
University of North Dakota
UND Scholarly Commons

Theses and Dissertations Theses, Dissertations, and Senior Projects

January 2014

Analysis Of Multi-Platform Mobile Application
Development
Courtney B. Thaden

Follow this and additional works at: https://commons.und.edu/theses

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact
zeineb.yousif@library.und.edu.

Recommended Citation
Thaden, Courtney B., "Analysis Of Multi-Platform Mobile Application Development" (2014). Theses and Dissertations. 1598.
https://commons.und.edu/theses/1598

https://commons.und.edu?utm_source=commons.und.edu%2Ftheses%2F1598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/etds?utm_source=commons.und.edu%2Ftheses%2F1598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses?utm_source=commons.und.edu%2Ftheses%2F1598&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/theses/1598?utm_source=commons.und.edu%2Ftheses%2F1598&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zeineb.yousif@library.und.edu

ANALYSIS OF MULTI-PLATFORM MOBILE APPLICATION DEVELOPMENT

by

Courtney B. Thaden

Bachelor of Science, University of North Dakota, 2010

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

May

2014

ii

Copyright 2014 Courtney B. Thaden

iii

iv

Title Analysis of Multi-Platform Mobile Application Development

Department Electrical Engineering

Degree Master of Science

 In presenting this thesis in partial fulfillment of the requirements for a graduate

degree from the University of North Dakota, I agree that the library of this University

shall make it freely available for inspection. I further agree that permission for extensive

copying for scholarly purposes may be granted by the professor who supervised my

thesis work or, in her absence, by the Chairperson of the department or the dean of the

School of Graduate Studies. It is understood that any copying or publication or other use

of this thesis or part thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of North Dakota in any scholarly use which may be made of any material in

my thesis.

 Courtney B. Thaden

 April 25, 2014

v

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ...x

ACKNOWLEDGEMENTS ... xi

ABSTRACT .. xii

CHAPTER

I. INTRODUCTION ...1

 Introduction ..1

 Statement of the Problem ...1

 Purpose of the Study ..2

 Significance of the Study ...2

 Definition of Terms..3

 Organization of the Study ..6

II. REVIEW OF THE LITERATURE ..7

 Introduction ..7

 Developing Mobile Applications ...7

 Mobile Development Platforms ...9

 Android ..9

 iOS ...14

 Mobile Platform Languages ...16

vi

 Multi-Platform Development Applications17

 Summary ..20

III. RESEARCH METHODS ..22

 Introduction ..22

 Research Methodology ..22

 User Guides and Examples ..23

 Simple Application Design ..23

IV. RESULTS AND ANALYSIS ..25

 Overview ..25

 Pre Development ..26

 MoSync ..27

 Appcelerator ...41

 PhoneGap ...50

V. DISCUSSION ..57

 Summary ..57

 MoSync ..57

 Appcelerator ...58

 PhoneGap ...59

 Limitations ...60

 Conclusions and Recommendations ..60

APPENDICES ...62

A. MoSync HTML5/JS WebUI Template Project ..63

B. MoSync HTML5/JS WebUI Test Application ..67

vii

C. MoSync HTML5/JS NativeUI Template Project ..72

D. MoSync HTML5/JS NativeUI TestApp Application76

E. Titanium TestApp Application ..84

F. Titanium Original app.js File ...97

G. PhoneGap HelloWorld Example Application ..98

H. PhoneGap TestApp Application ..104

I. Corral Correspondence: Permission to Use ..113

J. Gandhewar Correspondence: Permission to Use ...114

K. ACM: License to Use...115

REFERENCES ..119

viii

LIST OF FIGURES

Figure Page

1. Android Architecture ...10

2. Android Programming Framework ..13

3. Required Skill Sets for Mobile OSs ...16

4. Traditional Development Model and Multi-Platform Development Model17

5. Rough Sketch of Test Application ...24

6. MoSync Reload Versus MoSync SDK ..28

7. MoSync IDE Screenshot ..29

8. MoSync Create Your First App ...29

9. MoSync HTML5/JS WebUI Template Project Screenshot ...30

10. MoSync Project Structure Screenshot ...31

11. MoSync iOS Test Application View 1 Screenshot ..33

12. MoSync iOS Test Application View 2 Screenshot ..34

13. MoSync iOS Test Application View 3 Screenshot ..35

14. MoSync Android Test Application View 1 Screenshot ...36

15. MoSync Android Test Application View 2 Screenshot ...37

16. MoSync HTML5/JS Native UI Template Project Screenshot38

17. MoSync Android TestApp Application Screenshot ..40

18. Titanium Studio GUI Screenshot ...43

ix

19. Titanium Project Structure Screenshot ..45

20. Titanium iOS TestApp Application View 1 Screenshot ..47

21. Titanium iOS TestApp Application View 2 Screenshot ..48

22. Titanium Android TestApp Application Screenshot ...50

23. PhoneGap Project Structure Screenshot ..52

24. PhoneGap iOS HelloWorld Example Application Screenshot53

25. PhoneGap iOS TestApp Build Terminal Output Screenshot54

26. PhoneGap iOS TestApp Application View 1 Screenshot ..55

27. PhoneGap iOS TestApp Application View 2 Screenshot ..56

x

LIST OF TABLES

Table Page

1. Potential Tradeoffs of Single Platform Versus Multi-Platform Development18

2. Potential Advantages of Multi-Platform Development ...18

3. Potential Disadvantages of Multi-Platform Development ...19

4. Comparison of Execution Time Between Android Native Application

and PhoneGap Web Application ..20

xi

ACKNOWLEDGEMENTS

 I wish to express my sincere gratitude to my original advisor, the late Dr. Richard

Schultz, who through his vision and hard work sought to create a learning environment to

inspire individuals to reach their potential. I wish to express my appreciation to my

current advisor, Dr. Naima Kaabouch, for her assistance in helping me find a career I

love. Thank you also to my committee members, Dr. Arthur Miles and Dr. Saleh Faruque

for their knowledge, expertise, and friendship.

 Thank you to my mother and siblings respectively, Betsy, Geoffrey, and Sarah

for your understanding and patience throughout this process. I love all of you more than

you will ever know. A special thank you to my mother and Sarah for their constant

encouragement and superb editing skills.

I dedicate this paper to all the strong females in my life, past and present, especially my

mother Betsy, my sister Sarah, and my late grandmother Winnie.

xii

ABSTRACT

 The variety of mobile devices and their operating platforms has rapidly increased.

With this increase come separate standards, programming languages, and distribution

markets. Typically developers want to deliver their products to a variety of users

encompassing various platforms; however choosing to develop using a native program

for a platform can delay the development and release on another platform. Multi-platform

development applications were created in order to deploy applications to various

platforms in a more timely and cost efficient manner by using a single code base.

 The purpose of this study was to investigate the multi-platform development

applications MoSync, Appcelerator, and PhoneGap, create a test application using each

multi-platform development application to run on the Android emulator and iOS

simulator to determine performance, and also determine which multi-platform application

was best suited for allowing a developer to create a mobile application that could be

utilized on a variety of platforms.

1

CHAPTER I

INTRODUCTION

Introduction

 Mobile device application development has increased with the rising number of

smartphones on the market (Boardman, 2012; Tech Terms, 2014). The variety of

smartphone devices is ever expanding, as well as their powerful operating platforms

(Charland & Leroux, 2011). Each platform involves separate standards, programming

languages, and distribution markets (Corral, Sillitti, & Succi, 2012b). Typically

developers want to deliver their products to a variety of users encompassing various

platforms; however choosing to develop using a native program for a platform can delay

the development and release on another platform. Multi-platform development

applications were created in order to deploy applications to various platforms in a more

timely and cost efficient manner, with the principle idea of “develop once, deploy

everywhere” (Blom, Book, Gruhn, Hrushchak, & Köhler, 2008; Corral et al., 2012b).

Statement of the Problem

Studies have shown that many people are turning to multi-platform applications to

develop a mobile application once which can then be deployed on multiple platforms, but

what remains to be shown is which multi-platform development application would be

best. The multi-platform applications were analyzed to determine ease of use and proper

functionality on two target platforms. Determining the answers to these questions may

2

lead to discovering new capabilities and functionalities that are needed within these

applications and may also help developers identify the development application that

could be most efficient to use in the creation of applications for multiple platforms.

Purpose of the Study

 The purpose of this study was to investigate multi-platform development

applications currently on the market used to develop mobile applications. Differences

between mobile application platforms have been studied and documented. Each platform

was unique and possessed different behaviors, capabilities, and features. What remained

to be determined was which multi-platform application would be best suited for allowing

a developer to create a mobile application that could be utilized on a variety of platforms.

Significance of the Study

The analysis of multi-platform development applications could provide a

developer a better understanding of the differences among multi-platform development

applications and may lead to discovering new capabilities and functionalities that are

needed within these applications. It also may assist developers in identifying the most

efficient development application to use when creating applications for multiple

platforms. Analysis and subsequent findings could possibly allow developers to have

more time to focus on improving applications rather than spending their time on slow,

individual platform development. Findings may also reveal areas where existing multi-

platform development applications are lacking, thus allowing for improvements within

multi-platform development applications to be created.

3

Definition of Terms

 The following terms are defined to provide meaning and understanding in relation

to this study:

 Application (Apps): A software program that runs on a computer or mobile device

and most commonly referred to as “apps” (Tech Terms, 2014).

Application Programming Interface (API): A set of commands, function, and

protocols which programmers can use when building software for a specific operating

system. An API allows programmers to use predefined functions to interact with the

operating system instead of writing them from scratch (Tech Terms, 2014).

