude because of the high levels of carbon and oxygen rather than any corrosion-type

deposits. Table 7-15 shows the elemental analysis of the spectrum points.

Figure 7-119. Backscatter electron images of 304 stainless steel after 2340 hours of
exposure to lo-pour fuel oil.
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(e) (f)
Figure 7-120. Backscatter electron images of 304 stainless steel after 2340 hours of
exposure to biocrude derived from animal renderings. The dark areas in (c) and (d) are
burned biocrude, not corrosion products.
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Figure 7-120, cont.
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Impacts of the lo-pour fuel oil on the 304 stainless steel were minimal. Some
discoloration can be attributed to the fuel oil, but this is more likely a slight incorporation
of the carbonaceous fuel in the surface matrix of the metal as opposed to a corrosive
deposit. This may be substantiated by the utter lack of weight loss or gain in the samples
after the small initial gain in mass. If corrosion was occurring on an ongoing basis,
products would plate out onto the sample or flake away from the sample. Therefore, the
lo-pour fuel oil did not corrode 304 stainless steel under these conditions.

Impacts of the hi-pour fuel oil on the 304 stainless steel were, again, minimal.
Some discoloration can be attributed to the fuel oil, but again, this is more likely a slight
incorporation of the carbonaceous fuel in the surface matrix of the metal as opposed to a
corrosive deposit. This may be substantiated by the lack of weight loss or gain in the
samples after the small initial gain in mass. If corrosion was occurring on an ongoing
basis, products would plate out onto the sample or flake away from the sample.
Therefore, the hi-pour fuel oil did not corrode 304 stainless steel under these conditions.

The ultra-low sulfur diesel had a significant impact on the 304 stainless steel
sample. Starting at the 1020 hour mark, degraded diesel fuel was observed over the
coupon. The deposits observed at 1350 hours, 1680 hours, 2010 hours, and 2340 hours
could not be removed by the rubber stopper. The material was observed on the bottom of
the coupon; the coupons were not suspended in the jars but were allowed to rest on the
bottom, and it is possible that a thin layer of diesel fuel was trapped between the coupon
and the bottom of the jar and was able to degrade and bond to the coupon there. The
samples were flipped over after each weighing in which a deposit was observed to expose

the face of the coupon with the deposit to the fuel and perhaps provide an opportunity for
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it to diffuse away from the surface; this diffusion did not occur. In addition, this sample
was ultrasonically cleaned in acetone prior to SEM analysis; the deposits were removed
by the acetone, lending credence to the hypothesis that these were degraded diesel fuel as
opposed to rust formed by corrosion. The diesel fuel probably decomposed because it
was held at elevated temperatures without any additives to improve its thermal stability.

Impacts of the crude palm oil on the 304 stainless steel were minimal. The weight
gains of the sample were minimal, and the weight was nearly constant throughout the
entire process. Furthermore, no deposits were observed on the sample, and no material
was removed from the sample. If corrosion was occurring on an ongoing basis, products
would plate out onto the sample or flake away from the sample. Therefore, the crude
palm oil did not corrode 304 stainless steel under these conditions.

Impacts of the crude jatropha oil on the 304 stainless steel were minimal. The
weight gains of the sample were minimal, and the weight was nearly constant throughout
the entire process. Furthermore, no deposits were observed on the sample, and no
material was removed from the sample. If corrosion was occurring on an ongoing basis,
products would plate out onto the sample or flake away from the sample. Therefore, the
crude jatropha oil did not corrode 304 stainless steel under these conditions.

There were some slight impacts of the biocrude derived from animal renderings
on the 304 stainless steel. At the 336 hour mark, a small amount of what was later
determined to be burned biocrude was observed on the coupon. It is unclear why this
adhered, and no further biocrude deposits were observed throughout the testing.

Combining this with the minimal weight gain observed and the reasonably constant
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weights leads to the conclusion that the biocrude derived from animal renderings did not
significantly corrode 304 stainless steel under these conditions.

Impacts of the biodiesel (refined biocrude) on the 304 stainless steel were
minimal. The weight gains of the sample were minimal, and the weight was nearly
constant throughout the entire process. Furthermore, no deposits were observed on the
sample, and no material was removed from the sample. If corrosion was occurring on an
ongoing basis, products would plate out onto the sample or flake away from the sample.
Therefore, the biodiesel did not corrode 304 stainless steel under these conditions.

Figure 7-121 shows the changes in mass of the brass samples during their
exposure to pure oils. With the exception of the sample in hi-pour fuel oil, which
experienced no change in mass, and the sample in ultra-low sulfur diesel, which gained
mass, all the brass samples in oils lost mass over the testing period. This was especially
noticeable for the sample in biocrude derived from animal renderings, although the mass
did stabilize after the 690 hour mark. The sample in lo-pour fuel oil also lost mass until

the 1680 hour mark, at which point the mass stabilized.

211



Brass

25
20
E
Py 15 / —6—HPFO
(©
s 10 /‘ —8—LPFO
)]
g 5 == ULS Diesel
©
(%]
8 = == Jatropha
55
S =@-Biocrude
-10
Biodiesel
_15 T T T T 1
0 500 1000 1500 2000 2500

Exposure Time (h)

Figure 7-121. Changes in mass of brass samples during testing period.

