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ABSTRACT 

Terrestrial orchids are at the forefront of the discussion about anthropogenically-

driven extinction with more species threatened globally than any other plant family, 

mostly because of loss of habitat. The Western Prairie Fringed Orchid (Platanthera 

praeclara) is a threatened species found on the Sheyenne National Grassland in southeast 

North Dakota, USA. This conservation area that is a vital refuge for this species is subject 

to management for multiple uses including livestock grazing and recreation. Orchids are 

subject to continuous monitoring, but knowledge of the relationship between landscape 

indicators and orchid locations is limited. Research is needed to provide a greater 

understanding of the landscape relative to orchid habitat to develop conservation 

management strategies suited to dealing with threats arising from future interactions 

between land management and use, and climate change. 

The spatial distribution of orchid habitat was defined using a suite of indicators 

that characterize topography, moisture, and vegetation cover and compared with orchid 

point-based field observations. High resolution infrared imagery, a LiDAR-derived DEM, 

and well observations were used to characterize landscape properties. The NDVI (a 

measure of vegetation cover), the Topographic Wetness Index (TWI: a measure of 

moisture on the landscape), the Topographic Position Index (TPI: a measure of position
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on the landscape), and the depth to groundwater (a measure of the depth from the land 

surface to the groundwater surface) provided the best set of indicators of orchid habitat. 

Comparison between orchid locations and landscape indicators identified orchid metrics 

(±2 σ) used to classify landscape indicators which were combined to create orchid habitat 

maps.   

This study supports that distribution of orchid habitat are influenced by the 

selected landscape indicators, each providing important information to the analysis. 

Comparison of orchid metrics with groundwater elevations showed that orchids generally 

occurred on average 1.01 ±0.43 (2σ) meters above the water table. TWI and TPI 

demonstrated that orchids occur near margins of flow paths and near foot and toe slopes 

of slight elevations changes. NDVI classified vegetation cover and excluded agricultural 

land use. Landscape-scale analysis of orchid habitat identifies areas most in need of 

protection or restoration, and monitoring. 



1 
 

CHAPTER I 

INTRODUCTION 

In general, climate and more specifically temperature and precipitation, govern 

vegetation distribution globally and regionally. Other properties such as topography, 

geology, land cover, hydrology, and biology of a given species influence more local 

distribution patterns (Parvianinen et al., 2008). Different species flourish at different 

spatial and temporal scales due to variations in the above properties, life history traits, 

and resource availability (Vivian-Smith, 1997). In particular, spatial and temporal surface 

water and soil moisture dynamics can exert control over ecological systems shaping 

vegetation composition, diversity, and species distribution (Rodriguez-Iturbe et al., 1999; 

Moeslund et al., 2013). This makes spatial landscape analyses an important research tool 

in understanding and defining species distribution and habitat (Hof, Sieg & Bevers, 

1999). However, measurement of these landscape properties may be challenging 

(Kopecký & Cížková, 2010). 

Conservation of threatened plant species is of international concern with nearly 

12.5% of global vascular flora facing extinction (Swarts & Dixon, 2009). Variations in 

the distribution of these species can be attributed to climate, hydrology, and topography 

(Parviainen et al., 2008) and therefore represents a particularly important target for
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landscape-scale spatial and temporal analysis. Orchidaceae are the most divers of all 

angiosperm families, occurring on all vegetated continents and even some Antarctic 

islands with an estimated 800 genera and more than 25,000 species (Swarts & Dixon, 

2009; Fay & Chase, 2009). Terrestrial orchids represent one-third of orchid species and 

nearly half of all extinct plant species are terrestrial herbaceous perennials. Orchidaceae 

are at the forefront of extinction with more species under threat globally than any other 

plant family. Terrestrial orchids are likely to experience a greater extinction risk as a 

result of increasing threats such as loss of habitat and climate change (Swarts & Dixon, 

2009).   

Orchids have long fascinated scientists by their range of life history strategies, 

floral and vegetative morphology, and pollination syndromes. These complexities make 

orchids particularly vulnerable to climate change (Fay & Chase, 2009). Orchids may be 

locally abundant, but only occur in a limited number of locations, restricted by niche 

specificity or barriers reducing dispersal potential. Populations follow adverse sporadic or 

cyclical events such as flooding or drought and are often local endemics vulnerable to 

threatening processes. Causes of rarity in orchids can be attributed to complex life history 

strategies but drivers of rarity are more often linked to their unique habitats. Contributing 

to their high level of threat and making them ideal species for developing resources to 

better understand and manage habitats (Swarts & Dixon, 2009).   

The Sheyenne Delta in southeast North Dakota formed as result of the 

Wisconsinan glaciation (Ostlie & Faust, 1996). The delta is one of three locations in 

North America that host large populations of the Western Prairie Fringed Orchid 
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(Platanthera praeclara) referred to herein as orchid (USDA Forest Service, 2001). The 

orchid was originally listed by the U.S. Fish and Wildlife Service (USFWS) as a 

threatened species under the Endangered Species Act of 1973 on September 28, 1989. 

Today the orchid is found west of the Mississippi River with approximately 90% of 

known orchid locations occurring in the Red River Valley of North Dakota and 

Minnesota, and approximately 91% of protected orchids within the valley occurring 

within the delta (USFWS, 2009). Here the orchid is an indicator species of graminoid 

wetland communities and is found within wetland basins, margins of wetlands, or near 

margins of flow paths. These wetland habitats are more commonly known as sedge 

meadows or swales (USDA Forest Service, 2001).  

Orchid habitat and associated vegetation communities are crucial to orchid 

existence (Wolken, Sieg & Williams, 2001), and widely distributed consisting of several 

indistinct orchid subpopulations and isolated outliers making defining habitat difficult 

(Bjugstad & Fortune, 1989). Knowledge of habitat and influencing landscape properties 

are crucial when conservation management for a particular species is combined with 

other land uses (Zinko et al., 2005). Orchid habitat is surrounded by intensive agriculture 

and subject to impacts of grazing, fire, invasive species, pesticides, drainage, and 

irrigation. To sustain land use practices more needs to be understood about these unique 

habitats in efforts to assess and develop management strategies that are conducive to 

conservation (USFWS, 2009). 

Remote sensing is the collection of information using instruments that are not in 

physical contact with the surface or phenomena of interest. Remote sensing applications 
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provide information on the spatial and temporal heterogeneity and distribution of 

landscapes relative to climate, vegetation and topography (Pettorelli, 2005). Topographic 

and vegetation indices applied to infrared imagery and digital elevation models (DEMs) 

have been proven useful landscape indicators of wetland communities and properties 

such as soil attributes, moisture, phenology, and plant species occurrences (Gessler et al., 

1995; Paruelo & Lauenroth, 1998; Zinko et al., 2005; Parviainen et al., 2008; Grabs et al., 

2009; Campbell & Wynne, 2011). 

Passive remote sensing includes collecting information from devices that sense 

the Sun’s energy being reflected by Earth’s surfaces (Campbell & Wynne, 2011). 

Vegetation is often the first surface energy encounters providing information that can be 

analyzed to characterize vegetation. Infrared imagery provides a measure of chlorophyll 

abundance and energy absorption which influence vegetation growth through 

photosynthesis (Myneni et al., 1995). Chlorophyll pigments reflect energy in the green 

spectrum (500 – 600 nm) and absorb red (600 – 700 nm) and blue (400 – 500 nm) 

wavelengths. High reflectance in the near infrared spectrum (700 – 1,300 nm) is due to 

plant mesophyll tissue. Changes in structure and function or phenology of vegetation 

have shown a strong relationship with climate and are the basis for many vegetation 

condition and land cover indicators (Paruelo & Lauenroth, 1998). Phenology is the study 

of relationships between vegetation and the environment, and refers to the timing of 

vegetative activity relative to seasonal changes influenced by climate.   

Active remote sensing is when devices actively emit and record their own 

reflected radiation such as Light Detection and Ranging (LiDAR) (Vierling et al., 2008; 
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Campbell & Wynne, 2011). LiDAR instruments can measure the location of objects in x, 

y, z space when an emitted laser pulse strikes a surface and returns a portion of that 

radiation to the sensor (Vierling et al., 2008). A LiDAR-derived high resolution DEM 

and topographic indices (indicators of landscape properties) can be useful tools in 

identifying habitat distribution, based on what is known about a given species (Vierling et 

al., 2008). 

Study Objective 

The USFWS Western Prairie Fringed Orchid Recovery Plan identifies orchid 

monitoring and habitat distribution mapping important for monitoring populations and 

identification of habitat (USFWS, 2009; USFWS, 1996). Supplemental information that 

may enhance existing monitoring programs could be achieved through analyzing orchid 

positions in the landscape relative to indicators of landscape properties derived from 

remote sensing information, groundwater well observations, and orchid point-based field 

observations. This information may provide identification of orchid habitat within small 

ecological zones, change in habitat, and areas to search for orchids. Identifying the 

distribution of orchid habitat may be a useful tool in focusing field surveys and 

management efforts (Parviainen et al., 2008).   

The purpose of this study was to analyze orchids spatially across the landscape to 

better understand the influences that landscape properties have on annual and long-term 

habitat conditions. Also, to determine if the spatial distribution of orchid habitat can be 

classified using indicators to define landscape properties relative to topography, moisture, 
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vegetation, groundwater, and orchid positions in the landscape. Landscape distribution 

patterns of wetlands and species habitat can be well defined on the basis of such 

landscape properties (Parviainen et al., 2008). Identification of orchid habitat distribution 

and influencing indicators of landscape properties may contribute toward orchid 

monitoring and conservation efforts. Objectives of this research were to: 

1. Identify indicators of landscape properties that characterize the SNG and 

influence orchid habitat. 

2. Classify orchid habitat from 2006 to 2013 using a LiDAR-derived DEM, satellite 

and aerial infrared imagery, groundwater elevations, and orchid point-based field 

observations.  

3. Compare orchid habitat distribution within grazing allotments. 
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CHAPTER II 

LITERATURE REVIEW  

Landscape Topography and Habitat Characterization 

Spatial and temporal variability are common features of most plant species 

distributions (Hof, Sieg & Bevers, 1999). The availability of moisture can influence these 

distributions especially in hummocky glacial dune landscapes characterized by high 

groundwater elevations and a mosaic of prairie wetlands and uplands. Such landscapes 

exhibit spatial and temporal variations in moisture availability due to seasonal and annual 

shifts in moisture gradients thus influencing species distribution (Vivian-Smith, 1997; 

Zinko et al., 2005). These shifts in moisture gradients are primarily dependent on 

interactions with groundwater and atmospheric water (i.e. snowmelt, precipitation, and 

evapotranspiration) (Winter, 2000). These atmospheric interactions also influence spatial 

and temporal variations in groundwater elevations, drought and flood (Vivian-Smith, 

1997). 

Topography shapes vegetation composition, diversity patterns, and species 

distribution (Zinko et al., 2005; Andrew & Ustin, 2009). Minute changes in elevation 

may result in large differences in subsurface moisture and thus strong gradients in 

diversity and species distribution (Vivian-Smith, 1997; Zinko et al., 2005; Parvianinen et
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al., 2008; Moeslund et al., 2013). Topographic influences on moisture availability can be 

explained by the assumption that the development of the soil toposequence occurs in 

response to the way water moves through and over the landscape (Gessler et al., 1995). 

This refers to adjacent soils differing in profile characteristics influenced by local 

topography. The availability and movement of water is in turn controlled by topography 

as water moves through and over the land surface influencing flow and accumulation, 

groundwater flow, and soils (Gessler et al., 1995).  

Other influencing properties are likely to vary throughout the landscape. These 

factors include redox potentials, litter accumulation, compactions levels, land use, 

drought and flood (Vivian-Smith, 1997). Also, biological characteristics of plant species 

such as symbiotic relationships, reproduction ecology and dispersal mechanisms 

influence species distribution. Many biotic and abiotic factors and processes have 

potential to drive spatial variations in species distribution patterns (Li et al., 2009). 

Explanations for such patterns include spatial heterogeneity of the landscape, topography, 

and moisture availability. Other factors include herbivore grazing, presence or absences 

of symbiotic fungi, variations in seed accumulation and germination, and differences in 

growth and mortality at different topographic positions in the landscape (Vivian-Smith, 

1997; Li et al., 2009). Combinations of these factors, at multiple scales, are likely to 

affect variability in species distribution, from individual species to their associated 

vegetation to landscape patterns (Li et al., 2009). 
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The Sheyenne Delta: Fine-scale Topographic Variation Defines Habitats 

The Sheyenne Delta lies at the southern extent of the Red River Valley of the 

North and is significant in many facets of geology, hydrology, biogeography, topography, 

and land use (Bjugstad & Fortune, 1989; Sieg & King, 1995). Numerous sand dunes and 

shallow blowouts impart a hummocky appearance to the landscape (Bluemle, 1979). 

Physical features are a direct or indirect result of glacial activity, with glacial till being 

the framework for the features present today. Biological features are an indirect result of 

glacial activity in that flora, and fauna today were largely recruited from adjacent regions. 

Such features contribute to the unique combinations of species that significantly enhances 

biodiversity in this region (Ostllie & Faust, 1996). It is essential to understand the 

evolutionary forces that shaped these diverse ecological systems. Physical features and 

biological communities developed under complex disturbance regimes that included 

glaciation, climatic extremes, fire, and grazing with each operating at multiple scales, 

frequencies, and intensities (Ostlie & Faust, 1996). 

