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ABSTRACT 

Vehicular communication is one of the promising prospects of wireless communication capable 

of addressing the issues related to road safety, providing the framework for “smart” or 

“intelligent” cars. To provide a reliable wireless link for vehicular communication extensive 

channel modeling and measurements are required. In this thesis a novel cost-effective 

implementation of vehicular channel capacity measuring system using off-the-shelf devices is 

proposed. Then using the proposed system, various channel measurements are performed. The 

measurement results are utilized to examine multi-antenna systems for vehicular communication.  

The challenge in developing an efficient network between cars is to understand the nature of 

random channels that changes with the location of antenna, surroundings and obstacles between 

the transmitting and receiving vehicles. In addition to measurements, in this thesis, the channel 

behavior has been studied through simulation. Wireless InSite from Remcom was used as a 

simulation tool to study different vehicular channels in environments with different structures to 

see the impact of obstacles and surroundings in the performance of the vehicular network. In 

particular, the behavior of different antenna locations on channel capacity of 2×2 Multiple Input 

Multiple Output (MIMO) systems is investigated. Channel capacities that are obtained from 

simulation and measurements provide the information about the changing nature of the channel 

and outline the essential considerations while choosing the antenna positions on the transmitting 

or receiving vehicles. 
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CHAPTER 1  

INTRODUCTION 

In recent years, vehicular communication has become very important subject of study among 

researchers, due to its potential to increase road-safety and reduce traffic congestion. There have 

been tremendous amount of effort and investment from the government and private organizations 

to develop a means for highly efficient communication between Vehicle to Vehicle (V2V) and 

Vehicle to Infrastructure (V2I). Foreseeing the requirement of identical bandwidth for V2V 

communication, Federal Commission Communication (FCC) has allocated 5.9 GHz band also 

termed as Dedicated Short Range Communication (DSRC) to be used by Intelligent 

Transportation Systems (ITS) for such communications. This thesis concentrates upon this 

subject and aims to develop an efficient tool to calculate the capacity of highly random vehicular 

channel for effective transmission and reception of data using Multiple Input and Multiple 

Output (MIMO) technology. 

1.1 Motivation 

Vehicular wireless communication has been of interest to researchers in the recent years mainly 

to ensure safety and mobility. As reported in [1], there are over 5.8 million vehicular crashes per 

year on U.S roadways, resulting in 37,000 deaths annually. These crashes have a direct economic 

burden of $230.6 billion and are one of the leading causes of death. Traffic congestion is an 

$87.2 billion annual drain on the U.S economy, with 4.2 billion hours and 28 billion gallons of 

fuel spent sitting in traffic, the equivalent of one-work week and three week worth of gas every
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 year. In addition to this, vehicles that are stationary, idling and traveling in a stop-and-go pattern 

due to congestion emit more carbon dioxide (CO2), nitrous oxide (NOx) and methane than those 

travelling in free flow conditions [1]. The necessity and demand to address this blazing issue is 

the most motivating factor to contribute in some level to this field of research. There are already 

numerous efforts and proposal put forwarded to end this problem. ITS program of the U.S. 

Department Of Transportation (USDOT) is focusing on the integration of vehicles and road 

infrastructure into intelligent systems [2]. An overview of Vehicle Infrastructure Integration 

(VII) is presented in [3], which deals with the progress of this research on different part of 

United States. 

Various companies are investigating different solutions for ITS. Use of LIght Detection And 

Ranging (LIDAR) and RADAR sensors, Global Positioning System (GPS) and digital pattern 

recognition technique has already enabled Google to achieve the unprecedented benchmark [4-6] 

in the form of Google CarTM. This not only represents the latest technological advancement in 

this field of research but also opens the way for motor vehicle industries to invest in research to 

guarantee an efficient system. One of the important challenges for such technology to work is the 

Non Line Of Sight (NLOS) communication, this happens for example in the case of overtaking 

by a car randomly from the traffic, or in the case of intersection where the visibility of the 

passing car is obstructed by building. The Google CarTM depends on Line Of Sight (LOS) 

communication between sensors and may not work properly in such cases. The MIMO systems 

take advantage of NLOS situations to improve the channel quality. Therefore, these systems are 

the main focus of this thesis.  

This thesis discusses the behavior of the wireless random channel and its relation to different 

factors like MIMO channel capacity, antenna locations, antenna height, K-Factor, phase of the 
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received signal, and multipath. To explain these factors, this thesis firstly explains the use of 

simulations based on ray-tracing techniques to create a virtual environment. Later, visualizing 

the appropriate height, location of antenna, Software Defined Radio (SDR) is used for building a 

test bed to measure the signal strength. The obtained data is further investigated to analyze the 

relation between antenna location and MIMO channel capacity. 

1.2 Thesis Outline 

The important previous work and ideas that motivate and drive this thesis are summarized in 

Chapter 2. The literature review will introduce the reader to the subject of vehicular 

communication and its standards, MIMO technique for V2V communications, capacity of such 

systems and simulation and measurements in this field. 

In Chapter 3 the multiple antenna systems for V2V communication is introduced. This thesis 

describes a simulation technique for creating a 3 Dimensional (3D) virtual vehicular 

environment. Wireless InSite™ from Remcom Inc. has been utilized to import the maps of 

University of North Dakota (UND) college area and Walmart area, in Grand Forks, North 

Dakota. The maps were first extracted from Google Maps. For V2V communication, two cars 

are included in the simulation for transmitting and receiving ends. Multiple antennas were placed 

on each antenna. The channel behavior due to change of antenna location is studied by 

implementing 2×2 MIMO systems. 

Chapter 4 is devoted to NLOS channels and the MIMO systems for these situations. To create a 

complete NLOS scenario, an obstacle is placed between transmitting and receiving cars at 

varying distances. The effect of blockage on the MIMO channel capacity is discussed in this 

chapter. 
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Chapter 5 describes the test-bed and measurement scenarios and results. After the appropriate 

antenna locations were figured out from the simulations, a test-bed that utilizes SDRs was used 

to measure the propagation channels in real scenarios. The selected locations were the same as 

those in the simulation. Multiple antenna locations were considered and by combining different 

channels between antennas different MIMO systems were examined. National Instruments’ 

LabVIEW Software was used to control and operate the test-bed.  

Chapter 6 is a discussion of future work and the conclusions we made. This chapter gives 

guidelines of how this project can be extended to produce a functional benchmarking tool set. 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter is a discussion of the research, challenges and opportunities in the field of vehicular 

communication. This includes theoretical background of V2V communication, and progress 

involved in developing the protocols related to it. It also focuses on the modeling and 

measurement of vehicular propagation channels and introduces MIMO technique with its ability 

to boost the channel capacity of the system. It further discusses relevant simulations and 

measurement technique adopted to address the issue of enhancing and estimating channel 

capacity for vehicular communications. 

2.1 Introduction to Vehicular Communications 

Vehicular communication is an ad hoc communication technology. Termed as Vehicular Ad Hoc 

Network (VANET), the most popular one is working within the DSRC band. Although being in 

its infancy stage, it is gaining importance for road safety and other applications. DSRC band is 

75 MHz of spectrum centered at 5.9 GHz [7], which is allocated by FCC in October 1999 [8] for 

ITS applications to increase traveler safety, reduce fuel consumption and pollution, and continue 

to advance nation’s economy [9]. VANETs comprises V2V and V2I communications and is 

based on Wireless Local Area Network (WLAN) technologies [10]. The purpose of inter-

vehicular communication (Figure 1) is to increase range and coverage of location and behavior 

awareness of vehicles, which is envisaged to develop effective and highly developed pro-active 

systems. The idea behind V2V communications is to make all vehicles capable to 
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communicate information like position, speed, and heading periodically to each other in 

cooperative awareness messages, in order to derive an environmental picture which could be 

used for prediction of movement [11]. In recent years, the field of inter-vehicle communication 

has witnessed a large increase in research and development. The key factor that has made it 

possible is the wide adoption of IEEE 802.11 technologies. The availability of cellular networks 

has certainly allowed voice and data communication services to drivers and passengers, but this 

technology is not well suited for certain direct V2V or V2I communications.  

With the availability WLAN transceivers and development in GPS since the late 1990s, 

VANETs can now offer direct communication between vehicles, to and from Road-Side Units 

(RSUs), which helps to exchange hazard warnings or information about the current traffic 

situation with minimal latency. This has also helped to contribute to the research in the field of 

inter-vehicular communication [12].  

 
               Figure 1: Inter vehicular communication [10]. 

The vital objectives of the research on inter-vehicle communication are to increase road safety 

(which includes: reduction in the number of accidents). This is pivotal in yielding transportation 

efficiency (including reduction in the number of traffic jams) which will eventually reduce the 

impact of transportation on the environment (reduction in consumption of oil/gas) [1].   
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2.2 Development of V2V Communication Standards 

Due to the importance of these objectives for the individual (in terms of safety) and the nation (in 

terms of economy), various projects are either underway or were recently completed. Several 

consortia were set up to explore the potential of VANETs. These consortia include several 

constituencies, including the automotive industry, the road operators, tolling agencies, and other 

service providers. These projects are funded substantially by national governments [11]. Bodies 

like IEEE (Institute of Electrical and Electronics Engineers), CALM (Communications, Air-

Interface, Long and Medium Range), C2C-CC (Car to Car Communication Consortium) are 

some notable ones. The architecture of Wireless Access in Vehicular Environment (WAVE), 

CALM and C2C-CC is depicted in Figures 2-4 and their comparison is summarized in Table 1. 

These ITS projects are really pushing the envelope to address the problem of traffic congestion 

and road safety [13].  

 
Figure 2: Wave architecture [13]. 
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Figure 3: CALM architecture [13].  

 
Figure 4: C2C-CC architecture [13]. 

       Table 1: Comparison of C2C-CC, CALM and WAVE [13]. 
Parameters/Protocols C2C-CC CALM WAVE 

Promotion identity 
Industrial consortium of 

car manufactures 
Standard body Standard body 

Focused on 
Car to Car multi-hop 
and geo-networking 

Multiple media  
(802.11p, DSRC, W-

LAN etc.) 

Only 802.11p at MAC 
layer for purely 

emergency messaging 

Physical layer 
DSRC and other WLAN 

standards 
Combination of 

different technologies 
DSRC only 

Wireless technology 
Support for media 

dependent and media 
independent part 

Interface abstraction 
Only physical layers 
specific to 802.11p 

Target applications Safety Non safety and critical Safety 

Support for application 
types 

Active safety, traffic 
efficiency, infotainment 

Non-IP CALM aware, 
IPV6 CALM aware, 

IPV6 legacy 

Safety non-IP, 
non-safety IPV6 

Addressing Schemes Geo-routing Mainly IP Addressing IP addressing 

Routing Schemes 
Based on MAC protocol 

(receiver based) plus 
IPV6 

Mobile IPV6 
Different channel 
allocation IPV6 
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IEEE introduced WAVE; CALM is the International Organization for Standardization’s (ISO’s) 

proposal for VANETs. C2C-CC, which is backed up by European Car Industry, proposed 

C2CNet architecture for safety applications. Besides, other projects namely NOW, COMeSafety, 

CVIS, SAFESPOT, COOPERS, GST, GEONet, FleetNet, GrooveSim, CARLINK, CarTalk2000 

have hit the surface which is all carried by European countries [13]. In a nutshell, the U.S., 

European Union and Japan hold the frontiers of the research and development in the field of 

inter-vehicle communication. Figure 5 describes the milestones achieved by these frontiers in the 

course of time whereas Tables 2-3 describe the DSRC standards and VANET developments in 

the U.S., Japan and European Union, respectively.   

Table 2: DSRC Standards in Japan, Europe and the U.S. [14]. 

Features 
JAPAN 
(ARIB) 

EUROPE 
(CEN) 

USA 
(ASTM) 

Communication 
Half-duplex (OBU)/ 
Full duplex (RSU) 

Half-duplex Half-duplex 

Radio Frequency 5.8 GHz band 5.8 GHz band 5.9 GHz band 
Band 80 MHz bandwidth 20 MHz bandwidth 75 MHz bandwidth 

Channels 
Downlink: 7 

Uplink:7 
4 7 

Channel Separation 5 MHz 5 MHz 10 MHz 

Data Transmission rate 
Down/Up-link 
1 or 4 MBits/s 

Down-link/500 Kbits/s 
Up-link/250 Kbits/s 

Down/Up-link 
3-27 Mbits/s 

Coverage 30 meters 15-20 meters 1000 meters (max) 

Modulation 2-ASK,4-PSK 
RSU: 2-ASK 
OBU: 2-PSK 

OFDM 

ARIB: Association of Radio Industries and Business 
CEN: European Committee for Standardization 
ASTM: American Society for Testing and Materials 
OBU: On-Board Unit 

     ASK: Amplitude Shift Keying 
PSK: Phase Shift Keying 
OFDM: Orthogonal Frequency Division Multiplexing  

 

 

 

 



10 

Table 3: VANET development and trials in the U.S., Japan and European Union [14]. 
Country VANET development and trials 

United States 

Wireless Access in Vehicular Environments (2004) 
Intelligent Vehicle Initiative (IVI) 

( 1998-2004) 
Vehicle Safety Communications (VSC) (2002-2004) 

VSC-2 
(2006-2009) 

Vehicle Infrastructure Integration (VII) (2004-2009) 

European Union (EU) 

Car-to-Car Communications Consortium (C2C-CC) 
FleetNet 

(2000-2003) 
Network On Wheels (NOW) 

(2004-2005) 
PReVENT (2004-2008) 

Cooperative Vehicles and Infrastructure Systems 
(CVIS) 

(2006-2010) 
Car Talk 2000 
( 2000-2003) 

Japan 
 
 
 
 

Advanced Safety Vehicle Program (ASV-2) 
(1996-2000) 

ASV-3 
( 2001-2005) 

ASV-4 
(2005-2007) 

Demo 2000 and JARI ( Japan Automobile Research 
Institute) 

 

American Society for Testing and Materials (ASTM), the standards writing group, approved the 

ASTM-DSRC Standard for DSRC operations on July 10, 2003. This standard is based on IEEE 

802.11a physical layer and IEEE 802.11 Media Access Control (MAC) layer and was published 

as ASTM E2213-03 [7] in September 2003. FCC’s report and order, issued in February 2004, 

has established service and licensing rules to govern the use of the DSRC band. In addition, it 

adopted ASTM E2213-03  [7] to ensure the inter-operability and robust safety/public safety 

communications among these DSRC devices nationwide. Currently, the ASTM E2213-03 

standard is being migrated to the IEEE 802.11 standard [8].  
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Figure 5: Milestone is vehicular communication [10].         

