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ABSTRACT 
 

As Deep Convective Systems (DCSs) are responsible for most severe weather 

events, increased understanding of these systems along with more accurate satellite 

precipitation estimates will improve NWS (National Weather Service) warnings and 

monitoring of hazardous weather conditions. A DCS can be classified into convective 

core (CC) regions (heavy rain), stratiform (SR) regions (moderate-light rain), and anvil 

(AC) regions (no rain). These regions share similar infrared (IR) brightness temperatures 

(BT), which can create large errors for many existing rain detection algorithms.  This 

study assesses the performance of the National Mosaic and Multi-sensor Quantitative 

Precipitation Estimation System (NMQ) Q2, and a simplified version of the GOES-R 

Rainfall Rate algorithm (also known as the Self-Calibrating Multivariate Precipitation 

Retrieval, or SCaMPR), over the state of Oklahoma (OK) using OK MESONET 

observations as ground truth.  While the average annual Q2 precipitation estimates were 

about 35% higher than MESONET observations , there were very strong correlations 

between these two data sets for multiple temporal and spatial scales.  Additionally, the 

Q2 estimated precipitation distributions over the CC, SR, and AC regions of DCSs 

strongly resembled the MESONET observed ones, indicating that Q2 can accurately 

capture the precipitation characteristics of DCSs although it has a wet bias. SCaMPR 

retrievals were typically three to four times higher than the collocated MESONET 

observations, with relatively weak correlations during a year of comparisons in 2012.  



 
 

xiv 

Overestimates from SCaMPR retrievals that produced a high false alarm rate were 

primarily caused by precipitation retrievals from the anvil regions of DCSs when 

collocated MESONET stations recorded no precipitation.  A modified SCaMPR retrieval 

algorithm, employing both cloud optical depth and IR temperature, has the potential to 

make significant improvements to reduce the SCaMPR false alarm rate of retrieved 

precipitation especially over non-precipitating (anvil) regions of a DCS.  Preliminary 

testing of this new algorithm to identify precipitating area has produced significant 

improvements over the current SCaMPR algorithm.  This modified version of SCaMPR 

can be used to provide precipitation estimates in gaps of radar and rain gauge coverage to 

aid in hydrological and flood forecasting.    
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CHAPTER I 

INTRODUCTION 

       Deep Convective Systems 

 

 As a large portion of rainfall and the majority of severe weather reports in the 

United States arise from Deep Convective Systems (DCSs), improved understanding and 

satellite Quantitative Precipitation Estimates (QPEs) of these systems are important.  DCSs 

are common in the United States, particularly in the Great Plains, Midwest, and Southeast 

during spring and summer, with the majority of rainfall occurring at night.  DCSs are 

characterized by a thick mixed phase cloud region capable of producing intense 

precipitation, strong winds, and hail, and thinner ice clouds often encircling the thick mixed 

phase cloud region.  DCSs typically form in warm and humid conditions, and are capable 

of growing to hundreds of miles in diameter and persisting for a day or more in extreme 

cases.  DCSs can be separated into convective core (CC), stratiform (SR), and anvil cloud 

(AC) regions with the most intense precipitation in CC regions,  light to moderate 

precipitation  in the SR regions, and light or no precipitation in AC regions (Feng et al. 

2011 and 2012).   
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Figure 1.  Visual representation of the hybrid classification system from Feng et al. 
2011.  Region (1) represents the CC region, (2) represents the SR region, (3) and (4) 
comprise the AC region, and (5) is a component of a category referred to as 
Error/Thin Anvil later in this manuscript. 
 
This three-category classification is a simplified version of the classifications shown in 

Figure 1 from Feng et al. 2011.  The CC region can be identified by radar, and is 

characterized by high reflectivity values using the convective-stratiform algorithm 

originally developed in Steiner et al. (1995) and modified by Feng et al. (2011).  The SR 

region identified by radar accounts for precipitation echoes that fall below the convective 

dBZ threshold (Steiner et al. 1995).  AC regions can partially be identified by radar, 

typically by using an echo height threshold, but limited power returns from anvil regions 

frequently make these clouds undetectable by ground-based precipitation radars such as 

the WSR-88D.  However, the advantage to GOES satellites is that they can detect the entire 
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cloud shield, including regions of the anvil, typically thin anvil, which is undetectable by 

radar.  Combining GOES and radar data allows the tracking and examination of entire 

DCSs and their life cycles.  

Overview of Satellite QPEs 

In addition to rain gauge networks, sources for Quantitative Precipitation Estimates 

(QPEs) such as satellites and ground-based radars are critical to the National Oceanic and 

Atmospheric Administration (NOAA)/National Weather Service (NWS) flood and river 

forecasts (Zhang and Qi 2010; Zhang et al. 2011).  Each instrument has both strengths and 

limitations.  Rain gauges provide direct measurements of rainfall, but provide the coarsest 

spatial and temporal resolution.  Radars can provide precipitation estimates with much finer 

spatial and temporal resolution than rain gauge networks, but suffer from larger sources of 

errors than rain gauges face.  Geostationary satellite QPEs provide continuous coverage, 

but have larger uncertainties and sources of error than rain gauge observations or radar 

based estimates.    Previous studies document the limitations rain gauge networks face in 

spatial coverage and the problems radar estimates have with overshooting, the radar beam 

traveling over the top of precipitation and not detecting it, and beam blockage, along with 

limited spatial coverage (Krajewski and Smith 2002; Scofield and Kuligowski 2003; Smith 

et al. 1996; Zhang and Qi 2010; Zhang et al. 2011).  QPEs derived from geostationary 

satellites such as the Self-Calibrating Multivariate Precipitation Retrievals (SCaMPR) can 

help address spatial gaps by providing continuous spatial coverage (Scofield and 

Kuligowski 2003).  This advantage of satellite QPE’s has led to their incorporation into the 
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Multisensor Precipitation Estimation algorithm (Kondragunta et al. 2005).  Potential 

applications of near real-time satellite QPEs for disaster preparedness and mitigation are 

possible at both regional and global scales (Hong et al. 2007).   

        The relationship between the satellite retrieved IR brightness temperatures of storms 

and precipitation rates at the surface has been well documented especially for convection, 

and methods utilizing IR brightness temperatures to estimate precipitation have been 

developed and modified over the last three decades (e.g., Negri and Adler 1981; Adler and 

Negri 1988; Vicente et al. 1998).  The current operational satellite rainfall estimation 

algorithm at the NOAA National Environmental Satellite, Data, and Information Service 

(NESDIS) is the Hydro-Estimator (H-E), which estimates precipitation from geostationary 

platforms by relating IR brightness temperatures to precipitation rates (Kuligowski and 

Scofield 2003). The next-generation operational NOAA / NESDIS algorithm for GOES-

R, the Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) employs IR 

brightness temperature and microwave data (Kuligowski 2010).  Numerous other real-time 

algorithms exist for retrieving rainfall rates from IR and microwave data, including the 

Climate Prediction Center Morphing algorithm (CMORPH; Joyce et al. 2004), Global 

Satellite Mapping of Precipitation (GSMaP_MVK+; Kubota et al. 2007), the Naval 

Research Laboratory (NRL) Blended algorithm (Turk et al. 2003), Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural Networks (PERSIANN; 

Sorooshian et al. 2000), and the Tropical Rainfall Measuring Mission (TRMM) Multi-

sensor Precipitation Algorithm (TMPA; Huffman et al. 2007).  However, this study will 
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focus on evaluating and improving SCaMPR in preparation for its operational application 

at NOAA / NESDIS after the GOES-R launch.  With the launch of GOES-R, the full 

version of the SCaMPR algorithm will be run, and it’s output incorporated into the 

Advanced Weather Interactive Processing  System for use by NWS forecasters.    

  Improving Satellite QPEs 

To improve satellite derived QPEs during DCSs a source of validation data is 

needed with significantly better spatial and temporal coverage and resolution than rain 

gauge networks provide.  Recent studies such as Kirstetter et al. (2012) and Amitai et al. 

(2012) have utilized ground-based radar estimates as a validation source for the Tropical 

Rainfall Measurement Mission (TRMM).  Even more detailed validation and analysis can 

be achieved using a combination of NEXRAD observations and GOES satellite retrievals 

to classify the three components of a DCS (Feng et al. 2011, 2012), which provides 

guidance to improve the spatial precipitation characteristics of satellite QPEs such as 

SCaMPR.  Since the size of the anvil area of a DCS is highly variable, and the IR brightness 

temperatures over anvil regions are similar to those over convective cores (Feng et al. 2011, 

2012), effectively separating anvil from raincore regions prior to calculating IR based 

precipitation rates could significantly improve geostationary satellite QPEs (Vicente et al. 

1998).  Using a combination of the National Mosaic and Multi-sensor Quantitative 

Precipitation Estimation System (NMQ) Q2 and GOES data, DCSs can be broken into 

three components which allow better evaluation of the strengths and weaknesses of 

SCaMPR retrievals.  Findings from these evaluations could eventually improve separation 



6 
 

of anvil and raincore regions using only geostationary satellite retrievals.  However, the 

uncertainties and errors in radar-derived Q2 estimates and satellite-derived precipitation 

products must first be properly analyzed and validated with ground-based rain gauge 

measurements that can provide independent “ground truth” for validations.  

Many uncertainties involved in radar precipitation estimates and attempts to 

mitigate these uncertainties have been discussed in previous studies (Andrieu et al. 1997; 

Austin 1987; Langston et al. 2007; Villarini and Krajewski 2010; Smith et al. 1996; Zhang 

et al. 2005; Zhang and Qi 2010; Zhang et al. 2011).  In a recent evaluation of NMQ and 

the Precipitation Processing System (PPS) over the conterminous United States (CONUS), 

Wu et al. (2012) found that NMQ estimates performed better on average than the PPS over 

the CONUS and during heavy precipitation events.  While the findings of Wu et al. (2012) 

and Chen et al. (2013) support the use of NMQ Q2 estimates as the primary data set for 

improving satellite QPEs, an evaluation of the magnitude of NMQ Q2 errors and their 

biases over longer time periods are necessary against a more dense rain gauge network in 

a region where precipitation is largely from DCSs.  Furthermore, although the distribution 

of precipitation among different Z-R regimes has been studied (Chen et al. 2013), analysis 

of the distribution of estimated precipitation into DCS regions is needed to quantitatively 

examine the errors and biases of satellite QPEs.    