Prior to the Wisconsinan glaciation the Red River Valley likely exhibited spruce 

and aspen forest similar to modern day northern Canada, implying that climate conditions 

were considerably cooler and more moist than today (Bluemle, 2000). As the ice sheet 

retreated northward melt water led to the formation of Glacial Lake Agassiz inundating 

more than 906,500 km
2
 of present-day Minnesota, North Dakota, Saskatchewan, 

Manitoba, and Ontario for approximately 5,000 years (Bluemle, 1974; Ostllie & Faust, 

1996). Glacial Lake Agassiz left a series of beach ridges as the lake drained about 10,700 

years ago, which are described by Chapman, Fischer, and Ziegenhagen (1998) as 
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scattered low-rising ripples in the landscape extending in a north-south band along the 

eastern and western margins of the Red River Valley.   

Rivers entering Glacial Lake Agassiz often formed extensive deltas and inlets, 

one of the most prominent being the Sheyenne Delta characterized today by dune 

formations shaped by wind prior to the establishment of vegetation (Ostlie & Faust, 1996; 

Chapman, Fischer & Ziegenhagen, 1998). The delta is located between the Herman and 

Campbell beach ridges, but geologists today believe it was not a delta but an inlet into 

Glacial Lake Agassiz. The sediments are believed to have been deposited in an underflow 

fan; deposits of sands, clays, and gravels making up the soil profile today. The layer 

below these deposits is nearly impervious lake sediments responsible for the relatively 

high groundwater elevations (Bluemle, 1974; Fritz, 2001).  

Through radiocarbon-dating of sediment layers, scientists have documented post-

glacial history of plant life in eastern North Dakota. Cool and moist climates supported 

boreal forest ~10,500 years ago (Bluemle, 2000). As climate changed to warmer 

conditions forest communities transitioned from boreal to more temperate species ~9,000 

years ago. As climate continued to change to more arid conditions trees died off and 

grasslands dominated expanding to their maximum extent around 7,000 years ago, with 

dry conditions and wind catalyzing dune activity in areas of sparse vegetation. Then 

~4,500 years ago to present day, climate conditions have been relatively moist and forests 

have expanded yet grasslands are still the dominant biome (Bluemle, 2000). 
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Today the Sheyenne Delta exhibits some of the largest (284.1 km
2
) tallgrass 

prairie habitats, described as a mosaic of prairie wetlands and uplands including marshes, 

calcareous fens, sedge meadows, wet and dry prairies, and oak-aspen savannas. Rare 

plants, butterflies, and birds still thrive in this region (Chapman, Fischer & Ziegenhagen, 

1998). Wet prairies are dominated by big bluestem (Andropogon gerardii), Indian grass 

(Sorghastrum nutans), switchgrass (Panicum virgatum), northern reedgrass 

(Calamagrostis inexpansa) and prairie cordgrass (Spartina pectinata). Dry prairies 

occupy the beach ridges and sand dunes and are dominated by blue grama (Bouteloua 

gracilis), prairie junegrass (Koeleria macrantha), little bluestem (Andropogon 

scoparium), and needle and thread grass (Stipa comate) (Ostlie & Faust, 1996). Wetlands 

are dominated by sedge (Carex), rush (Juncus), or cattail (Typha) species.   

Much of the region has been transformed from grassland into a highly fragmented 

system including agriculture, rural development and industry. Little grassland remains 

today compared to historical conditions (Ostlie & Faust, 1996). Agriculture is the 

predominant land use producing small grains, corn, soybeans, edible beans, sunflowers, 

sugar beets, and potatoes. The intensity of agriculture has resulted in higher nutrient 

concentrations and water quality impairments due to chemical and fertilizer use 

(Goldstein et al., 1996). The loss of grassland habitats and the degradation of water 

quality pose the greatest threat to biodiversity of this region (Ostlie & Faust, 1996). 
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The Sheyenne National Grassland 

In the center of the Sheyenne Delta, managed by the Forest Service within the 

U.S. Department of Agriculture (USDA), is the Sheyenne National Grassland (SNG). 

The SNG is one of the largest public holdings of contiguous tallgrass prairies (284.1 km
2
) 

characterized by a hummocky glacial dune landscape. Located in Ransom and Richland 

counties of southeastern North Dakota, the SNG, sometimes called “Sandhills Prairie” 

(Sieg & Wolken, 1999), is generally characterized by tallgrass prairie and oak savanna 

exhibiting a mosaic of wet and dry prairies and a variety of wetlands (Bluemle, 1979; 

Sieg & Wolken, 1999). Precipitation averages 530 mm per year (USDA Forest Service, 

2001).  

The SNG broadly exhibits four landforms: River Bottom, Sand Dune, Deltaic 

Plain, and Hummock and Swale (Figure 1). The River Bottom is characterized by the 

meandering Sheyenne River flowing through a riparian mixed deciduous forest and oak 

savanna (Fritz, 2001). These riparian forests are dominated by American basswood (Tilia 

americana), American elm (Ulmus americanus), and green ash (Fraxinus 

pennsylvanica); bur oak (Quercus macrocarpa) and quaking aspen (Populus tremuloides) 

occur in scattered groves within the hummocky landscape and are characterized as oak-

aspen savannas (Ostlie & Faust, 1996). The Deltaic Plain landform is characterized as 

low flat landscape with little relief existing on the fringes of the SNG and beyond. 

However, due to its flat and fertile characteristics, most of the Deltaic Plain has been 

converted to cropland and what is not cropland is typically grazed or hayed (Bjugstad & 

Fortune, 1989).  
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Figure 1 Landforms of the SNG located in Ransom and Richland counties of southeastern North Dakota. 

The Sand Dune is characterized by sparsely vegetated dunes exhibiting blue 

grama, prairie junegrass, little bluestem, and needle and thread grass. According to Fritz 

(2001), sand dunes created by winds are a common feature on the SNG with two different 

varieties: parabolic and transverse ridges. Running (1996) suggests a complex mode of 

origin of these sand dunes where eolian activity is closely tied to fluvial response to 

climate change. Prevailing wind direction during dune formation appears to have been 

from the south, although recent blowouts indicate northwesterly winds. In general, 

because of topography and orientation of sand dunes, determining wind direction 

responsible for dune formation is inconclusive (Bluemle, 1979).   
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Sand dunes have been subdivided into three forms: sandsheets and high and low 

relief dunes (Running, 1996). High relief dunes are transverse ridges >9 meters; low 

relief dunes are <9 meters and parabolic in form; and sandsheets are undulating and wind 

scoured (Winter, 2000; Fritz, 2001). Low Relief dune formation occurred in brief pulses 

in the presence of sparse vegetation, migrating very little from the deflation hollow they 

are associated with and can be referred to as “blowout dunes” (Running, 1996). Blowout 

depths are usually a meter and appear to be controlled by the groundwater table. A typical 

blowout dune has a crescent shape ridge about 50 meters wide and 2 to 3 meters high. 

Sand dune sequences vary in detail from ridge to ridge (Running, 1996). Sandsheets 

downwind from low relief dunes are between 0.5 to 3 meters thick. Locally, small 

blowout dunes are present within the sandsheets (Running, 1996).   

The Hummock and Swale landform is described as a glacial sand dune landscape 

formed during periods of sparse vegetation and blowouts. Characterized by isolated 

depressions with a wide variety of shapes, sizes, and elevations; exhibiting a mosaic of 

wetlands, uplands, and vegetative transitions. Relief is usually 1.7 to 3 meters with a 

slope of 2.86 to 5.71 degrees. Loamy fine sandy soils with moderate to low water holding 

capacity exhibit high soil moisture content because of the high groundwater elevations 

(Bjugstad & Fortune, 1989). In general wetlands are permeable and poorly drained 

compared to their neighboring uplands. Moisture gradients between can be observed 

through transitions in vegetation composition and diversity influenced by climate, 

topography, and groundwater (Vivian-Smith, 1997; Chapman, Fischer, & Ziegenhagen, 

1998; Winter, 2000). 
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The major soil types of these landforms are Haploborolls, Calciaquolls and 

Udipsamments (Mollisols and Entisols) (Ostlie & Faust, 1996). Mollisols are the 

prevalent soils as they are most associated with grasslands and Entisols are associated 

with flood deposits and sand dunes (Sieg & King, 1995). Soils associated with orchid 

habitat are generally calcium rich cool wet prairie soils with minimum horizon 

development (USFWS, 1996). This includes alluvial soils, subirrigated calcareous, 

lacustrine soils overlaying sand, or fine-textured loess or till with low organic matter 

content (Sieg & King, 1995). In general these lowland soils are permeable and poorly 

drained and at a depth of 0 to 10 cm can be described as neutral to slightly alkaline, 

fertile sandy loam (Wolken, Sieg & Williams, 2001).   

Orchid Biology 

Orchids are terrestrial herbaceous perennials relying on established root systems 

that regenerate during the growing season by forming new tubers and perennating buds, 

giving rise to vegetative shoots the next growing season. Root systems on the SNG have 

multiple tubers and buds isolated from parent plants (USFWS, 1996). Vegetative shoots 

appear aboveground, after a period of soil warming, beginning late April into May 

depending on weather conditions that year (USDA Forest Service, 2001; USFWS, 2009). 

This life cycle indicates that annual orchid distribution and population dynamics are 

likely influenced by previous fall and current spring-summer conditions (Sieg & King, 

1995; Sieg & Wolken, 1999). For example, fall conditions correspond with plant 

senescence, development of next year’s perennating bud, and seed dispersal. Spring-

summer conditions have a greater impact on aboveground growth (USFWS, 2009).     
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The orchid exhibits two distinct aboveground life states: vegetative and flowering.  

Vegetative plants average up to 24 cm tall, usually having one or two leaves, and remain 

vegetative throughout the growing season (Sieg & King, 1995). Flowering plants develop 

hollow flowering stalks early in the growing season, have numerous leaves (>10), and 

average up to 52 cm tall. The greater height and leaf area of flowering plants improve 

their ability to photosynthesize. Hollow flowering stalks are adaptations common in 

wetland vascular plants allowing oxygen to diffuse from aerial parts of the plant to the 

roots for respiratory demands (Sieg & King, 1995; Sieg & Wolken, 1999). Flowering 

typically occurs late-June to mid-July producing an indeterminate inflorescence with 

showy cream colored flowers arranged on a spike (Figure 2) (USFWS, 1996). Erratic 

flowering habits can exhibit very showy inflorescences one year and then seemingly 

disappear surviving only in a vegetative or dormant state for several years (Bjugstad & 

Fortune, 1989; USFWS, 1996). Unpredictable patterns of life state from year to year 

make monitoring of orchid populations and defining habitats challenging.  

 

Figure 2 Flowering orchid; photo taken by author on SNG, July 15, 2013. 
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Seed Ecology 

Orchids produce some of the smallest dust-like seeds known across plant species.  

Because of their minute size (0.07 to 0.4 mm wide and 0.11 to 1.97 mm long) there is 

little known about their germination ecology (Sieg & Wolken, 1999). The size and air-

filled testa (seed coat) make seeds equipped for wind dispersal. Buoyancy, a rough 

surface, and a water-repellent lipoid layer enable water dispersal (Hof, Sieg & Bevers, 

1999). Water dispersal occurs by dissemination through the soil profile and flooding, 

which tends to concentrate and deposit seeds along drift lines (Sieg & Wolken, 1999). 

Dispersal occurs in September depending on environmental conditions inducing 

the release of seed capsules (USFWS, 1996). Seed distribution in sand dune grasslands 

vary within and among habitats in topographic position due to these dispersal 

mechanisms influenced by barriers such as topography, roads, and railroad tracks. 

Because of the biotic and abiotic processes at multiple scales influencing seed 

distribution orchids vary in topographic position contributing to the challenges in 

defining habitat (Li et al., 2009). 

Symbiotic Fungi 

As orchid seeds are very small, the embryo consists of only a few cells with very 

limited reserves and development (USDA Forest Service, 2001). For this reason orchids 

are dependent on mycorrhizal fungi during a portion or all of their life cycle, especially 

for seed germination and nutritional support before plants are capable of photosynthesis 

(Sharma et al., 2003; USFWS, 2009). Fungal colonization mobilizes reserves and 
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provides nutritional support to non-photosynthetic seedlings (Sharma et al., 2003). Even 

with fungi present, orchids may persist in an underground state for up to or beyond two 

years before foliage appears aboveground (USFWS, 1996). Fungal colonization is also 

necessary to stimulate gluconeogenesis, which is the metabolic pathway that synthesizes 

glucose from non-carbohydrate carbon substrates (Sharma et al., 2003). Fungal associates 

of orchids likely vary among life stages and although little is known of the fungi 

associated with orchids, a species of Rhizoctonia was isolated from an orchid tuber on the 

SNG. Other species of fungi isolated from protocorms and adult orchids include 

Ceratorhiza and Epulorhiza species (Sieg & King, 1995; USFWS, 2009).   

Fungal colonization and their symbiotic relationship with orchids are important to 

germination, seedling establishment, and recruitment of new individuals. Also, these 

relationships are dependent on the availability of suitable habitat, edaphic factors 

controlling soil mycorrhizae, and interspecific competition (USFWS, 1996; Sharma et al., 

2003). There may be a stronger association between fungi and orchid habitat than there is 

specifically between fungi and orchids. The orchid faces certain extinction if their 

symbiotic fungi disappears (USFWS, 2009). Therefore the sustainability of the orchids 

and their fungal associates greatly depend on conservation of habitat.   