Unlike the fixed wireless networks, the vehicular traffic scenarios have potential barriers in form 

of varying driving speeds, traffic patterns, and driving environments due to which IEEE 802.11 

MAC operations suffer from significant overheads when used in vehicular scenarios. For 

example, to avoid latency in vehicular safety communications, high-speed data exchanges are 

required to establish a network of connections between desired nodes that may include multiple 

handshakes which makes the process too complex. To illustrate this, let us take an example of a 

vehicle encountering another vehicle coming in the opposite direction, the duration for possible 

communication between them is extremely short [15] making it difficult to establish 

communications. To meet these challenging requirements of IEEE MAC operations, the DSRC 

effort of the ASTM 2313 working group migrated to IEEE 802.11 standard group which 
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renamed DSRC IEEE 802.11p as Wireless Access in Vehicular Environment (WAVE) [16]. 

WAVE will become a standard that can be universally adopted across the world by incorporating 

DSRC into IEEE 802.11 compared to traditional DSRC. It is worth noting that IEEE 802.11p is 

limited by the scope of IEEE 802.11 which strictly works at the MAC and physical (PHY) layers 

(Figure 6) [17]. The operational functions and complexity related to DSRC are handled by the 

upper layers of IEEE 1609 Standards. These standards define how different applications will 

function in WAVE environment, based on the management activities defined in IEEE P1609.1, 

the security protocols defined in IEEE P1609.2, and the network-layer protocol defined in IEEE 

P1609.3.  

 
Figure 6: WAVE, IEEE 1609, 802.11p and the OSI reference model [17]. 

                   

The IEEE 1609.4 resides above 802.11p and this standard supports the operation of higher layers 

without the need to deal with the physical channel access parameters. Various  IEEE 

1609/802.16e standards are summarized in Table 4 [14].  
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Table 4: IEEE 1609/802.16e standards [14]. 
IEEE Standard Description 

IEEE Standard 1609 

Defines the overall architecture, communication model, management 
structure, security mechanisms and physical access for wireless 
communications in the vehicular environment, the basic architectural 
components such as OBU, RSU and the WAVE interface [18]. 

IEEE Standard 1609.1-2006 
Enables the interoperability of WAVE applications, describes major 
components of the WAVE architecture, and defines command and storage 
message formats [19]. 

IEEE Standard 1609.2-2006 
Describes security services for WAVE management and application 
messages to prevent attacks such as eavesdropping, spoofing, alteration, 
and replay [20]. 

IEEE Standard 1609.3-2007 

Specifies addressing and routing services within a WAVE system to 
enable secure data exchange, enables multiple stack of Upper/lower layers 
above/below WAVE networking services, defines WAVES short message 
protocol (WSMP) as an alternative to IP for WAVE applications [21]. 

IEEE Standard 1609.4-2006 
Describes enhancements made to the 802.11 Media Access Control layers 
to support WAVE [22]. 

IEEE Standard 802.16e 
Enables interoperable multi-vendor broadband wireless access products 
[23]. 

 

2.3 V2V Communications’ Prospective Applications  

The 5.9 GHz band consists of seven channels, each 10 MHz, which includes one control channel 

and six service channels, as depicted in Figure 7 [24]. 

 
Figure 7: DSRC channel frequency assignments [24]. 
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DSRC, which involves V2V and V2I communications, is expected to support both safety/public 

safety and non-public safety applications. However, priority is given to safety applications since 

the non-public safety use of the 5.9 GHz band would be inappropriate if it leads to degrading the 

performance of safety/public safety applications [8]. This is attributed to the fact that safety 

applications are meant to save lives via warning drivers of an impending dangerous condition or 

event in a timely manner in order to take corrective actions. Therefore, response time and 

reliability are basic requirements of safety applications. DSRC PHY uses Orthogonal Frequency-

Division Multiplexing (OFDM) modulation scheme to multiplex data. Along with the successful 

deployment of IEEE 802.11a WLAN services and devices in recent years, OFDM has gained 

increased popularity in the wireless communication community due to its high spectral 

efficiency, inherent capability to combat multi-path fading and simple transceiver design. In a 

nutshell, the input data stream is divided into a set of parallel bit streams and each bit stream is 

then mapped onto a set of overlapping orthogonal subcarriers for data modulation and 

demodulation. All of the orthogonal subcarriers are transmitted simultaneously. By dividing a 

wider spectrum into many narrow band subcarriers, a frequency selective fading channel is 

converted into many flat-fading channels over each subcarrier, if the subcarrier spacing is small 

compared to the channel coherence bandwidth. Thus, a simple equalization technique could be 

used in the receiver to combat the inter-symbol interference [8]. As explained further in [14], 

there are three different possibilities of communication configurations in ITS as depicted in 

Figure 8. These include inter-vehicle, vehicle-to-roadside, and routing-based communication. In 

inter-vehicle communication, a message-relaying concept is utilized where a vehicle in front 

broadcasts the message, primarily the emergency events to the vehicle behind it and the vehicle 

behind it does the same.  
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(a) 

 

(b) 

 

  (c) 

Figure 8: V2V communication prospective applications (a) Intervehicle communication (b) vehicle-to-
roadside communication (c) routing based communication [14]. 
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In V2I communication, there is periodic exchange of information between RSU and On Board 

Unit (OBU) inside vehicle. RSU periodically broadcasts the message to the vehicle in its vicinity 

and the vehicle updates the RSU about the information it received from the nearby RSU or 

vehicle. In routing based communication, a vehicle acts as router between a vehicle in its front 

and back to relay the emergency event messages. The communication inside a vehicle however 

is supported by different technologies, like IEEE 802.15.1 (Bluetooth), IEEE 802.15.3 (Ultra-

wide band) and IEEE 802.15.4 (Zigbee), and it has its own importance for a reliable system. 

Additional emphasis has also been given to the development of safety application (e.g. collision 

avoidance, and road hazard notification) versus non-safety applications (e.g. trip planning and 

infotainment), for obvious reasons. Among others, Cooperative Collision Warning (CCW) is an 

important class of safety applications that target the prevention of vehicular collisions using V2V 

communication [25]. The ultimate goal of CCW is to realize the concept of “360 degrees driver 

situation awareness” [26-28], whereby vehicle alert driver situation of impending threats 

without expensive equipment. CCW applications are generally characterized by the periodic 

broadcast of short messages bearing status information (e.g. location, velocity, control settings) 

that neighboring vehicles can use, for instance, to warn the driver of an impending collision [25]. 

Other relevant work on CCW can be found in [8, 9, 29-32]. Since enormous potential 

opportunities exist for inter-vehicle communications, VANETs and ITS have to deal with the 

challenge of security problems. The information being relayed in V2V communication is 

definitely sometimes confidential and vulnerable too. With several tens or hundreds of 

microprocessor installed in the vehicle in ITS scenarios [33], the computational  process is really 

complex exposing it to the possibilities of breach of the security. The attackers are classified with 
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a three dimensional approach: “insider versus outsider”, “malicious versus rational”, and “active 

versus passive” as explained in [34]. Zeadally et.al [14] have classified the possibilities of 

security breach as threats to availability, authenticity and confidentiality. A lot of work has also 

been focused on characterizing the wireless channel used by DSRC applications.  

2.4 Vehicular Propagation Path 

In [35] a GPS-enabled channel sounding is presented that was used to obtain field measurement 

for various speeds and LOS conditions. Channel sounding is defined as the capability to measure 

the Channel Impulse Response (CIR) with any standard wireless networks and node. The 

objective of processing the CIR to attain key parameters such as Power Delay Profile (PDP), 

Delay Spread, Doppler Spread, Ricean K-Factor, and Signal to Noise Ratio (SNR). These 

parameters are important to realize because of their impacts on security and authenticity of safety 

messages being sent, especially when delay spread and Doppler spread are present, to cause Inter 

Channel Interference (ICI) resulting in signal attenuation and smearing of packets within the 

same channels during transmission. Averaged power at the receiver at different instants of time 

is described by the Average Power Delay Profile (APDP), from which the  Root Mean Square 

(RMS) delay spread is evaluated [36]. The various channel metrics like pathloss, signal fading, 

delay spread, Doppler spread, and angular spread has significant importance in modeling of 

vehicular propagation channels which leads to the adoption of appropriate antenna system. In 

[37] it is shown how path loss, Doppler spectrum and coherence time depend on both vehicle’s 

speed and separation. Channel sounding is used to understand the vehicular propagation 

channels. The development of efficient V2V communication systems requires understanding of 

the underlying propagation channels [38]. The detailed description about vehicular propagation 

channels is explained in [39]. In a wireless channel, the signal propagating from the transmitter 
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(TX) to the receiver (RX) takes several paths resulting in fading, delays, echoes and variation in 

the received signal strength over time. The contributions of the various propagation paths, i.e., 

amplitudes and phases, and their respective delays define the CIR [39]. As explained in [39], 

pathloss and fading determine the instantaneous Signal-To-Interference plus Noise Ratio (SINR) 

which impacts the performance of the channel. For a given frequency, the received power level 

in decibels (dB) is modeled as: 

 ���� & �� ' 10�log-�  . �
��

/ 0 12 0 3 (1) 

 

where d is the distance, P0 is the power level at the reference distance d0, n is the pathloss 

exponent, and 12 and Y are the large-scale and small-scale fading contributions, respectively. 

The RMS delay spread is calculated from APDP and gives the coherence bandwidth of the 

channel. The channel is supposed to have the same transfer function or the CIR within the 

coherence bandwidth. The coherence bandwidth   ���	 is estimated as, 

 ���	 8  1
2:���

 (2) 

 

where, ��� is the RMS delay spread of the channel. The delay spread is more related to time 

varying nature of the signal due to multipath, but it does not really deal with the time varying 

nature of the channel itself. The Doppler spread and the coherence time quantifies this nature of 

channel and gives the idea of how fast the channel changes and how much a pure sinusoidal 

carrier is smeared over a frequency band. The coherence time of the channel can be estimated as: 

 
��	 8  1
2:��

 (3) 

 



19 

where ��is the Doppler spread which is a function of relative velocity of mobile, and the angle � 

between the direction of motion of the mobile and direction of arrival of the scattered waves 

[40].  

Finally, another key quantity for the design and evaluation of vehicular antennas is the angular 

spread. As discussed previously, a propagating signal generates multiple copies also termed as 

MultiPath Components (MPCs) while travelling from transmitter to receiver. The large angular 

spread at the receiver end supports the diversity gain whereas the small angular spread indicates 

power gain by beamforming.  

When we are dealing with vehicular propagation channel, the contribution of above discussed 

five channel metrics hugely depends on the random and varying vehicular propagation 

environment. Traditionally, propagation environment is grouped as urban, sub-urban, rural and 

dense environments. Each one of these environments has its own characteristic feature like 

number of lanes, width of streets, vicinity of buildings to the road, traffic density, etc. However, 

when we take the movement of transmitter and receiver into considerations, cases like overtake 

scenario and intersection come into play in vehicular communication. The latter two scenarios 

play a pivotal role in designing and defining prototype for specific scenarios for VANETs 

applications [39]. There are, however, various other application-specific scenarios for which this 

classification is insufficient and where there is a need for dedicated  channel characterizations 

[41]. Pre-crash and post-crash warnings are a couple of examples of application specific 

scenarios. Example of pre-crash warnings includes intersection collision avoidance and 

cooperative merging assistance, whereas post-crash warnings are intended to facilitate traffic 

flow after the occurrence of a traffic accident by broadcasting a message with the accident’s 

location so that the approaching vehicles can circumvent the accident. In [42], it was investigated 
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that the success of the transmitted warning message also depends on the availability of LOS, 

which has the high possibility of getting obstructed in intersection case or by a large vehicle, but 

on the other hand is also capable of yielding more number of propagation paths. This helps us to 

figure out two important things: first, “antenna placements” and second, “NLOS friendly 

technology”. Even though the antenna design methodology for V2V antennas is already well 

explored, predominantly the conventional automotive mounting concepts affect the overall 

system performance metrics and significantly contribute to its limits [43, 44]. It is explained in 

[45], that the “antenna placement” has a major influence on above mentioned effects, e.g., a roof-

mounted position is less likely to suffer from LOS obstruction and ultimately defines the quality 

of the radio link and limits its performance metrics. Due to multipath propagation caused by 

NLOS scenarios which effects all the channel metrics as discussed in [39], we need a technology 

which exploits the various propagation paths caused by obstruction in LOS.  

2.5 MIMO in Vehicular Communication 

MIMO technology [46] promises to increase the range of communication via beamforming, 

improving the reliability of communication via spatial diversity, increasing the throughput of the 

network via spatial multiplexing and managing multiuser interference due  to the presence of 

multiple transmitting terminals [47]. MIMO, inherently has some important characteristic 

features which are listed in [48, 49]. Array Gain, Diversity Gain, Multiplexing Gain, Co-Channel 

Interference reduction are a few characteristics that may be improved by MIMO.  

Array Gain: Due to availability of multiple antennas at both transmitter and receiver sides, 

MIMO system can exploit array gain simply by coherently combining signals from different 

antennas which results in increase of SNR.   
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Diversity Gain: Exploiting multiple independent fading paths either in time, frequency or space 

to transmit the signal yields diversity gain of the system. At the receiver end, multiple copies of 

the message signal can be attained which would eventually improve the performance and the 

reliability of the system. On the transmitter side, however, correlated data can be sent through 

independent fading paths exiting between transmitter and receiver.  

Spatial Multiplexing Gain: Unlike diversity gain, spatial multiplexing exploits the spatial 

dimension of the channel to increase the capacity for no additional power or bandwidth 

expenditure. This is achieved by transmitting independent data signals simultaneously parallel on 

the same frequency. The tradeoff between diversity gain and multiplexing gain is discussed in 

[50].  