Recently, the NWS has upgraded its radar network to include dual polarization 

technology.  Dual polarization radar allows transmitting in both the horizontal and vertical 

directions, providing more information about targeted hydrometeors than a radar utilizing 
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only one beam orientation provides.  Thorough overviews of dual polarization are already 

available in literature (Islam and Rico-Ramirez 2013), so only a brief summary of dual 

polarization applications to the hybrid classification (Feng et al. 2011) and Q2 estimates 

will be discussed in this study.  While the Q2 algorithm utilizes only horizontal 

polarization, some incorporation of dual polarization technology could aid in removing 

ground clutter contamination of estimates (Zrnic et al. 2006).    In the next generation 

version of Q2, Q3, dual polarization data (hydrometeor classification algorithm output 

(Park et al. 2009)) will be used for precipitation type determination and removal of non-

meteorological returns from precipitation estimates.  This incorporation of dual 

polarization data should greatly improve the performance of Q2 in frozen precipitation 

events and events where temperature inversion induced ground clutter causes estimates of 

erroneous light precipitation.   Additionally, hail core classifications could be added to the 

current hybrid classification algorithm developed by Feng et al. (2011) by utilizing the 

hydrometeor classifications developed for the WSR-88D (Park et al. 2009).  As hail cores 

are a significant part of DCSs, this revised classification algorithm would allow a more 

detailed examination of DCS structures and their life cycles.    

  Purpose   

To evaluate both NMQ Q2 estimates and SCaMPR retrievals in a region with 

precipitation dominated by DCSs, OK MESONET observed precipitation has been used as 

ground truth in this study.   This study will use timescales from 24-hr precipitation to annual 

precipitation to examine the performance of retrievals and estimates for both individual 
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precipitation events and longer timescales.  The NMQ Q2 estimates during the period 

2010-2012 will be directly compared to collocated OK MESONET observations to 

determine the accuracy, consistency, and any biases associated with Q2 estimates.  The 

same direct collocation analysis will be performed on SCaMPR for 2012 data to evaluate 

the performance of SCaMPR retrievals and possible sources of error.  Daily through yearly 

timescales will be analyzed to evaluate performance ranging from individual events to 

annual estimates.  Potential causes for any biases or errors will be examined along with 

possible methods of improvement.  Special attention will be given to the absolute accuracy 

of Q2 estimates and scenarios where SCaMPR retrievals produced significant 

overestimates.   Additionally, precipitation distributions will be calculated for each of the 

DCS regions from both observations and estimates.  This will provide a quantitative insight 

into the precipitation characteristics of DCSs, while also evaluating the accuracy of both 

Q2 and SCaMPR precipitation estimates in providing reasonable precipitation distributions 

for DCSs.  By examining the estimated precipitation distribution from SCaMPR, the cause 

of errors can be diagnosed and more precisely accounted for and corrected than using only 

qualitative studies.   Furthermore, an evaluation of the estimated precipitation distribution 

from Q2 can determine how reasonable a substitute for ground truth this product is where 

dense rain gauge networks are unavailable. 

By evaluating the performance of both SCaMPR and Q2, this study will explore 

potential pathways for improvements of satellite QPEs during DCSs in a more targeted 

approach than previous studies.  The accuracy of Q2 in a region with annual precipitation 
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dominated by convection will first be examined to determine how reliable of a substitute 

Q2 estimates can be for calibrating satellite QPEs when a higher resolution validation data 

set is needed than rain gauge networks provide.  Next, SCaMPR estimates will be evaluated 

on multiple temporal and spatial scales to pinpoint the sources of bias and error for this IR-

based satellite QPE.  Lastly, a new algorithm to identify precipitating areas solely from 

GOES data will be developed and tested.  A discussion of these findings and preliminary 

results from the newly developed method to correct the biases/errors of SCaMPR will be 

provided.  
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CHAPTER II 

DATA AND METHODOLOGIES 

                                                         NEXRAD Q2 Data 

  

          The NMQ Q2 Tile 6 estimates from January 2010 through December 2012 were 

compared with OK MESONET observations and SCaMPR retrievals.  NMQ Tile 6 is 

bounded longitudinally by 110oW and 90oW, and has northern and southern boundaries at 

40oN and 20oN as shown in Figure 2. 

 

 

Figure 2.  The NMQ domain and tiles, the boundaries of the tiles are indicated by 
blue dashed lines.    
Source: http://www.nssl.gov/projects/q2/tutorial/3dmosaic.php 
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As there is no available radar data below 25o N as shown in Figure 2, only data northward 

from 25o N was used in this study.  

NMQ Q2 estimates provide multi-radar precipitation estimates with a grid box of 

1km x 1km [http://www.nssl.noaa.gov/projects/q2/q2.php].  Q2 estimates are produced 

using quality controlled radar reflectivity data from multiple radars to automatically 

classify precipitation as convective rain, stratiform rain, warm rain, hail, and snow (Zhang 

et al. 2011).  The rules of the classification system are shown in Figure 3. 

 

 

Figure 3.  The precipitation classification process used in the Q2 algorithm.  Source: 
Fig. 9 of Zhang et al. 2011 
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 Each classification of precipitation has a Z-R relationship assigned to it as shown 

in Figure 4. 

 

Figure 4.  The different Z-R relationships used by the Q2 algorithm for the four 
classifications of precipitation.   
Source:   (http://www.nssl.noaa.gov/projects/q2/tutorial/q2.php) 
 

These assigned Z-R relationships based on precipitation classification are used for 

each radar pixel to provide the Q2 estimated rain rates (Zhang et al. 2011).  These pixel-

level estimates can easily be compared to collocated OK MESONET observations by 

determining which pixels each MESONET station is located in.  

http://www.nssl.noaa.gov/projects/q2/tutorial/q2.php
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 The large spatial coverage and high spatial resolution of the NEXRAD Q2 

estimates will provide a means assessing (and potentially improving) the performance of 

the SCaMPR retrievals over large areas with a much finer resolution than rain gauge 

networks. 

OK MESONET 

          Oklahoma MESONET 24-hour accumulated precipitation from January 2010 

through December 2012 was used as ground truth in this study.  Additionally, 5-minute 

accumulated precipitation observations were used during selected convective events in 

2012.  An unheated tipping bucket with an alter shield to minimize wind effects is used at 

each of the MESONET stations as shown in Figure 5. 

 

Figure 5.  An unheated tipping bucket with alter shield that is used for OK MESONET 
precipitation observations. 
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Each tip of the tipping bucket occurs when 0.25mm (0.01”) of precipitation is collected.  

There are a total of 119 MESONET stations with data spanning the entire time period for 

this study.  Since the gauges are unheated, measurements of frozen precipitation are 

unreliable and can cause time mismatches between observed and falling precipitation.  

However, potential time mismatch problems during frozen precipitation events were 

minimal because frozen precipitation typically accounts for ~1% of annual precipitation in 

the study region. 

   SCaMPR Retrievals 

          The GOES-R algorithm for rain detection and estimation, SCaMPR, attempts to 

capture the accuracy of microwave (MW) rain rates along with the rapid refresh of GOES 

data by calibrating GOES IR-based predictors against MW rainfall (Kuligowski 2010).  

Separately matched data sets for four latitude bands and three cloud types (determined 

using brightness temperature differences between bands) are updated every time new MW 

rain rates become available and the oldest data are removed.  Whenever the matched data 

sets are updated, discriminant analysis is used to identify the two best predictors and 

coefficients for discriminating raining from non-raining pixels; stepwise forward linear 

regression is used to select the two best predictors and coefficients for deriving rain rates.  

To account for the nonlinear relationship between IR brightness temperatures and rain 

rates, the former are regressed against the latter in log-log space to produce additional rain 

rate predictors.  To compensate for the compression of the statistical distribution which 

results from applying regression techniques to non-normally distributed data, the 



15 
 

cumulative distribution functions (CDFs) of the rain rates derived via regression from 

dependent data are matched against the CDFs of the MW rain rates to create a lookup table 

that restores the retrieved rain rates to the correct distribution. Additional details on the 

SCaMPR algorithm are available in Kuligowski (2010).   

 The full version of SCaMPR was developed using five bands from the METEOSAT 

Spinning Enhanced Visible InfraRed Imager (SEVIRI)—the water vapor bands at 6.2 and 

7.3 µm and the IR window bands at 8.7, 10.8, and 12.0 µm.  However, the version of 

SCaMPR evaluated in this paper was simplified from the full version because only two of 

the five bands used by the algorithm are available on current GOES—one water vapor band 

at 6.7 µm and one IR window band at 10.7 µm; among other changes, this meant that only 

two cloud types existed instead of three and the available predictor data set was reduced 

by half.  SCaMPR precipitation retrievals were only available from January 2012 through 

December 2012 and during the Midlatitude Continental Convective Clouds (MC3E) 

campaign in 2011, with a grid box of 4km x 4km, and a domain bounded by the coverage 

of GOES East and GOES West.  For this study only complete coverage of Oklahoma was 

necessary, but the SCaMPR domain covers the entire CONUS as shown in Figure 6.      

 A modified version of the SCaMPR algorithm, SCaMPR RH was also available for 

16 days with convective activity during 2012.  All of the details of this algorithm are the 

same as SCaMPR, except that SCaMPR RH incorporates modeled relative humidity, RH, 

and one of the predictors.  The modeled RH input will allow reduction of SCaMPR 
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estimated precipitation rates in regions with a significant dry layer that precipitation must 

fall through prior to reaching the ground.  