Monitoring Populations 

The USDA Forest Service strategy for research, management, and monitoring of 

orchids and their habitat is to demonstrate compliance with the Endangered Species Act 

and implementation of the U.S. Fish and Wildlife Service (USFWS) Western Prairie 
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Fringed Orchid Recovery Plan. Actions associated with this strategy are to develop and 

maintain appropriate disturbance and hydrologic regimes. Also, to conduct research 

relative to management practices, limiting factors (i.e. moisture), reproduction, and 

synecology of orchid habitat (USDA Forest Service, 2001). Synecology refers to the 

structure, development and distribution of ecological communities or habitat. Orchids 

have been monitored for years through population counts and point-based field 

observations of orchid locations using hand-held GPS devices. Application of these 

datasets could prove useful in defining orchid habitat through spatial identification of 

landscape properties that influence orchid habitat and distribution. 

Across the SNG orchid populations are described as patches of larger 

metapopulations, isolated sub-populations, and individual outliers (USFWS, 1996; 

Sharma et al., 2003). Metapopulations are dynamic groupings of populations spatially 

shifting and subject to periodic extinctions linked by subsequent recolonization (USFWS, 

1996; USDA Forest Service, 2001). Metapopulations consist of groupings of individual 

species likely interacting with each other through established root systems, pollination, 

and resource competition. Information on orchid population dynamics are limited and 

remain somewhat unknown (Bjugstad & Fortune, 1989; Hof, Sieg & Williams, 1999). In 

1984 – 1985, a systematic mapping effort recorded approximately 2,000 orchids with 

densities varying from 0.01 to 6 plants m
-2

 (Bjugstad & Fotune, 1989). From 1990 – 1994 

orchid densities averaged from 1.1 to 6.8 plants 100 m
-2

 (Sieg & King, 1995). 

Longevity of orchids varies geographically and depends on the landscape 

properties and moisture conditions (USFWS, 1996). Orchids were thought to be a long-
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lived species exhibiting periods of dormancy likely influenced by periods of drought and 

flood. However, a study by Sieg and King (1995) collected demographic data on the SNG 

(1987 – 1994) and results suggested that orchids live approximately three years or less, 

and once absent the odds of remaining absent were about 80%. From 1990 – 1994 orchid 

reappearance ranged from 73% to only 16% (Sieg & King, 1995). Reappearance rates are 

influenced by habitat conditions throughout the orchid’s life. Stresses associated with 

climate such as drought and flood may affect plants into subsequent growing seasons. 

Moisture conditions affect orchid’s ability to produce carbohydrate reserves and form 

perennating tissues dictating growth, survival, and reappearance (Sieg & Wolken, 1999). 

A population recovery on the SNG in 1992 (a wet year) was observed after five 

years of very low population numbers. It is unlikely that this recovery was attributed to 

plants returning from dormancy. An explanation provided by Hof, Sieg and Bevers 

(1999), is a seed bank with viable seeds persisting through years of drought and flood. 

They also suggest that with a viable seed bank, land managers should be more concerned 

with maximizing long-term mean population levels rather than yearly population levels. 

Therefore it may be useful to spatially analyze orchid positions in the landscape relative 

to landscape properties and climate to better understand what influences orchid habitat 

and populations (Hof, Sieg & Bevers, 1999). 

Current annual orchid monitoring efforts on the SNG are implemented by the 

USDA Forest Service and contracted by the North Dakota Parks and Recreation (NDPR) 

department. Recording orchid locations using hand-held GPS units along with orchid 

counts in defined study areas are two methods of field monitoring applied. The USDA 
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Forest Service records orchid point data in five static microplots (100 x 100 meters), 

although geographically distributed these areas are small and orchid point data are thus 

constrained. They also administer counts in six 160-acre macroplots but there is no 

spatial documentation of orchids in these habitats and thus only useful in studying 

population trends within these defined areas (USDA Forest Service, 2001).     

The NDPR department through the North Dakota Natural Heritage Inventory 

(NDNHI) obtains funding through the Endangered Species Act of 1973, Section 7, from 

the USFWS for monitoring threatened and endangered species. Section 7 of the 

Endangered Species Act, called “Interagency Cooperation,” is the mechanism by which 

federal agencies ensure the actions they take, funded or authorized, do not jeopardize the 

existence of any listed species. This monitoring effort occurs when funding is available, 

and private consultants are contracted by the NDPR to record orchid locations using 

hand-held GPS units. These datasets are eventually shared between agencies and useful 

in demonstrating spatial and temporal shifts in orchid distributions (USFWS, 2009). 

Accuracy of point data is important when applied in extracting spatial information and 

these monitoring efforts allow for orchid locations to be documented using high 

resolution hand-held GPS units with sub-meter accuracy when available.  

Land Use and Environmental Influences 

An estimated 100-year decline of orchid population levels throughout North 

America is primarily attributed to the conversion of habitat to intensive agriculture and 

other anthropogenic changes (Bjugstad & Fortune, 1989; Sieg & King, 1995). Additional 
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limitations and threats to populations have been identified as herbivore grazing, invasive 

species, erratic flowing habits, mycotrophy, limited pollination, availability of moisture, 

and land use activities that influence the quantity and quality of groundwater (USFWS, 

1996; USDA Forest Service, 2001). These factors can cause reductions in orchid 

population size and distributions (USFWS, 1996). 

Knowledge is lacking on the effects of land use on orchid habitat and populations 

(Bjugstad & Fortune, 1989; Sieg & King, 1995; Sieg & Wolken, 1999; Wolken, Sieg & 

Williams, 2001). Land use plays a significant role in influencing patterns, diversity, and 

dynamics within and among landscapes (Ostlie & Faust, 1996).There have been studies 

on the impacts of grazing (Alexander et al., 2010), invasive species control (Kirby et al., 

2003), and effects of fire (Willson, Page & Akyuz, 2006). Disturbances such as these 

may be required to remove competing vegetation and sustain orchid habitats but the 

effects of these disturbances need to be monitored and researched for adaptive 

management.   

The SNG is sectioned into grazing allotments (275.3 km
2
) where local producers 

graze their cattle (Fritz, 2001). Approximately 92% of orchid habitat identified by the 

USDA Forest Service is subject to grazing. The USDA Forest Service categorizes 

allotments relative to orchids as core, satellite, or other. Core and satellite allotments 

were defined by high orchid abundance, orchid persistance in wet and dry years, 

geographic association, and presence of geographic barriers impeding dispersal. The core 

and satellite allotments are then managed to promote and maintain orchid recovery after 

exposure to grazing, mowing, burning, noxious weed treatment, restorations, and water 
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inundation. Allotments categorized as other may exhibit orchid presence but regardless 

are not managed by orchid recovery strategies (USDA Forest Service, 2001).  

Historically grazing was an important process in sustaining grassland ecosystems. 

Grazing can be beneficial to orchid habitat when properly timed and spatially managed. 

However, grazing can be detrimental through trampling, reducing carbohydrate reserves, 

and prevention of seed dispersal (USDA Forest Service, 2001). The intensity of grazing 

is evident on the SNG along with invasive species, characteristic of heavily grazed 

grasslands (Alexander et al., 2010). Invasive species such as Kentucky bluegrass (Poa 

pratensis) and leafy spurge (Euphorbia esula) are dominant species on the SNG and a 

concern for sustaining orchid habitat and populations (Sieg & King, 1995; Wolken, Sieg 

& Williams, 2001). Sieg and King (1995) observed that orchid plant density was 

negatively correlated with Kentucky bluegrass and as it is a sod forming species it likely 

inhibits orchid establishment. Kirby et al. (2003), states that continuous use of chemicals 

to treat leafy spurge has impacted orchid habitat.  

Excessive drought or flooding can cause significant reductions in orchid 

populations (Hof, Sieg & Bevers, 1999). Below average snowfall and rainfall 

accompanied by heat waves from 1987 to 1989 and orchid data justify that a decrease in 

flowering and increase in mortality is likely linked to changes in moisture due to drought 

conditions (USFWS, 1996). Below average moisture conditions decrease aboveground 

orchid populations and the proportion of flowering plants (USFWS, 2009). Therefore, in 

the absence of recruitment, mature plants with established root systems must be able to 

withstand duration of frequent and sometimes extended droughts. Seed dormancy and 



24 
 

delayed germination may also enable seeds to withstand below average moisture 

conditions over extended periods of time. Thus established root systems and viable seeds 

that persist (seed bank) may be important for post-drought population recovery (Ostlie & 

Faust, 1996; USFWS, 2009). 

Growth, flowering, reproduction and abundance of orchids in flooded habitats has 

been observed to vary considerably between years in areas of the SNG that show 

significant year-to-year variations in intensity, duration and frequency of flooding. Sieg 

and Wolken (1999) provide evidence that flooding differentially affects vegetative and 

flowering orchids with 70% of flowering plants and only 3% of vegetative plants 

persisting through the growing season. The low rate of persistence was attributed to the 

difference in physical attributes. Vegetative plants are shorter and lack hollow flowering 

stalks. Sieg and Wolken (1999) also documented that flooding resulted in a shift in the 

topographic position of orchids from low to higher positions in the landscape exhibiting 

suitable moisture conditions. In locations with little topographic variation, development 

of flowering plants may be reduced during floods. Flooding may impact orchid 

distribution and habitat through subsequent years depending on intensity, duration and 

frequency (USFWS, 2009). 

Annual and seasonal groundwater fluctuations occur naturally influenced by 

snowmelt, rainfall, and evapotranspiration. Anthropogenic hydrological alterations that 

artificially draw down groundwater elevations near the root zone may have serious 

adverse effects on orchid habitat. Landscape properties are highly susceptible to changes 

in groundwater elevations and basin hydrology arising from human activities including 
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increased use of groundwater for agricultural irrigation and municipal water supply, 

widening and deepening of ditches to remove water from the landscape, and chemical 

and fertilizer use (USFWS, 2009). Human activities pose threats to the quality and 

quantity of groundwater, and hydrologic regime affecting soil nutrients, availability of 

moisture, plant species distribution and orchid habitat (USDA Forest Service, 2001; 

USFWS, 2009). 

Bjugstad and Fortune (1989) noted that flowering orchids were possibly 

responding to high levels of precipitation the year prior. Climatic processes like 

precipitation along climatic fronts coupled with more isolated thunderstorms play 

significant roles in determining availability of moisture (Ostlie & Faust, 1996). These 

processes such as precipitation and snowmelt influence groundwater elevations through 

groundwater recharge. Most recharge occurs from snowmelt and rainfall in the spring 

during the time that frost leaves the ground and before evapotranspiration loss from 

vegetation and high temperatures becomes significant. Recharge may also occur through 

isolated storm events (Armstrong, 1982). For example, on June 12, 2005, McLeod, ND, 

recorded a 114.3 mm storm event (Weather Warehouse: http://weather-warehouse.com). 

Precipitation influences moisture availability especially in the lateral root zone. When 

defining habitat parameters across the landscape, over multiple years, precipitation, 

snowmelt and other climatic processes that influence moisture availability may be 

eminent in groundwater. Especially in landscapes such as the SNG, exhibiting sandy soils 

with low water holding capacity and faster infiltration rates (Armstrong, 1982). 



26 
 

Orchid Habitat Indicators 

Most species growing in heterogeneous landscapes show distinct habitat 

preferences and rarer species tend to prefer either hummock or swale habitats (Vivian-

Smith, 1997). The orchids are associated with lowland swales, wetlands, marshes, and 

sedge meadow habitats. These can be primarily classified as palustrine emergent 

temporarily or seasonally flooded wetlands. These habitats are characterized by extreme 

annual and seasonal fluctuations in moisture which typically result in shifts in vegetative 

composition. It is likely that orchids shift in time and space in response to these 

fluctuations (USDA Forest Service, 2001). The orchid is most associated with wetland 

basins, margins of wetlands, and margins of flow paths. Preferred orchid habitats are 

calcareous prairies and sedge meadows subirrigated by high groundwater elevations 

influencing moisture gradients (USFWS, 1996; USDA Forest Service, 2001).  

The Hummock and Swale landform provides the majority of orchid habitat across 

the SNG on wet foot and toe slopes where vegetation consists mostly of wooly sedge 

(Carex lanuginosa), northern reed grass, Baltic rush (Juncus balticus), and willows (Salix 

spp.). Habitats can also exist near wetter facets within big bluestem, little bluestem, 

Indian grass, switchgrass and prairie cordgrass communities (Bjugstad & Fortune, 1989; 

Sieg & King, 1995; USFWS, 1996; Sieg & Wolken, 1999). These vegetative 

communities cover roughly 14% of the Hummock and Swale landform (Bjugstad & 

Fortune, 1989).  
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Sieg and King (1995) observed transects supporting orchids were diverse and 

identified plant communities dominated by species like Kentucky bluegrass (Poa 

pratensis), Baltic rush, sedge species, willows, and northern reed grass. They also noted 

that other species like switchgrass, prairie cordgrass, and leafy spurge were also common. 

Based on their study, Sieg and King (1995), state that northern reed grass is the best 

indicator of orchid habitat. A study by Wolken, Sieg, and Williams (2001), indicated that 

percent coverage of Baltic rush was the best indicator of orchid habitat. 

The primary determinants of orchid distribution in the landscape are presence of 

suitable habitat, dispersal routes and patterns, and moisture availability (Hof, Sieg & 

Bevers, 1999). It is well documented that flowering orchids are more present in wet sites 

than dry suggesting that flowering may be related to moisture (Sieg & King, 1995). It is 

also widely accepted that if water is limited it becomes the key resource impacting 

vegetation and ecological processes, including carbon assimilation via control of 

photosynthesis and stomatal closure, and nitrogen assimilation through control of the 

nitrogen mineralization rate (Rodriguez-Iturbe et al., 1999). 