Interference Reduction: With the knowledge of user’s Channel State Information (CSI), 

multiple antennas can be used to attain the spatial signature of signal and interferes to reduce the 

interference. This can be done by beamforming towards the origin of signal and nulling towards 

that of interferers. Interference reduction plays a key role in complimenting spatial multiplexing 

and diversity, to optimize the performance of MIMO in interference-limited dense multi-user 

settings. In addition,  the importance of adopting MIMO for VANETs is discussed in El-keyi et. 

al [47]. The key benefits are mentioned:  

MIMO versatility best matches diverse applications and scenarios: With the versatility of 

MIMO system from beamforming, reducing interference to spatial multiplexing, MIMO seem to 

be the best suited for the diverse scenario produced in V2V communications.  

MIMO best exploits the highly dynamic V2V channel: Due to random nature of the V2V 

propagation channel, traditional antenna system fails to deliver a better performance. In this 



22 

context, MIMO system has the potential to exploit the multipath fading creating the opportunity 

for diversity and multiplexing gain.  

Broadband: When it comes to communication, never-ending hunger of customers for fast 

connectivity has always been a challenge. It is now quite clear that Single Input Single Output 

(SISO) radios, e.g., radios based on IEEE 802.11p DSRC Standard [7], will not be enough to 

support High Definition Video (HDV) with 20 Mbps requirement per stream of HD IPTV with 

12-15 Mbps per stream, due to the theoretical, interference-free data rate limit of 27 Mbps 

specified by the IEEE 802.11p standard. MIMO VANETs constitute a natural extension and key 

part of the Mobile Broadband vision. The broadband support of MIMO brings an ample 

opportunity in both safety usage and infotainment.  

Reliable Communications: More than anything else, the prime objective of any system is to 

provide reliable and secure communication especially in case of V2V communication, which has 

its direct applications to save lives and avoid crashes on the road. MIMO technology seamlessly 

lends itself to reliable communications due its inherent “diversity” benefits manifested through 

well-known signal processing and pre-coding techniques at the transmitter side, beamforming 

and Space-Time Coding (STC) [47] . 

2.6 MIMO Capacity 

It is a fact that MIMO systems offer a significant capacity gain over a traditional SISO system. In 

[51] the author defines the channel capacity as a measure of how much information can be 

transmitted and received with a negligible probability of error. Since the aim of this work is to 

estimate the channel by calculating the channel capacity for MIMO systems, it is very important 

to understand the MIMO system model and its essential parameters.     
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Figure 9: A MIMO system model with N transmitter and M receiver and channel matrix H [49]. 

 

 

MIMO system is represented by a general notation of input /output relation: 

 ; & �x 0 � 
 

(4) 

 

where x is the  ��� = 1� transmit vector, y is the ��� = 1� receive vector, HHHH is the ��� = ��� 

channel matrix and nnnn is the ��� = 1� Additive White Gaussian Noise (AWGN) vector at a given 

instant of time. A general entry of the channel matrix is denoted by {hij}. This represents the 

complex gain of the channel between the jth transmitter and ith receiver. With a MIMO system 

consisting of �� transmit antennas and �� receive antennas, the channel matrix is written as: 
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In a rich scattering environment with NLOS, the channel gains \���\ are usually Rayleigh 

distributed. If � and � are independent and normal distributed random variables, then \���\ is a 

random variable [51]. As explained in [52], a Rayleigh channel model have its own equation for 

HHHH parameter. The Rayleigh channel model for HHHH ��� = ��  channel matrix�  has independent 

and identically distributed (i.i.d.), complex, zero mean, unit variance entries: 

 f�� & Normal h0, -
√Hk 0 √'1 . Normal �0, -

√H �  (9) 

                                                    

Once we have the above descripted parameters, the ergodic (mean) capacity of a Rayleigh 

complex AWGN MIMO channel can be expressed as [52, 53] 

 l &   ! m logHndet���� 0  ��
oH�
  ����pq (10) 

 

This can also be written as: 

 l &   ! m logHndet���� 0  �
�
  ����pq (11) 

 

 where, � & rG
2M is the average SNR at each receiver branch. ���  is the ��� = ��� Identity matrix. 

HHHHT is the Hermitian transpose (complex conjugate transpose) of channel matrix HHHH. The above 

equation of MIMO channel capacity can be further analyzed by diagonalizing the product matrix 

��� either by Eigen Value Decomposition (EVD) or Singular Value Decomposition (SVD). 

Our primarily interest is SVD which converts all the elements on the diagonal of  ��� to zero, 

except for first k elements. The number of non-zero singular matrix k equals the rank of the 

channel matrix. This operation reduces the channel capacity equation to:  
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where #$ are the eigenvalues of the the singular value decomposed ��� matrix. The maximum 

capacity of a MIMO channel is reached in the unrealistic situation when each of the �� 

transmitted signals is received by the same set of �� antennas without interference. It can also be 

described as if each transmitted signal were received by a separate set of receiving antennas. 

Also, when the channel is known at the transmitter, the maximum capacity of a MIMO channel 

can be achieved by using the water-filling principle [54] on the transmit covariance matrix. The 

capacity is then given by 

 l &   !m u logH .1 0 %�
�

��
 λ�/q

w

�x-
 (13) 

 

where  %� is a scalar, representing the portion of the available transmit power going into the ith 

sub channel.  

2.7 Simulation and Measurement 

It is now clear that study of MIMO systems for vehicular communications is an important part of 

establishing such systems. This section is dedicated to the study of the literature about the work 

that has been done in the related field. There are various publications on this topic including the 

estimation of the channel capacity or channel parameters using both simulations [55-57] and 

measurements [35, 37, 38, 41-43, 58-73]. The work presented in [57] is based on  ray-tracing 

simulation of the channel.  
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We also chose to use a commercially available ray-tracing software, Wireless-InSite® from 

Remcom [74]. This tool is capable of simulating a realistic 3D traffic models that can be used to 

find optimal configurations. Parameters like Received Signal Level (RSL), PDP, and delay 

spread, Doppler spread, and Ricean K-Factor can be evaluated and represented in graphically. 

Multipath travelled by electromagnetic waves can also be studies as explained in [75] which can 

be useful to calculate the channel capacity and analyze it with different antenna configurations 

and placement.  

For the measurement of channel parameters in real time scenarios we designed and implemented 

a test-bed using SDRs. SDRs were selected due to their low cost and ease of implementation. 

Different scopes of using SDRs are discussed on [68-73]. In [68], Universal Software Radio 

Peripheral (USRP) modules, the widely used and documented off-the-shelf SDR kits, were used 

to find the range of reception between RSU and OBU, for ARIB STD-T75 standard (and 

equivalent WAVE standard used in Japan, Table 2). Packet Error Ratio (PER) and channel 

power was measured in this study using USRP modules. In [70, 71], a SDR simulator was 

designed for testing various baseband transceivers for both DSRC and Ultra Wide Band (UWB) 

communications. The system accounts for slow and fast fading as well as frequency selective 

fading. It includes two types of waveform codes, Doppler spread and delay spread. The software 

processing includes modules that simulate a fading channel generator, interpolator, register bank 

and multipath signal generator. The Doppler spectra calculated by the simulator and obtained by 

measurements were compared for a slower speeds and lower frequency (2.4 GHz and were up 

scaled to faster speeds and 5.9 GHz) data and the spectra are found to be similar. In [69] another 

use of USRP modules is shown, where the IEEE 1609.x standard is implemented on the USRP 

radio modules. Using GNU Radio (that is included in the USRP modules) gives an easy way to 
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manage complex WAVE layer stacks. A low bit rate version of the PHY layer was implemented, 

as higher bit rate version as stipulated by the standard was not possible due to communication 

limitations between processing Personal Computer (PC) and USRP. The USRP modules used to 

implement PHY layer work at 2.4 GHz. In [72], the  authors demonstrate an in-house prototype 

model of the OMIcar, a model car with a sensor cluster for autonomous driving and equipped 

with SDR and various sensors and reader. In the research sponsored by Toyota, [73] 

Reconfigurable Packet Routing-Oriented Signal Processing Platforms (RPPP) is proposed to 

dynamically adapt a Field Programmable Gate Array (FPGA) based SDR which has multi-

channel capabilities. 

2.8 Summary 

In this chapter a brief literature review of V2V and V2I communication and standards was given. 

The importance of channel modeling and MIMO channel to exploit maximum channel capacity 

was discussed and a few examples of pervious work on channel simulation and measurements 

were reviewed. 
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CHAPTER 3  

MULTIPLE ANTENNA SYSTEMS FOR VEHICLE TO  

VEHICLE COMMUNICATIONS 

In this chapter we study the channel behavior and particularly the use of MIMO systems in V2V 

communication. The study performed in this chapter is entirely based on simulation. First the 

method of creating a 3D virtual vehicular environment is explained. Wireless InSite™ from 

Remcom Inc. has been utilized for all the simulations. Two major scenarios were considered. 

The first scenario was a location selected on campus at the University of North Dakota (UND), 

in Grand Forks, North Dakota (referred to as college area). The second scenario was a location 

close to commercial and residential buildings in the vicinity of Walmart, Grand Forks, North 

Dakota (referred to as Walmart area). The exact building locations and dimensions were 

imported from Google Maps. In this chapter our focus is on V2V communication without any 

blocking obstacles. Although, due to antenna locations, some channels did not have LOS (NLOS 

channel), these scenarios did not happen because of blocking vehicle or building obstruction. 

The car located in the back was considered to be transmitting end and the front car was 

considered to be receiving end. Multiple antennas were placed on both cars. The behavior of 

different locations of antennas on the channel capacity for different possible 2×2 MIMO setups 

was studied.  
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3.1 Methodology 

Wireless InSite is a ray-tracing electromagnetic simulation tool for predicting the effects of 

buildings and terrain on the propagation of electromagnetic waves. It predicts how the locations 

of the transmitters and receivers within an area affect the signal strength. It models the physical 

characteristics of the rough terrain and urban building features, performs the electromagnetic 

calculations, and then evaluates the signal propagation characteristics [3]. The frequency range 

opted for our simulation was from 5.855 to 5.925 GHz which is allocated to DSRC and WAVE 

channels.  

3.1.1 System Set Up 

We used half-wave dipole antennas at both TX and RX ends. The systems work around 5.9 GHz 

(wavelength of 0.053m) center frequency with 10 MHz bandwidth. There were 15 dipole 

antennas mounted on the top, front and rear sides of the cars. The antennas were overlaid in 5 

columns and 3 rows. The distance (front to back) between two cars was 15 meters. The 

transmitting power in both the scenarios was selected at 0 dBm.  

Figure 10 gives the overview of the antennas’ layout on the cars. Each column is named as a 

“route” in Wireless InSite, e.g. antennas 1, 2 and 3 correspond to route 1. Table 5 summarizes 

the spacing between each two antennas and center-to-center distances between each pair of 

routes. The spacing between elements in each route was uniform. 
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Figure 10: Layout of antenna positions and their assigned numbers in transmitting and receiving vehicles. 

 
 

 

 Table 5: Spacing between antennas. 

Antenna No./Route No. Spacing (m) Spacing (wavelength) 

1-2, 2-3 (Route 1) 0.50 9.43 

4-5, 5-6 (Route 2) 0.35 6.60 

7-8, 8-9 (Route 3) 0.35 6.60 

10-11, 11-12 (Route 4) 0.35 6.60 

13-14, 14-15 (Route 5) 0.50 9.43 

Route 1 and Route 2 1.07 20.19 

Route 2 and Route 3 0.40 7.55 

Route 3 and Route 4 0.35 6.60 

Route 4 and Route 5 1.60 30.19 

 

3.1.2 Environment Modeling 

In the simulation, we used materials like bricks for the building and asphalt for the road. Also, 

wood is used for trees. The details of material selection for each scenario and assumed heights 

are summarized in Tables 6 and 7. The height of antenna element depends on the surface on 
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which it is mounted. Antennas at the rear or front sides of the car have heights of 0.95 m (0.91 in 

case of college area), which is smaller in comparison to those mounted on the roof at 1.35 m. In 

Section 3.2 the impact of height on system performance is discussed. Google Maps was used to 

delineate the exact location of buildings. The image of each scenario was imported into Wireless 

InSite and the environmental set up was built. Figure 11 show the maps extracted from Google 

Maps and their implementation in simulation set up and the distances between each car and the 

closest interferers are given. The effect of this difference in the performance of the system will 

be discussed in Section 3.2. 

Table 6: Material selection for simulation in the college area. 
Feature Description Type Height (m) 

Terrain Wet earth DHS 0.00 

Babcock Hall Brick OLD 6.00 

Harrington Hall Brick OLD 6.00 

Gillette Brick OLD 6.00 

Road Asphalt DHS 0.10 

Cars 
PVC, Metal, 

Glass 
OLD, PEC, 

OLD 
1.35 

PVC: PolyVinyl Chloride, DHS: Dielectric Half-Space, OLD: One-Layer Dielectric, 
PEC: Prefect Electric Conductor 

 
Table 7: Material selection in the Walmart area. 

Feature Description Type Height (m) 

Terrain Wet Soil DHS 0.00 

Walmart Brick OLD 9.00 

Sam’s-Club Brick OLD 9.00 

Buildings 

1,2,3 
Brick OLD 6.00 

Road Asphalt DHS 0.10 

Cars 
PVC, Metal,  

Glass 
OLD, PEC, 

OLD 
1.35 

Tree 
Garden 

Wood OLD 3.00 

PVC: PolyVinyl Chloride, DHS: Dielectric Half-Space, OLD: One-Layer Dielectric, 
PEC: Prefect Electric Conductor 
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         (a)                           (b)    

 

 

   

 

 

(c)                                                                (d) 

Figure 11: Environment modelling in wireless insite (a) College area, Google Maps, (b) college 
area, simulation setup,(c) Walmart area, Google Maps, and (d) Walmart area, simulation setup. 
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3.1.3 Implementing MIMO System 

The application of MIMO systems has primarily been in the case of NLOS scenarios which are 

mainly due to blockages in the transmission of signals. In NLOS scenarios, signal travels through 

multipath and arrives at the receiver at different angles. This gives rise to channel diversity that 

can be used in MIMO systems to improve the channel capacity [39]. In Figure 12, the signal has 

to reach from antennas on the TX car to the antennas on the RX car, which might or might not be 

in the LOS. In such cases, paths followed by the signal takes either the direct path or the 

multipath due to reflection from the ground, as shown in Figure 12 (a), or from the surrounding 

obstacles (building and trees in our case), as shown in Figure 12 (b). The availability of multiple 

antenna elements at both ends allows us to choose desired antenna location to form a MIMO 

system. We have chosen various possible 2×2 MIMO systems (2 transmitting antennas and 2 

receiving antennas) and compared them in terms of their capacities. The channel capacity of the 

MIMO system is calculated by: 

 l &   logHndet���K 0  �
��

 ����p (14) 

     

where, ρ is the receiver SNR, HHHH is the channel matrix, I nR is the identity matrix, and HHHHT is the 

Hermitian or conjugate transpose of HHHH. All matrices have the size of  nT×nR where nT  is the 

number of transmitter antennas and nR  is the number of receiver antennas [76].  