 

 

 

Figure 6.  Image of SCaMPR domain for precipitation estimates over the CONUS.  
Estimate of precipitation accumulated in the hour ending 15 UTC 20 May 2011 is 
shown. 
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          GOES Retrievals 

 

 

GOES retrievals for cloud top brightness temperatures and cloud optical depth were 

provided by NASA Langley.  Retrievals were provided on a grid with approximately 4km 

x 4km grid boxes using the Visible Infrared Solar-Infrared Split Window Technique 

(VISST) algorithm ( Minnis et al. 2011).  Cloud optical properties are calculated by 

matching parameterizations of theoretical radiance calculations for both water and ice 

crystal size distributions to measurements.  These retrievals were again bounded by the 

domains of GOES East and GOES West, but only a smaller subset of data was focused 

on as shown in Figure 7.  Cloud optical depth retrievals are valid during 

 

Figure 7.  Optical depth over the SGP region on 25 April 2011. 
 
 
daylight hours, but not near dusk and dawn as the solar zenith angle at these times 

produces too great of errors in the radiance calculations.  These optical depth retrievals 

have a maximum value of 128 prior to 2012, and 150 for 2012. 
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Methodologies  

 

 

When evaluating NMQ Q2 estimates and SCaMPR retrievals, OK MESONET 

observations were treated as ground truth.  After determining which pixels on the NMQ 

and SCaMPR grids corresponded with the MESONET locations, the NMQ Q2 estimates 

and SCaMPR retrievals were directly compared to collocated MESONET observations.  

Comparisons were only made when both data sets were available, such as Q2 vs. 

MESONET during 2010-2012 and SCaMPR vs. MESONET in 2012.    

          Scatterplots were constructed between the Q2 estimates and MESONET 

observations when MESONET observations had recorded precipitation (≥0.25 mm, the 

minimum detectable value for the MESONET rain gauges).  Regression lines were derived 

for two spatial scales: (1) the 24-hour accumulated and annual precipitation from each 

MESONET station, and (2) the statewide 24-hr total precipitation from all MESONET 

stations.  Since radar coverage variation has been well documented over the U.S. (Maddox 

et al. 2002), this study was also performed only for those MESONET stations in regions of 

good radar coverage; that is, the bottom of the radar base beam was ≤1219 m AGL 

(generally within ~130 km of the radar location). 

 Additionally, comparisons between the Q2 estimates and MESONET observations 

were made for both the warm and cold seasons.  The warm season was defined as April 

through September, while the cold season was from October through March (Wu et al. 

2012).  These seasons help broadly separate precipitation characteristics to evaluate the 
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accuracy of Q2 estimates for strong convection and weaker convection/stratiform-

dominated precipitation regimes.  Scatterplots were created for 24-hr precipitation 

estimates and observations during both the warm and cold seasons along with their 

corresponding linear regression equations.  The same comparison between the SCaMPR 

retrievals and MESONET observations was done only for 2012.   

          In addition to regressing the Q2 estimated and SCaMPR retrieved precipitation 

against MESONET observations, cumulative frequency distributions were constructed for 

each of the data sets.  To construct the cumulative frequency distributions, a total of 50 2-

mm bins were generated from all available samples for each data set.  Bar graphs 

comparing the cumulative frequency distributions were also created by subtracting the 

percentages of precipitation events in each MESONET bin from the percentages in the 

collocated Q2 estimate or SCaMPR retrieval bins.  These bar graphs allow the visualization 

of distribution differences, which provide additional information regarding the slope of the 

cumulative frequency distributions.  Finally, categorical scores were calculated for both 

NMQ Q2 estimates and SCaMPR retrievals using four thresholds of MESONET rainfall 

accumulation for the false alarm rate (FAR), probability of detection (POD), and critical 

success index (CSI).  The categorical scores are calculated as follows; POD is defined as 

the ratio of hits to the sum of misses and hits.  Each hit represents an occurrence of an 

estimate greater than the threshold value when MESONET observed precipitation also 

exceeds the threshold value.  A miss represents an occurrence of an estimate less than the 

threshold value when MESONET observed precipitation exceeds the threshold 
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value.  FAR is defined as false alarms divided by the sum of false alarms and hits.  A false 

alarm represents an occurrence of an estimate greater than the threshold value when 

MESONET observed precipitation did not exceed the threshold value.  Lastly, CSI is 

defined as the ratio of hits to the sum of hits, misses, and false alarms.  The threshold values 

were 0.25mm, 2.5mm, 12.5mm, and 25mm for 24-hr accumulated precipitation events 

spanning three years of NMQ Q2 estimates and one year of SCaMPR retrievals.  Root-

mean square error (RMSE) values were calculated for 24-hr precipitation events with four 

threshold values.  Only the lowest bound of 0 mm (not 0.25mm) differed from the threshold 

values above to quantify the errors of precipitation estimates when none was observed.  

Additionally, RMSE scores were calculated for the annual average, and for 2012 when 

both SCaMPR and Q2 data were available.  

 To address the precipitation characteristics of DCSs and to evaluate Q2 and 

SCaMPR performance in DCSs, precipitation distributions were calculated from 

MESONET observations and from SCaMPR and Q2 estimates.  DCS components (CC, 

SR, and AC) were classified using NEXRAD and GOES data (Feng et al. 2011, 2012) over 

OK.  All SCaMPR and Q2 pixels were matched with the classified components, and their 

corresponding precipitation distributions were then calculated based on the sum of rates 

for each classified pixel.  For the MESONET precipitation distribution, the classification 

over each MESONET station was matched with the 5-minute accumulated precipitation 

ending at the time of the classification.  There was little sensitivity between choosing the 

5-minute accumulation starting/ending at the time of the DCS classification.  
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   Development of New Algorithm 

A new algorithm was created to incorporate both cloud optical depth and cloud 

top brightness temperatures to reduce erroneous precipitation retrievals from the 

SCaMPR algorithm.  After discovering the tendency of SCaMPR to dramatically 

overestimate precipitation in anvil regions because AC and CC regions share similar 

cloud top brightness temperatures, a method to separate AC from raincore regions was 

developed using cloud optical depth.  As a significant difference in optical depth is 

present between raincore and AC regions as shown in Figure 8,  

 

Figure 8.  Average optical depth difference between different DCS regions for 11 
May 2011 at 2045 UTC. 
 

optical depth can be used to effectively separate precipitating and non-precipitating 

regions of DCSs when combined with cloud top brightness temperature retrievals. 
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 This new algorithm was developed from both physical characteristics of 

precipitation in DCSs and observed empirical relationships between cloud optical depth, 

cloud top BTs, and precipitation.  First, the cloud top BT and cloud optical depth of each 

pixel is screened to identify potential rain cores.  A rain core represents a pixel with an 

optical depth large enough and a cloud top BT temperature low enough to expect 

precipitation.  Depending on the cloud top BT temperature, a radius of influence is 

assigned to each rain core.  A colder cloud top BT will increase the radius of influence, 

and a pixel with a colder cloud top BT and a high cloud optical depth value likely 

contains or is close to a CC region. 

 The optical depth threshold set for raincores in this algorithm is 90.  The first 

temperature threshold is 273 K, the freezing level.  A total of five temperature thresholds 

are used, and a corresponding radius of influence is set to each identified rain core such 

that all pixels within the radius of influence will be identified as raining.  The different 

threshold levels are detailed in Table 1. 

Table 1. Overview of new algorithm using cloud top BT and cloud optical depth to 
identify precipitating pixels. 
 
BT of Pixel (K) Cloud Optical Depth of 

Pixel 

Pixels in Square Defined as 

Precipitating  

273 > T > 250 >90 9 

250 > T > 220 >90 25 

220 > T > 215 >90 49 

215 > T > 210 >90 81 

210 > T  >90 121 
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Pixels in the radius of influence create a square, with the rain core pixel as the 

center pixel of the square.  In Figure 9 it is shown that the side length of the square will 

be increased by 2 pixels for each successive threshold with colder cloud top BTs.   

 The sensitivity of estimated precipitating area to changing the optical depth 

threshold to identify rain cores was not particularly strong.  Increasing or decreasing the 

tau threshold value by ~10 % reduced or increased the estimated precipitating area by ~ 5 

%.  A higher optical depth threshold limits the FAR, but at the expense of POD, while a 

lower optical depth threshold will maintain a high POD, while allowing FAR to be 

 

Figure 9. Each color represents additional pixels that will be identified as 
precipitating if the cloud top BT of the rain core pixel(optical depth > 90) falls below 
the temperatures indicated.  For example, all yellow pixels will be identified as 
precipitating if the cloud top BT of the rain core pixel is less than 250K.  
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slightly larger.  However, even for very low tau thresholds, ~35, the FAR is still 

significantly improved over the SCaMPR algorithm.  The threshold of 90 used in this 

study was chosen because qualitatively it produced a reasonable precipitating area while 

greatly reducing FAR.  For operational uses, the tau threshold will likely be reduced 

significantly to keep the POD as large as possible.  Additionally, as lowering the tau 

threshold still allows significant reductions in FAR over the SCaMPR algorithm this will 

likely be the preferred version of the algorithm.  Further objective evaluation is needed to 

determine the optimal tau threshold for an operational version of this algorithm.  

Physically, this algorithm represents the increased probability of precipitation 

occurring near a pixel with a large cloud optical depth and cold cloud top BTs.  Since 

precipitation in DCSs is possible from clouds with optical depth values below 90, this 

algorithm accounts for that while still ensuring pixels identified as precipitating are near 

raincore regions.  Pixels identified as precipitating can have optical depth values less than 

90 as long as they are within the radius of influence of a pixel meeting the criteria defined 

for a raincore.  While this algorithm does make the assumption that the precipitating area 

of convective systems is symmetrical, in qualitative studies there does not appear to be a 

significant upshear or downshear bias present.  Although it is possible the precipitating 

area could be overestimated on the upshear side of convection and underestimated on the 

downshear side of convection by assuming symmetry, no significant biases have yet been 
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detected.  A more detailed analysis, and possible incorporation of modeled wind fields to 

address this potential concern could be examined in future studies.    

To evaluate the performance of this algorithm compared to SCaMPR in properly 

identifying the precipitating regions of DCSs, two methods were used.  First, the total 

percentage of precipitating area was calculated for SCaMPR, Q2, and the new algorithm.  

This analysis was based on hourly precipitation estimates during the MC3E campaign.  