Figure 7-122 shows the corrosion rates of the brass samples. These rates were
calculated using the aforementioned equation as presented by Fontana (1986). Overall the
corrosion rates were fairly low. A significant corrosion rate was observed at the 336 hour
mark for the sample in biocrude derived from animal renderings (0.61 mpy) and at the
690 hour mark for the same sample (0.50 mpy), but this rate of corrosion slowed over
time. The increase in the rate of corrosion for the brass sample in ultra-low sulfur diesel
is due to the formation of bonded degraded fuel deposits by the same mechanisms

observed for the 304 stainless steel samples.
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Figure 7-122. Corrosion rates of brass samples during testing period.

Figure 7-123 shows time lapse photos of the brass samples when they were

removed from the oven.
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Figure 7-123. Brass samples after exposure to pure oils.

The brass samples immersed in biocrude derived from animal renderings and
biodiesel (refined biocrude) were selected for SEM analysis. Figure 7-124 shows the
backscatter images of the brass sample in biocrude derived from animal renderings, and
Figure 7-125 shows the backscatter images of the brass sample in biodiesel (refined

214



biocrude). The corrosion rate of the sample in biocrude derived from animal renderings
was 0.13 mpy at 2340 hours, and the corrosion rate of the sample in biodiesel (refined
biocrude) was 0.10 mpy at 2340 hours. Qualitative elemental analysis of the sample in
biodiesel indicates carbonaceous deposits on the sample as well as the presence of iron. It
is unknown why any iron would be present in this sample, and it is possible that this is a

misreading for either copper or zinc, the two primary elements in brass alloys, neither of

which were analyzed for. Table 7-16 shows the elemental analysis of the spectrum points.

Figure 7-124. Backscatter electron images of brass after 2340 hours of exposure to
biocrude derived from animal renderings.
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Figure 7-125. Backscatter electron images of brass after 2340 hours of exposure to
biodiesel (refined biocrude).
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Effects of hi-pour fuel oil on brass were minimal. The weight gains of the sample
were minimal, and the weight was nearly constant throughout the entire process.
Furthermore, no deposits were observed on the sample, and no material was removed
from the sample. If corrosion was occurring on an ongoing basis, products would plate
out onto the sample or flake away from the sample. Therefore, the hi-pour fuel oil did not
corrode brass under these conditions.

The brass sample in lo-pour fuel oil did lose about 8 mg of material over the
testing period. The maximum corrosion rate of brass in lo-pour fuel oil was 0.20 mpy at
the 336 hour mark; however, by the 2340 hour mark, the corrosion rate of brass in lo-
pour fuel oil had dropped to 0.12 mpy, a 40% decrease. A small amount of matter was
removed from the sample at each removal, as may be observed in the time-lapse pictures
in Figure 7-123. Given the low rate of corrosion in mpy, however, it is difficult to call
this “significant.” However, brass wetted parts exposed to this lo-pour fuel oil should be
monitored for evidence of corrosion.

The ultra-low sulfur diesel had several effects on the brass sample. At the 690
hour mark, the diesel had turned red and smelled strongly (probably decomposed), and
the cap liner in the jar had disintegrated. The brass sample was reloaded into fresh ultra-
low sulfur diesel. At the 2010 hour mark, bonded degraded diesel deposits were observed
on the brass. These deposits could not be removed. The material was observed on the
bottom of the coupon; the coupons were not suspended in the jars but were allowed to
rest on the bottom, and it is possible that a thin layer of diesel fuel was trapped between
the coupon and the bottom of the jar and was able to degrade and bond to the coupon

there. The sample was flipped over after each weighing in which a deposit was observed
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to expose the face of the coupon with the deposit to the fuel and perhaps provide an
opportunity for it to diffuse away from the surface; this diffusion did not occur. In
addition, this sample was ultrasonically cleaned in acetone after the 2340 hour mark; the
deposits were removed by the acetone, lending credence to the hypothesis that these were
degraded diesel fuel as opposed to corrosion products. The diesel fuel probably
decomposed because it was held at elevated temperatures without any additives to
improve its thermal stability.

The crude palm oil did affect the brass sample, though not immediately. The
maximum corrosion rate was 0.17 mpy at the 1350 hour mark. Palm oils are very acidic
(the oil is named for the palmitic acid which is a major component), and this acidity may,
over time, have led to corrosion of the sample. Nevertheless, it is difficult to classify
palm oil as being significantly corrosive, especially in light of the 0.11 mpy corrosion
rate at the 2340 hour mark. Therefore, the crude palm oil had slight effects on the brass,
and brass wetted components in the presence of palm oil should be monitored for
corrosive activity.

Effects of crude jatropha oil on brass were minimal. The weight losses of the
sample were minimal, and the weight was nearly constant throughout the entire process.
Furthermore, no deposits were observed on the sample, and no material was removed
from the sample. If corrosion was occurring on an ongoing basis, products would plate
out onto the sample or flake away from the sample. Therefore, crude jatropha oil did not
corrode brass under these conditions.

The effect of biocrude derived from animal renderings on brass was significant.

The maximum corrosion rate was 0.61 mpy at the 336 hour mark. In addition, the brass
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coupon took on an increasingly coppery appearance throughout the testing period. It is
possible that zinc was selectively leached from the sample throughout the testing period,
but additional testing would be required to prove this. At the 2340 hour mark, the
corrosion rate was 0.13 mpy. Therefore, biocrude derived from animal renderings did
corrode the brass sample, especially early in the process, and brass wetted parts exposed
to biocrude derived from animal renderings should be monitored for corrosive activity.