Closed System: Is licensed computer software carrying a copyright in which the

source code is not made available to the general public. It is also known as proprietary

software or closed source software (Wikipedia, 2014).

Debug: To eliminate software program errors commonly called “bugs” (Tech

Terms, 2014).

Developer: A person or organization that designs and writes software and is often

referred to as an application developer. The term generally refers to designers and

programmers in the commercial software field (PCMag, n.d.).

Event Listener: An interface that is the primary method for handling events within

computer software (W3C, 2003).

Extensible Markup Language (XML): A metalanguage that is used to create

markup languages for specific applications and is used to define documents with a

standard format that can be read by any XML-compatible application (Tech Terms,

2014).

4

Graphical User Interface (GUI): refers to the graphical interface of a computer

that allows users to click and drag objects with a mouse instead of entering text at a

command line (Tech Terms, 2014).

Hybrid App: An application in which some or all of your UI and business logic is

written in HTML, CSS, and JavaScript running within a "native wrapper" such as a

Titanium WebView or PhoneGap container. Hybrid apps have limited access to the

device hardware, though such access varies by mobile operating system and development

framework. Hybrid apps offer app store distribution and operation without a live network

connection (Appcelerator, n.d.).

Interface: An interface can refer to either a hardware interface that connects two

or more electronic devices together or the means in which a person controls a software

application or hardware device (Tech Terms, 2014).

Internet: A communications network consisting of countless networks and

computers that allow people to share information (Tech Terms, 2014).

Model-View-Controller (MVC): A software pattern that divides a given software

application into three interconnected parts for implementing user interfaces (Wikipedia,

2014).

Multi-Platform Application: An application which is developed for multiple

operating systems or platforms. Typically some or all of the user interface and logic is

written in HTML, CSS, and JavaScript running within a “native wrapper.” These

applications have limited access to the device hardware, though such access varies by

mobile operating system and development framework. Sometimes multi-platform

applications are also called hybrid applications (Appcelerator, n.d.; Tech Terms, 2014).

5

Native Application: An application that runs directly on a mobile device and has

access to the hardware features of that device. Typically these applications can be run

without a live network connection (Appcelerator, n.d.).

Open System: Licensed computer software in which the copyright holder makes

the source code available to the public and provides the rights to study, change, and

distribute the software to anyone and for any purpose. Also known as open software

standard or open standard (Wikipedia, 2014).

Operating System (OS): An operating system “OS” is software that communicates

with the hardware and allows other programs to run (Tech Terms, 2014).

Platform: A computer’s operating system that allows the running of certain

software. Platform examples include Windows and MacIntosh operating systems (Tech

Terms, 2014).

Portable Operating System Interface (POSIX): This refers to a family of

standards specified by the IEEE for maintaining compatibility between operating

systems. POSIX defines the application programming interface (API), along with

command line shells and utility interfaces, for software compatibility with variants of

Unix and other operating systems (Wikipedia, 2014).

Smartphone: A smartphone is a mobile phone that includes advanced

functionality beyond making phone calls and sending text messages and may be capable

of running third party applications (Tech Terms, 2014).

SMS: “Short Message Service.” SMS is used to send text messages, typically up

to 160 characters in length, to mobile phones (Tech Terms, 2014).

6

Software Development Kit (SDK): A collection of software used for developing

applications for a specific device or operating system (Tech Terms, 2014).

Tablet: A portable computer that uses a touchscreen as its primary input device

(Tech Terms, 2014).

Web App: A mobile-ready web page accessed from a desktop or mobile browser,

and typically formatted specifically to address the screen sizes and user interaction

expectations of a mobile device. Web apps excel at platform reach, a "no-download"

installation process, and instant application updates for all users. Web apps typically

require a constant network connection (Appcelerator, n.d.).

World Wide Web Consortium (W3C): An international community that develops

open standards to ensure the long-term growth of the Web (W3C, 2012).

Organization of the Study

 This study has been organized in five chapters. Chapter I provides an introduction

to the study, statement of the problem, the purpose of the study, significance of the study,

and definitions of terms. Chapter II provides a literature review regarding the

development of mobile applications, mobile development platforms, mobile platform

languages, and multi-platform application development. Chapter III provides the

methodology and design of the study. Chapter IV provides the results of this study, while

Chapter V provides a conclusion and discussion.

7

CHAPTER II

REVIEW OF THE LITERATURE

Introduction

 Mobile devices use a variety of powerful operating systems or platforms, each of

which involves separate standards, programming languages, and distribution markets

(Corral et al., 2012b). Typically developers want to deliver their products to a variety of

users using various platforms, but choosing to develop for one platform can delay

development and release on another platform (Corral, Janes, & Remencius, 2012a). It can

also be very expensive to develop native applications for each platform as there are

numerous platforms (Corral et al., 2012a). Developers are tasked with having to make the

tough decision of which platform to develop for first, on their list of targeted platforms

(Corral et al., 2012b). These problems, when developing mobile applications, have led to

the growth in creation of multi-platform applications (Holzer & Ondrus, 2011).

Developing Mobile Applications

 Mobile application development has become very popular among people of

varying programming skills (Boardman, 2012). This could be due to the relatively low

cost and short time commitment an application takes to cultivate from the conception of

an idea to readying it for distribution (Boardman, 2012). Novice developers have many

useful resources readily available which allow them to learn the necessary skills while

attempting to develop applications. Some of these resources include: online tutorials,

8

developer forums, and books (Boardman, 2012). Online tutorials and books are offered

for various experience levels ranging from amateur to advanced. Although operating

platforms change quite frequently making it difficult to find a current book containing the

latest version, the changes typically are not drastic enough to make the book obsolete

(Boardman, 2012). Also developer forums should not be overlooked as many questions

that a developer might ask are typically answered on some forum (Boardman, 2012).

 According to Computerworld magazine’s editor in chief, Scot Finnie (2013), the

following are five tips for developing successful mobile applications that developers

should keep in mind:

 1. In order to succeed, a mobile application must solve a problem.

2. Focus on one thing and do it well.

 3. If you build it…nope, they probably won’t come.

 4. Applications need optional user notifications.

5. Don’t force users to run your application instead of visiting the corporate

website. (p. 40).

In regards to tip number one, a mobile application must offer a useful benefit to the user

or people will not use it (Finnie, 2013; Wong, Khong, & Chu, 2012). The mobile

application could be designed to solve a variety of problems, including saving time or

money, entertaining or enlightening, delivering important functionality, or offering a

novel service (Finnie, 2013). Tip number two, Finnie (2013) believes to be the most

important recommendation. It is better to do one thing very well, than to do multiple

things mediocre because going feature crazy could wind up derailing a project

(Finnie, 2013). Tip number three simply means that although a designer may have his or

9

her application in a store available for download, the store is not a direct channel to

everyone and does not guarantee that people will want it, need it, or use it (Finnie, 2013).

Tip number four reminds developers that notifications are not appropriate for all

applications, so use them only as needed (Finnie, 2013). The final tip, number five,

expresses the idea that a mobile application should concentrate on improving the user

experience and utility of the mobile version of the website rather than replace the

corporate website altogether (Finnie, 2013).

Mobile Development Platforms

 Apple’s iOS and Google’s Android™ mobile platforms have been the two front

runners in the mobile market in the past few years, but the two are very different

platforms (Emmanouilidis, Koutsiamanis, & Tasidou, 2013; Sharma, 2011).

Android

 Android, an Apache-free software platform for mobile devices based on Linux,

was launched by Google in 2007 to advance open standards for mobile devices (Gavalas

& Economou, 2011). The openness of Android allows the analysis and understanding of

code which can lead to better feature comprehension, bug fixes, further improvements

regarding new functionalities, and the ability to port to new hardware (Gandhewar &

Sheikh, 2011). An open source software allows for customization to suit specific needs in

different ways, but also allows for collaboration between developers (Proffitt, 2011).

 The Android software stack includes an operating system, middleware, and key

applications. To break it down even further, the Android Architecture, shown in Figure 1,

contains four distinct layers; Linux Kernel, Libraries, Application Framework, and

Applications (Gandhewar & Sheikh, 2011).

10

Figure 1. Android Architecture. (Gandhewar & Sheikh, 2011, p. 13, reprinted with

permission).

 The Linux Kernel, which was built with Linux version 2.6 operating system (OS),

that Android relies on for core system services such as security, memory management,

process management, network stack, and driver model acts as an abstraction layer

between the hardware and the rest of the software stack (Gandhewar & Sheikh, 2011).

For example, the camera driver is found in the Linux Kernel and allows the user to send

commands to the camera hardware (Sharma, 2011).

 The layer above the Linux Kernel is the Libraries (Gandhewar & Sheikh, 2011).