To ensure a fair comparison, the new algorithm was run only on data available to produce 

the SCaMPR hourly estimates, while Q2 estimates were based on instantaneous estimates 

available at the times of GOES images used by SCaMPR and the new algorithm.  The 

total percentage of precipitating area for NMQ tile 6 was calculated during daylight hours 

for the entire MC3E campaign. 

Secondly, with SCaMPR instantaneous estimates available in 2012, the 

distribution of precipitation among the DCS components was calculated for SCaMPR, 

Q2, and the two versions of SCaMPR with the new algorithm applied.  In addition to 

comparing the estimated precipitation distributions between these datasets, the estimated 

size of precipitating anvil regions were calculated and compared.  By examining the 

estimated distribution of precipitation among DCS components with the new algorithm 

applied to SCaMPR as well as the size of the estimated precipitating anvil regions, the 

success of the new algorithm in reducing anvil area overestimates could be evaluated. 
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CHAPTER III 

RESULTS 

                    Q2 vs. OK MESONET                    

 

Figure 10 shows the scatterplots of 24-hr accumulated precipitation from 

collocated OK MESONET observations and Q2 estimates during the period 2010-2012.  

There are a total of 27,201 samples when precipitation was recorded by a MESONET 

station (≥0.25 mm) and Q2 estimates were available.  A linear relationship between the 

two datasets was found, providing a strong correlation of 0.881.  On average, Q2 

estimates were about 25.6% higher than MESONET observations (Fig. 10a), mainly 

because of contributions by the warm season (April – September) when Q2 estimates had 

a positive bias of 37.9% (Fig. 10b).  During the cold season (October through March), 

however, an excellent agreement (~5%) was reached between the two data sets (Fig. 

10c).  The sample sizes during the warm and cold seasons were nearly equal and their 

correlations were also similar.  There were more intense precipitation events during the 

warm season than during the cold season; as a result, the mean 24-hr accumulated 

precipitation from MESONET observations  increased from 7.42 mm to 10.66 mm 

(43.7%) from the cold to warm season, while Q2 estimates increased from 7.81 mm to  
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Figure 10.  Each colored dot represents a pair of collocated MESONET observed and Q2 

estimated 24-hr accumulated precipitation (rainfall > 0.25 mm; i.e., excluding non-

precipitating events at each MESONET station) during the period 2010-2012. Shown are 

(a) all available collocated MESONET and Q2 observations, (b) the warm season (April 

through September), and (c) the cold season (October through March). 

 
14.70 mm (88.2%).  The excellent agreement during the cold season indicates that the Q2 

precipitation estimates from NEXRAD reflectivity are reasonable for stratiform dominated 
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precipitation.  The Q2 estimated precipitation during the warm season, however, produced 

overestimates.  These overestimates are likely attributed to incorrect classifications of 

tropical rain in the Q2 algorithm (Chen et al. 2013) and possibly from increased reflectivity 

due to hail and graupel (Wu et al. 2013).    

          Figure 11 compares the Cumulative Frequency Distributions (CFDs) with a total of 

125,543 collocated Q2 estimates and MESONET observations during the 3-yr period.   

 

Figure 11. (a) Cumulative frequency of 24-hr accumulated precipitation from all 
samples (rainfall ≥ 0 mm) during the period 2010-2012. Both MESONET and Q2 
samples were sorted into fifty 2-mm bins. (b) The percentages of the samples of 
each bin to total samples (3 years * 365 days * 119 stations) for both MESONET and 
Q2 are calculated, respectively, and their percentage differences (Q2-MESONET) for 
each bin are calculated until bin 10 (up to 20 mm; after that the percentage 
differences are negligible).    
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As opposed to the samples in Fig. 10 (rainfall ≥ 0.25 mm), the total samples in Fig. 11 

include all collocated Q2 estimates and MESONET observations; i.e., non-precipitating 

events are included in Fig. 11.    These samples were sorted into 50 2-mm bins where both 

MESONET and Q2 CFDs were dominated by their first bin (0-2 mm, ~85%) because the 

non-precipitating events were included in this bin.  Both CFDs approached 100% with very 

similar slopes as the precipitation amounts of the bins increased (Fig. 2a).  The 

corresponding percentages of the samples in each bin to total samples (~3 years * 365 days 

* 119 stations) for both MESONET and Q2 were calculated first, and then their percentage 

differences (Q2-MESONET) for each bin were calculated and shown in Fig. 2b.  The 

largest difference occurred in the first bin, 0-2mm, where the Q2 percentage was 3.2% 

lower than the MESONET percentage (Fig. 11b). This suggests that Q2 overestimated 

precipitation for light rain events compared to MESONET observations because the 

distribution is shifted towards higher precipitation amounts for Q2 estimates.  For other 

bins, the Q2 percentages were slightly higher than the corresponded MESONET 

percentages and the differences became negligible as the precipitation amounts of the bins 

increased (Fig. 11b). 

          To evaluate the spatial average of 24-hr accumulated precipitation, statewide 24-hr 

total precipitation, the sum of all MESONET observations (collocated Q2 estimates), are 

plotted in Fig. 12.   



30 
 

 

Figure 12. Each blue dot represents 24-hour total precipitation (statewide rainfall ≥ 0.25 

mm; i.e., excluding non-precipitating events) from all OK MESONET stations and 

collocated Q2 estimates during the period 2010-2012 (N=798). 

 
This comparison only includes precipitation events (at least one MESONET station 

recorded 24-hr total precipitation ≥ 0.25 mm).  Similar to the analysis of the individual 

gauge values in Fig. 1a, a linear relationship between the two data sets was found with a 

stronger correlation of 0.943 (vs. 0.881 in Fig. 10a), which would be expected from a 

statewide total precipitation with less temporal variability than the individual gauges.  

Again, Q2 estimates, on average, were higher than MESONET observations by 34.4% in 

this comparison.  Two outliers appeared in Fig. 3 where the Q2 estimates were 1219 mm 

and 3000 mm, while the corresponding statewide MESONET observations were nearly 

zero and less than 400 mm, respectively.  Further examination into these two outliers using 

data from the National Climatic Data Center (NCDC) revealed that both outliers occurred 

during heavy snowfall events over OK. Since the MESONET gauges were unheated, they 
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were not able to record the falling frozen precipitation during these two events.  Removal 

of these outliers from the analysis produces negligible changes in the results.  

          To further investigate the temporal averages of 24-hr accumulated precipitation at 

each MESONET station, the average annual precipitation distributions for both 

MESONET and Q2 over the entire state of OK during the period 2010-2012 is presented 

in Fig. 13.  As illustrated in Fig. 13, MESONET observations varied from ~300 mm in 

western OK to slightly over 1000 mm in eastern OK (Fig. 13a), whereas Q2 estimates 

reached around 1500 mm in eastern OK (Fig. 13b).  Mean Q2 precipitation estimates over 

the state of OK exceeded mean MESONET observed precipitation by 242.4 mm (~35.1%) 

(Fig. 13c).  Q2 estimates were higher than MESONET observations across most of OK 

with a few notable exceptions.  In extreme southeastern OK, the western panhandle, and 

northwestern OK to the northeast of the Texas panhandle, Q2 estimates were significantly 

less than MESONET observations (Fig. 13c).  The Q2 underestimates over these two 

regions are primarily due to poor radar coverage shown in Fig. 14.  The regions of 

significant underestimates are located where the bottom of the base beam height is greater 

than 1219 m above ground level and in some cases exceeds 3000 m AGL (Fig. 14).  With 

the volume scans overshooting much of the falling precipitation in these regions, 

underestimates occur. 
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Figure 13. Average annual precipitation (a) observed by the Oklahoma MESONET 
stations, (b) estimated by NEXRAD Q2, and (c) their difference (Q2-MESONET) 
during the period 2010-2012.      
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Figure 14.  Image of NEXRAD radar coverage provided by NOAA’s NWS Radar 
Operational Center.  Bottom of base beam height assuming standard atmospheric 
refraction is contoured for Volume Coverage Pattern 12 scans.  Light yellow color 
(good radar coverage in this study) represents coverage with the bottom of base 
beam height ≤ 4000 ft (1219 m), orange color represents > 4000 ft and ≤ 6000 ft 
(1829 m), and light blue represents > 6000 ft and ≤ 10,000 ft (3048 m).  Location of 
all MESONET stations represented by black triangles (right). 
 
 Figure 15 presents the same scatterplot as Fig. 10 except for the samples with good 

radar coverage.  Compared to the results in Fig. 10, the correlations are slightly stronger 

and the means are slightly higher in Fig. 15.  The largest increases in correlation (+.019) 

and wet bias (+5.84%) occurred during the cold season, while those during the warm 

season only increased slightly.  It is likely the Q2 estimates during the cold season were 

impacted more by radar coverage than those during the warm season because precipitating 

clouds tend to be more shallow (more likely to be overshot by radar) during the cold season.  
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 The impacts of radar coverage on Q2 estimates on an annual time scale are shown 

by scatterplots of average annual precipitation from collocated MESONET observations 

and Q2 estimates at each MESONET station in Fig. 16. 

 

 

 

Figure 15. Same as Fig. 10 except for the data collected over regions with good radar 

coverage demonstrated in Fig. 14. 
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Figure 16. Each blue dot represents the average annual precipitation (2010-2012) 
observed at a MESONET station and the collocated Q2 estimate for a grid box of 1 
km * 1 km containing the MESONET station.  (a) All available collocated MESONET 
and Q2 observations (N1=119), (b) only for the stations (N2=106) after removing 
data points where MESONET stations were located in the regions of poor radar 
coverage (bottom of base beam height > 1219 m AGL).    
 
Based on all available radar samples, a linear relationship between Q2 estimates and 

MESONET observations was found with a strong correlation of 0.875 (Fig. 16a) although 

Q2 estimates were still much higher than MESONET observations for most cases.  After 

removing the data points where MESONET stations were located in the regions of poor 

radar coverage, the linear relationship still holds and the correlation increases to 0.92 (Fig. 