The effect of biodiesel (refined biocrude) on brass was not insignificant. A total of
7 mg of mass was lost from the sample throughout the testing period. The highest rate of
corrosion was 0.20 mpy at the 690 hour mark. The corrosion rate at the 336 hour mark
and the corrosion rate at the 2340 hour mark was 0.10 mpy. While the corrosion rate of
the brass sample in biodiesel was not high, it also was nonzero. By the hypothesis of this
research, biodiesel did not have a significantly corrosive effect on brass; however, wetted
brass parts exposed to biodiesel should be monitored for corrosive activity.

Figure 7-126 shows the changes in mass of the 316 stainless steel samples during
their exposure to pure oils. The samples in hi-pour fuel oil, lo-pour fuel oil, crude
jatropha oil, biocrude, and biodiesel all experienced minimal mass gains or losses
throughout the testing period. The sample in ultra-low sulfur diesel experienced mass
gains due to the formation of bonded degraded diesel fuel deposits. The sample in palm
oil experienced a mass gain which peaked at 8 mg at the 1680 hour mark. It is clear from

this chart that, overall, the fuels had very little effect on the 316 stainless steel samples.
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Figure 7-126. Changes in mass of 316 stainless steel samples during testing period.

Figure 7-127 shows the corrosion rates of the 316 stainless steel samples. These
rates were calculated using the aforementioned equation as presented by Fontana (1986).
Overall, the corrosion rates were very low. The highest corrosion rate was observed for
the 316 stainless steel sample in ultra-low sulfur diesel and was 0.24 mpy at the 336 hour
mark. The increase in the rate of corrosion for the 316 stainless steel sample in ultra-low
sulfur diesel is due to the formation of bonded degraded fuel deposits by the same

mechanisms observed for the 304 stainless steel and brass samples.
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Figure 7-127. Corrosion rates of 316 stainless steel samples during testing period.

Figure 7-128 shows time lapse photos of the 316 stainless steel samples when

they were removed from the oven.
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Figure 7-128. 316 stainless steel samples after exposure to pure oils.

The 316 stainless steel samples immersed in hi-pour fuel oil and ultra-low sulfur
diesel were selected for SEM analysis. Figure 7-129 shows the backscatter images of the
316 stainless steel sample in hi-pour fuel oil, and Figure 7-130 shows the backscatter
images of the 316 stainless steel sample in ultra-low sulfur diesel. The rate of change of
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mass for the sample in hi-pour fuel oil was 0.01 mpy at 2340 hours, and the rate of

change of mass for the sample in ultra-low sulfur diesel was 0.14 mpy at 2340 hours.

V/,‘I

Figure 7-129. Backscatter electron images of 316 stainless steel after 2340 hours of
exposure to hi-pour fuel oil.
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Figure 7-130. Backscatter electron images of 316 stainless steel after 2340 hours of
exposure to ultra-low sulfur diesel.

200pum '

Effects of hi-pour fuel oil on 316 stainless steel were minimal. The weight losses
of the sample were minimal, and the weight of the sample was nearly constant throughout
the entire process. Furthermore, no deposits were observed on the sample, and no
material was removed from the sample. If corrosion was occurring on an ongoing basis,
products would plate out onto the sample or flake away from the sample. Therefore, the
hi-pour fuel oil did not corrode 316 stainless steel under these conditions.

Effects of lo-pour fuel oil on 316 stainless steel were minimal. The weight gains
of the sample were minimal, and the weight of the sample was nearly constant throughout
the entire process. Furthermore, no deposits were observed on the sample, and no

material was removed from the sample. If corrosion was occurring on an ongoing basis,
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products would plate out onto the sample or flake away from the sample. Therefore, the
lo-pour fuel oil did not corrode 316 stainless steel under these conditions.

The ultra-low sulfur diesel affected the 316 stainless steel sample. At the 690 hour
mark, significant quantities of decomposed diesel fuel which could not be removed were
observed on the coupon. This deposit was only observed on the bottom face of the
coupon; the coupons were not suspended in the jars but were allowed to rest on the
bottom, and it is possible that a thin layer of diesel fuel was trapped between the coupon
and the bottom of the jar and was able to degrade and bond to the coupon there. The
sample was flipped over to expose the face of the coupon with the deposit to the fuel and
perhaps provide an opportunity for it to diffuse away from the surface. At the 1020 mark,
degraded diesel deposits were observed over the entire sample, though they were able to
be removed with scrubbing by the rubber stopper. At the 1350 hour mark, bonded
degraded diesel fuel was observed on the coupon; the coupon was reloaded with the
bonded diesel fuel facing up. At the 1680 hour mark, more degraded diesel fuel was
observed on the coupon. At the 2010 hour mark and the 2340 hour mark, additional
bonded degraded diesel fuel deposits were observed on the coupon. This sample was
ultrasonically cleaned in acetone after the 2340 hour mark; the deposits were removed by
the acetone, lending credence to the hypothesis that these were degraded diesel fuel as
opposed to rusts formed by corrosion. The diesel fuel probably decomposed because it
was held at elevated temperatures without any additives to improve its thermal stability.

Effects of crude palm oil on 316 stainless steel were small. The weight gains of
the sample were generally small, peaking at a weight gain of 8 mg at the 1680 hour mark.