Moisture availability affects success of seed germination and seedling persistence 

(Ostlie & Faust, 1996), and is a critical determinant of growth, flowering, reproduction 

and distribution of orchids (USFWS, 2009). Sieg and King (1995) found a positive 

correlation between orchid density and soil moisture suggesting a relationship between 

moisture availability and orchid locations. Soil moisture alone affects a number of factors 

important for plant growth beyond water availability. For example subsurface flow is 

likely to transport dissolvable cations and nitrogen compounds towards wetlands 
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potentially affecting pH and soil nitrogen content (Moeslund et al., 2013). Other factors 

affected include successful development of flowering plants, fruits and storage tissue. 

Storage tissue such as photosynthetic gains that contribute to new foliage and perennating 

tissue for next year’s root system (Sieg & King, 1995; Sieg & Wolken, 1999). Therefore, 

close examination of landscape indicators of moisture conditions and observed variability 

in orchid positions in the landscape could provide a greater understanding of the 

landscape properties that influence orchid habitat from year to year. 

Landscape-Scale Indicators 

Based on the accumulated knowledge of orchid behavior, vegetation associations, 

soil wetness and inundation and drainage characteristics may provide the best landscape-

scale properties indicative of orchid habitat. These properties can be represented by three 

well established indicators: the Normalized Difference Vegetation Index (NDVI) derived 

from remote sensing, and the Topographic Wetness Index (TWI) and Topographic 

Position Index (TPI) derived from a digital elevation model (DEM).  

Normalized Difference Vegetation Index 

The NDVI is one of the most widely used indices of remote sensing vegetation in 

monitoring condition and phenology (Myneni et al., 1995; Campbell & Wynne, 2011). 

NDVI is based on the fact that chlorophyll absorbs the red spectrum and mesophyll tissue 

reflects the near infrared spectrum (Pettorelli, 2005). Seasonal variations in NDVI values 

across vegetated surfaces are attributed to phenology influenced by environmental 

parameters like the availability of moisture. These seasonal variations have been 
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attributed to spring warm-up, senescence, rainfall events and areas strongly influenced by 

climate and land use (Pettorelli, 2005; Eidenshink & Haas, 2008). 

The NDVI takes the difference of near infrared and visible reflectance values 

normalized over total reflectance (Eidenshink & Haas, 2008). The NDVI computed 

values range from -1 to 1, where increasing positive values indicate increasing 

photosynthetic activity and green vegetation and negative values correspond to an 

absence of vegetation indicating other surfaces such as soil and water (Pettorelli, 2005; 

Eidenshink & Haas, 2008). Eidenshink and Haas (2008) used NDVI descriptive statistics 

of different land systems to characterize vegetation dynamics over the growing season 

and found that the mean NDVI was the best parameter for monitoring phenology. Paruelo 

and Lauenroth (1998), found that precipitation and temperature were the main climatic 

controls of variability between maximum and minimum NDVI and that the proportion of 

precipitation falling in the summer was positively associated with the date of maximum 

NDVI. 

Descriptive statistics such as mean and standard deviation are indicators of land 

cover homogeneity and phenology as influenced by the environment and can therefore be 

used in monitoring vegetation (Eidenshink & Haas, 2008). The NDVI enables researchers 

to differentiate ecosystem functional types and vegetative communities but assemblages 

of plant species can produce similar NDVI values or temporal trends, meaning that few 

plant species, if any, can be identified accurately (Pettorelli, 2005). This limits the ability 

to define orchid habitat from imagery, but NDVI still provides useful information in 
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defining sparse and dense vegetation, and land covers such as water, soils, and 

agriculture. 

Topographic Wetness Index 

The TWI, a steady state wetness index, is a function of both slope and the 

upstream contributing area per unit width orthogonal to the flow direction (Yang et al., 

2005). The TWI is proportional to the potential wetness of a given location and 

subsurface lateral transmissivity (Grabs et al., 2009; Moeslund et al., 2013). TWI is based 

on the assumption that surface topography is the main controlling factor of groundwater 

elevations and water flow. However, TWI does not consider factors such as subsurface 

topography and hydrogeological characteristics. Also, the TWI is static and relies on the 

assumption that local slope is an adequate proxy for the effective downslope hydraulic 

gradient which is not necessarily true in low relief terrain. Even with these limitations the 

TWI has become a popular and widely used topographic index to infer information about 

the spatial distribution of moisture availability (i.e. the position of shallow groundwater 

tables and soil moisture) (Grabs et al., 2009).  

TWI has been proven highly correlated to soil attributes such as horizon depth, 

percent silt, and organic matter (Gessler et al., 1995; Yang et al., 2005). Moeslund et al. 

(2013) found that the TWI was strongly correlated with local and regional gradients in 

species composition and soil moisture suggesting that hydrology and more specifically 

topographically controlled moisture gradients to be important in monitoring and 

management of vegetation across landscapes. This may be especially true for the SNG in 
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that topographic moisture gradients can be strongly influenced by precipitation, 

groundwater, drought and flood. 

Topographic Position Index 

The TPI compares the elevation of each cell in a DEM to the mean elevation of a 

specified neighborhood around that cell. Topographic position is an inherently scale-

dependent phenomenon and ecological characteristics of a site may be affected by TPI at 

several scales (Jenness, 2006). Most ecological and physical conditions and processes, 

such as plant species distribution and moisture availability, correlate closely to 

topographic position in the landscape.      

Orchid positions in the landscape vary spatially and temporally in response to 

changes in moisture availability. Many physical and biological patterns and processes 

acting on the landscape are highly correlated to topographic position. Moisture 

availability and its response to local climate and groundwater elevations are recognized 

as determinants of vegetation distribution relative to topographic position in the 

landscape (Jenness, 2006; Moeslund et al., 2013). The variability in spatial distribution 

and topographic position among orchids across the SNG makes monitoring and 

documenting orchid populations and habitat parameters long-term regimes difficult. 
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CHAPTER III 

METHODS 

Study Area 

The study area (52.2 km
2
) was confined to the Hummock and Swale landform 

based on a subwatershed within the Pigeon Point – Sheyenne River watershed 

(hydrologic unit code (HUC) 0902020405). The subwatershed (HUC 090202040503) is 

defined as a closed basin and was selected based on its central location within the 

Hummock and Swale landform and groundwater well observations. Also, this 

subwatershed contained 79% (966) of orchid point data from 2006 to 2012 and all of 

2013 orchid points. This allowed for all spatial point and grid data to be spatially defined 

by the extent of the subwatershed boundaries providing consistency in application of 

remote sensing indices and analyses.  

Being a closed basin, this subwatershed identified a hydrologic boundary with no 

surface outlet. Therefore, it can be assumed that hydrological interactions and processes 

represented within the study area such as accumulation, evapotranspiration, and 

groundwater recharge act within this boundary. One noticeable issue with this boundary 

is the linear northeast boundary. This boundary is defined by railroad tracks that impede 

hydrologic flow and possibly orchid dispersal. 
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 Watershed polygons were obtained from the North Dakota GIS Hub Data Portal 

(https://apps.nd.gov/hubdataportal/srv/en/main.home). The subwatershed dataset is a 

digital hydrologic unit boundary layer to the 6
th

 level (12-digit) consisting of geo-

referenced digital data and associated attributes created in accordance with Federal 

Standards and Procedures for the National Watershed Boundary Dataset (WBD) 

(http://pubs.usgs.gov/tm/tm11a3/). It was reasonable to define environmental parameters 

and habitat within boundaries of this subwatershed since topography and hydrology 

greatly influence orchid habitat and orchid positions in the landscape. The study area is 

shown in Figure 3.  

Analytical Process 

 Landscape properties and distribution of plant species can be well defined on the 

basis of topography, moisture, and vegetation (Parvianinen et al., 2008). For this study, 

satellite and high-resolution aerial infrared imagery, a high-resolution DEM, and 

groundwater well observations were used to create indicators of landscape properties and 

compared to orchid point-based field observations to define annual orchid metrics (±2 σ) 

for each of the landscape indicators (NDVI, TWI, TPI, and depth to groundwater). 

Orchid metrics were used to classify landscape indicators and composites of landscape 

indicators were used to produce annual habitat maps and a 2013 validation (Figure 4). 

 Landscape indicators characterize properties such as topography, moisture, and 

vegetation cover. Landsat TM5 and Airborne Environmental Research Observational 

Camera (AEROCam) imagery were used to derive the NDVI, which characterized photo- 



34 
 

 

Figure 3 Study area: (a) Subwatershed boundary within landforms of the SNG (b) 2012 USDA National Agriculture 

Imagery Program (NAIP) imagery showing orchid locations (c) Study area map showing surrounding land cover, 

orchid point distribution from 2006 – 2013 and inset location. 
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Figure 4 Flow diagram of analytical process. 

synthetic activity and vegetation cover, providing information on distribution of 

vegetation communities and land use. Groundwater elevations were used for the creation 

of annual groundwater DEMs and combined with a LiDAR DEM to create annual depth 

to groundwater indicators representing the depth from the land surface to the groundwater 

surface. The LiDAR DEM was also used to generate landscape indicators TWI defining 

the potential wetness of a cell based on topography and slope, and TPI defining orchid 

positions in the landscape relative to their surrounding elevations. Landscape indicators 

were compared with orchid point-based field observations to define orchid metrics. 
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 Orchid metrics are derived by using annual orchid point-based field observations 

to extract values from landscape indicators. Orchid metrics are therefore defined as the 

mean ±2 σ of landscape indicator values of orchid locations. Orchid metrics were used to 

classify their corresponding landscape indicators into orchid habitat, wetland and upland. 

Landscape indicators were also classified into single binary grids representing orchid 

habitat (1) and non-orchid habitat (0) and added together to analyze how landscape 

indicators overlap and synergize creating orchid habitat maps identifying core and fringe 

orchid habitat zones. Landscape indicators and the average orchid metrics (2006-2012) 

were then used in a validation to predict a 2013 orchid habitat map and compare to 2013 

orchid point-based field observations.  

Data Collection and Processing 

All data (Table 1) were subset to the study area using ESRI’s ArcGIS™ 10.0. All 

Landsat TM5 imagery was processed in ERDAS™ 2011 along with compilation of 

LiDAR DEM tiles and orthorectification and compilation of all AEROCam imagery. 

Groundwater well observations were filtered and averaged in Microsoft™ Excel and then 

imported into ArcGIS™ 10.0 for krigging of annual groundwater DEM’s. Orchid point 

data and study area polygon were imported directly into ArcGIS™ 10.0. All descriptive 

statistics of landscape indicator values of orchid locations (orchid metrics ±2 σ) and 

histograms were analyzed in Microsoft™ Excel. 
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Table 1 Summary of data collection.  

Data Type Origin 
Spatial/ 

Temporal 
Reference 

AEROCam 

Aerial 

Infrared 

Imagery 

Remote 

Sensing 

2 m/July 

30, 2012 

Digital Northern Great Plains 

(DNGP) (http://dngp.umac.org) 

Landsat TM5 

Multi-

spectral 

Satellite 

Imagery 

Remote 

Sensing 

30 m/16 

Days 

U.S. Geological Survey (USGS) 

(http://glovis.usgs.gov) 

LiDAR DEM 

Digital 

Elevation 

Model 

Derived from 

LiDAR 

1 m/ 

Spring 

2008 

International Water Institute 

(IWI) (http://www.iwinst.org/) 

Groundwater 

Well 

Observations 

Point-

based 

Field 

Observations 

22.5x16 

km/ 

Monthly 

North Dakota State Water 

Commission 

(http://www.swc.state.nd.us/) 

Orchid Data 
Point-

based 

Field 

Observations 

0.1 – 5 m 

accuracy/ 

Annually

(July) 

USDA Forest Service Dakota 

Prairie Grasslands Supervisor’s 

Office Bismarck, ND 

Subwatershed

/Study Area 
Polygon 

Geo-

referenced 

Digital Data 

52.2 km
2
 

North Dakota GIS Hub 

(https://apps.nd.gov/hubdataport

al/srv/en/main.home) 

Orchid Points 

Orchid point data were obtained as point files from the USDA Forest Service at 

the Dakota Prairie Grasslands Supervisor’s Office in Bismarck, ND. This dataset 

consisted of all known recorded orchid locations from 2006 – 2012. Because of lack of 

federal funding, the NDPR department was unable to fund the NDNHI recording of 

orchid locations in 2013. The author collected orchid point-based field observations on 

July 15 and 16, 2013, using a high resolution Trimble GeoXH handheld GPS unit 

(accuracy of 0.1 meters), and volunteers from Wisconsin Wetland Specialists recorded 

points using an AshTech mobile handheld unit with sub-meter accuracy; they also 

collected the 2012 point data for the NDNHI. Orchid point data from 2009 – 2013 
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collected by the USDA Forest Service, was limited to their (100 x 100 m) microplots and 

collected with a Trimble GeoExplorer 3 (accuracy 1 – 5 meters). Orchid point data 

collected for the NDNHI from 2006 – 2008 were recorded by Yellow Field Biological 

Surveys. The acquisition receiver for these years is unknown with an accuracy of <5 

meters.   

Using the Select by Attributes tool in ArcGIS™ 10.0 annual orchid points were 

exported creating individual point files for each year (2006 – 2013). These point files 

were eventually subset using the Clip tool in ArcGIS™ 10.0 to the extent of the study 

area. Table 2 shows the annual number of orchid points recorded within the study area. 

Orchid location monitoring typically occurs late June through July depending on 

phenology in a particular year. All orchid point data here were collected within this time 

annually. 

Table 2 Numbers of orchid locations recorded annually within the study area. 