16b).  Limiting the comparison to only regions of good radar coverage increases the slope 

of the regression line in addition to increasing correlation.  Note that the difference between 

Q2 estimates and MESONET observations in Figs. 12 and 16a are the same (~ 35%), while 

the difference is ~38.6% in Fig. 16b.  This result indicates that the actual positive bias of 
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Q2 precipitation estimates may be slightly larger than the value calculated using all 

qualities of radar coverage.     

 Examining the Q2 estimated rain distribution yielded results consistent with 

MESONET observations.  As shown in Table 2, Q2 estimates indicated that ~69.4% of 

rainfall occurred in CC regions, compared to ~70.5% observed by MESONET.    

 

Table 2. Distribution of Observed and estimated rainfall into DCS components.  
Constructed using data from 16 days with widespread convection over OK during 
2012.  SCaMPR RH represents SCaMPR with corrections using modeled RH. 
 
Platform Percentage of 

Rainfall in CC 

Percentage of 

Rainfall in SR 

Percentage of 

Rainfall in AC 

Percentage of 

Rainfall in 

Unclassified/Thin 

Anvil Regions 

MESONET 70.48 25.77 2.32 1.43 

Q2 69.41 20.41 6.73 3.45 

SCaMPR 12.23 29.62 33.83 24.32 

SCaMPR  RH 14.67 32.37 32.45 20.51 

 

20.4% of Q2 estimated precipitation fell in SR regions, approximately 5.4% less than what 

was observed by MESONET.  Q2 estimates indicated ~10.1% of precipitation in non-

raincore regions compared to ~3.8% observed by MESONET.  

SCaMPR vs. OK MESONET 

  A similar study has been performed to evaluate the SCaMPR retrievals using 

MESONET observations for the year 2012.  Figure 17 shows the Cumulative Frequency 

Distributions (CFDs) of 24-hr accumulated precipitation from SCaMPR and MESONET 

with a total of 43,852 collocated samples.   
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Figure 17. Same as Figure 11, except for the collocated SCaMPR retrievals and 
MESONET observations for 2012. 
 
The CFD comparison between SCAMPR and MESONET is similar to that between Q2 

and MESONET in Fig. 11 except that the SCaMPR CFD starts below 80%.  Further study 

shows that the first bin (0-2 mm) in SCaMPR retrievals is 10% lower than the counterpart 

of MESONET, indicating that SCaMPR retrievals overestimated precipitation for light rain 

events. For other bins, the SCaMPR percentages are greater than the corresponding 

MESONET percentages.  These percentage differences are almost an order of magnitude 

larger than the Q2 vs. MESONET comparison. 
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          A scatterplot for annual precipitation retrieved by SCaMPR and observed by 

MESONET is presented in Fig. 18 with a modest correlation of 0.567 for a linear 

relationship.   

 

 

Figure 18.  Same as Figure 16, except for the collocated SCaMPR retrievals and 
MESONET observations for 2012. 
 
However, the SCaMPR retrieved precipitation, on average, is about 3.7 times the 

MESONET observations with annual precipitation of 2431 mm for SCaMPR and 662.6 

mm for MESONET.  Nearly 63% of the SCaMPR overestimates across all stations 

occurred from April through June when precipitation primarily came from intense 

convection.  Statewide 24-hour total precipitation comparisons (not shown) between 

SCaMPR retrievals and MESONET observations were consistent with their annual 
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precipitation comparison at each MESONET station.  The mean statewide 24-hr total 

precipitation were 796.8 mm for SCaMPR and 216.9 mm for MESONET, the same ratio 

as their annual precipitation, but with a stronger correlation of 0.678.   

 The precipitation distribution from SCaMPR estimates was significantly different 

from the MESONET observed precipitation distribution as shown in Table 2.  A large dry 

bias occurred in the CC region, where only ~12.2% of SCaMPR estimated precipitation 

fell compared to the ~70.5% observed by MESONET.  However, a significant wet bias 

occurred in the non-raincore regions where SCaMPR estimated precipitation was 58.2% 

versus ~3.8% observed by MESONET.  For the SR region, the SCaMPR estimated 

precipitation percentage was 29.6%, only 3.9% greater than the MESONET observed 

percentage.  Inclusion of RH (relative humidity) corrections into the SCaMPR algorithm 

reduced the amount of precipitation in non raincore regions by ~5.2%. 

                  Comparison of Algorithms 

Table 3. Areal coverage of estimated anvil region precipitation for 16 days with 
widespread convection over OK in 2012.  

Platform Areal Coverage of Anvil Precipitation (km2) 

Q2 1.495 x 106 

SCaMPR 1.417 x 107 

SCaMPR RH 1.186 x 107 

New Algorithm 1.216 x 106 
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 An analysis of 16 days with widespread convection showed that the new 

algorithm using both optical depth and IR BTs estimated the areal coverage of 

precipitating anvil regions to be 1.216 x 106 km2 compared to 1.495 x 106 km2 from Q2 

estimates (Table 3).  As shown in Table 3, both SCaMPR and SCaMPR RH estimates for 

anvil precipitating area for this time period were roughly an order of magnitude larger 

than Q2 estimates.  Although SCaMPR RH did reduce the size of estimated precipitating 

anvil area compared to SCaMPR, SCaMPR RH estimates of precipitating anvil area still 

greatly exceed values observed by ground based radar.   

An example of an individual large DCS contributing to this significant difference 

is shown in Figure 19 where the estimated precipitating area from SCaMPR retrievals is 

~26.4 % larger than that from Q2 estimates.  The new algorithm in the center of Figure 

19 has reduced the SCaMPR overestimate of precipitating area by nearly 22%, and more 

closely resembles the Q2 estimated precipitating area.  The large overestimate or 

precipitating anvil area size by SCaMPR and the significant improvements made by the 

new algorithm during a large DCS as shown in Figure 19 represent a common occurrence 

during this 16 day period of study.   

While most of the differences between algorithms occurred during large DCSs, 

even in smaller DCSs significant differences were present.  Figure 20 represents a 

comparison of the three algorithms as in Figure 19, except for a relatively small DCS.  

Again, the SCaMPR estimate for precipitating area, ~ 22.4%, is greater than that of the 

new algorithm, ~8.7%, and Q2, ~9.6%.    The primary source of precipitating anvil area 



41 
 

   

 

Figure 19.  Q2 Estimated rainfall for the hour ending at 23 UTC 11 May 2011 (a), 
estimated precipitating area for the hour ending 23 UTC 11 May 2011 from the new 
algorithm (b), and SCaMPR estimated rainfall for the hour ending at 23 UTC 11 May 
2011. 

 

overestimation can be seen in southwestern Oklahoma and northern Texas where SCaMPR 

estimates show a broad and roughly circular precipitation shield compared to the smaller, 

and more irregular precipitating areas depicted by the new algorithm and Q2 estimates 

(Figure 20).  

 

Figure 20. Q2 Estimated rainfall for the hour ending at 23 UTC 30 May 2012 (a), 
estimated precipitating area for the hour ending 23 UTC 30 May 2012 from the new 
algorithm (b), and SCaMPR estimated rainfall for the hour ending at 23 UTC 30 May 
2012. 
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CHAPTER IV 

DISCUSSION  

 

 

Despite having a wet bias, Q2 estimates were very strongly correlated with MESONET 

observations, while SCaMPR estimates suffered from a very large wet bias likely due to 

excessive precipitation retrievals from anvil regions of DCSs. Q2 estimates were strongly 

correlated with MESONET observations for 24-hr accumulated precipitation at each 

MESONET station (0.881), statewide 24-hr total precipitation (0.943) and average annual 

precipitation (0.92).  Q2 estimates were consistently higher (~ 35%) than collocated 

MESONET observations regardless of timescale (24-hr vs. annual) and spatial coverage 

(one MESONET station vs. all OK MESONET stations), particularly during the warm 

season when more intense convection occurred.  However, despite these consistent 

overestimates, the distribution of precipitation into the DCS regions from Q2 estimates 

closely matched MESONET observations, particularly in the CC regions.  Slight 

differences occurred in the SR and non-raincore regions, where the tipping bucket 

limitations (0.25 mm) in MESONET observations would create bias favoring SR 

precipitation over non-raincore precipitation.  SCaMPR retrievals were weakly correlated 

to MESONET observations at the 24-hr timescale and modestly correlated at an annual 

timescale.  Regardless of timescale, SCaMPR estimates drastically overestimated 

precipitation compared to MESONET observations as noted in Zhang et al. 2013.  
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Furthermore, the distribution of SCaMPR estimates showed a strong dry bias for raincore 

regions, and a strong wet bias for anvil regions.   

 Although it does not seem sampling errors were significant in this study, sampling 

errors are possible when comparing both the 1-km by 1-km Q2 grid box and 4-km by 4-

km SCaMPR grid box estimates to point observations from MESONET.   For example, 

intense precipitation could occur over part of the grid box where the MESONET station is 

not located, making the gridbox estimate higher than the point observation.  While errors 

such as these are unavoidable for this study and similar studies, with a sufficiently large 

sample size it is anticipated that occurrences where localized precipitation maxima inside 

the grid box missed the point observation or passed directly over the point observation will 

tend to balance one another over time.  Part of this impact is likely apparent in the trend of 

observing stronger correlations between the estimates and observations as the time scale of 

comparison was increased.  While this source of error does not appear to be very significant 

for this study, it could require special attention for studies utilizing much smaller sample 

sizes for comparison. 

Strengths and Weaknesses of Q2 Estimates 

          The strong correlations between Q2 estimates and MESONET observations 

regardless of timescale or spatial coverage make it possible to use Q2 estimates as a 

substitute for surface rain-gauge networks in the studies where finer spatial and temporal 

resolution is needed.  However, the 35% wet bias in Q2 estimates must be considered, 

although it is likely an upper bound of the Q2 estimate errors because rain gauges are prone 
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to underestimate rainfall during intense precipitation events 

(http://www.mesonet.org/index.php/site/about/moisture_measurements).  Furthermore, 

with simple linear relationships between Q2 estimates and MESONET observations, Q2 

estimates could be easily adjusted to better represent ground truth.  However, further 

studies are required to quantitatively determine the Q2 overestimates and the catchment 

errors associated with tipping bucket rain gauges used in the OK MESONET during 

different seasons (Humphrey et al. 1997; Nespor and Sevruk 1999; Sevruk 1985; Steiner 

et al. 1999).   Based on this study, bias-adjusted Q2 estimates in the regions such as the 

Southern Great Plains and Southeast U.S. should be reliable because precipitation is mainly 

in liquid phase and dominated by convective events where the highest correlations between 

Q2 estimates and MESONET observations were found. 