The maximum corrosion rate observed was 0.10 mpy at the 1680 hour mark. At the 2340
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hour mark, the corrosion rate was 0.05 mpy. Given this small weight gain and low
corrosion rate, the crude palm oil did not corrode 316 stainless steel under these
conditions.

Effects of crude jatropha oil on 316 stainless steel were minimal. The weight
gains and losses of the sample were minimal, and the weight of the sample was nearly
constant throughout the entire process. Furthermore, no deposits were observed on the
sample, and no material was removed from the sample. If corrosion was occurring on an
ongoing basis, products would plate out onto the sample or flake away from the sample.
Therefore, the crude jatropha oil did not corrode 316 stainless steel under these
conditions.

Effects of biocrude derived from animal renderings on 316 stainless steel were
minimal. The weight gains of the samples were minimal, and the weight of the sample
was nearly constant throughout the entire process. Furthermore, no deposits were
observed on the sample, and no material was removed from the sample. If corrosion was
occurring on an ongoing basis, products would plate out onto the sample or flake away
from the sample. Therefore, the biocrude derived from animal renderings did not corrode
316 stainless steel under these conditions.

Effects of biodiesel (refined biocrude) on 316 stainless steel were minimal. The
weight losses of the sample were minimal, and the weight of the sample was nearly
constant throughout the entire process. Furthermore, no deposits were observed on the
sample, and no material was removed from the sample. If corrosion was occurring on an

ongoing basis, products would plate out onto the sample or flake away from the sample.
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Therefore, the biodiesel (refined biocrude) did not corrode 316 stainless steel under these
conditions.

Figure 7-131 shows the changes in mass of the mild steel samples during their
exposure to pure oils. The samples in hi-pour fuel oil, lo-pour fuel oil, crude palm oil,
crude jatropha oil, and biodiesel (refined biocrude) all experienced minimal gains or
losses throughout the testing period. The sample in ultra-low sulfur diesel experienced
mass gains due to the formation of bonded degraded diesel fuel deposits. Most
significantly, the sample in biocrude derived from animal renderings experienced a mass
loss of about 40 mg throughout the testing period. It is clear from this chart that, with the
exception of the biocrude derived from animal renderings, the fuels had very little effect

on the mild steel samples.
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Figure 7-131. Changes in mass of mild steel samples during testing period.
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Figure 7-132 shows the corrosion rates of the mild steel samples. These rates were
calculated using the aforementioned equation as presented by Fontana (1986). Overall,
the corrosion rates were low. The obvious exception is the corrosion rate of the mild steel
sample in biocrude; the highest corrosion rate was observed for this sample at the 336
hour mark and was 1.50 mpy, and by the 2340 hour mark, the corrosion rate was still
0.45 mpy. The increase in the rate of corrosion for the mild steel sample in ultra-low
sulfur diesel is due to the formation of bonded degraded fuel deposits by the same

mechanisms observed for the 304 stainless steel, brass, and 316 stainless steel samples.

Mild Steel
1
0.5
Z —4—HPFO
E 0 = L) P s el taad
- \ 8~ LPFO
-
& 05 —#4—ULS Diesel
c
g \ = Palm
g
é ==ie=Jatropha
15 =@=Biocrude
Biodiesel
_2 T T T T 1
0 500 1000 1500 2000 2500

Exposure Time (h)

Figure 7-132. Corrosion rates of mild steel samples during testing period.

Figure 7-133 shows time lapse photos of the mild steel samples when they were

removed from the oven.
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Figure 7-133. Mild steel samples after exposure to pure oils.

The mild steel samples immersed in crude palm oil and biocrude derived from
animal renderings were selected for SEM analysis. Figure 7-134 shows the backscatter
images of the mild steel sample in crude palm oil, and Figure 7-135 shows the
backscatter images of the mild steel sample in biocrude derived from animal renderings.

The corrosion rate of the sample in crude palm oil was 0.01 mpy at 2340 hours, and the
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corrosion rate of the sample in biocrude derived from animal renderings was 0.45 mpy at
2340 hours. Qualitative elemental analysis indicated that the dark areas on both samples
were iron oxides, which were present on the sample before any exposure to the pure

fuels. Table 7-17 shows the elemental analysis of the spectrum points.
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Figure 7-134. Backscatter electron images of mild steel after 2340 hours of exposure to
crude palm oil.
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Figure 7-135. Backscatter electron images of mild steel after 2340 hours of exposure to
biocrude derived from animal renderings. Dark areas are iron oxide.

Table 7-17. Qualitative elemental analysis of mild steel exposed to crude palm oil and
exposed to biocrude derived from animal renderings as indicated in Figure 7-134f and 7-

135d.

7-134f

Spectrum C O Mn Fe Total
1 0 35.38 0 64.62 100
2 0 3795 0 62.05 100
3 21.73 491 O 73.36 100
4 1595 7.38 0.49 76.18 100
7-135d

Spectrum C O Mn Fe Total
1 193 0 0.46 80.24 100
2 0 35.84 0.46 63.7 100
3 13.28 3412 0 526 100
4 203 0 0.89 78.8 100
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Effects of hi-pour fuel oil on the mild steel were minimal. The weight losses and
gains of the sample were minimal, and the weight of the sample was nearly constant
throughout the entire process. Furthermore, no deposits were observed on the sample, and
no material was removed from the sample. If corrosion was occurring on an ongoing
basis, products would plate out onto the sample or flake away from the sample.
Therefore, the hi-pour fuel oil did not corrode mild steel under these conditions.