The Libraries layer entails two parts; C/C++ libraries and the Android Runtime

(Gandhewar & Sheikh, 2011). The C/C++ libraries are all written in C and C++ and get

called up through a Java interface (Gandhewar & Sheikh, 2011). Examples of C/C++

11

libraries found in the Libraries layer are the Surface Manager, 2D and 3D graphics,

Media Codecs like MPEG-4 and MP3, media frameworks, accelerometers, the SQL

database SQLite, and the web browser engine WebKit (Gandhewar & Sheikh, 2011;

Sharma, 2011). Within the Android Runtime layer is a set of core Java libraries and the

Dalvik Virtual Machine (VM) (Gandhewar & Sheikh, 2011). The core set of Java

libraries includes a large subset of the Java Standard Edition (SE) 5.0 library, which

allows for reduced migration cost from Java desktop applications (Gavalas & Economou,

2011). The Dalvick VM is a Java byte code interpreter (Sharma, 2011). Previously Java

was a slow platform, but Dalvick was optimized for performance on mobile devices

(Gandhewar & Sheikh, 2011; Sharma, 2011). Some of these optimizations were for low

memory requirements and a register-based VM architecture instead of the typical stack-

based architecture (Gandhewar & Sheikh, 2011). Java applications are compiled in the

Dalvick executable format (.dex) which are more compact and efficient than class files

(Gandhewar & Sheikh, 2011; Gavalas & Economou, 2011). Within the Dalvick VM is

the Java VM Tool Interface (JVM TI), which provides functionalities to inspect the state

of a VM, gather information during runtime, and control the execution of applications

running on the Java VM (Gandhewar & Sheikh, 2011). One advantage Android has with

the use of VMs is that each application is run as its own process in its own VM, so no

application is dependent upon another (Sharma, 2011). This means that if an application

crashes, it should not affect any other application running on the device (Sharma, 2011).

 The next layer is a software framework known as the Application Framework

layer and includes programs that manage the phone’s basic functions (Gandhewar &

Sheikh, 2011; Sharma, 2011). This layer implements a standard structure of an

12

application for a specific operating system (Gandhewar & Sheikh, 2011). The basic

functions of the phone are items such as resource allocation, telephone applications,

switching between processes, and keeping track of the phone’s physical location

(Sharma, 2011). Full access of the Application framework is available to developers in

order to allow the creation of applications using the basic functionalities (Sharma, 2011).

 The Application layer, which is the upper most layer of the Android software

stack, is where core applications are provided (Gandhewar & Sheikh, 2011). These

applications include basic functions of the device such as email, short message service

(SMS), calendar, maps, browser, and accessing contacts (Gandhewar & Sheikh, 2011;

Sharma, 2011). The Java programming language is what all applications are written in for

Android (Gandhewar & Sheikh, 2011). Any application can use any other application in

order to simplify component reuse, subject to security constraints enforced by the

framework (Gavalas & Economou, 2011).

 Anyone developing for Android must understand the programming framework

used. The programming framework for Android, shown in Figure 2, consists of the

Software Development Kit (SDK), the Eclipse Integrated Development Environment

(IDE) and the Java Development Kit (JDK) (Gandhewar & Sheikh, 2011). The Eclipse

IDE must be version 3.2 or later and the JDK must be version 1.6 or later (Gandhewar &

Sheikh, 2011). The JDK must be preinstalled for the installation of the Android SDK and

Eclipse IDE to work (Gandhewar & Sheikh, 2011). A comprehensive set of development

tools including libraries, an emulator, documentation, sample code, a cross assembler,

packaging tool, and debug software are included in the Android SDK (Gandhewar &

Sheikh, 2011). The emulator allows developers to prototype, develop, and test

13

applications without using a physical device (Gandhewar & Sheikh, 2011). The Android

emulator specifically supports Android Virtual Device (AVD) configurations which

allow the specification of the Android API, the hardware options, and skin files to be

used (Gandhewar & Sheikh, 2011).

Figure 2. Android Programming Framework. (Gandhewar & Sheikh, 2011, p. 14,

reprinted with permission).

 Developers must pay a one-time registration fee of $25 before publishing their

first application (Sharma, 2011). Android applications can be acquired from any source,

not just the Android Market (Gandhewar & Sheikh, 2011). However, the Android Market

is an open system, so applications do not have to be approved before being available in

the market to consumers (Boardman, 2012). Some say this open system allows for more

creativity and a better chance for an application to make it to the market (Boardman,

2012). Google has, without explanation, removed some Android applications from the

Android Market which led to some rumored talk of creating a store for “banned apps”

14

(Boardman, 2012, p. 47). The Android platform also takes the standard thirty percent of

application revenues (Sharma, 2011).

 Android has given device makers flexibility in their hardware choices (Proffitt,

2011). There is not one single smartphone or one single tablet that defines Android unlike

Apple with its iPhone and iPad.

iOS

 According to Nicholas C. Zakas’s 2013 article, “The Evolution of Web

Development for Mobile Devices”, published in Communications of the ACM, the

iPhone opened up the “real” Internet to smartphone users (p. 42). Zakas emphasizes this

importance because developers no longer had to write mobile-specific interfaces in

custom languages such as Wireless Application Protocol (WAP) (Zakas, 2013).

 Apple’s default operating system, iOS, was introduced to the market in January,

2007 (iOS, 2014; Sharma, 2011). Originally known as OS X, the name of the operating

system was changed to iOS with the introduction of the iPhone 4 in June, 2010 (iOS,

2014). iOS is created using Apple’s SDK which includes an IDE and is known as XCode

(Dupont, 2012). iOS is derived from Apple’s desktop operating system, Mac OS X, and

is a Unix like operating system (Sharma, 2011). Apple takes a different approach than

Android due to the fact its system is a closed proprietary system with peerless marketing

(Sharma, 2011). Objective-C is the language iOS is written in, which is an object oriented

version of C that uses messages (Dupont, 2012; Sharma, 2011). Kavita Sharma (2011)

described the use of the Objective-C iOS as similar to having every phone call go through

an operator who relays the message to the intended receiver rather than just calling the

intended receiver directly.

15

 There are four distinct abstraction layers within iOS; the Core OS layer, the Core

Services layer, the Media layer, and the Cocoa Touch Layer (Sharma, 2011).

Fundamental interfaces such as those used for accessing files, low-level data types,

Boujour services, and access to POSIX threads and network sockets are found in the Core

OS and Core Services layers (Sharma, 2011). The graphics, audio, video, and animation

technologies which are written in a mixture of C-based and Objective-C based interfaces

are contained in the Media layer of iOS (Sharma, 2011). The final layer, the Cocoa Touch

layer, offers the fundamental infrastructure such as file management, network operations,

and support for collections used by applications (Sharma, 2011).

 There are many reasons people choose to develop for specific platforms, but one

advantage to Apple’s iOS is there is only one operating system for all Apple devices

(Boardman, 2012). People who develop for Apple have the security of knowing as long

as the user has an updated iOS on an Apple device the application will be able to run

(Boardman, 2012). Before the iPhone 5 and iPad Mini, there were only two Apple screen

sizes: the iPhone/iPod and the iPad which meant the developer could develop for one and

recycle most of the code to be used for the other (Boardman, 2012). This meant

developers needed to maintain two separate applications (Boardman, 2012). With the

addition of the iPhone 5 and iPad Mini, two more application screen sizes were added

that need to be maintained. Some developers write and compile an application so that the

application can work well on all screen sizes (Boardman, 2012). The downfall to this is

that the full screen may not be utilized fully on every device. Maintaining one set of code

may be easier for some developers. Developers who use a Windows-based PC face the

obstacle of there being no “official” way to develop applications for iOS on their

16

machines (Boardman, 2012, p. 45). One way around this without having to purchase an

Apple computer is to purchase a Windows-based program that allows development for

iOS (Boardman, 2012). These programs however do not do the compiling of the

application (Boardman, 2012). That would still need to be done on an Apple operating

system (Boardman, 2012). There are companies that allow developers to send in their

code to be compiled and sent back to them for a price, but this could end up being costly

especially if debugging is needed.

Mobile Platform Languages

 The differences between iOS and Android are only a small part of the platform

differences mobile developers face. There are numerous programming languages a

developer would need to know in order to develop native applications for the various

platforms on the market, as seen in Figure 3 (Charland & Leroux, 2011). Each platform

also includes separate families of devices, programming languages, development kits,

and distribution markets (Corral et al., 2012a). This has led many developers to use

multi-platform development applications in the process of creating mobile applications

(Corral et al., 2012a).

Figure 3. Required Skill Sets for Mobile OSs. (Charland & Leroux, 2011, p. 51, reprinted

with permission).

17

Multi-Platform Development Applications

 Multi-platform development applications offer a solution of “develop once,

deploy everywhere” (Blom et al., 2008; Corral et al., 2012b, p. 742). The software life

cycle is significantly shortened with the use of multi-platform development applications

as illustrated in Figure 4 (Corral et al., 2012a). The only item all of the mobile platforms

have in common is that they all ship with a mobile browser that is accessible

programmatically from the native code (Charland & Leroux, 2011). A browser instance

can be instantiated on each platform and interact with its native code through the use of

the JavaScript interface (Charland & Leroux, 2011). There are differences among

browsers, but they are very minimal in comparison to native coding on each platform

(Charland & Leroux, 2011). Developers using multi-platform development applications

can create mobile applications that run in the mobile browser (Corra et al., 2012b). This

would allow the use of common web development programming languages, such as

HTML, CSS, which operate the functionality of the mobile device through a set of

application program interfaces (Corral et al., 2012b).

Figure 4. Traditional Development Model (left); Multi-Platform Development Model

(right). (Corral et al., 2012a, p. 1203, reprinted with permission).

18

Just as developing mobile applications individually on each target platform has

advantages and disadvantages, so too does developing mobile applications using a multi-

platform development application. See Tables 1-3 for an overall summary of trade-offs,

advantages, and disadvantages.

Table 1. Potential Tradeoffs of Single-Platform Versus Multi-Platform Development.

(Corral et al., 2012a, reprinted with permission).

 Single-platform paradigm Multiplatform paradigm

Development Tools Offers native development tools exploiting the

potential of a specific platform

Overcomes the constraint of

utilizing different languages and

frameworks for each platform.