Year Orchids 

2006 116 

2007 318 

2008 113 

2009 20 

2010 8 

2011 3 

2012 96 

2013 292 
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Groundwater Well Observations 

Monthly groundwater well observations were obtained from the North Dakota 

State Water Commission (http://www.swc.state.nd.us/). Availability of groundwater data 

was limited in that the number of individual well observations was reduced to below ten 

prior to 2006. As a result this studies time period was confined by the availability of 

groundwater data. Monthly groundwater well observations were delivered as two text 

files; one represented well observations in feet (observations were converted to meters by 

a multiplication factor 0.3048 for unit consistency) and the second represented site 

inventory including latitude and longitude. These files were spatially joined through well 

identification numbers.   

Groundwater data were filtered in Excel to represent lagged annual conditions 

(i.e. spring-summer and previous fall seasons). Annual mean calculations were 

represented as the total mean of the previous fall (August, September, and October) and 

spring-summer seasons (May, June, July). April observations were used when May 

observations were unavailable, also annual mean calculations for an individual well had 

to include at least four of the six months (two fall and two spring) otherwise that well was 

excluded for that year. Spatial distribution of observation wells spanned an area 22.5 by 

16 km with variability in the number of annual wells (Table 3; Figure 5). 
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Table 3 Number of annual groundwater well observations.  

Year Wells 

2006 22 

2007 30 

2008 30 

2009 30 

2010 27 

2011 29 

2012 27 

2013 24 

 

 

Figure 5 Groundwater well observation distribution across the SNG. 
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LiDAR DEM 

 The LiDAR DEM, obtained from International Water Institute (IWI) 

(http://www.iwinst.org/) and Red River Basin Decision Information Network 

(http://www.rrbdin.org/), is a result of private and government entities working together 

under the guidance of IWI regarding the Red River Basin Mapping Initiative (RRBMI). 

LiDAR acquisition occurred spring 2008 between April 18 and May 20. LiDAR derived 

DEMs were delivered as 2 x 2 km grids (.asc files) at a 1-m spatial resolution, and were 

obtained for the entire area of the SNG landforms and extent of groundwater well 

observations as seen in Figure 4.  Individual tiles were mosaicked and output as a grid 

(.tif) using ERDAS™ 2011. This study uses the LiDAR DEM for elevation, slope and 

application of topographic indices. Elevation units were obtained in centimeters and 

converted to meters for unit consistency. Topography can influence vegetation 

composition, species distribution, and availability of moisture, thus the LiDAR DEM was 

used to generate multiple landscape indicators (TWI, TPI, and depth to groundwater).  

AEROCam Imagery 

AEROCam imagery was obtained from the Upper Midwest Aerospace 

Consortium (UMAC) at the University of North Dakota (UND) and available on the 

Digital Northern Great Plains (DNGP) website (http://dngp.umac.org). AEROCam is a 

three band (NIR, R, G) near-infrared aerial imagery source developed to provide near 

real-time imagery at higher spatial resolutions than currently available from satellite 

sources providing environmental and agricultural information to farmers and researchers.  
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AEROCam was flown once over the SNG on July 30, 2012, at a 2-m spatial 

resolution. Timing of imagery is important when studying vegetation and July is 

significant in that orchids are typically flowering and reaching peak phenological stages. 

All AEROCam images over the SNG were ortho-rectified using the Leica 

Photogrammetry Suite (LPS) tool in ERDAS™ 2011. Average RMSE of tie-point 

triangulation was <0.5 meters and imagery was compiled using the Mosaic Pro tool in 

ERDAS™ 2011. The NDVI was then applied using the Raster Calculator tool using the 

following formula: 

     
       

       
 

where NIR is band 1 and RED is band 2 of AEROCam three band imagery. The NDVI 

grid was then subset down to the extent of the study area and resampled using the 

Resample tool in ArcGIS™ 10.0 to a 1-m resolution. Resampling was performed for 

consistency in spatial resolution with all other landscape indicators. The main limitation 

here is that there is only high-resolution AEROCam imagery available for 2012. NDVI 

values in 2012 across the study area ranged from -0.36 to 0.87 with a mean of 0.35 ±0.3 

(2σ). 

Landsat Imagery 

 The Landsat TM5 sensor has been proven useful for the characterization and 

assessment of vegetation condition, phenology, change detection, and spatial and 

temporal distribution patterns. The sensor has seven spectral bands (six visible bands 

with a 30-m spatial resolution and one thermal with a 120-m resolution) with an eight-bit 
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radiometric resolution, and has a temporal resolution of 16 days. For much of the Earth’s 

vegetative surface this temporal resolution is sufficient to capture important vegetative 

conditions and phenological events. However, temporal resolution is limited by cloud 

cover, reducing the potential of remote sensing applications and the capabilities to detect 

change (Cohen & Goward, 2004; Jackson et al., 2004). From 2006 – 2011 all available 

nearly cloud free Landsat TM5 data were downloaded from the U.S. Geological Survey 

(USGS) website (http://glovis.usgs.gov) for the months of April through October and 

were atmospherically corrected, converted to reflectance values, and subset to the SNG 

using ERDAS™ 2011; NDVI was processed in ENVI™ 4.8 using bands 3 (Red) and 4 

(NIR). 

Depth to Groundwater 

The site inventory file, containing latitude and longitude and well identification 

numbers, was imported into ArcGIS™ 10.0 as point layers. The groundwater well 

observations representing lagged annual means described in the data section were joined 

to the site inventory file based on Site Index (well identification numbers), giving spatial 

reference. A point layer was created for each year (2006 – 2013) representing lagged 

annual mean groundwater elevations in meters. These point layers were used to create 30-

m groundwater DEMs using ordinary krigging in the Geostatistical Analyst tool in 

ArcGIS™ 10.0. A Gaussian model (Kitanidis, 1997) was applied for this interpolation 

with 12 lags and lag size varied annually due to availability of well observations but was 

1200 on average with an RMSE of 0.77 m on average.  
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The offset of the krigged groundwater grids were compared to measured 

groundwater elevations. This refers to the offset from the absolute groundwater 

elevations to the estimated elevations. Average annual groundwater estimations were 

0.10 ±0.78 m (1σ). However, as this study analyzed groundwater elevations relative to 

the land surface and not the absolute relationship, there was no adjustment for this offset. 

The uncertainty (±0.78 σ) is a result of data availability and density of groundwater 

observation wells, and was influenced by only a few wells annually. Efforts toward 

continuity in well observations at higher spatial densities may improve results. 

Groundwater DEMs were generated at a 30-m resolution because spatially 

groundwater surfaces typically change only slightly (10 cm/km) across larger spatial 

areas relative to direction of flow. Much of the change in groundwater surfaces is 

influenced by topography and vertical groundwater fluctuations because of snowmelt, 

rainfall, and evapotranspiration. Groundwater DEMs were used to analyze the depth from 

the land surface to the groundwater surface relative to orchid positions in the landscape 

annually. The LiDAR DEM and groundwater DEMs were used to generate depth to 

groundwater landscape indicators using the Raster Calculator tool in ArcGIS™ 10.0 and 

were output at the same 1-m resolution as the LiDAR DEM. These landscape indicators 

represent the depth from the land surface to the groundwater surface and were used to 

analyze orchid locations and their relationship to the groundwater surface. 
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Topographic Wetness Index 

As previously described TWI is a steady state wetness index, a function of both 

slope and the upstream contributing area. It is proportional to the potential wetness of a 

given location and subsurface lateral transmissivity (Yang et al., 2005; Grabs et al., 2009; 

Moeslund et al., 2013). Components of TWI include a flow accumulation grid and slope 

grid (radians) both derived from the LiDAR DEM. To calculate the TWI, processes 

(described below) were applied using Model Builder in ArcGIS™ 10.0 and the output 

TWI grid was the same 1-m resolution as the LiDAR DEM. 

To produce the flow accumulation grid the LiDAR DEM was filled using the Fill 

tool. This filled any sinks removing small imperfections in the data. The filled DEM was 

then applied to the Flow Direction tool creating a grid representing flow from each cell to 

its steepest downslope neighbor. The algorithm used calculates the proximity of flow in 

only one of eight possible directions separated by 45 degrees and is a single direction 

algorithm which directs flow from each cell to the adjacent cell with the steepest down 

slope gradient. This can result in unrealistic features producing striped features on very 

gentle, long and lower slopes (Yang et al., 2005; Kopecký & Cížková, 2010). The flow 

direction is also less suitable in flatter areas due to undefined flow paths that most likely 

change over time (Grabs et al., 2009). Results influenced by these limitations relative to 

orchid habitat would be most significant in larger flat lowlands such as sedge meadows.  

The flow direction grid was then applied to the Flow Accumulation tool creating a 

grid of accumulated flow into each cell. This flow accumulation grid is then multiplied 
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by the actual area of a grid cell to produce the contributing area. The area of a grid cell is 

then added to the flow accumulation grid to ensure that all flow accumulation cells have 

an area at least the same as itself. The Slope tool was applied to the LiDAR DEM to 

produce a slop grid, in degrees. The slope grid was then applied to the Raster Calculator 

tool to add 0.01 degrees to each cell. This increased the angle forcing the denominator in 

the wetness index to a number greater than zero. The slope grid was then multiplied by 

0.0175 to convert to radians. 

The TWI was then produced through the following formula using the Raster 

Calculator tool: 

        
  

     
  

where As is the specific catchment area (cumulative upslope area draining through a cell 

divided by the contour width orthogonal to the flow direction) associated with i and 

expressed as m
2
 per unit, and βi is the slope angle of i expressed in radians. The specific 

catchment area is a parameter describing the tendency for a cell to receive water and local 

slope is a parameter describing tendency to evacuate water. The TWI can be a measure of 

long-term moisture availability across a landscape (Kopecký & Cížková, 2010; Yang et 

al., 2005; Moeslund et al., 2013), which may be useful in the identification of orchid 

habitat. TWI values across the study area range from 0 to 24 with low values meaning 

almost never saturated and high values always saturated. The mean TWI across the study 

area is 5.4 ±4.48 (2σ). 
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Topographic Position Index 

The TPI compares the elevation of each cell in the LiDAR DEM to the mean 

elevation of a specified neighborhood. TPI’s core method uses the Focal Statistics (mean) 

tool in ArcGIS™ 10.0. The algorithm is simply the difference between a cell elevation 

value and the mean elevation of that cells neighborhood. Positive TPI values represent 

locations that are higher than the mean of their surroundings. Negative values represent 

locations that are lower than their surroundings. TPI values near zero are either flat areas 

or areas of constant slope (Jenness, 2006).   

The TPI was applied using the Land Facet Corridor Analysis tool developed at 

Jenness Enterprises (Jenness, 2006). This tool is an extension for ESRI’s ArcGIS™ and 

was used to produce a TPI. To calculate the TPI, the LiDAR DEM and TPI parameters, 

such as neighborhood shape (circle, annulus, rectangle, and wedge) and radius of 

neighborhood, are used as inputs. A circle neighborhood and a radius of five cells (five 

DEM units) were used in this study. The TPI is then automatically generated by the Land 

Facet Corridor Analysis tool. Other parameters were explored such as neighborhood 

shape and size of radius but there was little difference observed between TPI outputs with 

varying parameters. Species distributions have shown relationships to TPI at multiple 

scales (Guisan, Weiss & Weiss, 1999). Orchid distribution and their topographic position 

in the landscape may also relate to TPI. Also, orchid positions in the landscape can shift 

with changes in habitat influenced by flooding, drought, and groundwater fluctuations. 

TPI values are represented as meters and across the study area values ranged from -1.04 

to 1.29 with a mean TPI of 0 ±0.14 (2σ). 
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Defining Orchid Metrics 

Annual orchid point layers were used to extract landscape indicator (NDVI, TWI, 

TPI, and depth to groundwater) cell values of orchid locations. Annual orchid point 

layers were overlaid onto each landscape indicator for their corresponding year. 

Extraction of cells representing orchid locations was applied using the Extract by Mask 

tool in ArcGIS™ 10.0; if two orchid points fell within one cell, only one record was 

extracted. The extracted orchid cells were converted to point coverage’s and spatially 

joined to the original orchid point attribute data thereby associating each orchid record 

with an NDVI, TWI, TPI and depth to groundwater value. This process was applied to all 

available landscape indicators for each year 2006 – 2013. 

Landscape indicator values of orchid points for each year were applied to a box 

plot in SPSS Inc. for removal of outliers. Outliers were removed because of the natural 

variability of orchid positions in the landscape resulting in spatial and temporal 

variability of orchid distribution. Also, orchid populations across the SNG occur as large 

shifting metapopulations, isolated subpopulations, and as individual outliers (USDA 

Forest Service, 2001; USFWS, 1996). Individual outliers include orchids that may 

emerge, flower, and disperse seed at lower or higher positions in the landscape as a result 

of below or above average moisture conditions. This is related to the orchid’s ability to 

disperse seeds that may persist and be viable until moisture conditions and other 

ecological processes favor establishment and flowering. Outliers could also be a result of 

the varied accuracy of different hand-held GPS units. 
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Following removal of outliers landscape indicator values of orchid points were 

analyzed for descriptive statistics in Microsoft™ Excel to calculate annual orchid metrics 

for each landscape indicator. Annual orchid metrics were used to classify the symbolism 

of each landscape indicator for their corresponding year allowing the classification of 

landscape indicators into orchid habitat, wetland and upland. The depths to groundwater 

orchid metrics were applied to histogram generation in Microsoft™ Excel to analyze the 

distribution of orchids relative the depths to the groundwater surface. Histograms were 

binned every 0.1 meters ranging from 0 – 2 meters. 