          The primary weakness of Q2 estimates is a discontinuity in precipitation estimates 

depending on available radar coverage.  While Q2 estimates have strong correlations with 

MESONET observations in the regions of good radar coverage, this is not true in the areas 

where radar coverage is less sufficient.  As the base beam height of the available radar 

coverage increased, Q2 estimates shift from overestimates to underestimates compared to 

MEOSNET observations.  This change reduces the correlations from 0.92 for good radar 

coverage to 0.875 for all radar samples as illustrated in Fig. 5.  Although the correlation 

for all radar samples is still strong, caution must be taken because these underestimates 

may mask the tendency of Q2 to overestimate. As the base beam height increases, the 

probability that precipitation will be overshot and therefore underestimated by Q2 also 
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increases.  While the magnitude of this difference is not significantly large in most cases, 

depending on the specific use of Q2 estimates, this factor should be carefully considered 

when using estimates from the regions of poor radar coverage. 

  Evaluation of SCaMPR 

SCaMPR retrievals overestimated precipitation at all MESONET stations for 2012, 

with overestimates of annual precipitation ranging from 1400 mm to 2000 mm (Fig. 18).   

Correlations between SCaMPR retrievals and MESONET observations were relatively low 

on an annual time scale (0.567) and even lower at a 24-hour time scale (Fig. 21).   

 

Figure 21.  Same as Figure 10a, except for SCaMPR retrievals and MESONET 

observations for 2012. 

 
While the direct comparison between the SCaMPR 4km by 4km pixels and point 

observations from MESONET stations may reduce the correlations to some degree, the 

low correlations arise primarily from SCaMPR precipitation retrievals during the following 
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situations.  Quite often SCaMPR retrieved precipitation from the anvil regions of DCSs, 

while the collocated MESONET stations recorded nothing.  This is apparent in Table 2, 

where the majority of SCaMPR estimated precipitation occurred in non-raincore regions.  

These excessive precipitation retrievals from anvil regions are most likely due to the 

limitation of SCaMPR retrievals arising from SCaMPR’s dependence on cloud-top IR 

brightness temperature.  This problem as well as possible cirrus contamination could be 

responsible for the majority of SCaMPR overestimates during DCS events (Zhang et al. 

2013).  Therefore, it is necessary to quantitatively estimate the SCaMPR retrievals (and Q2 

estimates) under different precipitation ranges using collocated MESONET observations 

as a ground truth.  In an unpublished study, we found that there is a much lower incidence 

of false alarms than in this study when comparing the full version of the algorithm using 

SEVIRI data with TRMM data.   This suggests that the SCaMPR algorithm will perform 

significantly better when it is run on the GOES-R Advanced Baseline Imager instead of on 

the current GOES imager. 

Categorical Scores for Q2 and SCaMPR 

          Categorical scores were calculated for both the 24-hr accumulated Q2 precipitation 

estimates and SCaMPR retrievals using thresholds of 0.25 mm, 2.5 mm, 12.5 mm, and 25.0 

mm from MESONET observations.  Probability Of Detection (POD), False Alarm Rate 

(FAR), and Critical Success Index (CSI) were calculated for each of these thresholds.  The 

Q2 categorical scores were computed for two periods: 2010-2012 and 2012 only, while 

SCaMPR retrieval categorical scores were calculated only for 2012 to allow a direct 
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comparison to the Q2 estimates. As shown in Table 4, progressing from the 2.5 mm 

threshold to the 25.0 mm threshold, both POD and CSI of Q2 estimates decreased while 

FAR increased.   

 
Table 4. Categorical scores for SCaMPR retrieved precipitation (2012), Q2 estimates 
(2010-2012), and Q2 Estimates (2012) for 24-hour periods. 
 

Range 

(mm) 

 

Q2 

POD 

(all) 

Q2 

FAR 

(all) 

Q2 CSI 

(all) 

SCaMPR 

POD 

(2012) 

Q2 POD 

(2012) 

SCaMPR 

FAR 

(2012) 

Q2 FAR 

(2012) 

SCaMPR 

CSI(2012) 

Q2 CSI 

(2012) 

≥0.25 0.78 0.37 0.53 0.75 0.83 0.50 0.37 0.53 0.56 

≥2.5 0.85 0.27 0.64 0.81 0.89 0.59 0.24 0.64 0.69 

≥12.5 0.84 0.31 0.61 0.83 0.84 0.72 0.31 0.61 0.61 

≥25.0 0.81 0.40 0.53 0.78 0.80 0.83 0.42 0.53 0.51 

 

This observed trend is consistent with the Wu et al. (2012) results, but the decreased 

magnitudes in POD are significantly different.  In the Wu et al (2012) study the PODs 

dropped significantly as the threshold level increased, while the POD decreased only 0.04 

from 0.85 to 0.81 in this study.  Using 0.25 mm as an additional threshold that was not used 

in the Wu et al. (2012) study, a relatively high FAR of 0.37 for Q2 estimates was observed.  

This relatively large FAR is most likely attributed to very light precipitation that evaporated 

before reaching the ground and occasional ground clutter problems (as demonstrated in 

Fig. 22 caused by beam ducting from temperature inversions (Turton et al 1988).  Figure 

22 represents an example when clear skies were present over OK, but Q2 indicated 

precipitation.   
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Figure 22. An illustration of the ground clutter contribution to Q2 estimated 
precipitation with precipitation starting at 0 mm (left) and 1 mm (right).  At this 
time clear skies were reported over OK.    
 
Although the contribution of Q2 overestimates from ground clutter is quite small (Fig. 22), 

a binary precip/no-precip threshold was used to identify this issue in the FAR and CSI 

scores.     

          The categorical scores for SCaMPR retrievals were consistent with expectations 

based on the large overestimates from precipitation retrievals in non-precipitating regions 

of DCS’s.  FAR increased as the threshold level increased, ranging from 0.50 at the 0.25-

mm threshold to 0.83 at the 25.0-mm threshold.  This increase can be attributed to retrievals 

of heavy precipitation from non-precipitating and lightly precipitating portions of DCSs, 

which cause FAR to increase as the frequency of heavy precipitation estimates drop more 

slowly than actual occurrences of these events.  Although SCaMPR POD scores were high 

and close to Q2 values, FAR scores rose to 0.83 at the 25.0-mm threshold, resulting in 

much lower CSI scores (0.16).  Therefore, it is important to improve the SCaMPR retrieval 
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algorithms in the future, particularly for the conditions that produce high FAR and low CSI 

scores.  

          An analysis of RMSEs for both Q2 and SCaMPR was consistent with expectations 

based on the skill scores and linear regression fits.  As shown in Table 5, both Q2 and 

SCaMPR RMSEs rose as the amount of recorded precipitation increased.  For the 0.25 mm 

to 2.5 mm precipitation bin in Table 5, the SCaMPR RMSE (10.26 mm) is nearly 8 times 

the Q2 RMSE (1.30 mm).  This large difference in RMSE between Q2 and SCaMPR can 

be attributed to SCaMPR precipitation retrievals in non-precipitating regions of DCS’s. 

 
 
Table 5. Root Mean Square Error (RMSE) for 24-hr Q2 and SCaMPR.  The ranges used 

for the calculations are determined from the MESONET observations.  Q2 RMSE is shown 

for all data (2010-2012) and for only 2012 data. 

 
Range (mm) Q2 RMSE (mm) 

(all) 

Q2 RMSE (mm) 

(2012) 

SCaMPR RMSE 

(mm) (2012) 

0 ≤ x < 2.5 1.07 1.30 10.26 

2.5 ≤ x < 12.5 7.09 7.20 36.59 

12.5 ≤ x < 25 11.73 12.82 55.44 

25 ≤ x 21.62 24.27 61.03 

 

As illustrated in Fig. 23, SCaMPR retrieved precipitation over northern MO and eastern 

AR (Fig. 23f) due to cold cloud-top temperature, whereas Q2 estimates (Fig. 23d) and a 

modified SCaMPR algorithm (Fig. 23e) showed nothing over this region.    
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Figure 23. Instantaneous (a) Q2 estimated precipitation rate (mm/hr), (b) GOES-
retrieved cloud optical depth, and (c) IR temperature (K) at 20:45 UTC 25 April 
2011.  Accumulated (d) Q2 estimated rainfall (areal coverage 33.4%), (e) estimated 
rain area (31.1%) from the newly developed algorithm using both cloud optical 
depth and IR brightness temperature, and (f) SCaMPR retrieved rainfall (areal 
coverage 48.3%) over the large domain during 20:00-21:00 UTC 25 April 2011.    
  

   Evaluation of New Algorithm 

 The modified SCaMPR algorithm, employing both cloud optical depth and IR 

brightness temperature, can significantly reduce the spatial extent of the SCaMPR 

estimated precipitation, particularly over the anvil regions of DCSs.  As illustrated in Figs. 

23e and 23f, the SCaMPR precipitation areas were reduced to 31% in the modified version 

from 48% in its original algorithm (IR temperature only).  The new coverage is very close 

to the Q2 estimated precipitation coverage (33%, Fig. 23d).  A more robust comparison 

covering 14 convective events during the MC3E campaign at the ARM SGP site has also 

shown the precipitation area estimated from the modified algorithm (9.64%) is closer to 

the Q2 estimation (12.06%) than that (19.11%) from the SCaMPR original algorithm (Fig. 
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24).  These results during the MC3E campaign were consistent with those shown in Table 

4 during a 16 day evaluation in 2012.     