Development Practices Requires mastering the use of diverse

languages, operating systems and development

tools.

Takes advantage of knowledge and

expertise already attained by

programmers.

Development Cycles Requires repeating platform-specific efforts for

each target, for each development cycle.

Develop once, deploy anywhere

User’s Experience Delivers applications with a true native

experience, exploiting all device’s resources.

Do not allow access (or provide

limited access) to some features of

the mobile device.

Application Marketing Bounded to a single application marketplace Applications can be distributed

through a variety of marketplaces.

Table 2. Potential Advantages of Multi-Platform Development. (Corral et al., 2012a,

p.1205, reprinted with permission).

 Software development Application marketing

Customer Users may experience applications

developed for a single platform, compare

and prefer.

Applications availability is not limited to a

single distribution market. Applications

available with more quality, at less price.

Developer Reduces the costs of conducting redundant

activities, receiving training, purchasing

tools.

Allows developers to promote and profit

from different distribution markets.

Platform Provider Platforms may take advantage of

applications originally developed for

another OS.

Promotes competition across platforms.

More quality, less price for their customers.

19

Table 3. Potential Disadvantages of Multi-Platform Development. (Corral et al., 2012a,

p.1205, reprinted with permission).

 Software development Application marketing

Customer Applications do not offer a native user

experience or do not exploit all device’s

capabilities.

Attractive applications from other platforms

will not be available.

Developer Development tools still require

improvements: (limited access to some

features of the mobile device). Deployment

requires platform-specific troubleshooting

and customization.

Introduces the need to upgrade and maintain

applications in diverse marketplaces.

Platform Provider Investment made on research and

development, and company’s best practices

may be involuntarily shared.

Since applications are available in different

operating systems, applications are not a

driver to prefer a platform.

 According to a 2011 article by Andre Charland and Brian LeRoux titled “Mobile

Application Development: Web vs Native”, “the performance argument that native apps

are faster may apply to 3D games or image-processing apps, but there is a negligible or

unnoticeable performance penalty in a well-built business application using Web

technology” (Charland & Leroux, 2011, p. 49). A 2012 study on multi-platform

application performance stated, “The discussion on target-agnostic development on

mobile devices has been covered by works that forecast a promising growth on the use of

the web browser as execution environment” (Corral et al., 2012b, p. 737). However, this

study also found a significant gap in performance between a native mobile Android

application and a multi-platform mobile web application developed using PhoneGap

(Corral et al., 2012b). This study concluded that the web-based implementation was

slower due to an architecture that required invoking methods using at least one callback

and waiting for its response which is only increased with the complexity of the

20

application (Corral et al., 2012b). The results of this performance study can be found in

Table 4.

Table 4. Comparison of Execution Time Between Android Native Application and

PhoneGap Web Application (Corral et al., 2012b, p. 740, reprinted with permission).

Measured Job Arithmetic Mean (milliseconds) Standard Deviation Geometric Mean (relative)

 Native App Web App Native App Web App Native App Web

App

Access to accelerometer 0.7136 2.0021 0.9984 3.0025 1.0000 2.5974

Launch sound notification 18.4835 26.7481 13.3665 47.5036 1.0000 0.6534

Trigger vibrator 1.5134 3.2222 1.2234 4.1248 1.0000 2.2593

Request data from GPS 2.1881 809.2352 6.7244 12.5523 1.0000 528.9298

Request network information 1.1015 1.01419 1.2052 0.6096 1.0000 1.1044

Write a file 4.7146 7.9221 9.2085 6.4558 1.0000 3.3657

Read a file 13.3036 255.7381 13.8829 74.1943 1.0000 29.9005

Retrieve data from contact list 95.8686 1841.4689 13.8747 491.5454 1.0000 18.7518

Summary

 Mobile application development has become very popular with the growing

number of mobile platforms on the market, and not just among experienced developers

but also among novices. Mobile application development can be expensive and time

consuming as developers typically want to deliver their products to a variety of users

using various platforms, but choosing to develop for one platform can delay development

and release on a subsequent platform. The large variety of platforms each involving

separate standards, programming languages, and distribution markets, has led some

developers to turn to multi-platform development applications in the race to create the

next popular mobile application.

21

 Multi-platform development applications are based on the premise, “develop once

and deploy everywhere” (Corral et al., 2012b, p. 742). With this in mind, developers can

focus on which problem their application is solving and how to improve the application

rather than slow individual platform development. However, there are trade-offs such as

performance issues that are now being recognized when switching from native

application development to multi-platform application development.

22

CHAPTER III

RESEARCH METHODS

Introduction

 The purpose of this study was to investigate multi-platform application use for

mobile application development, ease of use, missing capabilities, and proper

functionality on two target platforms; iOS and Android. Chapter III describes the

research methodology and procedures used in the study.

Research Methodology

 Despite the growing number of developers, whether novice or expert, many are

switching from single platform development to multi-platform development applications

(Corral et al., 2012a; Corral et al., 2012b). Limited research was available regarding

distinctions among the various multi-platform development applications and the

developers creating them. Before a developer chooses a multi-platform application for

developing mobile applications, capabilities, features, ease of use, and functionality for

each multi-platform application needed to be identified in order to make the best decision

for his or her needs. Three multi-platform development applications were identified based

on popularity and cost. Investigation into these multi-platform development applications

was conducted by examining user guides and developing a basic test application on each

multi-platform development application for iOS and Android. The test application

outputs were then examined and analyzed.

23

User Guides and Examples

 Each multi-platform development application came with user guides,

documentation, and examples on how to get started. The user guides and documentation

were thoroughly read in order to better understand each multi-platform development

application’s abilities and functions. Examples were run and functionalities tested.

Simple Application Design

 Each multi-platform development application used was analyzed based on

experience of creating a simple application which included but was not limited to reading

through documentation and examples, code portability, application performance, ease of

use, and development time. The simple application was written in HTML, JavaScript, and

CSS. It included five parts: device/platform information displayed at the top, a button that

when pushed played a sound, a button that when pushed changed the background color of

the main screen, an implementation of the game of rock, paper, scissors, and the visual

appearance of a simple submission form that would include input from a user. The idea

for the first three parts of the test application came from an example application in

MoSync in order to fully compare, contrast, and analyze the various multi-platform

development applications. A rough sketch of the test application can be seen in Figure 5.

Each test application was run using the Android emulator and iOS simulator.

24

Figure 5. Rough Sketch of Test Application.

25

CHAPTER IV

RESULTS AND ANALYSIS

Overview

 The purpose of this study was to investigate the multi-platform development

applications MoSync, Appcelerator, and PhoneGap, create a test application using each

multi-platform development application, run the test application on the Android emulator

and iOS simulator to determine performance, and determine which multi-platform

application was best suited for allowing a developer to create a mobile application that

could be utilized on a variety of platforms.

Chapter IV contains descriptive analysis of documentation of MoSync,

Appcelerator, and PhoneGap, components of MoSync, Appcelerator, and PhoneGap, the

test application developed in MoSync, Appcelerator, and PhoneGap, the results of

running the test application on the Android emulator and the iOS simulator, and

documentation of problems encountered.

The following research questions guided the study:

1. Was each multi-platform development application well-documented for ease

of use for any skill level of a developer?

2. What comprised each multi-platform development application?

3. What was the level of difficulty in using each multi-platform development

application?

26

4. Did the test application work as expected on each target platform?

Pre Development

 Three applications, MoSync, Appcelerator, and PhoneGap, were the multi-

platform development applications chosen for this study. Each application was free to

download and use. Although Android applications could only be compiled on a Mac or

Linux, iOS applications could only be locally compiled on a Mac. Thus a 2013 MacBook

Pro with OS X Mountain Lion 10.8.5 was the computer used for development. A

prerequisite to development on any of the multi-platform applications was to download

the target platforms’ SDKs (software development kits). The Android SDK download,

called the SDK ADT (Android Developer Tools) Bundle, included a version of the

Eclipse IDE (integrated development environment) with ADT plugin, Android SDK

Tools, Android Platform-tools, the latest Android platform, and the latest Android

emulator. The SDK ADT Bundle (identified as the October 30, 2013 build) required Mac

OS X 10.5.8 or later and was approximately 3.1 GB in size when installed. The iOS SDK

download was called Xcode and was approximately 6.1 GB in size when installed. Xcode

(version 5.0.1) included the Xcode IDE, LLVM compiler, instruments, iOS simulator,

and the latest OS X and iOS SDKs.

 In order to use the Android emulator, profiles needed to be created within the

Android Virtual Device Manager. These profiles specified the type of device, Android

API Level, CPU, and memory and storage options. A profile also needed to be created

within XCode. The main option to be specified within XCode was the Base SDK to be

used, however, the iOS simulator allowed the device to be changed on the fly as well as

27

the iOS version to be chosen for each device either using version 6 or 7. The devices used

in this study were the iPhone (3.5-inch) and iPhone Retina (4-inch).

MoSync

 The first multi-platform development application used was MoSync and was

located online at www.mosync.com. MoSync’s website offered two free open source

tools for building cross platform mobile applications; MoSync Reload and MoSync SDK.

According to MoSync’s website, “MoSync Reload is targeted exclusively at

HTML5/JavaScript development, while the SDK is targeted at both C/C++ and

HTML5/JavaScript development” (MoSync, 2013c). It also highlighted the fact that SDK

would produce native applications for multiple platforms and contained the Eclipse-based

MoSync IDE. The SDK could target up to nine platforms, using one single code base.