Effects of lo-pour fuel oil on the mild steel were also minimal. Again, the weight
gains of the sample were minimal, and the weight of the sample was nearly constant
throughout the entire process. Furthermore, no deposits were observed on the sample, and
no material was removed from the sample. If corrosion was occurring on an ongoing
basis, products would plate out onto the sample or flake away from the sample.
Therefore, the lo-pour fuel oil did not corrode mild steel under these conditions.

The ultra-low sulfur diesel did affect the mild steel sample. At the 690 hour mark,
some bluish discoloration was observed on the mild steel sample. It is unclear what
caused this discoloration, as such changes would be more commonly observed in metals
exposed to high-temperature (>900°F) applications (Fontana, 1986). At the 1350 hour
mark, degraded diesel fuel deposits were observed on the sample, but they could be
removed by scrubbing with the rubber stopper. At the 1680 hour mark, more degraded
diesel fuel deposits were observed on the sample which could not be removed. These
deposits could be removed at the 2010 hour mark, though. The diesel fuel probably
decomposed because it was held at elevated temperatures without any additives to

improve its thermal stability.
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Effects of the crude palm oil on the mild steel were minimal. The weight losses
and gains of the sample were minimal, and the weight of the sample was nearly constant
throughout the entire process. Furthermore, no deposits were observed on the sample, and
no material was removed from the sample. If corrosion was occurring on an ongoing
basis, products would plate out onto the sample or flake away from the sample.
Therefore, the crude palm oil did not corrode mild steel under these conditions.

Effects of the crude jatropha oil on the mild steel were minimal. The weight gains
of the sample were minimal, and the weight of the sample was nearly constant throughout
the entire process. Furthermore, no deposits were observed on the sample, and no
material was removed from the sample. If corrosion was occurring on an ongoing basis,
products would plate out onto the sample or flake away from the sample. Therefore, the
crude jatropha oil did not corrode mild steel under these conditions.

Biocrude derived from animal renderings had a significant effect on the mild steel
sample. At every removal from the oven, some material was removed from the sample; a
total of about 40 mg of material, most likely iron oxides based on the SEM point
elemental analysis, was lost throughout the process. This material was very loosely
bonded and scrubbed away easily. The maximum corrosion rate observed was 1.49 mpy
at the 336 hour mark, and the corrosion rate at the 2340 hour mark was 0.45 mpy. Since
the material removed was iron oxides, it is uncertain what effect biocrude derived from
animal renderings would have on unoxidized mild steel. Nevertheless, by the results of
this study, biocrude derived from animal renderings had a significant corrosive effect on
mild steel, and mild steel wetted parts should be avoided for service in the presence of

biocrude derived from animal renderings.
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Biodiesel (refined biocrude) did not have a significant effect on the mild steel
sample. Some loosely bonded deposits were removed from the sample at the 690 hour,
1020 hour, and 2010 hour marks. However, the weight losses and gains of the sample
were minimal, and the weight of the sample was nearly constant throughout the entire
process. If significant corrosion was occurring on an ongoing basis, the mass of the
sample would change significantly throughout the process, as observed for the mild steel
sample in biocrude derived from animal renderings. While the nature of these deposits is
not fully understood, the relative constancy of the mass of the coupon in biodiesel
(refined biocrude) leads to the conclusion that biodiesel (refined biocrude) did not
corrode the mild steel under these conditions.

Figure 7-136 shows the changes in mass of the 410 stainless steel samples during
their exposure to pure oils. The samples in hi-pour fuel oil, lo-pour fuel oil, crude palm
oil, crude jatropha oil, biocrude derived from animal renderings, and biodiesel (refined
biocrude) all experienced minimal gains or losses during the testing period. The sample
in ultra-low sulfur diesel experienced mass gains due the formation of bonded degraded
diesel fuel deposits. It is clear from this chart that the fuels overall had very little effect

on the 410 stainless steel samples.
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Figure 7-136. Changes in mass of 410 stainless steel samples during testing period.

Figure 7-137 shows the corrosion rates of the 410 stainless steel samples. These
rates were calculated using the aforementioned equation as presented by Fontana (1986).
Again, the overall corrosion rates were low. The exception is the corrosion rate of the 410
stainless steel sample in ultra-low sulfur diesel; this increase in the rate of corrosion is
due to the formation of bonded degraded fuel deposits by the same mechanisms observed

for the 304 stainless steel, brass, 316 stainless steel, and mild steel samples.
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Figure 7-137. Corrosion rates of 410 stainless steel samples during testing period.

Figure 7-138 shows time lapse photos of the 410 stainless steel samples when

they were removed from the oven.
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Figure 7-138. 410 stainless steel samples after exposure to pure oils.

The 410 stainless steel samples immersed in hi-pour fuel oil and crude jatropha
oil were selected for SEM analysis. Figure 7-139 shows the backscatter images of the 410
stainless steel sample in hi-pour fuel oil, and Figure 7-140 shows the backscatter images
of the 410 stainless steel sample in crude jatropha oil. The corrosion rate of the sample in
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hi-pour fuel oil was 0.01 mpy at 2340 hours, and the corrosion rate of the sample in crude

jatropha oil was 0.03 mpy at 2340 hours.