 Additionally, the distribution of precipitation into DCS components was examined 

for the 16 days with significant convection during 2012.  The new rain mask was applied 

to both SCaMPR and SCaMPR RH, with the results shown in Table 6.  The application of 

the new rain mask to SCaMPR reduced the percentage of total estimated precipitation that 

fell in anvil areas from ~ 57.1% to ~ 32.4% (Table 6).  The majority of SCaMPR estimated 

rainfall now falls in raincore regions with the rain mask applied.  Similar improvements 

were seen when the rain mask was applied to SCaMPR RH, with the percentage of total 

precipitation estimated in anvil regions dropping from ~42.2% to ~ 29.7 % (Table 6). 

 

 

Figure 24. Probability Density Functions (PDF) of rain area percentage using a bin width 

of 10 % during the Midlatitude Continental Convective Clouds Experiment (MC3E) 

campaign (14 days with convection) at the ARM SGP site.  The 0.25 mm threshold was 

used for both Q2 and SCaMPR to determine whether or not a pixel was classified as 

raining. 
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Table 6. Same as table 2 with SCaMPR Mask and SCaMPR Mask RH added.  SCaMPR 
Mask represents SCaMPR with the new algorithm applied to reduce the estimated 
precipitating area.  SCaMPR Mask RH is the same as SCaMPR Mask, except the new 
algorithm is applied to SCaMPR RH output. 

Platform Percentage of 

Rainfall in CC 

Percentage of 

Rainfall in SR 

Percentage of 

Rainfall in AC 

Percentage of 

Rainfall in 

Unclassified/Thin 

Anvil Regions 

MESONET 71.01 24.55 2.46 1.97 

Q2 69.75 24.31 4.46 1.49 

SCaMPR 12.23 30.68 35.21 21.88 

SCaMPR RH 15.46 40.48 31.15 12.91 

SCaMPR Mask 20.78 46.82 29.05 3.36 

SCaMPR Mask RH 21.36 48.95 26.93 2.76 

 

 The results in Table 6 provide quantitative results for how the application of the 

new rain mask impacts the characteristics of SCaMPR retrievals.  For application to both 

SCaMPR and SCaMPR RH, the new rain mask is successful in reducing anvil precipitation 

and creating an overall distribution of precipitation among DCS components that more 

closely resembles the observed distribution.  This new algorithm and its performance will 

be discussed in much greater detail in future work. 
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CHAPTER V 

CONCLUSIONS  

 

 With the immensely better spatial and temporal coverage and resolution compared 

to rain gauge networks, and the strong correlations with gauge observations, Q2 estimates 

can serve as a reasonable substitute for ground truth to validate satellite precipitation 

retrievals in the future as long as the 35% wet bias in Q2 estimates is adequately adjusted 

or accounted for.  Although Q2 estimates were much higher than MESONET observations 

during the warm season, an excellent agreement was reached for the cold season, and there 

were strong correlations in both seasons.  Additionally, the precipitation distribution among 

DCS components from Q2 estimated precipitation strongly resembled the MESONET 

observed distribution.  The similarity of the precipitation distributions indicates that 

although Q2 has a wet bias in this region, it accurately captures the precipitation 

characteristics of DCSs.  Furthermore, with the MESONET stations likely underestimating 

the true precipitation amounts during DCSs, the wet bias calculated for Q2 during this 

study is likely an upper bound.  While these overestimates could be adjusted using the best 

fit linear regression equations, further studies are needed to determine the extent of required 

adjustments. The catchment errors in MESONET observations should be carefully 

analyzed and considered before adjusting Q2 estimates (Sevruk 1985; Nespor and Sevruk 

1999; Humphrey et al. 1997).   
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Minor ground clutter issues were detected, but the contribution of ground clutter to Q2 

precipitation estimates was negligible.  It also seemed that virga could possibly be causing 

Q2 overestimates during light precipitation events, or in cases where no precipitation was 

observed.  Again, this effect was very minor, producing only very small overestimates at 

times.  However, caution should be taken in using Q2 estimates for binary rain/no-rain 

distinction at a threshold value is 0.25 mm if conditions are conducive to producing ground 

clutter such as temperature inversions (Turton et al. 1988).   

          SCaMPR retrievals were much higher than the collocated MESONET observations, 

by a factor of three to four times. The severe overestimates in SCaMPR retrievals were 

primarily caused by precipitation retrievals over the anvil regions of DCSs when collocated 

MESONET stations recorded no precipitation.  This problem is most apparent in the 

precipitation distribution among DCS components where the majority of SCaMPR 

estimated precipitation falls in anvil regions rather than the raincore regions.  These 

precipitation retrieval problems contributed significantly to the high FAR and lower CSI 

for SCaMPR retrievals. The bulk of these overestimates mainly occurred from April 

through June which had frequent intense convective systems.  As POD scores are already 

quite high, reducing the FAR would make SCaMPR a valuable and reliable source of 

precipitation estimates.    

The problem of excessive SCaMPR estimated precipitation rates over the anvil 

regions of DCSs can be corrected by utilizing NMQ Q2 estimates, and GOES cloud optical 

depth and IR temperature retrievals.  A strong optical depth gradient was found between 
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the precipitating and non-precipitating (anvil) regions of DCSs although their cloud-top 

temperatures are nearly the same.   This strong gradient can be used to identify the 

precipitating and non-precipitating regions of a DCS.  A new algorithm that utilizes these 

findings effectively reduced the precipitating area estimated, making significant 

improvements upon the SCaMPR algorithm. While cloud optical depth does appear to 

better capture the spatial features of precipitating areas, IR brightness temperature is still 

superior in providing information about the intensity of precipitation (Fig. 23c).    

Similar studies for other regions of the CONUS should be performed to investigate 

the similarities and differences in precipitation characteristics of DCSs between the SGP 

and other regions.  These studies will provide insights into potential regional similarities 

and differences in DCSs that can be used for algorithm development and forecasting.  With 

the NWS radar network now having dual polarization capabilities, hail cores could also be 

added as a DCS component, possibly allowing further understanding of DCSs. 
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     CHAPTER VI 

FUTURE WORK  

 

 As the new algorithm developed in this study only identifies areas where 

precipitation is occurring, the next step would be assigning precipitation rates to areas 

identified as precipitating.  To assign rates to pixels determined as precipitating, cloud 

top BTs and cloud optical depth will be regressed against Q2 estimated precipitation 

rates.  Precipitation rates for the new algorithm will be derived from this regression 

analysis. 

 While cloud optical depth and cloud top BTs were focused on in this study, other 

cloud microphysical properties such as liquid water path will be examined as possible 

variables to be used in estimating precipitation rates.  Furthermore, model data and recent 

observations of upper level winds, RH, precipitable water, and other relevant 

meteorological variables will be incorporated into the regression analysis to produce an 

estimated rain rate.  Although the foundation of the new algorithm’s estimates will be 

based on data from the GOES satellites, both model data and observations are available 

and can be processed with a short enough latency to be included in this proposed 

operational algorithm. 

 In addition to the increase of meteorological variables to determine estimated 

precipitation rates, topographic impacts will also be incorporated.  As upslope flows 

produce enhanced precipitation and downslope flows can produce precipitation shadows, 
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inclusion of these effects will greatly aid the accuracy of precipitation estimates.  Since 

the topography of the United States is unchanging with respect to the applications of this 

algorithm, specific pixels can be parameterized for anticipated topographic influences on 

precipitation that can in some cases dominate over the other variables used in the 

regression to construct precipitation estimates. 

The limitations of the current algorithm to identify precipitating pixels will also 

be addressed in future studies.  While the current limitations of the retrievals of cloud 

optical depth make the current algorithm reliable only in daylight hours, the newly 

developed VIIRS day-night band (DNB) images are allowing optical depth to be 

retrieved reliably at night using reflected moonlight (Figure 25).  However, while this 

improvement is only possible using polar orbiting satellites, its reliance on moonlight will 

only provide reliable optical depth retrievals less than 50% of nighttime.  Furthermore, 

incorporation of this data from polar orbiters could be problematic in terms of increasing 

latency of a final precipitation product.    Even so, with the additional IR bands on the 

ABI imager on GOES-R, improved nighttime optical depth retrievals may be possible 

resembling those shown in Figure 25. 

  To address the remaining hours during the night, the GOES GLM sensor will be 

used to include lightning data to aid in determining precipitating area.  As lightning 

occurs in both the CC and SR regions of DCSs, flash rates can be substituted into the 
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Figure 25.  VIIRS DNB image of convection provided by the Naval Research Lab in 
Monterey, California. 
 

precipitating area algorithm for optical depth retrievals when optical depth retrievals are 

unavailable.  Flash rates can be used as a rain mask similar to how optical depth is used 

during daylight as lightning is typically most prevalent in precipitating regions of DCSs 

as shown in Figure 26. 
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Figure 26. Simulation of contoured flash count possible with the GOES-R GLM 
superimposed over a GOES IR image. 
Source: http://www.meted.ucar.edu/goes_r/abi 
 
  By utilizing improved nighttime optical depth retrievals and GLM lightning data, it 

appears the algorithm developed in this study can be made reliable for nearly the entire 

day.  Time periods around dusk and dawn may continue to be problematic as difficulty 

with optical depth retrievals during these times will likely persist, and the performance of 

GLM lightning detection is not as strong during daylight hours. 

  In addition to refinement and completion of the algorithm developed in this study 

so that it can become operationally useful, the structure and precipitation characteristics 

of DCSs should be evaluated over different regions on the CONUS.  Tracking codes can 

be used to create an archive of DCSs over the CONUS, allowing the study of these 

systems from initiation through dissipation.  With dual polarization radar technology now 

available throughout the NEXRAD network, hail cores (HC) may be added as a 

classification to go with CC, SR, and AC.  Lifecycle analysis of DCSs over different 

regions may provide information to further improve precipitation estimates, while also 
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providing information potentially useful to forecasters.  Lastly, future studies are needed 

comparing the performance of Q2/Q3 estimates to dual polarization rainfall estimates. 

 

   



61 
 

REFERENCES CITED 

Adler, F. R., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical 

convective and stratiform rainfall. J. Appl. Meteor., 27, 30–51. 

 

Amitai, E., W. Petersen, X. Llort, and S. Vasiloff, 2012: Multiplatform comparisons of rain 

intensity for extreme precipitation events. IEEE Trans. Geosci. Remote Sens., 50, 

675-686. 