Figure 6 highlights the capabilities of MoSync Reload compared to MoSync SDK. Based

on the capabilities outlined in Figure 6 MoSync Reload versus MoSync SDK, the

MoSync SDK could do everything MoSync Reload could do plus it possessed additional

capabilities. For this reason, the MoSync SDK was the chosen tool within MoSync.

The MoSync SDK was downloaded after creating a user account on the MoSync website.

The version 3.3.1 MoSync SDK took approximately 459 MB of disk space when

installed. The MoSync IDE layout can be seen in Figure 7. There was a project explorer

window on the left, code editor in the center, target profiles to the right, and console

output at the bottom of the MoSync IDE. The code editor did not offer error detection or

code completion. At the top of the IDE there was a set of buttons for building a project,

28

Figure 6. MoSync Reload Versus MoSync SDK. (MoSync, 2013c).

choosing a target simulator/emulator, and launching a project in the selected target.

MoSync required the user to create and manage run configurations within its IDE, in

addition to the normal emulator/simulator setup within the target SDKs. If there were

errors in the code there was no way to easily identify where the error occurred due to the

fact that the emulator/simulator screen within the application simply shown black.

 MoSync’s webpage offered links to user guides, JavaScript and C/C++ API

references, forums, an issue tracker, GitHub repositories, example applications, and

videos. As seen in Figure 8 Create Your First App, found on the main developer webpage

of the MoSync website, MoSync offered a starting point for developers to become

familiar with MoSync.

29

Figure 7. MoSync IDE Screenshot.

Figure 8. MoSync Create Your First App. (MoSync, 2013a).

 The JavaScript directions were used to create a new project. By following the

directions and with the use of the HTML5/JS WebUI project template, the project was

permitted to be built and allowed to run on a target platform. No extra code was added.

The results of running the application on the Android emulator as an Android 4.4 (API

level 19) device are shown in Figure 9.

30

Figure 9. MoSync HTML5/JS WebUI Template Project Screenshot.

 Building from the example provided, the test application project called Test was

developed in the same manner. The chosen target profiles were Android and iOS. The

project structure is shown in Figure 10. The LocalFiles folder contained the JavaScript

and HTML5 files for the project. The code files that were changed and added for the Test

application are presented in Appendix B, while Appendix A shows the original files

before they were edited (HTML5/JS WebUI Template Project). The script.js, style.css,

and fail.mp3 files were added to the Test application project through the course of

development. The script.js file contained the code for the comparison made in order to

determine a winner for the rock, paper, scissors game. The wormhole.js file was

31

automatically included by MoSync and was part of the MoSync Wormhole Library. This

library contained two parts; the JavaScript API and the C/C++ API. The MoSync

Wormhole JavaScript Library gave access from the HTML5 application to the native user

interface components and hardware of the device. The index.html file was the main file to

which the developer would add code. The code added was in HTML5 and JavaScript and

contained the elements of the application. The style.css file gave the specific style to the

elements. The main.cpp file contained the main function that was called when the

program started. The Resources folder contained any media files used within the

application.

Figure 10. MoSync Project Structure Screenshot.

 Device profiles were created within the MoSync IDE in order to build and run the

application on the iOS simulator and Android emulator. MoSync automatically started

the Android emulator without any Android software being opened when that device type

32

was selected for the target. However the iOS simulator did not act in a similar manner.

XCode and MoSync did not work well together. XCode needed to be open in order to

install and launch the test application in the iOS simulator. This however did not

guarantee the application would install properly on the iOS simulator. After the

application performed properly a few times on the iOS simulator, MoSync began to give

a console error every time any application was targeted for the iOS simulator. The

console error read “iOS simulator failed to install the application.” Many forums were

searched and it was discovered many developers had the same problem not specific to

MoSync, but to XCode. There were various fixes people had insisted worked to fix their

problems, but there were still many people that had no solution and believed it to be a

bug of XCode. The only fix that temporarily worked for the MoSync Test application

was to uninstall and reinstall XCode. This was only a temporary fix though as after a few

times of the iOS simulator working successfully, it again returned the same console error

continuously when iOS was the target. The few times that the iOS simulator was

working, screen shots of the application were taken. Android screen shots were also

captured.

 Figure 11 shows the Test application as it appeared on the iOS simulator as the

iPhone (3.5-inch). The application was longer than the screen but it was scrollable, so the

rest could be easily seen. The initial background color started out as white until the

change color button was pressed which then changed the background color to a randomly

selected color.

33

Figure 11. MoSync iOS Test Application View 1 Screenshot.

 Figure 12 shows the Test application as it appears on the iOS simulator as the

iPhone (3.5-inch). The application was displaying the alert that appeared after playing the

rock button in the game of rock, paper, scissors.

 Figure 13 shows the Test application as it appears on the iOS simulator as the

iPhone (3.5-inch). The application was scrolled down to show the simple submission

form. The submission form was not fully coded to send the results anywhere. That would

need to be added if this was an application that was going to be released and published.

34

Figure 12. MoSync iOS Test Application View 2 Screenshot.

 Figure 14 shows the Test application as it appears on the Android emulator as an

Android 4.4 (API level 19) device. The application was displayed as it would appear

when it initially opened. The entire application fit within the screen.

 Figure 15 shows the Test application as it appears on the Android emulator as an

Android 4.4 (API level 19) device. The application was displaying the alert that appeared

after playing the scissors button in the game of rock, paper, scissors.

35

Figure 13. MoSync iOS Test Application View 3 Screenshot.

After further investigation of MoSync it was discovered that although the first

sentence within Figure 8 leads a developer to believe the directions described how to

build your first “native app” in JavaScript, in reality the application being created was

closer to being a web application and not necessarily a native application. According to

the MoSync (2013b) website, the definitions for the types of projects that could be

created are listed as follows:

36

Figure 14. MoSync Android Test Application View 1 Screenshot.

HTML5/JS WebUI Project - Gives you an app with the user interface in

HTML/CSS, set up with libraries for accessing device functionality from

JavaScript.

HTML5/JS NativeUI Project - Gives you an app with a native user interface,

written in HTML/JavaScript, set up with libraries for accessing device

functionality from JavaScript.

37

Figure 15. MoSync Android Test Application View 2 Screenshot.

HTML5/JS/C++ Hybrid Project - This is like the HTML5/JS WebUI template

app, but it is set up to show you how to extend your app with code written in

C/C++ (MoSync, 2013b).

Noting the difference in the definition between the MoSync WebUI Project and

the MoSync NativeUI Project, the HTML5/JS NativeUI Project template was built and

run without any extra added code. Figure 16 shows the result of running on the Android

emulator as an Android 4.4 (API level 19) device.

38

Figure 16. MoSync HTML5/JS NativeUI Template Project Screenshot.

 The test application was then built using the MoSync HTML5/JS NativeUI

Project template with the project name of TestApp. The project structure was the same as

the WebUI project. The code files that changed are presented in Appendix D, while

Appendix C shows the original files before the code was edited (HTML5/JS NativeUI

Template Project).

The NativeUI application used widgets which contained HTML markups and

JavaScript. Within the MoSync JavaScript API document there were descriptions of

native user interface widgets that could be used. These widgets allowed a developer to

create common components found in applications such as screens, buttons, images,

39

labels, etc. and use the predefined property attributes to personalize each. There was a big

gap in the documentation as it was missing values that each property attribute would

accept and recognize. Through a web search a more detailed document for MoSync 3.3

was found at the MoSync website. The document gave details on values for property

attributes, but the widgets were defined using names that were slightly different than the

ones found in the MoSync JavaScript API due to it being the MoSync C/C++ API. The

various types of documentation MoSync offered on its website were very basic and

missing many important details. There were links to pages that were buried very deep

within the website which made it hard to navigate through the documentation.

The TestApp project replicated the look of the Test project, but instead of a

submission form which required a web connection to send, it was replaced with a game

that allowed the user to choose pieces of an outfit for a monkey named Jack. Buttons

allowed the user to place items on Jack one at a time. The items included were a suit, hat,

and bow tie. These image files were added to the project. In order to implement the

buttons, event listeners were required to make an image appear on the screen when the

corresponding button was clicked. There was also a reset button that would place Jack

back in his undressed state. In order to set each item of clothing to the correct location in

relation to Jack, it was first necessary to define each image to appear right away in the

development process. Next the event listener needed to be implemented to allow the

buttons to make the images appear. Many various methods were attempted in order to try

and implement this, but it was to no avail. One of the attempted implementations required

setting the event listener to create the image upon a button click. The second attempt

required the image to be defined initially but setting the image path property to be empty

40

and upon a button click setting the image path property to the appropriate image. The

problems with the documentation resulted in not being able to properly implement these

buttons. The images for Jack’s clothing were defaulted to appear upon the application

opening due to the button difficulties. The result of the TestApp project can be seen in

Figure 17 which was run on the Android emulator as an Android 4.4 (API level 19)

device. The iOS simulator again would not work even after uninstalling and reinstalling

XCode.

Figure 17. MoSync Android TestApp Application Screenshot.