200pm

: o :
Figure 7-139. Backscatter electron images of 410 stainless steel after 2340 hours of
exposure to hi-pour fuel oil.
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Figure 7-140. Backscatter electron images of 410 stainless steel after 2340 hours of
exposure to crude jatropha oil.

200pum '

Effects of the hi-pour fuel oil on the 410 stainless steel were minimal. The weight
gains and losses of the sample were minimal, and the weight of the sample was nearly
constant throughout the entire process. Furthermore, no deposits were observed on the
sample, and no material was removed from the sample. If corrosion was occurring on an
ongoing basis, products would plate out onto the sample or flake away from the sample.
Therefore, the hi-pour fuel oil did not corrode 410 stainless steel under these conditions.

Effects of the lo-pour fuel oil on the 410 stainless steel were minimal. The weight
gains and losses of the sample were minimal, and the weight of the sample was nearly
constant throughout the entire process. Furthermore, no deposits were observed on the

sample, and no material was removed from the sample. If corrosion was occurring on an
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ongoing basis, products would plate out onto the sample or flake away from the sample.
Therefore, the lo-pour fuel oil did not corrode 410 stainless steel under these conditions.

The ultra-low sulfur diesel did affect the 410 stainless steel sample. At the 690
hour mark, bonded degraded diesel fuel deposits were observed on the sample; while
many of them could be removed, some were resistant to removal by scrubbing with the
rubber stopper. At the 1020 hour mark, degraded diesel fuel deposits were again observed
on the sample, though these could be removed by scrubbing with the rubber stopper. At
the 1350 hour mark, degraded diesel fuel was again observed on the coupon; although
most of it could be removed, some degraded fuel was resilient and remaining on the
sample after cleaning. Similar resistant deposits were again observed at the 1680 hour
and 2010 hour marks. These deposits were only observed on the bottom face of the
coupon; the coupons were not suspended in the jars but were allowed to rest on the
bottom, and it is possible that a thin layer of diesel fuel was trapped between the coupon
and the bottom of the jar and was able to degrade and bond to the coupon there. The
sample was flipped over when deposits were resistant to removal in order to expose the
face of the coupon with the deposit to the fuel and perhaps provide an opportunity to for
it to diffuse away from the surface. This sample was ultrasonically cleaned in acetone
after the 2340 hour mark; the deposits were removed by the acetone, lending credence to
the hypothesis that these were degraded diesel fuel as opposed to rusts formed by
corrosion. The diesel fuel probably decomposed because it was held at elevated
temperatures without any additives to improve its thermal stability.

Effects of the crude palm oil on the 410 stainless steel were minimal. The weight

gains and losses of the sample were minimal, and the weight of the sample was nearly
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constant throughout the entire process. Furthermore, no deposits were observed on the
sample, and no material was removed from the sample. If corrosion was occurring on an
ongoing basis, products would plate out onto the sample or flake away from the sample.
Therefore, the crude palm oil did not corrode 410 stainless steel under these conditions.

Effects of the crude jatropha oil on the 410 stainless steel, again, were minimal.
The weight gains and losses of the sample were minimal, and the weight of the sample
was nearly constant throughout the entire process. Furthermore, no deposits were
observed on the sample, and no material was removed from the sample. If corrosion was
occurring on an ongoing basis, products would plate out onto the sample or flake away
from the sample. Therefore, the crude jatropha oil did not corrode 410 stainless steel
under these conditions.

Effects of the biocrude derived from animal renderings on the 410 stainless steel
were minimal. The weight gains of the sample were minimal, and the weight of the
sample was nearly constant throughout the entire process. Furthermore, no deposits were
observed on the sample, and no material was removed from the sample. If corrosion was
occurring on an ongoing basis, products would plate out onto the sample or flake away
from the sample. Therefore, the biocrude derived from animal renderings did not corrode
410 stainless steel under these conditions.

Effects of the biodiesel (refined biocrude) on the 410 stainless steel, again, were
minimal. The weight losses of the sample were minimal, and the weight of the sample
was nearly constant throughout the entire process. Furthermore, no deposits were
observed on the sample, and no material was removed from the sample. If corrosion was

occurring on an ongoing basis, products would plate out onto the sample or flake away
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from the sample. Therefore, the biodiesel (refined biocrude) did not corrode 410 stainless
steel under these conditions.

Mars Fontana gives a correlation for minimum testing time as

2000
mils per year

= hours(duration of test) (Fontana, 1986).

Table 7-18 shows the calculated minimum testing times for the samples using the
corrosion rates observed at the 2340 hour mark to calculate the corrosion rate in mils per
year as compared to the testing time used for the samples. The generally long calculated
minimum testing times are expected with the low corrosion rates seen for many of the
samples. The shorter minimum testing times observed for the brass samples are indicative
of the corrosive action of many of the fuels on this alloy. The shorter testing times

observed for the samples immersed in ultra-low sulfur diesel are due to the bonded

degraded diesel fuel deposits rather than any corrosive activity.
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CHAPTER VI
CONCLUSIONS AND FUTURE WORK

8.1  Conclusions
8.1.1 Tar Cracking
8.1.1.1 Laboratory-Scale Updraft Gasifier and Tar Cracking Reactor

Four main conclusions may be drawn from the lab-scale tar cracking tests: one
relating to testing temperature, one related to preconditioning (i.e., the benefit of thermal
cracking and the benefit of guard catalysts), one related to the catalysts themselves, and
one related to the bed size.