The occurrence of the multipath depends on the vicinity of the interfering object. The closer the 

obstacle is, the greater the multipath is, as shown in Figure 12 (b) and (c). While the paths with 

maximum power in both scenarios were similar, the number of multipath elements in the 
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Walmart area is less than that in the college area. This is mainly due to the differences in the 

distances between the cars and the closest objects. 

                  

 

                

 

 

3.2 Results and Discussions  

Tables 8 and 9 show the relation between received power level of antennas and their locations 

with respect to antenna positions in the college area, whereas Tables 10 and 11 show the same 

for the Walmart area. For antennas located on the rooftop, the received powers by antennas are 

very similar (Tables 8 and 10). However, the received power for antennas located at the rear or 

 

 

 

 

(a)                                                             (b) 

 

 

                

           

                                                              (c) 

Figure 12: Path travelled by the wave in college and Walmart area (a) Direct path and multipath, (b) 
multipath in college area, and (c) multipath in Walmart area. 
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front positions vary. From Tables 9 and 11, for example, RX 1 accumulates highest power being 

the closest to TX 15, whereas RX 15 receives the least power. 

Table 12 shows the capacities of six different antenna positions in the TX and RX car for both 

scenarios yielding different capacity values. These positions were chosen from 225 different 

possibilities. We identified these 6 cases as the most revealing ones. The capacities of the MIMO 

systems were calculated using (14). The calculated capacity is compared with the maximum 

capacity calculated using a 2×2 identity matrix and the average Rayleigh channel capacity. For 

mean Rayleigh capacity for a 2×2 MIMO over 1000 iterations of AWGN channels were 

generated and the average value of the channel capacity was taken [52]. The capacity for 2×2 

identity matrix channel and the 2×2 Rayleigh channel for 20dB SNR are 10.30 and 7.90 

bits/s/Hz, respectively. Table 12 should be viewed in conjunction with Table 13 that shows the 

Ricean K-Factor for the 6 chosen cases. Ricean K-Factor is defined as the power ratio of the 

LOS component to the diffused component [77]. The higher values of K-Factor imply that direct 

path is stronger compared to the multipaths’ power. Hence, the K-Factor has direct effects on the 

performance of MIMO systems. Small K-Factor values are associated with richer multi-path 

environments and should provide higher capacities [78]. “Mean (K)” in Table 13 represents the 

average of K-Factors produced in any selected cases by taking an average of K-Factors over the 

four possible channels. 

The results for the first 4 cases are easy to comprehend and important to understand. Channel 

capacities in the Walmart area are generally greater than those in the college area, also the K-

Factor in the Walmart area in all 4 cases is less than those of the college area. The antenna 

spacing for both scenarios in the first 4 cases are presented in Table 5. Cases 2 and 4 yield 

maximal capacity values as the spacing between antennas is 0.70m (13.20λ) as compared to the 
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spacing between antennas in Cases 1 and 3, i.e. 0.35m (6.60λ), which is similar to many MIMO 

systems [79]. Results of the K-Factor and capacities in Cases 5 and 6 are riveting and may draw 

any researcher’s attention. First, despite having the same K-Factor value for NLOS condition of 

Case 5, the capacity of the college area is higher than that of the Walmart area. In Case 5, 

transmitters are in the rear of the car with antenna height 0.95m, which is clearly obstructed by 

glass that extends to the roof at the height of 1.35m. Hence, the entire signal are either reflected 

back or scattered before reaching the receiver in front of the RX car. This shows the importance 

of proximity of the obstacle to yield more multipaths. As shown in Figures. 11 (b) and (d), the 

obstacles in the college area are closer to the TX and RX cars compared to the Walmart area, 

which eventually boosts up the channel capacity of college area for that antenna position. Also, 

the K-Factor of both areas of Case 5 are 0 (-∞  in dB) suggesting a rich scattering environment 

with NLOS, and the HHHH matrix similar to Rayleigh fading channel [6]. Their respective capacities 

are also around the mean Rayleigh capacity. However, the capacities are lower than Cases 1 and 

3, which have similar antenna spacing. It should be noted that the value of K-factor in Case 6 for 

both scenarios is very low compared to the first 4 Cases, despite being the most prominent LOS 

position. In an attempt to investigate the reason behind this, we found that the height of the 

antenna element plays a crucial role. Initially, the “Mean (K)” for the Walmart area for Case 6 

was 0, which increased to 0.33 when we increased the antenna height merely by 0.05m.   

Figures 13 through 18 show the capacity of 2×2 MIMO systems with respect to SNR ranging 

from 0 to 20 dB. These figures correspond to the antenna position and the scenarios described in 

Table 12.  
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Table 8: Power received by different receivers on rooftop with respect to the corresponding transmitter antenna for 
college area. 

 

TX 

Received Power by Receiver Number (dBm) 

7 8 9 10 11 12 

7 -65.56 -69.89 -67.24 -68.19 -66.83 -65.75 

8 -66.41 -66.27 -66.35 -66.23 -65.42 -66.45 

9 -68.29 -67.99 -67.71 -68.12 -68.42 -69.65 

10 -65.73 -68.48 -65.80 -68.68 -67.26 -64.77 

11 -68.73 -66.74 -64.61 -65.20 -66.53 -66.08 

12 -67.64 -67.16 -67.48 -68.53 -69.36 -68.00 
 

 
Table 9: Power received by different receivers on rear and back with respect to the corresponding transmitter 

antenna for college area. 

 

TX 

Received Power by Receiver Number (dBm) 

1 2 3 13 14 15 

1 -78.56 -84.42 -85.08 -89.69 -104.76 -81.94 

2 -82.55 -80.77 -76.05 -89.81 -86.73 -95.46 

3 -70.91 -78.17 -74.48 -100.75 -94.19 -92.11 

13 -66.97 -65.38 -63.59 -84.14 -80.79 -76.08 

14 -64.34 -67.35 -59.09 -81.55 -82.50 -86.50 

15 -58.45 -65.87 -60.32 -84.55 -77.28 -88.91 
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Table 10: Power received by different receivers on roof top with respect to the corresponding transmitter antenna for 

Walmart area. 

 

TX 

Received Power by Receiver Number (dBm) 

7 8 9 10 11 12 

7 -80.5 -85.16 -83.10 -72.78 -76.16 -79.02 

8 -81.18 -76.84 -99.76 -83.51 -84.72 -82.49 

9 -83.74 -84.43 -84.97 -81.15 -86.38 -97.73 

10 -61.85 -69.38 -67.49 -99.83 -99.96 -100.09 

11 -61.41 -63.53 -65.64 -84.28 -84.26 -85.76 

12 -62.49 -72.05 -75.61 -89.98 -82.95 -85.17 
 

 

 

Table 11: Power received by different receivers on rear and back with respect to the corresponding transmitter 
antenna for Walmart area. 

 

TX 

Received Power by Receiver Number (dBm) 

1 2 3 13 14 15 

1 -71.41 -67.77 -69.50 -71.18 -70.20 -67.19 

2 -67.79 -71.82 -69.27 -70.53 -68.96 -70.19 

3 -69.59 -69.25 -69.66 -67.27 -70.15 -71.39 

13 -70.06 -68.09 -68.02 -67.03 -72.78 -68.87 

14 -68.06 -69.93 -68.09 -72.87 -67.52 -70.64 

15 -68.08 -67.95 -72.53 -69.10 -70.50 -66.90 
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Table 12: Table showing the effect of different antenna set up on channel capacity (b/s/Hz) with SNR=20dB. 

Cases 
Antenna 

Position 
Capacity Scenario 

1 
TX(7-8), RX(7-8) 8.52 College 

TX(7-8), RX (7-8) 9.29 Walmart 

2 
TX(7-9), RX (7-9) 9.06 College 

TX(7-9), TX(7-9) 9.93 Walmart 

3 
TX(10-11), RX (10-11) 7.92 College 

TX(10-11), RX (10-11) 9.76 Walmart 

4 
TX(10-12), RX (10-12) 8.74 College 

TX(10-12), RX(10-12) 10.15 Walmart 

5 
TX(1-2), RX (14-15) 8.35 College 

TX(1-2), RX (14-15) 7.04 Walmart 

6 
TX(14-15), RX(1-2) 6.63 College 

TX(14-15), RX(1-2) 8.03 Walmart 
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Figure 13: Case 1 (Channel Capacity vs. SNR) for TX (7, 8) and RX (7, 8). 

 

Figure 14: Case 2 (Channel Capacity vs. SNR) for TX (7, 9) and RX (7, 9). 

 
Figure 15: Case 3 (Channel Capacity vs. SNR) for TX (10, 11) and RX (10, 11). 
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Figure 16: Case 4 (Channel Capacity vs. SNR) for TX (10, 12) and RX (10, 12). 

 
Figure 17: Case 5 (Channel Capacity vs. SNR) for TX (1, 2) and RX (14, 15). 

 
Figure 18: Case 6 (Channel Capacity vs. SNR) for TX (14, 15) and RX (1, 2). 
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Table 13: K-Factor (dB) for different antenna locations. 

C
as

e
 

Antenna 

Positions 
TX RX 

College Area Walmart  Area 

K-Factor 
(dB) 

Mean 

K (dB) 

K-Factor 

(dB) 

Mean 

K (dB) 

1 
TX(7-8) 
RX(7-8) 

7 7 13.64 

13.75 

14.80 

11.79 
7 8 13.74 14.88 

8 7 13.82 15.34 

8 8 13.82 15.47 

2 
TX(7-9) 
RX(7-9) 

7 7 13.64 

13.77 

11.70 

11.77 
7 9 13.70 11.68 

9 7 13.86 11.79 

9 9 13.91 11.92 

3 
TX(10-11) 
RX(10-11) 

10  10 13.90 

13.92 

11.67 

11.76 
10 11 13.92 11.70 

11 10 13.93 11.84 

11 11 13.97 11.87 

4 
TX(10-12) 
RX(10-12) 

10  10 13.90 

13.95 

11.67 

11.74 
10 12 13.92 11.66 

12 10 13.96 11.77 

12 12 14.04 11.90 

5 
TX(1-2) 

RX(14-15) 

1 14 -∞ 

-∞ 

-∞ 

-∞ 
1 15 -∞ -∞ 

2 14 -∞ -∞ 

2 15 -∞  -∞  

6 
TX(14-15) 
RX(1-2) 

14 1 -0.46 

-0.75 

-4.81 

-4.83 
14 2 -0.51 -4/81 

15 1 -1.25 -4.81 

15 2 -0.76 -4.94 

3.3 Summary 

In this chapter, we discussed the relevance of V2V communication and the importance of 

simulation to analyze and model the V2V channels. We later discussed antenna selection for 
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multiple antenna systems and adopting the MIMO system. We conclude, although in general, the 

MIMO capacity increases with SNR and antenna spacing, in V2V communication the location of 

antenna also plays an important role. We observed the occurrences of maximum capacity and 

increase in capacity by increasing the antenna spacing happens mostly when antennas are located 

on the rooftop. Also, the antenna height proved to be the essential factor. The relation of the K-

Factor to the calculated channel capacity showed that the capability of MIMO system increased 

for lower K-Factor as long the antenna height was the same. However, lower K-Factor for lower 

heights did not show better capacity in compared to higher K-Factor for antenna elements at 

higher positions. This raises the question if the vehicular channels follow Rayleigh or Ricean 

fading channels. 
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CHAPTER 4  

EFFECTS OF BLOCKAGE ON THE MIMO CAPACITY FOR DSRC 

CHANNELS 

The application of vehicular communication depends on its efficiency to address the different 

possible scenario. As discussed previously, DSRC for V2V communication is widely 

investigated to ensure traffic safety and reduce traffic congestion. In Chapter 3, we investigated 

the channel capacity for MIMO systems through simulation, considering different antenna 

locations and heights through simulation of such environments. In this chapter, we will discuss 

the effect of blockage in similar setups. Additionally, we will compare these cases with the non-

blockage cases that were presented in Chapter 3. 

4.1 Introduction 

DSRC [7] is an automotive communication protocol that is popular for its potential application 

like Lane Changing Warning (LCW), Forward Collision Warning (FCW) in ensuring traffic 

safety and reducing traffic accidents. The major challenge in developing such application to 

provide a 360 degrees view of traffic status is to overcome the hurdle provided by the obstacles 

in form of buildings (in intersection), heavy vehicles (in case of overtaking), generally 

categorized as NLOS scenarios [80]. In this chapter, we have used a vehicle as an obstacle 

between two other vehicles (between the transmitting and receiving ends). Antennas were placed 

at various locations on the vehicles’ bodies. A total of 15 antennas were spread on the rear,
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 center and front of each vehicle, similar to the arrangement in Chapter 3. The two vehicles were 

separated by two different distances, 10 meters and 15 meters, and the obstacle vehicle were 

positioned at the center, between these vehicles. This multiple antenna system was studied at the 

same locations as described in Chapter 3, college and Walmart areas. All the results presented in 

this chapter are also based on ray-tracing simulations carried out using Wireless InSite® from 

Remcom Inc. [74]. Initially, the response of each receiver with respect to each transmitter was 

analyzed depending on the received power. By adopting the concept of MIMO [46, 51], different 

combination of transmitters and receivers were used to evaluate the channel capacity of V2V 

communication system in respect to antenna position [81]. These NLOS cases were compared to 

the non-blockage cases that were studied in Chapter 3. Please note that we do not call the non-

blockage cases LOS cases, as in some scenarios the transmitter or receiver car itself was 

blocking the LOS path. The obtained capacity values were then compared with the capacity for a 

MIMO Rayleigh fading channel [52]. Furthermore, the impact of inclusion of phase of the 

received signal on channel capacity equation was studied. 