MoSync IDE did offer a C/C++ debugger and JavaScript debugger. The build

configuration needed to be set to “Debug” and the debug runtime needed to be used. The

41

debugger allowed hit counts and breakpoint conditions to be set that enabled a developer

to stop program execution at a specific line number, stop program execution after a script

loaded, or suspend a script whenever an exception was thrown in the code. The MoSync

IDE layout would change to a debug layout that allowed the developer to view variable

values in real time, stepping into, over, and returning to code lines, suspending execution,

and terminating execution. Some common JavaScript debugger troubleshooting issues

were noted on MoSync’s website such as: making sure if a real device was being tested

with the debugger that the device was connected to the same network as the debug server,

reloading the program if the debugger was hanging because sometimes the client and

server would end up out of sync, and reloading the program if an error dialog said the

session had timed out because the IDE would time out and lose its connection after half a

minute or so. MoSync also noted that due to the single thread nature of JavaScript, that

when stepping into, over, and returning to a line of code, sometimes the debugger would

end up in a completely different place especially for timed executions triggered by the

JavaScript setTimeout function. MoSync claimed that issue happened rarely, but they

planned to fix it in a future release of the MoSync JavaScript On-Device Debugger.

Appcelerator

 Appcelerator, the second multi-platform development application used in this

project, was accessed from www.appcelerator.com. Appcelerator offered two platforms

known as the Appcelerator Platform and Appcelerator Titanium. The fee based

Appcelerator Platform, according to the Appcelerator website, “supports the entire

mobile lifecycle along with commercial support, service level agreements and technical

training,” (Appcelerator, n.d.a) whereas Titanium was free, and was “primarily a solution

42

for the development of mobile applications” (Appcelerator, n.d.d). The Titanium SDK

was an “open source JavaScript-based development environment” that offered over 5000

device and mobile operating system APIs, Studio, a powerful Eclipse-based IDE, Alloy,

an MVC Framework and Cloud Services (Appcelerator, n.d.e). Titanium SDK could be

used to create “beautiful native apps across different mobile devices and OSs including

iOS, Android, and BlackBerry, as well as hybrid and HTML5” (Appcelerator, n.d.e).

 The native applications, according to the website, were to behave like they were

written in Objective C for iPhone and iPad or Java for Android phones and tablets with

60% - 90% code reuse. This would allow “applications to be built faster and at a lower

cost than any other environment.” (Appcelerator, n.d.e). It was also emphasized that

Titanium was not a “write once, run everywhere” cross platform development tool

(Appcelerator, n.d.c). Instead it was a “write once, adapt everywhere” cross platform

development tool (Appcelerator, n.d.c).

 Developers who used Titanium were supposed to “accept and embrace platform

differences” (Appcelerator, n.d.c). An example given by the company regarding platform

differences stated Android application tabs were typically found at the top of the screen

whereas iOS tabs were typically found at the bottom of the screen. The company kept

these kinds of specificities in mind when creating Titanium. They employed these

differences by utilizing “if else statements” based upon the operating system name.

 Titanium SDK was downloaded after a user account was established. The account

was free and allowed Appcelerator to identify their customers and send updates and

product information to them. The Titanium SDK version 3.1.3.GA took approximately

222 MB of disk space when installed. Titanium Studio could then be opened and easily

43

used. The graphical user interface’s (GUI) main window was the code editor and

included code completion as well as error notation if there was an error in a line of code.

The breakdown of the project’s folders and files were located in the left window called

App Explorer. At the top of the App Explorer window were buttons that allowed the

project to be built and run on the selected target which included emulators/simulators as

well as actual devices. When running an application in the emulator/simulator if there

was an error that was not identified in the code editor such as an undefined variable, the

emulator/simulator displayed an error screen which referenced the undefined variable or

error. Titanium Studio also let the user know when there were available software updates

via a pale yellow box in the lower right of the main screen. See Figure 18.

Figure 18. Titanium Studio GUI Screenshot.

44

 Appcelerator had many Titanium resources on its website to enable a developer of

any caliber to progress with building applications. There was a vast array of

documentation on everything from the basics of getting started in Titanium, installation

and configuration guides, API documentation with example code, GitHub repositories,

and videos on best practices to more advanced topics. It was noted that Titanium did not

have checkboxes but there was a work around. The work around included using a button

with an event listener based on clicking that determined when to switch between

displaying an unchecked box image and a checked box image. There were also many

sample applications that could be imported into Titanium Studio. Developers could build

off of these samples or use them to better understand how Titanium worked, although

some samples did not use best coding practices according to one of the Titanium videos.

Titanium also offered a variety of templates from which a project could be started.

 Using Titanium Studio a test application called TestApp was created. The mobile

project template chosen was a single window application with a single view. The

deployment targets selected were iPhone and Android. Although Mobile Web was also a

choice for a deployment target and would have created a web application, it was not

selected as a deployment target. The single window application with a single view

template without any code added did not install an application in an emulator/simulator.

After the project was created, the base folders and files were created. See Figure 19 for

the project structure. The TestApp application code that was changed or added is

presented in Appendix E.

45

Figure 19. Titanium Project Structure Screenshot.

 The i18n folder contained xml files for the languages the application should be

available in, such as English, Spanish, etc. The Resources folder was the main folder that

46

contained the application contents. Within the Resources folder there was a file called

app.js, a folder for each deployment target, and a ui folder which was the user interface

folder. The app.js file was a basic starting point for the application. It set up the

application window. Within the ui folder there were three folders; common, handheld,

and tablet. The common folder contained files for creating “Views.” “Views” were

similar to divisions in HTML and basically was a way to define a section of the

application window. The template started with only the FirstView.js file as a starting

point. Within the TestApp application project, the FirstView.js contained the code that

created the change color button. SecondView.js contained the code that created the fail

noise button. The rock, paper, scissors game code was contained within ThirdView.js,

while the code to compare the user’s selection to that of the computer was found in rps.js.

The platform information code was contained in FourthView.js and the monkey outfit

code was found in FifthView.js. Each view file contained a statement “module.exports =

<filename>” at the bottom which allowed the code in each file to be pulled into the

ApplicationWindow.js file found in the handheld folder.

 The ApplicationWindow.js file defined the main application window; the order in

which the view files were listed was the order in which they would be displayed in the

application. There was also an ApplicationWindow.js file within the Android folder

inside the handheld folder. This file was used to define anything specific to only Android

for the application window. The tablet folder was the remaining folder found in the ui

folder. It defined ApplicationWindow.js specific to tablets. The images folder was added

to hold the image files such as the monkey and the parts of his outfit. The etc folder was

also added and contained the mp3 file used for the fail noise button.

47

 The only code language used in the Titanium native application by the developer

was JavaScript. Through tutorial videos and testing, it was discovered that the iOS

simulator took far less time to load applications than the Android emulator when using

Titanium. Although the iOS simulator would not work consistently using MoSync, there

were no problems running it using Titanium. The output for the TestApp application run

on the iOS simulator as the iPhone (3.5-inch) can be seen in Figure 20. All functionality

worked in the application using Titanium. Titanium applications do not default to being

scrollable. They do, however, have code that can be added to employ the scroll ability.

The TestApp application did not include this code.

Figure 20. Titanium iOS TestApp Application View 1 Screenshot.

48

The output for the TestApp application run on the iOS simulator as the iPhone

Retina (4.0-inch) can be seen in Figure 21. All of the application fit into this screen.

Figure 21. Titanium iOS TestApp Application View 2 Screenshot.

The result of the TestApp project can be seen in Figure 22 which was run on the

Android emulator as an Android 4.4 (API level 19) device. Without looking at the code,

one may think the application did not display correctly on Android. But there was a

reason the Titanium project created a separate ApplicationWindow.js file in the Android

folder within the handheld folder. In the TestApp project, the app.js file was changed to

make the ApplicationWindow.js file that was used, to always be the one found in the

49

handheld folder. This was done purposely in order to show what would happen if a

developer chose to not utilize the ApplicationWindow.js file in the android folder within

the handheld folder. There were certain objects within Titanium’s documentation that had

properties that were defined differently for Android when compared to other platforms.

In order to make the Android application appear similar to the iOS TestApp application,

some of the files would have to be rewritten to have the Android specificities and saved

under the Android folder. Then the ApplicationWindow.js file in the Android folder

within the handheld folder would need to bring in those specific files. In making their

multi-platform application in this manner, Titanium allowed the developer to still code in

JavaScript, but use objects native to Android. The original app.js file that the project

created before changes were made can be seen in Appendix F.

Appcelerator offered a specific set of documents geared towards maximum code

reuse for the differences between Android and iOS by creating what they called “best of

breed apps” (Appcelerator, n.d.b). In fact, this set of documents called “Cross-Platform

Mobile Development in Titanium”, claimed that it was not uncommon to reuse 80-100%

of the developer’s user interface code (Appcelerator, n.d.c).

 Similar to MoSync IDE, Titanium Studio GUI offered a debugger that included a

debug perspective, the ability to set manual and exception breakpoints, the ability to step

through code, a variables view in real time, a console that output error messages, and a

build log. The Titanium Studio GUI also needed to be changed to debug mode in order to

be used.

50

Figure 22. Titanium Android TestApp Application Screenshot.

PhoneGap

The third multi-platform application utilized was PhoneGap which was located at

www.phonegap.com. PhoneGap’s website asserts, “PhoneGap is a free and open source

framework that allows you to create mobile apps using standardized web APIs for the

platforms you care about” (PhoneGap, 2014b). PhoneGap used “standard web

technologies such as HTML, CSS, and JavaScript” (PhoneGap, 2014c). Applications

built with PhoneGap are executed in wrappers and accessed device’s sensors, data, and

network status through standardized API bindings (PhoneGap, 2014c). PhoneGap strictly

builds web applications. PhoneGap also offered PhoneGap Build, which was a web

51

service that compiled PhoneGap applications remotely for a developer (PhoneGap,

2014d). This option allowed a developer to not have to install and maintain several

mobile platform SDKs (PhoneGap, 2014d). PhoneGap Build was not used in this project.