 

Andrieu, H., J. D. Creutin, G. Delrieu, and D. Faure, 1997: Use of a weather radar for the 

hydrology of a mountainous area. Part I: Radar measurements interpretation. J. 

Hydrol., 125, 1–25. 

 

Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. 

Mon. Wea. Rev., 115, 1053–1070. 

 

Chen, Sheng, and Coauthors, 2013: Evaluation and Uncertainty Estimation of 

NOAA/NSSL Next-Generation National Mosaic Quantitative Precipitation 

Estimation Product (Q2) over the Continental United States. J. Hydrometeor, 14, 

1308–1322. 

 

Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation 

estimates from satellite observations and numerical models. Bull. Amer. Meteor. 

Soc., 88, 47–64. 

 

Feng, Z., X. Dong, and B. Xi, 2009: A method to merge WSR-88D data with ARM SGP 

millimeter cloud radar data by studying deep convective systems. J. Atmos. Ocean. 

Techn. 26, 958-971. 

 

-----, -----, -----, C. Schumacher, P. Minnis, and M. Khaiyer, 2011: Top-of-atmosphere 

radiation budget of convective core/stratiform rain and anvil clouds from deep 

convective systems, J. Geophys. Res., 116, D23202, doi:10.1029/2011JD016451. 

 

-----, -----, -----, S. McFarlane, A. Kennedy, B. Lin, and P. Minnis, 2012: Life cycle of deep 

convective systems in a Lagrangian Framework. J. Geophys. Res., 117, D23201, 

doi:10.1029/2012JD018362. 

 

Hong, Y., R. F. Adler, A. Negri, and G. J. Huffman, 2007: Flood and landslide applications 

of near real-time satellite rainfall products. Nat. Hazards, 43, 285–294. 

 



62 
 

Huffman, G. J., and coauthors, 2007: The TRMM Multisatellite Precipitation Analysis 

(TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine 

scales.  J. Hydrometeor., 8, 38-55. 

 

Humphrey, M. D., J. D. Istok, J. Y. Lee, J. A. Hevesi, and A. L. Flint, 1997: A new method 

for automated dynamic calibration of tipping-bucket rain gauges. J. Atmos. Ocean. 

Tech., 14, 1513–1519. 

 

Islam, T., Rico-Ramirez, M.A., 2013: An overview of the remote sensing of precipitation 

with polarimetric radar, Progress in Physical Geography. 

  

Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that 

produces global precipitation estimates from passive microwave and infrared data 

at high spatial and temporal resolution.. J. Hydrometeor., 5, 487-503. 

  

Kirstetter, Pierre-Emmanuel, and Coauthors, 2012: Toward a Framework for Systematic 

Error Modeling of Spaceborne Precipitation Radar with NOAA/NSSL Ground 

Radar–Based National Mosaic QPE. J. Hydrometeor, 13, 1285–1300. 

 

Kondragunta, C. R., D. Kitzmiller, D. J. Seo, and K. Shrestha, 2005: Objective integration 

of satellite, rain gauge, and radar precipitation estimates in the multisensor 

precipitation estimator algorithm. Preprints, 19th Conf. on Hydrology, San Diego, 

CA, Amer. Meteor. Soc., P2.8. [Available online at 

https://ams.confex.com/ams/Annual2005/techprogram/paper_86219.htm.] 

 

Krajewski, W., and J. Smith, 2002: Radar hydrology: Rainfall estimation. Adv. Water 

Resour., 25, 1387–1394. 

 

T. Kubota, S. Shige, H. Hashizume, K. Aonashi, N. Takahashi, S. Seto, M. Hirose, Y. N. 

Takayabu, K. Nakagawa, K. Iwanami, T. Ushio, M. Kachi, and K. Okamoto, 2007: 

Global Precipitation Map using Satelliteborne Microwave Radiometers by the 

GSMaP Project : Production and Validation, IEEE Trans. Geosci. Remote Sens., 45 

(7), 2259-2275. 

  

Kuligowski, R. J., 2010: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical 

Basis Document for Rainfall Rate / QPE. DOC / NOAA / NESDIS, 44 pp. 

[Available online at http://www.goes-

r.gov/products/ATBDs/baseline/Hydro_RRQPE_v2.0_no_color.pdf]. 

 

Langston, C., J. Zhang, and K. Howard, 2007: Four-dimensional dynamic radar mosaic. J. 

Atmos. Ocean. Tech., 24, 776–790. 



63 
 

 

Maddox, R., J. Zhang, J. Gourley, and K. Howard, 2002: Weather radar coverage over the 

contiguous United States. Wea. Forecasting, 17, 927–934. 

 

Minnis et al. (2011) CERES Edition-2 cloud property retrievals using TRMM VIRS and 

Terra and Aqua MODIS data, Part II: Examples of average results and 

comparisons with other data. IEEE Trans. Geosci. Remote Sens. 49,4401-4430. 

 

Negri, A. J., and R. F. Adler, 1981: Relationship of satellite-based thunderstorm intensity 

to radar-estimated rainfall. J. Appl. Meteor., 20, 288–300. 

 

Nešpor, V., and B. Sevruk, 1999: Estimation of wind-induced error of rainfall gauge 

measurements using a numerical simulation. J. Atmos. Ocean. Tech., 16, 450–464. 

 

Park, Hyang Suk, A. V. Ryzhkov, D. S. Zrnić, Kyung-Eak Kim, 2009: The Hydrometeor 

Classification Algorithm for the Polarimetric WSR-88D: Description and 

Application to an MCS. Wea. Forecasting, 24, 730–748. 

 

Scofield, R. A., and R. J. Kuligowski, 2003: Status and outlook of operational satellite 

precipitation algorithms for extreme-precipitation events. Wea. Forecasting, 18, 

1037–1051. 

 

Sevruk, B., 1985: Correction of precipitation measurements. Proc. Workshop on the 

Correction of Precipitation Measurements, Zurich, Switzerland, 

WMO/IAHS/ETH, 13–23. 

 

Smith, J. A., D. J. Seo, M. L. Baeck, and M. D. Hudlow, 1996: An intercomparison study 

of NEXRAD precipitation estimates. Water Resour. Res., 32, 2035–2045. 

 

Sorooshian, S., K. Hsu, X. Gao, H.V. Gupta, B. Imam, and D. Braithwaite, 2000: 

Evaluation of PERSIANN system satellite-based estimates of tropical rainfall, Bull. 

Amer. Meteor. Soc., 81, 2035-2046. 

  

Steiner, Matthias, Robert A. Houze, Sandra E. Yuter, 1995: Climatological 

Characterization of Three-Dimensional Storm Structure from Operational Radar 

and Rain Gauge Data. J. Appl. Meteor., 34, 1978–2007. 

 

Steiner, M., J. A. Smith, S. J. Burges, C. V. Alonso, and R. W. Darden, 1999: Effect of 

bias adjustment and rain gauge data quality control on radar rainfall estimation. 

Water Resour. Res., 35, 2487–2503. 

 



64 
 

Turk, F. J., E. E. Ebert, H.-J. Oh, B.-J. Sohn, V. Levizzani, E. A. Smith, and R. Ferraro, 

2013: Validation of an operational global precipitation analysis at short time scales.  

Preprints, 12th Conf. Sat. Met. Ocean., 2003. Amer. Meteor. Soc., CD-ROM, J1.2. 

 

Turton J. D., D. A. Bennetts and S.F.G. Farmer, 1988: An introduction to radio ducting, 

Meteor. Mag., 117, 245-254. 

 

Vicente, G. A., R. A. Scofield, and W. P. Menzel, 1998: The operational GOES infrared 

rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 1883–1898. 

 

Villarini, G., and W. Krajewski, 2010: Review of the different sources of uncertainty in 

single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107–129. 

 

Wilson, James W., Edward A. Brandes, 1979: Radar measurement of rainfall—A 

summary. Bull. Amer. Meteor. Soc., 60, 1048–1058. 

 

Wu, D., X. Dong, B. Xi, Z. Feng, A. Kennedy, G. Mullendore, M. Gilmore, and W-K Tao, 

2013: The impact of various WRF single-moment microphysics parameterizations 

on squall line precipitation. J. Geophys. Res., 118, 19, DOI: 10.1002/jgrd.50798. 

  

Wu, W., D. Kitzmiller, and S. Wu, 2012: Evaluation of radar precipitation estimates from 

the National Mosaic and Multisensor Quantitative Precipitation Estimation System 

and the WSR-88D Precipitation Processing System over the conterminous United 

States. J. Hydrometeor., 13, 1080–1093. 

 

Zhang, J., K. Howard, and J. J. Gourley, 2005: Constructing three- dimensional multiple 

radar reflectivity mosaics: Examples of convective storms and stratiform rain 

echoes. J. Atmos. Ocean. Tech., 22, 30–42. 

 

Zhang, J., and Y. Qi, 2010: A real-time algorithm for the correction of brightband effects 

in radar-derived precipitation estimation. J. Hydrometeor., 11, 1157–1171. 

 

Zhang, J., et al. (2011), National Mosaic and Multi-Sensor OPEN MQ) System: 

Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 1321-1338. 

 

Zhang, Y., D.-J. Seo, D. Kitzmiller, H. Lee, R. J. Kuligowski, D. Kim, and C. R. 

Kondragunta, 2013: Comparative strengths of SCaMPR satellite QPEs with and 

without TRMM ingest versus gridded gauge-only analyses. J. Hydrometeor, 14, 

153–170. 

 



65 
 

Zrnić, Dusan S., Valery M. Melnikov, Alexander V. Ryzhkov, 2006: Correlation 

Coefficients between Horizontally and Vertically Polarized Returns from Ground 

Clutter. J. Atmos. Oceanic Tech., 23, 381–394. 

 

 

  


	University of North Dakota
	UND Scholarly Commons
	January 2014

	Improving Satellite Quantitative Precipitation Estimates By Incorporating Deep Convective Cloud Optical Depth
	Ronald Stenz
	Recommended Citation


	tmp.1558475284.pdf.qIXMM