Classification of Landscape Indicators 

Orchid metrics derived from landscape indicators (NDVI, TWI, TPI, and depth to 

groundwater) were used for habitat classification across the study area in two ways. First, 

each individual landscape indicator can be classified into three classes by defining the 

landscape indicators based on cells within, below or above orchid metrics. For example, 

depth to groundwater cell values below orchid metrics represent permanent to semi-

permanent wetlands and cell values above represent uplands. For TWI, cell values below 

orchid metrics classify areas that are almost always dry (i.e. uplands) and cell values 

above classify flow paths and areas of accumulation (i.e. wetlands). TPI cell values below 

orchid metrics classify areas lower than their surrounding neighborhood (i.e. wetlands) 

and cell values above classify areas that are higher in elevation than their neighborhood 

(i.e. uplands). The NDVI cell values below orchid metrics classify sparse vegetation, 

soils, and water whereas cell values above classify dense vegetation such as trees (higher 
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photosynthetic activity). The NDVI allows for identification of photosynthetic activity 

and vegetation cover, which other landscape indicators do not. 

Second, orchid metrics and landscape indicators were used to classify orchid 

habitat from non-habitat using the Raster Calculator tool. Two binary (0 and 1) grids 

were produced based on orchid metrics. In the first binary grid values of 1 represent cells 

greater than or equal to the lowest orchid metric. In the second binary grid values of 1 

represent cells less than or equal to the highest orchid metric. These two binary grids 

were then multiplied together producing a single binary grid where values of 1 represent 

cells within orchid metrics, defining the landscape relative to orchid locations. These 

single binary grids represent orchid habitat (1) and non-orchid habitat (0). Annual single 

binary grids were produced for each landscape indicator (NDVI, TWI, TPI, and depth to 

groundwater) based on orchid metrics for their corresponding years and then composited. 

Composites: Habitat Maps 

Single binary grids for their corresponding years were added together using the 

Raster Calculator tool. Except 2012, all years consisted of three landscape indicators 

(TWI, TPI, and depth to groundwater) and when added together a composite grid 

containing four values (0, 1, 2, and 3) is produced. Composite cell values of 3 represent 

areas where all landscape indicators classify orchid habitat. For 2012, the NDVI grid 

contributes another layer producing a five value grid (0, 1, 2, 3, and 4) where cell values 

of 4 are representative of where all landscape indicators classify orchid habitat. The 

resulting composites produce annual habitat maps showing how landscape indicators 
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overlay and synergize. Habitat maps are unable to classify the landscape by orchid 

habitat, wetland, and upland however provide greater definition of orchid habitat through 

classification of core and fringe orchid habitat zones. Habitat maps allowed for analysis 

of these zones relative to percent area and how well they represent orchid point data.  

Validation 

A validation of habitat maps and their ability to classify orchid habitat zones 

based on the overall mean of orchid metrics was conducted using orchid point-based field 

observations from 2013. The average orchid metrics for the period of 2006 – 2012 

derived from landscape indicators and orchid point data were applied to each landscape 

indicator creating single binary grids. Single binary grids were then added together using 

the Raster Calculator tool. This composite produced a habitat map identifying core and 

fringe orchid habitat zones and compared with 2013 orchid point data. Orchid metrics 

applied in this validation are based on the average orchid metrics from 2006 – 2012, 

excluding the NDVI.  

TWI and TPI are steady state landscape indicators changing only with changes in 

orchid metrics. However, depth to groundwater indicators change annually and lagged 

2013 mean groundwater elevations (fall 2012 August, September, October and spring-

summer 2013 May, June, July) were applied in this validation. This validation was 

conducted to determine how well the landscape indicators and orchid metrics define the 

landscape relative to orchid positions in the landscape and habitat distribution. 
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A second validation was done to include the NDVI landscape indicator, however 

NDVI orchid metrics are represented for only 2012 and not an average of orchid metrics 

from 2006 to 2012. This validation included the 2012 NDVI as this landscape indicator 

has proven an important measure of vegetation cover and high-resolution infrared 

imagery was not available for 2013. The author acknowledges that photosynthetic 

activity and vegetation cover vary from year to year making this validation constrained 

by the 2012 NDVI.  
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CHAPTER IV 

RESULTS 

Association of Orchid Data with Landscape Indicators 

Orchid populations consist of metapopulations, isolated subpopulations, and 

individual outliers because of reproduction ecology and dispersal mechanisms 

influencing orchid positions in the landscape and distribution resulting in natural outliers 

amongst populations. Orchid point data also result in outliers because of the varied 

accuracy of hand held GPS units. These factors influence this analysis and to address 

these influences outliers were removed. The numbers of outliers were few and varied 

among landscape indicators and years. Outliers were associated with higher or lower 

elevation and wetter or drier conditions in the landscape. After removal of the outliers, 

orchid metrics (±2 σ) were applied to their corresponding landscape indicators. Depth to 

groundwater orchid metrics were 0.59 – 1.44 m; 1.67 – 8.13 for TWI; -0.12 – 0.11 m for 

TPI, on average (2006 – 2013); and 0.31 – 0.61 for NDVI in 2012 (Table 4).  

Orchid metrics associated with orchid point data and derived from landscape 

indicators (NDVI, TWI, TPI, and depth to groundwater) were used to classify the 

landscape indicators into orchid habitat, wetland and upland. The NDVI-based orchid 

metrics defined the landscape in terms of land cover types and these were aggregated to
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sparse vegetation, water and soils (i.e. wetland), orchid habitat, and tree cover (i.e. up-

land). This is a result of the information provided by infrared imagery and NDVI as an 

assessment of photosynthetic activity and vegetation cover. These classes represent land 

below, within, and above annual orchid metrics. Figure 6 demonstrates each landscape 

indicator and its classification of orchid habitat, wetland and upland for 2012. The 

individual single binary grids represent each landscape indicator and were composited 

into habitat maps to analyze overlaps and synergies.  

Table 4 Annual and mean orchid metrics (±2 σ) for each landscape indicator from 2006 – 2013. 

Landscape 

Indicators 

Orchid 

Metrics 
2006 2007 2008 2009 2010 2011 2012 2013 Mean 

Depth to 

Groundwater 

Low 0.19 0.44 0.79 0.53 0.88 0.86 0.43 0.56 0.59 

High 1.11 1.47 1.40 1.45 1.52 1.44 1.20 1.93 1.44 

TWI 
Low 1.65 1.93 1.53 1.63 0.92 2.70 1.10 1.89 1.67 

High 7.55 9.72 8.78 7.82 7.71 10.73 6.54 6.22 8.13 

TPI 
Low -0.11 -0.16 -0.11 -0.07 -0.15 -0.12 -0.11 -0.13 -0.12 

High 0.10 0.11 0.09 0.06 0.15 0.10 0.16 0.12 0.11 

NDVI 
Low 

      
0.31 

  
High 

      
0.61 

  

TWI and TPI 

Both topographic indices represent their intended landscape properties such as 

flow path and accumulation (TWI) and cells of higher or lower elevations than the mean 

of their neighboring cells (TPI). The mean TWI across the study area is 5.4 ±4.48 (2σ) 

and orchid metrics were 1.67 – 8.13 on average and the mean TPI is 0 ±0.14 (2σ) m with 

orchid metrics of -0.12 – 0.11 m on average. TWI and TPI values across the landscape 

are less variable, relative to orchid positions in the landscape, identifying greater area of 
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Figure 6 Classification of landscape indicators with insets demonstrating orchid metrics: (a) Depth to groundwater 

provided most heterogeneous classification (b) TWI demonstrates orchids occurring near or along flow paths (c) TPI 

demonstrates that orchids can be found at foot and toe slopes of slight elevation changes (d) NDVI classifies vegetation 

condition and land cover.  
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orchid habitat. These results represent a more homogeneous landscape with 88.9% (TPI) 

and 83.4% (TWI) of the landscape classified as habitat on average. 

NDVI 

Landsat imagery proved spatially too coarse because of the topographic 

variability of the landscape that results in distinct vegetative transitions between wetlands 

and uplands. Topographic and vegetative variations occur across the SNG at a finer scale 

than 30 m and thus Landsat is too coarse for this research. AEROCam imagery was 

available for one year limiting NDVI to July 30, 2012. Timing of the imagery is 

significant for analysis of vegetative productivity during orchid flowering and monitoring 

across the SNG. The NDVI resulted in 58.8% of the landscape classified as habitat, 

38.8% as wetland, and 2.3% upland. However, wetland classification includes water, 

soils and sparse vegetation which may represent wetlands and uplands. NDVI orchid 

metrics resulted in a range of 0.31 to 0.61. Wetlands and sparsely vegetated uplands are 

characterized by NDVI values <0.31, and dense vegetation (i.e. trees) by values >0.61.  

Depth to Groundwater 

Depth to groundwater orchid metrics were 0.59 – 1.44 m on average, providing 

the most heterogeneous landscape classification of the SNG. Percent area of the 

landscape was classified as 42.0% habitat, 24.6% as wetland, and 33.4% upland on 

average. In years where orchid metrics classified 64.6% (2013) or 15.8% (2011) of the 

landscape as habitat are over- and under-representations. These results influence the 

overall means because of the orchid point data and groundwater well observations. For 



57 
 

example one third of orchid points in 2013 are confined to a small area within a sedge 

meadow and there were only three orchid points in 2011. Also, groundwater well 

observations varied annually. Table 5 shows the percent area of habitat, wetland, and 

upland for each landscape indicator annually and on average. 

Table 5 Percent area of land classified as habitat, wetland and upland for each landscape indicator annually. 

 2006 2007 2008 2009 2010 2011 2012 2013 Mean 

Depth to  

Groundwater 

         

Habitat 49.8% 58.4% 34.5% 54.2% 19.9% 15.8% 38.6% 64.6% 42.0% 

Wetland 9.0% 2.8% 23.1% 7.0% 57.1% 65.0% 25.2% 7.6% 24.6% 

Upland 41.2% 38.8% 42.4% 38.8% 23.0% 19.2% 36.2% 27.8% 33.4% 

TPI          

Habitat 89.5% 92.5% 86.6% 73.3% 94.9% 90.1% 92.4% 92.0% 88.9% 

Wetland 4.5% 2.1% 5.1% 12.8% 2.3% 3.8% 5.1% 3.7% 4.9% 

Upland 6.0% 5.4% 8.3% 13.9% 2.8% 6.1% 2.5% 4.3% 6.2% 

TWI          

Habitat 82.3% 95.5% 92.9% 85.2% 84.5% 91.0% 70.3% 65.4% 83.4% 

Wetland 17.3% 3.4% 6.8% 14.4% 15.5% 1.9% 29.7% 33.6% 15.3% 

Upland 0.4% 1.1% 0.3% 0.4% 0.0% 7.1% 0.0% 1.0% 1.3% 

NDVI          

Habitat       58.8%   

Wetland       38.9%   

Upland       2.3%   

Composite of Landscape Indicators: Habitat Maps 

Individual landscape indicators made a unique contribution to defining orchid 

habitat. For example, the NDVI identified an agricultural field unsuitable as orchid 

habitat that was included in suitable habitat zones defined by the other indicators. Orchids 

would likely occur in this area but land use practices would be inhibitory. The TWI 

identified the margins of flow paths as likely orchid habitat highlighting the importance 
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of water flows over the land surface and through the subsurface for orchid habitat. The 

TPI indicator classified more of the landscape as orchid habitat than the other indicators. 

However, at finer scales the TPI did identifies the micro-topography that may be 

influencing orchid locations. Depth to groundwater grids classified the landscape relative 

to the relationship between orchid land surface and groundwater elevations; 

demonstrating moisture gradients and vegetative transitions that characterize the 

landscape providing orchid habitat within the mosaic of prairie wetlands and uplands.   

The composite habitat maps allowed for orchid habitat to be defined by all 

landscape indicators (NDVI, TWI, TPI, and depth to groundwater). This provides a finer 

estimation of orchid habitat by defining core and fringe habitat zones, supporting that 

each grid provides its own unique classification significant to the landscape and orchid 

habitat. Yet, classification results indicated that habitat maps are mostly constrained by 

the depth to groundwater landscape indicators. However, the topographic indices along 

with NDVI are useful in defining habitat beyond that of the depth to groundwater 

indicators.  

The 2012 habitat map is the most layered representation of orchid habitat across 

the landscape, as it is the only year including NDVI. These habitat maps demonstrate the 

landscape heterogeneity of the SNG and its vegetative communities relative to orchid 

locations. The 2012 habitat map demonstrates the narrow habitat corridors and rings 

surrounding uplands, transitioning into wetlands characterizing the spatial distribution of 

orchid habitat (Figure 7). 
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Figure 7 2012 habitat map providing spatial identification of core and fringe orchid habitat zones. 
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Core and Fringe Orchid Habitat Zones 

Habitat maps provided identification of core and fringe habitat zones each year. 

Core habitat is defined by areas where all landscape indicators classified orchid habitat 

and is described here as having the highest probability of supporting orchids based on 

orchid metrics and landscape indicators; representing 30.6% of the landscape on average 

(Table 5). Fringe habitat zones are defined by areas where all but one grid classified 

orchid habitat and represents 50.3% of the landscape on average. The identification of 

these habitat zones represents 80.9% of the landscape on average. This suggests that a 

large majority of the landscape is relative to orchid metrics based on landscape indicators 

applied here. However, these are averages for 2006 – 2013 and NDVI was available only 

in 2012. The NDVI adds another indicator that describes vegetation cover relative to 

orchid habitat. This resulted in the 2012 habitat map producing a finer estimation of core 

(21.4%), fringe (30.3%), and overall (51.7%) orchid habitat (Table 6).  

Table 6 Percent area of land classified as core and fringe orchid habitat zones for each habitat map.   