4.2 Methodology 

In simulations that were carried out in Wireless InSite, a vehicle (that will be referred as an 

“obstacle vehicle” from here on) with the height of 1.76 meter was placed between the 

transmitting and receiving vehicles (with height of 1.35 meter). The obstacle vehicle, therefore, 

completely blocks the straight path from the transmitter car (back side) to the receiver car (in 

front), creating a NLOS scenario. This process was carried out in both college and Walmart 

areas. A detailed procedure and selection of material is discussed below. 
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4.2.1 System Set Up 

We used half-wave dipole antenna at both TX and receiver RX ends. The systems work around 

5.9 GHz (wavelength of 0.053m) center frequency with 10 MHz bandwidth. There were 15 

dipole antennas mounted on the top, front and rear side, exactly the same locations as described 

in Chapter 3. The distance (front to back) between two cars was 15 meters. The experiment was 

repeated again by changing the distance to 10 meters. The obstacle vehicle was placed at the 

center between the transmitting and receiving cars. The transmitting power in both scenarios was 

selected at 0 dBm. Figure 10 and Table 5 gives the overview of the antennas’ layout on the cars 

as explained in Chapter 3. 

4.2.2 Environment Modeling 

Tables 6 and 7 (Chapter 3) give the details of the types of material used for buildings, road, trees 

and cars. Material used for the obstacle car is the same as that for the transmitting and receiving 

cars. The height of antenna element depends on the surface on which it is mounted. Antennas at 

the rear or front sides of the car have heights of 0.95 m, which is smaller in comparison to those 

mounted on the roof at 1.35 m. The height of obstacle vehicle was 1.76 m. Google Maps was 

used in this chapter too to delineate the exact location of buildings. The image of each scenario 

was imported into Wireless InSite and the environmental set up was built. Figures 19 and 20 

show the maps extracted from Google Maps and their implementation in simulation set up. In 

Figure 19, distances between each car and the closest interferers are given along with the picture 

of the obstacle between the TX and RX car for both 10 m and 15 m for college area. Figure 20 

depicts similar information for the Walmart area.  
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Figure 19: Distance between cars and the surrounding obstacles (college area). 
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Figure 20: Distance between cars and the surrounding obstacles (Walmart area). 

 

4.2.3 Implementing MIMO Systems 

The application of MIMO systems has primarily been in NLOS scenarios, which are mainly due 

to blockages in the transmission of signals. In NLOS scenarios, signal travels in multipath and 

arrives at the receiver at different angles. This gives rise to channel diversity that can be used in 

MIMO systems to improve the channel capacity [39]. In non-blockage scenarios that were 

discussed in Chapter 3, it was possible to have LOS, while in the cases we consider in this 

chapter LOS is not possible. MIMO setups are expected to show better performance. Taking 

advantage of multiple antennas in blockage scenarios is more important than non-blockage 

scenarios. If choosing proper antennas in non-blockage scenarios could provide enough power 

for SISO communication, this choice is not present in the blockage scenarios. Therefore, in this 

chapter we again consider the 2×2 MIMO systems and compare them in terms of their capacity. 

The channel capacity of the MIMO system is calculated by (14) [76].  
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We observed that while the paths with maximum power in both scenarios were similar, the 

number of multipath elements in the Walmart area is less than that in the college area. This is 

mainly due to the differences in the distances between the cars and the closest objects.  

 
Figure 21: College  area, 10 m distance, TX (14, 15) and RX (1, 2) [left], TX (10, 11) and RX (10, 11) [right]. 

 

 
Figure 22: College area, 15 m, distance TX (14, 15) and RX (1, 2) [left], TX (10, 12) and RX (10, 12) [right]. 

 

 

Figure 23: Walmart area, 10 m distance, TX (14, 15) and RX (1, 2) [left], TX (7, 8) and RX (7, 8) [right]. 
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Figure 24: Walmart area, 15 m distance, TX (1, 2) and RX (1, 2) [left], TX (10, 11) and RX (10, 11) [right]. 

 

In this chapter, we consider the same six cases we studied in Chapter 3, while now for all of 

them the communication is in NLOS. Figure 21- 24 show the effect of the obstacle vehicle 

blocking LOS from TX car to RX car. Three paths with maximum power were selected to see the 

number of multipath holding significant value as shown in Figures 21-24.  

4.3 Results 

4.3.1 Effects of the Antenna Location, Power, and Phase on the Capacity  

Tables 14-17 show the relationship between magnitude and phase of the received power with 

their respective location on the capacity (including the phase) for all six cases discussed earlier. 

Furthermore, it also compares the capacity when the obstacle car exists or is removed, for 

distances 10 m and 15 m between the TX car and RX car. Tables 14-17 show these results for 

college area-10 m distance, college area-15 m distance, Walmart area-10 m distance and 

Walmart area-15 m distance, respectively. The calculated capacities are compared with the 

maximum capacity calculated using a 2×2 identity matrix and the average Rayleigh channel 

capacity. Similar to Chapter 3, the mean Rayleigh capacity for 2×2 matrix is calculated by taking 

average capacity over 1000 iterations of AWGN channels [52]. The capacity for 2×2 identity 
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matrix channel and the 2×2 Rayleigh channel for 20dB SNR are 10.36 and 7.90 bits/s/Hz, 

respectively.  

Also, it is worth noting the antenna spacing for both scenarios in the first four cases. As 

presented in Table 14-17, Cases 2 and 4 yield maximum capacity values in the absence of the 

obstacle car, except for Walmart area with 10 m separation where there is nominal difference of 

0.64 bits/s/Hz. The spacing between antenna in Cases 2 and 4 are 0.70m (13.20λ) while in Cases 

1 and 3 this separation is 0.35m (6.60λ). The increase in capacity due to increase of antenna 

separation is expected in conventional  MIMO systems [79]. If we compare the roof top cases for 

all scenarios, Cases 2 and 4 provide better capacities for 10 m distance and 15 m distance, 

respectively, in the absence of obstacle car, whereas, Cases 1 and 3 provide better capacity when 

the obstacle is present. 

In terms of Case 5, it can be seen in Tables 14 through 17 that college area with 10 m separation 

and without obstacle car, and college area with 15 m separation with obstacle car have better 

capacities in compare to similar situations in the Walmart area. For other scenarios, capacities in 

Walmart area in general are higher than similar scenarios in the college area.  
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Table 14: Channel capacity for six different cases (college area) when the distance between TX and RX is 10 m. 

Case T
X

 

R
X

 Without car (10 m) Capacity 

(bits/s/Hz) 
[With Phase] 

With car (10 m) Capacity 

(bits/s/Hz) 
[With Phase] 

Power 
(dBm) 

Phase 
(°) 

Power 
(dBm) 

Phase 
(°) 

1 

 

7 7 -65.56 -70.89 

8.52 

-84.64 -35.69 

9.73 
7 8 -69.89 -85.23 -69.61 68.55 

8 7 -66.41 -140.23 -72.16 162.85 

8 8 -66.27 -84.04 -86.84 139.88 

2 

7 7 -65.56 -70.89 

9.06 

-84.64 -35.69 

8.25 
7 9 -67.24 152.00 -82.12 145.42 

9 7 -68.29 115.00 -77.31 -104.61 

9 9 -67.71 -127.29 -80.01 -65.99 

3 

10 10 -68.68 -48.68 

7.92 

-84.25 74.25 

9.34 
10 11 -67.26 -79.61 -72.62 164.25 

11 10 -65.20 -121.46 -73.90 141.08 

11 11 -66.53 -91.27 -75.86 -108.37 

4 

10 10 -68.68 -48.68 

8.74 

-84.25 74.25 

8.97 
10 12 -64.77 -133.90 -77.11 -155.88 

12 10 -68.53 162.71 -77.32 30.71 

12 12 -68.00 -37.22 -78.85 115.43 

5 

1 14 -104.76 113.94 

8.35 

-101.55 64.10 

6.01 
1 15 -81.94 -115.47 -87.38 -108.54 

2 14 -86.73 -23.82 -76.27 -31.97 

2 15 -95.46 17.18 -82.10 36.41 

6 

14 1 -64.34 -68.27 

6.63 

-100.88 -155.15 

5.74 
14 2 -67.35 60.23 -78.21 -61.11 

15 1 -58.45 132.00 -86.22 -176.65 

15 2 -65.87 10.10 -75.43 -45.33 
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Table 15: Channel capacity for six different cases (college area) when the distance between TX and RX is 15 m 
using phase in the equation. 

Case T
X

 

R
X

 Without car (15 m) Capacity 

(bits/s/Hz) 
[With Phase] 

With car (15 m) Capacity 

(bits/s/Hz) 
[With Phase] 

Power 
(dBm) 

Phase 
(°) 

Power 
(dBm) 

Phase 
(°) 

1 

 

7 7 -68.07 130.71 

7.69 

-83.76 -0.53 

7.24 

7 8 -70.44 125.55 -80.67 -32.55 

8 7 -69.46 92.58 -84.94 26.04 

8 8 -69.98 142.81 -82.37 -65.29 

2 

7 7 -68.07 130.71 

9.84 

-83.76 -0.53 

8.87 
7 9 -70.55 26.42 -78.68 111.82 

9 7 -73.34 25.24 -81.98 -68.38 

9 9 -69.84 99.45 -89.95 123.84 

3 

10 10 -68.44 179.09 

8.29 

-85.37 -105.60 

9.35 
10 11 -69.08 140.77 -80.65 -64.03 

11 10 -67.90 98.35 -78.34 50.60 

11 11 -68.46 133.31 -87.03 68.36 

4 

10 10 -68.44 179.09 

10.27 

-85.37 -105.60 

9.43 
10 12 -68.83 118.15 -82.18 -84.08 

12 10 -69.02 43.91 -79.93 66.80 

12 12 -69.59 164.99 -86.06 -171.57 

5 

1 14 -84.46 141.06 

5.77 

-98.71 2.48 

9.42 
1 15 -95.52 32.20 -87.58 -28.30 

2 14 -80.51 -11.01 -86.48 5.87 

2 15 -88.45 -79.78 -88.86 91.87 

6 

14 1 -65.57 1.01 

7.73 

-75.26 175.69 

7.69 
14 2 -65.57 100.82 -75.46 -0.38 

15 1 -67.70 -146.97 -80.40 169.12 

15 2 -67.33 15.91 -76.30 -51.64 
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Table 16: Channel capacity for six different cases (Walmart area) when the distance between TX and RX is 10 m 
using phase in the equation. 

Case T
X

 

R
X

 Without car (10 m) Capacity 

(bits/s/Hz) 
[With Phase] 

With car (10 m) Capacity 

(bits/s/Hz) 
[With Phase] 

Power 
(dBm) 

Phase 
(°) 

Power 
(dBm) 

Phase 
(°) 

1 

 

7 7 -65.94 -147.92 

7.42 

-83.20 -138.03 

8.49 
7 8 -66.48 -170.08 -82.51 -94.23 

8 7 -69.27 -178.88 -80.54 -8.96 

8 8 -66.29 -173.19 -81.87 116.51 

2 

7 7 -65.94 -147.92 

9.34 

-83.20 -138.03 

5.70 
7 9 -65.47 93.43 -79.61 93.34 

9 7 -64.76 104.18 -75.38 135.63 

9 9 -70.65 -128.93 -72.90 2.23 

3 

10 10 -68.09 -81.76 

8.97 

-81.99 156.25 

6.61 
10 11 -66.19 -108.65 -82.11 -139.31 

11 10 -65.28 -93.98 -77.24 -71.63 

11 11 -69.19 -52.14 -75.39 57.21 

4 

10 10 -68.09 -81.76 

8.33 

-81.99 156.25 

6.05 
10 12 -68.20 165.48 -85.16 51.90 

12 10 -67.30 150.37 -76.13 69.72 

12 12 -63.67 -67.97 -72.81 -51.41 

5 

1 14 -81.48 120.37 

7.14 

-78.93 105.81 

6.57 
1 15 -80.32 -39.24 -83.12 -14.64 

2 14 -79.54 -95.82 -78.23 -90.83 

2 15 -80.97 132.14 -79.94 127.48 

6 

14 1 -63.80 69.71 

10.13 

-83.24 -178.37 

7.03 
14 2 -62.20 139.87 -86.25 45.61 

15 1 -61.06 169.74 -77.53 25.79 

15 2 -62.69 42.41 -77.29 122.78 
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Table 17: Channel capacity for six different cases (Walmart area) when the distance between TX and RX is 15 m 
using phase in the equation. 

Case T
X

 

R
X

 Without car (15 m) Capacity 

(bits/s/Hz) 
[With Phase] 

With car (15 m) Capacity 

(bits/s/Hz) 
[With Phase] 

Power 
(dBm) 

Phase 
(°) 

Power 
(dBm) 

Phase 
(°) 

1 

 

7 7 -71.41 76.68 

9.29 

-84.41 133.46 

6.88 
7 8 -67.77 43.54 -80.06 -6.10 

8 7 -67.79 42.11 -81.81 27.71 

8 8 -71.82 69.04 -80.10 -143.29 

2 

7 7 -71.41 76.68 

9.93 

-84.41 133.46 

5.93 
7 9 -69.50 -25.95 -91.82 127.57 

9 7 -69.59 -28.51 -77.01 -153.93 

9 9 -69.66 86.82 -73.67 -176.93 

3 

10 10 -67.03 139.12 

9.76 

-81.84 61.27 

8.69 
10 11 -72.78 112.07 -80.74 -69.81 

11 10 -72.87 114.97 -77.89 -47.83 

11 11 -67.52 145.08 -84.35 -110.11 

4 

10 10 -67.03 139.12 

10.15 

-81.84 61.27 

6.82 
10 12 -68.87 63.89 -93.53 -38.21 

12 10 -69.10 64.60 -77.69 117.27 

12 12 -66.90 133.82 -74.85 105.39 

5 

1 14 -76.16 156.62 

7.04 

-75.62 154.39 

8.82 
1 15 -79.02 110.31 -78.95 106.73 

2 14 -84.72 -8.81 -83.87 -12.39 

2 15 -82.49 -135.14 -77.74 -96.19 

6 

14 1 -61.41 14.58 

8.03 

-81.34 -2.53 

9.32 
14 2 -63.53 119.61 -78.78 -133.96 

15 1 -62.49 176.39 -76.85 -169.76 

15 2 -72.05 44.5 -87.37 25.46 
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4.3.2 Graphical representations of Capacity vs. SNR 

The power and phase received by different antennas at different locations were used to calculate 

the channel capacity of the 2×2 MIMO systems. The next two sections present the results of 

capacities versus SNR. 