Concerning testing temperature, it is clear that there is a transition in catalyst
cracking performance between 800°C and 900°C. The optimal temperature for catalytic
cracking is at least 800°C, as coking is too prevalent at lower temperatures. Figure 8-1
shows the equilibrium-based carbon deposition boundary for the fuel mixture fired in the
gasifier. The gasfier was run at approximately a 0.45-0.55 equivalence ratio, which would

border the carbon deposition boundary (Martin and Dunham, 2013). Thermal cracking

performance substantially increases between 800°C and 900°C as well.
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Figure 8-1. Equilibrium-based carbon deposition boundary (Martin and Dunham, 2013).

Concerning preconditioning, thermal cracking accounted for ~85% of the
observed tar destruction, and depending on the application, thermal cracking may be
sufficient. This would impose a balance between the energy penalty of heating the syngas
from the gasifier to the degree required to crack the tars formed in gasification and the
cost of operating a catalyst bed to incur a lesser energy penalty.

The data suggest that guard catalysts are of little use at 900°C because the tar is
thermally destroyed. However, guard catalysts may still be of use to protect more
expensive transition metal-based catalysts against poisoning and coking.

Concerning the catalysts themselves, the primarily transition metal-based

reforming and cracking catalysts were the most promising, showing outlet tar loadings
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two to three times lower than the mineral catalysts, especially at 900°C. This is in
agreement with the reviewed literature.

Concerning the bed size, generous residence times were used to obtain the tar
conversions reported (4000-5000 h1). The large bed (and consequent lower space
velocity) was required to allow operation at a reasonable AP when higher flow rates were
tested.
8.1.1.2 Bench-Scale Tar Cracking Reactor

The NREL Ni-based catalyst was the most effective overall; this is as expected
since transition metal catalysts generally outperform basic mineral catalysts. Within the
mineral catalysts, the powder dolomite was the most effective mineral catalyst. The trona
catalyst, which had a similar particle size to the powder dolomite, did not perform as well
as the powder dolomite but was an effective catalyst at 900°C. The Plum Run dolomite
was also an effective catalyst at 900°C, and the nahcolite was not an effective mineral
catalyst.

Concerning the testing temperature, generally higher temperatures led to greater
conversion. This is as expected since thermal cracking effects would be more evident at
higher temperatures. The exception to this rule was olivine: temperatures above 800°C
led to a decrease in cracking activity. This may be due to phase change within the mineral
structure of the catalyst or sintering of the catalyst particles.

Results observed on the bench-scale system overall were similar to those

observed on the lab-scale system, which validates the results seen on both systems.

249



8.1.2 Biofuels
8.1.2.1 Overall Blend Acceptability

Table 8-1 shows an indication of the acceptability of the tested fuel blends. These

were determined based on their miscibility at 75°F, 170°F, and 220°F as well as their

behavior when cooled to 75°F from 170°F and 220°F. Blends containing biocrude and

palm oil were marginal to unacceptable due to the large proportion of waxes at ambient

temperatures. All other fuel blends were acceptable for use in industry.

Table 8-1. Overall fuel blend acceptability.

diesel

8.1.2.2 Characterization of Oils and Oil Blends

Lo- Hi-Pour | Biocrude | Crude Crude Biodiesel | Ultra-
Pour Fuel Qil | (animal) | Jatropha | Palm Oil | (refined | low
Fuel oil biocrude) | sulfur
Qil diesel

Lo-Pour Not Marginal | Yes Marginal | Yes Yes

Fuel Oil Tested

Hi-Pour Marginal | Yes Marginal | Yes Yes

Fuel Oil

Biocrude Marginal | No Not Yes

(animal) Tested

Crude No Yes Yes

Jatropha

Qil

Crude Marginal | Marginal

Palm Qil

Biodiesel Yes

(refined

biocrude)

Ultra-low

sulfur

The high wax content and/or opacity led to questionable pour point values in

some tested blends. Of the tested blends, the crude jatropha oil — biodiesel (refined

biocrude) blend would pour and therefore pump at ambient conditions, but may not at

lower temperatures (< 45°F). Better pour point measurements could probably be obtained
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by using the standard method in ASTM D92, but the high opacity of some of the oils and
oil blends could make this difficult as well.

The method used to determine the wax appearance temperature was precise.
However, it would not be simple to set up in the field, and it is impractical for widespread
use.

Conventional ultimate analysis and Karl Fischer water titration was sufficient to
characterize biofuels for composition, heating value, and water content.
8.1.2.3 Corrosion Testing

Significant corrosion was observed on the following samples: brass in biocrude
derived from animal renderings, brass in crude jatropha oil, brass in biodiesel (refined
biocrude), brass in crude palm oil, brass in lo-pour fuel oil, and mild steel in biocrude
derived from animal renderings. The most significant corrosion was observed on the mild
steel in biocrude derived from animal renderings; however, the majority of the metal loss
occurred within the first 1020 hours, after which the mass of the sample began to
stabilize. Table 8-2 shows the rates of corrosion at 2340 hours as compared to Fontana’s
standards for metal performance in corrosive environments. Fontana defines
“outstanding” as <1 mpy, “excellent” as 1-5 mpy, “good” as 5-20 mpy, “fair” as 20-50
mpy, “poor” as 50-200 mpy, and “unacceptable” as >200 mpy (Fontana, 1986). In the
case of mass gain, the absolute value of the gain was used to determine the classification.
In spite of the varied effects of the oils on the metal samples, all samples had outstanding

levels of performance in their respective oils.
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Table 8-2. Performance of metals during exposure to pure oils.