Habitat Zones 2006 2007 2008 2009 2010 2011 2012 2013 Mean 

Core Habitat  36.6% 53.9% 29.6% 35.3% 17.9% 12.7% 21.4% 37.3% 30.6% 

Fringe Habitat  48.9% 38.9% 55.1% 43.2% 63.7% 73.9% 30.3% 48.2% 50.3% 

Core and fringe habitat zones were also analyzed for the percentage of orchid 

points lying within these zones. When orchid points and core habitat zones are compared 

with their corresponding years 85.1% of the orchid points lay within core habitat zones 

on average (Table 7). When all orchid points over time (2006 – 2013) are compared to 

annual core habitat zones, 49.6% lay within on average. These averages are skewed 
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because of the extreme percentages in 2010 and 2011. This is a result of limited orchid 

points in these years and therefore a poorer representation of the landscape and orchid 

habitat. If 2010 and 2011 results are excluded from the average the representation of 

orchid points within core habitat zones is 80.1% (annually) and 45.9% for all orchid 

points (2006 – 2013) on average.          

Table 7 Percent of orchid points lying within core and fringe orchid habitat zones; corresponding annual orchid points 

and all orchid points (2006 – 2013). 

Composites 2006 2007 2008 2009 2010 2011 2012 2013 Mean 

Annual  

Core Orchids 78.5% 80.8% 77.9% 85.0% 100% 100% 76.0% 82.5% 85.1% 

Fringe Orchids 20.7% 17.9% 21.2% 15.0% 0.0% 0.0% 21.9% 14.4% 13.9% 

 

         2006 – 2013  

Core Orchids  62.3% 77.3% 57.5% 55.3% 22.1% 5.5% 50.9% 66.2% 49.6% 

Fringe Orchids  32.7% 20.5% 33.0% 36.4% 64.6% 79.2% 29.8% 29.4% 40.7% 

When considering all orchid points across the entire study period we can see that 

core habitat zones represents 49.6% of orchid points and the majority of remaining points 

are represented in fringe habitat (40.7%). This analysis demonstrates that core orchid 

habitat zones represent ~50% of annual orchid populations; demonstrating that habitat 

maps producing core and fringe habitat zones derived from average orchid metrics may 

be well representative of long-term orchid habitat. Results also support that according to 

the landscape indicators applied here a large percentage of the landscape is associated 

with orchid habitat; indicating the importance of the entire landscape to orchid habitat 

conservation.  
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Validation 

The average orchid metrics (±2 σ), from 2006 – 2012, were applied to landscape 

indicators and composited to create a 2013 habitat map prediction of orchid habitat. This 

validation included no orchid metrics derived from 2013 orchid points. The individual 

topographic indicators classified 90.6% (TPI) and 90.4% (TWI) of the landscape as 

habitat. The depth to groundwater indicator classified 45.0% of the landscape as habitat. 

Even though the NDVI was only available for 2012 it was applied in a second validation 

but orchid metrics were based only on 2012 orchid points with 58.8% habitat. 

The validation habitat maps were analyzed for percent area of core and fringe 

habitat zones and percent of 2013 orchid points within these zones. Table 8 shows the 

habitat maps validation results. The habitat map validation shown in Figure 8, excluding 

the 2012 NDVI, defines 37.4% percent of the landscape as core habitat and 51.5% as 

fringe, and 52.7% of the 2013 orchid points fell within the core zones. When the 2012 

NDVI is included in the validation we can see an exclusion of ~10% of the landscape 

from core and nearly 14% from fringe habitat zones. Yet, the representation of 2013 

orchids is only slightly reduced indicating the importance of the high resolution NDVI.   

Table 8 Percent area of land classified as core and fringe orchid habitat zones and the percent of orchid points lying 

within these zones for 2013 orchid points.  

Habitat Map Validation 2013 w/2012 NDVI 

Core Habitat (area) 37.4% 26.8% 

Fringe Habitat (area) 51.5% 37.8% 

   

2013 

Core Orchids 52.7% 50.7% 

Fringe Orchids 41.4% 39.0% 
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Figure 8 The 2013 habitat map validation (excluding NDVI) predicting core and fringe habitat zones based on average 

orchid metrics from 2006 to 2012 and 2013 groundwater elevations. 
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Land Surface and Groundwater Orchid Elevations 

The depth to groundwater landscape indicator provided the most variable 

landscape classifications from year to year and significantly improved the association 

between orchid observations and habitat maps. This suggested that perhaps the behavior 

of the water table could be a major driver of orchid population dynamics from year to 

year. As a result, more detailed analysis was undertaken to explore this relationship 

between orchid positions in the landscape and the depths to the water table. Figure 9 

shows annual mean land surface and groundwater elevations of orchid points derived 

from the LiDAR DEM and 30 meter krigged groundwater DEMs; demonstrating that 

orchid positions in the landscape correlate with groundwater elevations (R
2
 = 0.87).   

 

Figure 9 Mean orchid elevation at the land surface (green) and corresponding groundwater elevations (blue). 
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Depth to groundwater landscape indicator values of orchid locations were used to 

generate frequency histograms (Figure 10) to analyze the distribution of orchids showing 

that orchid positions in the landscape were on average 1.01 ±0.43 (2σ) m from the 

groundwater surface. In 2006 and 2013 orchid distribution significantly deviated from 

this general range of depth to groundwater. For example, in 2006 orchid distribution 

showed the lowest mean depth to groundwater of 0.65 ±0.46 (2σ) m. This suggests that in 

2006 moisture conditions were below average and orchids were flourishing at lower 

position in the landscape. In 2013 orchid locations exhibit two distribution peaks with the 

highest mean depth to groundwater of 1.24 ±0.68 (2σ). This is likely because of the fact 

that 100 out of 292 orchid point observations were obtained in a large population, within 

a relatively small area. This specific location of orchid habitat is a lower flat sedge 

meadow habitat where groundwater may be slightly further from the land surface, yet 

because of adequate moisture conditions and other ecological processes not explored 

here, a population of orchids was flowering. In 2007, 2008, and 2012 histograms show 

more normal distribution supporting that orchids are located on average 1.01 ±0.43 (2σ) 

m from the groundwater table. The analysis in 2009, 2010, and 2011 was limited by 

insufficient orchid observations.  

Frequency histograms provided detailed information on how orchid populations 

in the landscape may vary due to landscape properties and climate change influencing 

groundwater elevations. This suggests that the orchid is able to adapt to wet and dry 

climatic cycles by maintaining a position in the landscape with appropriate hydrologic 

conditions for survival and propagation.  
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Figure 10 Depth to groundwater frequency histograms demonstrating orchid distribution. 

0

5

10

15

20

25

30

0
0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

O
rc

h
id

s 

Depth to Groundwater (m) 

2006 

0
10
20
30
40
50
60

0
0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

O
rc

h
id

s 

Depth to Groundwater (m) 

2007 

0

10

20

30

40

0
0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

O
rc

h
id

s 

Depth to Groundwater (m) 

2008 

0

5

10

15

20

25

0
0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

O
rc

h
id

s 

Depth to Groundwater (m) 

2012 

0
10
20
30
40
50
60

0

0
.2

0
.4

0
.6

0
.8 1

1
.2

1
.4

1
.6

1
.8 2

O
rc

h
id

s 

Depth to Groundwater (m) 

2013 



67 
 

Grazing Allotments 

 Allotments are categorized into core and satellite orchid allotments based on 

historic observations and geographic distribution (USDA Forest Service, 2001). High 

orchid populations occur consistently in some allotments, but orchids have been observed 

throughout most allotments. The variation between allotments may point to factors 

affecting orchid establishment other than those defined in the habitat analysis. 

To examine allotment influences, relationships between habitat and orchid 

observations were explored for one core allotment (A Annex), five satellite allotments 

(Owego Annex, Berg, Milton Sr., Northrop, and Brown), and one other allotment 

(Griggs), as identified by the USDA Forest Service (2001) (Figure 11). The 2012 habitat 

map was used to analyze the difference in habitat area between allotments, showing some 

variation in percent area of core orchid habitat zones with 18.2% to 28.4% of the 

landscape within allotments classified as habitat. The percent area of core habitat zones 

by allotment allows identification of variations in orchid habitat among allotments 

identifying different orchid habitats representing different slopes (Table 9).    

Table 9 Percent area and slope of core orchid habitat zones within grazing allotments derived from the 2012 habitat 

map. 

Allotments Core Habitat Slope (degrees) 

A Annex 20.7% 4.45 

Berg 28.4% 2.94 

Brown 23.7% 2.92 

Griggs 18.2% 3.37 

Milton Sr. 24.6% 3.56 

Northrop 26.0% 3.37 

Owego Annex 21.6% 4.47 



68 
 

 

Figure 11 Habitat map (2012) of individual grazing allotments classifying core and fringe habitat zones. Allotment 

habitat maps are not to scale. 



69 
 

Some allotments (A Annex and Owego Annex) represent core habitat as narrow 

transition zones or corridors between wetlands and uplands exhibiting steeper slopes 

(4.45 and 4.47 degrees). These allotments contain orchid habitat that exists mainly in 

these narrow transition zones and in some cases result in ring (donut) shaped habitat 

zones around uplands, and long narrow corridors along margins of wetlands. Other 

allotments (Berg and Northrop) represent similar transition zones but exhibit shallower 

slopes (2.94 and 3.37 degrees) and higher percent area of core habitat due to larger flat 

lowlands or sedge meadows. These sedge meadows are represented by larger areas of 

land compared to the narrow habitat zones along wetland margins and transition zones 

between wetlands and uplands. 
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CHAPTER V 

DISCUSSION 

Moisture availability is recognized as the controlling resource of many ecological 

systems (Rodriguez-Iturbe et al., 1999). Moisture conditions present in a heterogeneous 

landscape are more variable at any given time and experience greater hydrologic 

extremes than landscapes representing more homogenous topography (Vivian-Smith, 

2006). Topography controls moisture gradients and vegetation distribution through 

controlling precipitation accumulation and groundwater flow, assuming that groundwater 

elevations follow topography holds or topographic barriers (Grabs et al., 2009; Moeslund 

et al., 2013). Patterns of moisture availability are affected not only by site accumulation 

and groundwater elevations but also by evaporation and evapotranspiration, largely 

controlled by site exposure (Kopecký & Cížková, 2010). Topography also influences the 

amount of incoming solar radiation, thereby influencing these factors. 

This study has shown that the positions of orchids in the landscape and orchid 

habitat distribution can be identified using a few landscape-scale indicators based on 

topography, groundwater elevations, and vegetation cover. The study found a consistent 

relationship between orchid point observations and depth to groundwater. Topographic 

indices (TWI and TPI) identified some of the fine-scale landscape relationships in
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demonstrating that orchids occur near margins of flow paths and can be located on foot 

and toe slopes of minute changes in elevation. The NDVI contributes a significant 

indicator in characterizing vegetation cover and land use. These landscape indicators 

identified core and fringe habitat zones defining orchid habitat over the SNG. This study 

highlighted a number of methodological and ecological issues that are discussed in the 

following sections. 

Depth to Groundwater 

The depths to groundwater landscape indicators suggest that annual fluctuations 

in groundwater elevations may significantly influence the availability of moisture and 

orchid positions in the landscape. This influence results in orchids spatially shifting 

horizontally, but more so vertically in the landscape. This is because of dispersal 

mechanisms and fluctuations in groundwater elevations influencing moisture conditions 

across the landscape. Groundwater elevations are influenced by both natural and 

anthropogenic factors such as precipitation events, drought, flood, ditching, and 

irrigation. Sustainably managing groundwater resources is important to the conservation 

of orchid habitat (USDA Forest Service, 2001; USFWS, 2009), yet challenging when 

managing a landscape to maintain the highest level of ecological function within the 

economic and social constraints imposing (Zinko et al., 2005).     

The unique landscape of the SNG was well classified by the depth to groundwater 

landscape indicator. Permanent to semi-permanent wetlands likely exhibiting open water 

or cattail (Typha) species are defined by the depths to groundwater below orchid metrics. 



72 
 

Uplands or dunes likely exhibiting sparse vegetation and areas of exposed sand are 

defined by depths above orchid metrics. In 2012, orchid metrics ranged from 0.43 to 1.2 

m above groundwater levels. This resulted in the classification of orchid habitat, wetlands 

and uplands in the landscape. This classification can be seen in Figure 12 and when 

visually compared with the 2012 NAIP (National Agriculture Imagery Program) imagery 

the classification is well representative of the landscape. 

 

Figure 12 Depth to groundwater landscape indicator (2012) and 2012 NAIP imagery demonstrating orchid metrics and 

orchid locations in the landscape. 
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TWI and TPI 

TWI and TPI were useful landscape indicators providing orchid habitat 

information based on the landscape properties they enhance. TWI identifies flow paths 

and where accumulation or flooding is most likely to occur based on topography and 

slope, demonstrating that orchid locations may occur near margins of these wetter facets. 

TPI identifies cells exhibiting higher or lower elevations than their surrounding 

neighborhood cells; representing areas of steeper slopes that may be more vulnerable to 

disturbances such as below average moisture conditions, livestock grazing, or invasive 

species. At a finer scale TPI identifies the micro-topography of the landscape 

demonstrating that orchids may be located on the foot and toe slopes of minute changes 

in elevation. Both indices provide information that is useful in excluding areas of very 

low habitat potential such as areas likely prone to flooding or disturbance. They also 

exhibit flow paths and slight elevation differences that could be influencing orchid 

locations. These indices provide an understanding of orchids spatially across the SNG 

relative to topographic landscape properties. 