PhoneGap did not include a GUI. It was strictly a command line interface. The

Terminal application on the MacBook was used for this purpose. The command “sudo

npm install –g phonegap” was used to install PhoneGap 3.1.0-0.15.0. Application files

for the example HelloWorld application were created inside a folder called hello using

the command “phonegap create hello com.example.hello HelloWorld” (PhoneGap,

2014a). The command used to create a project other than the example was “phonegap

build <folderName>” where folderName is the folder name of the project. The project

folder name for the TestApp application was TestApp. This TestApp folder contained the

same files that were in the HelloWorld application. The PhoneGap project structure is

located in Figure 23.The HelloWorld application had a logo image file in the img folder.

This was replaced with the fail.mp3 file for the TestApp application. The config.xml file

complied with the World Wide Web Consortium’s (W3C) Packaged Web App, or widget

specification and provided application information and parameters (PhoneGap, 2014c).

The index.html file contained the HTML code for the application. The index.css file

contained the CSS style code properties for the HTML. API bindings were found in the

phonegap.js file. The index.js file contained the JavaScript code for the application. A

developer was required to make changes to the following files: the config.xml,

index.html, index.css, and index.js files. These files from the HelloWorld application are

presented in Appendix G. The TestApp application files were edited in a text editor and

are presented in Appendix H.

52

Figure 23. PhoneGap Project Structure Screenshot.

In order to build an application, the build command needed to be run while in the

project’s directory (PhoneGap, 2014c). The build command was “phonegap build

<platform>” where platform was the targeted platform (PhoneGap, 2014c). The iOS

version of the HelloWorld application built with no errors. The Android version however

would not compile. The directions for building Android applications required the location

of the Android SDK platform-tools folder and tools folder to be added to the PATH

environment variable (PhoneGap, 2014a). This was done successfully. When the build

command was entered an error appeared that said the local copy of the Android SDK

could not be found. After much troubleshooting and searching PhoneGap documentation

as well as forums, it was determined that many other developers also had this problem.

The issue may have been a bug in the PhoneGap version used. The build command

worked for iOS and iOS ended up being the only platform used with PhoneGap. The

53

PhoneGap install command “phonegap install <platform>” where platform was the

targeted platform, was used to install the application on the emulator/simulator if a device

was not present (PhoneGap, 2014c). The build and install commands were implemented

in a row by using the PhoneGap run command “phonegap run <platform>” where

platform was target platform (PhoneGap, 2014c). The result of the HelloWorld example

application being run on the iOS simulator as an iPhone Retina (4.5-inch) can be seen in

Figure 24.

Figure 24. PhoneGap iOS HelloWorld Example Application Screenshot.

54

 The TestApp application successfully built and installed on the iOS platform. The

Terminal output from using the run command can be seen in Figure 25.

Figure 25. PhoneGap iOS Build Terminal Output Screenshot.

The PhoneGap projects defaulted to scrollable. The result of running the TestApp

application as it appears on the iPhone simulator as an iPhone Retina (4.5-inch) can be

seen in Figures 26 and 27.

 PhoneGap was based on Apache’s Cordova™ program (PhoneGap, 2014c) and

the documentation was confusing due to the fact that some of it still included references

only to Cordova and the rest contained a mixture of Cordova and PhoneGap. This issue

led to the PhoneGapTestApp application code being added to the project, to not include

PhoneGap or Cordova specific code. Anything added to the project included HTML5,

JavaScript, and CSS code found in some of the other multi-platform development

applications test applications. It was determined that most developers searching for a

multi-platform development application would not have wasted any more of their time

with PhoneGap, due to the major issues this development application created.

55

Figure 26. PhoneGap iOS TestApp Application View 1 Screenshot.

56

Figure 27. PhoneGap iOS TestApp Application View 2 Screenshot.

57

CHAPTER V

DISCUSSION

Summary

 The purpose of this study was to investigate the multi-platform development

applications, create a test application using each multi-platform development application,

run the test application on the Android emulator and iOS simulator to determine

performance, and determine which multi-platform application was best suited for

allowing a developer to create a mobile application that could be utilized on a variety of

platforms. Differences were investigated in regard to capabilities, features, ease of use,

and functionality of each development application. The analysis of this study was

determined using MoSync, Appcelerator, and PhoneGap.

MoSync

MoSync’s SDK documentation with regard to the JavaScript side was lacking

important details and therefore would cause a developer of any level to struggle. The lack

of important details took away from the ability of a developer to completely utilize and

customize the properties of components and objects within an application. MoSync SDK

included an IDE that needed some updates to become more user-friendly and be of

benefit to developers. Suggested updates could include but are not limited to code

autocomplete and error detection within the code editor, error descriptions that appear on

the emulator/simulator when there is an error running the application such as an

58

undefined variable, the ability to create web applications and native user interface

applications within one project, and the launching of the iOS simulator working

consistently. The IDE also included a built-in debugger. Parts of the native user interface

test application did not work correctly which could be blamed on the lack of details in the

documentation. The level of difficulty in using the MoSync SDK to build multi-platform

applications using JavaScript was enough to make it not worth using unless the developer

was very experienced. If improvements in documentation and the IDE were made, a

novice developer could potentially create a native user interface multi-platform

application with little to no problems. Although this study did not include using the

MoSync SDK to create multi-platform applications using strictly C/C++, the level of

complexity involved in C/C++ concepts would require the developer to be experienced in

this language. MoSync also offered the MoSync Reload program, which had a smaller

number of capabilities than MoSync SDK. Although this program was not used in this

study, the documentation led me to believe it was geared toward novice developers.

Appcelerator

Appcelerator Titanium had vast amounts of documentation for all levels of

developers. Titanium included Titanium Studio which was the GUI and had the

functionalities experienced developers appreciate and novice developers need. These

functionalities included a built-in debugger, code autocomplete, error detection within the

code editor, error descriptions that appear on the emulator/simulator when there was an

error running the application, and native applications and web applications that could be

built using one project. Titanium only used JavaScript and one single code base that still

utilized platform differences and for these reasons a novice developer could easily use

59

Titanium. The test application worked as expected on both the iOS and Android

platforms. After initially setting up my user account within Appcelerator, I was leery

about using Titanium due to emails that included misspellings which when done in code

could cause annoying errors. After using Titanium, I would rank it number one among

the three multi-platform development applications and recommend it to any level of

developer.

PhoneGap

 PhoneGap was based on Apache’s Cordova™ program and the documentation

was confusing due to the fact that some of it still included references only to Cordova and

the rest contained a mixture of Cordova and PhoneGap. PhoneGap did not include a GUI

of any kind. It strictly used the command line interface. The documentation did include

PhoneGap specific commands and some basic commands. Minimal APIs were included

in PhoneGap but additional APIs needed for projects were included through plugins.

PhoneGap did include a debugger plugin, but encouraged developers to utilize debuggers

built in to the platform’s native SDK. Web applications were the only type of application

that could be created, although PhoneGap offered plugins that could be used to store

information and files locally so the application could function even when a network

connection was not available. PhoneGap used HTML5, JavaScript, CSS, and XML. The

test application functionality on iOS did not work as expected although that was due to

PhoneGap specific code being omitted. PhoneGap did not recognize the Android SDK as

being installed even though all directions were followed to install the platform. This

resulted in the inability of running the test application in the Android emulator. Due to

the documentation problems, use of the command line interface, and problems installing

60

the Android platform a developer would need to be experienced to build applications

using PhoneGap. However if the problems were fixed and the documentation included

more of the basic commands used for the command line interface, a relatively

inexperienced developer could potentially be successful creating a multi-platform web

application.

Limitations

 Limitations of this study included three free popular multi-platform development

applications that used web development languages and the lack of publicly available

standards for developing and testing mobile applications (Dye & Scarfone, 2014). This

study did not encompass multi-platform development applications that were fee based;

used languages other than web development languages or those less popular. The first

publicly available development and testing mobile application standard was published by

the United States Department of Defense in an attempt to reduce security vulnerabilities

that could be found in mobile application code, input handling, initialization, termination,

and external code (Dye & Scarfone, 2014).

Conclusions and Recommendations

 Results of this study provided an understanding of how the standard web

development languages HTML5, JavaScript, and CSS could be used in MoSync,

Appcelerator, and PhoneGap to create multi-platform applications. The determination

was made that Appcelerator’s capabilities, features, ease of use, and functionalities

outperformed MoSync and PhoneGap. Appcelerator would be the easiest multi-platform

development application for a novice developer to use in the creation of a multi-platform

61

application and an experienced developer to gain the most out of their multi-platform

application.

Open systems have caused problems for multi-platform application developers by

allowing customization of any elements of a platform including but not limited to device

sizes, objects, properties, native interfaces, and APIs (Abolfazil, Sanaei, Xia, &Yang,

2014). Multi-platform development applications cannot even come close to possibly

including every implementation of an element within an open system. The discipline of

technology in mobile device applications is growing steadily (Barmpatsalou,

Damopoulos, Kambourakis, & Katos, 2013). Growing pains are being experienced in

standardization efforts of mobile application terminology, development, and testing due

to the field’s relative infancy (Barmpatsalou et al., 2013). Laying the foundation for these

standards is most important for the future of application and multi-platform application

development, testing, and further research within the field of mobile technology.