4.3.2.1 Capacity Without an Obstacle Car 

In this section, the capacities of 2×2 MIMO systems are represented graphically for different 

setups (college 10 m, college 15 m, Walmart 10 m, and Walmart 15 m). These capacity values 

are further compared with 2×2 identity channel for MIMO capacity (ideal case) and 2×2 

Rayleigh MIMO capacities (typical case). In this section the obstacle car between transmitting 

and the receiving cars does not exist for distances 10m and 15m for both college and Walmart 

scenarios.  
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Figure 25: Channel Capacity vs. SNR for Case 1 without an obstacle car. 

 
Figure 26: Channel Capacity vs. SNR for Case 2 without an obstacle car. 

 
Figure 27: Channel Capacity vs. SNR for Case 3 without an obstacle car. 



58 

 
Figure 28: Channel Capacity vs. SNR for Case 4 without an obstacle car. 

 
Figure 29: Channel Capacity vs. SNR for Case 5 without an obstacle car. 

 
Figure 30: Channel Capacity vs. SNR for Case 6 without an obstacle car. 
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4.3.2.2 Capacity with an Obstacle Car 

In this section, the capacities of 2×2 MIMO setups are represented graphically for different 

setups (college 10 m, college 15 m, Walmart 10 m, and Walmart 15 m). These capacity values 

are further compared with 2×2 Identity MIMO capacity (ideal case) and 2×2 Rayleigh MIMO 

capacities (typical case). In this section, an obstacle car is placed between transmitting and the 

receiving cars. 
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Figure 31: Channel Capacity vs. SNR for Case 1 with an obstacle car. 

 
Figure 32: Channel Capacity vs. SNR for Case 2 with an obstacle car. 

 
Figure 33: Channel Capacity vs. SNR for Case 3 with an obstacle car. 
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Figure 34: Channel Capacity vs. SNR for Case 4 with an obstacle car. 

 
Figure 35: Channel Capacity vs. SNR for Case 5 with an obstacle car. 

 
Figure 36: Channel Capacity vs. SNR for Case 6 with an obstacle car. 
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4.3.3 Effect of Phase Factor 

The phase of the received signal plays a vital role in enhancing or increasing the capacity of the 

system. Tables 14-17 provided the capacity value when the phase values were included in the 

calculations. Table 18 provides the capacity value without including the phase values. 

Comparison between Tables 14-17 and Table 18 shows the importance of phase values. For all 

the cases in which the experiment was carried out, the capacity values are less (sometime 

drastically) if the phase values are ignored in the channel capacity equation given by (14). 
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Table 18: Channel capacity (bits/s/Hz) for different scenarios and distances when the phase values were excluded.  

C
A

S
E

 College  
10 m 

(without 
car) 

College 
10 m 

(with car) 

College 
15 m 

(without 
car) 

College 
15 m 

(with car) 

Walmart 
10 m 

(without 
car) 

Walmart 
10 m 

(without 
car) 

Walmart 
15 m 

(without 
car) 

Walmart 
15 m 

(without 
car) 

1 7.72 9.57 6.24 5.71 7.12 8.49 8.89 6.45 

2 7.39 6.91 8.05 8.72 8.12 5.70 6.35 5.93 

3 5.73 9.33 5.67 9.34 8.22 6.61 9.59 8.25 

4 7.05 8.79 5.67 8.87 6.73 6.05 7.51 6.76 

5 9.97 6.00 5.72 9.17 6.71 6.57 6.47 8.73 

6 5.80 5.74 5.69 7.21 7.03 7.03 7.30 9.29 

4.3.4 K Factor 

K-Factor is an important tool to understand the multipath scenario. Higher K-Factor suggests low 

scattering path or indirect path. Tables 19 and 20 provide the Mean K (dB) for college and 

Walmart areas when the distance between the TX and cars are 10 m and 15 m, respectively. 

“Mean (K)” in these tables is the average of K-Factors produced in any selected cases by taking 

an average of K-Factors over the four possible channels. 

Tables 19 and 20 should be viewed in conjunction with Tables 14-17. Comparing the Cases 1 

through 4 from Tables 14-17 and Table 19 and 20, we can see that for scenarios without the 

obstacle car in between, cases with low K-Factor has the highest capacity. However from Tables 

16 and 19, for Walmart 10 m scenario, where the K-factor is almost the same, ranging from 

11.48 to 11.69, Case 2 shows the maximum capacity in which K-Factor equals to 11.65. 

Results of the K-Factor and capacities in Cases 5 and 6 are worth paying attention. First, despite 

having the same K-Factor value for NLOS condition of Case 5, the capacity of the college area is 

higher than that of the Walmart area. In Case 5, transmitters are in the rear of the car with 

antenna height of 0.95m, which is clearly obstructed by glass that extends to the roof at the 
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height of 1.35m. Hence, the entire signal are either reflected back or scattered before reaching 

the receiver on front of the RX car.  

Since the K-Factor of both areas for Case 5 without obstacle car and for all cases with the 

obstacle car for both college and Walmart areas are 0 (-∞ in dB), it suggests a rich scattering 

environment with NLOS scenario, and the H matrix similar to Rayleigh fading channel [52] is 

expected. Their respective capacities are also around the mean Rayleigh capacity. This is true for 

most of the cases in Walmart area and some of the cases for the college area. In terms of case 6, 

Tables 19 and 20 show that K-Factor for Walmart scenario are less than those for the college 

area (higher capacity values). 

For the scenarios with the obstacle car, the resulting K-Factor were 0 or (-∞ dB) suggesting that 

there were not any direct path travelling from the TX to RX as shown in Figures 21-24.  
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Table 19: K-Factor for 10 m (without car). 

C
as

e
 

Antenna 

Positions 
TX RX 

College Area Walmart  Area 

K-Factor 
(dB) 

Mean 

K (dB) 

K-Factor 

(dB) 

Mean 

K (dB) 

1 
TX(7-8) 
RX(7-8) 

7 7 13.64 

13.75 

11.31 

11.48 
7 8 13.74 11.34 

8 7 13.82 11.33 

8 8 13.82 11.92 

2 
TX(7-9) 
RX(7-9) 

7 7 13.64 

13.77 

11.31 

11.65 
7 9 13.70 11.33 

9 7 13.86 11.91 

9 9 13.91 12.04 

3 
TX(10-11) 
RX(10-11) 

10  10 13.90 

13.92 

11.36 

11.69 
10 11 13.92 11.40 

11 10 13.93 11.99 

11 11 13.97 12.03 

4 
TX(10-12) 
RX(10-12) 

10  10 13.90 

13.95 

11.36 

11.66 
10 12 13.92 11.38 

12 10 13.96 11.88 

12 12 14.04 12.02 

5 
TX(1-2) 

RX(14-15) 

1 14 -∞ 

-∞ 

-∞ 

-∞ 
1 15 -∞ -∞ 

2 14 -∞ -∞ 

2 15 -∞ -∞ 

6 
TX(14-15) 
RX(1-2) 

14 1 -0.46 

-0.75 

0.31 

0.11 
14 2 -0.51 0.31 

15 1 -1.25 -0.06 

15 2 -0.76 -0.11 
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Table 20: K-Factor when distance 15 m (without car). 

C
as

e
 

Antenna 

Positions 
TX RX 

College Area Walmart  Area 

K-Factor 
(dB) 

Mean 

K (dB) 

K-Factor 

(dB) 

Mean 

K (dB) 

1 
TX(7-8) 
RX(7-8) 

7 7 13.80 

14.07 

14.80 

11.79 
7 8 13.91 14.88 

8 7 14.66 15.34 

8 8 13.91 15.47 

2 
TX(7-9) 
RX(7-9) 

7 7 13.80 

14.02 

11.70 

11.77 
7 9 14.66 11.68 

9 7 13.76 11.79 

9 9 13.85 11.92 

3 
TX(10-11) 
RX(10-11) 

10  10 14.26 

13.97 

11.67 

11.76 
10 11 13.83 11.70 

11 10 14.11 11.84 

11 11 13.67 11.87 

4 
TX(10-12) 
RX(10-12) 

10  10 14.26 

13.58 

11.67 

11.74 
10 12 13.79 11.66 

12 10 13.09 11.77 

12 12 13.17 11.90 

5 
TX(1-2) 

RX(14-15) 

1 14 -∞ 

-∞ 

- ∞  

- ∞  
1 15 -∞ -∞  

2 14 -∞ -∞  

2 15 -∞ -∞  

6 
TX(14-15) 
RX(1-2) 

14 1 9.98 

9.13 

-4.81 

-4.83 
14 2 10.30 -4.81 

15 1 8.64 -4.81 

15 2 7.60 -4.94 

4.4 Summary 

In this chapter, we discussed the relevance of V2V communication and the importance of MIMO 

to address NLOS scenarios. The effect of blockage in the form of the obstacle car was studied 
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considering different parameters like antenna location, channel capacity, K-Factor, and phase of 

the received signal. We also discussed the best antenna locations for multiple antenna systems by 

adopting the MIMO systems. In conclusion, although in general, the MIMO capacity increases 

with SNR and antenna spacing, in V2V communication the location of antenna also plays an 

important role. MIMO channel capacity does not only depend on the multipath, it may also 

depend on the magnitude and phase of the power received and the multipath which depends on 

angle of arrival distribution caused by the obstacle. 
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CHAPTER 5  

MEASUREMENT SETUP AND RESULTS 

In Chapters 3 and 4 we studied the V2V channels through simulation and found some guidelines 

in terms of antenna location and height effects on the MIMO capacity. In this chapter, a real-time 

measurement test-bed for DSRC vehicular communication is introduced and the measurement 

results are presented.  

5.1 Introduction 

A major challenge to implement the measurement set up were the choice of cost-effective and 

low-profile equipment. We chose SDRs to implement the transceivers. Compared to heavy and 

expensive equipment such as Signal Generators, Signal Analyzers, Vector Network Analyzers, 

and Spectrum Analyzers, SDRs can provide a cost-effective and compact setup which enables us 

to use and control the radio signal through a software [82]. The main advantage of SDR is the re-

configurability where the communications functions are realized as program running on a 

suitable processor [83]. As shown in Figure. 37, SDR comprises of Radio Frequency (RF) front-

end and the data processing unit, which has its own unique functionalities. The user can 

configure the program to get the desired input or output, and feed it to the RF front-end for 

transmission or reception. With possibility of digitization, the system has limitation due to 

sampling rate, therefore, there are limitations on transmitting or receiving large bandwidth 

signals. The inclusion of different types of modulation in data processing unit has paved the way 

to overcome this deficiency. 
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Figure 37: SDR Transceivers [83]. 

 

In addition, there are features or technologies that have facilitated the implementations of SDR. 

As explained in [82], development of analog/digital capabilities, reduction of silicon geometries, 

increase in memory sizes, advances of Digital Signal Processors (DSPs) (low-power-

consumption), and availability of software and their affordable pricing are some of them which 

have pushed the wheel forward to choose SDR over other relevant technologies. This is further 

supported intelligent antenna technology and the advantages of implementation of Micro Electro 

Mechanical Systems (MEMS), Application Specific Integrated Circuits (ASICs), and Filed 

Programmable Gate Array (FPGAs) to build a robust system [84]. With every new invention, 

there always lies the challenges and opportunities [85]. The opportunities were well explained 

earlier but a fundamental challenge for SDR design is the balance between computational 

performance and relevant size, weight and power requirements. The re-configurability of SDR 

systems has security challenges and the issues of certification of radio equipment are its other 

challenges.  
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5.2 System Configuration 

5.2.1 Hardware  

5.2.1.1 Software Defined Radio 

Ettus Research™ USRP™ N200 was used as transmitter and receiver units in our experiment, as 

shown in Figure. 38. The detailed architecture of the USRP™ N200 is shown in Figure. 39. 

     

 
Figure 38: Ettus Research™ USRP™ N200 used as SDR. 

 

USRP™ N200 is one of the highest performing class of hardware of the USRPTM family of 

products, which enables user to rapidly design and implement powerful, flexible software radio 

systems. It offers MIMO capability with high bandwidth and dynamic range. The Gigabit 

Ethernet interface serves as the connection between the N200 and the host computer. This 

enables the user to realize 50MS/s of real-time bandwidth in the receiver and transmit directions, 

simultaneously (full duplex). 
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Figure 39: System architecture of USRP N200 [86].  

.  

5.2.1.2 RF Switch    

Two 1×4 Single Input Multiple Output (SIMO) RF switch, one for the transmitter end and 

another for the receiver end, were used by cascading three Double Pole Double Throw (DPDT) 

ZFSWA2-63DR+ switches from Mini Circuits® (Figure 40). The output of USRP N200 is fed to 

the input of the RF switch, which allows the user to select among any four possible outputs. In 

measurements, we used two outputs at each TX and RX ends to provide a 2×2 MIMO system.  

 
Figure 40: 1×4 SIMO RF switch with choices to select between them.                                                                 
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5.2.1.3 High Gain Amplifier 

In an experiment with spectrum analyzer and USRP N200 at 2.4 GHz the output of USRP is -4 

dBm (4mW) was noticed at 0dBm reference of spectrum analyzer, when USRP was directly 

connected to the spectrum analyzer through an SMA cable. This level was 6 dBm for -10dBm 

reference shown by spectrum analyzer. The output of the spectrum analyzer was decreased to -15 

dBm from 6 dBm when an antenna was used at a distance of 0.5 m between spectrum analyzer 

and USRP. This clearly shows the power loss and the pathloss phenomena. As our motive was to 

use USRP in outdoor settings, at a maximum distance of 15 m, the signal would practically be at 

the noise level. To overcome two high gain amplifiers (ZVE-8G+), from Mini Circuits® with 30 

dB gain at 5.9 GHz (our intended working frequency), as shown in Figure 41, were used. 

 
Figure 41: High gain amplifiers used at the transmitter end. 

5.2.1.4 Antenna 

We used VERT2450 antenna, an Ettus Research™ product (Figure 42) which is a dual band 

antennas working within the bands of 2.4 GHz to 2.48 GHz, and 4.9 GHz to 5.9 GHz. This is an 

Omni-directional vertical antenna. The antenna was used at 5.9 GHz (wavelength of 0.053m).  
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Figure 42: VERT2450 Antenna (Ettus Research™). 