TWI and TPI are useful tools providing information on the spatial distribution of 

landscapes and moisture conditions. These indices have been used to infer the position of 

groundwater tables, soil moisture conditions, and classification of landscape features such 

as wetlands and uplands, ridges, slopes and valleys (Grabs et al., 2009). However, these 

indices are dependent on the quality and resolution of the DEM from which they were 

derived (Grabs et al., 2009). Fortunately a high resolution LiDAR DEM was publically 

available for the SNG.  
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TWI and TPI are steady state indices representing the landscape with limitations. 

To the author’s knowledge there is little that can be done to improve the TPI as a 

landscape indicator. The TPI is likely limited by its simple methodology, characteristics 

of the landscape, and spatial resolution of the LiDAR DEM. The TWI is based on the 

assumption that surface topography is the main controlling factor of groundwater 

elevations and flow paths. However, other factors such as subsurface topography or 

hydrogeological characteristics of the aquifer may need to be considered (Grabs et al., 

2009). TWI may be improved in vegetation analyses by using a multi-direction flow 

algorithm to improve accuracy and thus provide an enhanced representation of the 

landscape relative to moisture conditions (Kopecký & Cížková, 2010).  

The flow routing algorithm applied here by the Flow Direction tool in ArcGIS™ 

10.0 is a single flow direction. Single and multi-direction flow algorithms refer to how 

flow is passed from each grid cell. The single flow algorithms allow flow to only one 

neighboring downslope cell whereas the multi flow algorithm allows flow to more than 

one neighboring downslope cell depending on neighborhood size and degree of flow 

dispersion (Kopecký & Cížková, 2010). With that said, the TWI single flow direction 

algorithm used here does demonstrate that orchids can be found along or near margins of 

flow paths. To the author’s knowledge this relationship has been suggested by the USDA 

Forest Service (2001) and USFWS (2009), but not spatially demonstrated over the 

landscape until now.     
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NDVI 

The SNG is a mosaic of prairie wetlands and uplands with vegetative transitions 

that provide habitat suitable for orchids. Here the NDVI demonstrates these habitats 

based on vegetation cover and orchid metrics in 2012. The NDVI is useful in the 

classification of orchid habitat and associated vegetative communities providing a less 

homogenous classification of the landscape than the topographic indices. The NDVI also 

distinguishes land use. The identification of different land use was a noticeable 

contribution to the identification of habitat, excluding an agricultural field (Figure 5).  

NDVI is a useful tool for terrestrial ecology in gaining a better understanding of 

how vegetation dynamics and distribution affect diversity, life history traits, distribution 

patterns and population dynamics (Pettorelli et al., 2005). Annual acquisition of high 

resolution infrared imagery is necessary for application of NDVI over the SNG. This 

would enable researchers to better understand these vegetative communities and the 

impacts of land use (i.e. livestock grazing) relative to orchid habitat. Availability of 

continuous near real-time high-resolution aerial imagery such as AEROCam or high-

resolution multispectral satellite imagery such as WorldView-2 would greatly contribute 

to this research. 

Core and Fringe Habitat Zones 

The composite habitat maps provide a more layered representation of orchid 

habitat than did individually classified landscape indicators. Habitat maps reduce the 

ability to classify between wetlands and uplands yet allowed for the classification of core 
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and fringe habitat zones. Orchids exhibit patchy distribution patterns and are spatially 

shifting through time, thus core habitat zones may shift and change through time relative 

to landscape properties such as groundwater elevations. Core habitat zones can be 

described as narrow transition zones between wetlands and uplands or larger flat moist 

lowlands known as sedge meadows. These habitat zones are spatially distributed 

throughout the landscape. Just because an area is classified as core habitat does not 

necessarily mean orchids occur there. Orchid metrics applied to landscape indicators 

simply demonstrate that landscape properties in these zones are likely favorable. 

However, these zones do identify areas to search for orchids, especially where little or no 

monitoring has occurred in the past. 

Fringe habitat zones are described here as buffers of core habitat, where 

conditions may or may not favor orchids. Orchids can be found in these habitats because 

of dispersal mechanisms and favorable conditions promoting orchid growth. Fringe 

habitat is always much larger by area and can be described as the full potential extent of 

orchid habitat based on the orchids ability to disperse and take advantage of available 

resources. Fringe habitat provides areas where populations can expand and small isolated 

populations or individuals have established. These habitats may not support larger 

populations but do provide opportunity for individuals or small isolated populations to 

complete their life cycle and disperse seed allowing potential for orchid establishment 

and reproduction. In 2012, core and fringe habitat zones represented 51.7% of the 

landscape and the 2013 validation classified 64.6% (with 2012 NDVI) and 88.9% 
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(without 2012 NDVI), which is a significant indication of how important vegetation 

cover and conservation of orchid habitat is to orchid populations on the SNG.  

Identification of habitat zones by allotment is significant in demonstrating that by 

percent area there is little difference between allotments. The small differences there may 

be are explained by landscape properties and orchid habitat within these allotments. For 

example, orchid habitat may vary across allotments depending mainly on topography and 

groundwater elevations. Orchid habitat may exist in areas defined by steeper slopes 

resulting in narrow orchid habitat zones within a mosaic of wetlands and uplands. Other 

allotments exhibit more long and narrow habitat zones along large wetland margins and 

large flat lowlands with moist to wet conditions defined as sedge meadows. With 

allotments showing fairly similar classification by percent area of core orchid habitat 

there are obviously other landscape properties or ecological processes that play 

significant roles in the presence or absence of orchids. Many of these ecological 

influences have been discussed such as symbiotic fungi, land use, and availability of 

resources.   

Defining Orchid Habitat on the SNG 

Observations during collection of orchid point data on July 15 and 16, 2013, 

indicated that orchid habitat exhibited greater diversity than non-orchid habitat across the 

SNG. Upland landscapes exhibited drier surfaces and composed of sparse vegetation 

dominated by tallgrass prairie species, Kentucky bluegrass and leafy spurge. Wetlands 

can be described as having a variety of shapes, sizes, and types including but not limited 
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to open water wetlands and wetlands dominated by vegetation such as cattails, rushes, 

willows, sedges, and prairie cordgrass. Orchids are an indicator species of these wetlands 

and like all wetlands are heavily influenced by seasonal and annual variations in 

precipitation, groundwater elevations, and evapotranspiration rates (USDA Forest 

Service, 2001). Changes induced by climatic cycles influence spatial shifts in vegetation 

dominance and orchid positions in the landscape. Many of these changes are driven by 

topographic shifts in moisture gradients influenced by groundwater elevations. 

Orchid habitat is characterized by moisture conditions suitable for germination, 

seedling establishment and reproduction. Patchy spatial distribution and variability of 

orchid habitats are demonstrated here and described as long narrow zones along large 

wetland margins, rings (donuts) around uplands transitioning into an interconnected 

system of wetlands, and larger areas of flat lowland sedge meadows. Observations were 

that these habitats were dominated by species such as rushes and sedges. Prominent 

associated species also included willows, cattails, redtop (Agrostis gigantean), northern 

reedgrass, and prairie cordgrass. Other observed associated species were goldenrod 

(Solidago spp.), lead plant (Amorpha canescens), dogbane (Apocynum spp.), American 

licorice (Glycyrrhiza lepidota), sweet clover (Melilotus spp.), and leafy spurge. These 

observations of habitat are consistent with other descriptions of associated vegetation 

composition and diversity amongst orchid habitats (Bjugstad & Fortune, 1989; Sieg & 

King, 1995; USFWS, 1996; Sieg & Wolken, 1999). 
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CHAPTER VI 

CONCLUSIONS 

The glacial dune landscape of the SNG is characterized by high groundwater 

elevations and a unique undulating topography. In such landscapes climate, topography, 

and groundwater are important properties influencing vegetation dynamics and landscape 

processes such as species distribution and moisture gradients affecting orchid habitat 

(Zinko et al., 2003). This unique landscape exhibits spatially distributed wetlands 

creating a mosaic of prairie wetlands and uplands that can have a wide variety of shapes, 

sizes, and elevations (Winter, 2000). These landscape properties influence vegetation 

transitions and diversity resulting in spatially patchy distribution patterns. Orchid habitat 

and their associated vegetative communities are highly influenced by their interactions 

with groundwater. These habitats exhibit complex flow systems resulting in a wide 

variety of interactions between habitats influencing not only associated vegetative 

communities but orchid population dynamics (Winter, 2000). 

Landscape indicators derived from high-resolution infrared imagery, a high 

resolution LiDAR DEM, groundwater elevations, and orchid point-based field 

observations were useful in the classification of core and fringe orchid habitat zones. 

TWI and TPI are steady state indices with orchid metrics changing annually relative to
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the orchid’s position in the landscape. These landscape indicators classified 88.9% (TPI) 

and 83.4% (TWI) of the landscape as orchid habitat on average providing less varied 

classification. Yet, it is the fine scale landscape properties that these indices enhance that 

contribute to the definition of orchid habitat. Enhanced properties included flow paths, 

accumulation, and slight elevation changes influencing orchid positions in the landscape. 

The NDVI, only available in 2012, classified 58.8% of the landscape as habitat. The 

NDVI allowed for the identification of vegetation cover and land use and demonstrated 

their importance. Depth to groundwater indicators classified 41.9% of the landscape as 

orchid habitat on average, demonstrating that annual variations in orchid distributions are 

likely dependent on changes in moisture availability influenced by topography and 

groundwater. This relationship between orchid locations and groundwater elevations was 

significant in allowing the identification of depth to groundwater orchid metrics of 1.01 

±0.43 (2σ) m on average. 

Compositing landscape indicators created habitat maps that classified core and 

fringe orchid habitat zones. Habitat maps only change relative to annual landscape 

indicators and orchid points but additional parameters could be investigated for their 

potential influence on orchid habitat such as exposure to solar radiation influencing 

evapotranspiration rates. Habitat maps allowed for the classification of core (30.6%) and 

fringe (50.3%) orchid habitat zones on average. These zones together represent 

approximately 80% of the landscape. Data limitations of these habitat maps are that 

NDVI is only available for 2012 and in 2010 and 2011 there were very few orchid point 

data. These limitations influence results of overall averages. What is likely more 
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representative of orchid habitat zones is the 2012 composite characterizing 21.4% as core 

and 30.3% as fringe representing 51.7% of the landscape. Orchid habitat zones may 

provide a useful basis for focusing field surveys and allocating conservation efforts 

(Parvianinen et al., 2008), and may be used in identifying areas most in need of 

protection or restoration, design of new survey techniques, and understanding of the 

landscape indicator that influence spatial distribution of orchid habitat (Zinko et al., 

2005).    

Through validation of habitat maps it was determined that predicted core habitat 

zones represented 52.7% of orchid point-based field observations in 2013; representing 

37.4% of the landscape. This is significant in justifying that orchid metrics and core 

orchid habitat zones are valid in representing orchid locations over time and useful in 

conservation management of the SNG, preservation of orchids, and future research.  

There is no spatial identification of orchid habitat within grazing allotments. This 

study provides this identification and could be used to study possible relationships 

amongst habitat zones relative to vegetation composition, diversity, moisture availability, 

soil nutrients, or presence of symbiotic fungi. This could provide a greater understanding 

of orchid habitat within specific allotments and identify differences between allotments 

potentially answering why some allotments exhibit higher orchid populations and other 

do not. This study may also benefit or lead to adapting management of individual grazing 

allotments.  On average 23.3% of the landscape within grazing allotments were classified 

as core orchid habitat providing a greater understanding of the landscape within 

individual grazing allotments relative to orchid locations.  
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This study demonstrates that orchid distribution patterns and habitat zones can be 

well represented on the basis of topography, groundwater elevations, vegetation cover, 

and orchid point-based field observations. Results support Bjugstad and Fortune (1989) 

in that orchid habitat distribution is widely dispersed across the SNG, and also supports 

Li et al. (2009) in that seed distribution in sand dune grasslands vary within and among 

habitats, as data and research indicate that orchid’s topographic position in the landscape 

varies within and among habitats. The 2012 habitat map classifying 21.4% of the 

landscape as core orchid habitat is comparable to the estimate from Bjugstad and Fortune 

(1989) where they state that vegetative communities associated with orchid habitat cover 

roughly 14% of the Hummock and Swale landform.  

This study provides a landscape assessment of the SNG and a means of mapping 

orchid habitat. Orchids are indicator species of wetland communities but also likely 

climate change, making this research important for the SNG in managing and monitoring 

changes on the landscape. The methodology described here could contribute to decisions 

about biodiversity surveys, conservation management, and identification of areas with 

high species rarity such as orchid habitat. Landscape indicators applied here offer 

comprehensive tools for further research of processes that govern orchid distribution 

patterns and population dynamics across the SNG. Providing knowledge that can be used 

to predict changes related to climate and land use, and their associated hydrologic 

alterations (Zinko et al., 2005).   
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Future Research 

This study supports continued research within the SNG to monitor and explore the 

relationships among orchids and their habitat relative to groundwater elevations, 

vegetation (using near real-time high-resolution infrared imagery), topography (using a 

high-resolution LiDAR DEM), and other landscape indicators. Further assessment of 

orchid habitat and its relationship to groundwater can be further supported through higher 

densities of well observations and continuous monthly or bi-monthly monitoring of these 

wells. Orchid habitat zones identified in this study can be applied in conservation 

management strategies, monitoring and searching for orchids, and provides spatial 

information for studying various ecological communities within the SNG. Also, 

relationships between topography, groundwater elevations, and rare plant species likely 

exist elsewhere, and this methodology could be applied in other landscapes characterized 

by same or similar landscape properties; such as in northwest Minnesota or Manitoba 

where other large populations of orchids occur.   
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