Metal Type

Oil Type

Corrosion Rate at

2340 h (mpy)

Classification

304 stainless steel
304 stainless steel
304 stainless steel

304 stainless steel
304 stainless steel
304 stainless steel

304 stainless steel

Brass
Brass
Brass

Brass
Brass
Brass

Brass

316 stainless steel
316 stainless steel
316 stainless steel

316 stainless steel
316 stainless steel
316 stainless steel

316 stainless steel

Mild steel
Mild steel
Mild steel

Mild steel
Mild steel
Mild steel

Hi-pour fuel oil
Lo-pour fuel oil
Ultra-low sulfur
diesel

Crude palm oil
Crude jatropha oil
Biocrude derived
from animal
renderings
Biodiesel (refined
biocrude)
Hi-pour fuel oil
Lo-pour fuel oil
Ultra-low sulfur
diesel

Crude palm oil
Crude jatropha oil
Biocrude derived
from animal
renderings
Biodiesel (refined
biocrude)
Hi-pour fuel oil
Lo-pour fuel oil
Ultra-low sulfur
diesel

Crude palm oil
Crude jatropha oil
Biocrude derived
from animal
renderings
Biodiesel (refined
biocrude

Hi-pour fuel oil
Lo-pour fuel oil
Ultra-low sulfur
diesel

Crude palm oil
Crude jatropha oil
Biocrude derived
from animal
renderings

-0.02
-0.03
-0.29

-0.02
-0.02
-0.03

-0.03

0.00
0.12
-0.29

0.11
0.03
0.13

0.10

0.01
-0.01
-0.14

-0.05
0.01
0.00

0.00
0.00
-0.04
-0.01
-0.01

-0.02
0.45
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Outstanding
Outstanding
Outstanding

Outstanding
Outstanding
Outstanding

Outstanding

Outstanding
Outstanding
Outstanding

Outstanding
Outstanding
Outstanding

Outstanding

Outstanding
Outstanding
Outstanding

Outstanding
Outstanding
Outstanding

Outstanding

Outstanding
Outstanding
Outstanding

Outstanding
Outstanding
Outstanding



Table 8-2. Performance of metals during exposure to pure oils.

Metal Type Oil Type Corrosion Rate at  Classification
2340 h (mpy)

Mild steel Biodiesel (refined 0.00 Outstanding
biocrude)

410 stainless steel Hi-pour fuel oil 0.01 Outstanding

410 stainless steel Lo-pour fuel oil 0.01 Outstanding

410 stainless steel Ultra-low sulfur -0.20 Outstanding
diesel

410 stainless steel Crude palm oil 0.00 Outstanding

410 stainless steel Crude jatropha oil 0.03 Outstanding

410 stainless steel Biocrude derived 0.00 Outstanding
from animal
renderings

410 stainless steel Biodiesel (refined 0.01 Outstanding
biocrude)

Overall, the oils had the most effect on the brass samples. If possible, brass should
be monitored when it is used in wetted parts in petroleum power plants intending to use
biofuels.

8.2  Future Work
8.2.1 Tar Cracking
8.2.1.1 Laboratory-Scale Updraft Gasifier and Tar Cracking Reactor

The long-term effects of sulfur on the lab-synthesized catalysts manufactured by
NREL and EERC need to be measured.

To avoid the pressure drop issues observed in testing, the most promising catalyst
candidates should be synthesized in monolith form. This form would maximize mass
transfer and lower the pressure drop. Thus, higher flow rates could be tested, and

residence times would be decreased to more realistic levels. These tests could be used to

verify the observed tar conversions.
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8.2.1.2 Bench-Scale Tar Cracking Reactor

In order to ensure the validity of the conversions observed, replicates of every test
run must be run. Ideally, these repeated tests would be performed on a system that has
better mass balance closures than the one used for this testing. A consistent mass balance
closure of 5-10% would be required to allow meaningful comparison of results.

A mechanistic study of the kinetics of nahcolite and trona should be performed, as
the kinetics of these catalysts are not well understood.

To determine whether phase changes from crystalline to amorphous occurred in
the olivine catalyst, x-ray powder diffraction (XRD) tests should be performed on olivine
samples exposed to CO and heated to 750°C, 800°C, 850°C, and 900°C.

8.2.2 Biofuels

The fuel blends should be tested for miscibility and the occurrence of other
undesired results at additional temperatures. Some temperatures that could be considered
are 32°F, which is the freezing point of water; 50°F, which is near the pour point of
several of the pure oils; and -10°F, which would simulate winter conditions in the
northern United States. Other testing temperatures could be considered as well.

The cooled blends should be reheated to confirm that the blends are able to be
reheated without additional negative effects occurring.

More blend ratios should be tested. All oils were blended at a 50:50 ratio. Using
other ratios, such as a 20:80 ratio, may allow for the use of fuels which are problematic in
higher proportions but are acceptable in lower proportions.

Viscosity testing should be performed on the pure oils and blends to determine

whether the viscosity is additive or follows some other predictable relationship.
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Further testing may be required to determine the exact effects of biocrude derived

from animal renderings on mild steel.
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