 

5.2.1.5 Cables, Adapters and Terminators 

When a high gain amplifier is added to the setup, it is very important to select appropriate 

components for safe operation. The cables must be made for the range of working frequency to 

avoid mismatching. The matched terminators must be used to avoid creation of open circuits at 

the end of the system that cause high reflections to the digital unit (USRP, in our case) resulting 

in damage. Care must be taken when adaptors are used for connecting cables. Co-axial cable 

with male SMA connection was used in this measurement. Female to female SMA adapter were 

used to connect male antenna to male SMA cable. 50 ohm terminators were used to terminate the 

switch port (not being used) at both transmitting and receiving end. 

 
Figure 43: Terminators and antennas. 

5.2.2 Software 

There are various available software options to drive the hardware. GNU Radio, for Linux 

platform, National Instruments (NI) LabVIEW and Matlab Simulink for windows platform are 
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some popular tools. In this work, we have used LabVIEW basically for two reasons. First, the 

Graphical User Interface (GUI) and configurability of LabVIEW makes it simple and easy to 

program the SDR. Second, since there is collaboration between NI and Ettus research, the 

technical support and help in debugging and troubleshooting the problems speed up the process 

of implementation of the design. Matlab from MathWorks is used for processing the data 

received from LabVIEW to get the desired output. 

5.2.2.1 National Instrument’s LabVIEW 

LabVIEW is a graphical programming platform that allows the user to design and test the 

systems. In this thesis, we present LabVIEW as an interface between USRP N200 (radio) and the 

program that controls the radio. This allows using desired modulation techniques for 

transmission and demodulation techniques for receiving. We used IQ modulation and 

demodulation as shown in the Figures 44 and 45. A 1 KHz message signal is modulated at 5.9 

GHz (DSRC band) at the transmitter and the power and phase are monitored at the receiver end. 

The detail operation is described in Section 5.3.2. 

5.2.2.2 Matlab 

The received values for power and phase are further processed in Matlab to calculate the 

capacity (bits/s/Hz) for different antenna locations in TX and RX ends. 
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Figure 44: Transmitter end LabVIEW window. 

 

 
Figure 45: Receiver end LabVIEW window. 

5.3 Methodology 

The location and setup of measurement were decided based on the experiment requirements and 

following the simulation setups. Our primary objective was to replicate the exact location and 

distances of antenna and cars used in the simulation done in Wireless InSite®. 
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5.3.1 System Set Up 

Following the same setup for simulation, in each measurement we considered 15 TX and 15 RX 

locations. In each measurement we considered one of the six cases of interest of 2×2 MIMO. So 

at each measurement we placed two TX antennas and two RX antennas. The active antennas 

were controlled by switch. The distance between the antennas was measured to be similar to 

simulation setup. The location of antenna was similar to that of simulation as shown in Figure 

46. 

 
Figure 46: Location of antenna for measurement. 

5.3.1.1 Device Platform 

There were multiple electronic devices used in the measurement. These devices were running on 

the car battery. To minimize the time of measurements a wooden platform was designed to keep 

each component in a static location, this minimizes the errors due to phase changes of cables and 

prevents the problem of loose connections. Figure 47 shows the platform built for both TX and 

RX ends. TX ends consists of two high gain amplifiers, 1×4 RF switch, USRP N200, and 

extension cord. The RX end consist only of USRP, 1×4 RF switch and extension cord.  
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Figure 47: TX end (left) and RX end (right).  

5.3.1.2 Location of Car and Antennas 

As shown in Figure 48, the device platform was placed on the passenger seat of both the TX and 

RX cars. The radio was controlled through a laptop connected to it. A car adapter (15 V DC to 

110 V AC) was used as a source of power for power amplifiers, switches and the USRPs. The 

cars that were used for measurements were Ford Fusion 2010. 

 
Figure 48: Location of the platform inside the car (TX, left and RX, right). 

5.3.1.2.1 College Area 

The measurements were done for the six cases of interest that were discussed in Chapter 3. The 

distance between the TX and the RX was kept constant at 10 m and 15 m. Figure 49 shows the 

location of car in the college area. Figure 50 shows Case 6, i.e. TX at (14, 15) and RX at (1, 2). 
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Figure 49: TX and Rx cars in the college area at 10 m distance. 

 

Figure 50: Antennas placement on TX (left) and on RX (right).  

 

5.3.1.2.2 Walmart Area 

Similar to college area, the measurement in Walmart area was done for six cases keeping the 

distance between the TX and the RX, first at 10 m and 15 m. Figure 51 shows the cars in the 

Walmart area. Figure 52 shows Case 2, i.e. TX at (10, 12) and RX at (10, 12). 

 
Figure 51: Transmitter car and receiver car with distance 10 m in Walmart area. 
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Figure 52: TX (left) and RX (right).    

5.3.2 Operation Procedure 

The experiment or operation procedure consists of both manual and automatic handling of 

devices and software. Once, the TX and RX locations and the antennas on cars are measured and 

fixed, the process of data acquisition starts. In all cases, the amplitude and phase of the power at 

the receiver was measured 5 times. For example, for the 2×2 MIMO setup where the transmitter 

was located at 7 and 8 and the receiver antennas were at locations 7 and 8, first transmitter 7 was 

activated by selecting the appropriate switch. At this point, antenna at location 7 was also 

activated in the receiver side to measure amplitude and phase received by receiver antenna for 7 

vs. 7. The amplitude of power received in dB and phase of power received in degree were 

recorded. This process was repeated for 5 iterations. Secondly, the switch at the receiver end was 

changed to activate antenna 8, then amplitude and phase received by receiver antenna for 7 vs. 8 

was recorded. Next the transmitter antenna was switched to position 8 and its corresponding 

reading for location 7 and 8 at the receiver end was recorded and stored. This way, a 2×2 matrix 

of TX (7, 8) vs. RX (7, 8) channel response was recorded. 
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Figure 53: Block diagram of the transmitter program. 

 

The block diagram of the transmitter and receiver program is shown in Figures 53 and 54, 

respectively. After installing the USRP N200 (device) driver on the laptop (or PC) provided by 

the NI, the LabVIEW allows the user to initiate the process. Ethernet connection is used to 

interface USRP to LabVIEW program installed on the laptop. There are multiple virtual 

instruments (VIs). They are: 

1. niUSRP Open TX Session VI: This opens a TX session to the device specified. The default 

Internet Protocol (IP) address for niUSRP is 192.168.10.1 which is connected to the laptop 

assigned with static IP address 192.168.10.2. This VI basically tells the USRP that it has 

been interfaced with specific device (laptop in this case). 

2. niUSRP Open Rx Session VI: This opens an Rx session to the device specified similar to 

the transmitter end. 

3. niUSRP Configure Signal VI: This helps to configure the properties of TX or RX signal 

like sampling rate, carrier frequency, gain, active antenna etc. The standard sampling rate 
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of 200k (s/sec) was selected. The carrier frequency of 5.9 GHz was selected as per 

experiment requirement. 

 
Figure 54: LabView program at receiver end.  

 

4. niUSRP Write TX Data (poly) VI: This VI is responsible to write the data to the specified 

channel or send it through the selected antenna. In this unit, we select the I (in-phase) and 

Q (quadrature phase) components continuous message signal of 1 KHz to transmit. The I 

and Q components received at the receiver USRP are helpful in finding magnitude and 

phase of the signal. 

5. niUSRP Fetch Rx Data (poly) VI: This fetches data from the specified channel. 

6. FFT Spectrum (Mag-Phase) VI: This VI computes the averaged FFT spectrum of time 

signal and returns FFT results as magnitude and phase. 

7. niUSRP Close Session VI: This closes the session. 
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5.3.3 Data Processing 

The data received from two different separation of cars for the 6 cases of MIMO for both college 

and Walmart areas were processed using Matlab to evaluate the channel capacity of system. The 

average capacity of 5 iterations was considered.  

5.4 Results and Discussions 

Tables 21-24 show the averaged capacity value for 20 dB SNR calculated for respective MIMO 

setups for both scenarios, for two separations of 10 m and 15 m. The averaged capacity value 

was calculated by taking the mean of 5 values of capacity obtained from 5 iterations. The 

magnitude and the phase of the power received shown in Tables 21-24 are the value (one of five 

iterations) which yielded the maximum capacity. Tables 21-24 also depict the change in the 

capacity values when phase of the signal is not considered. The capacities of 2×2 MIMO systems 

were calculated using (14) and then they were compared with 2×2 MIMO identity channel 

capacity (10.36 bits/s/Hz) and 2×2 MIMO Rayleigh channel capacity (7.90 bits/s/Hz) which are 

depicted in Figures 58-61. 

It is evident that it is difficult to predict the random wireless channels. However, by studying the 

collected data we can recognize some general patterns. From Tables 23 and 24, Cases 2 and 4 

(cases with greater antenna separations) has higher capacity value which agrees with the results 

of Chapters 3 and 4 [79].  

Cases 1, 3, 4, 6 from Tables 21 and Cases 1, 5 and 6 from Table 22 suggest another pattern, i.e. 

the channel capacity is not directly dependent on the magnitude of the power received. In all of 

the above-mentioned cases, the capacity tends to improve or holds same value even when there is 

significant drop in the power level (magnitude) of the signal (NLOS).  
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Cases 5 and 6 reveal another pattern related to the width of the road [39]. The measurement was 

done during the low traffic times, however, the nature of the roads were obviously different. 

College area has a narrow road, while the Walmart area has wider roads. The capacity for Cases 

5 and 6 for college area is better than that for the Walmart area provided the location of antenna 

was either at the rear or front end of the car, which is lower in height with respect to roof 

antennas. 

Another important phenomenon that was observed and discussed in Chapter 4 is the phase of the 

received signal. From Figure 61 we see that all six cases are behaving like a Rayleigh channel, 

which is typical in the NLOS scenarios. The interesting fact to note here is that the contribution 

of phase of the signal to increase the capacity is significant. For example in Case 1, the capacity 

jumps from 5.83 (without phase contribution) to 7.27 bits/s/Hz (with phase contrition). 

Figure 57 shows a comparison between the channels in terms of their information carrying 

capability for both areas and the separation of 10 m and 15 m, respectively. Figure 57 clearly 

shows that the capacity value changes with change in distance. This phenomenon is explained in 

detail by an analogy explained below which is similar to [6]. 

 
Figure 55: Two cars in traffic with different speed. 
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Figure 56: Spectrum decision management loop based on channel capacity[6]. 

   

Suppose two cars (Figure 55) are travelling at a constant velocity 20 miles/hr in the traffic at the 

residential area (with same speed limit), maintaining the distance between the cars to be 5 m. 

Now, the driver of the vehicle travelling behind wants to overtake the vehicle in front of him. He 

does this by increasing the velocity of his car to 25 miles/hr (40 Km/hr). In that case, time taken 

by that vehicle to travel 5 m distance will be 450 milliseconds (ms). The car will travel the same 

distance with 75 miles/hr. in 140ms. This means, the faster the car quicker the system to respond. 

This leads us to an interesting way to view the averaged capacity graphs depicted in Figure 57 to 

develop a smart unit, which shows the highest capacity value for each Case for both scenarios. 

The best connection between two cars can be established based on the capacity they share with 

each other. From Table 22, out of six cases, Case 6 provides the best capacity results for college 

area i.e. 9.27 bits/s/Hz. In travelling the 5m distance, still Case 6 provides the best capacity i.e. 

9.28 bits/s/Hz (from Table 21) in compare to of all other antenna locations. Hence the smart unit 

can make a decision to connect the travelling car (overtaking car) whose antenna location yields 

the best capacity when incorporated with the overtaken car. 
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Similarly, from Table 24, for Walmart area, Case 6 is the best combination of antennas setup that 

yields the largest capacity (7.85 bits/s/Hz) but the system needs to switch the antenna 

combination to Case 2  with capacity 8.79 bits/s/Hz (Table 23) when it travels and has the 5m as 

the differential distance.  
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Table 21: Average capacity (20 dB SNR) for 10 m college area. 

Case 
Location Receiver Data Average Capacity (bits/s/Hz) 

TX RX Power (dBm) Phase(º) With Phase Without Phase 

1 

7 7 -77.35 11.32 

7.87 6.08 

7 8 -77.98 -24.69 

8 7 -81.85 154.93 

8 8 -80.00 27.86 

2 

7 7 -78.38 9.31 

6.45 5.88 
7 9 -71.71 -80.45 

9 7 -77.43 -105.54 

9  9 -69.68 31.38 

3 

10 10 -71.20 16.95 

8.06 7.97 
10 11 -78.62 -80.17 

11 10 -81.98 -61.81 

11 11 -75.23 56.33 

4 

10 10 -72.56 113.98 

7.94 6.85 
10 12 -77.10 36.23 

12 10 -75.88 141.39 

12 12 -76.22 -134.01 

5 

1 14 -109.54 -19.04 

8.70 8.27 
1 15 -97.98 -159.87 

2 14 -95.68 -111.75 

2 15 -104.43 -175.73 

6 

14 1 -80.12 78.98 

9.28 8.66 
14 2 -76.42 89.83 

15 1 -76.44 -65.76 

15 2 -81.35 36.46 
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Table 22: Average capacity (20 dB SNR) for 15 m college area. 

Case 
Location Receiver Data Capacity (bits/s/Hz) 

TX RX Power (dBm) Phase(º) With Phase Without Phase 

1 

7 7 -93.59 65.18 

8.17 6.67 

7 8 -87.17 -129.39 

8 7 -91.31 105.14 

8 8 -91.82 91.03 

2 

7 7 -93.58 20.75 

6.18 5.84 
7 9 -85.88 70.69 

9 7 -95.93 -124.37 

9  9 -88.86 81.03 

3 

10 10 -90.59 40.05 

9.23 6.77 
10 11 -89.43 63.20 

11 10 -89.26 -62.07 

11 11 -89.80 100.99 

4 

10 10 -98.90 -121.40 

8.90 8.28 
10 12 -87.30 150.44 

12 10 -89.56 129.09 

12 12 -91.78 148.81 

5 

1 14 -105.43 -25.99 

8.67 8.34 
1 15 -96.04 92.62 

2 14 -95.52 -77.71 

2 15 -109.14 100.11 

6 

14 1 -96.52 32.74 

9.27 8.79 
14 2 -91.67 -6.98 

15 1 -92.35 14.44 

15 2 -103.96 125.24 
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Table 23: Averaged capacity (20 dB SNR) for 10 m Walmart area. 