APPENDICES

63

Appendix A

MoSync HTML5/JS WebUI Template Project

64

65

66

67

Appendix B

MoSync HTML5/JS WebUI Test Application

68

69

70

71

72

Appendix C

MoSync HTML5/JS NativeUI Template Project

73

74

75

76

Appendix D

MoSync HTML5/JS NativeUI TestApp Application

77

78

79

80

81

82

83

84

Appendix E

Titanium TestApp Application

85

86

87

88

89

90

91

92

93

94

95

96

97

Appendix F

Titanium Original app.js File

98

Appendix G

PhoneGap HelloWorld Example Application

99

100

101

102

103

104

Appendix H

PhoneGap TestApp Application

105

106

107

108

109

110

111

112

113

Appendix I

Corral Correspondence: Permission to Use

114

Appendix J

Gandhewar Correspondence: Permission to Use

115

Appendix K

ACM: License to Use

116

117

118

119

REFERENCES

Abolfazil, S., Sanaei, Z., Gani, A., Xia, F., & Yang, L. T. (2014). Rich mobile

applications: genesis, taxonomy, and open issues. Journal of Network and

Computer Applications, 40, 345-362.

Appcelerator. (n.d.a). Appcelerator Platform. In Appcelerator online. Retrieved from

http://www.appcelerator.com/platform/appcelerator-platform/

Appcelerator. (n.d.b). Cross-platform mobile development in titanium. In Appcelerator

online. Retrieved from http://docs.appcelerator.com/titanium/3.0/#!/guide/Cross-

Platform_Mobile_Development_In_Titanium

Appcelerator. (n.d.c). Supporting multiple platforms in a single codebase. In

Appcelerator online. Retrieved from

http://docs.appcelerator.com/titanium/latest/#!/guide/Supporting_Multiple_Platfor

ms_in_a_Single_Codebase

Appcelerator. (n.d.d). Titanium. In Appcelerator online. Retrieved from

http://www.appcelerator.com/titanium/

Appcelerator. (n.d.e). Titanium SDK. In Appcelerator online. Retrieved from

http://www.appcelerator.com/titanium/titanium-sdk/

Application. (2014). In Tech Terms Computer Dictionary online. Retrieved from

http://www.techterms.com/definition/application

120

Application Programming Interface. (2014). In Tech Terms Computer Dictionary online.

Retrieved from http://www.techterms.com/definition/api

Barmpatsalou, K., Damopoulos, D., Kambourakis, G., & Katos, V. (2013). A critical

review of 7 years of mobile device forensics. Digital Investigation, 10, 323-349.

Blom, S., Book, M., Hrushchak, R., & Köhler, A. (2008). Write once, run anywhere a

survey of mobile runtime environments. Proc. 3rd Int’l Conf. Grid and Pervasive

Computing (GPC 08), IEEE CS Press, 2008, pp. 132–137.

Boardman, B. (2012). No app for that? Write one! Industrial Engineer: IE, 44(3), 44-48.

Charland, A. & Leroux, B. (2011). Mobile application development: web vs. native.

Communications of the ACM, 54(5), 49-53. doi :10.1145/1941487.1941504

Closed System. (2014). In Wikipedia, The Free Encyclopedia online. Retrieved from

http://en.wikipedia.org/wiki/Closed_source_software

Corral, L., Janes, A., & Remencius, T. (2012a). Potential advantages and disadvantages

of multiplatform development frameworks–a vision on mobile environments.

Procedia Computer Science, 10, 1202-1207. doi.org/10.1016/j.bbr.2011.03.031

Corral, L., Sillitti, A., & Succi, G. (2012b). Mobile multiplatform development: An

experiment for performance analysis. Procedia Computer Science, 10, 736-743.

Debug. (2014). In Tech Terms Computer Dictionary online. Retrieved from

http://www.techterms.com/definition/debug

Developer. (n.d.) . In PCMag online. Retrieved from

http://www.pcmag.com/encyclopedia/term/41187/developer

Dupont, B. (2012, July 1). Develop once, run everywhere? Information Week, 2.

121

Dye, S. M. & Scarfone, K. (2014). A standard for developing secure mobile applications.

Computer Standards & Interfaces, 36, 534-530.

Emmanouilidis, C., Koutsiamanis, R. A., & Tasidou, A. (2013). Mobile guides:

Taxonomy of architectures, context awareness, technologies and applications.

Journal of Network and Computer Applications, 36, 103-125.

Event Listener. (2003). In W3C online. Retrieved from

http://www.w3.org/2003/01/dom2-

javadoc/org/w3c/dom/events/EventListener.html

Extensible Markup Language. (2014). In Tech Terms Computer Dictionary online.

Retrieved from http://www.techterms.com/definition/xml

Finnie, S. (2013, January 14). 5 tips for developing successful mobile apps.

Computerworld, 47(1), 40.

Gandhewar, N. & Sheikh, R. (2011, February). Google android: An emerging software

platform for mobile devices. International Journal on Computer Science and

Engineering, 12-17.

Gavalas, D. & Economou, D. (2011). Development platforms for mobile applications:

Status and trends. IEEE Software, 28(1), 77-86.

Graphical User Interface. (2014). In Tech Terms Computer Dictionary online. Retrieved

from http://www.techterms.com/definition/gui

Holzer, A. & Ondrus, J. (2011). Mobile application market: A developer’s perspective.

Telmatics and Informatics, 28, 22-31.

122

Hybrid App. (n.d.). In Appcelerator online. Retrieved from

http://docs.appcelerator.com/titanium/latest/#!/guide/Mobile_Web_Platform_Ove

rview

Interface. (2014). In Tech Terms Computer Dictionary online. Retrieved from

http://www.techterms.com/definition/user_interface

Internet. (2014). In Terms Computer Dictionary online. Retrieved from

http://www.techterms.com/definition/internet

iOS. (2014). iOS: a virtual history. In The Verge online. Retrieved from

http://www.theverge.com/2011/12/13/2612736/ios-history-iphone-ipad

Model-View-Controller. (2014). In Wikipedia, The Free Encyclopedia online. Retrieved

from

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

MoSync. (2013a). Create your first app. In MoSync online. Retrieved from

http://www.mosync.com/docs/index.html

MoSync. (2013b). In MoSync online. Retrieved from

http://www.mosync.com/docs/sdk/js/guides/quick-start/how-create-html5-project-

mosync/index.html

MoSync. (2013c). MoSync reload versus mosync SDK. In MoSync online. Retrieved

from http://www.mosync.com/docs/reload/guides/quick-start/mosync-reload-vs-

sdk/index.html

Multi-Platform Application. (2014). In Tech Terms Computer Dictionary online.

Retrieved from http://www.techterms.com/definition/multiplatform

123

Native Application. (n.d.). In Appcelerator online. Retrieved from

http://docs.appcelerator.com/titanium/latest/#!/guide/Mobile_Web_Platform_Ove

rview

Open System. (2014). In Wikipedia, The Free Encyclopedia online. Retrieved from

http://en.wikipedia.org/wiki/Open-source_software

Operating System. (2014). In Tech Terms Computer Dictionary online. Retrieved from

http://www.techterms.com/definition/operating_system

PhoneGap. (2014a). Android Platform Guide . In PhoneGap online. Retrieved from

http://docs.phonegap.com/en/edge/guide_platforms_android_index.md.html#Andr

oid%20Platform%20Guide

PhoneGap. (2014b). In PhoneGap online. Retrieved from http://phonegap.com/

PhoneGap. (2014c). Overview. In PhoneGap online. Retrieved from

http://docs.phonegap.com/en/edge/guide_overview_index.md.html#Overview

PhoneGap. (2014d). PhoneGap Documentation: Introducing PhoneGap Build. In

PhoneGap online. Retrieved from

http://docs.phonegap.com/en/edge/guide_phonegapbuild_index.md.html#Introduc

ing%20PhoneGap%20Build

Platform. (2014). In Tech Terms Computer Dictionary online.

 Retrieved from http://www.techterms.com/definition/platform

Portable Operating System Interface. (2014). In Wikipedia, The Free Encyclopedia

online. Retrieved from http://en.wikipedia.org/wiki/POSIX

Proffitt, B. (2011). Tools & toys: Open android-for better and for worse. IEEE Spectrum,

48(5), 22-25.

124

Sharma, K. (2011). Android in opposition to iphone. International Journal on Computer

Science and Engineering, 3(5), 1965-1969.

Smartphone. (2014). In Tech Terms Computer Dictionary online. Retrieved from

http://www.techterms.com/definition/smartphone

SMS. (2014). In Tech Terms Computer Dictionary online. Retrieved from

http://www.techterms.com/definition/sms

Software Development Kit. (2014). In Tech Terms Computer Dictionary online.

Retrieved from http://www.techterms.com/definition/sdk

Tablet. (2014). In Tech Terms Computer Dictionary online. Retrieved from

http://www.techterms.com/definition/tablet

Web App. (n.d.). In Appcelerator online. Retrieved from

http://docs.appcelerator.com/titanium/latest/#!/guide/Mobile_Web_Platfor

m_Overview

Wong, C. Y., Khong, C. W., & Chu, K. (2012). Interface design practice and education

towards mobile apps development. Procedia – Social and Behavioral Sciences,

51, 698-702.

World Wide Web Consortium. (2012). In W3C online. Retrieved from

 http://www.w3.org/Consortium/

Zakas, N.C. (2013). The evolution of web development for mobile devices.

Communications of the ACM, 56(4), 42-48. doi:10.1145/2436256.2436269

	University of North Dakota
	UND Scholarly Commons
	January 2014

	Analysis Of Multi-Platform Mobile Application Development
	Courtney B. Thaden
	Recommended Citation

	tmp.1558461186.pdf.srvNd