Case 
Location Receiver Data Capacity (bits/s/Hz) 

TX RX Power (dBm) Phase(º) With Phase Without Phase 

1 

7 7 -73.58 87.46 

6.03 5.68 
7 8 -77.24 139.78 

8 7 -81.98 -59.19 

8 8 -83.98 144.37 

2 

7 7 -75.29 119.39 

8.79 8.13 
7 9 -80.70 117.17 

9 7 -75.80 -90.13 

9  9 -73.95 105.30 

3 

10 10 -78.19 171.21 

8.03 6.99 
10 11 -77.33 -3.58 

11 10 -80.08 -73.76 

11 11 -82.57 -88.53 

4 

10 10 -78.84 -108.86 

8.06 7.12 
10 12 -79.54 156.39 

12 10 -78.91 -10.10 

12 12 -76.27 164.83 

5 

1 14 -92.93 151.12 

5.81 5.72 
1 15 -99.71 78.18 

2 14 -88.30 -97.02 

2 15 -96.69 100.44 

6 

14 1 -92.02 108.46 

8.65 8.60 
14 2 -81.81 -139.48 

15 1 -81.16 -131.84 

15 2 -85.34 80.48 
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Table 24 : Averaged capacity (20 dB SNR) for 15 m Walmart area. 

Case 
Location Receiver Data Capacity (bits/s/Hz) 

TX RX Power (dBm) Phase(º) With Phase Without Phase 

1 

7 7 -76.12 67.21 

7.27 5.83 
7 8 -77.56 55.03 

8 7 -80.48 101.59 

8 8 -80.36 -61.00 

2 

7 7 -77.29 22.87 

7.28 6.49 
7 9 -82.02 2.49 

9 7 -83.42 172.57 

9  9 -80.81 -137.20 

3 

10 10 -79.05 9.33 

6.95 6.15 
10 11 -84.26 129.92 

11 10 -80.41 43.94 

11 11 -85.90 -65.54 

4 

10 10 -80.07 -127.24 

7.06 6.14 
10 12 -76.64 -67.28 

12 10 -84.89 -1.76 

12 12 -78.44 -108.91 

5 

1 14 -88.51 -118.90 

7.18 7.08 
1 15 -93.24 -170.65 

2 14 -106.05 -152.45 

2 15 -92.02 -56.33 

6 

14 1 -86.94 178.95 

7.85 7.76 
14 2 -86.62 148.77 

15 1 -84.75 68.16 

15 2 -100.10 -20.55 
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Figure 57: Capacity comparisons chart with phase. 

 

 
Figure 58: Capacity comparisons with phase for college area 10 m. 
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Figure 59: Capacity comparisons with phase for college area 15 m. 

 

 
Figure 60: Capacity comparisons with phase for Walmart area 10 m. 
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Figure 61: Capacity comparisons with phase for Walmart  area, distance 15 m. 

5.5 Summary 

In this chapter, the implementation of DSRC test-bed using SDR and the measurement results 

were discussed. The details of hardware and software designed and utilized for channel 

measurements were given. The system presented is compact and cost-effective. Different 

measurement scenarios in conjunction with simulation scenarios that were discussed in Chapters 

3 and 4 were considered. For each case the realized capacity of the system was evaluated and 

compared with simulations.  

7.27 7.28
6.95 7.06 7.18

7.76

5.83

10.36

7.9

0

2

4

6

8

10

CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 Identity Rayleigh

A
ve

ra
ge

d 
C

ap
ac

ity
 (

bi
ts

/s
/H

z)
fo

r 
S

N
R

=
20

 d
B

CASES

WalMart Area (15 meters)

Phase

No Phase



93 

CHAPTER 6  

FUTURE WORK AND CONCLUSION 

This thesis provides a fundamental framework for many endeavors that can follow the work to 

continue the research in the field of vehicular communication or developing intelligent 

transportation system. This chapter will discusses the incorporation of dynamic measurement, 

channel sounding techniques and cognitive radio, which aim at making V2V communication 

reliable and efficient. 

6.1 Dynamic Measurement 

This thesis has discussed the capacity estimation and study of MIMO channels for static car 

scenarios in both simulation and measurement. First enhancement that can be done to this project 

is to incorporate ideas and methodologies for this system to work for dynamic scenarios. ITS 

should be robust and adaptable to all given scenarios. Due to the dynamic nature of vehicular 

wireless channels this will not be an easy task. In vehicular communications we are dealing with 

high mobility vehicles, therefore, the task of channel modeling and measurement becomes more 

challenging. The first step should be to collect as much as field data possible for diverse 

scenarios like low traffic, medium traffic, overtake scenarios, intersection scenarios, etc. This 

will help us to develop some general guidelines. The other challenge while testing for dynamic 

car scenarios incorporating MIMO systems will be related to synchronization. Several space-

time coding schemes are available for MIMO systems, but they have not been yet put in a real 

test scenario. Additionally, one must understand that with dynamic car scenarios, the 
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vehicular propagation channel may be very different than cellular channels, yielding new 

parameters that affect delay and Doppler spreads.  

6.2 Channel Sounding Techniques 

The importance of channel capacity as a crucial parameter to study the channel and its ability to 

carry information was discussed in this thesis. Other parameters such as pathloss, angle of 

arrival, delay spread, Doppler might be carefully studied as a function of vehicle’s speed, 

environment and vehicle’s size. Channel sounding techniques are ways to collect and measure 

CIR and study the effects of different parameters on the signal strength travelling from 

transmitter to the receiver. The measurement setup that is presented in this thesis may be used in 

future for studying these parameters, the only modification that needs to be done is in the 

software. 

6.3 Cognitive Radio 

Adding an artificial intelligence to the existing setup that was presented in this thesis can yield an 

adaptive wireless sensor network, often defined as cognitive radio. Cognitive radio is hailed as 

the ultimate evolution of SDRs which will be able to access the vehicular propagation 

parameters, spectrum usage and adapt to the RF environment accordingly. To achieve this, such 

smart unit should be trained with tons of information about the channel in different scenarios. 

Future works described earlier are the initial steps to be accomplished before dwelling on 

implementation of the cognitive radio concepts. 

6.4 Conclusion 

This thesis has presented a system level idea and design of a robust tool to investigate the MIMO 

channels utilization in DSRC. We proposed the use of SDR for channel sounding and ray-tracing 
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for channel simulation. The channel capacity was used as a measure to examine the MIMO 

channels in terms of antenna selection for best utilization of multipath. In the channel simulation 

some channel parameters like K-Factor, and capacity were analyzed with respect to antenna 

location. The similar setup was used to measure the channel capacity in real scenario using 

SDRs. The results of these measurement campaign and simulations gave us insight of how the 

vehicular propagation channel behaves. The relation of antenna location to channel capacity, K-

Factor relation to multipath, importance of phase of the received angle in defining the diversity 

of the system was studied. The purposed setup for measurement can further be enhanced to 

achieve the goals discussed as future work.  
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APPENDIX A 

CHANNEL CAPACITY CALCULATION (MATLAB) 

clear all ;  
clc;  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%       IMPORTING FILES              %%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
file= 'WALWCar15.xlsx' ;  
sheet=1;  
data= 'C5:AF19' ;  
A=xlsread(file,sheet,data);  
  
snrdb=[0: 1: 20];  
%snrdb=[0: 1: 20];  
snr=10.^(snrdb/10);  
%color = ['b';'r';'g';'k';'c'];  
%notation = ['-o';'->';'<-';'-^';'-s'];  
  
nT=2;  
nR=2;  
K=2;                                              %Ricean K-factor2  
for  i=1 : nT*nR;     
    T(i)= input( 'Select Tx :' );                   %User INPUT for desired 
transmitter  
    R(i)=input( 'Select Rx:' );                     %User INPUT for desired 
receiver  
    M(i)=A(T(i), (R(i)-1)*2+1)                  %accessing Magnitude in dbm 
for given TX and RX  
    Mag(i)=10.^(M(i)/10)*10^-3 ;                 %changing dbm into watts  
    P(i)=A(T(i),R(i)*2)                         %accessing Phase in deg for 
given TX and RX  
    Phase(i)=P(i)*(pi/180);                       %changing deg. into 
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radians     
    H(i)=Mag(i)*exp(j*(Phase(i)));                %Expressing in form of :  
|Hij|.exp(jANGij)Ref: Page 2: On the capacity of th e MIMO channel -Bengt 
Hotler  
     
     
end  
 Mag1= Mag(1)+Mag(3);  
 %Mag1mw=Mag1/0.001;  
 %Mag1dBm=20*log(Mag1mw);  
 Mag2=Mag(2)+Mag(4);  
 %Mag2mw=Mag2/0.001;  
 %Mag2dBm=20*log(Mag2mw);  
 H_d=ones(nT,nR);  
 H_par = [ H(1) H(2) ; H(3) H(4) ];  
 H_idn = [1 0 ;0 1];                              %Identity Matrix  
 H_ray=(randn(nT,nR)+j*randn(nT,nR))/sqrt(2);      %Rayleigh Matrix  
 H_ric= sqrt(K/(K+1))*H_d +sqrt(1/(K+1))*H_ray;   %Rician Matrix  
  
  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%% Capacity for Simulation Matrix %%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 CT_H_par = H_par';  
 %CT_H_par1 = ctranspose(H_par)  
 H_product= H_par*CT_H_par ;  
 H_normalised= H_product/norm(H_product, 'fro' );  
 lamda= svd(H_normalised);  
  
 for  i=1:length(snr)  
      
     %T=snrdb(i);  
     %Y=log2(snrdb(i).*(lamda.^2));  
     %C(i)= sum(1 + log2(snr(i).*(lamda.^2)));  
    %C(i)=log2(real(det(I + (snr(i)./nT).* HProd)))  
     
        C(i)=0;  
    for  j=1:length(lamda)  
        C(i)=C(i)+log2(1+snr(i)/nT*lamda(j));  
    end  
  
 end  
 CapacityMAX_Simulation_10dB=C(11)  
 CapacityMAX_Simulation_20dB=C(21)  
 hold all  
 grid on 
 plot(snrdb,C, '--' )  
 xlabel( 'SNR dB' )  
 ylabel( 'Channel Capacity(bits/s/hz) ' )  
  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%% Capacity for Identity Matrix %%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 CT_H_idn = H_idn';  
 %CT_H_par1 = ctranspose(H_par)  
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 H_product_idn= H_idn*CT_H_idn ;  
 H_normalised_idn= H_product_idn/norm(H_product_idn , 'fro' );  
 lamda_idn= svd(H_normalised_idn);  
  
  for  i=1:length(snr)  
        C(i)=0;  
    for  j=1:length(lamda_idn)  
        C(i)=C(i)+log2(1+snr(i)/nT*lamda_idn(j));  
    end  
  end  
 %CapacityMAX_Identity_10dB=C(11)  
 CapacityMAX_Identity_20dB=C(21)  
 hold all  
 grid on 
 plot(snrdb,C, '--' )  
 %xlabel('SNR (dB)')  
 %ylabel('Channel Capacity (bits/s/hz) ')  
  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%% Capacity for Rayleigh Matrix %%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 for  m=1:1:1000  
H_ray=(randn(2,2)+j*randn(2,2))/sqrt(2);  
CT_H_ray = H_ray';  
 H_product_ray= H_ray*CT_H_ray ;  
 H_normalised_ray= H_product_ray/norm(H_product_ray , 'fro' );  
 lamda_ray= svd(H_normalised_ray);  
  
 for  i=1:length(snr)  
        C(i)=0;  
    for  j=1:length(lamda_ray)  
        C(i)=C(i)+log2(1+snr(i)/2*lamda_ray(j));  
         
    end  
  
 end  
 c1(m)=C(1);  
 c2(m)=C(2);  
 c3(m)=C(3);  
 c4(m)=C(4);  
 c5(m)=C(5);  
 c6(m)=C(6);  
 c7(m)=C(7);  
 c8(m)=C(8);  
 c9(m)=C(9);  
 c10(m)=C(10);  
 c11(m)=C(11);  
 c12(m)=C(12);  
 c13(m)=C(13);  
 c14(m)=C(14);  
 c15(m)=C(15);  
 c16(m)=C(16);  
 c17(m)=C(17);  
 c18(m)=C(18);  
 c19(m)=C(19);  
 c20(m)=C(20);  
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 c21(m)=C(21);  
  
end  
  
 for  i=1:length(m)  
     
   s1=sum(c1);  
   s2=sum(c2);  
   s3=sum(c3);  
   s4=sum(c4);  
   s5=sum(c5);  
   s6=sum(c6);  
   s7=sum(c7);  
   s8=sum(c8);  
   s9=sum(c9);  
   s10=sum(c10);  
   s11=sum(c11);  
   s12=sum(c12);  
   s13=sum(c13);  
   s14=sum(c14);  
   s15=sum(c15);  
   s16=sum(c16);  
   s17=sum(c17);  
   s18=sum(c18);  
   s19=sum(c19);  
   s20=sum(c20);  
   s21=sum(c21);  
end  
  
  
CC=[s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14, s15,s16,s17,s18,s19,s20,s2
1];  
CCbit=CC/1000  
plot(snrdb,CCbit, '--' )  
xlabel( 'SNR (dB)' )  
ylabel( 'Channel Capacity (bits/s/hz)' )  
  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%% Capacity for Rician Matrix %%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 CT_H_ric = H_ric';  
 %CT_H_par1 = ctranspose(H_par)  
 H_product_ric= H_ric*CT_H_ric ;  
 H_normalised_ric= H_ric/norm(H_product_ric, 'fro' );  
 lamda_ric= svd(H_normalised_ric);  
   
    for  i=1:length(snr)    
        C(i)=0;  
    for  j=1:length(lamda_ric)  
        C(i)=C(i)+log2(1+snr(i)/nT*lamda_ric(j));  
    end   
    end  
     
 % Capacity_min=C(1)  
 %CapacityMAX_Ricean=C(21)  
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 hold all  
 grid on 
 %plot(snrdb,C,'--')  
 %xlabel('SNR_d_B')  
 %ylabel('Channel_C_a_p_a_c_i_t_y ')
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